WO2015103854A1 - 一种自动批量调测aisg电调天线的方法及装置 - Google Patents

一种自动批量调测aisg电调天线的方法及装置 Download PDF

Info

Publication number
WO2015103854A1
WO2015103854A1 PCT/CN2014/080639 CN2014080639W WO2015103854A1 WO 2015103854 A1 WO2015103854 A1 WO 2015103854A1 CN 2014080639 W CN2014080639 W CN 2014080639W WO 2015103854 A1 WO2015103854 A1 WO 2015103854A1
Authority
WO
WIPO (PCT)
Prior art keywords
aisg
antenna
information
antenna adjustment
aisg device
Prior art date
Application number
PCT/CN2014/080639
Other languages
English (en)
French (fr)
Inventor
冯交交
张鹏
李琼
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14878325.1A priority Critical patent/EP3094047A4/en
Publication of WO2015103854A1 publication Critical patent/WO2015103854A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/005Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using remotely controlled antenna positioning or scanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices

Definitions

  • the invention relates to the field of wireless communication network management, and particularly relates to a method and a device for a parameter of an antenna feeder subsystem standard (AISG: Antenna Interface Standards Group) based on the design of an LMT network management system.
  • AISG Antenna Interface Standards Group
  • LMT Local Maintenance Terminal
  • AISG antenna feeder commissioning has high requirements on the network in the network management system. There are many antenna manufacturers and a large variety of equipment. The network management developer is not familiar with the antenna service. The antenna manufacturer is not familiar enough with the network management service, which makes the parameter adjustment of the antenna feed and the graphical user interface (GUI: Graphical User Interface) operation configuration process of the network management highly coupled. A bottleneck in the testing process.
  • GUI Graphical User Interface
  • the AISG antenna device management carried out by the conventional network management system is for the equipment of a certain manufacturer.
  • the main control clock board and the optical network switching (FS: Fiber Switched) board operate normally, and configure the topology relationship of the FS to Radio Remote Unit (RRU), RRU.
  • RRU Radio Remote Unit
  • the main frame RF built-in unit RSU starts up normally, and the control line and radio frequency connection of the AISG device are configured.
  • the user After the hardware and software are ready, the user needs to manually start the network management system and send an AISG device request to the base station system. After the result of the scan is reported, the user needs to change the AISG device according to the scan result and change the AISG device according to the business rules of the AISG device. After being sent to the base station, The network management system synchronizes the configuration of the AISG device to the system. If the user needs to debug the AISG, the corresponding AISG device record needs to be selected, and the AISG device can be debugged by manually operating the menu. After the commissioning is complete, you need to manually clear the scan view, delete the AISG device, and re-deliver it to the base station.
  • the commissioning of the parameters of the antenna device has great flexibility. It requires the operator to be familiar with the antenna service and the management principle of the management object manager (MOM). Once the commissioning fails, the corresponding timeout period will be accumulated. Therefore, the single AISG antenna commissioning service is very cumbersome and time consuming.
  • the network management system LMT it takes a lot of manpower to manually adjust different antenna indicators for each manufacturer, and cannot be independently operated by the network management operator. This makes it difficult for the antenna manufacturer and the operation and maintenance to debug the AISG antenna index through the network management LMT.
  • the hardware and the configuration of the AISG device, the configuration of the connection, the sending and reporting of the scanning message, the configuration of the AISG device, the automatic calibration of the AISG antenna, the setting of the tilt angle, and the query of the dip angle are all sent. If the AISG device is deleted, the network management operator needs to manually ensure the operation sequence.
  • the scanning is performed due to the difference in protocol type, device type, and subunit number.
  • the encapsulation of node-to-network element device nodes is very complex, requiring a high degree of familiarity with the network management business MOM design.
  • the threshold for the R&D operation and maintenance personnel of the antenna is too high. It is very difficult for the antenna developers of each manufacturer to adjust the antenna parameters of their own manufacturers, especially for batch commissioning. Since each configuration process requires manual triggering, the antenna is too much. Time-consuming, antenna developers can't pay attention to the antenna's indicators, but stuck in the configuration process of the network management system. Summary of the invention
  • the embodiments of the present invention mainly provide a method and an apparatus for automatically batch-modulating an AISG electrical tune antenna.
