WO2015105428A1 - Procédé pour un forage rotatif économe en énergie et rapide dans des formations rocheuses hétérogènes et/ou dures - Google Patents

Procédé pour un forage rotatif économe en énergie et rapide dans des formations rocheuses hétérogènes et/ou dures Download PDF

Info

Publication number
WO2015105428A1
WO2015105428A1 PCT/NO2015/050006 NO2015050006W WO2015105428A1 WO 2015105428 A1 WO2015105428 A1 WO 2015105428A1 NO 2015050006 W NO2015050006 W NO 2015050006W WO 2015105428 A1 WO2015105428 A1 WO 2015105428A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill bit
rotary drilling
rotary
high voltage
rock formation
Prior art date
Application number
PCT/NO2015/050006
Other languages
English (en)
Inventor
Are Lund
Odd-Geir LADEMO
Dirk Nolte
Original Assignee
Sinvent As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinvent As filed Critical Sinvent As
Priority to US15/108,842 priority Critical patent/US20160326806A1/en
Publication of WO2015105428A1 publication Critical patent/WO2015105428A1/fr
Priority to NO20161076A priority patent/NO20161076A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/14Drilling by use of heat, e.g. flame drilling
    • E21B7/15Drilling by use of heat, e.g. flame drilling of electrically generated heat
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B3/00Rotary drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/007Measuring stresses in a pipe string or casing
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C37/00Other methods or devices for dislodging with or without loading
    • E21C37/18Other methods or devices for dislodging with or without loading by electricity

