WO2015105117A1 - Mobile terminal device - Google Patents

Mobile terminal device Download PDF

Info

Publication number
WO2015105117A1
WO2015105117A1 PCT/JP2015/050220 JP2015050220W WO2015105117A1 WO 2015105117 A1 WO2015105117 A1 WO 2015105117A1 JP 2015050220 W JP2015050220 W JP 2015050220W WO 2015105117 A1 WO2015105117 A1 WO 2015105117A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiation pattern
terminal device
band
control unit
Prior art date
Application number
PCT/JP2015/050220
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 直紀
浩 竹田
聖治 海道
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015105117A1 publication Critical patent/WO2015105117A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band

Definitions

  • the present invention relates to a mobile terminal device having a plurality of antennas.
  • Patent Document 1 A technique for changing the radiation pattern of an antenna in order to improve the communication quality of a mobile terminal device is known.
  • a portable terminal device described in Japanese Patent Application Laid-Open No. 2010-199859 includes a single or a plurality of antenna elements and a single or a plurality of ground conductors that are provided with the antenna elements and through which an image current flows With.
  • the radiation pattern is switched by an image current flowing through a single ground conductor portion or an image current flowing through a ground conductor portion selected from a plurality of ground conductor portions.
  • the harmonics of one transmission wave may become the interference wave of the other reception wave, or the intermodulation wave of multiple transmission waves may become the interference wave of one of the reception waves There can be.
  • An object of the present invention is to provide a mobile terminal device capable of suppressing quality degradation of a received signal that may occur due to a combination of bands when a plurality of communication methods / bands are used simultaneously.
  • a portable terminal device includes a plurality of antennas, an antenna switching device, and a control unit.
  • the antenna switching device can switch each of the plurality of antennas to the use state or the non-use state, and can switch the radiation pattern of each antenna in the use state.
  • the control unit performs communication using two or more frequency bands while using two or more antennas among a plurality of antennas, there is a possibility that an interference wave may be generated depending on a combination of frequency bands used for communication. Controls the antenna switching device so that the radiation pattern of the antenna in each use state is different from that in the case where there is no possibility of the occurrence of interference waves.
  • FIG. 1 is a block diagram schematically showing a configuration of a mobile terminal device 100 according to a first embodiment. It is a figure for demonstrating the jamming wave produced by SV-LTE. It is a figure for demonstrating the jamming wave which arises by a carrier aggregation. It is a figure which shows the structure of the radiation pattern switching part 41 typically. It is a figure for demonstrating the radiation pattern produced by the antenna ANT (when switch element SW2 is ON). It is a figure for demonstrating the radiation pattern produced by the antenna ANT (when switch element SW3 is ON). It is a figure which shows the equivalent circuit of the radiation pattern switching part 41 (when switch element SW2 is ON).
  • FIG. 2 is a diagram showing an example of radiation patterns of antennas ANT1 to ANT3 provided in the mobile terminal device of FIG. It is a figure for demonstrating the radiation pattern in the case of using antenna ANT1, ANT3 simultaneously in the antenna arrangement
  • FIG. It is a flowchart which shows the control procedure of the antenna radiation pattern by the control part 30 of FIG.
  • FIG. 5 is a block diagram schematically showing a configuration of a mobile terminal device 101 according to a second embodiment. It is a flowchart which shows the switching procedure of a use antenna and a radiation pattern by the control part 30 of FIG.
  • FIG. 10 is a block diagram schematically showing a configuration of a mobile terminal device 102 according to a third embodiment. It is a flowchart which shows the switching procedure of the antenna radiation pattern by the control part 30 of FIG.
  • FIG. 10 is a block diagram schematically showing a part of the configuration of a mobile terminal device according to a fourth embodiment.
  • FIG. 20 is a circuit diagram showing an example of variable matching circuits 71 to 73 of FIG. It is a figure which shows an example of the antenna matching table 34 memorize
  • FIG. 10 is a block diagram schematically showing a configuration of a mobile terminal device 104 according to a fifth embodiment. It is a flowchart which shows the antenna switching operation
  • FIG. 1 is a block diagram schematically showing a configuration of a mobile terminal device 100 according to the first embodiment.
  • a mobile terminal device 100 includes transceivers 11 and 21, power amplifiers (PAs) 12 and 22, duplexers 13 and 23, an antenna switching device 40, antennas ANT1 to ANT3, A control unit 30 and a memory 31 are included.
  • PAs power amplifiers
  • duplexers 13 and 23 duplexers 13 and 23
  • antenna switching device 40 antennas ANT1 to ANT3
  • a control unit 30 and a memory 31 are included.
  • the transceivers 11 and 21 up-convert the transmission baseband signal received from the control unit 30 into a radio frequency band signal.
  • the signals up-converted by the transceivers 11 and 21 are amplified by the power amplifiers 12 and 22, respectively, thereby generating transmission signals Tx (1) and Tx (2).
  • the transceivers 11 and 21 further generate received baseband signals by down-converting the received signals Rx (1) and Rx (2) received via the antennas ANT1 to ANT3, respectively.
  • the transceivers 11 and 21 may be collectively referred to as a signal generation unit 10.
  • the duplexers 13 and 23 are components used to share one antenna for the transmission signal Tx and the reception signal Rx.
  • Each of the duplexers 13 and 23 is provided with a filter that passes the transmission signal Tx and blocks the reception signal Rx, and a filter that passes the reception signal Rx and blocks the transmission signal Tx.
  • the antenna switching device 40 is a switch group that switches connections between the antenna-side nodes of the duplexers 13 and 23 and the feeding points of the antennas ANT1 to ANT3 in accordance with instructions from the control unit 30.
  • Each of the antennas ANT1 to ANT3 is put into use by being connected to one of the nodes on the antenna side of the duplexers 13 and 23.
  • the antennas ANT1 to ANT3 are collectively referred to as antennas ANT when they are generically referred to or unspecified.
  • the antenna switching device 40 further includes a radiation pattern switching unit 41.
  • the radiation pattern switching unit 41 includes a plurality of ground conductor portions. The direction in which the image current flows through the ground conductor changes by switching the connection between the feeding point of each antenna element and each ground conductor in accordance with a command from the control unit 30. As a result, the antenna radiation pattern is switched.
  • the control unit 30 includes a central processing unit (CPU) that controls the operation of the entire mobile terminal device 100 and a modem.
  • the modem generates a transmission baseband signal by modulating the digital signal into a signal format used when communicating with the base station.
  • the modem further demodulates the received baseband signal generated by the transceiver.
  • the CPU sets the frequency of the local oscillator of the transceivers 11 and 21 so that it can operate in the communication method / band used for communication. Furthermore, the CPU sets each antenna to a use state or a non-use state according to a communication method / band used for communication by controlling the antenna switching device 40 with a control signal. Furthermore, the CPU switches the radiation pattern of the antenna used for communication by controlling the radiation pattern switching unit 41.
  • the mobile terminal device 100 communicates with the base station in the set frequency band (band), and a channel to be used in the frequency band is designated by the base station. After the channel to be used is specified by the base station, the CPU controls the transceivers 11 and 21 to perform communication using the channel.
  • the memory 31 stores a program, transmission / reception data, application data, a radiation pattern switching table 32, and the like.
  • the radiation pattern switching table 32 is referred to by the CPU of the control unit 30 when switching the radiation pattern of the antenna. Details of the radiation pattern switching table 32 will be described with reference to FIGS. 11 and 12.
  • FIG. 2 is a diagram for explaining an interference wave generated by SV-LTE.
  • FIG. 2 illustrates an interference wave generated when the LTE (registered trademark) band 13 and the CDMA2000 (registered trademark) band class 0 subclass 1 are simultaneously used by SV-LTE.
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • CDMA Code Division Multiple Access
  • the frequency of transmission signal Tx included in subclass 1 of CDMA2000 (registered trademark) band class 0 is f1
  • the frequency of transmission signal Tx included in band 13 of LTE (registered trademark) is f2.
  • the frequency of the third-order intermodulation distortion signal is represented by 2 ⁇ f1-f2 and 2 ⁇ f2-f1.
  • This third-order intermodulation signal can be an interference wave having a frequency that matches the reception signal Rx (869-894 MHz) included in subclass 1 of band class 0 of CDMA2000 (registered trademark).
  • This third-order intermodulation signal can be an interference wave having a frequency that matches the reception signal Rx (746-756 MHz) of the band 13 of LTE (registered trademark).
  • FIG. 3 is a diagram for explaining an interference wave generated by carrier aggregation.
  • FIG. 3 illustrates an interference wave generated when LTE (registered trademark) band 4 and band 17 are simultaneously used by carrier aggregation.
  • the transmission signal Tx is also referred to as an uplink (UL) signal
  • the reception signal Rx is also referred to as a downlink (DL) signal.
  • carrier aggregation is a communication method defined by LTE-Advanced, and enables broadband communication exceeding 20 MHz by performing communication using a plurality of carriers simultaneously.
  • carrier aggregation and multi-antenna transmission a maximum downlink 1 Gbit / s and uplink 500 Mbit / s transmission rate are realized.
  • the third harmonic of the transmission wave of band 17 can be an interference wave of the reception wave of band 4.
  • the frequency of the second harmonic (2H) of the transmission signal Tx (704-716 MHz) included in the band 17 is 1408-1432 MHz
  • the frequency of the third harmonic (3H) is 211-12148 MHz. Since the frequency of the third harmonic wave overlaps with the frequency (2110-2155 MHz) of the reception signal Rx in band 4, it can be an interference wave.
  • the harmonic wave of the transmission wave of one band becomes an interference wave of the reception wave of the other band, or the intermodulation wave of the transmission wave of both bands is
  • the received wave may be an interference wave in one or both bands.
  • the mobile terminal device 100 when there is a possibility that an interference wave is generated when a plurality of antennas are used at the same time, by switching the radiation pattern of each antenna used for communication, Increase isolation. This suppresses the quality degradation of the received signal due to the interference wave.
  • FIG. 4 is a diagram schematically showing the configuration of the radiation pattern switching unit 41.
  • the radiation pattern switching unit 41 includes a ground conductor portion GND1 as a main ground, ground conductor portions GND2 and GND3 as sub-grounds provided around the ground conductor portion GND, and switch elements SW2 and SW3. And choke coils 61 and 62.
  • the antenna ANT is an example of an L-shaped monopole antenna connected to the power feeding unit 60, but is not limited to the form and shape of the antenna ANT.
  • the ground conductor portion GND2 is provided along the side 64 of the rectangular ground conductor portion GND1.
  • the ground conductor portion GND3 is provided along the side 65 adjacent to the side 64 of the ground conductor portion GND1.
  • the electrical length of the ground conductor portions GND2 and GND3 is set to one-fourth ( ⁇ / 4) of the wavelength corresponding to the frequency used by the antenna ANT or a value in the vicinity thereof.
  • ground conductor portion GND2 is connected to the power feeding portion 60 of the antenna ANT via the switch element SW2, and the other end of the ground conductor portion GND2 is connected to the antenna conductor portion GND1 via the choke coil 61.
  • one end of the ground conductor portion GND3 is connected to the power feeding portion 60 of the antenna ANT via the switch element SW3, and the other end of the ground conductor portion GND3 is connected to the antenna conductor portion GND1 via the choke coil 62.
  • the choke coils 61 and 62 are used as impedance elements that block high-frequency currents.
  • FIG. 5 is a diagram for explaining a radiation pattern generated by the antenna ANT (when the switch element SW2 is on).
  • image current Ii flows through ground conductor portion GND2 via switch element SW2.
  • the portion where the image current Ii flows is hatched.
  • the image current Ii flows in the Y direction in FIG.
  • the radiation patterns 66A and 66B are generated in a direction perpendicular to the image current Ii with the image current Ii as the center. Within the plane where the ground conductor portions GND1 to GND3 are provided, the radiation patterns 66A and 66B are generated in the X direction.
  • FIG. 6 is a diagram for explaining a radiation pattern generated by the antenna ANT (when the switch element SW3 is on).
  • image current Ii flows through ground conductor portion GND3 via switch element SW3.
  • the portion where the image current Ii flows is hatched.
  • the image current Ii flows in the X direction in FIG.
  • the radiation patterns 67A and 67B are generated in a direction orthogonal to the image current Ii with the image current Ii as the center. Within the plane where the ground conductor portions GND1 to GND3 are provided, the radiation patterns 67A and 67B are generated in the Y direction.
  • FIG. 7 is a diagram showing an equivalent circuit of the radiation pattern switching unit 41 (when the switch element SW2 is on).
  • a PIN diode is shown as an example of the switch elements SW2 and SW3.
  • the anode of a PIN diode (hereinafter referred to as PIN diode SW2) as the switch element SW2 is connected to the ground conductor portion GND2, and the cathode of the PIN diode SW2 is connected to the power feeding portion 60.
  • the anode of the PIN diode SW3 is connected to the power feeding part 60, and the cathode of the PIN diode SW3 is connected to the ground conductor part GND3.
  • the power supply unit 60 is further connected to a control terminal 63 that receives a control signal output from the control unit 30 of FIG.
  • a negative voltage with respect to the ground conductor portion GND1 is supplied from the control unit 30 to the control terminal 63 as a control signal
  • the PIN diode SW2 is turned on and the PIN diode SW3 is turned off.
  • the image current Ii flows through the ground conductor portion GND2 (in FIG. 7, the portion through which the image current Ii flows is hatched).
  • Radiation patterns 66A and 66B are generated in a direction perpendicular to the image current Ii.
  • FIG. 8 is a diagram showing an equivalent circuit of the radiation pattern switching unit 41 (when the switch element SW3 is on).
  • a positive voltage for ground conductor portion GND1 is supplied as a control signal from control portion 30 to control terminal 63
  • PIN diode SW3 is turned on and PIN diode SW2 is turned off.
  • the image current Ii flows through the ground conductor portion GND3 (in FIG. 8, a portion through which the image current Ii flows is hatched).
  • Radiation patterns 67A and 67B are generated in the direction perpendicular to the image current Ii.
  • either one of the ground conductors GND2 and GND3 can be selected by switching on and off the switch elements SW2 and SW3 by the control signal from the control unit 30.
  • the image current Ii flows through the selected ground conductor portion GND, and as a result, the radiation pattern of the antenna ANT is switched.
  • the radiation pattern switching unit 41 described with reference to FIGS. 4 to 8 is provided in each of the antennas ANT1, ANT2, and ANT3 in FIG.
  • the ground conductor portion GND1 as the main ground can be shared by each antenna.
  • FIG. 9 is a diagram showing an example of the radiation pattern of the antennas ANT1 to ANT3 provided in the mobile terminal device of FIG.
  • FIG. 9 shows the arrangement of the antennas ANT1 to ANT3 taking the case where the mobile terminal device is a smartphone as an example.
  • the longitudinal direction of the case 50 of the smartphone is the Y direction
  • the short direction is the X direction
  • the thickness direction is the Z direction.
  • a touch screen 51 is provided on the main surface of the casing 50
  • operation keys 52 are provided below the touch screen 51 on the main surface.
  • the touch screen 51 is formed by integrating a display and a touch panel.
  • the operation key 52 functions as a home key for displaying a home screen, for example.
  • Antennas ANT1 to ANT3 are provided inside the housing 50.
  • the antenna ANT1 is provided in the vicinity of one end in the longitudinal direction (Y direction) of the housing 50 (that is, in the vicinity of the operation key 52).
  • the antenna ANT3 is provided close to the other end in the longitudinal direction (Y direction) of the housing 50 (that is, on the opposite side of the operation key 52).
  • the antenna ANT2 is provided close to one end of the casing 50 in the short direction (X direction).
  • FIG. 9 shows an example of a radiation pattern when each of the antennas ANT1 to ANT3 is used alone.
  • the radiation pattern 53A in the longitudinal direction (Y direction) of the housing 50 is controlled by controlling the radiation pattern switching unit 41 in FIG. 1 so that the image current flows in the short direction (X direction) of the housing 50. 53B is generated. Since the radiation pattern is generated perpendicular to the direction of the image current, the radiation pattern of the antenna ANT1 is also generated in the thickness direction (Z direction) of the housing 50. However, the radiation pattern in the short direction (X direction) of the casing 50 is not generated.
  • the radiation pattern switching unit 41 by controlling the radiation pattern switching unit 41 so that an image current flows in the longitudinal direction (Y direction) of the housing 50, the radiation pattern 54A in the short direction (X direction) of the housing 50 is obtained. 54B is generated (a radiation pattern is not generated in the longitudinal direction (Y direction) of the casing 50).
  • radiation patterns 55A and 55B in the longitudinal direction (Y direction) of the housing 50 are generated by controlling the radiation pattern switching unit 41 so that the image current flows in the short direction (X direction) of the housing 50. (A radiation pattern is not generated in the short direction (X direction) of the housing 50).
  • FIG. 10 is a diagram for explaining a radiation pattern when antennas ANT1 and ANT3 are simultaneously used in the antenna arrangement of FIG.
  • antennas ANT1 and ANT3 are used at the same time, when using a combination of bands in which interference waves are generated in one reception band, the isolation between antennas ANT1 and ANT3 is as large as possible. It is desirable to do. For this reason, the radiation pattern of the antennas ANT1 and ANT3 is changed from the case of FIG.
  • the radiation pattern 56A in the short direction (X direction) of the casing 50 is controlled by controlling the radiation pattern switching unit 41 so that the image current flows in the longitudinal direction (Y direction) of the casing 50.
  • 56B are generated.
  • the radiation patterns 57A and 57B in the short direction (X direction) of the casing 50 are controlled by controlling the radiation pattern switching unit 41 so that the image current flows in the longitudinal direction (Y direction) of the casing 50. Is generated.
  • the isolation between the antennas ANT1 and ANT3 should be increased Can do.
  • FIG. 11 is a flowchart showing the control procedure of the antenna radiation pattern by the control unit 30 of FIG. Referring to FIGS. 1 and 11, when control unit 30 receives a processing request for starting communication from the user (YES in step S100), control unit 30 selects an antenna according to the communication method and band to be used (step S100). S110). In the case of the first embodiment, the antenna selection is uniquely determined according to the communication method and band to be used.
  • the antenna ANT3 is selected when using LTE (registered trademark) band 4 (frequency band 1700/2100 MHz), and the antenna ANT1 is selected when using band 17 (frequency band 700).
  • LTE registered trademark
  • band 17 frequency band 700
  • the characteristics (for example, resonance frequency) of the antenna ANT3 and the antenna ANT1 are designed to be suitable for use in the band 4 and the band 17, respectively.
  • control unit 30 refers to the radiation pattern switching table 32 in FIG. 1 and selects the radiation pattern of the antenna selected in step S110 (steps S135 and S140). In this case, depending on whether or not a plurality of communication schemes or bands are used simultaneously (step S120), further, depending on whether or not an interference wave may occur in the reception band (step S125), The radiation pattern to be selected is different.
  • FIG. 12 is a diagram showing an example of a radiation pattern switching table.
  • LTE registered trademark
  • band 4 alone
  • the longitudinal direction (Y direction) of housing 50 is shown.
  • Radiation patterns 55A and 55B are selected.
  • the LTE (registered trademark) band 17 is used alone (setting 2)
  • the radiation pattern 53A, 53B in the longitudinal direction (Y direction) of the housing 50 is selected as the radiation pattern of the antenna ANT1, as shown in FIG. Is done.
  • the control unit 30 selects the radiation patterns 57A and 57B in the short direction (X direction) of the housing 50 as the radiation pattern of the antenna ANT3 for the band 4 as shown in FIG. As the radiation pattern of ANT1, radiation patterns 56A and 56B in the short direction (X direction) of the casing 50 are selected. By selecting these radiation patterns, the isolation between the antennas ANT1 and ANT3 to be used can be further increased.
  • control unit 30 outputs a control signal to antenna switching device 40 and radiation pattern switching unit 41 so that the selected antenna and radiation pattern are obtained (step S150). Thereby, the antenna to be used and its radiation pattern are switched.
  • steps S110 to S150 are repeated until a communication end request is received from the user (that is, until YES in step S160).
  • the portable terminal device of the first embodiment has an advantage that the mounting area of the radio circuit can be reduced as compared with the conventional case.
  • a notch filter is provided between each of the duplexers 13 and 23 of FIG.
  • a low-pass filter is provided, and an isolator is provided between each of the duplexers 13 and 23 and the corresponding power amplifiers 12 and 22.
  • the mounting area of the wireless circuit can be reduced as compared with the conventional case, and the component cost can be further reduced.
  • the isolation between antennas deteriorates as the distance between the antennas becomes shorter.
  • the antenna ANT3 is provided at a position away from the antennas ANT1 and ANT2. For this reason, the isolation of the antenna ANT3 with respect to each of the antennas ANT1 and ANT2 is better than the isolation between the antennas ANT1 and ANT2.
  • any two of the antennas ANT1 to ANT3 are selected according to the band to be used.
  • the harmonic wave of the transmission wave of one band becomes an interference wave of the reception wave of the other band, or the intermodulation wave of the transmission wave of both bands is one or both.
  • the received signal may be an interference wave of the received signal in the other band. Therefore, even if it is better to use the antennas ANT1 and ANT2 considering only the antenna characteristics, there are cases where it is better to use the antenna ANT3 instead of one of the antennas ANT1 and ANT2 when considering the interference wave.
  • the mobile terminal device In the mobile terminal device according to the second embodiment, it is used depending on whether or not a plurality of communication methods or bands are used at the same time, and further depending on whether or not an interference wave may be generated in the reception band. Both the antenna to be switched and its radiation pattern are switched. Hereinafter, a specific description will be given with reference to FIGS.
  • FIG. 13 is a block diagram schematically showing the configuration of the mobile terminal device 101 according to the second embodiment.
  • mobile terminal apparatus 101 is different from mobile terminal apparatus 100 of FIG. 1 in that antenna / radiation pattern switching table 33 is stored in memory 31 instead of radiation pattern switching table 32.
  • the antenna and the radiation pattern to be used are associated with the communication method and the band to be used.
  • the CPU of the control unit 30 refers to the antenna / radiation pattern switching table 33 and outputs a control signal for selecting an antenna to be used and a radiation pattern to the antenna switching device 40 and the radiation pattern switching unit 41.
  • the antenna switching device 40 switches the antenna to be used, and the radiation pattern switching unit 41 switches the radiation pattern of the antenna used.
  • FIG. 13 The other points in FIG. 13 are the same as those in FIG. 1, and therefore, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
  • the antenna ANT1 in FIG. 13 is designed to obtain optimum characteristics (characteristics with high radiation efficiency and small return loss) in the 700 and 800 MHz frequency bands. It is assumed that the antenna ANT2 is designed to obtain optimum characteristics in the frequency band of 1700/2100 MHz. It is assumed that the antenna ANT3 can be used in any frequency band of 700/800/1700/2100 MHz, that is, has a plurality of resonance frequencies and / or is designed in a wide band. However, for this reason, the characteristics of the antenna ANT3 in each frequency band are inferior to those of the antennas ANT1 and ANT2.
  • FIG. 14 is a flowchart showing the switching procedure of the antenna used and the radiation pattern by the control unit 30 of FIG.
  • the flowchart of FIG. 14 differs from the flowchart of FIG. 11 in that step S110 is not provided and that steps S135A and 140A are provided instead of steps S135 and S140.
  • the control unit 30 refers to the antenna / radiation pattern switching table 33 in FIG. 13 and selects both the antenna used for communication and its radiation pattern (steps S135A and S140A). In this case, depending on whether or not a plurality of communication schemes or bands are used simultaneously (step S120), further, depending on whether or not an interference wave may occur in the reception band (step S125), Different antennas and radiation patterns are selected.
  • FIG. 15 is a diagram illustrating a specific example of an antenna / radiation pattern switching table.
  • LTE registered trademark
  • FIG. 15 when the LTE (registered trademark) band 13 is used alone (setting 1), when the subclass 1 of the band class 0 of CDMA2000 (registered trademark) is used alone (setting 2), and The case where these are used simultaneously as SV-LTE (setting 3) is shown.
  • the antenna ANT1 is selected as the antenna to be used for communication, and the radiation pattern of the antenna ANT1 is shown in FIG.
  • the radial patterns 53A and 53B in the longitudinal direction (Y direction) are selected.
  • subclass 1 of band class 0 of CDMA2000 (registered trademark) is used alone (setting 2)
  • antenna ANT1 is selected as the antenna to be used for communication, and the enclosure as shown in FIG. 9 shows the radiation pattern of antenna ANT1.
  • 50 radial patterns 53A and 53B in the longitudinal direction (Y direction) are selected.
  • Band 13 and subclass 1 of CDMA2000 (registered trademark) band class 0 may cause interference waves.
  • the control unit 30 selects the antenna ANT1 for the LTE (registered trademark) band 13 and selects the antenna ANT3 for the subclass 1 of the band class 0 of CDMA2000 (registered trademark). That is, in order to improve isolation, antennas that are as far as possible from each other are selected. Further, as shown in FIG.
  • the control unit 30 selects the radiation patterns 56A and 56B in the short direction (X direction) of the housing 50 as the radiation pattern of the antenna ANT1, and the short of the housing 50 as the radiation pattern of the antenna ANT3. Radiation patterns 57A and 57B in the direction (X direction) are selected. By selecting these radiation patterns, the isolation between the antennas ANT1 and ANT3 to be used can be further increased.
  • FIG. 16 is a diagram showing another specific example of the antenna / radiation pattern switching table.
  • the LTE (registered trademark) band 4 is used alone (setting 1)
  • the LTE (registered trademark) band 17 is used alone (setting 2), and these are simultaneously used as carrier aggregation.
  • the case of setting (setting 3) is shown.
  • the antenna ANT2 is selected as the antenna used for communication, and the housing 50 is shown as the radiation pattern of the antenna ANT2 as shown in FIG.
  • the radiation patterns 54A and 54B in the short direction (X direction) are selected.
  • the antenna ANT1 is selected as the antenna to be used for communication, and the radiation pattern of the antenna ANT1 is shown in FIG. (Y direction) radiation patterns 53A and 53B are selected.
  • the control unit 30 selects the antenna ANT3 for the LTE (registered trademark) band 4 and selects the antenna ANT1 for the LTE (registered trademark) band 17. That is, in order to improve isolation, antennas that are as far as possible from each other are selected. Further, as shown in FIG. 10, the control unit 30 selects the radiation patterns 56A and 56B in the short direction (X direction) of the housing 50 as the radiation pattern of the antenna ANT1, and the short of the housing 50 as the radiation pattern of the antenna ANT3. Radiation patterns 57A and 57B in the direction (X direction) are selected. By selecting these radiation patterns, the isolation between the antennas ANT1 and ANT3 to be used can be further increased.
  • the total number of antennas provided in the mobile terminal device 101 is three.
  • the number of antennas is two or four or more. Also, the above technique can be easily applied.
  • FIG. 17 is a block diagram schematically showing a configuration of mobile terminal apparatus 102 according to the third embodiment.
  • mobile terminal apparatus 102 is different from mobile terminal apparatus 100 of FIG. 1 in that it further includes an interference detection circuit 90 that detects whether or not the received signal is actually deteriorated due to the presence of an interference wave. Different.
  • the mobile terminal device 100 when a plurality of bands are used at the same time in SV-LTE or carrier aggregation, a combination of bands that may cause an interference wave in the reception band is used.
  • the antenna radiation pattern was changed to suppress the effect.
  • interference waves may not actually occur depending on the channel used.
  • the interference detection circuit 90 detects whether or not an interference wave actually exists.
  • the CPU of the control unit 30 may generate a jamming wave if the jamming detection circuit 90 does not detect the occurrence of the jamming wave, even if the combination of bands may cause the jamming wave in the reception band. Control is made so that the antenna radiation pattern is not changed from the case where there is no characteristic.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 05-335855
  • Patent Document 3 in order to detect intermodulation interference, a received signal is amplitude-modulated with an auxiliary signal, and at this time, a side wave located outside the effective frequency range A band is generated and the amplitude of at least one sideband produced by amplitude modulation is compared with the amplitude of the received carrier in the intermediate frequency signal. The presence of intermodulation interference is detected depending on whether or not a deviation has occurred from the value of the ratio determined by the degree of modulation during amplitude modulation by the auxiliary signal.
  • FIG. 18 is a flowchart showing a procedure for switching the antenna radiation pattern by the control unit 30 of FIG.
  • the flowchart of FIG. 18 differs from the flowchart of FIG. 11 in that step S130 is further included between step S125 and step S140.
  • the CPU of control unit 30 uses a plurality of communication methods or bands simultaneously (YES in step S120), and there is a possibility that an interference wave is generated in the reception band (step).
  • the interference detection circuit 90 detects whether or not an interference wave actually exists.
  • the CPU of the control unit 30 uses the antenna in the radiation pattern switching table 32 or the occurrence of the interference wave. Select the radiation pattern with reference to the case where there is no possibility.
  • the CPU selects a radiation pattern with reference to a case where an interference wave may be generated in the radiation pattern switching table 32. To do.
  • the interference detection circuit 90 can also be provided in the mobile terminal device 101 of the second embodiment.
  • the CPU of the control unit 30 changes the antenna to be used and changes the antenna radiation pattern when the interference wave actually exists when simultaneously using a combination of bands that may cause the interference wave in the reception band. change.
  • FIG. 19 is a block diagram schematically showing a part of the configuration of the mobile terminal device according to the fourth embodiment.
  • the mobile terminal device is different from mobile terminal device 101 in FIG. 13 in that it further includes an antenna matching adjustment unit 70 connected between antennas ANT1-ANT3 and antenna switching device 40.
  • the antenna matching adjustment unit 70 adjusts the matching state and frequency band of the antenna used for communication under the control of the control unit 30.
  • the antenna matching adjustment unit 70 includes variable matching circuits 71, 72, and 73 corresponding to the antennas ANT1, ANT2, and ANT3, respectively.
  • Each of the variable matching circuits 71 to 73 includes a variable capacitance element. By changing the capacitance value of the variable capacitance element, impedance matching of the corresponding antenna can be performed, and the resonance frequency of the corresponding antenna can be changed.
  • the CPU of the control unit 30 outputs antenna tuning information (that is, information regarding the set values of the variable capacitance elements of the variable matching circuits 71 to 73) to the antenna matching adjustment unit 70 according to the communication standard / band used for communication. .
  • the antenna matching adjustment unit 70 changes the setting values of the variable capacitance elements of the variable matching circuits 71 to 73 according to the antenna tuning information received from the CPU.
  • the correspondence relationship between the frequency band (band) / communication standard of signals to be transmitted and received and the setting values of the variable capacitance elements of the variable matching circuits 71 to 73 is stored in the memory 31 as the antenna matching table 34.
  • the control unit 30 determines the setting values (antenna tuning information) of the variable capacitance elements included in the variable matching circuits 71 to 73 by referring to the antenna matching table 34.
  • FIG. 20 is a circuit diagram showing an example of the variable matching circuits 71 to 73 in FIG.
  • each of variable matching circuits 71-73 includes inductor elements 84 and 45 and variable capacitance element 86.
  • the inductance values of the inductor elements 84 and 45 are L1 (nH) and L2 (nH), respectively, and the capacitance value of the variable capacitance element 86 is C1 (pF).
  • inductor element 84 is connected between input / output nodes 82 and 83
  • inductor element 85 is connected between input / output node 82 and ground node GND
  • variable capacitance element 86 is input / output. Connected between node 83 and ground node GND.
  • One of the input / output nodes 82 and 83 is connected to the antenna ANT.
  • the other of the input / output nodes 82 and 83 is connected to the antenna switching device 40, and is connected to the duplexers 13 and 23 via the antenna switching device 40.
  • variable capacitance element 86 for example, a variable capacitance diode (also referred to as a varicap or a varactor) can be used.
  • a variable capacitance element of a type that changes the capacitance value by switching the number of capacitors connected in parallel by a switch can be used.
  • a variable capacitance element of a type that changes the distance between the electrodes of the capacitor using MEMS (Micro Electro Mechanical System) can be used.
  • the capacitive element may have a constant capacitance value and the inductance of the inductor element may be variable, or both the capacitance value of the capacitive element and the inductance of the inductor element may be variable. Also good.
  • FIG. 21 is a diagram showing an example of the antenna matching table 34 stored in the memory 31 of FIG.
  • the set value of the capacitance value C1 (pF) of the variable capacitance element 86 in FIG. 20 is determined according to the communication standard / band used in the antenna ANT.
  • the inductance values L1 and L2 (nH) of the inductor elements 84 and 45 are fixed values.
  • FIG. 22 is a flowchart showing the switching procedure of the antenna used and the radiation pattern by the control unit 30 of FIG. Referring to FIGS. 19 and 22, the flowchart of FIG. 22 differs from the flowchart of FIG. 14 in that it further includes step S145 executed after step S135A or S140A.
  • the control unit 30 matches the antenna matching state used for communication according to the antenna matching table 34 stored in the memory 31. Is adjusted (step S145). Specifically, the control unit 30 outputs a control signal to the antenna matching adjustment unit 70, and the set value of the corresponding variable matching circuit is changed according to the control signal.
  • the control unit 30 performs antenna / radiation pattern switching shown in FIG. According to the table, antenna ANT3 is selected for communication of CDMA2000 (registered trademark), and antenna ANT1 is selected for communication of band 13 of LTE (registered trademark). Furthermore, the control unit 30 sets the capacitance value C1 of the variable capacitance element of the variable matching circuit 73 corresponding to the antenna ANT3 to A3 (pF) according to the antenna matching table shown in FIG. 21, and the variable matching circuit corresponding to the antenna ANT1. The capacitance value C1 of the variable quantity element 71 is set to A2 (pF).
  • the control unit 30 selects the antenna ANT3 for communication of band 4 according to the antenna / radiation pattern switching table shown in FIG.
  • the antenna ANT1 is selected for band 17 communication.
  • the control unit 30 sets the capacitance value C1 of the variable capacitance element of the variable matching circuit 73 corresponding to the antenna ANT3 to A1 (pF) according to the antenna matching table 34 shown in FIG. 21, and the variable matching corresponding to the antenna ANT1.
  • the capacitance value C1 of the variable element of the circuit 71 is set to A2 (pF).
  • the mobile terminal device according to the fourth embodiment further includes the antenna matching adjustment unit 70 in addition to the configuration of the mobile terminal device 101 of the second embodiment. Therefore, the mobile terminal device can achieve the effects described in Embodiment 2 and improve the characteristics of each antenna.
  • the antenna matching adjustment unit 70 described above can also be provided in the mobile terminal device 100 according to the first embodiment.
  • FIG. 23 is a block diagram schematically showing a configuration of the mobile terminal device 104 according to the fifth embodiment.
  • the portable terminal device 104 in FIG. 23 is provided with attenuators 14 and 24 between the duplexers 13 and 23 and the corresponding power amplifiers (PA) 12 and 22, respectively. And different. Since the other points are the same as those of the mobile terminal device 101 of FIG. 13, the same or corresponding parts are denoted by the same reference numerals and the description thereof may not be repeated.
  • Attenuators 14 and 24 use the standards to set the strengths of transmission signals Tx (1) and Tx (2) output from corresponding power amplifiers 12 and 22 according to the control of CPU of control unit 30. Attenuate within the allowable lower limit. As a result, when two bands are used at the same time, even when a harmonic wave or intermodulation wave of the transmission wave can become an interference wave of the reception wave, the quality deterioration of the reception signal due to the interference wave can be further reduced. .
  • FIG. 24 is a flowchart showing the antenna switching operation by the control unit 30 of FIG.
  • the flowchart of FIG. 24 differs from the flowchart of FIG. 14 in that step S155 is added after step S150.
  • the attenuators 14 and 24 perform the intensity of the transmission signals Tx (1) and Tx (2) output from the corresponding power amplifiers 12 and 22 according to the control of the CPU of the control unit 30. Is attenuated to the lower limit allowed by the standard.
  • the attenuators 14 and 24 can also be provided in the mobile terminal device 100 of the first embodiment shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)

