WO2015106113A1 - Material and processes for additively manufacturing one or more parts - Google Patents

Material and processes for additively manufacturing one or more parts Download PDF

Info

Publication number
WO2015106113A1
WO2015106113A1 PCT/US2015/010836 US2015010836W WO2015106113A1 WO 2015106113 A1 WO2015106113 A1 WO 2015106113A1 US 2015010836 W US2015010836 W US 2015010836W WO 2015106113 A1 WO2015106113 A1 WO 2015106113A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
core
coating
additive manufacturing
manufacturing system
Prior art date
Application number
PCT/US2015/010836
Other languages
French (fr)
Inventor
Ying She
Aaron T. Nardi
Zissis A. Dardas
Michael A. KLECKA
Scott A. Eastman
Original Assignee
United Technologies Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corporation filed Critical United Technologies Corporation
Priority to US15/105,100 priority Critical patent/US11033961B2/en
Priority to EP15735034.9A priority patent/EP3092096A4/en
Publication of WO2015106113A1 publication Critical patent/WO2015106113A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0093Welding characterised by the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/20Nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/45Others, including non-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • This disclosure relates to material and processes for additive manufacturing one or more parts.
  • additive manufacturing may describe a process where a part or parts are formed by accumulating and/or fusing material together, typically in a layer-on-layer manner. Layers of material, for example, may be cold sprayed sequentially onto one another to form the part(s). In another example, layers of material may be sintered or otherwise melted sequentially onto one another to form the part(s).
  • Part(s) are typically additively manufactured from metal powder.
  • This metal powder may be degassed in order to remove entrained gasses and/or moisture therefrom, which if not removed can create various defects within the part(s).
  • the degassed metal powder may re-adsorb moisture. The metal powder therefore may require additional degassing, which can increase manufacturing time and cost.
  • material for forming a part using a manufacturing system.
  • This material includes a plurality of discrete particles.
  • Each of the particles includes a metal powder core encapsulated by a non-metal coating. At least the cores of the particles are adapted to be solidified together by the manufacturing system to form the part.
  • another material for forming a part using an additive manufacturing system.
  • This material includes a plurality of discrete particles.
  • Each of the particles includes a coating on a degassed metal powder core.
  • the coating is adapted to prevent the core from adsorbing moisture.
  • the coating is also adapted to decompose and/or volatize to expose the core.
  • the cores of the particles are adapted to be solidified together by the additive manufacturing system to form the part.
  • a process for forming a part using an additive manufacturing system.
  • a plurality of discrete particles are provided.
  • Each of these particles includes a metal powder core encapsulated by a non-metal coating.
  • At least some of the cores are solidified together using the additive manufacturing system to form at least a portion of the part.
  • the manufacturing system may be an additive manufacturing system.
  • the metal powder core of at least one of the particles may be a degassed metal powder core.
  • the coating of at least one of the particles may be adapted to prevent the core from adsorbing moisture.
  • the coating of at least one of the particles may be adapted to decompose and/or volatize to expose the core.
  • the coating of at least one of the particles may be configured from or otherwise include polymer.
  • the coating of at least one of the particles may also or alternatively be configured from or otherwise include ceramic.
  • the coating of at least one of the particles may be configured from or otherwise include at least one of the following materials: alkoxysilane, aminosilane, organic phospholic acid, nitride, fluoride, epoxy, thiol, disulphide, thoilate, triazol, alkylphosphonic acids, fluoropolymers, silicones, polypyrrol, polyanyline, and other polymeric assembled monolayers.
  • the core of at least one of the particles may include a single metal particle. ⁇ addition or alternatively, the core of at least one of the particles may include a plurality of metal particles. [0015] The core of at least one of the particles may be configured from or otherwise include at least one of the following materials: aluminum, copper, titanium, nickel and steel.
  • the coating of at least some of the particles may be removed to expose the cores of the respective particles.
  • the coating may be removed through decomposition and/or volatization.
  • the additive manufacturing system may include a cold spray device.
  • the additive manufacturing system may include a laser and/or an electron beam energy source.
  • FIG. 1 is cross-sectional illustration of an additive manufacturing particle
  • FIG. 2 is a block diagram of a system for additively manufacturing one or more parts.
  • FIG. 3 is a flow diagram of a process for forming one or more parts using the additive manufacturing system of FIG. 2 and material including the additive manufacturing particle of FIG. 1.
  • This additive manufacturing material includes a plurality of discrete particles that collectively form powder.
  • An exemplary of one of these additive manufacturing particles 10 is illustrated in FIG. 1 and described below. It is worth noting, however, that one or more of the additive
  • manufacturing particles included in the additive manufacturing material may alternatively have different configurations and/or compositions than that described below and illustrated in FIG. 1.
  • the additive manufacturing particle 10 of FIG. 1 includes a metal powder core 12 covered and/or encapsulated by a coating 14.
  • the core 12 may include one or more metal particles.
  • Each of these metal particles may be composed from one or more of the following core materials: aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), steel, and/or alloys thereof.
  • One or more of the metal particles may also or alternatively be composed from one or more core materials other than those described above.
  • the core 12 may be a degassed metal powder core.
  • the core 12 may be degassed to remove entrained gas, adsorbates and/or moisture therefrom.
  • Various degassing processes are known in the art and therefore are not described in further detail.
  • the core 12 may have a size (e.g., an average diameter) of between about five micrometers (5 ⁇ ) and about five-hundred micrometers (500 ⁇ ); e.g., between about twenty micrometers (20 ⁇ ) and about sixty micrometers (60 ⁇ ).
  • a size e.g., an average diameter
  • 5 ⁇ five micrometers
  • 500 ⁇ five-hundred micrometers
  • 60 ⁇ sixty micrometers
  • the present invention is not limited to the foregoing exemplary core sizes.
  • the coating 14 is adapted to substantially reduce or prevent the core 12 from adsorbing moisture.
  • the coating 14 therefore may enable the additive manufacturing particle 10 to be stored outside of a controlled additive manufacturing environment (e.g., a vacuum or noble gas environment) without compromising the core material for subsequent additive
  • a metal particle without such a coating may adsorb moisture during the storage and/or transportation thereof. This moisture may subsequently cause surface defects and/or porosity defects in a part formed from the now non-degassed metal particle.
  • the coating 14 may also be adapted to partially or substantially completely decompose and/or volatize in order to partially or substantially completely expose the core 12 for subsequent additive manufacturing. In this manner, the coating 14 may be removed from the core 12 prior to formation of the part(s), which reduces the likelihood of or substantially prevents the coating material from altering the mechanical properties and/or the intended chemical composition of the part(s).