Definitions

  • the present invention concerns a rotary drilling system and a method for drilling a borehole in inhomogeneous and/or hard rock formations.
  • Rotary drilling is generally used today for drilling of deep wells for e.g. oil, gas, mining and geothermal energy exploration and excavation.
  • PDC Polycrystalline Diamond Compact
  • bits have been the fastest developing drilling bit technology, delivered in a large variety of different shapes and sizes, mainly optimized to rock types and well diameter size. Whenever possible it is the preferred bit choice for any drilling. For high temperature and/or high pressure environments they also have a clear benefit to many other drill bit concepts due to no moving parts.
  • a major disadvantage by PDC bits is their inability to drill efficiently in inhomogeneous (soft-hard) rock formations, due to large wear from dysfunctional vibrations (bit impact wear) and abrasive wear.
  • Stick-slip is the root cause of many costly and time consuming problems in drilling operations; vibration related equipment failure, drill string failure, bit impact damage and slow rate of penetration (ROP).
  • These technical obstacles are being progressively addressed, e.g. by new bit designs, new hybrid bit designs, shock-absorbers above the bit (mechanical decrease of bit torque), or addition of a torsional impact hammer function to the bit in order to provide additional torsional energy to assist in fracturing the formation.
  • Similar problems may more or less also be experienced by other rotary drill bits as e.g. roller cone bits, hybrid roller cone - PDC bits, and cutter disks in rotary tunnel excavators.
  • Drilling by an electro pulse boring (EPB) method is well known and has been described by e.g. V. F.
  • the electro pulse boring is set to be the main excavation method throughout the drilling processes, either by general fracturing (making cutter bits) of the rock in front of the drill head or by fracturing the surrounding rock material to facilitate drilling in the direction of the directed electric energy.
  • the invention solves or at least alleviates the problems by the prior art drilling systems.
  • the present invention relates to a rotary drilling system for drilling a borehole in inhomogeneous and/or hard rock formations.
  • the system comprises a rotary drill bit.
  • the system comprises at least two electrodes. Said electrodes are arranged for pulsing therebetween of at least one high voltage electro pulse. Said at least one high voltage electro pulse is generated in response to a detected resistance on the drill bit from a rock formation in front of the drill bit while rotating, in order to create small/micro-cracks in the rock formation.
  • the electrodes may be incorporated in the rotary drill bit.
  • the at least one high voltage electro pulse may be generated when the detected resistance of the drill bit exceeds a predetermined limit under rotary drilling.
  • the predetermined resistance limit under rotation is determined based on a number of parameters e.g. the hardness of the rock formation, the drilling equipment and the drill bit, and may vary when pre-detected devices are used.
  • the rotary drilling system may further comprise at least one sensor arranged in the drill bit for detecting the resistance on the drill bit from the rock formation. Alternatively, at least one sensor may be arranged in the drilling system for detecting the resistance on the drill bit from the rock formation. In a further embodiment, the rotary drilling system may further comprise a radar or sonar for pre-detecting the resistance on the drill bit from the rock formation.
  • an electro pulse device may be connected to said electrodes and adapted for generating said at least one high voltage electro pulse.
  • a sensing device may be arranged for detecting the resistance to a drill bit from the rock formation in front of the drill bit under rotary drilling.
  • the system may include an electronic switch for electro pulsing.
  • the system may further include at least one of: a capacitor, a rectifier and a transformer of low to high voltage and/or current.
  • the system may further include an electro pulse device for controlling and generation of the high voltage electrode pulses.
  • the electronic switch may form part of the electro pulse device.
  • the electro pulse device may further comprise at least one of: a capacitor, a rectifier and a transformer of low to high voltage and/or current.
  • the rotary drilling system may further comprise an electrical source comprising at least one of: a battery pack or batteries, a mud driven generator, water driven generator, a compressed air generator, a rotary drill string driven generator, and cables to surface.
  • the rotary drilling system may comprise a drilling assembly.
  • the rotary drill bit may be arranged in the drilling assembly.
  • the electro pulse device may be arranged in the drilling assembly.
  • the drill bit may further comprise at least one of: teeth, scrapers and cutter disks, and wherein said at least two electrodes are incorporated in at least one of: the drill bit itself, the teeth, the scrapers and the cutter disks.
  • the system may be adapted for tunneling, and the drill bit may then be a rotary tunnel excavator.
  • the invention provides a rotary drilling method for drilling a borehole in inhomogeneous and/or hard rock formations.
  • the method comprising rotary drilling of a borehole using a rotary drill bit, pulsing between at least two electrodes of at least one high voltage electro pulse, wherein said at least one high voltage electro pulse is generated in response to a resistance on the drill bit from a rock formation in front of the drill bit while rotating, creating small/micro-cracks in the rock formation.