Abstract

An antenna switching device (40) of a mobile terminal device (100) is capable of switching each of multiple antennas (ANT1-ANT3) between a used state and unused state and switching a radiation pattern of each antenna in the used state. A control unit (30) controls an antenna switching device (40) so that when two or more antennas of the multiple antennas (ANT1-ANT3) are set in the used state to perform communication using two or more frequency bands, the radiation pattern of each antenna in the used state differs if there is a possibility of interfering waves to occur due to a combination of the frequency bands used in the communication, compared with a case where there is no possibility of the interfering waves to occur.

Description

携帯端末装置Mobile terminal device
 この発明は、複数のアンテナを備えた携帯端末装置に関する。 The present invention relates to a mobile terminal device having a plurality of antennas.
 携帯端末装置の通信品質を高めるためにアンテナの放射パターンを変化させる技術が知られている。たとえば、特開2010-199859号公報(特許文献1)に記載の携帯端末装置は、単一又は複数のアンテナエレメントと、このアンテナエレメントと併設され、イメージ電流が流れる単一又は複数の接地導体部とを備える。単一の接地導体部に流れるイメージ電流、又は複数の接地導体部から選択された接地導体部に流れるイメージ電流により放射パターンが切り替えられる。 A technique for changing the radiation pattern of an antenna in order to improve the communication quality of a mobile terminal device is known. For example, a portable terminal device described in Japanese Patent Application Laid-Open No. 2010-199859 (Patent Document 1) includes a single or a plurality of antenna elements and a single or a plurality of ground conductors that are provided with the antenna elements and through which an image current flows With. The radiation pattern is switched by an image current flowing through a single ground conductor portion or an image current flowing through a ground conductor portion selected from a plurality of ground conductor portions.
特開2010-199859号公報JP 2010-199859 A 特開平05-335855号公報JP 05-335855 A 特開平06-232771号公報Japanese Patent Laid-Open No. 06-232771
 近年、SV-LTE(Simultaneous voice and LTE(登録商標))またはキャリアアグリゲーションなど、複数の通信方式または複数のバンド(周波数帯域)を同時に使用するシステムの運用が開始されている。この場合、バンドの組み合わせによっては、一方の送信波の高調波が他方の受信波の妨害波となったり、複数の送信波の相互変調波がいずれかの受信波の妨害波となったりすることがあり得る。 In recent years, operation of a system that simultaneously uses a plurality of communication systems or a plurality of bands (frequency bands) such as SV-LTE (Simultaneous voice and LTE (registered trademark)) or carrier aggregation has been started. In this case, depending on the combination of bands, the harmonics of one transmission wave may become the interference wave of the other reception wave, or the intermodulation wave of multiple transmission waves may become the interference wave of one of the reception waves There can be.
 しかしながら、前述の特許文献には、単独のアンテナの放射パターンを切替えて通信品質を高めることしか開示されておらず、複数のアンテナが関係する上記の問題に対応できる技術は開示されていない。 However, the above-described patent document only discloses switching the radiation pattern of a single antenna to improve communication quality, and does not disclose a technique that can cope with the above-described problems related to a plurality of antennas.
 この発明の目的は、複数の通信方式/バンドを同時に使用する場合に、バンドの組み合わせによって生じ得る受信信号の品質劣化を抑制することが可能な携帯端末装置を提供することである。 An object of the present invention is to provide a mobile terminal device capable of suppressing quality degradation of a received signal that may occur due to a combination of bands when a plurality of communication methods / bands are used simultaneously.
 一実施の形態による携帯端末装置は、複数のアンテナと、アンテナ切替え装置と、制御部とを備える。アンテナ切替え装置は、複数のアンテナの各々を使用状態または非使用状態に切替え可能であるとともに、使用状態の各アンテナの放射パターンを切替え可能である。制御部は、複数のアンテナのうち2以上のアンテナを使用状態にして2以上の周波数帯域を用いて通信を行うとき、通信に用いる周波数帯域の組合せによって妨害波が発生する可能性がある場合には、妨害波が発生する可能性がない場合に比べて各使用状態のアンテナの放射パターンが異なるようにアンテナ切替え装置を制御する。 A portable terminal device according to an embodiment includes a plurality of antennas, an antenna switching device, and a control unit. The antenna switching device can switch each of the plurality of antennas to the use state or the non-use state, and can switch the radiation pattern of each antenna in the use state. When the control unit performs communication using two or more frequency bands while using two or more antennas among a plurality of antennas, there is a possibility that an interference wave may be generated depending on a combination of frequency bands used for communication. Controls the antenna switching device so that the radiation pattern of the antenna in each use state is different from that in the case where there is no possibility of the occurrence of interference waves.
 上記の実施の形態によれば、複数の通信方式/バンドを同時に使用する場合に、バンドの組み合わせによって生じ得る受信信号の品質劣化を抑制することができる。 According to the above-described embodiment, when a plurality of communication methods / bands are used simultaneously, it is possible to suppress the quality degradation of the received signal that may occur due to the combination of bands.
実施の形態1による携帯端末装置100の構成を概略的に示すブロック図である。1 is a block diagram schematically showing a configuration of a mobile terminal device 100 according to a first embodiment. SV-LTEによって生じる妨害波について説明するための図である。It is a figure for demonstrating the jamming wave produced by SV-LTE. キャリアアグリゲーションによって生じる妨害波について説明するための図である。It is a figure for demonstrating the jamming wave which arises by a carrier aggregation. 放射パターン切替え部41の構成を模式的に示す図である。It is a figure which shows the structure of the radiation pattern switching part 41 typically. アンテナANTによって生じる放射パターンを説明するための図である(スイッチ素子SW2がオンの場合)。It is a figure for demonstrating the radiation pattern produced by the antenna ANT (when switch element SW2 is ON). アンテナANTによって生じる放射パターンを説明するための図である(スイッチ素子SW3がオンの場合)。It is a figure for demonstrating the radiation pattern produced by the antenna ANT (when switch element SW3 is ON). 放射パターン切替え部41の等価回路を示す図である(スイッチ素子SW2がオンの場合)。It is a figure which shows the equivalent circuit of the radiation pattern switching part 41 (when switch element SW2 is ON). 放射パターン切替え部41の等価回路を示す図である(スイッチ素子SW3がオンの場合)。It is a figure which shows the equivalent circuit of the radiation pattern switching part 41 (when switch element SW3 is ON). 図1の携帯端末装置に設けられたアンテナANT1~ANT3の放射パターンの例を示す図である。FIG. 2 is a diagram showing an example of radiation patterns of antennas ANT1 to ANT3 provided in the mobile terminal device of FIG. 図9のアンテナ配置においてアンテナANT1,ANT3を同時使用する場合の放射パターンについて説明するための図である。It is a figure for demonstrating the radiation pattern in the case of using antenna ANT1, ANT3 simultaneously in the antenna arrangement | positioning of FIG. 図1の制御部30によるアンテナ放射パターンの制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the antenna radiation pattern by the control part 30 of FIG. 放射パターン切替えテーブルの一例を示す図である。It is a figure which shows an example of a radiation pattern switching table. 実施の形態2による携帯端末装置101の構成を概略的に示すブロック図である。FIG. 5 is a block diagram schematically showing a configuration of a mobile terminal device 101 according to a second embodiment. 図13の制御部30による、使用アンテナおよび放射パターンの切替え手順を示すフローチャートである。It is a flowchart which shows the switching procedure of a use antenna and a radiation pattern by the control part 30 of FIG. アンテナ・放射パターン切替えテーブルの具体的な一例を示す図である。It is a figure which shows a specific example of an antenna and a radiation pattern switching table. アンテナ・放射パターン切替えテーブルの他の具体例を示す図である。It is a figure which shows the other specific example of an antenna and a radiation pattern switching table. 実施の形態3による携帯端末装置102の構成を概略的に示すブロック図である。FIG. 10 is a block diagram schematically showing a configuration of a mobile terminal device 102 according to a third embodiment. 図17の制御部30によるアンテナ放射パターンの切替え手順を示すフローチャートである。It is a flowchart which shows the switching procedure of the antenna radiation pattern by the control part 30 of FIG. 実施の形態4による携帯端末装置の構成の一部を概略的に示すブロック図である。FIG. 10 is a block diagram schematically showing a part of the configuration of a mobile terminal device according to a fourth embodiment. 図19の可変整合回路71~73の一例を示す回路図である。FIG. 20 is a circuit diagram showing an example of variable matching circuits 71 to 73 of FIG. 図19のメモリ31に記憶されるアンテナ整合テーブル34の一例を示す図である。It is a figure which shows an example of the antenna matching table 34 memorize | stored in the memory 31 of FIG. 図19の制御部30による、使用アンテナおよび放射パターンの切替え手順を示すフローチャートである。It is a flowchart which shows the switching procedure of a use antenna and a radiation pattern by the control part 30 of FIG. 実施の形態5による携帯端末装置104の構成を概略的に示すブロック図である。FIG. 10 is a block diagram schematically showing a configuration of a mobile terminal device 104 according to a fifth embodiment. 図23の制御部30によるアンテナ切替え動作を示すフローチャートである。It is a flowchart which shows the antenna switching operation | movement by the control part 30 of FIG.
 以下、各実施の形態について図面を参照して詳しく説明する。なお、同一または相当する部分には同一の参照符号を付して、その説明を繰返さない場合がある。 Hereinafter, each embodiment will be described in detail with reference to the drawings. The same or corresponding parts are denoted by the same reference numerals, and the description thereof may not be repeated.
 <実施の形態1>
 [携帯端末装置の全体構成]
 図1は、実施の形態1による携帯端末装置100の構成を概略的に示すブロック図である。図1を参照して、携帯端末装置100は、トランシーバ11,21と、電力増幅器(PA:Power Amplifier)12,22と、デュプレクサ13,23と、アンテナ切替え装置40と、アンテナANT1~ANT3と、制御部30と、メモリ31とを含む。
<Embodiment 1>
[Overall configuration of portable terminal device]
FIG. 1 is a block diagram schematically showing a configuration of a mobile terminal device 100 according to the first embodiment. Referring to FIG. 1, a mobile terminal device 100 includes transceivers 11 and 21, power amplifiers (PAs) 12 and 22, duplexers 13 and 23, an antenna switching device 40, antennas ANT1 to ANT3, A control unit 30 and a memory 31 are included.
 トランシーバ11,21は、制御部30から受けた送信ベースバンド信号を無線周波数帯の信号にアップコンバートする。トランシーバ11,21によってアップコンバートされた信号が電力増幅器12,22によってそれぞれ増幅されることによって送信信号Tx(1),Tx(2)が生成される。トランシーバ11,21は、さらに、アンテナANT1~ANT3を介して受信した受信信号Rx(1),Rx(2)をそれぞれダウンコンバートすることによって受信ベースバンド信号を生成する。この明細書では、トランシーバ11,21を総称して信号生成部10と称する場合がある。 The transceivers 11 and 21 up-convert the transmission baseband signal received from the control unit 30 into a radio frequency band signal. The signals up-converted by the transceivers 11 and 21 are amplified by the power amplifiers 12 and 22, respectively, thereby generating transmission signals Tx (1) and Tx (2). The transceivers 11 and 21 further generate received baseband signals by down-converting the received signals Rx (1) and Rx (2) received via the antennas ANT1 to ANT3, respectively. In this specification, the transceivers 11 and 21 may be collectively referred to as a signal generation unit 10.
 デュプレクサ13,23は、送信信号Txと受信信号Rxとで1つのアンテナを共用するために用いられる部品である。デュプレクサ13,23の各々には、送信信号Txを通過させ、受信信号Rxを遮断するフィルタと、受信信号Rxを通過させ、送信信号Txを遮断するフィルタとが設けられている。 The duplexers 13 and 23 are components used to share one antenna for the transmission signal Tx and the reception signal Rx. Each of the duplexers 13 and 23 is provided with a filter that passes the transmission signal Tx and blocks the reception signal Rx, and a filter that passes the reception signal Rx and blocks the transmission signal Tx.
 アンテナ切替え装置40は、制御部30の指令に従って、デュプレクサ13,23のアンテナ側のノードとアンテナANT1~ANT3の各給電点との間の接続を切り替えるスイッチ群である。アンテナANT1~ANT3の各々は、デュプレクサ13,23のアンテナ側のノードのいずれかに接続されることによって使用状態になる。なお、以下では、アンテナANT1~ANT3について総称する場合または不特定のものを示す場合にはアンテナANTと記載する。 The antenna switching device 40 is a switch group that switches connections between the antenna-side nodes of the duplexers 13 and 23 and the feeding points of the antennas ANT1 to ANT3 in accordance with instructions from the control unit 30. Each of the antennas ANT1 to ANT3 is put into use by being connected to one of the nodes on the antenna side of the duplexers 13 and 23. Hereinafter, the antennas ANT1 to ANT3 are collectively referred to as antennas ANT when they are generically referred to or unspecified.
 アンテナ切替え装置40は、さらに、放射パターン切替え部41を含む。図4~図8で説明するように、放射パターン切替え部41は複数の接地導体部を含む。制御部30の指令に従って、各アンテナ素子の給電点と各接地導体部との接続が切替わることによって、接地導体に流れるイメージ電流の流れる方向が変化する。この結果、アンテナ放射パターンが切り替わる。 The antenna switching device 40 further includes a radiation pattern switching unit 41. As will be described with reference to FIGS. 4 to 8, the radiation pattern switching unit 41 includes a plurality of ground conductor portions. The direction in which the image current flows through the ground conductor changes by switching the connection between the feeding point of each antenna element and each ground conductor in accordance with a command from the control unit 30. As a result, the antenna radiation pattern is switched.
 制御部30は、携帯端末装置100全体の動作を制御する中央処理装置(CPU:Central Processing Unit)とモデムとを含む。モデムは、基地局と通信する際に用いられる信号形式に、デジタル信号を変調することによって送信ベースバンド信号を生成する。モデムは、さらに、トランシーバで生成された受信ベースバンド信号を復調する。 The control unit 30 includes a central processing unit (CPU) that controls the operation of the entire mobile terminal device 100 and a modem. The modem generates a transmission baseband signal by modulating the digital signal into a signal format used when communicating with the base station. The modem further demodulates the received baseband signal generated by the transceiver.
 CPUは、通信に使用する通信方式/バンドで動作可能なようにトランシーバ11,21の局所発振器の周波数などを設定する。さらに、CPUは、アンテナ切替え装置40を制御信号によって制御することによって、通信に使用する通信方式/バンドに応じて各アンテナを使用状態または非使用状態に設定する。 さらに、CPUは、放射パターン切替え部41を制御することによって、通信に使用するアンテナの放射パターンを切替える。 The CPU sets the frequency of the local oscillator of the transceivers 11 and 21 so that it can operate in the communication method / band used for communication. Furthermore, the CPU sets each antenna to a use state or a non-use state according to a communication method / band used for communication by controlling the antenna switching device 40 with a control signal. Furthermore, the CPU switches the radiation pattern of the antenna used for communication by controlling the radiation pattern switching unit 41.
 携帯端末装置100は、設定された周波数帯域(バンド)で基地局と通信を行い、基地局から当該周波数帯域内で使用するチャネルを指定される。基地局から使用するチャネルを指定された後は、CPUは、そのチャネルを利用して通信を行うようにトランシーバ11,21を制御する。 The mobile terminal device 100 communicates with the base station in the set frequency band (band), and a channel to be used in the frequency band is designated by the base station. After the channel to be used is specified by the base station, the CPU controls the transceivers 11 and 21 to perform communication using the channel.
 メモリ31は、プログラム、送受信データ、アプリケーション用のデータ、および放射パターン切替えテーブル32等を格納する。放射パターン切替えテーブル32は、アンテナの放射パターンを切替える際に制御部30のCPUによって参照される。放射パターン切替えテーブル32の詳細は、図11および図12で説明する。 The memory 31 stores a program, transmission / reception data, application data, a radiation pattern switching table 32, and the like. The radiation pattern switching table 32 is referred to by the CPU of the control unit 30 when switching the radiation pattern of the antenna. Details of the radiation pattern switching table 32 will be described with reference to FIGS. 11 and 12.
 [複数アンテナ使用時の妨害波の発生について]
 以下、複数のアンテナを同時に使用する場合における妨害波の発生について説明する。
[Generation of interference when using multiple antennas]
Hereinafter, generation of interference waves when a plurality of antennas are used simultaneously will be described.
 図2は、SV-LTEによって生じる妨害波について説明するための図である。図2では、SV-LTEによって、LTE(登録商標)のバンド13とCDMA2000(登録商標)のバンドクラス0のサブクラス1とを同時使用する場合に生じる妨害波について説明している。 FIG. 2 is a diagram for explaining an interference wave generated by SV-LTE. FIG. 2 illustrates an interference wave generated when the LTE (registered trademark) band 13 and the CDMA2000 (registered trademark) band class 0 subclass 1 are simultaneously used by SV-LTE.