  • the coating 14 may be a non-metal coating such as, for example, a polymer coating, a ceramic coating, a polymer-ceramic coating, or any other type of coating that does not include a metal component and is adapted as described above.
  • the coating 14, for example, may be composed from one or more of the coating materials listed below in Table I.
  • the coating 14, however, may also or alternatively be composed of one or more coating materials other than those described above and listed in Table I. Table I
  • Aluminum Nitride Nitrogen e.g., N 2
  • the coating material may be deposited on the core 12 to form the coating 14 through one or more of the following processes: chemical adsorption, physical adsorption and/or covalent bonding. Various chemical adsorption, physical adsorption and covalent bonding processes are known in the art and therefore are not described in further detail.
  • the coating material may also or alternatively be deposited on the core 12 using one or more processes other than those described above.
  • FIG. 2 illustrates a system 16 for additively manufacturing a part 18 (or parts) from the additive manufacturing material (e.g., powder) describe above.
  • This additive manufacturing system 16 includes a support 20, an additive manufacturing device 22 and a controller 24.
  • the additive manufacturing system 16 also includes a housing 26, such as a sealed enclosure or pressure vessel, in which the support 20 and at least a portion of the additive manufacturing device 22 are located.
  • the support 20 includes a support surface 28.
  • This support surface 28 is configured to support the additive manufacturing material and/or at least a portion of the part 18 (or parts) during the formation of the part 18 (or parts).
  • the support surface 28, for example, may be substantially horizontal relative to gravity.
  • the support surface 28 may also have a generally planar geometry.
  • the additive manufacturing device 22 may be configured as a cold spray device, a laser sintering device, or an electron beam melting device.
  • a cold spray device a laser sintering device
  • an electron beam melting device Various cold spray devices, laser sintering devices and electron beam melting devices are known in the art and therefore are not described in further detail.
  • various other types and configurations of additive manufacturing devices are known in the art and the present invention is not limited to any particular ones thereof.
  • the controller 24 is in signal communication (e.g., hardwired and/or wirelessly coupled) with the additive manufacturing device 22.
  • the controller 24 is adapted to signal the additive manufacturing device 22 to perform at least a portion of the process described below.
  • the controller 24 is implemented with a combination of hardware and software.
  • the hardware includes memory and a processing device (or system), which includes one or more single-core and/or multi-core processors.
  • the memory may be a non-transitory computer readable medium, and configured to store software (e.g., program instructions) for execution by the processing device.
  • the hardware may also or alternatively include analog and/or digital circuitry other than that described above.
  • FIG. 3 is a flow diagram of a process for forming a part 18 (or parts) using the additive manufacturing material and the additive manufacturing system 16.
  • An example of a part that may be formed with the additive manufacturing system 16 is a rotor blade for a turbine engine; e.g., a turbine blade, a compressor blade or a fan blade.
  • Other examples of a part that may be formed with the additive manufacturing system 16 include a stator blade for a turbine engine, a guide vane for a turbine engine, a gas path wall for a turbine engine as well as various other components included in a turbine engine.
  • the process of FIG. 3 and the additive manufacturing system 16, of course, may also or alternatively form parts other than those included in a turbine engine.
  • the additive manufacturing material Prior to the formation of the part 18 (or parts), the additive manufacturing material may be stored in an ambient environment outside of the additively manufacturing system 16. Alternatively, the additive manufacturing material may be stored in a controlled environment (e.g., a vacuum or noble gas environment) and/or in a reservoir 30 (e.g., a hopper) of the additive manufacturing system 16.
  • a controlled environment e.g., a vacuum or noble gas environment
  • a reservoir 30 e.g., a hopper
  • step 300 the additive manufacturing material is loaded into the additive manufacturing system 16.
  • the additive manufacturing material for example, may be poured out or otherwise directed from its storage container into the reservoir 30, which may selectively feed the material to the additive manufacturing device 22.
  • the coating 14 is removed from at least some of the additive manufacturing particles (e.g., particle 10) to expose the core material; e.g., the degassed metal powder cores.
  • a conduit and/or a chamber 32 configured with the additive manufacturing device 22 may be heated with a heater to or above an elevated (e.g., above ambient) temperature at which the coating material decomposes and/or volatizes.
  • This conduit and/or chamber 32 may be connected upstream of a material applicator 34 (e.g., a powder bed nozzle or a cold spray nozzle) of the additive manufacturing device 22.
  • the material applicator 34 therefore may receive the exposed core material (e.g., the degassed metal powder cores) from the conduit and/or chamber 32.
  • step 304 at least some of the exposed core material is formed into at least a portion of the part 18 (or parts).
  • the material applicator 34 may cold spray the exposed core material onto the support surface 28 to build up a base layer.
  • the material applicator 34 may subsequently cold spray one or more additional layers of the exposed core material onto the base layer to accumulatively form the part 18 (or parts).
  • each layer of material is cold sprayed, it may fuse to a previously sprayed layer thereby solidifying at least some of the metal powder cores 12 together to form the part 18 (or parts).
  • the material applicator 34 may deposit a uniform and compacted layer of the exposed core material onto the support surface 28.
  • a laser or electron beam energy source 36 may subsequently solidify (e.g., sinter or otherwise melt) some or all of the metal powder cores 12 in the layer together to form a base layer of the part 18 (or parts).
  • the material applicator 34 may subsequently deposit one or more additional uniform and compacted layers of the exposed core material onto the base layer, and the laser or electron beam energy source 36 may respectively solidify some or all of the metal powder cores 12 in the additional layer(s) to form additional layers of the part 18 (or parts).
  • the process of FIG. 3 is not limited to the foregoing exemplary material buildup techniques or devices.
  • the additive manufacturing material may be stored with the additive manufacturing system 16.
  • the coating 14 may be removed within the material applicator 34 and/or as the additive manufacturing particles (e.g., particle 10) are directed from the material applicator 34 towards the support surface 28.
  • the coating material may not be removed from the particles (e.g., particle 10) where, for example, the coating material does not substantially affect the chemical composition and/or mechanical properties of the part 18 (or parts) formed therefrom.
  • the process of FIG. 3 may include one or more additional steps other than those described above.
  • the part 18 (or parts) may undergo additional manufacturing processes during and/or after the material buildup step 304. Examples of such additional manufacturing processes may include, but are not limited to, machining, surface finishing, coating, etc.
  • the part 18 (or parts) may also or alternatively undergo additional manufacturing processes before the material buildup step 304 where, for example, the additive manufacturing material is built up upon an existing part or portion of a part (or parts); e.g., to repair a part, etc.

