WO2015105223A1 - Organic-inorganic composite porous separation membrane, production method for same, and electrochemical device comprising same - Google Patents

Organic-inorganic composite porous separation membrane, production method for same, and electrochemical device comprising same Download PDF

Info

Publication number
WO2015105223A1
WO2015105223A1 PCT/KR2014/000441 KR2014000441W WO2015105223A1 WO 2015105223 A1 WO2015105223 A1 WO 2015105223A1 KR 2014000441 W KR2014000441 W KR 2014000441W WO 2015105223 A1 WO2015105223 A1 WO 2015105223A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic
organic
inorganic composite
composite porous
thin film
Prior art date
Application number
PCT/KR2014/000441
Other languages
French (fr)
Korean (ko)
Inventor
박종혁
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2015105223A1 publication Critical patent/WO2015105223A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to an organic-inorganic composite porous separator, an organic-inorganic composite porous separator prepared according to the method, and an electrochemical device including the organic-inorganic composite porous separator.
  • a lithium ion secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator, and may be classified into a lithium ion battery and a lithium ion polymer battery according to the type of electrolyte.
  • Lithium ion batteries in which lithium ions are transferred through an electrolyte solution, introduce a liquid organic electrolyte containing lithium salts, thereby accelerating battery assembly and improving ion conductivity at room temperature. It is slightly weakened, and there is a possibility of ignition / explosion due to an increase in the pressure in the battery case due to chemical reactions during electrode corrosion and overcharging, and a protection circuit is necessary to rethink the problem of stability.
  • lithium ion polymer batteries have a good durability against internal chemical reactions due to overcharge / over discharge using lithium ion conductive polymers as gels or solid electrolytes, allowing them to be designed in various sizes and designs without the risk of ignition and explosion. It is one of the next generation batteries.
  • the polymer electrolyte has a lower ion conductivity than a lithium ion battery using a liquid electrolyte, the resistance inside the battery is high, which is disadvantageous for a large current discharge. .
  • Korean Patent Laid-Open Publication No. 10-2006-72065, 10-2008-0010166, etc. propose a separator in which a porous coating layer formed of a mixture of inorganic filler particles and a polymer binder is formed on one or both surfaces of a porous substrate. It became.
  • the inorganic filler particles of the microporous coating layer formed on the porous substrate serve as a kind of passivation to maintain physical shape, thereby suppressing thermal shrinkage of the porous substrate upon overheating due to malfunction of the electrochemical device, and Together, an empty space exists between the inorganic filler particles to form fine pores.
  • the microporous coating layer formed on the porous substrate contributes to improving the safety of the electrochemical device.
  • the inorganic filler particles used to form the microporous coating layer according to the prior art are mixed and used together with the polymer binder, the inorganic particles and the polymer may be mixed as well as a potential problem that a small amount of the polymer binder may melt or deform at a high temperature.
  • the use of a large amount of inorganic particles and the thickness of the inorganic coating layer at the micrometer level are accompanied, so that the membrane characteristics of the thin film capable of high-density filling for high capacity are insufficient. have.
  • the present application is to provide an electrochemical device comprising a method for producing an organic-inorganic composite porous separator, an organic-inorganic composite porous separator prepared according to the method, and the organic-inorganic composite porous separator.
  • a first aspect of the present application is to coat an inorganic precursor on a porous polymer substrate using a solution process; Converting the coated inorganic precursor into an inorganic oxide by energy irradiation to form a porous polymer substrate having an inorganic oxide thin film formed thereon; And forming a metal oxide thin film on the inorganic oxide thin film formed on the porous polymer substrate by using atomic layer deposition (ALD).
  • ALD atomic layer deposition
  • a second aspect of the present application provides an organic-inorganic composite porous separator prepared by the method according to the first aspect of the present application.
  • a third aspect of the present application provides an electrochemical device including an organic-inorganic composite porous separator, a positive electrode, a negative electrode, and an electrolyte according to the second aspect of the present application.
  • one or more inorganic oxide thin films may be formed on the outer surface and the surface of the inner pores of the porous polymer substrate, thereby improving heat resistance of the separator.
  • ALD process to form a metal oxide in the improved thermal stability by improving the quality of the separator, there is an effect that can reduce the side reaction of the electrolyte by the inorganic oxide thin film formed first.
  • the substrate used as a substrate of the separator is a polymer material, and has a disadvantage in that it is vulnerable to heat.
  • the ALD process can only be performed at a low temperature.
  • the separator according to the present invention may be heat-resistant by the inorganic oxide thin film formed first, and then may perform the ALD process at a higher temperature, thereby producing a qualitatively improved separator.
  • the organic-inorganic composite porous separator according to the present invention has a high stability to prevent internal short circuits by securing a high lithium ion diffusivity within the pore structure by applying an inorganic oxide thin film and improving thermal characteristics at high temperature. It is possible to assemble a battery, thereby manufacturing an electrochemical device such as a highly stable lithium secondary battery. In addition, by having a continuous porous structure that is suitable for the proper mechanical properties and mobility of ions, it is possible to secure excellent ionic conductivity characteristics.
  • the organic-inorganic composite porous separator according to the present invention has one or more inorganic oxide thin films formed by using a solution process and an ALD process, thereby overcoming the limitations of shape retention and mechanical properties at high temperatures of conventional commercially available polymer separators. At the same time it is possible to have a thin thickness capable of high density filling for high capacity.
  • FIG. 1 is a schematic process diagram of a method of manufacturing an organic-inorganic composite porous separator according to one embodiment of the present application.
  • Figure 2 is a schematic diagram of the organic-inorganic composite porous separator according to an embodiment of the present application.
  • FIG. 3A is a field emission microscope (FE-SEM) photograph of the surface of a separator according to a comparative example of the present application.
  • FIG. 3A is a field emission microscope (FE-SEM) photograph of the surface of a separator according to a comparative example of the present application.
  • Figure 3b is a FE-SEM picture of the surface of the separator according to a comparative example of the present application.
  • Figure 3c is a FE-SEM picture of the surface of the separator according to an embodiment of the present application.
  • step to or “step of” does not mean “step for.”
  • the term "combination (s) thereof" included in the representation of a makushi form refers to one or more mixtures or combinations selected from the group consisting of the components described in the representation of makushi form, It means to include one or more selected from the group consisting of the above components.
  • a first aspect of the present application is to coat an inorganic precursor on a porous polymer substrate using a solution process; Converting the coated inorganic precursor into an inorganic oxide by energy irradiation to form a porous polymer substrate having an inorganic oxide thin film formed thereon; And forming a metal oxide thin film on the inorganic oxide thin film formed on the porous polymer substrate by using atomic layer deposition (ALD).
  • ALD atomic layer deposition
  • the solution process according to the present application may be performed using a solution including the inorganic precursor, but may not be limited thereto.
  • the manufacturing method may include, but not limited to, further comprising the step of plasma processing the porous polymer substrate before the coating of the inorganic precursor.
  • the coating of the hydrophilic precursor may not be uniform unless surface modification is performed through plasma treatment.
  • the porous polymer substrate may be treated with plasma to form a hydroxyl group on the porous polymer substrate, but may not be limited thereto.
  • Coating the inorganic precursor on the porous polymer substrate is a method of simultaneously improving the thermal properties while inheriting the excellent mechanical properties of the existing polymer membrane, and if the chemical solution process manufacturing method for producing a separator coated with the inorganic oxide thin film of the thin film without limitation Can be used.
  • the energy irradiation may include, but is not limited to, irradiating heat, plasma, ultraviolet (UV), or laser.
  • the energy may include UV or UV-ozone, but may not be limited thereto.
  • the inorganic precursor may be coated on the surface of the outer surface and the inner pores of the porous polymer substrate, but may not be limited thereto. Accordingly, the inorganic precursor may be converted into an inorganic oxide by energy irradiation to form an inorganic oxide thin film on the outer surface and the surface of the inner pores of the porous polymer substrate.
  • the thickness of the inorganic precursor coated on the outer surface and the surface of the inner pores of the porous polymer substrate is about 1/2 of the size of the pores included in the porous polymer substrate (about 1/2 Up to a thickness).
  • the coated thickness of the inorganic precursor is less than about 5 ⁇ m, less than about 4 ⁇ m, less than about 3 ⁇ m, less than about 2 ⁇ m, less than about 1 ⁇ m, less than about 900 nm, less than about 800 nm, about 700 nm.
  • the thickness of the inorganic oxide thin film may be about 1 nm or more, and when the thickness is less than about 1 nm, there is a concern that the thermal characteristics of the separator at high temperature may not be maintained.
  • the porous polymer substrate may have a porosity of about 5% to about 95%, but may not be limited thereto.
  • the porous polymeric substrate is about 5% to about 95%, about 10% to about 80%, about 20% to about 70%, about 30% to about 60%, about 40% to about 50%, about 5% to about 50%, about 5% to about 40%, about 5% to about 30%, about 5% to about 20%, about 50% to about 95%, about 60% to about 95%, about 70% To about 95%, or about 80% to about 95% porosity, but may not be limited thereto.
  • the step of coating the inorganic precursor on the porous polymer substrate using the solution process the first inorganic precursor is coated on the porous polymer substrate through a solution process and then heat treated and the second inorganic precursor It may be to include additional coating, but may not be limited thereto.
  • the heat treatment may be performed at a temperature sufficient to dry the coated first inorganic precursor through a solution process.
  • the porous polymer substrate according to the present invention is a polymer having a structure in which ions are easy to move, and has a high porosity and relatively uniform pore size distribution that facilitates mobility of lithium ions between both electrodes.
  • the porous substrate may be a non-woven fabric formed of a porous net structure by the intersection of nanofibers, or may include a polyolefin-based substrate prepared by an elongation process, which is usually a material of a separator of an electrochemical device. This may not be limited.
  • the porous polymer substrate is polyethylene, high density polyethylene, low density polyethylene, linear low density polyethylene, high molecular weight polyethylene, polypropylene terephthalate (polypropyleneterephthalate), polyethylene terephthalate (polyethyleneterephthalate), polybutylene tere Phthalate, polybutyleneterephthalate, polyester, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, Polyphenylene oxide (polyphenylene oxide), polyphenylene sulfide (polyphenylenesulfide), polyethylenenaphthalene (polyethylenenaphthalene), and may include those selected from the group consisting of, but may not be limited thereto.
  • the inorganic oxide may include one selected from the group consisting of an inorganic oxide having a dielectric constant of about 5 or more, an inorganic oxide having lithium ion transfer ability, and combinations thereof, but is not limited thereto. It may not be.
  • the inorganic oxide having a dielectric constant of about 5 or more is SiO 2 , BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), hafnia (HfO 2 ), SrTiO 3 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , SiC, and may be selected from the group consisting of a combination thereof, but may not be limited thereto. .
  • the inorganic oxide may contribute to an increase in dissociation degree of the electrolyte salt, for example, lithium salt in the liquid electrolyte, thereby improving the ionic conductivity of the electrolyte solution.
  • the inorganic oxide may be an inorganic oxide having a dielectric constant of about 5 or more, for example, about 10 or more, but may not be limited thereto.
  • the porous polymer substrate may have a thickness of about 1 ⁇ m to about 100 ⁇ m, but may not be limited thereto.
  • the porous polymer substrate may have a thickness of about 1 ⁇ m to about 100 ⁇ m, about 5 ⁇ m to about 100 ⁇ m, about 10 ⁇ m to about 100 ⁇ m, about 15 ⁇ m to about 100 ⁇ m, about 1 ⁇ m to about 90 ⁇ m About 1 ⁇ m to about 80 ⁇ m, about 1 ⁇ m to about 70 ⁇ m, about 1 ⁇ m to about 60 ⁇ m, about 1 ⁇ m to about 50 ⁇ m, about 1 ⁇ m to about 40 ⁇ m, or about 5 ⁇ m to about 40 ⁇ m It may be, but may not be limited thereto.
  • the pore size of the porous polymer substrate may be about 0.01 ⁇ m to about 10 ⁇ m, but may not be limited thereto.
  • the pore size of the porous polymer substrate is about 0.01 ⁇ m to about 10 ⁇ m, about 0.01 ⁇ m to about 5 ⁇ m, about 0.01 ⁇ m to about 1 ⁇ m, about 1 ⁇ m to about 10 ⁇ m, about 1 ⁇ m to about 5 ⁇ m, or about 5 ⁇ m to about 10 ⁇ m, but may not be limited thereto.
  • the inorganic precursor is not particularly limited as long as it can be converted into an inorganic oxide by energy irradiation, for example, 3-aminopropyltriethoxysilane (3-aminopropyltriethoxysilane), polydimethylsiloxane (polydimethylsiloxane), SiCl 4 (silicon tetrachloride), TEMASi (tetrakis-ethyl-methyl-amino-silcon), TiCl 4 (titanium tetrachloride), TTIP (titanium-tetrakis-isoproproxide), TEMAT (tretrakis-ethyl-methyl-amino-titanium), TDMAT (tetrakis-dimethyl-amino-titanium), TDEAT (tetrakis-diethyl-amino-titanium), TMA (tri-methyl-aluminum),
  • the thickness of the inorganic oxide thin film formed on the outer surface and the surface of the inner pores of the porous polymer substrate is about 1/2 of the size of the pores included in the porous polymer substrate (about 1/2 Up to a thickness).
  • the thickness of the inorganic oxide thin film is less than about 5 ⁇ m, less than about 4 ⁇ m, less than about 3 ⁇ m, less than about 2 ⁇ m, less than about 1 ⁇ m, less than about 900 nm, less than about 800 nm, less than about 700 nm.
  • Coating as a thickness of less than about 600 nm, less than about 500 nm, less than about 400 nm, less than about 300 nm, less than about 200 nm, less than about 100 nm, less than about 50 nm, less than about 10 nm, or less than about 5 nm. It may be, but may not be limited thereto.
  • the thickness of the inorganic oxide thin film may be about 1 nm or more, and when the thickness is less than about 1 nm, there is a concern that the thermal characteristics of the separator at high temperature may not be maintained.
  • the inorganic oxide is adsorbed on the porous polymer substrate to be applied using a solution process using a chemical reaction mechanism of the inorganic compound and the inorganic oxide through the decomposition process of the inorganic precursor generated by chemical crosslinking It is formed on the porous polymer substrate as a thin film.
  • the inorganic precursors may be present in liquid or solid phase at room temperature, and these inorganic precursors may be used as liquid or solid phases according to economic or process requirements as inorganic compounds of high purity.
  • the inorganic oxide thin film according to the present application may include particles of the inorganic oxide, but may not be limited thereto.
  • the metal oxide thin film formed by the atomic layer deposition method Al 2 O 3 , ZrO 2 , TiO 2 , SnO 2 , CeO 2 , ZnO, MgO, CaO, SrO, BaO, Na 2 O, B 2 O 3 , Mn 2 O 3 , Y 2 O 3 , WO 3 , and may be to include those selected from the group consisting of, but may not be limited thereto.
  • the metal oxide may serve as passivation by forming the metal oxide thin film on the porous polymer substrate on which the inorganic oxide thin film is formed by atomic layer deposition, but may not be limited thereto.
  • the precursor used to form the metal oxide thin film by the atomic layer deposition method TMA (tri-methyl-aluminum), MPTMA (methyl-pyrrolidine-tri-methyl-aluminum), EPPTEA (ethyl-pyridine-triethyl-aluminum), EPPDMAH (ethyl-pyridine-dimethyl-aluminum hydridge), IPA [(C 3 H 7 -O) 3 Al], TiCl 4 (titanium tetrachloride), TTIP (titanium-tetrakis-isoproproxide) , TEMAT (tretrakis-ethyl-methyl-amino-titanium), TDMAT (tetrakis-dimethyl-amino-titanium), TDEAT (tetrakis-diethyl-amino-titanium), TEMAH (tetrakis-ethyl-methyl-aluminum), MPTMA (methyl
  • the atomic layer deposition method may be performed in a temperature range of about 60 °C to about 200 °C, but may not be limited thereto.
  • the atomic layer deposition method may be about 60 ° C. to about 200 ° C., about 60 ° C. to about 190 ° C., about 60 ° C. to about 180 ° C., about 60 ° C. to about 170 ° C., about 60 ° C.
  • the thickness of the metal oxide thin film may be about 100 nm or less, but may not be limited thereto.
  • an inorganic oxide thin film is formed on the outer surface of the porous polymer substrate and the surface of the inner pores by a solution process using an inorganic precursor, thereby providing excellent mechanical properties and high lithium of the existing separator.
  • High-capacity electrochemistry by increasing the volume of the limited electrode active material in the electrochemical device including the thin film separator to improve the thermal characteristics while maintaining the ion mobility, and to reduce the electrical resistance acting in the battery and to enable high-density charging The manufacture of the device can be enabled.
  • the side reaction between the inorganic oxide thin film and the electrolyte can be suppressed to improve the quality of the separator.
  • a second aspect of the present application is prepared by the method according to the first aspect of the present application.
  • It provides an organic-inorganic composite porous separator comprising an inorganic oxide thin film formed on the outer surface and the surface of the inner pores of the porous polymer substrate and a metal oxide thin film formed on the inorganic oxide thin film.
  • an inorganic oxide thin film is formed on the outer surface of the porous polymer substrate and the surface of the inner pores by a solution process using an inorganic precursor, thereby providing excellent mechanical properties and high lithium ion mobility of the existing separator.
  • Fabrication of high-capacity electrochemical devices by improving the thermal properties, maintaining the electrical properties while reducing the electrical resistance in the battery, and making thin-walled separators capable of high density charging and increasing the volume of the limited electrode active material in the electrochemical devices having the same Can be enabled.
  • the side reaction between the inorganic oxide thin film and the electrolyte can be suppressed to improve the quality of the separator.
  • organic-inorganic composite porous separator As for the organic-inorganic composite porous separator according to the second aspect of the present application, all the contents described for the first aspect of the present application are applied, and duplicate descriptions are omitted.
  • the organic-inorganic composite porous separator may be for an electrochemical device, but may not be limited thereto.
  • a third aspect of the present application provides an electrochemical device including an organic-inorganic composite porous separator, a positive electrode, a negative electrode, and an electrolyte according to the second aspect of the present application.
  • an organic-inorganic composite porous separator for the organic-inorganic composite porous separator according to this aspect, all of the contents described with respect to the first aspect of the present application may be applied.
  • the electrochemical device may be to include a lithium secondary battery, but may not be limited thereto.
  • the electrochemical device includes all devices that undergo an electrochemical reaction, and specifically, all kinds of primary cells, secondary cells, fuel cells, solar cells, or capacitors.
  • the electrochemical device may be a lithium secondary battery of a secondary battery, specific examples thereof include a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery, but is not limited thereto. It doesn't work.
  • the electrochemical device may be manufactured according to a conventional method known in the art, for example, the electrochemical device is manufactured by injecting an electrolyte after assembling through the positive electrode and the separator described above.
  • the electrode is not particularly limited, but the positive electrode active material may be a conventional positive electrode active material that may be used for the positive electrode of a conventional electrochemical device, and in particular, lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, or combinations thereof. Lithium adsorption material and the like can be used, such as a composite oxide formed by.
  • the negative electrode active material may be a conventional negative electrode active material that can be used for the negative electrode of the conventional electrochemical device, in particular lithium adsorption, such as lithium metal or lithium alloy and carbon, petroleum coke, activated carbon, graphite, or other carbons Materials and the like can be used.
  • the above-mentioned positive electrode active material may be made of a positive electrode current collector, i.e., a foil and a negative electrode current collector, i.e., copper, gold, nickel, a copper alloy, and combinations thereof, respectively, produced by aluminum, nickel or combinations thereof.
  • the positive electrode is constituted in a form bound to the foil produced by the method.
  • a + B - A salt of the structure such as, A + comprises an alkaline metal cation or a cation consisting of a combination thereof, such as Li +, Na +, and K +
  • B - is PF 6 -, BF 4 -, Cl -, Br -, I-, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -
  • C Salts containing ions consisting of anions such as (CF 2 SO 2 ) 3 - or combinations thereof include propylene carbonate (PC), ethylene carbonate (EC) and diethyl carbonate (DEC).
  • DMC Dimethyl carbonate
  • DPC dipropyl carbonate
  • dimethylsulfoxide acetonitrile, dimethoxyethane, diethoxyethane, tetrahydro Tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethylcarbonei (Ethylmethyl carbonate, EMC), gamma-butyrolactone (gamma-butyrolactone, GBL) or in an organic solvent consisting of a combination thereof, but may be dissolved or dissociated, may not be limited thereto.
  • NMP N-methyl-2-pyrrolidone
  • EMC ethylmethylcarbonei
  • EMC gamma-butyrolactone
  • GBL gamma-butyrolactone
  • the electrolyte injection may be performed at an appropriate step in the battery manufacturing process, depending on the manufacturing process and the required physical properties of the final product. That is, the battery assembly may be performed before the battery assembly or at the final stage of battery assembly.
  • Inorganic Oxide SiO 2 was coated on the outer and inner pore surfaces of the porous polymeric substrate as thin films. The SiO 2 The thickness of the thin film was adjusted to be about 20 nm.
  • TMA alkyl-based compound
  • ALD atomic layer deposition
  • SiO 2 10 nm thick Al in the polyethylene separator with thin film 2 O 3 A thin film was deposited.
  • SiO 2 And Al 2 O 3 A separator coated with a thickness of 20 nm and 10 nm, respectively, on the outer surface and the inner pore surface of the porous porous polymer substrate was obtained.
  • FIG. 1 A schematic process diagram of the method of manufacturing a separator according to the present embodiment is shown in FIG. 1, and a schematic diagram of the separator thus prepared is shown in FIG. 2.
  • NMP N-methyl-2 pyrrolidone
  • PVdF polyvinylidene fluoride
  • a negative electrode mixture slurry was prepared by adding carbon powder as a negative electrode active material, PVdF as a binder, and carbon black as a conductive agent at 96 wt%, 3 wt%, and 1 wt%, respectively, to NMP as a solvent.
  • the negative electrode active material slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, and dried to prepare a negative electrode, and then roll-pressed.
  • Cu copper
  • electrolyte solution ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / diethylene carbonate (DEC).
  • EMC ethyl methyl carbonate
  • DEC diethylene carbonate
  • LiPF6 lithium hexaproprophosphate
  • a battery was manufactured in the same manner as in Example 2, except that an inorganic oxide thin film (SiO 2 ) and a metal oxide thin film (Al 2 O 3 ) were used.
  • a battery was manufactured in the same manner as in Example 2, except that the Al 2 O 3 metal oxide thin film was not coated and a separator made of a PE porous substrate coated with only a SiO 2 thin film was used.
  • Example 1 To evaluate the heat shrinkage rate of the separator used in Example 1, Comparative Example 1, and Comparative Example 2, the results after storage for 30 minutes at 160 °C is shown in Table 1 below.
  • the thermal shrinkage analysis was performed using a vacuum drying oven (MEMMERT, Germany).
  • Separation membrane which forms SiO 2 inorganic oxide thin film by using solution process on PE porous substrate is also effective, but SiO 2 inorganic oxide thin film (using solution process) and Al 2 O 3 metal oxide thin film (using ALD) on PE porous substrate When both are formed, it can be seen that the heat shrinkage rate is lower.
  • Tensile strength of the separator used in Example 1, Comparative Example 1, and Comparative Example 2 was evaluated and shown in Table 2 below.
  • the tensile strength was measured using a tensile strength tester (UTM universal tester, ZWICK ROELL BZ005 / TH2S UTM).
  • Separation membrane which forms SiO 2 inorganic oxide thin film by using solution process on PE porous substrate is also effective, but SiO 2 inorganic oxide thin film (using solution process) and Al 2 O 3 metal oxide thin film (using ALD) on PE porous substrate When both are formed, it can be seen that mechanical properties are more excellent.
  • Example 2 The batteries of Example 2, Comparative Example 1, and Comparative Example 2 were measured using a capacity measuring device (WONATECH, Korea) after the 3 C charge 0.2 C discharge capacity, the results are shown in Table 3 below.
  • PE porous separator (Comparative Example 1) or a separator (Comparative Example 2) including an SiO 2 inorganic oxide thin film formed by using a solution process on a PE porous substrate
  • PE porous as in Example 2 of the present application is effective.
  • a battery using a separator in which both an SiO 2 inorganic oxide thin film (solution step) and an Al 2 O 3 metal oxide thin film (ALD) were formed on a substrate it was confirmed that the battery performance was more excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Cell Separators (AREA)