  • the at least two electrodes may be incorporated in the drill bit.
  • the method may further comprise generating said at least one high voltage electro pulse when the detected resistance on the drill bit exceeds a predetermined limit under rotary drilling.
  • the detected resistance may be in the form of a detected torque on the drill bit from the rock formation. Detection of the resistance may be pre-detected using a suited detecting device in the drill bit or drilling assembly.
  • the generation of said at least one high voltage electro pulse may be performed or initiated when the detected resistance on the drill bit exceeds a predetermined limit under rotary drilling, or by a signal from the device pre-detecting resistance.
  • the predetermined resistance limit or torque limit under rotary drilling may be determined based on a number for factors, e.g.
  • Said at least one high voltage electro pulse may have a value of about 100 kV or more.
  • the method may further comprise excavating the small/micro-cracked rock lattice or matrix.
  • the method may further be adapted for tunneling, and the drill bit may then be a rotary tunnel excavator.
  • the present invention provides a technology system that "softens up" the rock in front of a rotary drill bit by formation of small/micro-cracks in the rock lattice when the resistance on the drill bit or drill bit teeth/cutters exceeds, or are to exceed, a given limit while rotary drilling.
  • the rock in front of the rotary drill bit is "softened up” by one or more short-duration, high voltage electro pulse(s) given through separate electrodes in the rotary drill bit, causing small/micro-cracks in the rock formation between and/or around the electrodes.
  • the small/micro-cracks in the rock lattice will avoid stick slip, high torque and abrasive wear of any rotary drill bit, while keeping an even and high rate of penetration.
  • the "soften up" of the rock formation in front of the rotary drill bit in the present invention may only be activated when needed based on the detected resistance on the drill bit.
  • the electro pulsing in the present invention is only used for forming small/micro-cracks in the rock formation in front of the drill bit and not for cracking of the rock formation for rock bits. Cracking of the rock formation for rock bits are used when drilling with an electro pulse method as the main drilling method.
  • the present invention which activates the high voltage electro pulse(s) only when needed based on the detected resistance on the drill bit, keeps the total energy demand to a fraction of what is usually needed for either the rotary drilling bit technology or electro pulsing drilling used separately.
  • Fig. 1 illustrates a rotary drilling system according to an embodiment of the present invention
  • Fig. 2-4 are showing steps of the principle for "softening up” the rock in front of a rotary drill bit by small cracks/micro-cracks according to the present invention
  • Fig. 5 illustrates another rotary drilling system according to another embodiment of the present invention.
  • the present invention provides a system and a method for softening up the rock formation in front of a rotary drill bit by creation of small/micro-cracks in the rock lattice or matrix when the resistance on the drill bit is to, or exceeds a predetermined limit while rotary drilling. This enables efficient drilling with approximately constant rotational speed on the drill bit as the resistance experienced by the drill bit due to friction between the rotating drill bit and the rock formation is maintained about a same level throughout the drilling process.
  • FIG. 1 A rotary drilling system 10 according to an embodiment of the present invention, is shown in FIG. 1.
  • the system 10 comprises a drilling assembly 1 1 used to form a borehole 12, e.g. a wellbore.
  • the wellbore may be drilled in any direction but usually, but not restricted thereto, from a surface into any desired formation.
  • the drilling assembly 1 1 may be based on any standard rotary drilling technology.
  • the rotary drilling assembly 1 1 and the rotary drilling system 10 may be selected from any known rotary drilling system and support systems including any known equipment, methods, and procedures known to anyone skilled in the art of rotary drilling.
  • a rotary drill bit 20 In front of the drilling assembly 1 1 there is a rotary drill bit 20. At least two electrodes are arranged for pulsing between said electrodes of at least one high voltage electro pulse (41 ).
  • the at least two electrodes (21 , 22, 23) may be incorporated in the rotary drill bit (20).
  • the body of rotary drill bit (20) may also in itself be an electrode.
  • the at least one high voltage electro pulse (41 ) (illustrated in Figure 2) is generated in response to a detected resistance on the drill bit (20) from a rock formation (40) in front of the drill bit (20) while rotating.
  • the at least one high voltage electro pulse (41 ) creates small/micro- cracks (45) in the rock formation (40).
  • the at least one high voltage electro pulse (41 ) is generated when the detected resistance on the drill bit (20) under rotary drilling exceeds a predetermined limit.
  • the predetermined resistance limit under rotation is determined based on a number of parameters e.g. the hardness of the rock formation to be drilled, the drilling equipment used and the drill bit used.