Abstract

Material is provided for forming a part using a manufacturing system. The material includes a plurality of discrete particles. Each of the particles includes a metal powder core encapsulated by a non-metal coating. At least the cores of the particles are adapted to be solidified together by the manufacturing system to form the part.

Description

MATERIAL AND PROCESSES FOR ADDITIVELY MANUFACTURING
ONE OR MORE PARTS
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to U.S. Provisional Application Serial No. 61/925,466 filed January 9, 2014, which is hereby incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION
1. Technical Field
[0001] This disclosure relates to material and processes for additive manufacturing one or more parts.
2. Background Information
[0002] Various additive manufacturing processes are known in the art for forming one or more parts. The term "additive manufacturing" may describe a process where a part or parts are formed by accumulating and/or fusing material together, typically in a layer-on-layer manner. Layers of material, for example, may be cold sprayed sequentially onto one another to form the part(s). In another example, layers of material may be sintered or otherwise melted sequentially onto one another to form the part(s).
[0003] Part(s) are typically additively manufactured from metal powder. This metal powder may be degassed in order to remove entrained gasses and/or moisture therefrom, which if not removed can create various defects within the part(s). However, if the degassed metal powder is exposed to air or atmosphere containing residual moisture during storage and/or loading into an additive manufacturing system, the degassed metal powder may re-adsorb moisture. The metal powder therefore may require additional degassing, which can increase manufacturing time and cost.
[0004] There is a need in the art for improved additive manufacturing materials and processes.
SUMMARY OF THE DISCLOSURE
[0005] According to an aspect of the invention, material is provided for forming a part using a manufacturing system. This material includes a plurality of discrete particles. Each of the particles includes a metal powder core encapsulated by a non-metal coating. At least the cores of the particles are adapted to be solidified together by the manufacturing system to form the part.
[0006] According to another aspect of the invention, another material is provided for forming a part using an additive manufacturing system. This material includes a plurality of discrete particles. Each of the particles includes a coating on a degassed metal powder core. The coating is adapted to prevent the core from adsorbing moisture. The coating is also adapted to decompose and/or volatize to expose the core. The cores of the particles are adapted to be solidified together by the additive manufacturing system to form the part.
[0007] According to another aspect of the invention, a process is provided for forming a part using an additive manufacturing system. A plurality of discrete particles are provided. Each of these particles includes a metal powder core encapsulated by a non-metal coating. At least some of the cores are solidified together using the additive manufacturing system to form at least a portion of the part.
[0008] The manufacturing system may be an additive manufacturing system.
[0009] The metal powder core of at least one of the particles may be a degassed metal powder core.
[0010] The coating of at least one of the particles may be adapted to prevent the core from adsorbing moisture.
[0011] The coating of at least one of the particles may be adapted to decompose and/or volatize to expose the core.
[0012] The coating of at least one of the particles may be configured from or otherwise include polymer. The coating of at least one of the particles may also or alternatively be configured from or otherwise include ceramic.
[0013] The coating of at least one of the particles may be configured from or otherwise include at least one of the following materials: alkoxysilane, aminosilane, organic phospholic acid, nitride, fluoride, epoxy, thiol, disulphide, thoilate, triazol, alkylphosphonic acids, fluoropolymers, silicones, polypyrrol, polyanyline, and other polymeric assembled monolayers.
[0014] The core of at least one of the particles may include a single metal particle. Γη addition or alternatively, the core of at least one of the particles may include a plurality of metal particles. [0015] The core of at least one of the particles may be configured from or otherwise include at least one of the following materials: aluminum, copper, titanium, nickel and steel.
[0016] The coating of at least some of the particles may be removed to expose the cores of the respective particles. The coating may be removed through decomposition and/or volatization.
[0017] The additive manufacturing system may include a cold spray device.
[0018] The additive manufacturing system may include a laser and/or an electron beam energy source.
[0019] The foregoing features and the operation of the invention will become more apparent in light of the following description and the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0020] FIG. 1 is cross-sectional illustration of an additive manufacturing particle;
[0021] FIG. 2 is a block diagram of a system for additively manufacturing one or more parts; and
[0022] FIG. 3 is a flow diagram of a process for forming one or more parts using the additive manufacturing system of FIG. 2 and material including the additive manufacturing particle of FIG. 1.
DETAILED DESCRIPTION OF THE INVENTION
[0023] Material is described below for additively manufacturing one or more parts. This additive manufacturing material includes a plurality of discrete particles that collectively form powder. An exemplary of one of these additive manufacturing particles 10 is illustrated in FIG. 1 and described below. It is worth noting, however, that one or more of the additive
manufacturing particles included in the additive manufacturing material may alternatively have different configurations and/or compositions than that described below and illustrated in FIG. 1.
