WO2015104943A1 - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
WO2015104943A1
WO2015104943A1 PCT/JP2014/082734 JP2014082734W WO2015104943A1 WO 2015104943 A1 WO2015104943 A1 WO 2015104943A1 JP 2014082734 W JP2014082734 W JP 2014082734W WO 2015104943 A1 WO2015104943 A1 WO 2015104943A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling bearing
bearing
cage
notch
rolling
Prior art date
Application number
PCT/JP2014/082734
Other languages
French (fr)
Japanese (ja)
Inventor
庸児 堀井
政幸 伊藤
剛 奥永
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to DE212014000240.0U priority Critical patent/DE212014000240U1/en
Priority to CN201490001309.6U priority patent/CN206072111U/en
Publication of WO2015104943A1 publication Critical patent/WO2015104943A1/en
Priority to AU2016100959A priority patent/AU2016100959A4/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6681Details of distribution or circulation inside the bearing, e.g. grooves on the cage or passages in the rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/007Cooling of bearings of rolling bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]

Definitions

  • the present invention relates to a rolling bearing.
  • Rolling bearings generate heat due to rolling resistance caused by rotation of rolling elements and races, slip resistance on the guide surface of the cage, and agitation resistance of lubricating oil.
  • the stirring resistance is a resistance generated when the rolling elements scrape the lubricating oil present inside the bearing.
  • a large proportion of heat is generated due to the stirring resistance of the lubricating oil.
  • the lubricating oil also has a cooling action.
  • a rolling bearing in which oil lubrication for forcibly circulating the lubricating oil is performed is cooled by heat exchange when the lubricating oil supplied passes through the inside of the bearing.
  • the effect of this cooling is determined according to the speed of the oil when the lubricating oil passes through the inside of the bearing, the amount of oil supply, and the like.
  • the bearing in which oil bath lubrication is performed is cooled by heat exchange between the stagnant lubricating oil and the bearing.
  • the effect of this cooling is determined according to the oil flow (circulation) inside the bearing and the amount of lubricating oil. In any lubrication method, the cooling effect is determined by the balance with heat generation.
  • Patent Document 1 the structure of the housing is complicated and large-scale, and the shape of the rotating member such as the cage or the raceway is also complicated, so that the manufacturing cost increases and the assemblability decreases. There is also a problem.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a rolling bearing with improved cooling capacity without increasing the manufacturing cost.
  • the present invention has the following features.
  • a rolling bearing comprising: A notch is formed on the inner peripheral surface of the cage, Radial dimension h of the notch, the inner diameter D 1 of the outer ring, the outer diameter D 2 of the retainer, the bearing pitch circle diameter dm, the number z of the rolling element, the outer diameter Da of the rolling element, A rolling bearing according to claim 1, wherein a bearing internal dimension ratio ⁇ represented by the formula (1) satisfies 1.4 ⁇ ⁇ ⁇ 2.1 by the axial dimension L of the rolling element.
  • FIG. 1 is a sectional view of a rolling bearing 100 according to the first embodiment of the present invention
  • FIG. 2 is a side view of the rolling bearing 100
  • FIG. 3 is a perspective view of a cage 10 of the rolling bearing 100
  • FIG. 4 is a diagram for explaining the circulation of lubricating oil inside the bearing 100.
  • the rolling bearing 100 includes a plurality of cylindrical rollers 9 (rolling elements) between an outer ring raceway surface 2 formed on the inner peripheral surface of the outer ring 1 and an inner ring raceway surface 7 formed on the outer peripheral surface of the inner ring 6. .
  • the rolling bearing 100 is a cylindrical roller bearing generally called an NU type in which collars 3 are formed at both axial ends of the outer ring 1.
  • the rolling bearing 100 is used under oil lubrication.
  • the cage 10 includes a pair of annular portions 11 and 12 arranged side by side in the axial direction, a plurality of column portions 13 that connect the pair of annular portions 11 and 12 in the axial direction, and a pair of annular portions 11. , 12 and the column part 13, and a plurality of pockets 14 for accommodating the cylindrical rollers 9 one by one.
  • the cage 10 holds the plurality of cylindrical rollers 9 (rolling elements) in the plurality of pockets 14 provided at equal intervals in the circumferential direction.
  • the outer peripheral surface of the cage 10 is a straight line in the axial direction.
  • a notch portion 15 is formed on the inner peripheral surface of the column portion 13 of the cage 10.
  • the notch 15 is formed to have a rectangular cross section.
  • the lubricating oil passes through the pocket 14 by the pressure and centrifugal force described above, flows out to the outer peripheral surface of the cage 10, and further flows out to the outer ring raceway surface 2.
  • the outer ring raceway surface 2 also generates heat due to the stirring resistance.
  • the lubricating oil that has flowed out to the outer peripheral surface of the cage 10 and the outer ring raceway surface 2 pushes out the lubricating oil accumulated between them one after another.
  • This pressure overcomes the flow resistance in the gap between the outer peripheral surface of the rotating cage 10 and the inner peripheral surface of the outer ring 1 that is a stationary wheel, whereby the lubricating oil is discharged (outflowed) to the outside of the bearing. Is done.
  • the flow of the lubricating oil passing through the rolling bearing 100 causes heat exchange between the rolling bearing 100 and the lubricating oil, and the rolling bearing 100 is cooled. Further, the amount of the lubricating oil accumulated in the rolling bearing 100 acts on both cooling and stirring resistance. Therefore, the inflow amount of the lubricating oil, the amount of the lubricating oil accumulated in the rolling bearing 100, and the outflow amount of the lubricating oil greatly affect the bearing temperature. Therefore, in order to obtain a sufficient temperature reduction effect, it is desirable that the inflow amount and the outflow amount of the lubricating oil are balanced.
  • the gap between the outer peripheral surface of the cage 10 and the inner peripheral surface of the outer ring 1 acts as a throttle that adjusts the amount of lubricating oil discharged.
  • the size of the notch 15 of the cage 10 affects the amount of lubricating oil flowing into the rolling bearing 100. Therefore, in the present embodiment, not only the notch 15 is formed on the inner peripheral surface of the cage 10, but also the radial dimension of the notch 15 (hereinafter also referred to as a notch amount) and the inner periphery of the outer ring 1.
  • the bearing temperature reduction can be improved by appropriately setting the dimension of the gap between the surface and the outer peripheral surface of the cage 10 and other combined parameters.
  • the centrifugal force acting on the lubricating oil accumulated in the notch 15 is represented by the centrifugal force acting on the pitch circle diameter dm of the rolling bearing 100.
  • the flow velocity v of the lubricating oil due to the centrifugal force is expressed by the energy equation using the pitch circle diameter dm of the rolling bearing 100, the revolution speed ⁇ of the cage 10, the notch amount h of the notch 15 and the mass m of the lubricating oil. It is expressed as follows.
  • cross-sectional area A in the inlet portion, the outer diameter Da of the cylindrical rollers 9, the length of the cylindrical roller 9 (axial dimension) L, with the number z of the cylindrical rollers 9, be expressed as follows it can.
  • runoff Q out is the cross-sectional area S out of the outlet portion, the lubricating oil of the head (liquid level) H (see FIG. 6), the oil discharge resistor R, with a coefficient B, represented as follows.
  • the cross-sectional area S out of the outflow portion is expressed as follows using the inner diameter D 1 of the outer ring 1 (the inner diameter of the collar 3) D 1 , the outer diameter D 2 of the cage 10, and the pitch circle diameter dm of the rolling bearing 100. Can be represented.
  • oil drain resistance R can be expressed as follows.
  • the head H is divided by the pitch circle diameter dm of the rolling bearing 100, and this value is defined as the bearing internal dimension ratio ⁇ .
  • FIG. 8 is a graph showing the results of this rotation test, and shows the relationship between the bearing internal dimension ratio ⁇ and the temperature reduction effect in the rolling bearing 100.
  • FIG. 8 shows that even if the rotational speed is changed to n and m, a sufficient temperature reduction effect can be obtained when the bearing internal dimension ratio ⁇ satisfies 1.4 ⁇ ⁇ ⁇ 2.1. .
  • FIG. 9 is a graph showing the results of this rotation test. From FIG. 9, according to the rolling bearing of this specification in which the notch 15 is formed on the inner peripheral surface of the cage 10 and the bearing internal dimension ratio ⁇ satisfies 1.4 ⁇ ⁇ ⁇ 2.1, It can be seen that the temperature reduction effect is clearly obtained as compared with the taper type rolling bearing.
  • the notch 15 is formed on the inner peripheral surface of the cage 10, and the bearing internal dimension ratio ⁇ satisfies 1.4 ⁇ ⁇ ⁇ 2.1.
  • filling since lubricating oil does not stay in the rolling bearing 100, an efficient cooling effect can be acquired, without raising manufacturing cost.
  • oil lubrication particularly oil bath lubrication is used, it has a cooling capacity comparable to jet lubrication, and a sufficient temperature reduction effect can be obtained.
  • the rolling bearing 100 can obtain a sufficient temperature reduction effect even when used in oil-air lubrication or splash lubrication as well as jet lubrication.
  • (Modification) 10 and 11 show a rolling bearing 100 ′ and a cage 10 ′ used for the rolling bearing 100 ′ according to a modification of the first embodiment. Also in this cage 10 ′, a cutout portion 15 having a rectangular cross section is formed on the inner peripheral surface. Furthermore, annular notches 16 and 17 that are notched corresponding to the collars 3 of the outer ring 1 are formed at both ends in the axial direction of the cage 10 ′, that is, the outer peripheral surfaces of the annular portions 11 and 12. . Even if the outer peripheral surface of the cage 10 ′ has such a shape, a temperature reduction effect can be obtained as long as the bearing internal dimension ratio ⁇ satisfies the relationship (1.4 ⁇ ⁇ ⁇ 2.1) described above.
  • a notch 215 is formed on the inner peripheral surface of the column part 213 of the cage 210. Unlike the notch 15 in the first embodiment, the notch 215 is formed to have an arc cross section.
  • the cross-sectional area S in if it is possible to replace the equivalent sectional area S in the notches 15 in the first embodiment, the bearing As long as the dimensional ratio ⁇ satisfies the above relationship (1.4 ⁇ ⁇ ⁇ 2.1), it is considered that the temperature reduction effect can be obtained as in the first embodiment.
  • the cross-sectional area of one notch corresponding to one pocket is S in
  • the sum ⁇ S in of the cross-sectional areas of the notch is the notch amount h of the notch 215 and the notch 215.
  • the notch amount h should satisfy the following formula.
  • the outer circumferential surface of the annular portions 311 and 312 of the cage 310 is formed in an arc shape at a location adjacent to the pocket 314 in the axial direction.
  • a recess 316 is formed. Therefore, the outflow part from which the lubricating oil is discharged in the rolling bearing 300 has a non-uniform cross section on the circumference.
  • the cross-sectional area S out of the outflow portion (inner diameter of the collar 3) having an inner diameter of the outer ring 1 D 1, and the outer diameter D 2 of the retainer 310 can be expressed as follows.
  • the rolling bearing is a cylindrical roller bearing, but other rolling bearings may be used.
  • the cross-sectional shape of the notch formed on the inner peripheral surface of the cage is not limited to the rectangular shape described in the first embodiment or the arc shape described in the second embodiment, and the cross-sectional area of the notch is Any shape is possible as long as it can be equivalently replaced.
  • the notches are formed in the column portions corresponding to all the pockets, but the total sum ⁇ S in of the cross-sectional areas of the notches may be replaced with the notch amount h.
  • notches may be formed in the pillars corresponding to only some pockets.
  • a recessed part may be formed corresponding to only some pockets.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