  • a method for automatically batch-modulating an AISG electrical tune antenna including:
  • an antenna adjustment file adapted to the device information is constructed for each AISG device
  • the antenna adjustment file of each AISG device is sent to the corresponding AISG device in turn, so that the antenna is adjusted according to the antenna adjustment file.
  • an apparatus for automatically batch-adjusting an AISG electronically tuned antenna including:
  • a scanning module configured to send a scanning request to multiple AISG devices respectively connected to different RRUs
  • a receiving module configured to receive a scan result including device information obtained by the plurality of AISG devices according to the scan request
  • Constructing a module configured to respectively construct an antenna adjustment file adapted to the device information for each of the plurality of AISG devices according to a scan result of each AISG device;
  • the adjustment module is configured to send the antenna adjustment files of each AISG device to the corresponding AISG device in sequence, so as to adjust the antenna according to the antenna adjustment file.
  • FIG. 1 is a schematic diagram of a method for automatically batch-modulating an AISG electronically modulated antenna according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of an apparatus for automatically batch-adjusting an AISG electronically modulated antenna according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a typical configuration of 2T2R R8882 and 8863 of an automatic batch commissioning AISG electronically modulated antenna according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of basic indicators of an antenna type to be tuned for automatically batch-testing an AISG electronically modulated antenna according to an embodiment of the present invention
  • FIG. 5 is a topological diagram of a preset wiring manner for batch antenna measurement of an automatic batch commissioning AISG electronically modulated antenna according to an embodiment of the present invention
  • FIG. 6 is a flow chart of a preset condition of a one-button tool for automatically batch-testing an AISG electronically adjustable antenna according to an embodiment of the present invention
  • FIG. 7 is a flowchart of a basic key point of automatic tuning of an antenna feed parameter of an automatic batch commissioning AISG electrical adjustment antenna according to an embodiment of the present invention
  • FIG. 8 is a flowchart of a data flow of a basic configuration single device scanning and commissioning parameter of an automatic batch commissioning AISG electrical adjustment antenna according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of an actual wiring manner of an automatic batch commissioning AISG electronically adjustable antenna according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of an automatic debugging of an automatic batch commissioning AISG electronically modulated antenna according to an embodiment of the present invention
  • FIG. 11 is a topology diagram of an AISG device object that is automatically packaged by an AISG device after automatic batch commissioning according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram showing the operation flow of the automatic batch commissioning AISG electronically tuned antenna according to an embodiment of the present invention and the result recorded in the automatic test. detailed description
  • FIG. 1 is a schematic diagram of a method for automatically batch-modulating an AISG electrical tune antenna according to an embodiment of the present invention. As shown in FIG. 1 , the steps are as follows:
  • Step S1 Send a scan request to multiple AISG devices respectively connected to different RRUs.
  • Step S2 Receive a scan result including device information obtained from the plurality of AISG devices according to the scan request.
  • Step S3 According to the scan result of each AISG device, an antenna adjustment file adapted to the device information is respectively configured for each of the plurality of AISG devices.
  • step S3 the step of separately establishing an antenna adjustment file adapted to the device information for each of the plurality of AISG devices includes:
  • each of the AISG device node information includes at least an AISG version number, an AISG device type, and RRU information.
  • the step of configuring antenna adjustment parameter information for each AISG device to be adjusted according to the information of each AISG device node includes:
  • the step of establishing a corresponding correspondence between each antenna adjustment parameter information and each AISG device to be adjusted according to the information of each AISG device node includes:
  • each configured antenna adjustment parameter information is obtained, so as to establish a corresponding channel for transmitting the configured antenna adjustment parameter information.
  • Step S4 The antenna adjustment file of each AISG device is sent to the corresponding AISG device in turn, so that the antenna is adjusted according to the antenna adjustment file.
  • step S4 the antenna adjustment parameter information in the antenna adjustment file of each established AISG device is sequentially sent to the corresponding AISG device via the established corresponding channel for transmitting the antenna adjustment parameter information.
  • the antenna of the corresponding AISG device sequentially performs adjustment parameter information in the antenna adjustment file.
  • FIG. 2 is a structural diagram of an apparatus for automatically batch-adjusting an AISG electronically modulated antenna according to an embodiment of the present invention. As shown in FIG. 2, the method includes: a scanning module 21, a receiving module 22, a building module 23, and an adjusting module 24.