  • the rotary drill bit 20 may be provided with drill bit teeth 21 and/or scrapers 22 for excavation of the rock formation in front of the drill bit 20.
  • the bit teeth 21 or scrapers 22 on the drill bit 20 may also in an embodiment include the at least one electrodes 21 , 22 for high voltage electro pulsing.
  • the drill bit 20 may also include separate electrodes 23 or be an electrode in itself.
  • the electrodes 21 , 22 and/or 23 may be of any suited material and placed at any suited place on the drill bit 20 in order to efficiently "soften up" (create small/micro-cracks in) the rock in front of the drill bit 20 by pulsing of high voltage current between the at least two electrodes 21 , 22, 23 and/or the drill bit itself.
  • the voltage used for the pulsing between said at least two electrodes 21 , 22, 23 and/or the drill bit itself, may be of any high voltage.
  • the at least one high voltage electro pulse may have a value of about 100 kV or more.
  • Drill bit 20 may contain any device for injection of insulating drilling fluid for the electro pulsing, if needed.
  • Other drill-bits, equipped with or without the present invention with drill-bit 20 in assembly 1 1 may be used in other places along the drilling assembly system 10, as e.g. reamers for widening the borehole 12.
  • Electrical connections to the electrodes 21 , 22, 23, and or the drill bit 20 itself, may be incorporated in the drill bit 20 in any suitable way.
  • the electrical connections may further be connected to an electric switch 35 in the drilling assembly 1 1 by any suitable means.
  • the electric switch 35 for electro pulsing may be of any kind e.g. an electronic switch or a mechanical switch, generating high voltage electric pulses at given value and frequency. The switch 35 will only be operating when needed for the drilling purposes.
  • the switch 35 may be engaged or triggered in response to the measured or pre-detected resistance on the drill bit (20) from a rock formation (40), from the resistance sensing device 30 or detecting device 31.
  • the resistance on the drill bit (20) from a rock formation (40) may be detected by a resistance sensing device (30), or pre-detected by a detecting device (31 ).
  • the resistance sensing device 30 measures the resistance (force) on the drill bit 20 from the rock formation in front of the drill bit 20, while the drill bit 20 is rotating.
  • the resistance sensing device 30 may e.g. be in the form of a mechanical (e.g.
  • the resistance sensing device 30 may be arranged on the drill bit 20, directly behind the drill bit 20, or in other places on the drilling assembly 1 1 , or rotary drilling system 10.
  • the resistance sensing device 30 may also be of any other suitable kind.
  • the at least one high voltage electro pulse 40 is generated in response to the detected torque on the drill bit 20.
  • Resistance to drill bit 20 may alternatively, or in parallel to resistance device 30, be pre- detected by a detecting device 31.
  • electro pulses 41 between the electrodes 21 , 22, 23 and /or the drill bit 20 itself may be engaged by electronic switch 35 shortly before or simultaneously as the rotary drill bit 20 engage harder rock formation.
  • the detecting device 31 may be of any suited kind (e.g. radar or sonar), and may detect rock properties in front of the drill bit 20 by any suited means, e.g. by acoustic or electronic signals or by electric resistance between electrodes 21 , 22 and/or 23, and may be integrated in drill bit 20, directly behind the drill bit 20, or in any other places on the drilling assembly 1 1.
  • the resistance sensing device 30 and/or detecting device 31 , and the electronic switch 35 may be arranged together as an integrated unit.
  • the high voltage electro pulses supplied to the electrodes 21 , 22, 23 and or the drill bit 20 itself, through switch 35 may e.g. be energized from a capacitor(s) 36 in the drilling assembly 1 1 .
  • Energy may be supplied to the capacitor(s) 36 by an internal energy supply in the drilling assembly 1 1 or trough electric cables from the surface of the borehole 12.
  • the drilling assembly 1 1 may also include a rectifier or transformer of low to high voltage and/or current.
  • the internal energy supply may be provided by an electrical source 37, including but not limited to e.g. batteries or a battery pack.
  • the batteries/battery pack 37 may also include or be substituted by e.g. any of a mud driven generator, a water driven generator, a compressed air generator, or a rotary drill string generator.
  • a high voltage electro pulse device may comprise the switch 35 for controlling and/or initiating the high voltage electro pulsing.
  • the high voltage electro pulse device may further comprise at least one of: the capacitor 36, rectifier and transformer of low to high voltage and/or current. All or some parts of the high voltage electro pulse device can be arranged in the drilling assembly 1 1.
  • the electro pulse devices 21 , 22, 23, 30, 31 , 35, 36, and 37 in the drilling assembly 1 1 of the present invention operate independently of any other parts or operations of the rotary drilling system 10 when needed for efficient drilling. In any failure of the electro pulse functions in the system of the present invention, the remaining rotary drilling system of the drilling assembly system 10 will perform drilling as efficient as an equal rotary drilling system without the present invention.
  • FIG. 2 illustrates that the cutter teeth 21 or scrapers 22 of the drill bit 20 hit a hard rock formation 40, resulting in a resistance experienced by the cutter teeth 21 or scrapers 22 from the rock formation that exceeds the limit for the sensing device 30.