A rolling bearing (100) comprising: an outer ring (1); an inner ring (6); and a holder (10) that holds each of a plurality of cylindrical rollers (9) inserted between the outer ring (1) and the inner ring (6), by using a plurality of pockets (14) provided at even intervals in the circumferential direction. The inner circumferential surface of the holder (10) has a notched section (15) formed therein. The bearing internal dimension ratio (α), indicated by formula (1) is 1.4 ≤ α ≤ 2.1, said formula using the radial direction dimension (h) of the notched section (15), the inside diameter dimension (D1) of the outer ring, the outside diameter dimension (D2) of the holder (10), the pitch circle diameter (dm) of the rolling bearing (100), the number (z) of cylindrical rollers (9), the outer diameter dimension (Da) of the cylindrical rollers (9), and the axial direction dimension (L) of the cylindrical rollers (9).

Description

転がり軸受Rolling bearing
 本発明は、転がり軸受に関する。 The present invention relates to a rolling bearing.
 転がり軸受においては、転動体と軌道輪の回転による転がり抵抗や、保持器の案内面等におけるすべり抵抗、潤滑油の攪拌抵抗によって発熱が生じる。このうち攪拌抵抗は、転動体が軸受内部に存在する潤滑油を掻き分ける際に生じる抵抗である。特に油浴潤滑が行われる転がり軸受においては、潤滑油の攪拌抵抗により発熱が生じる割合が大きい。 Rolling bearings generate heat due to rolling resistance caused by rotation of rolling elements and races, slip resistance on the guide surface of the cage, and agitation resistance of lubricating oil. Among these, the stirring resistance is a resistance generated when the rolling elements scrape the lubricating oil present inside the bearing. In particular, in a rolling bearing in which oil bath lubrication is performed, a large proportion of heat is generated due to the stirring resistance of the lubricating oil.
 また、一方で、潤滑油には冷却作用もある。潤滑油を強制的に循環させる油潤滑が行なわれる転がり軸受は、給油される潤滑油が軸受内部を通過する際に熱交換することで冷却される。この冷却の効果は、潤滑油が軸受内部を通過するときの油の速度や、給油量等に応じて決まる。さらに、油浴潤滑が行なわれる軸受は、滞っている潤滑油と軸受との間の熱交換によって冷却される。この冷却の効果は、軸受内部における油の流れ(循環)や、潤滑油の量に応じて決まる。いずれの潤滑方法でも、冷却効果は発熱との釣り合いによって決まる。 On the other hand, the lubricating oil also has a cooling action. A rolling bearing in which oil lubrication for forcibly circulating the lubricating oil is performed is cooled by heat exchange when the lubricating oil supplied passes through the inside of the bearing. The effect of this cooling is determined according to the speed of the oil when the lubricating oil passes through the inside of the bearing, the amount of oil supply, and the like. Furthermore, the bearing in which oil bath lubrication is performed is cooled by heat exchange between the stagnant lubricating oil and the bearing. The effect of this cooling is determined according to the oil flow (circulation) inside the bearing and the amount of lubricating oil. In any lubrication method, the cooling effect is determined by the balance with heat generation.
 ここで、外輪の軸方向両端部につばが設けられた、いわゆるNU型の円筒ころ軸受における発熱を考える。つばが設けられた外輪は潤滑油を内部に溜め込むため、公転する転動体が通過する際には潤滑油を掻き分けなければならず、攪拌抵抗が大きくなり、発熱が生じる。そのため、従来より、軸受内部に潤滑油を溜め込まないことで発熱を低下させる方法が提案されている(例えば、特許文献1参照)。 Here, let us consider heat generation in a so-called NU type cylindrical roller bearing in which flanges are provided at both ends in the axial direction of the outer ring. Since the outer ring provided with the collar accumulates lubricating oil inside, when the revolving rolling element passes, the lubricating oil must be scraped, the stirring resistance increases, and heat is generated. Therefore, conventionally, a method has been proposed in which heat generation is reduced by not storing lubricating oil inside the bearing (see, for example, Patent Document 1).
 特許文献1に示された円筒ころ軸受装置では、保持器や軌道輪等の回転部材の軸方向両端部の径方向寸法を異ならせ、且つハウジング内に油溜りと連通する連通路を形成している。回転部材の軸方向両端部の径方向寸法に差を持たせることで、遠心力の大小により潤滑油を軸方向へ輸送できる。したがって、潤滑油の軸方向の循環により軸受と潤滑油の熱交換が促進され、冷却効果が期待できる。 In the cylindrical roller bearing device disclosed in Patent Document 1, the radial dimensions of both axial ends of rotating members such as a cage and a race ring are made different, and a communication passage communicating with an oil sump is formed in the housing. Yes. Lubricating oil can be transported in the axial direction depending on the magnitude of the centrifugal force by providing a difference in the radial dimension at both axial ends of the rotating member. Therefore, heat exchange between the bearing and the lubricating oil is promoted by circulation of the lubricating oil in the axial direction, and a cooling effect can be expected.
日本国特開平11-230178号公報Japanese Unexamined Patent Publication No. 11-230178
 しかしながら、特許文献1の構成では、ハウジングの構造が複雑且つ大規模となるほか、保持器や軌道輪等の回転部材の形状も複雑となるため、製造コストが上昇し、また組立性が低下するといった問題もある。 However, in the configuration of Patent Document 1, the structure of the housing is complicated and large-scale, and the shape of the rotating member such as the cage or the raceway is also complicated, so that the manufacturing cost increases and the assemblability decreases. There is also a problem.
 本発明は、このような問題点に鑑みてなされたものであり、その目的は、製造コストを上昇させることなく、冷却能力を向上した転がり軸受を提供することにある。 The present invention has been made in view of such problems, and an object of the present invention is to provide a rolling bearing with improved cooling capacity without increasing the manufacturing cost.
 本発明は、上記の目的を達成するため、以下の特徴を有する。
[1] 外輪と、
 内輪と、
 前記外輪および前記内輪の間に組み込まれた複数の転動体を、円周方向に等間隔に設けられた複数のポケットでそれぞれ保持する保持器と、
を備える転がり軸受であって、
 前記保持器の内周面に切り欠き部が形成され、
 前記切り欠き部の径方向寸法h、前記外輪の内径寸法D、前記保持器の外径寸法D、軸受ピッチ円直径dm、前記転動体の数z、前記転動体の外径寸法Da、前記転動体の軸方向寸法Lにより式(1)で表される軸受内部寸法比αが、1.4≦α≦2.1を満たすことを特徴とする転がり軸受。
Figure JPOXMLDOC01-appb-M000002

[2] 油潤滑で使用されることを特徴とする[1]に記載の転がり軸受。
[3] 前記油潤滑が、ジェット潤滑、オイルエア潤滑、飛沫潤滑、油浴潤滑から選択されることを特徴とする[2]に記載の転がり軸受。
In order to achieve the above object, the present invention has the following features.
[1] Outer ring,
Inner ring,
A cage for holding a plurality of rolling elements incorporated between the outer ring and the inner ring in a plurality of pockets provided at equal intervals in the circumferential direction;
A rolling bearing comprising:
A notch is formed on the inner peripheral surface of the cage,
Radial dimension h of the notch, the inner diameter D 1 of the outer ring, the outer diameter D 2 of the retainer, the bearing pitch circle diameter dm, the number z of the rolling element, the outer diameter Da of the rolling element, A rolling bearing according to claim 1, wherein a bearing internal dimension ratio α represented by the formula (1) satisfies 1.4 ≦ α ≦ 2.1 by the axial dimension L of the rolling element.
Figure JPOXMLDOC01-appb-M000002