 一般に、LTE(登録商標)(Long Term Evolution)では音声をやり取りするための回線交換の仕組みは定義されていない。このため、LTE(登録商標)を提供する事業者が音声サービスを提供する際の1つの方法として、SV-LTEと呼ぶ方法が用いられる。SV-LTEは、LTE(登録商標)のデータ通信とCDMA(Code Division Multiple Access)の音声通信とを同時に提供するものである。 Generally, LTE (Long Term Evolution) does not define a circuit switching mechanism for exchanging voice. Therefore, a method called SV-LTE is used as one method when a provider providing LTE (registered trademark) provides a voice service. SV-LTE provides LTE (registered trademark) data communication and CDMA (Code Division Multiple Access) voice communication simultaneously.
 図2を参照して、CDMA2000(登録商標)バンドクラス0のサブクラス1に含まれる送信信号Txの周波数をf1とし、LTE(登録商標)のバンド13に含まれる送信信号Txの周波数をf2とする。そうすると、3次相互変調歪み信号の周波数は、2×f1-f2、2×f2-f1で表される。 Referring to FIG. 2, the frequency of transmission signal Tx included in subclass 1 of CDMA2000 (registered trademark) band class 0 is f1, and the frequency of transmission signal Tx included in band 13 of LTE (registered trademark) is f2. . Then, the frequency of the third-order intermodulation distortion signal is represented by 2 × f1-f2 and 2 × f2-f1.
 具体的な数値を当てはめると、バンドクラス0のサブクラス1に含まれる送信信号Tx(f1=824-849MHz)と、バンド13に含まれる送信信号Tx(f2=776-786MHz)とによって、2×f1-f2=862-922MHzの3次相互変調信号が生成される。この3次相互変調信号は、CDMA2000(登録商標)のバンドクラス0のサブクラス1に含まれる受信信号Rx(869-894MHz)と周波数が一致する妨害波となり得る。同様に、2×f2-f1=703-748MHzの3次相互変調信号も生成される。この3次相互変調信号は、LTE(登録商標)のバンド13の受信信号Rx(746-756MHz)と周波数が一致する妨害波になり得る。 When specific numerical values are applied, 2 × f1 is determined by the transmission signal Tx (f1 = 824-849 MHz) included in the subclass 1 of the band class 0 and the transmission signal Tx (f2 = 776—786 MHz) included in the band 13. A third order intermodulation signal of −f2 = 862-922 MHz is generated. This third-order intermodulation signal can be an interference wave having a frequency that matches the reception signal Rx (869-894 MHz) included in subclass 1 of band class 0 of CDMA2000 (registered trademark). Similarly, a third-order intermodulation signal of 2 × f2-f1 = 703-748 MHz is also generated. This third-order intermodulation signal can be an interference wave having a frequency that matches the reception signal Rx (746-756 MHz) of the band 13 of LTE (registered trademark).
 図3は、キャリアアグリゲーションによって生じる妨害波について説明するための図である。図3では、キャリアアグリゲーションによってLTE(登録商標)のバンド4とバンド17とを同時使用する場合に生じる妨害波について説明している。なお、送信信号Txをアップリンク(UL:Uplink)信号とも称し、受信信号Rxをダウンリンク(DL:Downlink)信号とも称する。 FIG. 3 is a diagram for explaining an interference wave generated by carrier aggregation. FIG. 3 illustrates an interference wave generated when LTE (registered trademark) band 4 and band 17 are simultaneously used by carrier aggregation. The transmission signal Tx is also referred to as an uplink (UL) signal, and the reception signal Rx is also referred to as a downlink (DL) signal.
 一般に、キャリアアグリゲーションとは、LTE-Advancedによって規定された通信方式で、複数のキャリアを同時に用いて通信を行うことで20MHzを超える広帯域通信を可能とするものである。キャリアグリゲーションとマルチアンテナ送信を用いることにより、最大下り1Gbit/s、上り500Mbit/sの伝送速度が実現される。 Generally, carrier aggregation is a communication method defined by LTE-Advanced, and enables broadband communication exceeding 20 MHz by performing communication using a plurality of carriers simultaneously. By using carrier aggregation and multi-antenna transmission, a maximum downlink 1 Gbit / s and uplink 500 Mbit / s transmission rate are realized.
 図3を参照して、バンド4とバンド17とを両方を使用する場合には、バンド17の送信波の3倍高調波がバンド4の受信波の妨害波となり得る。具体的には、バンド17に含まれる送信信号Tx(704-716MHz)の2倍高調波(2H)の周波数は1408-1432MHzとなり、3倍高調波(3H)の周波数は2112-2148MHzとなる。この3倍高調波の周波数は、バンド4の受信信号Rxの周波数(2110-2155MHz)と重なるため妨害波になり得る。 Referring to FIG. 3, when both band 4 and band 17 are used, the third harmonic of the transmission wave of band 17 can be an interference wave of the reception wave of band 4. Specifically, the frequency of the second harmonic (2H) of the transmission signal Tx (704-716 MHz) included in the band 17 is 1408-1432 MHz, and the frequency of the third harmonic (3H) is 211-12148 MHz. Since the frequency of the third harmonic wave overlaps with the frequency (2110-2155 MHz) of the reception signal Rx in band 4, it can be an interference wave.
 上述のように、2つのバンドを同時に使用する場合には、一方のバンドの送信波の高調波が他方のバンドの受信波の妨害波となったり、双方のバンドの送信波の相互変調波が一方または両方のバンドの受信波の妨害波となったりする場合がある。この実施の形態の携帯端末装置100では、複数のアンテナを同時使用するときに妨害波が生じる可能性のある場合には、通信に使用する各アンテナの放射パターンを切替えることによって、アンテナ相互間のアイソレーションを大きくする。これによって、妨害波による受信信号の品質劣化を抑制する。 As described above, when two bands are used at the same time, the harmonic wave of the transmission wave of one band becomes an interference wave of the reception wave of the other band, or the intermodulation wave of the transmission wave of both bands is In some cases, the received wave may be an interference wave in one or both bands. In the mobile terminal device 100 according to this embodiment, when there is a possibility that an interference wave is generated when a plurality of antennas are used at the same time, by switching the radiation pattern of each antenna used for communication, Increase isolation. This suppresses the quality degradation of the received signal due to the interference wave.
 [アンテナ放射パターンの切替え方法について]
 次に、図1の放射パターン切替え部41によるアンテナ放射パターンの切替え方法について説明する。
[How to change the antenna radiation pattern]
Next, a method for switching the antenna radiation pattern by the radiation pattern switching unit 41 in FIG. 1 will be described.
 図4は、放射パターン切替え部41の構成を模式的に示す図である。図4を参照して、放射パターン切替え部41は、メイングランドとしての接地導体部GND1と、接地導体部GNDの周辺に設けられるサブグランドとしての接地導体部GND2,GND3と、スイッチ素子SW2,SW3と、チョークコイル61,62とを含む。図4では、アンテナANTは給電部60に接続されるL字型のモノポールアンテナの例が示されているが、このアンテナANTの形態および形状に限定されるものでない。 FIG. 4 is a diagram schematically showing the configuration of the radiation pattern switching unit 41. Referring to FIG. 4, the radiation pattern switching unit 41 includes a ground conductor portion GND1 as a main ground, ground conductor portions GND2 and GND3 as sub-grounds provided around the ground conductor portion GND, and switch elements SW2 and SW3. And choke coils 61 and 62. In FIG. 4, the antenna ANT is an example of an L-shaped monopole antenna connected to the power feeding unit 60, but is not limited to the form and shape of the antenna ANT.
 接地導体部GND2は、矩形状の接地導体部GND1の辺64に沿って設けられる。接地導体部GND3は、接地導体部GND1の辺64に隣接する辺65に沿って設けられる。接地導体部GND2,GND3の電気長は、アンテナANTが使用する周波数に対応する波長の4分の1(λ/4)またはその近傍値に設定されている。 The ground conductor portion GND2 is provided along the side 64 of the rectangular ground conductor portion GND1. The ground conductor portion GND3 is provided along the side 65 adjacent to the side 64 of the ground conductor portion GND1. The electrical length of the ground conductor portions GND2 and GND3 is set to one-fourth (λ / 4) of the wavelength corresponding to the frequency used by the antenna ANT or a value in the vicinity thereof.
 接地導体部GND2の一端はスイッチ素子SW2を介してアンテナANTの給電部60と接続され、接地導体部GND2の他端はチョークコイル61を介してアンテナ導体部GND1と接続される。同様に、接地導体部GND3の一端はスイッチ素子SW3を介してアンテナANTの給電部60と接続され、接地導体部GND3の他端はチョークコイル62を介してアンテナ導体部GND1と接続される。チョークコイル61,62は、高周波電流を阻止するインピーダンス素子として用いられている。 One end of the ground conductor portion GND2 is connected to the power feeding portion 60 of the antenna ANT via the switch element SW2, and the other end of the ground conductor portion GND2 is connected to the antenna conductor portion GND1 via the choke coil 61. Similarly, one end of the ground conductor portion GND3 is connected to the power feeding portion 60 of the antenna ANT via the switch element SW3, and the other end of the ground conductor portion GND3 is connected to the antenna conductor portion GND1 via the choke coil 62. The choke coils 61 and 62 are used as impedance elements that block high-frequency currents.
 図5は、アンテナANTによって生じる放射パターンを説明するための図である(スイッチ素子SW2がオンの場合)。図5を参照して、スイッチ素子SW2がオンで、スイッチ素子SW3がオフの場合には、イメージ電流Iiはスイッチ素子SW2を介して接地導体部GND2を流れる。図5において、イメージ電流Iiが流れる部分にハッチングを付している。イメージ電流Iiは図5のY方向に流れる。放射パターン66A,66Bは、イメージ電流Iiを中心に、イメージ電流Iiと直交する方向に生成される。接地導体部GND1~GND3が設けられている面内では、放射パターン66A,66BはX方向に生成される。 FIG. 5 is a diagram for explaining a radiation pattern generated by the antenna ANT (when the switch element SW2 is on). Referring to FIG. 5, when switch element SW2 is on and switch element SW3 is off, image current Ii flows through ground conductor portion GND2 via switch element SW2. In FIG. 5, the portion where the image current Ii flows is hatched. The image current Ii flows in the Y direction in FIG. The radiation patterns 66A and 66B are generated in a direction perpendicular to the image current Ii with the image current Ii as the center. Within the plane where the ground conductor portions GND1 to GND3 are provided, the radiation patterns 66A and 66B are generated in the X direction.
 図6は、アンテナANTによって生じる放射パターンを説明するための図である(スイッチ素子SW3がオンの場合)。図6を参照して、スイッチ素子SW3がオンで、スイッチ素子SW2がオフの場合には、イメージ電流Iiはスイッチ素子SW3を介して接地導体部GND3を流れる。図6において、イメージ電流Iiが流れる部分にハッチングを付している。イメージ電流Iiは図6のX方向に流れる。放射パターン67A,67Bは、イメージ電流Iiを中心に、イメージ電流Iiと直交する方向に生成される。接地導体部GND1~GND3が設けられている面内では、放射パターン67A,67BはY方向に生成される。 FIG. 6 is a diagram for explaining a radiation pattern generated by the antenna ANT (when the switch element SW3 is on). Referring to FIG. 6, when switch element SW3 is on and switch element SW2 is off, image current Ii flows through ground conductor portion GND3 via switch element SW3. In FIG. 6, the portion where the image current Ii flows is hatched. The image current Ii flows in the X direction in FIG. The radiation patterns 67A and 67B are generated in a direction orthogonal to the image current Ii with the image current Ii as the center. Within the plane where the ground conductor portions GND1 to GND3 are provided, the radiation patterns 67A and 67B are generated in the Y direction.
 図7は、放射パターン切替え部41の等価回路を示す図である(スイッチ素子SW2がオンの場合)。図7では、スイッチ素子SW2,SW3の一例としてPINダイオードが示されている。スイッチ素子SW2としてのPINダイオード(以下、PINダイオードSW2と記載する)のアノードは接地導体部GND2に接続され、PINダイオードSW2のカソードは給電部60に接続される。同様に、PINダイオードSW3のアノードは給電部60に接続され、PINダイオードSW3のカソードは接地導体部GND3に接続される。 FIG. 7 is a diagram showing an equivalent circuit of the radiation pattern switching unit 41 (when the switch element SW2 is on). In FIG. 7, a PIN diode is shown as an example of the switch elements SW2 and SW3. The anode of a PIN diode (hereinafter referred to as PIN diode SW2) as the switch element SW2 is connected to the ground conductor portion GND2, and the cathode of the PIN diode SW2 is connected to the power feeding portion 60. Similarly, the anode of the PIN diode SW3 is connected to the power feeding part 60, and the cathode of the PIN diode SW3 is connected to the ground conductor part GND3.
 図7に示すように、給電部60には、さらに、図1の制御部30から出力された制御信号を受ける制御端子63が接続されている。制御信号として接地導体部GND1に対する負電圧が制御部30から制御端子63に供給されているときには、PINダイオードSW2がオン状態となり、PINダイオードSW3がオフ状態となる。これによって、イメージ電流Iiは接地導体部GND2を流れる(図7において、イメージ電流Iiが流れる部分にハッチングを付している)。このイメージ電流Iiに対して垂直方向に放射パターン66A,66Bが生成される。 As shown in FIG. 7, the power supply unit 60 is further connected to a control terminal 63 that receives a control signal output from the control unit 30 of FIG. When a negative voltage with respect to the ground conductor portion GND1 is supplied from the control unit 30 to the control terminal 63 as a control signal, the PIN diode SW2 is turned on and the PIN diode SW3 is turned off. As a result, the image current Ii flows through the ground conductor portion GND2 (in FIG. 7, the portion through which the image current Ii flows is hatched). Radiation patterns 66A and 66B are generated in a direction perpendicular to the image current Ii.
 図8は、放射パターン切替え部41の等価回路を示す図である(スイッチ素子SW3がオンの場合)。図8を参照して、制御信号として接地導体部GND1に対する正電圧が制御部30から制御端子63に供給されているときには、PINダイオードSW3がオン状態となり、PINダイオードSW2がオフ状態となる。これによって、イメージ電流Iiは接地導体部GND3を流れる(図8において、イメージ電流Iiが流れる部分にハッチングを付している)。このイメージ電流Iiに対して垂直方向に放射パターン67A,67Bが生成される。 FIG. 8 is a diagram showing an equivalent circuit of the radiation pattern switching unit 41 (when the switch element SW3 is on). Referring to FIG. 8, when a positive voltage for ground conductor portion GND1 is supplied as a control signal from control portion 30 to control terminal 63, PIN diode SW3 is turned on and PIN diode SW2 is turned off. As a result, the image current Ii flows through the ground conductor portion GND3 (in FIG. 8, a portion through which the image current Ii flows is hatched). Radiation patterns 67A and 67B are generated in the direction perpendicular to the image current Ii.
 以上のように、制御部30からの制御信号によってスイッチ素子SW2,SW3のオンおよびオフを切替えることによって接地導体部GND2,GND3のいずれか一方を選択することができる。これによって、選択した接地導体部GNDにイメージ電流Iiが流れ、この結果、アンテナANTの放射パターンが切替えられる。 As described above, either one of the ground conductors GND2 and GND3 can be selected by switching on and off the switch elements SW2 and SW3 by the control signal from the control unit 30. As a result, the image current Ii flows through the selected ground conductor portion GND, and as a result, the radiation pattern of the antenna ANT is switched.
 [携帯端末装置におけるアンテナ放射パターンの例]
 上記の図4~図8で説明した放射パターン切替え部41は、図1のアンテナANT1,ANT2,ANT3の各々に設けられている。ただし、メイングランドとしての接地導体部GND1は、各アンテナで共通化することができる。
[Example of antenna radiation pattern in portable terminal device]
The radiation pattern switching unit 41 described with reference to FIGS. 4 to 8 is provided in each of the antennas ANT1, ANT2, and ANT3 in FIG. However, the ground conductor portion GND1 as the main ground can be shared by each antenna.
 図9は、図1の携帯端末装置に設けられたアンテナANT1~ANT3の放射パターンの例を示す図である。 FIG. 9 is a diagram showing an example of the radiation pattern of the antennas ANT1 to ANT3 provided in the mobile terminal device of FIG.
 図9では、携帯端末装置がスマートフォンの場合を例としてアンテナANT1~ANT3の配置が示されている。スマートフォンの筺体50の長手方向をY方向とし、短手方向をX方向とし、厚み方向をZ方向とする。筺体50の主面上にタッチスクリーン51が設けられ、主面上でタッチスクリーン51の下部に操作キー52が設けられている。タッチスクリーン51は、ディスプレイとタッチパネルとが一体的に形成されたものである。操作キー52は、たとえば、ホーム画面を表示させるためのホームキーとして機能する。 FIG. 9 shows the arrangement of the antennas ANT1 to ANT3 taking the case where the mobile terminal device is a smartphone as an example. The longitudinal direction of the case 50 of the smartphone is the Y direction, the short direction is the X direction, and the thickness direction is the Z direction. A touch screen 51 is provided on the main surface of the casing 50, and operation keys 52 are provided below the touch screen 51 on the main surface. The touch screen 51 is formed by integrating a display and a touch panel. The operation key 52 functions as a home key for displaying a home screen, for example.
 アンテナANT1~ANT3は筺体50の内部に設けられる。具体的に、アンテナANT1は筺体50の長手方向(Y方向)の一端に近接して(すなわち、操作キー52の近傍に)設けられる。アンテナANT3は筺体50の長手方向(Y方向)の他端に近接して(すなわち、操作キー52の反対側に)設けられる。アンテナANT2は筺体50の短手方向(X方向)の一端に近接して設けられる。 Antennas ANT1 to ANT3 are provided inside the housing 50. Specifically, the antenna ANT1 is provided in the vicinity of one end in the longitudinal direction (Y direction) of the housing 50 (that is, in the vicinity of the operation key 52). The antenna ANT3 is provided close to the other end in the longitudinal direction (Y direction) of the housing 50 (that is, on the opposite side of the operation key 52). The antenna ANT2 is provided close to one end of the casing 50 in the short direction (X direction).