  • the scanning module 21 can be implemented by an interface of the network management system, and configured to send a scan request to multiple AISG devices respectively connected to different RRUs.
  • the receiving module 22 may be implemented by a memory of the network management system and configured to receive scan results including device information obtained from the plurality of AISG devices according to the scan request.
  • the constructing module 23 may be implemented by a processor of the network management system, and configured to respectively construct an antenna adjustment file adapted to the device information for each of the plurality of AISG devices according to the scan result of each AISG device.
  • the node submodule of the constructing module 23 is configured according to each The device information in the scan result constructs a device node for each AISG device on the storage tree to generate each AISG device node information.
  • the configuration submodule in the node submodule of the constructing module 23 is configured to configure antenna adjustment parameter information for each AISG device to be adjusted according to the information of each AISG device node.
  • the routing sub-module of the node sub-module of the constructing module 23 is configured to establish, according to the information of each AISG device node, a corresponding relationship between each configured antenna adjustment parameter information and each AISG device to be adjusted.
  • the command submodule in the node submodule of the constructing module 23 is configured to generate an antenna adjustment file for each AISG device to be adjusted according to the antenna adjustment parameter information and the corresponding relationship of each AISG device to be adjusted.
  • the configuration submodule further includes an AISG unit, a searching unit, and an allocating unit.
  • the AISG unit of the configuration sub-module is configured to obtain an AISG version number and an AISG device type in each AISG device node information.
  • the locating unit of the configuration sub-module is configured to obtain antenna adjustment parameter information of each AISG device to be adjusted according to the preset relationship between the AISG version number and the AISG device type and the antenna adjustment parameter information.
  • the allocation unit of the configuration sub-module is configured to configure corresponding antenna calibration parameters, inclination setting parameters, and dip query parameters for each AISG device to be adjusted according to the obtained antenna adjustment parameter information.
  • the routing sub-module further includes a RUU unit and a channel unit.
  • the RRU unit of the routing sub-module is configured to obtain RRU information in the information of each AISG device node.
  • the channel unit of the routing sub-module is configured to obtain, according to the RRU information, a correspondence between each configured antenna adjustment parameter information and each AISG device to be adjusted, so as to establish and send each configured antenna adjustment parameter. The corresponding channel of the information.
  • the adjustment module 24 may be implemented by a combination of a processor, a memory, and an interface of the network management system, and configured to sequentially send the antenna adjustment file of each AISG device to the corresponding AISG device, so as to be adjusted according to the antenna.
  • the file adjusts the antenna.
  • the embodiment of the present invention provides a specific scenario required by an antenna manufacturer.
  • This scenario can be extended, and is not limited to this configuration relationship, and is intended to explain the specificity involved in the one-button debugging according to the scenario.
  • Technical key points, the RRU type and physical wiring relationship involved in this scenario, and the type of AISG equipment (the embodiment of the present invention only relates to the relevant antenna type of RET, and does not involve the relevant type of tower release), follow the corresponding extensions.
  • FIG. 3 is a schematic diagram of a 2T2R typical configuration of R8882 and R8863 for automatic batch commissioning of an AISG electronically modulated antenna according to an embodiment of the present invention.
  • antenna developers can configure according to a certain type of connection. Batch commissioning of indicators for a type of antenna device.
  • a common configuration scenario is given.
  • R8882 is 900M for 8882-GUL9012
  • 8863 is for 2.1G for 8863-S2100 (A8A).
  • 0 8882 and R8863 share one Andrew's broadband.
  • R8882 and R8863 are based on 2T2R, which means that if one station is connected to 6 RRUs, there will be 3 R8882 connected to AISG, and 3 R8863 will not be connected to AISG.
  • FIG. 4 is a schematic diagram of basic indicators of an antenna type to be tested for automatically batch-testing an AISG electronically modulated antenna according to an embodiment of the present invention. As shown in Figure 4, the antenna indicator parameters are batch-tuned by the manufacturer.
  • FIG. 5 is a topological diagram of a preset wiring manner for batch antenna adjustment of an automatic batch commissioning AISG electronically modulated antenna according to an embodiment of the present invention.