[2] The rolling bearing according to [1], which is used in oil lubrication.
[3] The rolling bearing according to [2], wherein the oil lubrication is selected from jet lubrication, oil-air lubrication, splash lubrication, and oil bath lubrication.
 本発明によれば、製造コストを上昇させることなく、冷却能力を向上した転がり軸受を提供することができる。 According to the present invention, it is possible to provide a rolling bearing with improved cooling capacity without increasing manufacturing costs.
本発明の第1実施形態に係る転がり軸受の断面図である。It is sectional drawing of the rolling bearing which concerns on 1st Embodiment of this invention. 図1の転がり軸受の側面図である。It is a side view of the rolling bearing of FIG. 図1の転がり軸受の保持器の斜視図である。It is a perspective view of the holder | retainer of the rolling bearing of FIG. 図1の転がり軸受内部での潤滑油の循環を説明するための図である。It is a figure for demonstrating circulation of the lubricating oil inside the rolling bearing of FIG. 転がり軸受内部の発熱と冷却のメカニズムを説明するための図である。It is a figure for demonstrating the heat_generation | fever and cooling mechanism inside a rolling bearing. ベルヌーイの定理を説明するための図である。It is a figure for demonstrating Bernoulli's theorem. 循環給油を行なう試験軸受の構造を説明するための図である。It is a figure for demonstrating the structure of the test bearing which performs circulating oil supply. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 本発明の第1実施形態の変形例に係る転がり軸受の断面図である。It is sectional drawing of the rolling bearing which concerns on the modification of 1st Embodiment of this invention. 図10の転がり軸受の保持器の斜視図である。It is a perspective view of the holder | retainer of the rolling bearing of FIG. 本発明の第2実施形態に係る転がり軸受において、保持器の切り欠き部の形状を説明するための図である。It is a figure for demonstrating the shape of the notch part of a cage | basket in the rolling bearing which concerns on 2nd Embodiment of this invention. 図12の転がり軸受の保持器の斜視図である。It is a perspective view of the holder | retainer of the rolling bearing of FIG. 本発明の第3実施形態に係る転がり軸受の側面図である。It is a side view of the rolling bearing which concerns on 3rd Embodiment of this invention. 図14の転がり軸受の保持器の斜視図である。It is a perspective view of the holder | retainer of the rolling bearing of FIG.
(第1実施形態)
 以下、図面を用いて、本発明の転がり軸受の第1実施形態について説明する。図1は、本発明の第1実施形態に係る転がり軸受100の断面図であり、図2は転がり軸受100の側面図、図3は転がり軸受100の保持器10の斜視図、図4は転がり軸受100内部での潤滑油の循環を説明するための図である。
(First embodiment)
Hereinafter, a first embodiment of a rolling bearing of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a rolling bearing 100 according to the first embodiment of the present invention, FIG. 2 is a side view of the rolling bearing 100, FIG. 3 is a perspective view of a cage 10 of the rolling bearing 100, and FIG. FIG. 4 is a diagram for explaining the circulation of lubricating oil inside the bearing 100.
 転がり軸受100は、外輪1の内周面に形成された外輪軌道面2と、内輪6の外周面に形成された内輪軌道面7と、の間に複数の円筒ころ9(転動体)を備える。転がり軸受100は、外輪1の軸方向両端部につば3が形成された、一般にNU型と呼ばれる円筒ころ軸受である。転がり軸受100は、油潤滑下で使用される。 The rolling bearing 100 includes a plurality of cylindrical rollers 9 (rolling elements) between an outer ring raceway surface 2 formed on the inner peripheral surface of the outer ring 1 and an inner ring raceway surface 7 formed on the outer peripheral surface of the inner ring 6. . The rolling bearing 100 is a cylindrical roller bearing generally called an NU type in which collars 3 are formed at both axial ends of the outer ring 1. The rolling bearing 100 is used under oil lubrication.
 保持器10は、軸方向に並んで配置された一対の円環部11、12と、一対の円環部11、12を軸方向に接続する複数の柱部13と、一対の円環部11、12および柱部13により、円筒ころ9を1個ずつ収容する複数のポケット14と、を有する。このように、保持器10は、複数の円筒ころ9(転動体)を、円周方向に等間隔に設けられた複数のポケット14でそれぞれ保持する。 The cage 10 includes a pair of annular portions 11 and 12 arranged side by side in the axial direction, a plurality of column portions 13 that connect the pair of annular portions 11 and 12 in the axial direction, and a pair of annular portions 11. , 12 and the column part 13, and a plurality of pockets 14 for accommodating the cylindrical rollers 9 one by one. In this way, the cage 10 holds the plurality of cylindrical rollers 9 (rolling elements) in the plurality of pockets 14 provided at equal intervals in the circumferential direction.
 保持器10の外周面は軸方向において直線となっている。保持器10の柱部13の内周面には、切り欠き部15が形成されている。切り欠き部15は、矩形断面を有するように形成されている。 The outer peripheral surface of the cage 10 is a straight line in the axial direction. A notch portion 15 is formed on the inner peripheral surface of the column portion 13 of the cage 10. The notch 15 is formed to have a rectangular cross section.
 このような転がり軸受100の内部の発熱と冷却のメカニズムについて、図5、6も参照して詳細に説明する。図4に示すように、転がり軸受100の内部に潤滑油が流入すると、保持器10の内周面に設けられた切り欠き部15に潤滑油が溜まる。切り欠き部15に溜まった潤滑油には、保持器10の回転に伴う遠心力によって、潤滑油を押し出そうとする圧力がかかる。この圧力と遠心力が、保持器10のポケット14と円筒ころ9との間の隙間における流路抵抗に打ち勝つことにより、潤滑油がポケット14内に流入する。ポケット14内では、攪拌抵抗により発熱が生じる。 The mechanism of heat generation and cooling inside the rolling bearing 100 will be described in detail with reference to FIGS. As shown in FIG. 4, when the lubricating oil flows into the rolling bearing 100, the lubricating oil accumulates in the notch portion 15 provided on the inner peripheral surface of the cage 10. The lubricating oil accumulated in the notch 15 is subjected to a pressure for pushing out the lubricating oil by the centrifugal force accompanying the rotation of the cage 10. This pressure and centrifugal force overcome the flow resistance in the gap between the pocket 14 of the cage 10 and the cylindrical roller 9, so that the lubricating oil flows into the pocket 14. In the pocket 14, heat is generated due to the stirring resistance.
 さらに、上記した圧力と遠心力により潤滑油は、ポケット14を通過し、保持器10の外周面へ流出し、さらには外輪軌道面2へと流出する。外輪軌道面2においても、攪拌抵抗により発熱が生じる。このように、保持器10の外周面や外輪軌道面2に流出した潤滑油は、これらの間に溜まった潤滑油を次々に押し出す。この圧力が、回転する保持器10の外周面と、静止輪である外輪1の内周面と、の間の隙間における流路抵抗に打ち勝つことにより、潤滑油が軸受外部へと排出(流出)される。 Furthermore, the lubricating oil passes through the pocket 14 by the pressure and centrifugal force described above, flows out to the outer peripheral surface of the cage 10, and further flows out to the outer ring raceway surface 2. The outer ring raceway surface 2 also generates heat due to the stirring resistance. Thus, the lubricating oil that has flowed out to the outer peripheral surface of the cage 10 and the outer ring raceway surface 2 pushes out the lubricating oil accumulated between them one after another. This pressure overcomes the flow resistance in the gap between the outer peripheral surface of the rotating cage 10 and the inner peripheral surface of the outer ring 1 that is a stationary wheel, whereby the lubricating oil is discharged (outflowed) to the outside of the bearing. Is done.