[0024] The additive manufacturing particle 10 of FIG. 1 includes a metal powder core 12 covered and/or encapsulated by a coating 14. The core 12 may include one or more metal particles. Each of these metal particles may be composed from one or more of the following core materials: aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), steel, and/or alloys thereof. One or more of the metal particles, of course, may also or alternatively be composed from one or more core materials other than those described above.
[0025] The core 12 may be a degassed metal powder core. For example, before being encapsulated within the coating 14, the core 12 may be degassed to remove entrained gas, adsorbates and/or moisture therefrom. Various degassing processes are known in the art and therefore are not described in further detail.
[0026] The core 12 may have a size (e.g., an average diameter) of between about five micrometers (5μιη) and about five-hundred micrometers (500μιη); e.g., between about twenty micrometers (20μηι) and about sixty micrometers (60μιη). The present invention, however, is not limited to the foregoing exemplary core sizes.
[0027] The coating 14 is adapted to substantially reduce or prevent the core 12 from adsorbing moisture. The coating 14 therefore may enable the additive manufacturing particle 10 to be stored outside of a controlled additive manufacturing environment (e.g., a vacuum or noble gas environment) without compromising the core material for subsequent additive
manufacturing. In contrast, a metal particle without such a coating may adsorb moisture during the storage and/or transportation thereof. This moisture may subsequently cause surface defects and/or porosity defects in a part formed from the now non-degassed metal particle.
[0028] Referring again to FIG. 1 , the coating 14 may also be adapted to partially or substantially completely decompose and/or volatize in order to partially or substantially completely expose the core 12 for subsequent additive manufacturing. In this manner, the coating 14 may be removed from the core 12 prior to formation of the part(s), which reduces the likelihood of or substantially prevents the coating material from altering the mechanical properties and/or the intended chemical composition of the part(s).
[0029] The coating 14 may be a non-metal coating such as, for example, a polymer coating, a ceramic coating, a polymer-ceramic coating, or any other type of coating that does not include a metal component and is adapted as described above. The coating 14, for example, may be composed from one or more of the coating materials listed below in Table I. The coating 14, however, may also or alternatively be composed of one or more coating materials other than those described above and listed in Table I. Table I
Core Coating
Representative
Representative Non-Metal Metal Core Chemical Class(es)
Coating Material(s)
Material
Alkoxysilane Triethoxy silane
Aminosilane Aminopropyldimethylethoxysilane
Organic phospholic acid Pentanephosphonic acid
Aluminum Nitride Nitrogen (e.g., N2)
Fluoride Fluorocarbon
Epoxy
Organic vapor coating Paralene, cyanoacrylate
Thiol, disulphide, thiolate Organic thiol
Triazol Benzenetriazole (BTA)
Copper
Organic vapor coating Paralene, cyanoacrylate
Inorganic vapor coating Silane
Inorganic vapor coating Titanium nitride
Titanium
Chemisorption Fluorinated polymers
Nickel Chemisorption Alkylphosphonic acids
Steel Electropolymerization Polypyrrol/polyaniline
[0030] The coating material may be deposited on the core 12 to form the coating 14 through one or more of the following processes: chemical adsorption, physical adsorption and/or covalent bonding. Various chemical adsorption, physical adsorption and covalent bonding processes are known in the art and therefore are not described in further detail. The coating material, of course, may also or alternatively be deposited on the core 12 using one or more processes other than those described above.
[0031] FIG. 2 illustrates a system 16 for additively manufacturing a part 18 (or parts) from the additive manufacturing material (e.g., powder) describe above. This additive manufacturing system 16 includes a support 20, an additive manufacturing device 22 and a controller 24. The additive manufacturing system 16 also includes a housing 26, such as a sealed enclosure or pressure vessel, in which the support 20 and at least a portion of the additive manufacturing device 22 are located. [0032] The support 20 includes a support surface 28. This support surface 28 is configured to support the additive manufacturing material and/or at least a portion of the part 18 (or parts) during the formation of the part 18 (or parts). The support surface 28, for example, may be substantially horizontal relative to gravity. The support surface 28 may also have a generally planar geometry.
[0033] The additive manufacturing device 22 may be configured as a cold spray device, a laser sintering device, or an electron beam melting device. Various cold spray devices, laser sintering devices and electron beam melting devices are known in the art and therefore are not described in further detail. In addition, various other types and configurations of additive manufacturing devices are known in the art and the present invention is not limited to any particular ones thereof.
[0034] The controller 24 is in signal communication (e.g., hardwired and/or wirelessly coupled) with the additive manufacturing device 22. The controller 24 is adapted to signal the additive manufacturing device 22 to perform at least a portion of the process described below. The controller 24 is implemented with a combination of hardware and software. The hardware includes memory and a processing device (or system), which includes one or more single-core and/or multi-core processors. The memory may be a non-transitory computer readable medium, and configured to store software (e.g., program instructions) for execution by the processing device. The hardware may also or alternatively include analog and/or digital circuitry other than that described above.