  • the sensing device 30 thus engages the switch 35.
  • One or more short high voltage electro pulse(s) 41 is/are then generated through the rock matrix 40 as illustrated in Figure 2. After the electro pulse(s), the lattice of the rock formation 40 will contain internal small/micro-cracks 45 as illustrated in Fig. 3.
  • the force from the teeth 21 or scrapers 22 in the drill bit 20 that is now required to excavate the rock matrix 40, which now contain small/micro-cracks 45, will be less than the predetermined limit set for the sensing device 30.
  • the small/micro-cracked rock lattice 40 will then be excavated as shown in Fig. 4.
  • the electro pulse process may be reinitiated as the teeth 21 or scrapers 22 of the drill bit 20 again hit hard rock formation 40 resulting in a detected resistance above the predetermined value for the formation to be drilled, as illustrated in FIG. 2.
  • high voltage electro pulses will be generated when resistance values above the predetermined limit are sensed by the sensors or sensing device 30.
  • FIG. 2 illustrates that the cutter teeth 21 or scrapers 22 of the drill bit 20 is about to hit a hard rock formation 40.
  • the detecting device 31 engages the switch 35.
  • One or more short high voltage electro pulse(s) 41 is/are then generated through the rock matrix 40 as illustrated in Figure 2.
  • the lattice of the rock formation 40 will contain internal small/micro-cracks 45 as illustrated in Fig. 3.
  • the force from the teeth 21 or scrapers 22 in the drill bit 20 that is now required to excavate the rock matrix 40, which now contain small/micro-cracks 45, will be less than the predetermined limit set for the detecting device 31.
  • the small/micro-cracked rock lattice 40 will then be excavated as shown in Fig. 4.
  • the electro pulse process may be reinitiated as the teeth 21 or scrapers 22 of the drill bit 20 again are about to hit hard rock formation 40 having a resistance above the
  • high voltage electro pulses may be generated when pre-detected resistance values are above the predetermined limits sensed by detecting device 31. This enables efficient drilling with approximately constant rotational speed on the drill bit as the resistance experienced by the drill bit due to friction between the rotating drill bit and the rock formation is maintained about a same level throughout the drilling process. How often the high voltage electro pulses are generated, depends e.g. on the predetermined limits set from the drilling equipment and the properties of the rock formation. The amount of electric current needed for drilling a given amount of hard rock formation as illustrated in FIG. 2 is depending on the properties of the rock lattice 40. This amount of electric current is estimated to be considerably less than when drilled by electro pulse drilling as the main drilling method.
  • the use of electro pulsing in the present invention only provides formation of small/micro-cracks in a rock lattice upon mechanical
  • the amount of electric current is estimated to be in the order of 50% or less.
  • Electrodes may be incorporated in cutter disks 51 and/or scrapers 52, as separate electrodes 53, and/or as the drill head of 50 itself, in a rotary tunnel excavator 50.
  • the electro pulses are only triggered when needed due to the detected resistance (may be measured or pre-detected) from the rock formation on the cutter disks 51 or scrapers 52 at rotation of the rotary tunnel excavator 50.
  • Electro pulsing is provided by the electrodes in a similar manner as explained for the embodiment shown in FIG. 1 , and illustrated in Figures 2, 3 and 4.
  • the present invention concerns also a method for rotary drilling of a borehole 12 in inhomogeneous or hard rock formations.
  • a rotary drill bit 20 us used for rotary drilling of the borehole 12.
  • a resistance on the drill bit from the formation is detected.
  • at least one high voltage electro pulse 41 is generated between the at least two electrodes creating small/micro- cracks 45 in the rock formation 40.
  • Monitoring of the resistance during drilling may be performed continuously, almost continuously or at specific intervals.
  • Thea least two electrodes 21 , 22, 23, 51 , 52, 53 may be incorporated in the drill bit 20.
  • One of the electrodes may also be the drill bit itself.
  • the rotary drill bit can also be a rotary tunnel excavator 50 as shown in fig. 5. Detecting the resistance may be performed by detecting a torque on the drill bit 20 from the rock formation. In an alternative embodiment, detecting the resistance may be performed by a radar or sonar pre-detecting the resistance on the drill bit 20 from the rock formation 40.
  • the drill bit which is rotating at its intended rotational speed during the measurement and high voltage pulse generation procedure, excavates the small/micro-cracked rock lattice or matrix 40. When the measured or pre-detected resistance again exceeds the predetermined value, this again results in the generation of the at least one high voltage electro pulse 41.
  • the present invention may be used by any rotary drilling method in inhomogeneous and hard rock formations.
  • Primary use is drilling of wellbores for oil, gas, mining and geothermal exploration and excavation, and any tunneling with rotary equipment for mining or any infrastructures, like but not restricted to, for hydro power, electric cables, roads, train, and water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Geophysics (AREA)
  • Earth Drilling (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