Abstract

The present invention relates to a production method for an organic-inorganic composite porous separation membrane, an organic-inorganic composite porous separation membrane produced according to the method, and an electrochemical device comprising the organic-inorganic composite porous separation membrane.

Description

유기-무기 복합 다공성 분리막, 이의 제조 방법, 및 이를 포함하는 전기화학소자Organic-inorganic composite porous separator, method for preparing the same, and electrochemical device comprising the same
본원은, 유기-무기 복합 다공성 분리막의 제조 방법, 상기 방법에 따라 제조되는 유기-무기 복합 다공성 분리막, 및 상기 유기-무기 복합 다공성 분리막을 포함하는 전기화학소자에 관한 것이다.The present application relates to an organic-inorganic composite porous separator, an organic-inorganic composite porous separator prepared according to the method, and an electrochemical device including the organic-inorganic composite porous separator.
초기 노트북, 휴대전화 등 휴대가 가능하고 간편한 모바일 기기를 중심으로 전개되었던 IT 산업기술은 21 세기에 들어서면서 여러 과학기술 분야와 융합되어 비약적인 발전이 거듭되고 있는데, 최근 스마트폰과 같은 모바일 IT의 디지털 융합에 따른 고성능의 다양한 어플리케이션의 지속적인 등장과 함께 친환경 자동차인 하이브리드(hybrid) 자동차, 전기자동차(electronic vehicle)가 부상하면서 이들의 에너지원인 전기화학적 소자에 대한 관심이 집중되고 있다. 이러한 소자들 중, 화학에너지와 전기에너지의 가역적 상호변환을 이용해 충전과 방전을 반복할 수 있는 이차전지의 한 종류인 리튬 이온 이차전지가 주목받고 있으며, 이러한 전기화학소자를 개발함에 있어 소형화, 경량화, 대용량화, 고출력/고안정성의 특성을 만족시키기 위한 새로운 전극과 전지의 설계에 대한 연구개발이 진행되고 있다.In the early 21st century, IT industry technology, which was developed around portable and simple mobile devices such as laptops and mobile phones, has been steadily developed by converging with various science and technology fields. With the emergence of various high-performance applications due to convergence, hybrid cars and electronic vehicles, which are eco-friendly vehicles, have emerged, and attention has been focused on electrochemical devices as their energy sources. Among these devices, a lithium ion secondary battery, which is a type of secondary battery capable of repeating charging and discharging by using a reversible interconversion of chemical energy and electrical energy, has been attracting attention, and in developing such electrochemical devices, miniaturization and weight reduction The research and development of the design of new electrodes and batteries to meet the characteristics of high capacity, high output / high stability are underway.
리튬 이온 이차전지는 양극, 음극, 전해질, 분리막으로 구성되어 있으며, 전해질 종류에 따라 크게 리튬 이온 전지와 리튬 이온 폴리머 전지로 구분될 수 있다. 리튬 이온의 전달이 전해액을 통해 이루어지는 리튬 이온 전지는 리튬염이 첨가된 액체 유기 전해질을 도입함으로써 전지조립의 가속화와 상온에서의 이온전도도의 향상을 가져왔지만, 그로 인한 고분자 재질의 분리막의 기계적 물성은 다소 약해졌으며, 전극부식 및 과충전 시 화학반응으로 인해 전지 케이스 내의 압력이 상승하여 발화/폭발할 수 있는 가능성이 있어, 안정성의 문제를 재고하여 이를 차단하기 위한 보호회로가 필수적이다. 반면 리튬 이온 폴리머 전지는 리튬 이온 전도성 고분자를 겔형 또는 고체 전해질로 사용하여 과충전/과방전으로 인한 내부의 화학적 반응에 우수한 내구성을 갖고 있어 발화 및 폭발 위험이 없는 다양한 크기와 디자인으로 전지의 설계가 가능한 차세대 전지의 하나로 꼽히고 있다. 하지만 액체 전해액을 사용하는 리튬 이온 전지에 비해 상대적으로 고분자 전해질의 이온전도도가 낮기 때문에 전지 내부의 저항이 높아 대전류 방전에는 불리하며, 저온에서도 방전 특성이 급격히 떨어지는 단점이 있어 이에 대한 개선이 요구되고 있다.A lithium ion secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator, and may be classified into a lithium ion battery and a lithium ion polymer battery according to the type of electrolyte. Lithium ion batteries, in which lithium ions are transferred through an electrolyte solution, introduce a liquid organic electrolyte containing lithium salts, thereby accelerating battery assembly and improving ion conductivity at room temperature. It is slightly weakened, and there is a possibility of ignition / explosion due to an increase in the pressure in the battery case due to chemical reactions during electrode corrosion and overcharging, and a protection circuit is necessary to rethink the problem of stability. On the other hand, lithium ion polymer batteries have a good durability against internal chemical reactions due to overcharge / over discharge using lithium ion conductive polymers as gels or solid electrolytes, allowing them to be designed in various sizes and designs without the risk of ignition and explosion. It is one of the next generation batteries. However, since the polymer electrolyte has a lower ion conductivity than a lithium ion battery using a liquid electrolyte, the resistance inside the battery is high, which is disadvantageous for a large current discharge. .
상기와 같은 전기화학소자는 최근 전기화학소자의 발화 및 폭발 사고와 같은 안전 사고의 잠재 위험성이 급증함에 따라 전기화학 소자의 안전성 평가 및 안전성 확보가 매우 중요한 이슈로 떠올랐다. 이에 전 세계적으로 국가차원뿐만 아니라 수요자 중심의 안전성 확인에 대한 요구가 증가되면서 정부를 중심으로 강제 인증 규제 시행 및 확대가 진행되고 있으며 기술의 표준화도 추진되고 있다. 이러한 전기화학소자는 작동 환경에 따라 오작동을 일으킬 수 있으며, 오작동시 과열로 인한 열폭주가 일어나 소자 내 구비된 분리막이 분해될 경우에는 내부단락으로 인하여 급격히 좁아진 전극의 전위차로 인한 전기 에너지 방출과 이로 인한 전해액의 기화에 의해 내부 폭발을 일으키게 될 우려가 있다. In the electrochemical device as described above, as the potential risk of safety accidents such as ignition and explosion accidents of the electrochemical device has rapidly increased, the safety evaluation and safety of the electrochemical device have emerged as a very important issue. Accordingly, as the demand for safety verification not only at the national level but also at the consumer level is increasing worldwide, the government is enforcing and expanding the mandatory certification regulations and standardizing technology. Such an electrochemical device may cause a malfunction depending on the operating environment.In case of malfunction, a thermal runaway occurs due to overheating, and when a separator provided in the device is decomposed, electrical energy is released due to the potential difference of the electrode, which is rapidly narrowed due to an internal short circuit. There is a fear that internal explosion may be caused by vaporization of the electrolyte solution.
이와 관련하여, 대한민국 특허공개공보 제 10-2006-72065호, 제 10-2008-0010166호 등에는 다공성 기재의 일면 또는 양면에 무기물 필러 입자와 고분자 바인더의 혼합물로 이루어진 다공성 코팅층을 형성한 분리막이 제안되었다. 다공성 기재에 형성된 미세다공성 코팅층의 무기 필러 입자들은 물리적 형태를 유지할 수 있는 일종의 패시베이션(passivation) 역할을 함으로써 전기화학소자의 오작동에 의한 과열 시 다공성 기재가 열 수축되는 것을 억제하게 됨과 동시에, 고분자 바인더와 함께 무기 필러 입자들 사이에는 빈 공간이 존재하여 미세 기공을 형성한다.In this regard, Korean Patent Laid-Open Publication No. 10-2006-72065, 10-2008-0010166, etc. propose a separator in which a porous coating layer formed of a mixture of inorganic filler particles and a polymer binder is formed on one or both surfaces of a porous substrate. It became. The inorganic filler particles of the microporous coating layer formed on the porous substrate serve as a kind of passivation to maintain physical shape, thereby suppressing thermal shrinkage of the porous substrate upon overheating due to malfunction of the electrochemical device, and Together, an empty space exists between the inorganic filler particles to form fine pores.
이와 같이, 다공성 기재에 형성된 미세다공성 코팅층은 전기화학소자의 안전성 향상에 기여한다. 종래 기술에 따라 미세다공성 코팅층 형성에 사용되는 무기 필러 입자가 고분자 바인더와 함께 혼합되어 사용되는 경우, 고온에서 소량의 고분자 바인더가 녹거나 변형을 일으킬 수 있는 잠재적 문제뿐만 아니라, 무기입자와 고분자를 혼합하여 분리막을 제조하였을 경우 고온에서의 열적 특성을 확보하기 위해서는 많은 양의 무기 입자 사용과 마이크로미터 수준의 무기 코팅층의 두께가 수반되어 고용량화를 위한 고밀도 충전이 가능한 박막의 분리막 특성을 충족하지 못하는 단점이 있다.As such, the microporous coating layer formed on the porous substrate contributes to improving the safety of the electrochemical device. When the inorganic filler particles used to form the microporous coating layer according to the prior art are mixed and used together with the polymer binder, the inorganic particles and the polymer may be mixed as well as a potential problem that a small amount of the polymer binder may melt or deform at a high temperature. In order to secure the thermal properties at high temperatures, the use of a large amount of inorganic particles and the thickness of the inorganic coating layer at the micrometer level are accompanied, so that the membrane characteristics of the thin film capable of high-density filling for high capacity are insufficient. have.
이에, 본원은 유기-무기 복합 다공성 분리막의 제조 방법, 상기 방법에 따라 제조되는 유기-무기 복합 다공성 분리막, 및 상기 유기-무기 복합 다공성 분리막을 포함하는 전기화학소자를 제공하고자 한다.Accordingly, the present application is to provide an electrochemical device comprising a method for producing an organic-inorganic composite porous separator, an organic-inorganic composite porous separator prepared according to the method, and the organic-inorganic composite porous separator.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the above-mentioned problem, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
본원의 제 1 측면은, 용액 공정을 이용하여 다공성 고분자 기재에 무기물 전구체를 코팅하고; 에너지 조사(irradiation)에 의하여 상기 코팅된 무기물 전구체를 무기 산화물로 전환시켜, 무기 산화물 박막이 형성된 다공성 고분자 기재를 형성하고; 및, 상기 다공성 고분자 기재에 형성된 무기 산화물 박막에 원자층 증착법 (atomic layer deposition: ALD)을 이용하여 금속산화물 박막을 형성하는 것을 포함하는, 유기-무기 복합 다공성 분리막의 제조 방법을 제공하고자 한다.A first aspect of the present application is to coat an inorganic precursor on a porous polymer substrate using a solution process; Converting the coated inorganic precursor into an inorganic oxide by energy irradiation to form a porous polymer substrate having an inorganic oxide thin film formed thereon; And forming a metal oxide thin film on the inorganic oxide thin film formed on the porous polymer substrate by using atomic layer deposition (ALD).
본원의 제 2 측면은, 상기 본원의 제 1 측면에 따른 방법에 의해 제조되는, 유기-무기 복합 다공성 분리막을 제공한다.A second aspect of the present application provides an organic-inorganic composite porous separator prepared by the method according to the first aspect of the present application.
본원의 제 3 측면은, 상기 본원의 제 2 측면에 따른 유기-무기 복합 다공성 분리막, 양극, 음극, 및 전해질을 포함하는, 전기화학소자를 제공한다.A third aspect of the present application provides an electrochemical device including an organic-inorganic composite porous separator, a positive electrode, a negative electrode, and an electrolyte according to the second aspect of the present application.
본원에 따른 유기-무기 복합 다공성 분리막의 제조 방법에 의하면, 용액 공정을 이용하여 다공성 고분자 기재의 외부 표면 및 내부 기공의 표면에 하나 이상의 무기 산화물 박막을 형성하여 분리막의 내열성을 향상시킬 수 있으며, 이에 의하여 열적 안정성이 향상된 분리막에 ALD 공정을 이용하여 추가로 금속 산화물을 형성시킴으로써 분리막의 질을 향상시키고, 먼저 형성된 무기 산화물 박막에 의한 전해질 부반응을 감소시킬 수 있는 효과가 있다. According to the method of manufacturing an organic-inorganic composite porous separator according to the present invention, by using a solution process, one or more inorganic oxide thin films may be formed on the outer surface and the surface of the inner pores of the porous polymer substrate, thereby improving heat resistance of the separator. By using the ALD process to form a metal oxide in the improved thermal stability by improving the quality of the separator, there is an effect that can reduce the side reaction of the electrolyte by the inorganic oxide thin film formed first.
일반적으로 분리막의 기재로서 사용되는 것은 고분자 물질로서, 열에 취약한 단점이 있어, 상기 무기 산화물 박막을 형성하지 않고 ALD 공정을 수행하는 경우 저온에서 ALD 공정을 수행할 수 밖에 없으며, 이에 따라 형성되는 분리막은 그 질이 저급일 수 있으나, 본원에 따른 분리막은 먼저 형성된 무기 산화물 박막에 의해 내열성이 강화되어 이후 ALD 공정을 더 높은 온도에서 수행할 수 있어, 질적으로 더 향상된 분리막을 제조할 수 있다. In general, the substrate used as a substrate of the separator is a polymer material, and has a disadvantage in that it is vulnerable to heat. When the ALD process is performed without forming the inorganic oxide thin film, the ALD process can only be performed at a low temperature. Although the quality may be low, the separator according to the present invention may be heat-resistant by the inorganic oxide thin film formed first, and then may perform the ALD process at a higher temperature, thereby producing a qualitatively improved separator.
본원에 따른 유기-무기 복합 다공성 분리막은, 무기 산화물 박막을 도포함으로써 기공구조 내에서 높은 리튬이온 확산도(diffusivity)를 확보함과 동시에 고온에서의 열적 특성을 향상시켜 내부 단락을 방지하는 고안정성의 전지 조립을 가능하게 하며, 이에 따라 고안정성의 리튬 이차전지 등의 전기화학소자의 제조가 가능하다. 또한, 적절한 기계적 물성과 이온의 이동성에 용이한 연속된 다공성 구조를 가짐으로써 우수한 이온전도도의 특성을 확보할 수 있다.The organic-inorganic composite porous separator according to the present invention has a high stability to prevent internal short circuits by securing a high lithium ion diffusivity within the pore structure by applying an inorganic oxide thin film and improving thermal characteristics at high temperature. It is possible to assemble a battery, thereby manufacturing an electrochemical device such as a highly stable lithium secondary battery. In addition, by having a continuous porous structure that is suitable for the proper mechanical properties and mobility of ions, it is possible to secure excellent ionic conductivity characteristics.
본원에 따른 유기-무기 복합 다공성 분리막은, 용액 공정 및 ALD 공정을 이용하여 형성된 하나 이상의 무기 산화물 박막을 가짐으로써 기존 상용화된 고분자 재질의 분리막이 갖는 고온에서의 형상 유지력과 기계적 물성의 한계를 극복함과 동시에 고용량화를 위한 고밀도 충전이 가능한 얇은 두께를 갖는 것이 가능하다.The organic-inorganic composite porous separator according to the present invention has one or more inorganic oxide thin films formed by using a solution process and an ALD process, thereby overcoming the limitations of shape retention and mechanical properties at high temperatures of conventional commercially available polymer separators. At the same time it is possible to have a thin thickness capable of high density filling for high capacity.
도 1은, 본원의 일 구현예에 따른 유기-무기 복합 다공성 분리막의 제조 방법에 대한 개략적인 공정도이다.1 is a schematic process diagram of a method of manufacturing an organic-inorganic composite porous separator according to one embodiment of the present application.