 このように転がり軸受100を通過する潤滑油の流れにより、転がり軸受100と潤滑油との間で熱交換が行なわれ、転がり軸受100の冷却が行なわれる。また、転がり軸受100内に溜まった潤滑油の量は、冷却と攪拌抵抗の双方に作用する。そのため、潤滑油の流入量と、転がり軸受100内に溜まった潤滑油の量と、潤滑油の流出量とは、軸受温度に大きく影響する。したがって、十分な温度低減効果を得るためには、潤滑油の流入量と流出量とが釣り合っていることが望まれる。 Thus, the flow of the lubricating oil passing through the rolling bearing 100 causes heat exchange between the rolling bearing 100 and the lubricating oil, and the rolling bearing 100 is cooled. Further, the amount of the lubricating oil accumulated in the rolling bearing 100 acts on both cooling and stirring resistance. Therefore, the inflow amount of the lubricating oil, the amount of the lubricating oil accumulated in the rolling bearing 100, and the outflow amount of the lubricating oil greatly affect the bearing temperature. Therefore, in order to obtain a sufficient temperature reduction effect, it is desirable that the inflow amount and the outflow amount of the lubricating oil are balanced.
 ここで、保持器10の外周面と外輪1の内周面(つば3の内周面)との間の隙間は、潤滑油の排出量を調整する絞りとして作用する。また、保持器10の切り欠き部15の大きさは、転がり軸受100内への潤滑油の流入量に影響する。そこで、本実施形態では、保持器10の内周面に切り欠き部15を形成するだけなく、切り欠き部15の径方向寸法(以後、切り欠き量とも呼ぶ。)や、外輪1の内周面と保持器10の外周面との間の隙間の寸法、およびその他の軸受諸元を組み合わせたパラメータを適切に設定することにより、軸受温度低減を向上する。 Here, the gap between the outer peripheral surface of the cage 10 and the inner peripheral surface of the outer ring 1 (inner peripheral surface of the collar 3) acts as a throttle that adjusts the amount of lubricating oil discharged. In addition, the size of the notch 15 of the cage 10 affects the amount of lubricating oil flowing into the rolling bearing 100. Therefore, in the present embodiment, not only the notch 15 is formed on the inner peripheral surface of the cage 10, but also the radial dimension of the notch 15 (hereinafter also referred to as a notch amount) and the inner periphery of the outer ring 1. The bearing temperature reduction can be improved by appropriately setting the dimension of the gap between the surface and the outer peripheral surface of the cage 10 and other combined parameters.
 まず、潤滑油の流入量をQinとし、流出量をQoutとし、流入量Qinと流出量Qoutの釣り合いの条件(Qin=Qout)を考える。流入量Qinは、遠心力による潤滑油の流速vと、流入部の断面積Ainと、によって下記のように表される。 First, the inflow of lubricating oil and Q in, the outflow amount is Q out, think about the balance of the conditions of inflow Q in the runoff Q out (Q in = Q out ). Inflow Q in the flow velocity v of the lubricating oil by centrifugal force, and the cross-sectional area A in the inlet, by expressed as follows.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 切り欠き部15に溜まった潤滑油に作用する遠心力は、転がり軸受100のピッチ円直径dmに作用する遠心力によって代表される。遠心力による潤滑油の流速vは、エネルギー式により、転がり軸受100のピッチ円直径dm、保持器10の公転速度ω、切り欠き部15の切り欠き量h、潤滑油の質量mを用いて、下記のように表される。 The centrifugal force acting on the lubricating oil accumulated in the notch 15 is represented by the centrifugal force acting on the pitch circle diameter dm of the rolling bearing 100. The flow velocity v of the lubricating oil due to the centrifugal force is expressed by the energy equation using the pitch circle diameter dm of the rolling bearing 100, the revolution speed ω of the cage 10, the notch amount h of the notch 15 and the mass m of the lubricating oil. It is expressed as follows.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 また、流入部の断面積Ainは、円筒ころ9の外径寸法Da、円筒ころ9の長さ(軸方向寸法)L、円筒ころ9の個数zを用いて、下記のように表すことができる。 Further, the cross-sectional area A in the inlet portion, the outer diameter Da of the cylindrical rollers 9, the length of the cylindrical roller 9 (axial dimension) L, with the number z of the cylindrical rollers 9, be expressed as follows it can.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、円筒ころ9の長さLは、ポケット14の長さ(軸方向寸法)Lpと等しい(L=Lp)ものとすると、切り欠き部15の断面積Sin、切り欠き量h、および円筒ころ9の長さLは、下記の関係を満たす。 Here, when the length L of the cylindrical roller 9 is equal to the length (axial dimension) Lp of the pocket 14 (L = Lp), the cross-sectional area S in of the notch 15, the notch amount h, and The length L of the cylindrical roller 9 satisfies the following relationship.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 流出量Qoutは、保持器10の外周面と外輪1の内周面との間の隙間による絞り効果と、回転による抵抗と、によって制限される。したがって、流出量Qoutは、流出部の断面積Sout、潤滑油のヘッド(液面高さ)H(図6参照)、排油抵抗R、係数Bを用いて、下記のように表される。 The outflow amount Q out is limited by the throttling effect due to the gap between the outer peripheral surface of the cage 10 and the inner peripheral surface of the outer ring 1 and the resistance due to rotation. Thus, runoff Q out is the cross-sectional area S out of the outlet portion, the lubricating oil of the head (liquid level) H (see FIG. 6), the oil discharge resistor R, with a coefficient B, represented as follows The
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 また、流出部の断面積Soutは、外輪1の内径(つば3の内径)D、保持器10の外径D、および転がり軸受100のピッチ円直径dmを用いて、下記のように表すことができる。 Further, the cross-sectional area S out of the outflow portion is expressed as follows using the inner diameter D 1 of the outer ring 1 (the inner diameter of the collar 3) D 1 , the outer diameter D 2 of the cage 10, and the pitch circle diameter dm of the rolling bearing 100. Can be represented.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 また、排油抵抗Rは下記のように表すことができる。 Also, the oil drain resistance R can be expressed as follows.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここで、上記したように、十分な温度低減効果を得るためには、流入量Qinと流出量Qoutとが等しく釣り合っている(Qin=Qout)必要があるため、以上の式は下記のように変形できる。 Here, as described above, in order to obtain a sufficient temperature reduction effect, the inflow amount Q in and the outflow amount Q out need to be equally balanced (Q in = Q out ). It can be transformed as follows.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 上記式をヘッドHで表すと、下記のように変形できる。 When the above formula is expressed by head H, it can be transformed as follows.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 本実施形態では、転がり軸受100のサイズ効果を代表して、ヘッドHを転がり軸受100のピッチ円直径dmで割り、この値を軸受内部寸法比αとする。 In this embodiment, as representative of the size effect of the rolling bearing 100, the head H is divided by the pitch circle diameter dm of the rolling bearing 100, and this value is defined as the bearing internal dimension ratio α.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