  • the basic configuration of the actual physical wiring is unchanged. Only one AISSG antenna device needs to be replaced before one-button commissioning.
  • in software configuration based on MOM. Object-oriented model, to ensure that the three R8882-GUL9012 configured as the master RRU through the LMT are used to connect the AISG antenna devices, such as the remote electrical tune unit (RET: Remote Electrical Tilt Unit), two R8863 S2100 (A8A). ) will not be used to connect AISG antenna devices.
  • RET Remote Electrical Tilt Unit
  • the three RRUs are connected to the FS card to connect the six optical fibers to the FS.
  • the six physical interfaces are used to associate the physical entity objects of the AISG antenna with the AntEntity.
  • the six radio links are associated with the physical antenna and the RRU. .
  • FIG. 6 is a flowchart of a preset condition of a one-button tool for automatically batch-modulating an AISG electric adjustable antenna according to an embodiment of the present invention.
  • the correct preset of software and hardware is to ensure one-button commissioning.
  • the basic process of the normal startup of the process is as follows: First, the hardware condition is preset according to the preset wiring pattern topology of the batch antenna commissioning in FIG. 5 (ie, the physical connection is configured). Secondly, the software condition is preset (that is, the network management software is configured according to the basic objects assembled by the hardware connection). Finally, direct access to a one-button commissioning system.
  • FIG. 7 is a flowchart of a basic key point of automatic tuning of an antenna feed parameter of an automatic batch commissioning AISG electronically modulated antenna according to an embodiment of the present invention.
  • the process of the one-button commissioning process needs to be completed in one go.
  • the process of connecting the device scan, device data delivery, device control command commissioning, and device deletion is required for the entire process of the specified scenario.
  • the scan timeout period, the data expiration time, the device automatic check time, and the device control command set the query time, and consider the fault tolerance time. For example, if the scan fails or the device does not take effect, the process must be continued. No automatic intervention by the developer is required.
  • the specific process of automatically adjusting the basic key points of the antenna feed parameter is: first, the network management LMT-key starts the full rack scan; secondly, the actual operation configuration file constructed by the scan result reported by the scan request of the network management LMT is automatically sent to the network. Yuan, to establish the configuration between the network management and the network element; Again, the network management LMT automatically initiates the parameter debugging of the antenna according to the actual operation configuration file, and outputs the commissioning report, and finally the network management LMT completes the cleaning work.
  • FIG. 8 is a data flow diagram of a basic configuration single device scanning and commissioning parameter of an automatic batch commissioning AISG electrical adjustment antenna according to an embodiment of the present invention.
  • the specific steps for the reservation time and sequence of the single-process process are as follows: First, the CC clock control board sends a scan request to the AISG device via the RRU. Then, the AISG device reports the scan result generated by the scan request to the CC clock control board via the RRU. If the timeout period is within 10 minutes, the scan result is reported to the CC clock control board within 8 minutes. Finally, the CC clock control board issues a control command based on the scan result.
  • the calibration antenna allowable time is 3 minutes
  • the tilt allowable time is 1-2 minutes
  • the query tilt angle is 1-2 minutes.
  • the key technical points that need to be solved for device scanning are:
  • the scan result for the scan report of the single sub-unit number, one scan record needs to automatically construct an AISG device object to deliver the foreground, and for the multi-sub-unit number, it is necessary to construct and generate multiple sub-units and several AISG device objects to automatically deliver the configuration.
  • the second scan time will be extended, because after a scan timeout, the foreground cannot delete all the configurations and then reset the scan time, because this is a dynamic table delivery configuration. That is to say, if a full rack scan is initiated, after a timeout is issued, the timeout time must be doubled again. If the RRU link in the foreground is normal, the six RRUs scan at the same time, and the timeout will not expire within 10 minutes. If the scan timeout is true, a single rack scan of the RRU without the antenna is required. At this time, the scan initiated requires the user to manually fill in the single rack number. The scan will time out within 7 minutes, and then the user will continue to initiate a full rack scan, so that the timeout period will not double. This key point mainly addresses the timeliness of one-button tools and is the greatest guarantee for the efficiency of automated batch commissioning.