La présente invention concerne un système de forage rotatif (10) qui permet de forer un trou de forage (12) dans des formations rocheuses hétérogènes et/ou dures. Le système (10) comprend : un trépan rotatif (20 ; 50) et au moins deux électrodes (21, 22, 23, 51, 52, 53) agencées pour émettre entre lesdites électrodes au moins une impulsion électrique haute tension (41), ladite ou lesdites impulsions électriques haute tension (41) étant générées en réponse à une résistance détectée sur le trépan (20) à partir d'une formation rocheuse (40) devant le trépan (20) pendant la rotation, dans le but de créer des petites fissures/microfissures (45) dans la formation rocheuse (40).
PCT/NO2015/050006 2014-01-13 2015-01-13 Procédé pour un forage rotatif économe en énergie et rapide dans des formations rocheuses hétérogènes et/ou dures WO2015105428A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/108,842 US20160326806A1 (en) 2014-01-13 2015-01-13 A method for energy efficient and fast rotary drilling in inhomogeneous and/or hard rock formations
NO20161076A NO20161076A1 (en) 2014-01-13 2016-06-28 A method for energy efficient and fast rotary drilling in inhomogeneous and/or hard rock formations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461926527P 2014-01-13 2014-01-13
US61/926,527 2014-01-13

Publications (1)