(実験)
 図7に示す試験構造を用い、シャフトSに転がり軸受100を組み込んで、回転試験を実施した。回転試験は、転がり軸受100の軸受内部寸法比αを変更すると共に、2つの回転数n、mを用いて行なった。図8はこの回転試験の結果を示すグラフであり、軸受内部寸法比αと、転がり軸受100内の温度低減効果と、の関係を示す。図8より、回転数をn、mと変更しても、軸受内部寸法比αが1.4≦α≦2.1を満足しているときに、十分な温度低減効果が得られることがわかる。
(Experiment)
Using the test structure shown in FIG. 7, a rolling test was performed by incorporating the rolling bearing 100 into the shaft S. The rotation test was performed by changing the bearing internal dimension ratio α of the rolling bearing 100 and using two rotation speeds n and m. FIG. 8 is a graph showing the results of this rotation test, and shows the relationship between the bearing internal dimension ratio α and the temperature reduction effect in the rolling bearing 100. FIG. 8 shows that even if the rotational speed is changed to n and m, a sufficient temperature reduction effect can be obtained when the bearing internal dimension ratio α satisfies 1.4 ≦ α ≦ 2.1. .
 また、比較のため、保持器に切り欠き部やテーパーが形成されない従来の転がり軸受(従来仕様)と、特許文献1に示したように保持器の軸方向両端部の径方向寸法を異なるものとした転がり軸受(テーパー仕様)と、を用意して回転試験を実施した。図9はこの回転試験の結果を示すグラフである。図9より、保持器10の内周面に切り欠き部15が形成されると共に軸受内部寸法比αが1.4≦α≦2.1を満たす本仕様の転がり軸受によれば、従来仕様やテーパー仕様の転がり軸受に比べて、明らかに温度低減効果が得られることがわかる。 For comparison, a conventional rolling bearing (conventional specification) in which a notch or a taper is not formed in the cage is different from a radial dimension at both axial ends of the cage as shown in Patent Document 1. A rolling test was performed using a rolled bearing (taper specification). FIG. 9 is a graph showing the results of this rotation test. From FIG. 9, according to the rolling bearing of this specification in which the notch 15 is formed on the inner peripheral surface of the cage 10 and the bearing internal dimension ratio α satisfies 1.4 ≦ α ≦ 2.1, It can be seen that the temperature reduction effect is clearly obtained as compared with the taper type rolling bearing.
 このように、本実施形態の転がり軸受100によれば、保持器10の内周面に切り欠き部15が形成されると共に、軸受内部寸法比αが、1.4≦α≦2.1を満たすことにより、潤滑油が転がり軸受100内に滞留することがないので、製造コストを上昇させることなく、効率の良い冷却効果を得ることができる。これにより、油潤滑、特に油浴潤滑を使用する場合であっても、ジェット潤滑に匹敵する冷却能力を有し、十分な温度低減効果を得ることが可能となる。さらに、転がり軸受100は、ジェット潤滑はもちろん、オイルエア潤滑、飛沫潤滑で使用される場合であっても、十分な温度低減効果を得ることができる。 Thus, according to the rolling bearing 100 of the present embodiment, the notch 15 is formed on the inner peripheral surface of the cage 10, and the bearing internal dimension ratio α satisfies 1.4 ≦ α ≦ 2.1. By satisfy | filling, since lubricating oil does not stay in the rolling bearing 100, an efficient cooling effect can be acquired, without raising manufacturing cost. As a result, even when oil lubrication, particularly oil bath lubrication is used, it has a cooling capacity comparable to jet lubrication, and a sufficient temperature reduction effect can be obtained. Furthermore, the rolling bearing 100 can obtain a sufficient temperature reduction effect even when used in oil-air lubrication or splash lubrication as well as jet lubrication.
(変形例)
 図10、11は第1実施形態の変形例に係る転がり軸受100’および転がり軸受100’に使用される保持器10’を示す。この保持器10’においても、内周面に矩形断面を有する切り欠き部15が形成されている。さらに、保持器10’の軸方向両端部、すなわち円環部11、12の外周面には、外輪1のつば3に対応して切り欠かれた環状切り欠き部16、17が形成されている。保持器10’の外周面がこのような形状であっても、軸受内部寸法比αが上記した関係(1.4≦α≦2.1)を満たす限り、温度低減効果を得ることができる。
(Modification)
10 and 11 show a rolling bearing 100 ′ and a cage 10 ′ used for the rolling bearing 100 ′ according to a modification of the first embodiment. Also in this cage 10 ′, a cutout portion 15 having a rectangular cross section is formed on the inner peripheral surface. Furthermore, annular notches 16 and 17 that are notched corresponding to the collars 3 of the outer ring 1 are formed at both ends in the axial direction of the cage 10 ′, that is, the outer peripheral surfaces of the annular portions 11 and 12. . Even if the outer peripheral surface of the cage 10 ′ has such a shape, a temperature reduction effect can be obtained as long as the bearing internal dimension ratio α satisfies the relationship (1.4 ≦ α ≦ 2.1) described above.
(第2実施形態)
 次に、本発明の第2実施形態に係る転がり軸受について、図12、13を参照して説明する。第1実施形態と同一又は同等部分には同一符号又は相当符号を付して説明を簡略化又は省略する。
(Second Embodiment)
Next, a rolling bearing according to a second embodiment of the present invention will be described with reference to FIGS. The same or equivalent parts as those in the first embodiment are denoted by the same or corresponding reference numerals, and the description will be simplified or omitted.
 図12、13に示すように、第2実施形態に係る転がり軸受200において、保持器210の柱部213の内周面には、切り欠き部215が形成されている。切り欠き部215は、第1実施形態における切り欠き部15とは異なり、円弧断面を有するように形成されている。 As shown in FIGS. 12 and 13, in the rolling bearing 200 according to the second embodiment, a notch 215 is formed on the inner peripheral surface of the column part 213 of the cage 210. Unlike the notch 15 in the first embodiment, the notch 215 is formed to have an arc cross section.
 このように円弧断面を有するように形成された切り欠き部215においても、その断面面積Sinを、第1実施形態における切り欠き部15の断面積Sinと等価に置き換えることができれば、軸受内部寸法比αが上記した関係(1.4≦α≦2.1)を満たす限り、第1実施形態と同様に温度低減効果を得ることができるものと考えられる。 Thus also in the cutout portion 215 formed to have a circular arc cross-section, the cross-sectional area S in, if it is possible to replace the equivalent sectional area S in the notches 15 in the first embodiment, the bearing As long as the dimensional ratio α satisfies the above relationship (1.4 ≦ α ≦ 2.1), it is considered that the temperature reduction effect can be obtained as in the first embodiment.