[0035] FIG. 3 is a flow diagram of a process for forming a part 18 (or parts) using the additive manufacturing material and the additive manufacturing system 16. An example of a part that may be formed with the additive manufacturing system 16 is a rotor blade for a turbine engine; e.g., a turbine blade, a compressor blade or a fan blade. Other examples of a part that may be formed with the additive manufacturing system 16 include a stator blade for a turbine engine, a guide vane for a turbine engine, a gas path wall for a turbine engine as well as various other components included in a turbine engine. The process of FIG. 3 and the additive manufacturing system 16, of course, may also or alternatively form parts other than those included in a turbine engine.
[0036] Prior to the formation of the part 18 (or parts), the additive manufacturing material may be stored in an ambient environment outside of the additively manufacturing system 16. Alternatively, the additive manufacturing material may be stored in a controlled environment (e.g., a vacuum or noble gas environment) and/or in a reservoir 30 (e.g., a hopper) of the additive manufacturing system 16.
[0037] In step 300, the additive manufacturing material is loaded into the additive manufacturing system 16. The additive manufacturing material, for example, may be poured out or otherwise directed from its storage container into the reservoir 30, which may selectively feed the material to the additive manufacturing device 22.
[0038] In step 302, the coating 14 is removed from at least some of the additive manufacturing particles (e.g., particle 10) to expose the core material; e.g., the degassed metal powder cores. For example, a conduit and/or a chamber 32 configured with the additive manufacturing device 22 may be heated with a heater to or above an elevated (e.g., above ambient) temperature at which the coating material decomposes and/or volatizes. This conduit and/or chamber 32 may be connected upstream of a material applicator 34 (e.g., a powder bed nozzle or a cold spray nozzle) of the additive manufacturing device 22. The material applicator 34 therefore may receive the exposed core material (e.g., the degassed metal powder cores) from the conduit and/or chamber 32.
[0039] In step 304, at least some of the exposed core material is formed into at least a portion of the part 18 (or parts). The material applicator 34, for example, may cold spray the exposed core material onto the support surface 28 to build up a base layer. The material applicator 34 may subsequently cold spray one or more additional layers of the exposed core material onto the base layer to accumulatively form the part 18 (or parts). As each layer of material is cold sprayed, it may fuse to a previously sprayed layer thereby solidifying at least some of the metal powder cores 12 together to form the part 18 (or parts).
[0040] In another example, the material applicator 34 may deposit a uniform and compacted layer of the exposed core material onto the support surface 28. A laser or electron beam energy source 36 may subsequently solidify (e.g., sinter or otherwise melt) some or all of the metal powder cores 12 in the layer together to form a base layer of the part 18 (or parts). The material applicator 34 may subsequently deposit one or more additional uniform and compacted layers of the exposed core material onto the base layer, and the laser or electron beam energy source 36 may respectively solidify some or all of the metal powder cores 12 in the additional layer(s) to form additional layers of the part 18 (or parts). Of course, the process of FIG. 3 is not limited to the foregoing exemplary material buildup techniques or devices.
[0041] One or more of the process steps of FIG. 3 may be omitted, re-arranged and/or combined. For example, in some embodiments, the additive manufacturing material may be stored with the additive manufacturing system 16. In some embodiments, the coating 14 may be removed within the material applicator 34 and/or as the additive manufacturing particles (e.g., particle 10) are directed from the material applicator 34 towards the support surface 28. In some embodiments, the coating material may not be removed from the particles (e.g., particle 10) where, for example, the coating material does not substantially affect the chemical composition and/or mechanical properties of the part 18 (or parts) formed therefrom.
[0042] The process of FIG. 3 may include one or more additional steps other than those described above. For example, in some embodiments, the part 18 (or parts) may undergo additional manufacturing processes during and/or after the material buildup step 304. Examples of such additional manufacturing processes may include, but are not limited to, machining, surface finishing, coating, etc. In some embodiments, the part 18 (or parts) may also or alternatively undergo additional manufacturing processes before the material buildup step 304 where, for example, the additive manufacturing material is built up upon an existing part or portion of a part (or parts); e.g., to repair a part, etc.
[0043] While the material disclosed herein is described above with reference to additive manufacturing, this material may also or alternatively be used for other manufacturing processes. The material, for example, may be solidified together by a manufacturing system during casting, hot pressing, extruding, etc. The present invention therefore is not limited to any particular manufacturing processes or systems.
[0044] While various embodiments of the present invention have been disclosed, it will be apparent to those of ordinary skill in the art that many more embodiments and
implementations are possible within the scope of the invention. For example, the present invention as described herein includes several aspects and embodiments that include particular features. Although these features may be described individually, it is within the scope of the present invention that some or all of these features may be combined within any one of the aspects and remain within the scope of the invention. Accordingly, the present invention is not to be restricted except in light of the attached claims and their equivalents.