도 2는, 본원의 일 실시예에 따른 유기-무기 복합 다공성 분리막의 모식도이다.Figure 2 is a schematic diagram of the organic-inorganic composite porous separator according to an embodiment of the present application.
도 3a는, 본원의 일 비교예에 따른 분리막 표면의 전계주사현미경(Field Emission Scanning Electron Microscope: FE-SEM) 사진이다.FIG. 3A is a field emission microscope (FE-SEM) photograph of the surface of a separator according to a comparative example of the present application. FIG.
도 3b는, 본원의 일 비교예에 따른 분리막 표면의 FE-SEM 사진이다.Figure 3b is a FE-SEM picture of the surface of the separator according to a comparative example of the present application.
도 3c는, 본원의 일 실시예에 따른 분리막 표면의 FE-SEM 사진이다.Figure 3c is a FE-SEM picture of the surface of the separator according to an embodiment of the present application.
이하, 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present disclosure. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted for simplicity of explanation, and like reference numerals designate like parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. Throughout this specification, when a portion is "connected" to another portion, this includes not only "directly connected" but also "electrically connected" with another element in between. do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when a member is located "on" another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless specifically stated otherwise.
본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. As used throughout this specification, the terms "about", "substantially" and the like are used at, or in the sense of, numerical values when a manufacturing and material tolerance inherent in the stated meanings is indicated, Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers.
본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.As used throughout this specification, the term "step to" or "step of" does not mean "step for."
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들)"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term "combination (s) thereof" included in the representation of a makushi form refers to one or more mixtures or combinations selected from the group consisting of the components described in the representation of makushi form, It means to include one or more selected from the group consisting of the above components.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다.Throughout this specification, the description of "A and / or B" means "A or B, or A and B."
이하, 본원의 구현예를 상세히 설명하였으나, 본원이 이에 제한되지 않을 수 있다.Hereinafter, embodiments of the present disclosure have been described in detail, but the present disclosure may not be limited thereto.
본원의 제 1 측면은, 용액 공정을 이용하여 다공성 고분자 기재에 무기물 전구체를 코팅하고; 에너지 조사(irradiation)에 의하여 상기 코팅된 무기물 전구체를 무기 산화물로 전환시켜, 무기 산화물 박막이 형성된 다공성 고분자 기재를 형성하고; 및, 상기 다공성 고분자 기재에 형성된 무기 산화물 박막에 원자층 증착법 (atomic layer deposition: ALD)을 이용하여 금속산화물 박막을 형성하는 것을 포함하는, 유기-무기 복합 다공성 분리막의 제조 방법을 제공하고자 한다.A first aspect of the present application is to coat an inorganic precursor on a porous polymer substrate using a solution process; Converting the coated inorganic precursor into an inorganic oxide by energy irradiation to form a porous polymer substrate having an inorganic oxide thin film formed thereon; And forming a metal oxide thin film on the inorganic oxide thin film formed on the porous polymer substrate by using atomic layer deposition (ALD).
본원에 따른 상기 용액 공정은 상기 무기물 전구체를 포함하는 용액을 이용하여 수행하는 것일 수 있으나, 이에 제한되지 않을 수 있다. The solution process according to the present application may be performed using a solution including the inorganic precursor, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 제조 방법은, 상기 무기물 전구체를 코팅하는 단계 전에, 상기 다공성 고분자 기재를 플라즈마 처리하는 단계를 추가 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 일반적으로 다공성 고분자 기재의 표면은 소수성이므로, 플라즈마 처리를 통하여 표면개질을 하지 않으면 친수성 전구체의 코팅이 균일하게 이루어 지지 않을 수 있다. 예를 들어, 상기 다공성 고분자 기재를 플라즈마를 처리하여 다공성 고분자 기재 상에 히드록시기를 형성할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the manufacturing method may include, but not limited to, further comprising the step of plasma processing the porous polymer substrate before the coating of the inorganic precursor. In general, since the surface of the porous polymer substrate is hydrophobic, the coating of the hydrophilic precursor may not be uniform unless surface modification is performed through plasma treatment. For example, the porous polymer substrate may be treated with plasma to form a hydroxyl group on the porous polymer substrate, but may not be limited thereto.
상기 다공성 고분자 기재에 무기물 전구체를 코팅하는 것은, 기존 고분자 분리막의 우수한 기계적 물성을 계승하면서 열적 특성을 동시에 향상시키는 방법으로서 박막의 무기물 산화물 박막이 도포된 분리막을 제조하는 화학적 용액 공정 제조 방법이라면 제한 없이 사용될 수 있다.Coating the inorganic precursor on the porous polymer substrate is a method of simultaneously improving the thermal properties while inheriting the excellent mechanical properties of the existing polymer membrane, and if the chemical solution process manufacturing method for producing a separator coated with the inorganic oxide thin film of the thin film without limitation Can be used.
본원의 일 구현예에 있어서, 상기 에너지 조사는 열, 플라즈마, 자외선(ultraviolet rays: UV), 또는 레이저를 조사하는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 에너지는 UV 또는 UV-오존을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 에너지 조사에 의하여 하나 이상의 상기 무기물 전구체가 상기 다공성 기재의 표면에서 일어나는 화학반응을 통하여 분해되어 상기 무기 산화물로서 전환된다.In one embodiment of the present application, the energy irradiation may include, but is not limited to, irradiating heat, plasma, ultraviolet (UV), or laser. For example, the energy may include UV or UV-ozone, but may not be limited thereto. By the energy irradiation, one or more of the inorganic precursors are decomposed and converted into the inorganic oxide through a chemical reaction occurring on the surface of the porous substrate.
본원의 일 구현예에 있어서, 상기 무기물 전구체는 상기 다공성 고분자 기재의 외부 표면 및 내부 기공의 표면에 코팅되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 이에 따라, 상기 무기물 전구체는 에너지 조사에 의하여 무기 산화물로 전환되어 상기 다공성 고분자 기재의 외부 표면 및 내부 기공의 표면에 무기 산화물 박막이 형성될 수 있다. In one embodiment of the present application, the inorganic precursor may be coated on the surface of the outer surface and the inner pores of the porous polymer substrate, but may not be limited thereto. Accordingly, the inorganic precursor may be converted into an inorganic oxide by energy irradiation to form an inorganic oxide thin film on the outer surface and the surface of the inner pores of the porous polymer substrate.
본원의 일 구현예에 있어서, 상기 다공성 고분자 기재의 외부 표면 및 내부 기공의 표면에 코팅된 상기 무기물 전구체의 두께는 상기 다공성 고분자 기재에 포함된 기공의 크기의 약 1/2 정도(약 1/2 미만)의 두께까지 가능하다. 예를 들어, 상기 무기물 전구체의 코팅된 두께는 약 5 ㎛ 미만, 약 4 ㎛ 미만, 약 3 ㎛ 미만, 약 2 ㎛ 미만, 약 1 ㎛ 미만, 약 900 nm 미만, 약 800 nm 미만, 약 700 nm 미만, 약 600 nm 미만, 약 500 nm 미만, 약 400 nm 미만, 약 300 nm 미만, 약 200 nm 미만, 약 100 nm 미만, 약 50 nm 미만, 약 10 nm 미만, 또는 약 5 nm 미만의 두께로서 코팅되는 것일 수 있으나. 이에 제한되지 않을 수 있다. 상기 무기 산화물 박막의 두께는 약 1 nm 이상일 수 있으며, 상기 두께가 약 1 nm 미만인 경우 고온에서의 분리막의 열적 특성을 유지할 수 없을 우려가 있다.In one embodiment of the present invention, the thickness of the inorganic precursor coated on the outer surface and the surface of the inner pores of the porous polymer substrate is about 1/2 of the size of the pores included in the porous polymer substrate (about 1/2 Up to a thickness). For example, the coated thickness of the inorganic precursor is less than about 5 μm, less than about 4 μm, less than about 3 μm, less than about 2 μm, less than about 1 μm, less than about 900 nm, less than about 800 nm, about 700 nm. Less than about 600 nm, less than about 500 nm, less than about 400 nm, less than about 300 nm, less than about 200 nm, less than about 100 nm, less than about 50 nm, less than about 10 nm, or less than about 5 nm. But may be coated. This may not be limited. The thickness of the inorganic oxide thin film may be about 1 nm or more, and when the thickness is less than about 1 nm, there is a concern that the thermal characteristics of the separator at high temperature may not be maintained.
본원의 일 구현예에 있어서, 상기 다공성 고분자 기재는 약 5% 내지 약 95%의 기공도를 갖는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 다공성 고분자 기재는 약 5% 내지 약 95%, 약 10 % 내지 약 80 %, 약 20 % 내지 약 70 %, 약 30 % 내지 약 60 %, 약 40 % 내지 약 50 %, 약 5 % 내지 약 50 %, 약 5 % 내지 약 40 %, 약 5 % 내지 약 30 %, 약 5 % 내지 약 20 %, 약 50 % 내지 약 95 %, 약 60 % 내지 약 95 %, 약 70 % 내지 약 95 %, 또는 약 80 % 내지 약 95 %의 기공도를 갖는 것일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, the porous polymer substrate may have a porosity of about 5% to about 95%, but may not be limited thereto. For example, the porous polymeric substrate is about 5% to about 95%, about 10% to about 80%, about 20% to about 70%, about 30% to about 60%, about 40% to about 50%, about 5% to about 50%, about 5% to about 40%, about 5% to about 30%, about 5% to about 20%, about 50% to about 95%, about 60% to about 95%, about 70% To about 95%, or about 80% to about 95% porosity, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 용액 공정을 이용하여 다공성 고분자 기재에 무기물 전구체를 코팅하는 단계는, 용액 공정을 통해 제 1 무기물 전구체를 상기 다공성 고분자 기재에 코팅한 후 열처리하고 제 2 무기물 전구체를 추가 코팅하는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 열처리는 용액 공정을 통해 상기 코팅된 제 1 무기물 전구체를 건조시키기에 충분한 온도에서 수행될 수 있다.In one embodiment of the present invention, the step of coating the inorganic precursor on the porous polymer substrate using the solution process, the first inorganic precursor is coated on the porous polymer substrate through a solution process and then heat treated and the second inorganic precursor It may be to include additional coating, but may not be limited thereto. The heat treatment may be performed at a temperature sufficient to dry the coated first inorganic precursor through a solution process.
본원의 일 구현예에 있어서, 본원에 따른 상기 다공성 고분자 기재는 이온의 이동이 용이한 구조를 갖는 고분자로서, 양 전극 간의 리튬 이온의 기동성이 용이한 높은 기공도와 비교적 균일한 기공 크기 분포를 갖는 연속된 다공성 구조를 갖는 것이라면 제한 없이 사용될 수 있다. 예를 들어, 상기 다공성 기재는 나노 섬유의 교차에 의해 다공성 그물 구조로 형성되는 부직포의 형태거나 통상적으로 전기화학소자의 분리막의 재료인 연신 공정에 의해 제조되는 폴리올레핀계 기재를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the porous polymer substrate according to the present invention is a polymer having a structure in which ions are easy to move, and has a high porosity and relatively uniform pore size distribution that facilitates mobility of lithium ions between both electrodes. Any one having a porous structure can be used without limitation. For example, the porous substrate may be a non-woven fabric formed of a porous net structure by the intersection of nanofibers, or may include a polyolefin-based substrate prepared by an elongation process, which is usually a material of a separator of an electrochemical device. This may not be limited.
본원의 일 구현예에 있어서, 상기 다공성 고분자 기재는 폴리에틸렌, 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 고분자량 폴리에틸렌, 폴리프로필렌테레프텔레이트(polypropyleneterephthalate), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리에틸렌나프탈렌(polyethylenenaphthalene), 및 이의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, the porous polymer substrate is polyethylene, high density polyethylene, low density polyethylene, linear low density polyethylene, high molecular weight polyethylene, polypropylene terephthalate (polypropyleneterephthalate), polyethylene terephthalate (polyethyleneterephthalate), polybutylene tere Phthalate, polybutyleneterephthalate, polyester, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, Polyphenylene oxide (polyphenylene oxide), polyphenylene sulfide (polyphenylenesulfide), polyethylenenaphthalene (polyethylenenaphthalene), and may include those selected from the group consisting of, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 무기 산화물은, 유전율 상수가 약 5 이상인 무기 산화물, 리튬 이온 전달 능력을 갖는 무기 산화물, 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, the inorganic oxide may include one selected from the group consisting of an inorganic oxide having a dielectric constant of about 5 or more, an inorganic oxide having lithium ion transfer ability, and combinations thereof, but is not limited thereto. It may not be.