Publication Number Publication Date
WO2015105428A1 true WO2015105428A1 (fr) 2015-07-16

Family

ID=53524167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NO2015/050006 WO2015105428A1 (fr) 2014-01-13 2015-01-13 Procédé pour un forage rotatif économe en énergie et rapide dans des formations rocheuses hétérogènes et/ou dures

Country Status (3)

Country Link
US (1) US20160326806A1 (fr)
NO (1) NO20161076A1 (fr)
WO (1) WO2015105428A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017127554A1 (fr) * 2016-01-20 2017-07-27 Baker Hughes Incorporated Appareil de forage par impulsion électrique avec passages de nettoyage de trou

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11608739B2 (en) 2019-07-09 2023-03-21 Baker Hughes Oilfield Operations Llc Electrical impulse earth-boring tools and related systems and methods
CN112855113A (zh) * 2021-01-28 2021-05-28 北京三一智造科技有限公司 旋挖钻机的自动钻进方法及控制器、存储介质及电子设备
CN113899537B (zh) * 2021-09-09 2024-03-08 西南石油大学 一种用于电脉冲-机械复合钻头的破岩钻进实验装置及方法
US20230144083A1 (en) * 2021-11-09 2023-05-11 Halliburton Energy Services, Inc. Selective electrode usage for directional pulse power drilling
WO2023201113A1 (fr) * 2022-04-15 2023-10-19 Sdg Llc Procédés et appareils d'électroconcassage pour le perçage de tunnel
CN115324482B (zh) * 2022-10-13 2023-02-24 中国煤炭科工集团有限公司 一种煤矿瓦斯深孔区域化抽采方法与装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050150688A1 (en) * 2002-02-12 2005-07-14 Macgregor Scott J. Plasma channel drilling process
WO2009042774A2 (fr) * 2007-09-25 2009-04-02 Baker Hughes Incorporated Appareil et procédé de carottage continu
US20090133929A1 (en) * 2003-12-01 2009-05-28 Arild Rodland Method, Drilling Machine, Drill bit and Bottom Hole Assembly for Drilling by Electrical Discharge by Electrical Discharge Pulses
US20120279783A1 (en) * 2011-05-06 2012-11-08 Baker Hughes Incorporated Apparatus and Method for Drilling Wellbores Based on Mechanical Specific Energy Determined from Bit-Based Weight and Torque Sensors
US20140008968A1 (en) * 2012-07-05 2014-01-09 Sdg, Llc Apparatuses and methods for supplying electrical power to an electrocrushing drill
WO2014100255A1 (fr) * 2012-12-18 2014-06-26 Sdg, Llc Appareils à décharges électriques pulsatoires répétitives et méthodes d'utilisation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050150688A1 (en) * 2002-02-12 2005-07-14 Macgregor Scott J. Plasma channel drilling process
US20090133929A1 (en) * 2003-12-01 2009-05-28 Arild Rodland Method, Drilling Machine, Drill bit and Bottom Hole Assembly for Drilling by Electrical Discharge by Electrical Discharge Pulses
WO2009042774A2 (fr) * 2007-09-25 2009-04-02 Baker Hughes Incorporated Appareil et procédé de carottage continu
US20120279783A1 (en) * 2011-05-06 2012-11-08 Baker Hughes Incorporated Apparatus and Method for Drilling Wellbores Based on Mechanical Specific Energy Determined from Bit-Based Weight and Torque Sensors
US20140008968A1 (en) * 2012-07-05 2014-01-09 Sdg, Llc Apparatuses and methods for supplying electrical power to an electrocrushing drill
WO2014100255A1 (fr) * 2012-12-18 2014-06-26 Sdg, Llc Appareils à décharges électriques pulsatoires répétitives et méthodes d'utilisation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017127554A1 (fr) * 2016-01-20 2017-07-27 Baker Hughes Incorporated Appareil de forage par impulsion électrique avec passages de nettoyage de trou

Also Published As

Publication number Publication date
NO20161076A1 (en) 2016-06-28
US20160326806A1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
US20160326806A1 (en) A method for energy efficient and fast rotary drilling in inhomogeneous and/or hard rock formations
EP3405640B1 (fr) Trépan à impulsions électriques possédant des électrodes en spirale
US10494868B2 (en) Methods and systems for drilling boreholes
CN109577864B (zh) 一种连续管高压电脉冲-机械复合钻井用电极钻头
CN109577859B (zh) 一种连续管高压电脉冲-机械复合破岩钻井方法
EA010696B1 (ru) Система и способ для бурения скважины
US20130112482A1 (en) Apparatus and Process For Drilling A Borehole In A Subterranean Formation
US9217287B2 (en) Systems and methods for drilling boreholes with noncircular or variable cross-sections
CN105723048B (zh) 振动阻尼器
US9982487B2 (en) Wellbore drilling systems with vibration subs
CN111255432B (zh) 井下钻井装置及其控制方法
CN108802838A (zh) 一种工作面开采岩层破坏井下顶底板钻孔电法监测方法
US10087739B2 (en) Coiled tubing-based milling assembly
CN105422006A (zh) 一种钻扩组合可调式井下破岩工具
CN108930518A (zh) 一种异型结构pdc钻头
AU2015293925A1 (en) Method and system for transmitting information in a jet drilling system
JP6942910B2 (ja) 岩盤性状判定装置
CN116335627A (zh) 用于钻井粘滑振动监测的控制系统及其方法
WO2016153981A1 (fr) Dispositif pour générer de l'électricité tout en effectuant une manœuvre
WO2016153998A1 (fr) Dispositif de stockage d'énergie à température régulée
CN220552990U (zh) 一种多地表地震采集设备专用埋置工具
US11506011B2 (en) Method and apparatus of smart jarring system
CN117703254A (zh) 旋挖钻机硬质岩层成孔方法
NO339566B1 (no) Hybrid borkrone
NO347557B1 (en) Tool string arrangement comprising a perforation arrangement and a method for use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15735435

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15108842

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15735435

Country of ref document: EP

Kind code of ref document: A1