  • the debugging tilt angle is a Serial work, only one antenna can be adjusted and the other one. Scanning the entire rack is a parallel time, and all the antenna devices connected to the RRU can scan at the same time, waiting for the result to be reported. After the scan result is reported, the AISG object data that needs to be sent to the foreground in an incremental manner is automatically created according to the scan record. It is necessary to consider the database data that the base station can recognize after being sent by the MO.
  • the network management network metadata management of the software has been based on the MOM object management of the 3rd Generation Partnership Project (3GPP: 3rd Generation Partnership Proj ect), and the database management of tabular data is directed to the MOM objectized data management. Evolution of the way.
  • FIG. 9 is a schematic diagram of an actual wiring manner of an automatic batch commissioning AISG electronically modulated antenna according to an embodiment of the present invention.
  • the actual scenario configuration mainly involves the commissioning of the antenna device.
  • the device type supported by the AISG1.1 protocol is RETC (single antenna), supported by the AISG2.0 protocol.
  • the device type is MULTI-RET (multi-antenna), ETC (single antenna).
  • MULTI-RET multi-antenna
  • ETC single antenna
  • Many manufacturers customize the scanning and configuration of their AISG equipment, and also derive proprietary types such as NSN proprietary protocols or LGPTMA, and these are applicable to the present invention.
  • the present invention can be extended in the same manner, so that the user can not pay attention to the association between the scanned object and the delivered device object, and the network management LMT automatically ensures the correctness of the configuration.
  • FIG. 10 is a flowchart of an automatic debugging of an automatic batch commissioning AISG electronically modulated antenna according to an embodiment of the present invention.
  • one-click batch automated commissioning takes into account the sequential processes of scanning, delivering, controlling, and deleting configurations.
  • the specific triggering process is as follows:
  • Step 1001 Preset configuration. Among them, FS, RRU, physical antenna and RF connection for fiber topology.
  • Step 1002 - Key trigger antenna indicator commissioning.
  • the AISG request message is scanned and an AISG scan is performed.
  • Step 1003 Check whether there is a scan result reported. If the scan result is reported, the AISG record (including the configuration of the main control board, the associated physical antenna, the serial number, the manufacturer information, etc.) is configured according to the scan record, and the MOM incremental practice operation is sent to the foreground, and step 1004 is performed; If the scan result is reported, the scan ends and the automated test report is recorded. The scan process fails.
  • Step 1004 Check if the increment is successful. If the incremental synchronization is successful, write the report, serially debug the AISG device, and then automatically calibrate the antenna to the AISG device, and perform step 1005. If the incremental synchronization fails, the AISG device is not correctly created, and the automatic test report is written.
  • Step 1005 Check if the calibration is complete. If the calibration is completed, write the report, serially debug the AISG device, set the AISG device in turn, and query the tilt angle. Perform step 1006. If the calibration is not completed, the commissioning fails. Because the automatic calibration fails, write the automatic test report. .
  • Step 1006 Check if the commissioning is completed. If the commissioning is completed, the report is written, the AISG scan record is automatically deleted, the AISG device record is automatically deleted, the association relationship between the physical antenna and the AISG is deleted, and the automatic test report is entered. If the commissioning is not completed, the commissioning fails. An automated test report was written due to a failure to set the query dip.
  • Step 1007 If the next automatic commissioning starts, return to step 1002.
  • the package is used to adapt the details of the network management object tree.
  • the antenna manufacturer does not need to care.
  • the one-button triggers the overall process from scanning to configuration to commissioning. The user only needs to replace different devices and trigger the test with one button. Just fine.
  • the implementation steps are as follows:
  • Step 1101 Enter the LMT-based automated commissioning system through the system menu, open the "AISG antenna feeder automatic monitoring” interface, select “full rack scan” in general, and trigger the automatic commissioning through the "Tianjin parameter index test” button. Specifically include:
  • connection configuration Preset the connection configuration, select full rack scan, and send a AISG scan request to the NE by one-click trigger, waiting to scan all RRU racks.
  • Step 1102 The scan result is reported by the TRAP reporting mechanism of the Simple Network Management Protocol (SNMP), and the report result is encapsulated into an AISG data object structure that can be identified by the MOM object tree, and the system automatically completes the encapsulation and passes the transaction.