본원의 일 구현예에 있어서, 상기 유전율 상수가 약 5 이상인 무기 산화물은 SiO2, BaTiO3, Pb(Zr,Ti)O3 (PZT), 하프니아(hafnia: HfO2), SrTiO3, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2, SiC, 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 무기 산화물은 액체 전해질 내 전해질 염, 예를 들어, 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다. 상기 무기 산화물은 유전율 상수가 약 5 이상, 예를 들어 약 10 이상인 무기 산화물일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the inorganic oxide having a dielectric constant of about 5 or more is SiO 2 , BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), hafnia (HfO 2 ), SrTiO 3 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , SiC, and may be selected from the group consisting of a combination thereof, but may not be limited thereto. . The inorganic oxide may contribute to an increase in dissociation degree of the electrolyte salt, for example, lithium salt in the liquid electrolyte, thereby improving the ionic conductivity of the electrolyte solution. The inorganic oxide may be an inorganic oxide having a dielectric constant of about 5 or more, for example, about 10 or more, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 다공성 고분자 기재의 두께는 약 1 ㎛ 내지 약 100 ㎛인 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 다공성 고분자 기재의 두께는 약 1 ㎛ 내지 약 100 ㎛, 약 5 ㎛ 내지 약 100 ㎛, 약 10 ㎛ 내지 약 100 ㎛, 약 15 ㎛ 내지 약 100 ㎛, 약 1 ㎛ 내지 약 90 ㎛, 약 1 ㎛ 내지 약 80 ㎛, 약 1 ㎛ 내지 약 70 ㎛, 약 1 ㎛ 내지 약 60 ㎛, 약 1 ㎛ 내지 약 50 ㎛, 약 1 ㎛ 내지 약 40 ㎛, 또는 약 5 ㎛ 내지 약 40 ㎛ 일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the porous polymer substrate may have a thickness of about 1 μm to about 100 μm, but may not be limited thereto. For example, the porous polymer substrate may have a thickness of about 1 μm to about 100 μm, about 5 μm to about 100 μm, about 10 μm to about 100 μm, about 15 μm to about 100 μm, about 1 μm to about 90 μm About 1 μm to about 80 μm, about 1 μm to about 70 μm, about 1 μm to about 60 μm, about 1 μm to about 50 μm, about 1 μm to about 40 μm, or about 5 μm to about 40 μm It may be, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 다공성 고분자 기재의 기공 크기는 약 0.01 ㎛ 내지 약 10 ㎛ 인 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 다공성 고분자 기재의 기공 크기는 약 0.01 ㎛ 내지 약 10 ㎛, 약 0.01 ㎛ 내지 약 5 ㎛, 약 0.01 ㎛ 내지 약 1 ㎛, 약 1 ㎛ 내지 약 10 ㎛, 약 1 ㎛ 내지 약 5 ㎛, 또는 약 5 ㎛ 내지 약 10 ㎛ 인 것일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, the pore size of the porous polymer substrate may be about 0.01 ㎛ to about 10 ㎛, but may not be limited thereto. For example, the pore size of the porous polymer substrate is about 0.01 μm to about 10 μm, about 0.01 μm to about 5 μm, about 0.01 μm to about 1 μm, about 1 μm to about 10 μm, about 1 μm to about 5 Μm, or about 5 μm to about 10 μm, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 무기물 전구체는 에너지 조사에 의하여 무기 산화물로 전환될 수 있는 것이라면 특별히 제한되지 않으며, 예를 들어, 3-아미노프로필트리에톡시실란(3-aminopropyltriethoxysilane), 폴리디메틸실록산(polydimethylsiloxane), SiCl4(silicon tetrachloride), TEMASi(tetrakis-ethyl-methyl-amino-silcon), TiCl4(titanium tetrachloride), TTIP(titanium-tetrakis-isoproproxide), TEMAT(tretrakis-ethyl-methyl-amino-titanium), TDMAT(tetrakis-dimethyl-amino-titanium), TDEAT(tetrakis-diethyl-amino-titanium), TMA(tri-methyl-aluminum), MPTMA(methyl-pyrrolidine-tri-methyl-aluminum), EPPTEA(ethyl-pyridine-triethyl-aluminum), EPPDMAH(ethyl-pyridine-dimethyl-aluminum hydridge), IPA[(C3H7-O)3Al], TEMAH(tetrakis-ethyl-methyl-amino-hafnium), TEMAZ(tetrakis-ethyl-methyl-amido-zirconium), TDMAH(tetrakis-dimethyl-amino-hafnium), TDMAZ(tetrakis-dimethyl-amino-zirconium), TDEAH(tetrakis-diethyl-amino-hafnium), TDEAZ(tetrakis-diethyl-amino-zirconium), HTB(hafnium tetra-tert-butoxide), ZTB(zirconium tetra-tert-butoxide), HfCl4(hafnium tetrachloride), Ba(C5H7O2)2, Sr(C5H7O2)2, Ba(C11H19O2)2, Sr(C11H19O2)2, Ba(C5HF6O2)2, Sr(C10H10F7O2)2, Ba(C10H10F7O2)2 Sr(C10H10F7O2)2, Ba(C11H19O2)-CH3(OCH2CH2)4OCH3, Sr(C11H19O2)2-CH3(OCH2HC2)4OCH3, Ti(OC2H5)4, Ti(OC3H7)4, Ti(OC4H9)4, Ti(C11H19O2)2(OC3H7)2, Ti(C11H19O2)2[O(CH2)2OCH3]2, Pb(C5H7O2)2, Pb(C5HF6O2)2, Pb(C5H4F3O2)2, Pb(C11H19O2)2, Pb(C2H5)4, La(C5H7O2)3, La(C5HF6O2)3, La(C5H4F3O2)3, La(C11H19O2)3, Zr(OC4H9)4, Zr(C5HF6O2)4, Zr(C5H4F3O2)4, Zr(C11H19O2)4, Zr(C11H19O2)2(OCH3H7)2, TMSTEMAT[MeSiN=Ta(NEtMe)3], TBITEMAT[Me3CN=Ta(NEtME)3], TBTDET[Me3CN=Ta(Net2)3], PEMAT(Ta[N(CH3)(C2H5)]5), PDEAT(Ta[N(C2H5)2]5), PDMAT(Ta[N(CH3)2]5), TaF5, 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, the inorganic precursor is not particularly limited as long as it can be converted into an inorganic oxide by energy irradiation, for example, 3-aminopropyltriethoxysilane (3-aminopropyltriethoxysilane), polydimethylsiloxane (polydimethylsiloxane), SiCl 4 (silicon tetrachloride), TEMASi (tetrakis-ethyl-methyl-amino-silcon), TiCl 4 (titanium tetrachloride), TTIP (titanium-tetrakis-isoproproxide), TEMAT (tretrakis-ethyl-methyl-amino-titanium), TDMAT (tetrakis-dimethyl-amino-titanium), TDEAT (tetrakis-diethyl-amino-titanium), TMA (tri-methyl-aluminum), MPTMA (methyl-pyrrolidine-tri-methyl-aluminum), EPPTEA (ethyl-pyridine-triethyl) -aluminum), EPPDMAH (ethyl-pyridine-dimethyl-aluminum hydridge), IPA [(C 3 H 7 -O) 3 Al], TEMAH (tetrakis-ethyl-methyl-amino-hafnium), TEMAZ (tetrakis-ethyl-methyl -amido-zirconium), tetrakis-dimethyl-amino-hafnium (TDMAH), tetrakis-dimethyl-amino-zirconium (TDMAZ), tetrakis-diethyl-amino-hafnium (TDEAH), tetrakis-diethyl-amino-zirconium (TDEAZ), Hafnium tetra-tert-butoxide (HTB), zirconium tetra-tert-butoxide (ZTB), hafnium tetrachloride (HfCl 4 ), Ba (C 5 H 7 O 2 ) 2 , Sr (C 5 H 7 O 2 ) 2 , Ba (C 11 H 19 O 2 ) 2 , Sr (C 11 H 19 O 2 ) 2 , Ba (C 5 HF 6 O 2 ) 2 , Sr (C 10 H 10 F 7 O 2 ) 2 , Ba (C 10 H 10 F 7 O 2 ) 2 Sr (C 10 H 10 F 7 O 2 ) 2 , Ba (C 11 H 19 O 2 ) -CH 3 (OCH 2 CH 2 ) 4 OCH 3 , Sr (C 11 H 19 O 2 ) 2 -CH 3 (OCH 2 HC 2 ) 4 OCH 3 , Ti (OC 2 H 5 ) 4 , Ti (OC 3 H 7 ) 4 , Ti (OC 4 H 9 ) 4 , Ti (C 11 H 19 O 2 ) 2 (OC 3 H 7 ) 2 , Ti (C 11 H 19 O 2 ) 2 [O (CH 2 ) 2 OCH 3 ] 2 , Pb (C 5 H 7 O 2 ) 2 , Pb (C 5 HF 6 O 2 ) 2 , Pb (C 5 H 4 F 3 O 2 ) 2 , Pb (C 11 H 19 O 2 ) 2 , Pb (C 2 H 5 ) 4 , La (C 5 H 7 O 2 ) 3 , La (C 5 HF 6 O 2 ) 3 , La (C 5 H 4 F 3 O 2 ) 3 , La (C 11 H 19 O 2 ) 3 , Zr (OC 4 H 9 ) 4 , Zr (C 5 HF 6 O 2 ) 4 , Zr (C 5 H 4 F 3 O 2 ) 4 , Zr (C 11 H 19 O 2 ) 4 , Zr (C 11 H 19 O 2 ) 2 (OCH 3 H 7 ) 2 , TMSTEMAT [MeSiN = Ta (NEtMe) 3 ], TBITEMAT [Me 3 CN = Ta (NEtME) 3 ], TBTDET [Me 3 CN = Ta (Net 2 ) 3 ], PEMAT (Ta [N (CH 3 ) (C 2 H 5 )] 5 ), PDEAT (Ta [N (C 2 H 5 ) 2 ] 5 ), PDMAT (Ta [N (CH 3 ) 2 ] 5 ), TaF 5 , and combinations thereof, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 다공성 고분자 기재의 외부 표면 및 내부 기공의 표면에 형성된 상기 무기 산화물 박막의 두께는 상기 다공성 고분자 기재에 포함된 기공의 크기의 약 1/2 정도(약 1/2 미만)의 두께까지 가능하다. 예를 들어, 상기 무기 산화물 박막의 두께는 약 5 ㎛ 미만, 약 4 ㎛ 미만, 약 3 ㎛ 미만, 약 2 ㎛ 미만, 약 1 ㎛ 미만, 약 900 nm 미만, 약 800 nm 미만, 약 700 nm 미만, 약 600 nm 미만, 약 500 nm 미만, 약 400 nm 미만, 약 300 nm 미만, 약 200 nm 미만, 약 100 nm 미만, 약 50 nm 미만, 약 10 nm 미만, 또는 약 5 nm 미만의 두께로서 코팅되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 무기 산화물 박막의 두께는 약 1 nm 이상일 수 있으며, 상기 두께가 약 1 nm 미만인 경우 고온에서의 분리막의 열적 특성을 유지할 수 없을 우려가 있다.In one embodiment of the present invention, the thickness of the inorganic oxide thin film formed on the outer surface and the surface of the inner pores of the porous polymer substrate is about 1/2 of the size of the pores included in the porous polymer substrate (about 1/2 Up to a thickness). For example, the thickness of the inorganic oxide thin film is less than about 5 μm, less than about 4 μm, less than about 3 μm, less than about 2 μm, less than about 1 μm, less than about 900 nm, less than about 800 nm, less than about 700 nm. Coating as a thickness of less than about 600 nm, less than about 500 nm, less than about 400 nm, less than about 300 nm, less than about 200 nm, less than about 100 nm, less than about 50 nm, less than about 10 nm, or less than about 5 nm. It may be, but may not be limited thereto. The thickness of the inorganic oxide thin film may be about 1 nm or more, and when the thickness is less than about 1 nm, there is a concern that the thermal characteristics of the separator at high temperature may not be maintained.
본원에 따른 상기 무기 산화물 박막은, 무기화합물의 화학 반응 메커니즘을 이용한 용액 공정을 이용하여 도포하고자 하는 다공성 고분자 기재에 무기물 전구체를 흡착시키고 화학적 가교에 의해 발생하는 상기 무기물 전구체의 분해 과정을 거쳐 무기 산화물 박막으로써 상기 다공성 고분자 기재에 형성된다. 상기 무기물 전구체는 상온에서 액체 또는 고체상으로 존재할 수 있고 이들 무기물 전구체는 고순도의 무기화합물로서 경제적 또는 공정상의 요구에 따라 액체 또는 고체상으로서 사용할 수 있다. Inorganic oxide thin film according to the present invention, the inorganic oxide is adsorbed on the porous polymer substrate to be applied using a solution process using a chemical reaction mechanism of the inorganic compound and the inorganic oxide through the decomposition process of the inorganic precursor generated by chemical crosslinking It is formed on the porous polymer substrate as a thin film. The inorganic precursors may be present in liquid or solid phase at room temperature, and these inorganic precursors may be used as liquid or solid phases according to economic or process requirements as inorganic compounds of high purity.
본원에 따른 상기 무기 산화물 박막은 상기 무기 산화물의 입자들 형태를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. The inorganic oxide thin film according to the present application may include particles of the inorganic oxide, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 원자층 증착법에 의하여 형성되는 금속산화물 박막은, Al2O3, ZrO2, TiO2, SnO2, CeO2, ZnO, MgO, CaO, SrO, BaO, Na2O, B2O3, Mn2O3, Y2O3, WO3, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 무기 산화물 박막이 형성된 다공성 고분자 기재에 원자층 증착법에 의하여 상기 금속산화물 박막을 형성함으로써 상기 금속산화물이 패시베이션(passivation)의 역할을 할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the metal oxide thin film formed by the atomic layer deposition method, Al 2 O 3 , ZrO 2 , TiO 2 , SnO 2 , CeO 2 , ZnO, MgO, CaO, SrO, BaO, Na 2 O, B 2 O 3 , Mn 2 O 3 , Y 2 O 3 , WO 3 , and may be to include those selected from the group consisting of, but may not be limited thereto. The metal oxide may serve as passivation by forming the metal oxide thin film on the porous polymer substrate on which the inorganic oxide thin film is formed by atomic layer deposition, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 원자층 증착법에 의하여 금속산화물 박막을 형성하기 위하여 사용되는 전구체는, TMA (tri-methyl-aluminum), MPTMA (methyl-pyrrolidine-tri-methyl-aluminum), EPPTEA (ethyl-pyridine-triethyl-aluminum), EPPDMAH (ethyl-pyridine-dimethyl-aluminum hydridge), IPA [(C3H7-O)3Al], TiCl4(titanium tetrachloride), TTIP (titanium-tetrakis-isoproproxide), TEMAT (tretrakis-ethyl-methyl-amino-titanium), TDMAT (tetrakis-dimethyl-amino-titanium), TDEAT (tetrakis-diethyl-amino-titanium), TEMAH (tetrakis-ethyl-methyl-amino-hafnium), TEMAZ (Tetrakis-ethyl-methyl-amido-zirconium), TDMAH (tetrakis-dimethyl-amino-hafnium), TDMAZ (tetrakis-dimethyl-amino-zirconium), TDEAH (tetrakis-diethyl-amino-hafnium), TDEAZ (tetrakis-diethyl-amino-zirconium), HTB (hafnium tetra-tert-butoxide), ZTB (zirconium tetra-tert-butoxide), HfCl4 (hafnium tetrachloride), Ba(C5H7O2)2, Sr(C5H7O2)2, Ba(C11H19O2)2, Sr(C11H19O2)2, Ba(C5HF6O2)2, Sr(C10H10F7O2)2, Ba(C10H10F7O2)2 Sr(C10H10F7O2)2, Ba(C11H19O2)-CH3(OCH2CH2)4OCH3, Sr(C11H19O2)2-CH3(OCH2HC2)4OCH3, Ti(OC2H5)4, Ti(OC3H7)4, Ti(OC4H9)4, Ti(C11H19O2)2(OC3H7)2, Ti(C11H19O2)2[O(CH2)2OCH3]2, Pb(C5H7O2)2, Pb(C5HF6O2)2, Pb(C5H4F3O2)2, Pb(C11H19O2)2, Pb(C2H5)4, La(C5H7O2)3, La(C5HF6O2)3, La(C5H4F3O2)3, La(C11H19O2)3, Zr(OC4H9)4, Zr(C5HF6O2)4, Zr(C5H4F3O2)4, Zr(C11H19O2)4, Zr(C11H19O2)2(OCH3H7)2, TMSTEMAT [MeSiN=Ta(NEtMe)3], TBITEMAT [Me3CN=Ta(NEtMe)3], TBTDET [Me3CN=Ta(Net2)3], PEMAT [Ta((CH3)(C2H5))5], PDEAT [Ta(N(C2H5)2)5], PDMAT [Ta(N(CH3)2)5], TaF5, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, the precursor used to form the metal oxide thin film by the atomic layer deposition method, TMA (tri-methyl-aluminum), MPTMA (methyl-pyrrolidine-tri-methyl-aluminum), EPPTEA ( ethyl-pyridine-triethyl-aluminum), EPPDMAH (ethyl-pyridine-dimethyl-aluminum hydridge), IPA [(C 3 H 7 -O) 3 Al], TiCl 4 (titanium tetrachloride), TTIP (titanium-tetrakis-isoproproxide) , TEMAT (tretrakis-ethyl-methyl-amino-titanium), TDMAT (tetrakis-dimethyl-amino-titanium), TDEAT (tetrakis-diethyl-amino-titanium), TEMAH (tetrakis-ethyl-methyl-amino-hafnium), TEMAZ (Tetrakis-ethyl-methyl-amido-zirconium), TDMAH (tetrakis-dimethyl-amino-hafnium), TDMAZ (tetrakis-dimethyl-amino-zirconium), TDEAH (tetrakis-diethyl-amino-hafnium), TDEAZ (tetrakis-diethyl -amino-zirconium), HTB (hafnium tetra-tert-butoxide), ZTB (zirconium tetra-tert-butoxide), HfCl 4 (hafnium tetrachloride), Ba (C 5 H 7 O 2 ) 2 , Sr (C 5 H 7 O 2 ) 2 , Ba (C 11 H 19 O 2 ) 2 , Sr (C 11 H 19 O 2 ) 2 , Ba (C 5 HF 6 O 2 ) 2 , Sr (C 10 H 10 F 7 O 2 ) 2 , Ba (C 10 H 10 F 7 O 2 ) 2 Sr (C 10 H 10 F 7 O 2 ) 2 , Ba (C 11 H 19 O 2 ) -CH 3 (OCH 2 CH 2 ) 4 OCH 3 , Sr (C 11 H 19 O 2 ) 2 -CH 3 (OCH 2 HC 2 ) 4 OCH 3 , Ti (OC 2 H 5 ) 4 , Ti (OC 3 H 7 ) 4 , Ti (OC 4 H 9 ) 4 , Ti (C 11 H 19 O 2 ) 2 (OC 3 H 7 ) 2 , Ti (C 11 H 19 O 2 ) 2 [O (CH 2 ) 2 OCH 3 ] 2 , Pb (C 5 H 7 O 2 ) 2 , Pb (C 5 HF 6 O 2 ) 2 , Pb (C 5 H 4 F 3 O 2 ) 2 , Pb (C 11 H 19 O 2 ) 2 , Pb (C 2 H 5 ) 4 , La (C 5 H 7 O 2 ) 3 , La (C 5 HF 6 O 2 ) 3 , La (C 5 H 4 F 3 O 2 ) 3 , La (C 11 H 19 O 2 ) 3 , Zr (OC 4 H 9 ) 4 , Zr (C 5 HF 6 O 2 ) 4 , Zr (C 5 H 4 F 3 O 2 ) 4 , Zr (C 11 H 19 O 2 ) 4 , Zr (C 11 H 19 O 2 ) 2 (OCH 3 H 7 ) 2 , TMSTEMAT [MeSiN = Ta (NEtMe) 3 ], TBITEMAT [Me 3 CN = Ta (NEtMe) 3 ], TBTDET [Me 3 CN = Ta (Net 2 ) 3 ], PEMAT [Ta ((CH 3 ) (C 2 H 5 )) 5 ], PDEAT [Ta (N (C 2 H 5 ) 2 ) 5 ], PDMAT [Ta (N (CH 3 ) 2 ) 5 ], TaF 5 , and combinations thereof, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 원자층 증착법은 약 60℃ 내지 약 200℃의 온도 범위에서 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 원자층 증착법은 약 60℃ 내지 약 200℃, 약 60℃ 내지 약 190℃, 약 60℃ 내지 약 180℃, 약 60℃ 내지 약 170℃, 약 60℃ 내지 약 160℃, 약 60℃ 내지 약 150℃, 약 60℃ 내지 약 140℃, 약 60℃ 내지 약 130℃, 약 60℃ 내지 약 120℃, 약 60℃ 내지 약 110℃, 약 60℃ 내지 약 100℃, 약 60℃ 내지 약 90℃, 약 60℃ 내지 약 80℃, 약 60℃ 내지 약 70℃, 약 70℃ 내지 약 200℃, 약 70℃ 내지 약 190℃, 약 70℃ 내지 약 180℃, 약 70℃ 내지 약 170℃, 약 70℃ 내지 약 160℃, 약 70℃ 내지 약 150℃, 약 70℃ 내지 약 140℃, 약 70℃ 내지 약 130℃, 약 70℃ 내지 약 120℃, 약 70℃ 내지 약 110℃, 약 70℃ 내지 약 100℃, 약 70℃ 내지 약 90℃, 약 70℃ 내지 약 80℃, 약 80℃ 내지 약 200℃, 약 80℃ 내지 약 190℃, 약 80℃ 내지 약 