 図9では、アンテナANT1~ANT3の各々を単独使用した場合の放射パターンの一例が示されている。アンテナANT1の場合、筺体50の短手方向(X方向)にイメージ電流が流れるように図1の放射パターン切替え部41を制御することによって、筺体50の長手方向(Y方向)に放射パターン53A,53Bが生成される。なお、放射パターンはイメージ電流の方向に垂直に生成されるので、筺体50の厚み方向(Z方向)にもアンテナANT1の放射パターンが生成されている。しかしながら、筺体50の短手方向(X方向)の放射パターンは生成されない。 FIG. 9 shows an example of a radiation pattern when each of the antennas ANT1 to ANT3 is used alone. In the case of the antenna ANT1, the radiation pattern 53A in the longitudinal direction (Y direction) of the housing 50 is controlled by controlling the radiation pattern switching unit 41 in FIG. 1 so that the image current flows in the short direction (X direction) of the housing 50. 53B is generated. Since the radiation pattern is generated perpendicular to the direction of the image current, the radiation pattern of the antenna ANT1 is also generated in the thickness direction (Z direction) of the housing 50. However, the radiation pattern in the short direction (X direction) of the casing 50 is not generated.
 同様に、アンテナANT2の場合、筺体50の長手方向(Y方向)にイメージ電流が流れるように放射パターン切替え部41を制御することによって、筺体50の短手方向(X方向)の放射パターン54A,54Bが生成される(筺体50の長手方向(Y方向)には放射パターンは生成されない)。 Similarly, in the case of the antenna ANT2, by controlling the radiation pattern switching unit 41 so that an image current flows in the longitudinal direction (Y direction) of the housing 50, the radiation pattern 54A in the short direction (X direction) of the housing 50 is obtained. 54B is generated (a radiation pattern is not generated in the longitudinal direction (Y direction) of the casing 50).
 アンテナANT3の場合、筺体50の短手方向(X方向)にイメージ電流が流れるように放射パターン切替え部41を制御することによって、筺体50の長手方向(Y方向)の放射パターン55A,55Bが生成される(筺体50の短手方向(X方向)には放射パターンは生成されない)。 In the case of the antenna ANT3, radiation patterns 55A and 55B in the longitudinal direction (Y direction) of the housing 50 are generated by controlling the radiation pattern switching unit 41 so that the image current flows in the short direction (X direction) of the housing 50. (A radiation pattern is not generated in the short direction (X direction) of the housing 50).
 図10は、図9のアンテナ配置においてアンテナANT1,ANT3を同時使用する場合の放射パターンについて説明するための図である。 FIG. 10 is a diagram for explaining a radiation pattern when antennas ANT1 and ANT3 are simultaneously used in the antenna arrangement of FIG.
 図10を参照して、アンテナANT1,ANT3を同時使用する場合において、一方の受信帯域に妨害波が生じるようなバンドの組み合わせを使用する場合には、アンテナANT1,ANT3間のアイソレーションをできるだけ大きくするのが望ましい。このため、アンテナANT1,ANT3の放射パターンが図9の場合から変更される。 Referring to FIG. 10, when antennas ANT1 and ANT3 are used at the same time, when using a combination of bands in which interference waves are generated in one reception band, the isolation between antennas ANT1 and ANT3 is as large as possible. It is desirable to do. For this reason, the radiation pattern of the antennas ANT1 and ANT3 is changed from the case of FIG.
 具体的に、アンテナANT1の場合、筺体50の長手方向(Y方向)にイメージ電流が流れるように放射パターン切替え部41を制御することによって、筺体50の短手方向(X方向)の放射パターン56A,56Bが生成される。アンテナANT3の場合にも、筺体50の長手方向(Y方向)にイメージ電流が流れるように放射パターン切替え部41を制御することによって、筺体50の短手方向(X方向)の放射パターン57A,57Bが生成される。アンテナANT1,ANT3のいずれの場合にも、筺体50の長手方向(Y方向)、すなわち相手のアンテナ方向への放射パターンは生成されないので、アンテナANT1およびANT3の相互間のアイソレーションをより大きくすることができる。 Specifically, in the case of the antenna ANT1, the radiation pattern 56A in the short direction (X direction) of the casing 50 is controlled by controlling the radiation pattern switching unit 41 so that the image current flows in the longitudinal direction (Y direction) of the casing 50. , 56B are generated. Also in the case of the antenna ANT3, the radiation patterns 57A and 57B in the short direction (X direction) of the casing 50 are controlled by controlling the radiation pattern switching unit 41 so that the image current flows in the longitudinal direction (Y direction) of the casing 50. Is generated. In either case of the antennas ANT1 and ANT3, since a radiation pattern in the longitudinal direction (Y direction) of the housing 50, that is, in the direction of the other antenna is not generated, the isolation between the antennas ANT1 and ANT3 should be increased Can do.
 [通信開始時の制御手順について]
 次に、携帯端末装置によって通信が開始されるときに、図1の制御部30によって実施されるアンテナ放射パターンの制御手順について説明する。なお、以下では、LTE(登録商標)のバンド4および/またはバンド17を使用して通信を行う場合を具体例として挙げながら説明する。
[Control procedure at the start of communication]
Next, an antenna radiation pattern control procedure performed by the control unit 30 of FIG. 1 when communication is started by the mobile terminal device will be described. Hereinafter, a case where communication is performed using the LTE (registered trademark) band 4 and / or the band 17 will be described as a specific example.
 図11は、図1の制御部30によるアンテナ放射パターンの制御手順を示すフローチャートである。図1、図11を参照して、制御部30は、通信を開始するための処理要求をユーザから受付けると(ステップS100でYES)、使用する通信方式およびバンドに応じてアンテナを選択する(ステップS110)。実施の形態1の場合、アンテナの選択は使用する通信方式およびバンドに応じて一意的に定められる。 FIG. 11 is a flowchart showing the control procedure of the antenna radiation pattern by the control unit 30 of FIG. Referring to FIGS. 1 and 11, when control unit 30 receives a processing request for starting communication from the user (YES in step S100), control unit 30 selects an antenna according to the communication method and band to be used (step S100). S110). In the case of the first embodiment, the antenna selection is uniquely determined according to the communication method and band to be used.
 たとえば、LTE(登録商標)のバンド4(周波数帯1700/2100MHz)を使用する場合にはアンテナANT3が選択され、バンド17(周波数帯700)を使用する場合にはアンテナANT1が選択されるものとする。アンテナANT3およびアンテナANT1の特性(たとえば、共振周波数)は、それぞれバンド4およびバンド17での使用に適した設計となっている。 For example, the antenna ANT3 is selected when using LTE (registered trademark) band 4 (frequency band 1700/2100 MHz), and the antenna ANT1 is selected when using band 17 (frequency band 700). To do. The characteristics (for example, resonance frequency) of the antenna ANT3 and the antenna ANT1 are designed to be suitable for use in the band 4 and the band 17, respectively.
 次に、制御部30は、図1の放射パターン切替えテーブル32を参照して、ステップS110で選択されたアンテナの放射パターンを選択する(ステップS135,S140)。この場合、複数の通信方式またはバンドを同時に利用するか否かに応じて(ステップS120)、さらには、受信帯域に妨害波が発生する可能性があるか否かに応じて(ステップS125)、選択する放射パターンが異なる。 Next, the control unit 30 refers to the radiation pattern switching table 32 in FIG. 1 and selects the radiation pattern of the antenna selected in step S110 (steps S135 and S140). In this case, depending on whether or not a plurality of communication schemes or bands are used simultaneously (step S120), further, depending on whether or not an interference wave may occur in the reception band (step S125), The radiation pattern to be selected is different.
 図12は、放射パターン切替えテーブルの一例を示す図である。図12を参照して、LTE(登録商標)のバンド4を単独使用する場合(設定1)には、アンテナANT3の放射パターンとして、図9に示すように筺体50の長手方向(Y方向)の放射パターン55A,55Bが選択される。LTE(登録商標)のバンド17を単独使用する場合(設定2)には、アンテナANT1の放射パターンとして、図9に示すように筺体50の長手方向(Y方向)の放射パターン53A,53Bが選択される。 FIG. 12 is a diagram showing an example of a radiation pattern switching table. Referring to FIG. 12, when using LTE (registered trademark) band 4 alone (setting 1), as a radiation pattern of antenna ANT3, as shown in FIG. 9, the longitudinal direction (Y direction) of housing 50 is shown. Radiation patterns 55A and 55B are selected. When the LTE (registered trademark) band 17 is used alone (setting 2), the radiation pattern 53A, 53B in the longitudinal direction (Y direction) of the housing 50 is selected as the radiation pattern of the antenna ANT1, as shown in FIG. Is done.
 キャリアアグリゲーションによってLTE(登録商標)のバンド4とバンド17とを同時に使用する場合(設定3)には、図3で説明したようにバンド4の受信帯域に妨害波が発生する可能性がある。この場合、制御部30は、バンド4用のアンテナANT3の放射パターンとして、図10に示すように筺体50の短手方向(X方向)の放射パターン57A,57Bを選択し、バンド17用のアンテナANT1の放射パターンとして、筺体50の短手方向(X方向)の放射パターン56A,56Bを選択する。これらの放射パターンの選択によって、使用するアンテナANT1とANT3との間のアイソレーションをより大きくすることができる。 When LTE (registered trademark) band 4 and band 17 are simultaneously used by carrier aggregation (setting 3), there is a possibility that an interference wave is generated in the reception band of band 4 as described in FIG. In this case, the control unit 30 selects the radiation patterns 57A and 57B in the short direction (X direction) of the housing 50 as the radiation pattern of the antenna ANT3 for the band 4 as shown in FIG. As the radiation pattern of ANT1, radiation patterns 56A and 56B in the short direction (X direction) of the casing 50 are selected. By selecting these radiation patterns, the isolation between the antennas ANT1 and ANT3 to be used can be further increased.
 再び図1、図11を参照して、次に制御部30は、選択したアンテナおよび放射パターンとなるように、アンテナ切替え装置40および放射パターン切替え部41に制御信号を出力する(ステップS150)。これによって、使用するアンテナおよびその放射パターンが切り替えられる。 Referring to FIGS. 1 and 11 again, next, control unit 30 outputs a control signal to antenna switching device 40 and radiation pattern switching unit 41 so that the selected antenna and radiation pattern are obtained (step S150). Thereby, the antenna to be used and its radiation pattern are switched.
 以上のステップS110~S150は、ユーザから通信終了要求を受付けるまで(すなわち、ステップS160でYESとなるまで)繰り返される。 The above steps S110 to S150 are repeated until a communication end request is received from the user (that is, until YES in step S160).
 [効果]
 上記のとおり、実施の形態1による携帯端末装置では、複数のバンドを同時に利用して通信するときに、送信波の高調波または送信波の相互変調波等が受信波の妨害波となるために受信感度が著しく劣化する場合の解決策が示される。具体的には、受信特性が劣化し得るバンドの組み合わせの場合には、使用するアンテナ間のアイソレーションができるだけ良くなるようにアンテナ放射パターンが切り替えられる。これによって、妨害波による受信信号の品質低下を抑制することができる。
[effect]
As described above, in the mobile terminal device according to the first embodiment, when communicating using a plurality of bands at the same time, harmonics of the transmission wave or intermodulation waves of the transmission wave become interference waves of the reception wave. A solution is shown when the reception sensitivity is significantly degraded. Specifically, in the case of a combination of bands in which reception characteristics can be deteriorated, the antenna radiation pattern is switched so that isolation between antennas to be used is as good as possible. As a result, it is possible to suppress deterioration in the quality of the received signal due to the interference wave.
 さらに、実施の形態1の携帯端末装置では、無線回路の実装面積を従来よりも削減できるというメリットがある。具体的に、従来の無線回路では、高調波および相互変調波等の妨害波の影響を抑制するために、たとえば、図1のデュプレクサ13,23の各々とアンテナ切替え装置40との間にノッチフィルタおよびローパスフィルタが設けられ、デュプレクサ13,23の各々と対応する電力増幅器12,22との間にアイソレータが設けられていた。本実施の形態の携帯端末装置の場合には、これらのローパスフィルタ、ノッチフィルタおよびアイソレータ等の部品を設ける必要がない。このため、無線回路の実装面積を従来よりも削減でき、さらに部品コストを低減することができる。 Furthermore, the portable terminal device of the first embodiment has an advantage that the mounting area of the radio circuit can be reduced as compared with the conventional case. Specifically, in the conventional radio circuit, in order to suppress the influence of interference waves such as harmonics and intermodulation waves, for example, a notch filter is provided between each of the duplexers 13 and 23 of FIG. In addition, a low-pass filter is provided, and an isolator is provided between each of the duplexers 13 and 23 and the corresponding power amplifiers 12 and 22. In the case of the mobile terminal device according to the present embodiment, it is not necessary to provide components such as the low-pass filter, the notch filter, and the isolator. For this reason, the mounting area of the wireless circuit can be reduced as compared with the conventional case, and the component cost can be further reduced.
 <実施の形態2>
 一般に、アンテナ間の距離が短くなるにつれてアンテナ相互のアイソレーションが悪化する。たとえば、図9、図10の例では、アンテナANT1,ANT2から離れた位置にアンテナANT3が設けられている。このため、アンテナANT1,ANT2の各々に対するアンテナANT3のアイソレーションは、アンテナANT1,ANT2間のアイソレーションに比べて良好である。
<Embodiment 2>
In general, the isolation between antennas deteriorates as the distance between the antennas becomes shorter. For example, in the examples of FIGS. 9 and 10, the antenna ANT3 is provided at a position away from the antennas ANT1 and ANT2. For this reason, the isolation of the antenna ANT3 with respect to each of the antennas ANT1 and ANT2 is better than the isolation between the antennas ANT1 and ANT2.
 2つのバンドを使用して通信する場合には、使用するバンドに応じてアンテナANT1~ANT3のうちのいずれか2つが選択される。ここで、2つのバンドを使用する場合には、一方のバンドの送信波の高調波が他方のバンドの受信波の妨害波となったり、双方のバンドの送信波の相互変調波が一方または両方のバンドの受信波の妨害波となったりする場合があることに注意する必要がある。したがって、アンテナ特性だけを考慮するとアンテナANT1,ANT2を利用したほうがよい場合でも、妨害波まで考慮した場合には、アンテナANT1,ANT2の一方に代えて、アンテナANT3が使用したほうがよい場合がある。 When communicating using two bands, any two of the antennas ANT1 to ANT3 are selected according to the band to be used. Here, when two bands are used, the harmonic wave of the transmission wave of one band becomes an interference wave of the reception wave of the other band, or the intermodulation wave of the transmission wave of both bands is one or both. It should be noted that the received signal may be an interference wave of the received signal in the other band. Therefore, even if it is better to use the antennas ANT1 and ANT2 considering only the antenna characteristics, there are cases where it is better to use the antenna ANT3 instead of one of the antennas ANT1 and ANT2 when considering the interference wave.
 実施の形態2の携帯端末装置では、複数の通信方式またはバンドを同時に利用するか否かに応じて、さらには、受信帯域に妨害波が発生する可能性があるか否かに応じて、使用するアンテナとその放射パターンとの両方が切り替えられる。以下、図13~図16を参照して具体的に説明する。 In the mobile terminal device according to the second embodiment, it is used depending on whether or not a plurality of communication methods or bands are used at the same time, and further depending on whether or not an interference wave may be generated in the reception band. Both the antenna to be switched and its radiation pattern are switched. Hereinafter, a specific description will be given with reference to FIGS.
 [携帯端末装置の構成と動作]
 図13は、実施の形態2による携帯端末装置101の構成を概略的に示すブロック図である。図13を参照して、携帯端末装置101は、放射パターン切替えテーブル32に代えてアンテナ・放射パターン切替えテーブル33をメモリ31に格納している点で図1の携帯端末装置100と異なる。アンテナ・放射パターン切替えテーブル33には、使用する通信方式およびバンドに対して、使用するアンテナおよび放射パターンが対応付けられている。複数のアンテナを同時に使用する場合において妨害波が発生する可能性がある場合には、単一のアンテナを使用する場合に比べてもしくは妨害波が発生する可能性がない場合に比べて、使用するアンテナの組合せおよび放射パターンが変更される。
[Configuration and operation of portable terminal device]
FIG. 13 is a block diagram schematically showing the configuration of the mobile terminal device 101 according to the second embodiment. Referring to FIG. 13, mobile terminal apparatus 101 is different from mobile terminal apparatus 100 of FIG. 1 in that antenna / radiation pattern switching table 33 is stored in memory 31 instead of radiation pattern switching table 32. In the antenna / radiation pattern switching table 33, the antenna and the radiation pattern to be used are associated with the communication method and the band to be used. When using multiple antennas at the same time, if there is a possibility that interference will occur, use it compared to using a single antenna or if there is no possibility that interference will occur. Antenna combinations and radiation patterns are changed.
 制御部30のCPUは、アンテナ・放射パターン切替えテーブル33を参照して、使用するアンテナおよび放射パターンを選択するための制御信号をアンテナ切替え装置40および放射パターン切替え部41に出力する。この制御信号に応じて、アンテナ切替え装置40は使用するアンテナを切替え、放射パターン切替え部41は使用アンテナの放射パターンを切替える。 The CPU of the control unit 30 refers to the antenna / radiation pattern switching table 33 and outputs a control signal for selecting an antenna to be used and a radiation pattern to the antenna switching device 40 and the radiation pattern switching unit 41. In response to this control signal, the antenna switching device 40 switches the antenna to be used, and the radiation pattern switching unit 41 switches the radiation pattern of the antenna used.