  • the method of incrementally issuing a transaction operation is sent to the base station system. Specifically include:
  • the RETC class device object needs to construct an AISG device MOM object with a sub-unit number of 255, and insert it into the transaction delta file and wait for delivery.
  • the MULTI-RET device object needs to construct an AISG device MOM object with the number of records equal to the number of multiple subunits, and insert it into the transaction delta file and wait for the delivery.
  • FIG. 11 is a topological diagram of an AISG device object that is automatically packaged by an AISG electronically modulated antenna according to an embodiment of the present invention.
  • the transaction file is sent to the network management system. After the data is synchronized to the base station, it takes 2 seconds to synchronize to the NMS.
  • Step 1103 After the transaction is sent in increments, it is valid on the NE side, and automatically triggers the basic parameters of the antenna device, including automatic calibration, and set the query tilt angle.
  • FIG. 12 is a schematic diagram showing the details of the operation flow of the automatic batch commissioning AISG electrically adjustable antenna and the result record to the automated test report according to the embodiment of the present invention. As shown in FIG. 12, the content is spoofed for the record after the one-time operation. Specifically include: (1) Traversing all AISG antenna device objects in effect, serial operation.
  • the automatic calibration control command is issued, the timeout period is 3 minutes, and the operation result is recorded in the automatic test report.
  • the query tilt control command is issued, the timeout period is 2 minutes, and the operation result is recorded in the automatic test report.
  • Step 1104 After the commissioning is completed, the AISG scan data on the U2000 is automatically deleted and synchronized to the NE, and the AISG device data on the NE is deleted. The result is recorded in the automated test report. Specifically include:
  • Step 1201 Enter the AISG antenna feed batch automatic commissioning system through the system menu, open the “AISG antenna feeder automatic monitoring” interface, select “full rack scan” in general, and trigger the automatic commissioning through the “Tianjin parameter index test”. Specifically include:
  • the fields to be followed in the scan record include: AISG version number, AISG device type, multiple subunit numbers, device sequence. Column number, master RRU information, manufacturer number, etc.
  • the TRAP result will be stored in the background MOM tree node AISG scan node AISG Scan Unit, and the successful scan result will be recorded in the automatic test report.
  • Step 1202 Automatically construct the information of the AISG device node that needs to be delivered to the network element, and send the information in an incremental manner according to the scan node information that is reported by the scan. Specifically include:
  • the RETC device type Based on the AISG1.1 protocol, the RETC device type, automatically constructs an AISG device node AISG Device with subunit number 255, fills in the necessary field information, and marks the node with the new tag "1" in the delta file.
  • the RETC device type Based on the AISG2.0 protocol, the RETC device type, automatically constructs an AISG device node AISG Device with subunit number 255, fills in the necessary field information, and marks the node with the new tag "1" in the delta file.
  • AISG Device For each AISG device object AISG Device, update the physical entity antenna object Ant Entity, modify its reference relationship with the AISG device object Reserved By AISG Device, and mark it as "U” in the transaction delta file. Waiting for delivery.
  • Step 1203 Traverse all valid AISG device objects AISG Device, serially issue control Commands include automatic calibration, setting the dip, querying the dip, and logging the results to an automated test report.
  • Step 1204 After the commissioning command is debugged, the AISG scan data on the U2000 is automatically deleted and synchronized to the NE, and the AISG device data on the NE side is deleted. The result is recorded in the automated test report. Specifically include:
  • AISG Scan Unit update the background database.
  • different device types different multi-subunit types, mark all AISG device nodes Aisg Device node to delete "D", update all physical entity antenna objects Ant Entity, delete them The reference relationship with the AISG device object Reserved By AISG Device, fill in the incremental operation transaction number, issue the transaction operation to the network element side, and record the result to the automated test.
  • the physical connection relationship is preset, and the one-key triggers the automatic batch debugging method of the AISG antenna from scanning to configuration to the measurement of the antenna index, so that the connection configuration of the hardware and software is not switched, and the one-touch type is adopted.
  • the software automatically completes the scanning of the AISG antenna device, issues the command, and sends the control command.
  • the results of the operation in the whole process are uniformly recorded in the automated test report, and the antenna developers independently query, so that the development of the antenna and the network management is completely decoupled.
  • the test results can be found through the automated commissioning report, and the improvement of the AISG's commissioning function and the decoupling of the network management service will fundamentally improve the antenna's commissioning efficiency.