 ここで、1つのポケットに対応した1つの切り欠き部の断面積をSinとすると、切り欠き部の断面積の総和ΣSinは、切り欠き部215の切り欠き量h、切り欠き部215の切り欠き長さ(軸方向寸法)M(図12参照)、円筒ころ9の個数(ポケットの数)zを用いて、下記のように表される。 Here, assuming that the cross-sectional area of one notch corresponding to one pocket is S in , the sum ΣS in of the cross-sectional areas of the notch is the notch amount h of the notch 215 and the notch 215. Using the notch length (axial dimension) M (see FIG. 12) and the number of cylindrical rollers 9 (number of pockets) z, it is expressed as follows.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 したがって、保持器の内周面に形成された切り欠き部の断面積を等価とするためには、切り欠き量hが下記の式を満たせばよい。 Therefore, in order to make the cross-sectional area of the notch formed on the inner peripheral surface of the cage equivalent, the notch amount h should satisfy the following formula.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 このように、切り欠き部215が円弧断面を有するように形成された場合であっても、切り欠き部の断面積の総和ΣSinを等価に置き換え、且つ軸受内部寸法比αが上記した関係(1.4≦α≦2.1)を満たす限り、十分な温度低減効果を得ることができる。 Thus, even when the notch 215 is formed to have an arc cross section, the sum ΣS in of the sectional area of the notch is equivalently replaced, and the bearing internal dimension ratio α is the relationship described above ( As long as 1.4 ≦ α ≦ 2.1) is satisfied, a sufficient temperature reduction effect can be obtained.
(第3実施形態)
 次に、本発明の第2実施形態に係る転がり軸受について、図14、15を参照して説明する。第1実施形態と同一又は同等部分には同一符号又は相当符号を付して説明を簡略化又は省略する。
(Third embodiment)
Next, a rolling bearing according to a second embodiment of the present invention will be described with reference to FIGS. The same or equivalent parts as those in the first embodiment are denoted by the same or corresponding reference numerals, and the description will be simplified or omitted.
 図14、15に示すように、第3実施形態に係る転がり軸受300において、保持器310の円環部311、312の外周面には、ポケット314に軸方向に隣接する箇所において、円弧状の凹部316が形成されている。そのため、転がり軸受300において潤滑油が排出される流出部は、円周上不均一な断面を有することとなる。 As shown in FIGS. 14 and 15, in the rolling bearing 300 according to the third embodiment, the outer circumferential surface of the annular portions 311 and 312 of the cage 310 is formed in an arc shape at a location adjacent to the pocket 314 in the axial direction. A recess 316 is formed. Therefore, the outflow part from which the lubricating oil is discharged in the rolling bearing 300 has a non-uniform cross section on the circumference.
 ここで、流出部が円周上均一な断面を有する場合であれば、流出部の断面積Soutは、外輪1の内径(つば3の内径)D、および保持器310の外径Dを用いて、下記のように表せる。 Here, in the case where the outflow portion has a circumferentially uniform cross-section, the cross-sectional area S out of the outflow portion (inner diameter of the collar 3) having an inner diameter of the outer ring 1 D 1, and the outer diameter D 2 of the retainer 310 Can be expressed as follows.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 流出部の断面が円周上不均一な場合、流出部の断面積Soutのパラメータとなる、外輪1の内径D、保持器310の外径Dの差(D-D)は、下記のように等価に置き換えることができる。 When the cross section of the outflow portion is not uniform on the circumference, the difference (D 1 -D 2 ) between the inner diameter D 1 of the outer ring 1 and the outer diameter D 2 of the cage 310, which is a parameter of the cross section area S out of the outflow portion, is Can be equivalently replaced as follows.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 このように、流出部が円周上不均一な断面を有する場合であっても、流出部の断面積Soutを等価に置き換え、且つ軸受内部寸法比αが上記した関係を満たす限り、十分な温度低減効果を得ることができる。 Thus, even if the outflow portion has a circumferentially non-uniform cross section, it is sufficient as long as the cross sectional area S out of the outflow portion is equivalently replaced and the bearing internal dimension ratio α satisfies the above relationship. A temperature reduction effect can be obtained.
 尚、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良等が可能である。上述した実施形態では転がり軸受が円筒ころ軸受であったが、他の転がり軸受であってもよい。また、保持器の内周面に形成される切り欠き部の断面形状は、第1実施形態で説明した矩形形状や第2実施形態で説明した円弧形状に限られず、切り欠き部の断面積を等価に置き換えることができる限りにおいて、どのような形状であってもよい。 Note that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like can be made as appropriate. In the embodiment described above, the rolling bearing is a cylindrical roller bearing, but other rolling bearings may be used. The cross-sectional shape of the notch formed on the inner peripheral surface of the cage is not limited to the rectangular shape described in the first embodiment or the arc shape described in the second embodiment, and the cross-sectional area of the notch is Any shape is possible as long as it can be equivalently replaced.
 また、上記した各実施形態では、全てのポケットに対応して柱部に切り欠き部が形成されていたが、切り欠き部の断面積の総和ΣSinを切り欠き量hに等価に置き換えることができる限りにおいて、幾つかのポケットのみに対応して柱部に切り欠き部が形成されるものであってもよい。また、保持器の外周面に形成され得る凹部についても、幾つかのポケットのみに対応して凹部が形成されるものであってもよい。 Further, in each of the above-described embodiments, the notches are formed in the column portions corresponding to all the pockets, but the total sum ΣS in of the cross-sectional areas of the notches may be replaced with the notch amount h. As long as possible, notches may be formed in the pillars corresponding to only some pockets. Moreover, about the recessed part which can be formed in the outer peripheral surface of a holder | retainer, a recessed part may be formed corresponding to only some pockets.
 本出願は、2014年1月7日出願の日本特許出願2014-001139に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2014-001139 filed on Jan. 7, 2014, the contents of which are incorporated herein by reference.
100、100’、200、300 転がり軸受
1 外輪
6 内輪
9 円筒ころ(転動体)
10、10’、210、310 保持器
15、215、315 切り欠き部
z 円筒ころの個数
L 円筒ころの長さ(軸方向寸法)
Da 円筒ころの外径寸法
dm 軸受ピッチ円直径
 外輪の内径寸法
 保持器の外径寸法
h 切り欠き量(切り欠き部の径方向寸法)
100, 100 ′, 200, 300 Rolling bearing 1 Outer ring 6 Inner ring 9 Cylindrical roller (rolling element)
10, 10 ', 210, 310 Cage 15, 215, 315 Notch z Number of cylindrical rollers L Length of cylindrical roller (axial dimension)
Da Outer diameter dimension of cylindrical roller dm Bearing pitch circle diameter D 1 Inner diameter of outer ring D 2 Outer diameter of cage h Notch amount (diameter dimension of notch)