 図13のその他の点は図1の場合と同様であるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない。 The other points in FIG. 13 are the same as those in FIG. 1, and therefore, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 なお、以下の説明では、図13のアンテナANT1は700および800MHzの周波数帯で最適な特性(放射効率が高く、リターンロスが小さい特性)が得られるように設計されているものとする。アンテナANT2は、1700/2100MHzの周波数帯で最適な特性が得られるように設計されているものとする。アンテナANT3は、700/800/1700/2100MHzのいずれの周波数帯でも使用可能なように、すなわち、複数の共振周波数を有し及び/又は広帯域に設計されているものとする。ただし、このためにアンテナANT3の各周波数帯での特性はアンテナANT1,ANT2に比べて劣る。 In the following description, it is assumed that the antenna ANT1 in FIG. 13 is designed to obtain optimum characteristics (characteristics with high radiation efficiency and small return loss) in the 700 and 800 MHz frequency bands. It is assumed that the antenna ANT2 is designed to obtain optimum characteristics in the frequency band of 1700/2100 MHz. It is assumed that the antenna ANT3 can be used in any frequency band of 700/800/1700/2100 MHz, that is, has a plurality of resonance frequencies and / or is designed in a wide band. However, for this reason, the characteristics of the antenna ANT3 in each frequency band are inferior to those of the antennas ANT1 and ANT2.
 図14は、図13の制御部30による、使用アンテナおよび放射パターンの切替え手順を示すフローチャートである。図14のフローチャートは、ステップS110が設けられていない点、ならびにステップS135,S140に代えてステップS135A,140Aが設けられている点で図11のフローチャートと異なる。 FIG. 14 is a flowchart showing the switching procedure of the antenna used and the radiation pattern by the control unit 30 of FIG. The flowchart of FIG. 14 differs from the flowchart of FIG. 11 in that step S110 is not provided and that steps S135A and 140A are provided instead of steps S135 and S140.
 制御部30は、図13のアンテナ・放射パターン切替えテーブル33を参照して、通信に使用するアンテナおよびその放射パターンの両方を選択する(ステップS135A,S140A)。この場合、複数の通信方式またはバンドを同時に利用するか否かに応じて(ステップS120)、さらには、受信帯域に妨害波が発生する可能性があるか否かに応じて(ステップS125)、選択するアンテナおよび放射パターンが異なる。 The control unit 30 refers to the antenna / radiation pattern switching table 33 in FIG. 13 and selects both the antenna used for communication and its radiation pattern (steps S135A and S140A). In this case, depending on whether or not a plurality of communication schemes or bands are used simultaneously (step S120), further, depending on whether or not an interference wave may occur in the reception band (step S125), Different antennas and radiation patterns are selected.
 図14のその他の点は図11の場合と同じであるので、同一または相当するステップには同一の参照符号を付して説明を繰り返さない。以下、アンテナ・放射パターン切替えテーブル33の具体例について説明する。 The other points in FIG. 14 are the same as those in FIG. 11, and the same or corresponding steps are denoted by the same reference numerals and description thereof will not be repeated. Hereinafter, a specific example of the antenna / radiation pattern switching table 33 will be described.
 [アンテナ制御の具体例]
 図15は、アンテナ・放射パターン切替えテーブルの具体的な一例を示す図である。図15に示す例では、LTE(登録商標)のバンド13を単独で使用する場合(設定1)、CDMA2000(登録商標)のバンドクラス0のサブクラス1を単独で使用する場合(設定2)、およびこれらをSV-LTEとして同時に使用する場合(設定3)が示されている。
[Specific examples of antenna control]
FIG. 15 is a diagram illustrating a specific example of an antenna / radiation pattern switching table. In the example shown in FIG. 15, when the LTE (registered trademark) band 13 is used alone (setting 1), when the subclass 1 of the band class 0 of CDMA2000 (registered trademark) is used alone (setting 2), and The case where these are used simultaneously as SV-LTE (setting 3) is shown.
 具体的に、LTE(登録商標)のバンド13を単独使用する場合(設定1)には、通信に使用するアンテナとしてアンテナANT1が選択され、アンテナANT1の放射パターンとして図9に示すように筺体50の長手方向(Y方向)の放射パターン53A,53Bが選択される。CDMA2000(登録商標)のバンドクラス0のサブクラス1を単独で使用する場合(設定2)には、通信に使用するアンテナとしてアンテナANT1が選択され、アンテナANT1の放射パターンとして図9に示すように筺体50の長手方向(Y方向)の放射パターン53A,53Bが選択される。 Specifically, when the LTE (registered trademark) band 13 is used alone (setting 1), the antenna ANT1 is selected as the antenna to be used for communication, and the radiation pattern of the antenna ANT1 is shown in FIG. The radial patterns 53A and 53B in the longitudinal direction (Y direction) are selected. When subclass 1 of band class 0 of CDMA2000 (registered trademark) is used alone (setting 2), antenna ANT1 is selected as the antenna to be used for communication, and the enclosure as shown in FIG. 9 shows the radiation pattern of antenna ANT1. 50 radial patterns 53A and 53B in the longitudinal direction (Y direction) are selected.
 SV-LTEによってLTE(登録商標)のバンド13とCDMA2000(登録商標)のバンドクラス0のサブクラス1とを同時使用する場合(設定3)には、図2で説明したように、LTE(登録商標)のバンド13およびCDMA2000(登録商標)のバンドクラス0のサブクラス1のいずれの受信帯域にも妨害波が発生する可能性がある。この場合、制御部30は、LTE(登録商標)のバンド13用としてアンテナANT1を選択し、CDMA2000(登録商標)のバンドクラス0のサブクラス1用としてアンテナANT3を選択する。すなわち、アイソレーションを良くするために、互いの距離ができるだけ離れたアンテナが選択される。さらに、制御部30は、図10に示すようにアンテナANT1の放射パターンとして筺体50の短手方向(X方向)の放射パターン56A,56Bを選択し、アンテナANT3の放射パターンとして筺体50の短手方向(X方向)の放射パターン57A,57Bを選択する。これらの放射パターンの選択によって、使用するアンテナANT1とANT3との間のアイソレーションをより大きくすることができる。 When the LTE (registered trademark) band 13 and the CDMA2000 (registered trademark) band class 0 subclass 1 are simultaneously used by SV-LTE (setting 3), as described with reference to FIG. ) Band 13 and subclass 1 of CDMA2000 (registered trademark) band class 0 may cause interference waves. In this case, the control unit 30 selects the antenna ANT1 for the LTE (registered trademark) band 13 and selects the antenna ANT3 for the subclass 1 of the band class 0 of CDMA2000 (registered trademark). That is, in order to improve isolation, antennas that are as far as possible from each other are selected. Further, as shown in FIG. 10, the control unit 30 selects the radiation patterns 56A and 56B in the short direction (X direction) of the housing 50 as the radiation pattern of the antenna ANT1, and the short of the housing 50 as the radiation pattern of the antenna ANT3. Radiation patterns 57A and 57B in the direction (X direction) are selected. By selecting these radiation patterns, the isolation between the antennas ANT1 and ANT3 to be used can be further increased.
 図16は、アンテナ・放射パターン切替えテーブルの他の具体例を示す図である。図16に示す例では、LTE(登録商標)のバンド4を単独使用する場合(設定1)、LTE(登録商標)のバンド17を単独使用する場合(設定2)、およびこれらをキャリアアグリゲーションとして同時使用する場合(設定3)が示されている。 FIG. 16 is a diagram showing another specific example of the antenna / radiation pattern switching table. In the example shown in FIG. 16, when the LTE (registered trademark) band 4 is used alone (setting 1), the LTE (registered trademark) band 17 is used alone (setting 2), and these are simultaneously used as carrier aggregation. The case of setting (setting 3) is shown.
 具体的に、LTE(登録商標)のバンド4を単独使用する場合(設定1)には、通信に使用するアンテナとしてアンテナANT2が選択され、アンテナANT2の放射パターンとして図9に示すように筺体50の短手方向(X方向)の放射パターン54A,54Bが選択される。LTE(登録商標)のバンド17を単独使用する場合(設定2)には、通信に使用するアンテナとしてアンテナANT1が選択され、アンテナANT1の放射パターンとして図9に示すように筺体50の長手方向(Y方向)の放射パターン53A,53Bが選択される。 Specifically, when the band 4 of LTE (registered trademark) is used alone (setting 1), the antenna ANT2 is selected as the antenna used for communication, and the housing 50 is shown as the radiation pattern of the antenna ANT2 as shown in FIG. The radiation patterns 54A and 54B in the short direction (X direction) are selected. When the LTE (registered trademark) band 17 is used alone (setting 2), the antenna ANT1 is selected as the antenna to be used for communication, and the radiation pattern of the antenna ANT1 is shown in FIG. (Y direction) radiation patterns 53A and 53B are selected.
 キャリアアグリゲーションとしてLTE(登録商標)のバンド4およびバンド17を同時使用する場合(設定3)には、図3で説明したように、バンド17の送信波の3倍高調波がバンド4の受信波の妨害波となり得る。この場合、制御部30は、LTE(登録商標)のバンド4用としてアンテナANT3を選択し、LTE(登録商標)のバンド17用としてアンテナANT1を選択する。すなわち、アイソレーションを良くするために、互いの距離ができるだけ離れたアンテナが選択される。さらに、制御部30は、図10に示すようにアンテナANT1の放射パターンとして筺体50の短手方向(X方向)の放射パターン56A,56Bを選択し、アンテナANT3の放射パターンとして筺体50の短手方向(X方向)の放射パターン57A,57Bを選択する。これらの放射パターンの選択によって、使用するアンテナANT1とANT3との間のアイソレーションをより大きくすることができる。 When LTE (registered trademark) band 4 and band 17 are used simultaneously as carrier aggregation (setting 3), as described with reference to FIG. Can be a disturbing wave. In this case, the control unit 30 selects the antenna ANT3 for the LTE (registered trademark) band 4 and selects the antenna ANT1 for the LTE (registered trademark) band 17. That is, in order to improve isolation, antennas that are as far as possible from each other are selected. Further, as shown in FIG. 10, the control unit 30 selects the radiation patterns 56A and 56B in the short direction (X direction) of the housing 50 as the radiation pattern of the antenna ANT1, and the short of the housing 50 as the radiation pattern of the antenna ANT3. Radiation patterns 57A and 57B in the direction (X direction) are selected. By selecting these radiation patterns, the isolation between the antennas ANT1 and ANT3 to be used can be further increased.
 [実施の形態2の効果]
 上記のように、実施の形態2による携帯端末装置では、複数のバンドを同時使用して通信するときに、送信波の高調波または送信波の相互変調波等が受信波の妨害波となるために受信感度が著しく劣化する場合の解決策が示される。具体的には、受信特性が劣化し得るバンドの組み合わせの場合には、使用するアンテナ間の距離ができるだけ大きくなるようにアンテナを選択するとともに、使用するアンテナ放射パターンが切り替えられる。これによって、使用する複数のアンテナ間のアイソレーションがより良好になり、結果として、妨害波による受信信号の品質低下を抑制することができる。
[Effect of Embodiment 2]
As described above, in the mobile terminal device according to the second embodiment, when communicating using a plurality of bands simultaneously, harmonics of the transmission wave or intermodulation waves of the transmission wave become interference waves of the reception wave. Shows a solution when the reception sensitivity is significantly deteriorated. Specifically, in the case of a combination of bands that can deteriorate the reception characteristics, the antenna is selected so that the distance between the antennas to be used is as large as possible, and the antenna radiation pattern to be used is switched. As a result, the isolation between the plurality of antennas to be used becomes better, and as a result, it is possible to suppress the deterioration of the quality of the received signal due to the interference wave.
 上記では携帯端末装置101に設けられたアンテナの総数が3個の場合について説明したが、アンテナ・放射パターン切替えテーブル33の設定内容を変更することによって、2個の場合または4個以上の場合にも上記の技術を容易に適用することができる。 In the above description, the total number of antennas provided in the mobile terminal device 101 is three. However, by changing the setting contents of the antenna / radiation pattern switching table 33, the number of antennas is two or four or more. Also, the above technique can be easily applied.
 <実施の形態3>
 図17は、実施の形態3による携帯端末装置102の構成を概略的に示すブロック図である。図17を参照して、携帯端末装置102は、妨害波の存在によって実際に受信信号の劣化が生じているか否かを検出する妨害検出回路90をさらに含む点で図1の携帯端末装置100と異なる。
<Embodiment 3>
FIG. 17 is a block diagram schematically showing a configuration of mobile terminal apparatus 102 according to the third embodiment. Referring to FIG. 17, mobile terminal apparatus 102 is different from mobile terminal apparatus 100 of FIG. 1 in that it further includes an interference detection circuit 90 that detects whether or not the received signal is actually deteriorated due to the presence of an interference wave. Different.
 実施の形態1の携帯端末装置100では、SV-LTEまたはキャリアアグリゲーションなどで複数のバンドを同時使用する場合において、受信帯域に妨害波が生じる可能性があるバンドの組み合わせの場合に、妨害波の影響を抑制するためにアンテナ放射パターンが変更された。しかしながら、妨害波が生じるバンドの組み合わせであっても、使用するチャネルによっては妨害波が実際に生じないこともあり得る。 In the mobile terminal device 100 according to the first embodiment, when a plurality of bands are used at the same time in SV-LTE or carrier aggregation, a combination of bands that may cause an interference wave in the reception band is used. The antenna radiation pattern was changed to suppress the effect. However, even in a combination of bands in which interference waves occur, interference waves may not actually occur depending on the channel used.
 そこで、実施の形態3の携帯端末装置102では、妨害検出回路90によって妨害波の実際に存在するか否かが検出される。制御部30のCPUは、受信帯域に妨害波が生じる可能性のあるバンドの組み合わせであっても、妨害検出回路90によって妨害波の発生が検出されなかった場合には、妨害波が発生する可能性がない場合からアンテナ放射パターンを変更しないように制御する。 Therefore, in the mobile terminal device 102 according to the third embodiment, the interference detection circuit 90 detects whether or not an interference wave actually exists. The CPU of the control unit 30 may generate a jamming wave if the jamming detection circuit 90 does not detect the occurrence of the jamming wave, even if the combination of bands may cause the jamming wave in the reception band. Control is made so that the antenna radiation pattern is not changed from the case where there is no characteristic.
 妨害波が存在するか否かを検出する方法として、様々な方法が提案されている。たとえば、特開平05-335855号公報(特許文献2)に記載の技術では、受信信号の減衰量を変更した際のSメータの出力の変化を調べることによって、相互変調妨害が存在するか否かが判定される。特開平06-232771号公報(特許文献3)に記載の技術では、相互変調妨害を検出するために、受信信号を補助信号で振幅変調し、この際に有効周波数範囲の外側に位置する側波帯を発生させ、振幅変調により生ずる少なくとも1つの側波帯の振幅と、中間周波信号中の受信された搬送波の振幅とが比較される。補助信号による振幅変調の際の変調度により定められる比の値から偏差が生じたか否かによって、相互変調妨害の存在が検出される。 Various methods have been proposed as a method for detecting whether or not an interfering wave exists. For example, in the technique described in Japanese Patent Application Laid-Open No. 05-335855 (Patent Document 2), it is determined whether or not there is intermodulation interference by examining the change in the output of the S meter when the attenuation of the received signal is changed. Is determined. In the technique described in Japanese Patent Laid-Open No. 06-232771 (Patent Document 3), in order to detect intermodulation interference, a received signal is amplitude-modulated with an auxiliary signal, and at this time, a side wave located outside the effective frequency range A band is generated and the amplitude of at least one sideband produced by amplitude modulation is compared with the amplitude of the received carrier in the intermediate frequency signal. The presence of intermodulation interference is detected depending on whether or not a deviation has occurred from the value of the ratio determined by the degree of modulation during amplitude modulation by the auxiliary signal.
 図17のその他の点は図1の場合と同じであるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない。 Since the other points in FIG. 17 are the same as those in FIG. 1, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 図18は、図17の制御部30によるアンテナ放射パターンの切替え手順を示すフローチャートである。図18のフローチャートは、ステップS125とステップS140との間にステップS130をさらに含む点で図11のフローチャートと異なる。 FIG. 18 is a flowchart showing a procedure for switching the antenna radiation pattern by the control unit 30 of FIG. The flowchart of FIG. 18 differs from the flowchart of FIG. 11 in that step S130 is further included between step S125 and step S140.
 図17、図18を参照して、制御部30のCPUは、複数の通信方式またはバンドを同時に利用し(ステップS120でYES)、かつ、受信帯域に妨害波が発生する可能性がある(ステップS125でYES)場合に、妨害検出回路90によって妨害波が実際に存在しているか否かを検出する。この結果、制御部30のCPUは、妨害波の存在が検出されなかった場合には(ステップS130でNO)、放射パターン切替えテーブル32の中で、アンテナの単独使用の場合または妨害波の発生の可能性がない場合を参照して放射パターンを選択する。一方、CPUは、妨害波の存在が検出された場合には(ステップS130でYES)、放射パターン切替えテーブル32の中で、妨害波の発生の可能性がある場合を参照して放射パターンを選択する。 Referring to FIGS. 17 and 18, the CPU of control unit 30 uses a plurality of communication methods or bands simultaneously (YES in step S120), and there is a possibility that an interference wave is generated in the reception band (step). In the case of YES in S125), the interference detection circuit 90 detects whether or not an interference wave actually exists. As a result, when the presence of the interference wave is not detected (NO in step S130), the CPU of the control unit 30 uses the antenna in the radiation pattern switching table 32 or the occurrence of the interference wave. Select the radiation pattern with reference to the case where there is no possibility. On the other hand, when the presence of an interference wave is detected (YES in step S130), the CPU selects a radiation pattern with reference to a case where an interference wave may be generated in the radiation pattern switching table 32. To do.