180℃, 약 80℃ 내지 약 170℃, 약 80℃ 내지 약 160℃, 약 80℃ 내지 약 150℃, 약 80℃ 내지 약 140℃, 약 80℃ 내지 약 130℃, 약 80℃ 내지 약 120℃, 약 80℃ 내지 약 110℃, 약 80℃ 내지 약 100℃, 약 80℃ 내지 약 90℃, 약 90℃ 내지 약 200℃, 약 90℃ 내지 약 190℃, 약 90℃ 내지 약 180℃, 약 90℃ 내지 약 170℃, 약 90℃ 내지 약 160℃, 약 90℃ 내지 약 150℃, 약 90℃ 내지 약 140℃, 약 90℃ 내지 약 130℃, 약 90℃ 내지 약 120℃, 약 90℃ 내지 약 110℃, 약 90℃ 내지 약 100℃, 약 100℃ 내지 약 200℃, 약 100℃ 내지 약 190℃, 약 100℃ 내지 약 180℃, 약 100℃ 내지 약 170℃, 약 100℃ 내지 약 160℃, 약 100℃ 내지 약 150℃, 약 100℃ 내지 약 140℃, 약 100℃ 내지 약 130℃, 약 100℃ 내지 약 120℃, 약 100℃ 내지 약 110℃, 약 110℃ 내지 약 200℃, 약 110℃ 내지 약 190℃, 약 110℃ 내지 약 180℃, 약 110℃ 내지 약 170℃, 약 110℃ 내지 약 160℃, 약 110℃ 내지 약 150℃, 약 110℃ 내지 약 140℃, 약 110℃ 내지 약 130℃, 약 110℃ 내지 약 120℃, 약 120℃ 내지 약 200℃, 약 120℃ 내지 약 190℃, 약 120℃ 내지 약 180℃, 약 120℃ 내지 약 170℃, 약 120℃ 내지 약 160℃, 약 120℃ 내지 약 150℃, 약 120℃ 내지 약 140℃, 약 120℃ 내지 약 130℃, 약 130℃ 내지 약 200℃, 약 130℃ 내지 약 190℃, 약 130℃ 내지 약 180℃, 약 130℃ 내지 약 170℃, 약 130℃ 내지 약 160℃, 약 130℃ 내지 약 150℃, 약 130℃ 내지 약 140℃, 약 140℃ 내지 약 200℃, 약 140℃ 내지 약 190℃, 약 140℃ 내지 약 180℃, 약 140℃ 내지 약 170℃, 약 140℃ 내지 약 160℃, 약 140℃ 내지 약 150℃, 약 150℃ 내지 약 200℃, 약 150℃ 내지 약 190℃, 약 150℃ 내지 약 180℃, 약 150℃ 내지 약 170℃, 약 150℃ 내지 약 160℃, 약 160℃ 내지 약 200℃, 약 160℃ 내지 약 190℃, 약 160℃ 내지 약 180℃, 약 160℃ 내지 약 170℃, 약 170℃ 내지 약 200℃, 약 170℃ 내지 약 190℃, 약 170℃ 내지 약 180℃, 약 180℃ 내지 약 200℃, 약 180℃ 내지 약 190℃, 또는 약 190℃ 내지 약 200℃의 온도 범위에서 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the atomic layer deposition method may be performed in a temperature range of about 60 ℃ to about 200 ℃, but may not be limited thereto. For example, the atomic layer deposition method may be about 60 ° C. to about 200 ° C., about 60 ° C. to about 190 ° C., about 60 ° C. to about 180 ° C., about 60 ° C. to about 170 ° C., about 60 ° C. to about 160 ° C., about 60 ° C to about 150 ° C, about 60 ° C to about 140 ° C, about 60 ° C to about 130 ° C, about 60 ° C to about 120 ° C, about 60 ° C to about 110 ° C, about 60 ° C to about 100 ° C, about 60 ° C To about 90 ° C, about 60 ° C to about 80 ° C, about 60 ° C to about 70 ° C, about 70 ° C to about 200 ° C, about 70 ° C to about 190 ° C, about 70 ° C to about 180 ° C, about 70 ° C to about 170 ° C, about 70 ° C to about 160 ° C, about 70 ° C to about 150 ° C, about 70 ° C to about 140 ° C, about 70 ° C to about 130 ° C, about 70 ° C to about 120 ° C, about 70 ° C to about 110 ° C , About 70 ° C. to about 100 ° C., about 70 ° C. to about 90 ° C., about 70 ° C. to about 80 ° C., about 80 ° C. to about 200 ° C., about 80 ° C. to about 190 ° C., about 80 ° C. to about 180 ° C., about 80 ° C to about 170 ° C, about 80 ° C to about 160 ° C, about 80 ° C to about 150 ° C, about 80 ° C to about 140 ° C, about 80 ° C to about 130 ° C, about 80 ° C to about 120 ° C, about 80 ° C to about 110 ° C, about 80 ° C to about 100 ° C, about 80 ° C to about 90 ° C, about 90 ° C To about 200 ° C, about 90 ° C to about 190 ° C, about 90 ° C to about 180 ° C, about 90 ° C to about 170 ° C, about 90 ° C to about 160 ° C, about 90 ° C to about 150 ° C, about 90 ° C to about 140 ° C, about 90 ° C to about 130 ° C, about 90 ° C to about 120 ° C, about 90 ° C to about 110 ° C, about 90 ° C to about 100 ° C, about 100 ° C to about 200 ° C, about 100 ° C to about 190 ° C , About 100 ° C. to about 180 ° C., about 100 ° C. to about 170 ° C., about 100 ° C. to about 160 ° C., about 100 ° C. to about 150 ° C., about 100 ° C. to about 140 ° C., about 100 ° C. to about 130 ° C., about 100 ° C to about 120 ° C, about 100 ° C to about 110 ° C, about 110 ° C to about 200 ° C, about 110 ° C to about 190 ° C, about 110 ° C to about 180 ° C, about 110 ° C to about 170 ° C, about 110 ° C To about 160 ° C., about 110 ° C. to about 150 ° C., about 110 ° C. to about 140 ° C., 110 ° C to about 130 ° C, about 110 ° C to about 120 ° C, about 120 ° C to about 200 ° C, about 120 ° C to about 190 ° C, about 120 ° C to about 180 ° C, about 120 ° C to about 170 ° C, and about 120 ° C To about 160 ° C., about 120 ° C. to about 150 ° C., about 120 ° C. to about 140 ° C., about 120 ° C. to about 130 ° C., about 130 ° C. to about 200 ° C., about 130 ° C. to about 190 ° C., about 130 ° C. to about 180 ° C, about 130 ° C to about 170 ° C, about 130 ° C to about 160 ° C, about 130 ° C to about 150 ° C, about 130 ° C to about 140 ° C, about 140 ° C to about 200 ° C, about 140 ° C to about 190 ° C , About 140 ° C. to about 180 ° C., about 140 ° C. to about 170 ° C., about 140 ° C. to about 160 ° C., about 140 ° C. to about 150 ° C., about 150 ° C. to about 200 ° C., about 150 ° C. to about 190 ° C., about 150 ° C to about 180 ° C, about 150 ° C to about 170 ° C, about 150 ° C to about 160 ° C, about 160 ° C to about 200 ° C, about 160 ° C to about 190 ° C, about 160 ° C to about 180 ° C, about 160 ° C To about 170 ° C, about 170 ° C to about 200 ° C, about 170 ° C To about 190 ° C, about 170 ° C to about 180 ° C, about 180 ° C to about 200 ° C, about 180 ° C to about 190 ° C, or about 190 ° C to about 200 ° C, but is not limited thereto. You may not.
본원의 일 구현예에 있어서, 상기 금속산화물 박막의 두께는 약 100 nm 이하인 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 약 100 nm 이하, 약 90 nm 이하, 약 80 nm 이하, 약 70 nm 이하, 약 60 nm 이하, 약 50 nm 이하, 약 40 nm 이하, 약 30 nm 이하, 약 20 nm 이하, 또는 약 10 nm 이하인 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the thickness of the metal oxide thin film may be about 100 nm or less, but may not be limited thereto. For example, about 100 nm or less, about 90 nm or less, about 80 nm or less, about 70 nm or less, about 60 nm or less, about 50 nm or less, about 40 nm or less, about 30 nm or less, about 20 nm or less, or It may be about 10 nm or less, but may not be limited thereto.
본원에 따른 유기-무기 복합 다공성 분리막의 제조 방법은, 무기물 전구체를 이용한 용액 공정에 의해서 다공성 고분자 기재의 외부 표면 및 내부 기공의 표면에 무기 산화물 박막이 형성되어, 기존 분리막의 우수한 기계적 물성 및 높은 리튬 이온 이동성을 그대로 유지하면서 열적 특성을 향상시키고, 전지 내 작용하는 전기적 저항을 줄이면서 고밀도 충전이 가능한 얇은 두께의 분리막 제조 및 이를 구비한 전기화학소자 내 한정된 전극 활물질의 부피를 증가시켜 고용량의 전기화학소자의 제조가 가능하게 할 수 있다. 또한, 무기 산화물 박막이 형성되어 열적 안정성 향상된 분리막에 ALD 공정을 이용하여 추가로 금속 산화물 박막을 형성시킴으로써 상기 무기 산화물 박막과 전해질과의 부반응을 억제시켜 분리막의 질을 향상시킬 수 있다.In the method of manufacturing an organic-inorganic composite porous separator according to the present invention, an inorganic oxide thin film is formed on the outer surface of the porous polymer substrate and the surface of the inner pores by a solution process using an inorganic precursor, thereby providing excellent mechanical properties and high lithium of the existing separator. High-capacity electrochemistry by increasing the volume of the limited electrode active material in the electrochemical device including the thin film separator to improve the thermal characteristics while maintaining the ion mobility, and to reduce the electrical resistance acting in the battery and to enable high-density charging The manufacture of the device can be enabled. In addition, by forming an inorganic oxide thin film to form a metal oxide thin film by using an ALD process in the thermally improved separator, the side reaction between the inorganic oxide thin film and the electrolyte can be suppressed to improve the quality of the separator.
본원의 제 2 측면은, 상기 본원의 제 1 측면에 따른 방법에 의해 제조되어;A second aspect of the present application is prepared by the method according to the first aspect of the present application;
다공성 고분자 기재의 외부 표면 및 내부 기공의 표면에 형성된 무기 산화물 박막 및 상기 무기 산화물 박막에 형성된 금속산화물 박막을 포함하는, 유기-무기 복합 다공성 분리막을 제공한다.It provides an organic-inorganic composite porous separator comprising an inorganic oxide thin film formed on the outer surface and the surface of the inner pores of the porous polymer substrate and a metal oxide thin film formed on the inorganic oxide thin film.
본원에 따른 유기-무기 복합 다공성 분리막은, 무기물 전구체를 이용한 용액 공정에 의해서 다공성 고분자 기재의 외부 표면 및 내부 기공의 표면에 무기 산화물 박막이 형성되어, 기존 분리막의 우수한 기계적 물성 및 높은 리튬 이온 이동성을 그대로 유지하면서 열적 특성을 향상시키고, 전지 내 작용하는 전기적 저항을 줄이면서 고밀도 충전이 가능한 얇은 두께의 분리막 제조 및 이를 구비한 전기화학소자 내 한정된 전극 활물질의 부피를 증가시켜 고용량의 전기화학소자의 제조가 가능하게 할 수 있다. 또한, 무기 산화물 박막이 형성되어 열적 안정성 향상된 분리막에 ALD 공정을 이용하여 추가로 금속 산화물 박막을 형성시킴으로써 상기 무기 산화물 박막과 전해질과의 부반응을 억제시켜 분리막의 질을 향상시킬 수 있다.In the organic-inorganic composite porous membrane according to the present invention, an inorganic oxide thin film is formed on the outer surface of the porous polymer substrate and the surface of the inner pores by a solution process using an inorganic precursor, thereby providing excellent mechanical properties and high lithium ion mobility of the existing separator. Fabrication of high-capacity electrochemical devices by improving the thermal properties, maintaining the electrical properties while reducing the electrical resistance in the battery, and making thin-walled separators capable of high density charging and increasing the volume of the limited electrode active material in the electrochemical devices having the same Can be enabled. In addition, by forming an inorganic oxide thin film to form a metal oxide thin film by using an ALD process in the thermally improved separator, the side reaction between the inorganic oxide thin film and the electrolyte can be suppressed to improve the quality of the separator.
본원의 제 2측면에 따른 유기-무기 복합 다공성 분리막에 대해서는 본원의 제 1 측면에 대하여 기재된 내용이 모두 적용되며 중복 기재를 생략한다.As for the organic-inorganic composite porous separator according to the second aspect of the present application, all the contents described for the first aspect of the present application are applied, and duplicate descriptions are omitted.
본원의 일 구현예에 있어서, 상기 유기-무기 복합 다공성 분리막은 전기화학소자용인 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the organic-inorganic composite porous separator may be for an electrochemical device, but may not be limited thereto.
본원의 제 3 측면은, 상기 본원의 제 2 측면에 따른 유기-무기 복합 다공성 분리막, 양극, 음극, 및 전해질을 포함하는, 전기화학소자를 제공한다. 본 측면에 따른 유기-무기 복합 다공성 분리막에 대해서는 본원의 제 1 측면에 대하여 기재된 내용이 모두 적용될 수 있다.A third aspect of the present application provides an electrochemical device including an organic-inorganic composite porous separator, a positive electrode, a negative electrode, and an electrolyte according to the second aspect of the present application. For the organic-inorganic composite porous separator according to this aspect, all of the contents described with respect to the first aspect of the present application may be applied.
본원의 일 구현예에 있어서, 상기 전기화학소자는 리튬이차전지를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, the electrochemical device may be to include a lithium secondary battery, but may not be limited thereto.
상기 전기화학소자는 전기화학 반응을 하는 모든 소자를 포함하며, 구체적으로는 모든 종류의 1차 전지, 2차 전지, 연료 전지, 태양 전지, 또는 캐퍼시터 등이 있다. 특히, 상기 전기화학소자는 2차 전지 중 리튬이차전지일 수 있으며, 이의 구체적인 예로는, 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지, 또는 리튬 이온 폴리머 이차 전지 등이 있으나, 이에 제한되지 않는다.The electrochemical device includes all devices that undergo an electrochemical reaction, and specifically, all kinds of primary cells, secondary cells, fuel cells, solar cells, or capacitors. In particular, the electrochemical device may be a lithium secondary battery of a secondary battery, specific examples thereof include a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery, but is not limited thereto. It doesn't work.
상기 전기화학소자는 당업계에 알려진 통상적인 방법에 따라 제조될 수 있으며, 이의 일 실시예를 들면, 상기 전기화학소자는 양 전극과 전술한 분리막을 개재하여 조립한 후 전해질을 주입하여 제조된다.The electrochemical device may be manufactured according to a conventional method known in the art, for example, the electrochemical device is manufactured by injecting an electrolyte after assembling through the positive electrode and the separator described above.
상기 전극으로는 크게 제한이 없으나, 양극 활물질은 종래 전기화학소자의 양극에 사용될 수 있는 통상적인 양극 활물질이 사용 가능하며, 특히 리튬 망간 산화물, 리튬 코발트 산화물, 리튬 니켈 산화물, 또는 이들의 조합들에 의해서 형성되는 복합 산화물 등과 같이 리튬 흡착 물질 등이 사용될 수 있다. The electrode is not particularly limited, but the positive electrode active material may be a conventional positive electrode active material that may be used for the positive electrode of a conventional electrochemical device, and in particular, lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, or combinations thereof. Lithium adsorption material and the like can be used, such as a composite oxide formed by.
또한, 음극 활물질은 종래 전기화학소자의 음극에 사용될 수 있는 통상적이 음극 활물질이 사용 가능하며, 특히 리튬 금속, 또는 리튬 합금과 카본, 석유 코크, 활성화 카본, 그라파이트, 또는 기타 카본류 등과 같은 리튬 흡착 물질 등이 사용될 수 있다. 전술한 양 전극 활물질을 각각 양극 전류 집전체, 즉 알루미늄, 니켈 또는 이들의 조합들에 의해서 제조되는 호일(foil) 및 음극 전류 집전체, 즉 구리, 금, 니켈, 구리 합금, 및 이들의 조합들에 의해서 제조되는 호일에 결착시킨 형태로 양 전극을 구성한다.In addition, the negative electrode active material may be a conventional negative electrode active material that can be used for the negative electrode of the conventional electrochemical device, in particular lithium adsorption, such as lithium metal or lithium alloy and carbon, petroleum coke, activated carbon, graphite, or other carbons Materials and the like can be used. The above-mentioned positive electrode active material may be made of a positive electrode current collector, i.e., a foil and a negative electrode current collector, i.e., copper, gold, nickel, a copper alloy, and combinations thereof, respectively, produced by aluminum, nickel or combinations thereof. The positive electrode is constituted in a form bound to the foil produced by the method.