Claims

What is claimed is:
1. Material for forming a part using a manufacturing system, the material comprising:
a plurality of discrete particles, each of the particles including a metal powder core encapsulated by a non-metal coating;
wherein at least the cores of the particles are adapted to be solidified together by the manufacturing system to form the part.
2. The material of claim 1, wherein the metal powder core of one of the particles comprises a degassed metal powder core.
3. The material of claim 1 , wherein the coating of one of the particles is adapted to prevent the core from adsorbing moisture.
4. The material of claim 1, wherein the coating of one of the particles is adapted to decompose to expose the core.
5. The material of claim 1, wherein the coating of one of the particles is adapted to volatize to expose the core.
6. The material of claim 1 , wherein the coating of one of the particles comprises polymer.
7. The material of claim 1, wherein the coating of one of the particles comprises ceramic.
8. The material of claim 1, wherein the coating of one of the particles comprises at least one of the following materials: alkoxysilane, aminosilane, organic phospholic acid, nitride, fluoride, epoxy, thiol, disulphide, thoilate, triazol, alkylphosphonic acids, fluoropolymers, silicones, polypyrrol, polyanyline, and polymeric assembled monolayers.
9. The material of claim 1 , wherein the core of one of the particles includes one or more metal particles.
10. The material of claim 1, wherein the core of one of the particles comprises at least one of the following materials: aluminum, copper, titanium, nickel and steel.
11. Material for forming a part using an additive manufacturing system, the material comprising:
a plurality of discrete particles, each of the particles including a coating on a degassed metal powder core;
the coating adapted to prevent the core from adsorbing moisture, and further adapted to decompose and/or volatize to expose the core;
wherein the cores of the particles are adapted to be solidified together by the additive manufacturing system to form the part.
12. A process for forming a part using an additive manufacturing system, the process comprising:
providing a plurality of discrete particles, each of the particles including a metal powder core encapsulated by a non-metal coating; and
solidifying at least some of the cores together using the additive manufacturing system to form at least a portion of the part.
13. The process of claim 12, wherein the metal powder core of one of the particles comprises a degassed metal powder core.
14. The process of claim 12, wherein the coating of one of the particles is adapted to prevent the core from adsorbing moisture.
15. The process of claim 12, further comprising removing the coatings from at least some of the particles to expose the cores of the respective particles.
16. The process of claim 12, wherein the coating of one of the particles comprises at least one of the following materials: polymer and ceramic.
17. The process of claim 12, wherein the core of one of the particles includes one or more metal particles.
18. The process of claim 12, wherein the core of one of the particles comprises at least one of the following materials: aluminum, copper, titanium, nickel and steel.
19. The process of claim 12, wherein the additive manufacturing system comprises a cold spray device.
20. The process of claim 12, wherein the additive manufacturing system comprises one of a laser and an electron beam energy source.
PCT/US2015/010836 2014-01-09 2015-01-09 Material and processes for additively manufacturing one or more parts WO2015106113A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/105,100 US11033961B2 (en) 2014-01-09 2015-01-09 Material and processes for additively manufacturing one or more parts
EP15735034.9A EP3092096A4 (en) 2014-01-09 2015-01-09 Material and processes for additively manufacturing one or more parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461925466P 2014-01-09 2014-01-09
US61/925,466 2014-01-09

Publications (1)

Publication Number Publication Date
WO2015106113A1 true WO2015106113A1 (en) 2015-07-16

Family

ID=53524369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/010836 WO2015106113A1 (en) 2014-01-09 2015-01-09 Material and processes for additively manufacturing one or more parts

Country Status (3)

Country Link
US (1) US11033961B2 (en)
EP (1) EP3092096A4 (en)
WO (1) WO2015106113A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2545530A (en) * 2015-08-10 2017-06-21 Delavan Inc Particulates for additive manufacturing techniques
WO2017117041A1 (en) * 2015-12-28 2017-07-06 Matheson Tri-Gas, Inc. Use of reactive fluids in additive manufacturing and the products made therefrom
GB2558025A (en) * 2016-08-18 2018-07-04 Hamilton Sundstrand Corp Particulates and methods of making particulates
WO2018128656A1 (en) * 2017-01-06 2018-07-12 General Electric Company Core-shell alloy powder for additive manufacturing, an additive manufacturing method and an additively manufactured precipitation dispersion strengthened alloy component
US20200180027A1 (en) * 2016-06-09 2020-06-11 Hamilton Sundstrand Corporation Powder deposition for additive manufacturing
WO2020138273A1 (en) * 2018-12-27 2020-07-02 Jx金属株式会社 PURE COPPER POWDER HAVING Si COATING, METHOD FOR PRODUCING SAME, AND ADDITIVE MANUFACTURING MODEL USING PURE COPPER POWDER
WO2020138274A1 (en) * 2018-12-27 2020-07-02 Jx金属株式会社 PRODUCTION METHOD FOR ADDITIVE-MANUFACTURED PRODUCT USING PURE COPPER POWDER HAVING Si COATING
EP3795276A1 (en) * 2019-09-18 2021-03-24 Nabtesco Corporation Powder particle for shaped metal object
US11292061B2 (en) * 2016-10-19 2022-04-05 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11484943B2 (en) 2014-01-23 2022-11-01 Raytheon Technologies Corporation Additive manufacturing of metal matrix composite feedstock
CN106898802B (en) * 2017-02-28 2019-07-26 安研纳米新材料科技(广州)有限责任公司 A kind of high-performing car hydrogen fuel cell composite nano-powder material and preparation method thereof
CN106825554B (en) * 2017-02-28 2018-12-25 广州市新稀冶金化工有限公司 3D printing nano metal alloy powder and preparation method thereof
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
US11668314B2 (en) 2020-11-10 2023-06-06 Greenheck Fan Corporation Efficient fan assembly
CN114160789A (en) * 2021-12-09 2022-03-11 西安交通大学 Method for enhancing performance of 3D printed metal product through surface coating of printing raw material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246703A (en) * 1988-08-08 1990-02-16 Shin Etsu Chem Co Ltd Alloy powder for permanent magnet and rare earth permanent magnet
WO1995030503A1 (en) 1994-05-06 1995-11-16 Dtm Corporation Binder compositions for selective laser sintering processes
US5639402A (en) * 1994-08-08 1997-06-17 Barlow; Joel W. Method for fabricating artificial bone implant green parts
US5678162A (en) 1994-11-14 1997-10-14 Board Of Regents, Univ. Of Texas System Mold useful for injection molding of plastics, and methods of production and uses thereof
US5749041A (en) 1995-10-13 1998-05-05 Dtm Corporation Method of forming three-dimensional articles using thermosetting materials
US20020015654A1 (en) * 2000-06-01 2002-02-07 Suman Das Direct selective laser sintering of metals
KR100889256B1 (en) * 2007-11-07 2009-03-19 주식회사 라이온켐텍 Metal composite powder consisted of core-shell structure for a good laser sintering property and manufacturing method thereof
CN102581274A (en) * 2012-03-08 2012-07-18 中国工程物理研究院化工材料研究所 Method for coating micro/nano-metal powder by chemical vapor deposition