 なお、妨害検出回路90は、実施の形態2の携帯端末装置101にも設けることができる。制御部30のCPUは、受信帯域に妨害波が生じる可能性のあるバンドの組み合わせを同時に使用するときに、妨害波が実際に存在した場合には、使用するアンテナを変更するとともにアンテナ放射パターンを変更する。 The interference detection circuit 90 can also be provided in the mobile terminal device 101 of the second embodiment. The CPU of the control unit 30 changes the antenna to be used and changes the antenna radiation pattern when the interference wave actually exists when simultaneously using a combination of bands that may cause the interference wave in the reception band. change.
 <実施の形態4>
 [携帯端末装置の全体構成]
 図19は、実施の形態4による携帯端末装置の構成の一部を概略的に示すブロック図である。図19を参照して、携帯端末装置は、アンテナANT1~ANT3とアンテナ切替え装置40との間に接続されたアンテナ整合調整部70をさらに含む点で図13の携帯端末装置101と異なる。
<Embodiment 4>
[Overall configuration of portable terminal device]
FIG. 19 is a block diagram schematically showing a part of the configuration of the mobile terminal device according to the fourth embodiment. Referring to FIG. 19, the mobile terminal device is different from mobile terminal device 101 in FIG. 13 in that it further includes an antenna matching adjustment unit 70 connected between antennas ANT1-ANT3 and antenna switching device 40.
 各アンテナANT1~ANT3の周波数特性が広帯域に設計されている場合、通信に使用する通信規格および/またはバンドに応じて、通信に使用するアンテナの周波数特性を補償する必要がある。アンテナ整合調整部70は、制御部30の制御に従って、通信に使用するアンテナの整合状態および周波数帯域を調整する。 When the frequency characteristics of the antennas ANT1 to ANT3 are designed in a wide band, it is necessary to compensate for the frequency characteristics of the antenna used for communication according to the communication standard and / or band used for communication. The antenna matching adjustment unit 70 adjusts the matching state and frequency band of the antenna used for communication under the control of the control unit 30.
 具体的に図19の場合、アンテナ整合調整部70は、アンテナANT1,ANT2,ANT3にそれぞれ対応する可変整合回路71,72,73を含む。可変整合回路71~73の各々は、可変容量素子を含み、可変容量素子の容量値を変化させることによって対応するアンテナのインピーダンス整合を行うとともに、対応するアンテナの共振周波数を変化させることができる。 Specifically, in the case of FIG. 19, the antenna matching adjustment unit 70 includes variable matching circuits 71, 72, and 73 corresponding to the antennas ANT1, ANT2, and ANT3, respectively. Each of the variable matching circuits 71 to 73 includes a variable capacitance element. By changing the capacitance value of the variable capacitance element, impedance matching of the corresponding antenna can be performed, and the resonance frequency of the corresponding antenna can be changed.
 制御部30のCPUは、通信に使用する通信規格/バンドに応じて、アンテナ整合調整部70にアンテナチューニング情報(すなわち、可変整合回路71~73の可変容量素子の設定値に関する情報)を出力する。アンテナ整合調整部70は、CPUから受信したアンテナチューニング情報に従って、可変整合回路71~73の可変容量素子の設定値を変更する。 The CPU of the control unit 30 outputs antenna tuning information (that is, information regarding the set values of the variable capacitance elements of the variable matching circuits 71 to 73) to the antenna matching adjustment unit 70 according to the communication standard / band used for communication. . The antenna matching adjustment unit 70 changes the setting values of the variable capacitance elements of the variable matching circuits 71 to 73 according to the antenna tuning information received from the CPU.
 送受信する信号の周波数帯域(バンド)/通信規格と可変整合回路71~73の可変容量素子の設定値との対応関係は、アンテナ整合テーブル34としてメモリ31に記憶されている。制御部30は、アンテナ整合テーブル34を参照することによって可変整合回路71~73に含まれる可変容量素子の設定値(アンテナチューニング情報)を決定する。 The correspondence relationship between the frequency band (band) / communication standard of signals to be transmitted and received and the setting values of the variable capacitance elements of the variable matching circuits 71 to 73 is stored in the memory 31 as the antenna matching table 34. The control unit 30 determines the setting values (antenna tuning information) of the variable capacitance elements included in the variable matching circuits 71 to 73 by referring to the antenna matching table 34.
 図19のその他の点は図1と同様であるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない。 Since other points in FIG. 19 are the same as those in FIG. 1, the same reference numerals are given to the same or corresponding parts, and the description will not be repeated.
 [可変整合回路の構成例]
 図20は、図19の可変整合回路71~73の一例を示す回路図である。図20を参照して、可変整合回路71~73の各々は、インダクタ素子84,45と、可変容量素子86とを含む。インダクタ素子84,45のインダクタンス値をそれぞれL1(nH)、L2(nH)とし、可変容量素子86の容量値をC1(pF)とする。
[Configuration example of variable matching circuit]
FIG. 20 is a circuit diagram showing an example of the variable matching circuits 71 to 73 in FIG. Referring to FIG. 20, each of variable matching circuits 71-73 includes inductor elements 84 and 45 and variable capacitance element 86. The inductance values of the inductor elements 84 and 45 are L1 (nH) and L2 (nH), respectively, and the capacitance value of the variable capacitance element 86 is C1 (pF).
 図20に示す例では、インダクタ素子84は入出力ノード82と83との間に接続され、インダクタ素子85は入出力ノード82と接地ノードGNDとの間に接続され、可変容量素子86は入出力ノード83と接地ノードGNDとの間に接続される。入出力ノード82,83の一方はアンテナANTに接続される。入出力ノード82,83の他方はアンテナ切替え装置40に接続され、アンテナ切替え装置40を介してデュプレクサ13,23と接続される。 In the example shown in FIG. 20, inductor element 84 is connected between input / output nodes 82 and 83, inductor element 85 is connected between input / output node 82 and ground node GND, and variable capacitance element 86 is input / output. Connected between node 83 and ground node GND. One of the input / output nodes 82 and 83 is connected to the antenna ANT. The other of the input / output nodes 82 and 83 is connected to the antenna switching device 40, and is connected to the duplexers 13 and 23 via the antenna switching device 40.
 可変容量素子86として、たとえば、可変容量ダイオード(バリキャップまたはバラクタとも称する)を用いることができる。もしくは、スイッチによって並列に接続されるコンデンサの個数を切り替えることによって容量値を変化させるタイプの可変容量素子を用いることもできる。もしくは、MEMS(Micro Electro Mechanical System)を利用してコンデンサの電極間距離を変化させるタイプの可変容量素子を用いることもできる。 As the variable capacitance element 86, for example, a variable capacitance diode (also referred to as a varicap or a varactor) can be used. Alternatively, a variable capacitance element of a type that changes the capacitance value by switching the number of capacitors connected in parallel by a switch can be used. Alternatively, a variable capacitance element of a type that changes the distance between the electrodes of the capacitor using MEMS (Micro Electro Mechanical System) can be used.
 なお、図20の構成と異なり、容量素子は一定の容量値を有し、インダクタ素子のインダクタンスが可変となるようにしてもよいし、容量素子の容量値およびインダクタ素子のインダクタンスの両方を可変としてもよい。 Unlike the configuration of FIG. 20, the capacitive element may have a constant capacitance value and the inductance of the inductor element may be variable, or both the capacitance value of the capacitive element and the inductance of the inductor element may be variable. Also good.
 [アンテナ整合テーブルの例]
 図21は、図19のメモリ31に記憶されるアンテナ整合テーブル34の一例を示す図である。図21に示すように、アンテナANTで使用される通信規格/バンドに応じて図20の可変容量素子86の容量値C1(pF)の設定値が定められている。インダクタ素子84,45のインダクタンス値L1,L2(nH)は固定値である。
[Example of antenna matching table]
FIG. 21 is a diagram showing an example of the antenna matching table 34 stored in the memory 31 of FIG. As shown in FIG. 21, the set value of the capacitance value C1 (pF) of the variable capacitance element 86 in FIG. 20 is determined according to the communication standard / band used in the antenna ANT. The inductance values L1 and L2 (nH) of the inductor elements 84 and 45 are fixed values.
 [アンテナ切替え動作の具体例]
 図22は、図19の制御部30による、使用アンテナおよび放射パターンの切替え手順を示すフローチャートである。図19、図22を参照して、図22のフローチャートは、ステップS135AまたはS140Aの後に実行されるステップS145をさらに含む点で図14のフローチャートと異なる。
[Specific example of antenna switching operation]
FIG. 22 is a flowchart showing the switching procedure of the antenna used and the radiation pattern by the control unit 30 of FIG. Referring to FIGS. 19 and 22, the flowchart of FIG. 22 differs from the flowchart of FIG. 14 in that it further includes step S145 executed after step S135A or S140A.
 実施の形態4の場合、ステップS135AまたはS140Aにおいて通信に使用するアンテナを選択した場合には、制御部30は、メモリ31に格納されているアンテナ整合テーブル34に従って、通信に使用するアンテナの整合状態を調整する(ステップS145)。具体的に、制御部30はアンテナ整合調整部70に制御信号を出力し、この制御信号に従って対応する可変整合回路の設定値が変更される。 In the case of the fourth embodiment, when the antenna used for communication is selected in step S135A or S140A, the control unit 30 matches the antenna matching state used for communication according to the antenna matching table 34 stored in the memory 31. Is adjusted (step S145). Specifically, the control unit 30 outputs a control signal to the antenna matching adjustment unit 70, and the set value of the corresponding variable matching circuit is changed according to the control signal.
 たとえば、SV-LTEによってLTE(登録商標)のバンド13とCDMA2000(登録商標)のバンドクラス0のサブクラス1とを同時使用する場合には、制御部30は、図15に示すアンテナ・放射パターン切替えテーブルに従って、CDMA2000(登録商標)の通信用としてアンテナANT3を選択し、LTE(登録商標)のバンド13の通信用としてアンテナANT1を選択する。さらに、制御部30は、図21に示すアンテナ整合テーブルに従って、アンテナANT3に対応する可変整合回路73の可変容量素子の容量値C1をA3(pF)に設定し、アンテナANT1に対応する可変整合回路71の可変量素子の容量値C1をA2(pF)に設定する。 For example, when the LTE (registered trademark) band 13 and the CDMA2000 (registered trademark) band class 0 subclass 1 are simultaneously used by SV-LTE, the control unit 30 performs antenna / radiation pattern switching shown in FIG. According to the table, antenna ANT3 is selected for communication of CDMA2000 (registered trademark), and antenna ANT1 is selected for communication of band 13 of LTE (registered trademark). Furthermore, the control unit 30 sets the capacitance value C1 of the variable capacitance element of the variable matching circuit 73 corresponding to the antenna ANT3 to A3 (pF) according to the antenna matching table shown in FIG. 21, and the variable matching circuit corresponding to the antenna ANT1. The capacitance value C1 of the variable quantity element 71 is set to A2 (pF).
 キャリアアグリゲーションによってLTE(登録商標)のバンド4とバンド17とを同時使用する場合には、制御部30は、図16に示すアンテナ・放射パターン切替えテーブルに従って、バンド4の通信用としてアンテナANT3を選択し、バンド17の通信用としてアンテナANT1を選択する。さらに、制御部30は、図21に示すアンテナ整合テーブル34に従って、アンテナANT3に対応する可変整合回路73の可変容量素子の容量値C1をA1(pF)に設定し、アンテナANT1に対応する可変整合回路71の可変量素子の容量値C1をA2(pF)に設定する。 When LTE (R) band 4 and band 17 are used simultaneously by carrier aggregation, the control unit 30 selects the antenna ANT3 for communication of band 4 according to the antenna / radiation pattern switching table shown in FIG. The antenna ANT1 is selected for band 17 communication. Furthermore, the control unit 30 sets the capacitance value C1 of the variable capacitance element of the variable matching circuit 73 corresponding to the antenna ANT3 to A1 (pF) according to the antenna matching table 34 shown in FIG. 21, and the variable matching corresponding to the antenna ANT1. The capacitance value C1 of the variable element of the circuit 71 is set to A2 (pF).
 [まとめと効果]
 上記のとおり、実施の形態4による携帯端末装置は、実施の形態2の携帯端末装置101の構成に加えてアンテナ整合調整部70をさらに含む。したがって、携帯端末装置は実施の形態2で説明した効果を奏するとともに、各アンテナの特性を向上させることができる。なお、上記のアンテナ整合調整部70は、実施の形態1の携帯端末装置100にも設けることができる。
[Summary and effect]
As described above, the mobile terminal device according to the fourth embodiment further includes the antenna matching adjustment unit 70 in addition to the configuration of the mobile terminal device 101 of the second embodiment. Therefore, the mobile terminal device can achieve the effects described in Embodiment 2 and improve the characteristics of each antenna. The antenna matching adjustment unit 70 described above can also be provided in the mobile terminal device 100 according to the first embodiment.
 <実施の形態5>
 図23は、実施の形態5による携帯端末装置104の構成を概略的に示すブロック図である。図23の携帯端末装置104は、デュプレクサ13,23の各々と対応の電力増幅器(PA)12,22との間に減衰器14,24がそれぞれ設けられている点で図13の携帯端末装置101と異なる。その他の点は図13の携帯端末装置101と同様であるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない場合がある。
<Embodiment 5>
FIG. 23 is a block diagram schematically showing a configuration of the mobile terminal device 104 according to the fifth embodiment. The portable terminal device 104 in FIG. 23 is provided with attenuators 14 and 24 between the duplexers 13 and 23 and the corresponding power amplifiers (PA) 12 and 22, respectively. And different. Since the other points are the same as those of the mobile terminal device 101 of FIG. 13, the same or corresponding parts are denoted by the same reference numerals and the description thereof may not be repeated.
 図23を参照して、減衰器14,24は、制御部30のCPUの制御に従って、対応の電力増幅器12,22から出力された送信信号Tx(1),Tx(2)の強度を規格で許容される下限までの範囲で減衰させる。これによって、2つのバンドを同時に利用する場合において、送信波の高調波または相互変調波等が受信波の妨害波となり得る場合でも、妨害波による受信信号の品質劣化をより一層低減することができる。 Referring to FIG. 23, attenuators 14 and 24 use the standards to set the strengths of transmission signals Tx (1) and Tx (2) output from corresponding power amplifiers 12 and 22 according to the control of CPU of control unit 30. Attenuate within the allowable lower limit. As a result, when two bands are used at the same time, even when a harmonic wave or intermodulation wave of the transmission wave can become an interference wave of the reception wave, the quality deterioration of the reception signal due to the interference wave can be further reduced. .
 図24は、図23の制御部30によるアンテナ切替え動作を示すフローチャートである。図24のフローチャートは、ステップS150の後にステップS155が追加されている点で図14のフローチャートと異なる。ステップS155では、既に説明したように、減衰器14,24は、制御部30のCPUの制御に従って、対応の電力増幅器12,22から出力された送信信号Tx(1),Tx(2)の強度を規格で許容される下限までの範囲で減衰させる。なお、上記の減衰器14,24は、図1に示す実施の形態1の携帯端末装置100にも設けることができる。 FIG. 24 is a flowchart showing the antenna switching operation by the control unit 30 of FIG. The flowchart of FIG. 24 differs from the flowchart of FIG. 14 in that step S155 is added after step S150. In step S155, as already described, the attenuators 14 and 24 perform the intensity of the transmission signals Tx (1) and Tx (2) output from the corresponding power amplifiers 12 and 22 according to the control of the CPU of the control unit 30. Is attenuated to the lower limit allowed by the standard. The attenuators 14 and 24 can also be provided in the mobile terminal device 100 of the first embodiment shown in FIG.
 今回開示された実施の形態はすべての点で例示であって制限的なものでないと考えられるべきである。たとえば、実施の形態3~5の各特徴は相互に組み合わせることができるし、相互に組み合わせた構成を実施の形態1の形態端末装置100および実施の形態2の形態端末装置101のいずれにも適用することができる。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. For example, the features of the third to fifth embodiments can be combined with each other, and the combined configuration is applied to both the form terminal apparatus 100 of the first embodiment and the form terminal apparatus 101 of the second embodiment. can do. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10 信号生成部、11,21 トランシーバ、12,22 電力増幅器、13,23 デュプレクサ、14,24 減衰器、30 制御部、31 メモリ、32 放射パターン切替えテーブル、33 アンテナ・放射パターン切替えテーブル、34 アンテナ整合テーブル、40 アンテナ切替え装置、41 放射パターン切替え部、50 筺体、51 タッチスクリーン、52 操作キー、60 給電部、61,62 チョークコイル、63 制御端子、70 アンテナ整合調整部、71~73 可変整合回路、86 可変容量素子、90 妨害検出回路、100,101,102,104 携帯端末装置、ANT1~ANT3 アンテナ。 10 signal generation unit, 11, 21 transceiver, 12, 22 power amplifier, 13, 23 duplexer, 14, 24 attenuator, 30 control unit, 31 memory, 32 radiation pattern switching table, 33 antenna / radiation pattern switching table, 34 antenna Matching table, 40 antenna switching device, 41 radiation pattern switching unit, 50 housing, 51 touch screen, 52 operation keys, 60 power feeding unit, 61, 62 choke coil, 63 control terminal, 70 antenna matching adjustment unit, 71-73 variable matching Circuit, 86 variable capacitance element, 90 interference detection circuit, 100, 101, 102, 104 mobile terminal device, ANT1 to ANT3 antenna.