본원에서 사용될 수 있는 상기 전해질은 A+B-와 같은 구조의 염으로서, A+는 Li+, Na+, 및 K+와 같은 알칼리 금속 양이온이나 이들의 조합들로 이루어진 양이온을 포함하고, B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, 및 C(CF2SO2)3 -와 같은 음이온이나 이들의 조합들로 이루어진 이온을 포함하는 염이 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 디에틸카보네이트(diethyl carbonate, DEC), 디메틸카보네이트(dimethyl carbonate, DMC), 디프로필카보네이트(dipropyl carbonate, DPC), 디메틸설폭사이드(dimethylsulfoxide), 아세토니트릴(acetonitrile), 디메톡시에탄(dimethoxyethane), 디에톡시에탄(diethoxyethane), 테트라하이드로퓨란(tetrahydrofuran), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP), 에틸메틸카보네이트(ethylmethyl carbonate, EMC), 감마-부티로락톤(gamma-butyrolactone, GBL) 또는 이들의 조합들로 이루어진 유기 용매에 용해 또는 해리된 것일 수 있으나, 이에 제한되지 않을 수 있다.The electrolyte that may be used herein, A + B - A salt of the structure, such as, A + comprises an alkaline metal cation or a cation consisting of a combination thereof, such as Li +, Na +, and K +, B - is PF 6 -, BF 4 -, Cl -, Br -, I-, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, and C Salts containing ions consisting of anions such as (CF 2 SO 2 ) 3 - or combinations thereof include propylene carbonate (PC), ethylene carbonate (EC) and diethyl carbonate (DEC). ), Dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethylsulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydro Tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethylcarbonei (Ethylmethyl carbonate, EMC), gamma-butyrolactone (gamma-butyrolactone, GBL) or in an organic solvent consisting of a combination thereof, but may be dissolved or dissociated, may not be limited thereto.
상기 전해질 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 수행될 수 있다. 즉, 전지 조립 전 또는 전지 조립 최종 단계 등에서 수행될 수 있다.The electrolyte injection may be performed at an appropriate step in the battery manufacturing process, depending on the manufacturing process and the required physical properties of the final product. That is, the battery assembly may be performed before the battery assembly or at the final stage of battery assembly.
이하, 본원에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are only provided to help understanding of the present application, and the contents of the present application are not limited to the following Examples.
[[ 실시예Example 1: 유기-무기 복합 다공성 분리막의 제조] 1: Preparation of Organic-Inorganic Composite Porous Membrane]
폴리에틸렌(PE) 고분자를 용융, 결정성 고분자 물질을 용융 압출하여 플로우(flow) 성형 분리막을 제조한 다음, 결정화 열처리를 통해 저온 연신에 의해 두께가 18 ㎛ 정도 되는 다공성 고분자 기재를 제조하였다. 그런 다음, 상기 다공성 고분자 기재를 수 분 정도 플라즈마 처리 한 뒤, 소량의 Si 기를 함유 하고 있는 무기물 전구체인 0.5 중량%의 3-아미노프로필트리에톡시실란 (3-aminopropyltriethoxysilane)을 1차 코팅하고, 증류수로 세척하고, 질소 건조한 후 2차로 폴리디메틸실록산(polydimethylsiloxane) 무기물 전구체로 코팅 후 80℃의 핫 플레이트(hot plate) 위에서 몇 시간 놓아 두었다. 그런 다음 이소프로필알콜(isopropyl alcohol)로 세척하고, 질소 건조한 후, 자외선/오존(Ultra Violet/Ozone) 장치를 이용하여 오존 처리하여 다공성 기재 표면에서 일어나는 화학반응 매커니즘으로부터 발생하는 화합물의 분해 과정을 거쳐 무기물 산화물 SiO2 를 박막으로서 다공성 고분자 기재의 외부 표면 및 내부 기공 표면에 코팅하였다. 상기 SiO2 박막의 두께는 약 20 nm가 되게 조절하였다. 그 후 알킬계열 화합물인 트리메틸알루미늄 [TMA; Al(CH3)3, 알드리치)을 Al2O3 의 전구체로 사용하여 150℃의 온도에서 원자층 증착법(ALD)을 이용하여 상기 TMA의 분해 과정을 거쳐, 상기 SiO2 박막이 형성된 폴리에틸렌 분리막에 10 nm 두께의 Al2O3 박막을 증착시켰다. 그 결과, SiO2 및 Al2O3가 다공성 고분자 기재의 외부 표면 및 내부 기공 표면에 각각 20 nm 및 10 nm 의 두께로서 코팅된 분리막이 수득되었다. 본 실시예에 따른 분리막의 제조 방법의 개략적인 공정도를 도 1에 나타내었으며, 이에 따라 제조된 분리막의 모식도를 도 2에 나타내었다.Melt extrusion of the polyethylene (PE) polymer, melt extrusion of the crystalline polymer material to prepare a flow-forming separator, and then prepared a porous polymer substrate having a thickness of about 18 ㎛ by low-temperature stretching through crystallization heat treatment. After the plasma treatment of the porous polymer substrate for several minutes, 0.5 wt% of 3-aminopropyltriethoxysilane, an inorganic precursor containing a small amount of Si groups, was first coated and distilled water After washing with nitrogen, dried with nitrogen and then coated with polydimethylsiloxane inorganic precursor for 2 hours and placed on a hot plate at 80 ° C for several hours. Then, it is washed with isopropyl alcohol, dried with nitrogen, and then decomposed with a compound generated from a chemical reaction mechanism occurring on the surface of the porous substrate by ozone treatment using an ultraviolet / ozone device. Inorganic Oxide SiO2 Was coated on the outer and inner pore surfaces of the porous polymeric substrate as thin films. The SiO2 The thickness of the thin film was adjusted to be about 20 nm. Then trimethylaluminum, an alkyl-based compound [TMA; Al (CH3)3, Aldrich Al2O3 Decomposition of the TMA using atomic layer deposition (ALD) at a temperature of 150 ℃ using a precursor of, the SiO2 10 nm thick Al in the polyethylene separator with thin film2O3 A thin film was deposited. As a result, SiO2 And Al2O3A separator coated with a thickness of 20 nm and 10 nm, respectively, on the outer surface and the inner pore surface of the porous porous polymer substrate was obtained. A schematic process diagram of the method of manufacturing a separator according to the present embodiment is shown in FIG. 1, and a schematic diagram of the separator thus prepared is shown in FIG. 2.
[[ 실시예Example 2: 리튬 이차 전지의 제조] 2: Fabrication of Lithium Secondary Battery]
양극 활물질로서 리튬 코발트 복합산화물 92 중량%, 도전재로서 카본 블랙(carbon black) 4 중량%, 결합제로서 폴리비닐리덴플로라이드(PVdF) 4 중량%를 용제인 N-메틸-2 피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 활물질 슬러리는 두께가 20 ㎛인 양극 접전체의 알루미늄(Al) 박막에 도포, 건조하여 양극을 제조한 후, 롤 프레스(roll-press)를 실시하였다.N-methyl-2 pyrrolidone (NMP), which is 92% by weight of lithium cobalt composite oxide as a positive electrode active material, 4% by weight of carbon black as a conductive material, and 4% by weight of polyvinylidene fluoride (PVdF) as a binder ) To prepare a positive electrode mixture slurry. The positive electrode active material slurry was applied to an aluminum (Al) thin film of a positive electrode contactor having a thickness of 20 μm and dried to prepare a positive electrode, and then roll-pressed.
음극 활물질로서 탄소 분말, 결합제로서 PVdF, 및 도전제로서 카본 블랙(carbon black)을 각각 96 중량%, 3 중량%, 및 1 중량%로 하여 용제인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 활물질 슬러리를 두께가 10 ㎛인 음극 집전체인 구리(Cu) 박막에 도포, 건조하여 음극을 제조한 후, 롤 프레스(roll-press)를 실시하였다.A negative electrode mixture slurry was prepared by adding carbon powder as a negative electrode active material, PVdF as a binder, and carbon black as a conductive agent at 96 wt%, 3 wt%, and 1 wt%, respectively, to NMP as a solvent. The negative electrode active material slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 μm, and dried to prepare a negative electrode, and then roll-pressed.
상기 제조된 양극, 음극, 및 실시예 1에 따른 분리막을 스태킹(stacking) 방식을 이용하여 조립하였고, 조립된 전지에 전해액 [에틸렌카보네이트(EC)/에틸메틸카보네이트(EMC)/디에틸렌카보네이트(DEC)=1/1/1(부피비), 리튬헥사프로로포스페이트(LiPF6) 1몰]을 주입하여 리튬 이차전지를 제조하였다.The prepared positive electrode, the negative electrode, and the separator according to Example 1 were assembled using a stacking method, and the assembled battery was an electrolyte solution [ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / diethylene carbonate (DEC). ) = 1/1/1 (volume ratio), and 1 mol of lithium hexaproprophosphate (LiPF6)] were injected to prepare a lithium secondary battery.
[[ 비교예Comparative example 1] One]
무기 산화물 박막(SiO2) 및 금속산화물 박막(Al2O3)이 코팅되지 않은 PE 다공성 기재만으로 이루어진 분리막을 사용한 것을 제외하고는 실시예 2와 동일하게 전지를 제조하였다.A battery was manufactured in the same manner as in Example 2, except that an inorganic oxide thin film (SiO 2 ) and a metal oxide thin film (Al 2 O 3 ) were used.
[[ 비교예Comparative example 2] 2]
Al2O3 금속산화물 박막은 코팅되지 않고 SiO2 박막만 코팅된 PE 다공성 기재로 이루어진 분리막을 사용한 것을 제외하고는 실시예 2와 동일하게 전지를 제조하였다.A battery was manufactured in the same manner as in Example 2, except that the Al 2 O 3 metal oxide thin film was not coated and a separator made of a PE porous substrate coated with only a SiO 2 thin film was used.
[실험예 1: 분리막 표면의 분석]Experimental Example 1 Analysis of the Membrane Surface
순수한 다공성 고분자 분리막(PE, 도 3a), 상기 고분자 기재에 용액 공정에 의한 SiO2 박막이 형성된 분리막[PE/SiO2(20nm), 도 3b], 및 실시예 1에 따라 제조된 분리막[PE/SiO2(20nm)/Al2O3(10nm), 도 3c]의 표면을 주사전자현미경(Field Emission Scanning Electron Microscope; HITACHI Model, S-2700, Japan)을 이용하여 관찰하였다. 도 3c에 나타난 바와 같이, SiO2(20nm, 용액 공정) 박막 및 Al2O3(10nm, ALD) 박막의 형성 후에도 분리막의 기공이 잘 유지되어 있는 것을 확인할 수 있다.Pure porous polymer membrane (PE, Figure 3a), SiO 2 by the solution process on the polymer substrate Scan the surface of the separator [PE / SiO 2 (20nm), FIG. 3b] formed with a thin film, and the separator [PE / SiO 2 (20nm) / Al 2 O 3 (10nm), FIG. 3c] prepared according to Example 1 Observations were made using an electron microscope (Field Emission Scanning Electron Microscope; HITACHI Model, S-2700, Japan). As shown in FIG. 3c, it can be seen that the pores of the separator are well maintained even after formation of the SiO 2 (20 nm, solution process) thin film and the Al 2 O 3 (10 nm, ALD) thin film.
[[ 실험예Experimental Example 2: 분리막의 열  2: column of separator 수축율Shrinkage 평가] evaluation]
실시예 1, 비교예 1, 및 비교예 2에 사용된 분리막의 열 수축율을 평가를 위하여 160℃에서 30 분 동안 보관 후의 결과를 하기 표 1에 나타내었다. 상기 열 수축율 분석은 진공 건조 오븐(MEMMERT, Germany)을 이용하여 수행되었다.To evaluate the heat shrinkage rate of the separator used in Example 1, Comparative Example 1, and Comparative Example 2, the results after storage for 30 minutes at 160 ℃ is shown in Table 1 below. The thermal shrinkage analysis was performed using a vacuum drying oven (MEMMERT, Germany).
[표 1]TABLE 1
Figure PCTKR2014000441-appb-I000001
Figure PCTKR2014000441-appb-I000001
PE 다공성 기재에 용액 공정을 이용하여 SiO2 무기 산화물 박막을 형성시킨 분리막 단독으로도 효과가 있으나, PE 다공성 기재에 SiO2 무기 산화물 박막(용액 공정 이용) 및 Al2O3 금속 산화물 박막(ALD 이용)을 둘 다 형성시킨 경우 열 수축율이 더욱 낮은 것을 확인할 수 있다.Separation membrane which forms SiO 2 inorganic oxide thin film by using solution process on PE porous substrate is also effective, but SiO 2 inorganic oxide thin film (using solution process) and Al 2 O 3 metal oxide thin film (using ALD) on PE porous substrate When both are formed, it can be seen that the heat shrinkage rate is lower.
[실험예 3: 분리막의 기계적 물성 평가]Experimental Example 3: Evaluation of Mechanical Properties of Membrane
실시예 1, 비교예 1, 및 비교예 2에 사용된 분리막의 인장강도 (tensile strength)를 평가하여 하기 표 2에 나타내었다. 상기 인장강도는 인장강도계(UTM universal tester, ZWICK ROELL BZ005/TH2S UTM)를 이용하여 측정되었다.Tensile strength of the separator used in Example 1, Comparative Example 1, and Comparative Example 2 was evaluated and shown in Table 2 below. The tensile strength was measured using a tensile strength tester (UTM universal tester, ZWICK ROELL BZ005 / TH2S UTM).
[표 2]TABLE 2
Figure PCTKR2014000441-appb-I000002
Figure PCTKR2014000441-appb-I000002
PE 다공성 기재에 용액 공정을 이용하여 SiO2 무기 산화물 박막을 형성시킨 분리막 단독으로도 효과가 있으나, PE 다공성 기재에 SiO2 무기 산화물 박막(용액 공정 이용) 및 Al2O3 금속 산화물 박막(ALD 이용)을 둘 다 형성시킨 경우 기계적 물성이 더욱 우수한 것을 확인할 수 있다. Separation membrane which forms SiO 2 inorganic oxide thin film by using solution process on PE porous substrate is also effective, but SiO 2 inorganic oxide thin film (using solution process) and Al 2 O 3 metal oxide thin film (using ALD) on PE porous substrate When both are formed, it can be seen that mechanical properties are more excellent.
[실험예 4: 전지 성능 평가]Experimental Example 4: Battery Performance Evaluation
실시예 2, 비교예 1, 및 비교예 2의 전지들을 3 C 충전 후 0.2 C 방전 용량을 용량 측정 기기 (WONATECH, Korea)를 이용하여 측정하였으며, 그 결과를 하기 표 3에 나타내었다. The batteries of Example 2, Comparative Example 1, and Comparative Example 2 were measured using a capacity measuring device (WONATECH, Korea) after the 3 C charge 0.2 C discharge capacity, the results are shown in Table 3 below.
[표 3]TABLE 3
Figure PCTKR2014000441-appb-I000003
Figure PCTKR2014000441-appb-I000003
표 3을 참조하면, 본원에 따른 실시예 2의 전지는 비교예 1 및 비교예 2의 전지 보다 방전 용량이 증대되었음을 확인할 수 있다.Referring to Table 3, it can be confirmed that the battery of Example 2 according to the present application has an increased discharge capacity than the batteries of Comparative Example 1 and Comparative Example 2.
PE 다공성 분리막(비교예 1) 또는 PE 다공성 기재에 용액 공정을 이용하여 형성된 SiO2 무기 산화물 박막을 포함하는 분리막(비교예 2)을 사용한 전지도 효과가 있으나, 본원의 실시예 2와 같이 PE 다공성 기재에 SiO2 무기 산화물 박막(용액 공정) 및 Al2O3 금속 산화물 박막(ALD)을 둘 다 형성시킨 분리막을 이용하는 전지의 경우, 전지 성능이 더욱 우수한 것을 확인할 수 있다.Although a cell using a PE porous separator (Comparative Example 1) or a separator (Comparative Example 2) including an SiO 2 inorganic oxide thin film formed by using a solution process on a PE porous substrate is effective, PE porous as in Example 2 of the present application is effective. In the case of a battery using a separator in which both an SiO 2 inorganic oxide thin film (solution step) and an Al 2 O 3 metal oxide thin film (ALD) were formed on a substrate, it was confirmed that the battery performance was more excellent.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.The above description of the present application is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the following claims rather than the above description, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present application. .