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048954A (en) * 1994-07-22 2000-04-11 The University Of Texas System Board Of Regents Binder compositions for laser sintering processes
US6972115B1 (en) * 1999-09-03 2005-12-06 American Inter-Metallics, Inc. Apparatus and methods for the production of powders
US7524528B2 (en) * 2001-10-05 2009-04-28 Cabot Corporation Precursor compositions and methods for the deposition of passive electrical components on a substrate
EP1513670A1 (en) * 2002-06-18 2005-03-16 DaimlerChrysler AG Laser sintering method with increased process precision, and particles used for the same
US7045738B1 (en) 2002-10-01 2006-05-16 Southern Methodist University Powder delivery system and method
AU2003261497B2 (en) * 2002-11-08 2009-02-26 Howmedica Osteonics Corp. Laser-produced porous surface
SE524253C2 (en) * 2002-11-28 2004-07-13 Totalfoersvarets Forskningsins Ways to improve the burning rate and flammability of aluminum fuel particles and such a modified aluminum fuel
US7722802B2 (en) 2003-02-18 2010-05-25 Daimler Ag Coated powder particles for producing three-dimensional bodies by means of a layer constituting method
FR2856614B1 (en) 2003-06-30 2006-08-11 Phenix Systems DEVICE FOR PRODUCING THIN LAYERS OF POWDER, PARTICULARLY AT HIGH TEMPERATURES, IN A PROCESS BASED ON THE ACTION OF A LASER ON THE MATERIAL
AU2006224582A1 (en) * 2005-03-18 2006-09-21 Cinvention Ag Process for the preparation of porous sintered metal materials
US7777155B2 (en) 2007-02-21 2010-08-17 United Technologies Corporation System and method for an integrated additive manufacturing cell for complex components
US10092975B2 (en) 2008-02-12 2018-10-09 United Technologies Corporation Solid state additive manufacturing system
FR2948044B1 (en) 2009-07-15 2014-02-14 Phenix Systems THIN-LAYERING DEVICE AND METHOD OF USING SUCH A DEVICE
FR2949988B1 (en) 2009-09-17 2011-10-07 Phenix Systems PROCESS FOR PRODUCING AN OBJECT BY LASER TREATMENT FROM AT LEAST TWO DIFFERENT PULVERULENT MATERIALS AND CORRESPONDING INSTALLATION
KR20120082903A (en) * 2009-09-28 2012-07-24 트레드스톤 테크놀로지스, 인크. Highly electrically conductive surfaces for electrochemical applications and methods to produce same
US8460755B2 (en) 2011-04-07 2013-06-11 Stratasys, Inc. Extrusion-based additive manufacturing process with part annealing
FR2974316B1 (en) 2011-04-19 2015-10-09 Phenix Systems PROCESS FOR PRODUCING AN OBJECT BY SOLIDIFYING A POWDER USING A LASER
DE102011078720A1 (en) * 2011-07-06 2013-01-10 Evonik Degussa Gmbh Powder comprising polymer-coated core particles containing metals, metal oxides, metal or metalloid nitrides
US20130039799A1 (en) * 2011-08-10 2013-02-14 Summit Materials, Llc Method of Making Near-Net Shapes From Powdered Metals
US8488994B2 (en) 2011-09-23 2013-07-16 Stratasys, Inc. Electrophotography-based additive manufacturing system with transfer-medium service loops
US9550207B2 (en) * 2013-04-18 2017-01-24 Arcam Ab Method and apparatus for additive manufacturing
GB201316430D0 (en) 2013-09-16 2013-10-30 Univ Nottingham Additive manufacturing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246703A (en) * 1988-08-08 1990-02-16 Shin Etsu Chem Co Ltd Alloy powder for permanent magnet and rare earth permanent magnet
WO1995030503A1 (en) 1994-05-06 1995-11-16 Dtm Corporation Binder compositions for selective laser sintering processes
US5639402A (en) * 1994-08-08 1997-06-17 Barlow; Joel W. Method for fabricating artificial bone implant green parts
US5678162A (en) 1994-11-14 1997-10-14 Board Of Regents, Univ. Of Texas System Mold useful for injection molding of plastics, and methods of production and uses thereof
US5749041A (en) 1995-10-13 1998-05-05 Dtm Corporation Method of forming three-dimensional articles using thermosetting materials
US20020015654A1 (en) * 2000-06-01 2002-02-07 Suman Das Direct selective laser sintering of metals
KR100889256B1 (en) * 2007-11-07 2009-03-19 주식회사 라이온켐텍 Metal composite powder consisted of core-shell structure for a good laser sintering property and manufacturing method thereof
CN102581274A (en) * 2012-03-08 2012-07-18 中国工程物理研究院化工材料研究所 Method for coating micro/nano-metal powder by chemical vapor deposition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3092096A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2545530A (en) * 2015-08-10 2017-06-21 Delavan Inc Particulates for additive manufacturing techniques
WO2017117041A1 (en) * 2015-12-28 2017-07-06 Matheson Tri-Gas, Inc. Use of reactive fluids in additive manufacturing and the products made therefrom
US20200180027A1 (en) * 2016-06-09 2020-06-11 Hamilton Sundstrand Corporation Powder deposition for additive manufacturing
US11801554B2 (en) * 2016-06-09 2023-10-31 Hamilton Sundstrand Corporation Powder deposition for additive manufacturing
GB2558025B (en) * 2016-08-18 2022-03-23 Hamilton Sundstrand Corp Particulates and methods of making particulates
GB2558025A (en) * 2016-08-18 2018-07-04 Hamilton Sundstrand Corp Particulates and methods of making particulates
US10626503B2 (en) 2016-08-18 2020-04-21 Hamilton Sundstrand Corporation Particulates and methods of making particulates
US11292061B2 (en) * 2016-10-19 2022-04-05 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing
WO2018128656A1 (en) * 2017-01-06 2018-07-12 General Electric Company Core-shell alloy powder for additive manufacturing, an additive manufacturing method and an additively manufactured precipitation dispersion strengthened alloy component
CN110382138A (en) * 2017-01-06 2019-10-25 通用电气公司 For the nucleocapsid alloy powder of increasing material manufacturing, increasing material manufacturing method and the precipitate dispersions of increasing material manufacturing reinforced alloys component
WO2020138274A1 (en) * 2018-12-27 2020-07-02 Jx金属株式会社 PRODUCTION METHOD FOR ADDITIVE-MANUFACTURED PRODUCT USING PURE COPPER POWDER HAVING Si COATING
CN111836691A (en) * 2018-12-27 2020-10-27 捷客斯金属株式会社 Method for manufacturing additive manufactured product using pure copper powder with Si coating
CN111836692A (en) * 2018-12-27 2020-10-27 捷客斯金属株式会社 Pure copper powder having Si coating film, method for producing same, and additive-produced product using same
JP6722837B1 (en) * 2018-12-27 2020-07-15 Jx金属株式会社 Manufacturing method of layered product using pure copper powder having Si coating
JP6722838B1 (en) * 2018-12-27 2020-07-15 Jx金属株式会社 Pure copper powder having Si coating, method for producing the same, and layered model using the pure copper powder
CN111836691B (en) * 2018-12-27 2023-02-17 捷客斯金属株式会社 Method for manufacturing additive manufactured product using pure copper powder with Si coating
WO2020138273A1 (en) * 2018-12-27 2020-07-02 Jx金属株式会社 PURE COPPER POWDER HAVING Si COATING, METHOD FOR PRODUCING SAME, AND ADDITIVE MANUFACTURING MODEL USING PURE COPPER POWDER
EP3795276A1 (en) * 2019-09-18 2021-03-24 Nabtesco Corporation Powder particle for shaped metal object