Claims (5)

  1.  複数のアンテナと、
     前記複数のアンテナの各々を使用状態または非使用状態に切替え可能であるとともに、使用状態の各アンテナの放射パターンを切替え可能なアンテナ切替え装置と、
     前記複数のアンテナのうち2以上のアンテナを使用状態にして2以上の周波数帯域を用いて通信を行うとき、通信に用いる周波数帯域の組合せによって妨害波が発生する可能性がある場合には、妨害波が発生する可能性がない場合に比べて各使用状態のアンテナの放射パターンが異なるように前記アンテナ切替え装置を制御する制御部とを備える、携帯端末装置。
    Multiple antennas,
    An antenna switching device capable of switching each of the plurality of antennas to a use state or a non-use state, and capable of switching a radiation pattern of each antenna in the use state;
    When communication is performed using two or more frequency bands with two or more of the plurality of antennas being used, interference may occur if there is a possibility that interference waves may be generated depending on the combination of frequency bands used for communication. A portable terminal device comprising: a control unit that controls the antenna switching device so that a radiation pattern of an antenna in each use state differs from that in a case where there is no possibility of generation of waves.
  2.  前記制御部は、2以上の周波数帯域を用いて通信を行うとき妨害波が発生する可能性がある場合には、妨害波が発生する可能性がない場合に比べて使用状態にするアンテナの組合せが異なるように前記アンテナ切替え装置を制御する、請求項1に記載の携帯端末装置。 In the case where there is a possibility that an interference wave is generated when communication is performed using two or more frequency bands, the control unit is a combination of antennas to be used in comparison with a case where there is no possibility that the interference wave is generated. The mobile terminal device according to claim 1, wherein the antenna switching device is controlled such that the antenna switching devices are different from each other.
  3.  前記携帯端末装置は、2以上の周波数帯域を用いて通信を行なうとき妨害波が発生する可能性がある場合に、各周波数帯域の受信帯域に妨害波が発生しているか否かを検出する妨害検出回路をさらに備え、
     前記制御部は、前記妨害検出回路によって妨害波の発生が検出されなかった場合には、妨害波が発生する可能性がない場合と比べて各使用状態のアンテナの放射パターンが異ならないように前記アンテナ切替え装置を制御する、請求項1に記載の携帯端末装置。
    The mobile terminal device detects whether or not an interference wave is generated in the reception band of each frequency band when there is a possibility that the interference wave is generated when communication is performed using two or more frequency bands. A detection circuit;
    The control unit is configured so that when the occurrence of an interference wave is not detected by the interference detection circuit, the radiation pattern of the antenna in each use state is not different from the case where there is no possibility that the interference wave is generated. The portable terminal device according to claim 1, which controls an antenna switching device.
  4.  前記複数のアンテナと接続され、前記制御部の制御に従って前記複数のアンテナの整合状態を変化可能なアンテナ整合調整部をさらに備え、
     前記制御部は、使用状態のアンテナから送受信する信号の周波数帯域に応じて、前記使用状態のアンテナの整合状態を前記アンテナ整合調整部によって調整する、請求項1~3のいずれか1項に記載の携帯端末装置。
    An antenna matching adjustment unit connected to the plurality of antennas and capable of changing a matching state of the plurality of antennas according to control of the control unit;
    The control unit according to any one of claims 1 to 3, wherein the control unit adjusts a matching state of the antenna in use by the antenna matching adjustment unit according to a frequency band of a signal transmitted and received from the antenna in use. Mobile terminal device.
  5.  使用状態のアンテナに供給するための送信信号を生成する信号生成部と、
     前記制御部の制御に従って前記信号生成部で生成された送信信号を許容範囲内で減衰させ、減衰後の送信信号を前記使用状態のアンテナに供給する減衰器とをさらに備える、請求項1~4のいずれか1項に記載の携帯端末装置。
    A signal generator for generating a transmission signal to be supplied to the antenna in use;
    An attenuator that further attenuates the transmission signal generated by the signal generation unit within an allowable range according to the control of the control unit and supplies the attenuated transmission signal to the antenna in use. The mobile terminal device according to any one of the above.
PCT/JP2015/050220 2014-01-10 2015-01-07 Mobile terminal device WO2015105117A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014003307A JP6257334B2 (en) 2014-01-10 2014-01-10 Mobile terminal device
JP2014-003307 2014-01-10