Claims (3)

  1.  外輪と、
     内輪と、
     前記外輪および前記内輪の間に組み込まれた複数の転動体を、円周方向に等間隔に設けられた複数のポケットでそれぞれ保持する保持器と、
    を備える転がり軸受であって、
     前記保持器の内周面に切り欠き部が形成され、
     前記切り欠き部の径方向寸法h、前記外輪の内径寸法D、前記保持器の外径寸法D、軸受ピッチ円直径dm、前記転動体の数z、前記転動体の外径寸法Da、前記転動体の軸方向寸法Lにより式(1)で表される軸受内部寸法比αが、1.4≦α≦2.1を満たすことを特徴とする転がり軸受。
    Figure JPOXMLDOC01-appb-M000001
    Outer ring,
    Inner ring,
    A cage for holding a plurality of rolling elements incorporated between the outer ring and the inner ring in a plurality of pockets provided at equal intervals in the circumferential direction;
    A rolling bearing comprising:
    A notch is formed on the inner peripheral surface of the cage,
    Radial dimension h of the notch, the inner diameter D 1 of the outer ring, the outer diameter D 2 of the retainer, the bearing pitch circle diameter dm, the number z of the rolling element, the outer diameter Da of the rolling element, A rolling bearing according to claim 1, wherein a bearing internal dimension ratio α represented by the formula (1) satisfies 1.4 ≦ α ≦ 2.1 by the axial dimension L of the rolling element.
    Figure JPOXMLDOC01-appb-M000001
  2.  油潤滑で使用されることを特徴とする請求項1に記載の転がり軸受。 The rolling bearing according to claim 1, wherein the rolling bearing is used in oil lubrication.
  3.  前記油潤滑が、ジェット潤滑、オイルエア潤滑、飛沫潤滑、油浴潤滑から選択されることを特徴とする請求項2に記載の転がり軸受。 The rolling bearing according to claim 2, wherein the oil lubrication is selected from jet lubrication, oil-air lubrication, splash lubrication, and oil bath lubrication.
PCT/JP2014/082734 2014-01-07 2014-12-10 Rolling bearing WO2015104943A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE212014000240.0U DE212014000240U1 (en) 2014-01-07 2014-12-10 roller bearing
CN201490001309.6U CN206072111U (en) 2014-01-07 2014-12-10 Rolling bearing
AU2016100959A AU2016100959A4 (en) 2014-01-07 2016-06-29 Rolling bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014001139A JP6307883B2 (en) 2014-01-07 2014-01-07 Rolling bearing
JP2014-001139 2014-01-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2016100959A Division AU2016100959A4 (en) 2014-01-07 2016-06-29 Rolling bearing