Also Published As

Publication number Publication date
EP3092096A1 (en) 2016-11-16
US11033961B2 (en) 2021-06-15
EP3092096A4 (en) 2017-03-08
US20170043395A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
US11033961B2 (en) Material and processes for additively manufacturing one or more parts
US10576541B2 (en) Structured powder particles for feedstock improvement for laser based additive manufacturing
KR20180048665A (en) Method and apparatus for producing additive
US10005127B2 (en) Powder improvement for additive manufacturing
US8758675B2 (en) Method for fabricating an open-porous metal foam body, metal foam body fabricated this way as well as its applications
JP2021042475A (en) Additive manufacturing of articles comprising beryllium
EP3096939B1 (en) Monitoring material solidification byproducts during additive manufacturing
JP6445584B2 (en) Carrier and clip each having a sinterable solidified paste for connection to a semiconductor element, corresponding sintering paste, and corresponding manufacturing method and use
US20160215390A1 (en) Method of coating metallic powder particles
US20240128615A1 (en) Battery parts having solventless acid barriers and associated systems and methods
EP3096908A1 (en) Conditioning one or more additive manufactured objects
US20160332253A1 (en) Additive manufacturing an object from material with a selective diffusion barrier
WO2019065605A1 (en) Metal molding production apparatus and metal molding production method
JP6809780B2 (en) Film, film system and coating method
US20170182554A1 (en) Method for producing ceramic and/or metal components
JP2019108587A (en) Metal powder and method for producing the same, and lamination-molded article and method for producing the same
JP6722837B1 (en) Manufacturing method of layered product using pure copper powder having Si coating
WO2020138273A1 (en) PURE COPPER POWDER HAVING Si COATING, METHOD FOR PRODUCING SAME, AND ADDITIVE MANUFACTURING MODEL USING PURE COPPER POWDER
JP2009242844A (en) Film deposition method
JP2007225074A (en) Insulated rolling bearing
US20190099836A1 (en) Method of manufacturing an article using pressurizing gas
EP4043124A1 (en) Additive manufacturing powder, method for producing same, additive manufactured product, and metal sintered body
JP2023110342A (en) Powder for laminate molding and production method of metal sintered body
JP2021109194A (en) Release agent coating method
US9890642B2 (en) Aluminide or chromide coatings of cavities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15735034

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15105100

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015735034

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015735034

Country of ref document: EP