Claims (19)

  1. 용액 공정을 이용하여 다공성 고분자 기재에 무기물 전구체를 코팅하고; Coating the inorganic precursor onto the porous polymeric substrate using a solution process;
    에너지 조사(irradiation)에 의하여 상기 코팅된 무기물 전구체를 무기 산화물로 전환시켜, 무기 산화물 박막이 형성된 다공성 고분자 기재를 형성하고; 및,Converting the coated inorganic precursor into an inorganic oxide by energy irradiation to form a porous polymer substrate having an inorganic oxide thin film formed thereon; And,
    상기 다공성 고분자 기재에 형성된 무기 산화물 박막에 원자층 증착법 (atomic layer deposition: ALD)을 이용하여 금속산화물 박막을 형성하는 것Forming a metal oxide thin film on an inorganic oxide thin film formed on the porous polymer substrate by using atomic layer deposition (ALD)
    을 포함하는, Including,
    유기-무기 복합 다공성 분리막의 제조 방법.Method for producing an organic-inorganic composite porous separator.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 무기물 전구체를 코팅하는 단계 전에, 상기 다공성 고분자 기재를 플라즈마 처리하는 단계를 추가 포함하는, 유기-무기 복합 다공성 분리막의 제조 방법.Before coating the inorganic precursor, further comprising the step of plasma treating the porous polymer substrate, a method for producing an organic-inorganic composite porous separator.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 에너지 조사는 열, 플라즈마, 자외선, 또는 레이저를 조사하는 것을 포함하는 것인, 유기-무기 복합 다공성 분리막의 제조 방법.The energy irradiation comprises irradiating heat, plasma, ultraviolet light, or laser, the organic-inorganic composite porous separator manufacturing method.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 무기물 전구체는 상기 다공성 고분자 기재의 외부 표면 및 내부 기공의 표면에 코팅되는 것인, 유기-무기 복합 다공성 분리막의 제조 방법.The inorganic precursor is coated on the outer surface and the surface of the inner pores of the porous polymer substrate, a method for producing an organic-inorganic composite porous separator.
  5. 제 1 항에 있어서, The method of claim 1,
    상기 다공성 고분자 기재는 5% 내지 95%의 기공도를 갖는 것인, 유기-무기 복합 다공성 분리막의 제조 방법.The porous polymer substrate has a porosity of 5% to 95%, a method for producing an organic-inorganic composite porous separator.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 용액 공정을 이용하여 다공성 고분자 기재에 무기물 전구체를 코팅하는 단계는, 용액 공정을 통해 제 1 무기물 전구체를 상기 다공성 고분자 기재에 코팅한 후 열처리하고 제 2 무기물 전구체를 추가 코팅하는 것을 포함하는 것인, 유기-무기 복합 다공성 분리막의 제조 방법.The coating of the inorganic precursor on the porous polymer substrate using the solution process includes coating the first inorganic precursor on the porous polymer substrate through a solution process, followed by heat treatment and further coating the second inorganic precursor. , Organic-inorganic composite porous membrane production method.
  7. 제 1 항에 있어서, The method of claim 1,
    상기 다공성 고분자 기재는, 폴리에틸렌, 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 고분자량 폴리에틸렌, 폴리프로필렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 유기-무기 복합 다공성 분리막의 제조 방법.The porous polymer substrate, polyethylene, high density polyethylene, low density polyethylene, linear low density polyethylene, high molecular weight polyethylene, polypropylene terephthalate, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polycarbonate, poly Mead, polyether ether ketone, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyethylene naphthalene, and a combination thereof, the method of producing an organic-inorganic composite porous membrane .
  8. 제 1 항에 있어서, The method of claim 1,
    상기 무기 산화물은, 유전율 상수가 5 이상인 무기 산화물, 리튬 이온 전달 능력을 갖는 무기 산화물, 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것인, 유기-무기 복합 다공성 분리막의 제조 방법.The inorganic oxide is an inorganic oxide having a dielectric constant of 5 or more, an inorganic oxide having a lithium ion transfer capacity, and a combination thereof, and a combination thereof, a method for producing an organic-inorganic composite porous separator.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 유전율 상수가 5 이상인 무기 산화물은 SiO2, BaTiO3, Pb(Zr,Ti)O3 (PZT), 하프니아(HfO2), SrTiO3, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2, SiC, 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것인, 유기-무기 복합 다공성 분리막의 제조 방법.The inorganic oxide having a dielectric constant of 5 or more is SiO 2 , BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), hafnia (HfO 2 ), SrTiO 3 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , SiC, and combinations thereof comprising one selected from the group consisting of, an organic-inorganic composite porous separator.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 무기 산화물 박막의 두께는 5 ㎛ 미만인 것인, 유기-무기 복합 다공성 분리막의 제조 방법.The thickness of the inorganic oxide thin film is less than 5 ㎛, a method for producing an organic-inorganic composite porous separator.
  11. 제 1 항에 있어서, The method of claim 1,
    상기 다공성 고분자 기재의 두께는 1 ㎛ 내지 100 ㎛인 것인, 유기-무기 복합 다공성 분리막의 제조 방법.The thickness of the porous polymer substrate is 1 ㎛ to 100 ㎛, a method for producing an organic-inorganic composite porous separator.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 다공성 고분자 기재의 기공 크기는 0.01 ㎛ 내지 10 ㎛ 인 것인, 유기-무기 복합 다공성 분리막의 제조 방법.The pore size of the porous polymer substrate is 0.01 ㎛ to 10 ㎛, a method for producing an organic-inorganic composite porous separator.
  13. 제 1 항에 있어서,The method of claim 1,
    상기 금속산화물은, Al2O3, ZrO2, TiO2, SnO2, CeO2, ZnO, MgO, CaO, SrO, BaO, Na2O, B2O3, Mn2O3, Y2O3, WO3, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 유기-무기 복합 다공성 분리막의 제조 방법.The metal oxide is Al 2 O 3 , ZrO 2 , TiO 2 , SnO 2 , CeO 2 , ZnO, MgO, CaO, SrO, BaO, Na 2 O, B 2 O 3 , Mn 2 O 3 , Y 2 O 3 , WO 3 , and combinations thereof, wherein the organic-inorganic composite porous separator is prepared.
  14. 제 1 항에 있어서,The method of claim 1,
    상기 원자층 증착법이 60℃ 내지 200℃의 온도 범위에서 수행되는 것인, 유기-무기 복합 다공성 분리막의 제조 방법.The atomic layer deposition method is carried out at a temperature range of 60 ℃ to 200 ℃, the organic-inorganic composite porous separator manufacturing method.
  15. 제 1 항에 있어서,The method of claim 1,
    상기 금속산화물 박막의 두께가 100 nm 이하인, 유기-무기 복합 다공성 분리막의 제조 방법.The thickness of the metal oxide thin film is 100 nm or less, a method for producing an organic-inorganic composite porous separator.
  16. 제 1 항 내지 제 15 항 중 어느 한 항에 따른 방법에 의해 제조되어,Made by the method according to any one of claims 1 to 15,
    다공성 고분자 기재의 외부 표면 및 내부 기공의 표면에 형성된 무기 산화물 박막; 및, An inorganic oxide thin film formed on the outer surface of the porous polymer substrate and the surface of the inner pores; And,
    상기 무기 산화물 박막에 형성된 금속산화물 박막Metal oxide thin film formed on the inorganic oxide thin film
    을 포함하는, 유기-무기 복합 다공성 분리막.Including, an organic-inorganic composite porous separator.
  17. 제 16 항에 있어서,The method of claim 16,
    상기 유기-무기 복합 다공성 분리막은 전기화학소자용인, 유기-무기 복합 다공성 분리막.The organic-inorganic composite porous separator is for an electrochemical device, organic-inorganic composite porous separator.
  18. 제 16 항에 따른 유기-무기 복합 다공성 분리막, 양극, 음극, 및 전해질을 포함하는, 전기화학소자.An organic-inorganic composite porous separator according to claim 16, comprising an anode, a cathode, and an electrolyte, an electrochemical device.
  19. 제 18 항에 있어서, The method of claim 18,
    상기 전기화학소자는 리튬이차전지를 포함하는 것인, 전기화학소자.The electrochemical device is to include a lithium secondary battery, electrochemical device.
PCT/KR2014/000441 2014-01-13 2014-01-15 Organic-inorganic composite porous separation membrane, production method for same, and electrochemical device comprising same WO2015105223A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0004246 2014-01-13
KR1020140004246A KR20150084337A (en) 2014-01-13 2014-01-13 Organic-inorganic composite porous separator, producing method of the same, and electrochemical device containing the same