Publications (1)

Publication Number Publication Date
WO2015104943A1 true WO2015104943A1 (en) 2015-07-16

Family

ID=53523781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082734 WO2015104943A1 (en) 2014-01-07 2014-12-10 Rolling bearing

Country Status (5)

Country Link
JP (1) JP6307883B2 (en)
CN (1) CN206072111U (en)
AU (1) AU2016100959A4 (en)
DE (1) DE212014000240U1 (en)
WO (1) WO2015104943A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112747706A (en) * 2020-12-23 2021-05-04 中国航发哈尔滨轴承有限公司 Method for measuring numerical value of cylindrical roller outer diameter intermediate bus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194616U (en) * 1987-12-15 1989-06-22
JPH07301243A (en) * 1994-04-28 1995-11-14 Ntn Corp Machined cage for roller bearing
JP2002089573A (en) * 2000-09-12 2002-03-27 Ntn Corp Structure and method for lubricating rolling bearing with air-oil
JP2006329218A (en) * 2005-05-23 2006-12-07 Ntn Corp Rolling bearing cage
JP2009138896A (en) * 2007-12-10 2009-06-25 Ntn Corp Rolling bearing and its lubrication method
WO2012158087A1 (en) * 2011-05-17 2012-11-22 Aktiebolaget Skf A cage for a toroidal roller bearing
JP2013139879A (en) * 2013-03-11 2013-07-18 Jtekt Corp Cylindrical roller bearing
JP2013231493A (en) * 2012-05-01 2013-11-14 Nsk Ltd Angular ball bearing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230178A (en) 1998-02-17 1999-08-27 Nippon Seiko Kk Cylindrical roller bearing device
JP5422778B2 (en) 2011-03-18 2014-02-19 株式会社カネカ Method for producing graphite film and method for producing carbonized film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194616U (en) * 1987-12-15 1989-06-22
JPH07301243A (en) * 1994-04-28 1995-11-14 Ntn Corp Machined cage for roller bearing
JP2002089573A (en) * 2000-09-12 2002-03-27 Ntn Corp Structure and method for lubricating rolling bearing with air-oil
JP2006329218A (en) * 2005-05-23 2006-12-07 Ntn Corp Rolling bearing cage
JP2009138896A (en) * 2007-12-10 2009-06-25 Ntn Corp Rolling bearing and its lubrication method
WO2012158087A1 (en) * 2011-05-17 2012-11-22 Aktiebolaget Skf A cage for a toroidal roller bearing
JP2013231493A (en) * 2012-05-01 2013-11-14 Nsk Ltd Angular ball bearing
JP2013139879A (en) * 2013-03-11 2013-07-18 Jtekt Corp Cylindrical roller bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112747706A (en) * 2020-12-23 2021-05-04 中国航发哈尔滨轴承有限公司 Method for measuring numerical value of cylindrical roller outer diameter intermediate bus
CN112747706B (en) * 2020-12-23 2022-09-23 中国航发哈尔滨轴承有限公司 Method for measuring numerical value of cylindrical roller outer diameter intermediate bus

Also Published As

Publication number Publication date
JP2015129547A (en) 2015-07-16
AU2016100959A4 (en) 2016-07-28
CN206072111U (en) 2017-04-05
JP6307883B2 (en) 2018-04-11
DE212014000240U1 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
JP4797920B2 (en) Turbocharger
JP4314430B2 (en) Tapered roller bearing
WO2009131139A1 (en) Rolling bearing
EP2042758A2 (en) Rolling bearing device and turbocharger incorporating same
JP2007051715A (en) Tapered roller bearing, tapered roller bearing device, and vehicular pinion shaft supporting device using it
EP1947356A2 (en) Cage for rolling bearing and rolling bearing having the same
US20120189235A1 (en) Bearing race for a rolling-element bearing
JP2008051272A (en) Wheel bearing device
JP6289845B2 (en) Tapered roller bearing
JP5332744B2 (en) Rolling bearing
JP6028377B2 (en) Tapered roller bearing
JP2008240769A (en) Double-row ball bearing
WO2015104943A1 (en) Rolling bearing
JP2007092860A (en) Double row angular ball bearing and pinion shaft supporting device for vehicle
JP2004076766A (en) Tapered roller bearing
US10001171B2 (en) Rolling bearing
JP2010007788A5 (en)
US9903412B2 (en) Tapered roller bearing
JP6267851B2 (en) Deep groove ball bearing and bearing device
JP2010286120A (en) Design method for tapered roller bearing
JP6597276B2 (en) Rolling bearing
JP2011190859A (en) Rolling bearing
JP2016151345A (en) Deep groove ball bearing
US9752619B2 (en) Double row ball bearing and shaft support device
JP2023012833A (en) rolling bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878186

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 212014000240

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878186

Country of ref document: EP

Kind code of ref document: A1