Publications (1)

Publication Number Publication Date
WO2015105117A1 true WO2015105117A1 (en) 2015-07-16

Family

ID=53523942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050220 WO2015105117A1 (en) 2014-01-10 2015-01-07 Mobile terminal device

Country Status (2)

Country Link
JP (1) JP6257334B2 (en)
WO (1) WO2015105117A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108540663A (en) * 2018-03-30 2018-09-14 联想(北京)有限公司 A kind of control method and device
WO2019123748A1 (en) * 2017-12-19 2019-06-27 アルプスアルパイン株式会社 Communication system and wireless sensor system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105170A1 (en) * 2016-12-06 2018-06-14 シャープ株式会社 Transparent display device and transparent display system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046407A (en) * 2002-05-15 2003-02-14 Sharp Corp Mobile radio equipment
JP2007037170A (en) * 2006-08-28 2007-02-08 Toshiba Corp Mobile communication terminal
JP2009290324A (en) * 2008-05-27 2009-12-10 Nippon Telegr & Teleph Corp <Ntt> Radio communication device, and interference electric power reducing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5412871B2 (en) * 2009-02-24 2014-02-12 富士通株式会社 Antenna, radiation pattern switching method thereof, and wireless communication apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046407A (en) * 2002-05-15 2003-02-14 Sharp Corp Mobile radio equipment
JP2007037170A (en) * 2006-08-28 2007-02-08 Toshiba Corp Mobile communication terminal
JP2009290324A (en) * 2008-05-27 2009-12-10 Nippon Telegr & Teleph Corp <Ntt> Radio communication device, and interference electric power reducing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123748A1 (en) * 2017-12-19 2019-06-27 アルプスアルパイン株式会社 Communication system and wireless sensor system
CN108540663A (en) * 2018-03-30 2018-09-14 联想(北京)有限公司 A kind of control method and device

Also Published As

Publication number Publication date
JP6257334B2 (en) 2018-01-10
JP2015133578A (en) 2015-07-23

Similar Documents

Publication Publication Date Title
US20240022284A1 (en) Radio frequency communication systems with interference cancellation for coexistence
EP2728763A1 (en) Cognitive radio RF front end
US8942641B2 (en) Antenna apparatus and communication apparatus
US11736140B2 (en) Mixed signal low noise interference cancellation
US9614571B2 (en) Multi-band isolator assembly
US10277287B2 (en) Antenna system and harmonic suppression element
KR20030009394A (en) Multiple antenna impedance optimization
US20070232367A1 (en) Antenna compensation system and method in a communications device
CN104821869B (en) Duplex apparatus, wireless device and related methods
US20070232236A1 (en) Calibration system and method in a communications device
JP6257334B2 (en) Mobile terminal device
US9014245B2 (en) Method and apparatus for compensating for phase shift in a communication device
JP2015041791A (en) Portable terminal device
Kaltiokallio et al. A 0.7–2.7-GHz blocker-tolerant compact-size single-antenna receiver for wideband mobile applications
GB2543741A (en) Multi channel communications
US8373492B2 (en) High-frequency switch module and high-frequency switch apparatus
JP6798521B2 (en) Multiplexers, high frequency front-end circuits and communication equipment
JP2009272907A (en) Radio communication terminal
EP3465922B1 (en) Duplexing apparatus, transceiver apparatus and method of compensating for signal leakage
CN111937313B (en) High frequency module
JP4830880B2 (en) Portable wireless terminal and antenna matching circuit used for portable wireless terminal
JP2004235815A (en) Portable telephone
JP2013168790A (en) Module for radio communication terminal and radio communication method
Shi 9 Aperture-Tunable
CN116683930A (en) Radio frequency transceiver and system, terminal, base station and radio frequency signal clutter suppression method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15735567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15735567

Country of ref document: EP

Kind code of ref document: A1