Publications (1)

Publication Number Publication Date
WO2015105223A1 true WO2015105223A1 (en) 2015-07-16

Family

ID=53524041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000441 WO2015105223A1 (en) 2014-01-13 2014-01-15 Organic-inorganic composite porous separation membrane, production method for same, and electrochemical device comprising same

Country Status (2)

Country Link
KR (1) KR20150084337A (en)
WO (1) WO2015105223A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4401190A1 (en) * 2023-01-10 2024-07-17 BenQ Materials Corporation High thermal-stability separator and method for manufacturing thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102405070B1 (en) * 2015-10-23 2022-06-07 에스케이이노베이션 주식회사 Separator for secondary battery having hydorphobic surface and method for preparing the same
KR102631719B1 (en) * 2017-09-26 2024-01-31 주식회사 엘지에너지솔루션 Positive Electrode Active Material for High Voltage Comprising Lithium Manganese-Based Oxide and Preparation Method Thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090076277A (en) * 2008-01-08 2009-07-13 주식회사 엘지화학 Cathode for battery, method for manufacturing thereof, and lithium secondary battery comprising the same
KR20110116489A (en) * 2010-04-19 2011-10-26 한국과학기술연구원 Metal oxide ultrafine fiber-based composite separator with heat resistance and secondary battery using same
JP2012181921A (en) * 2011-02-07 2012-09-20 Sony Corp Separator for battery, method for manufacturing separator for battery, battery, battery pack, and electronic device
KR20130091710A (en) * 2013-07-29 2013-08-19 성균관대학교산학협력단 Organic-inorganic composite porous separator, producing method of the same, and electrochemical device containing the same
KR20130134630A (en) * 2012-05-31 2013-12-10 삼성토탈 주식회사 Microporous organic-inorganic multilayer separator and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090076277A (en) * 2008-01-08 2009-07-13 주식회사 엘지화학 Cathode for battery, method for manufacturing thereof, and lithium secondary battery comprising the same
KR20110116489A (en) * 2010-04-19 2011-10-26 한국과학기술연구원 Metal oxide ultrafine fiber-based composite separator with heat resistance and secondary battery using same
JP2012181921A (en) * 2011-02-07 2012-09-20 Sony Corp Separator for battery, method for manufacturing separator for battery, battery, battery pack, and electronic device
KR20130134630A (en) * 2012-05-31 2013-12-10 삼성토탈 주식회사 Microporous organic-inorganic multilayer separator and method for producing the same
KR20130091710A (en) * 2013-07-29 2013-08-19 성균관대학교산학협력단 Organic-inorganic composite porous separator, producing method of the same, and electrochemical device containing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4401190A1 (en) * 2023-01-10 2024-07-17 BenQ Materials Corporation High thermal-stability separator and method for manufacturing thereof

Also Published As

Publication number Publication date
KR20150084337A (en) 2015-07-22

Similar Documents

Publication Publication Date Title
WO2012050406A2 (en) Separator for electrochemical device and preparation method thereof
WO2013058421A1 (en) Method for manufacturing a separator, separator formed by same and electrochemical device having same
WO2017135792A1 (en) Positive electrode and lithium secondary battery comprising same
EP2779275B1 (en) Separator, and electrochemical device comprising same
WO2012046966A2 (en) Electrochemical device with improved cycle characteristics
WO2017010780A1 (en) Separator and electrochemical device comprising same
WO2014073937A1 (en) Method for manufacturing separator, separator manufactured thereby, and electrochemical device including same
WO2009110726A2 (en) Separator having porous coating layer and electrochemical device containing the same
WO2014084681A1 (en) Secondary battery separation membrane including double porous coating layers of inorganic particles having different surface properties, secondary battery including same, and method for manufacturing separation membrane
WO2011105866A2 (en) Manufacturing method for separator, separator made therefrom, and manufacturing method for electrochemical device containing same
WO2013154253A1 (en) Electrode including porous coating layer, method for manufacturing same, and electrochemical device including same
WO2013012292A2 (en) Separator, manufacturing method thereof, and electrochemical device employing same
WO2010076989A2 (en) Separator with a porous coating layer, and electrochemical device comprising same
WO2013157902A1 (en) Method for manufacturing separator, separator formed thereby, and electrochemical device comprising said separator
WO2012033321A2 (en) Separator, production method for same and electrochemical device equipped with same
WO2013165151A1 (en) Separator and an electro-chemical device having the same
WO2017213444A1 (en) Separator and electrochemical device comprising same
KR101499787B1 (en) Highly heat-resistant separator, manufacturing method of the same, and battery including the same
JP2018506161A (en) Cellulosic multilayer separation membrane
WO2016175605A1 (en) Separator for electrochemical element having improved electrolyte wettability and electrochemical element comprising same separator
WO2015105223A1 (en) Organic-inorganic composite porous separation membrane, production method for same, and electrochemical device comprising same
KR20150040103A (en) Separator for electrochemical device comprising core-shell fillers, electrochemical device comprising the same, and method for preparing the separator
WO2015105224A1 (en) Organic-inorganic composite porous separation membrane, production method for same, and electrochemical device comprising same
KR20120036061A (en) Preparation method of separator, separator formed therefrom, and electrochemical device having the same
WO2015023116A1 (en) High heat resistant separation membrane, manufacturing method therefor and battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14877597

Country of ref document: EP

Kind code of ref document: A1