  • the antenna developer can be free from the configuration process of the network management system.
  • the internal service is completely realized by the software.
  • the manufacturer only needs to pay attention to the antenna device's own indicators, which greatly reduces the operation threshold of the network management software and saves the commissioning time.
  • the manufacturer and operation and maintenance can also automatically adjust the AISG antenna specifications of each manufacturer without having to pay attention to the configuration process of the network management.
  • the network management LMT is based on batch automatic commissioning, and the antenna manufacturer R&D personnel do not need to care about the network management service.
  • the indicator When the indicator is commissioned, only the software of the present invention needs to be provided to the antenna manufacturer, involving the software interface and security issues, based on the LMT.
  • Network management software while stripping network management LMT
  • the main GUI interface provides a one-click operation interface and automated test report. On the LMT interface layer, it is only dependent on the objectized MOM tree of the LMT network management.
  • the LMT-based MOM management object tree structure strips out the complex services of the AISG actual device nodes adapted to the network elements according to the network management scanning nodes, and avoids the correctness of the AISG device nodes and the physical antennas through the network management personnel.
  • the correctness of the relationship No need to manually scan, handle timeouts, do not need to manually send control commands, serially debug the antenna system, connect the processes through a one-button operation, and realize the high solution of the network management service and the antenna index service. Coupling, and greatly reduce the difficulty of the antenna R & D operation and maintenance personnel, the details of the network management GUI do not have to be exposed to the antenna manufacturers.
  • the AISG device can be used to manage the de-coupled network management GUI and the antenna feeder's one-touch batch AISG antenna feed indicator method based on the network management system LMT.
  • the scanning of the external electrical adjustment antenna device of the base station system is highly fault-tolerant. Under the normal configuration, the timeout period and the timeout period will not be accumulated. If the timeout period is not correct, the single-rack scan will be started, and the database of the NE will be refreshed, so that the timeout time of the one-click operation scan will not be accumulated. Improve the efficiency of the scanning process.
  • the operation and maintenance personnel can obtain the operation results of each business link through the automated test report, and then modify the actual physical wiring to view the actual environmental alarms instead of Use to care about the connection between the objects on the network management software side in the software.
  • the decoupling of the operation and maintenance and the network management configuration GUI has powerfully debugged the parameters of the AISG antenna feeder parameters by the manufacturer, operation and maintenance, and users.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种自动批量调测AISG电调天线的方法及装置,涉及无线通讯网管领域,所述方法包括:向分别连接不同的RRU的多个AISG设备发送扫描请求;接收来自所述多个AISG设备根据扫描请求获得的包括设备信息的扫描结果;根据每个AISG设备的扫描结果,为所述多个AISG设备之每个分别构造与其设备信息相适应的天线调整文件;将已建立的每个AISG设备的天线调整文件依次下发给对应的AISG设备,使其依次按照所述天线调整文件对天线进行调整。

Description

一种自动批量调测 AISG电调天线的方法及装置 技术领域
本发明涉及无线通讯网管领域,特别涉及一种基于 LMT网管系统设计 的一键式自动化批量调测天线接口标准组织 ( AISG: Antenna Interface Standards Group )天馈子系统参数的方法及装置。 背景技术
本地终端维护(LMT: Local Maintenance Terminal )是无线通讯大型网 管系统中的一个轻量级的网管开站软件, 由于部署灵活、 定位方便, 是上 站调测的开发人员和局方运维人员的必备工具。
AISG天馈调测在网管系统中对业务要求很高, 天线厂家众多, 设备种 类庞大。 网管开发人员对天线业务不够熟悉, 天线厂家用户对网管业务也 不够熟悉,使得天馈的参数调测和网管的图形用户界面( GUI: Graphical User Interface )操作配置流程高度耦合, 成为天馈指标调测过程中的一个瓶颈。
常规网管系统所进行的 AISG天线设备管理,是针对调测某一套厂家的 设备。 首先在基站的硬件系统中要保证主控时钟单板, 光网络交换(FS: Fiber Switched )单板正常运行, 配置好 FS到射频拉远单元(RRU: Radio Remote Unit )的拓朴关系, RRU或主机架射频内置单元 RSU正常启动运行, 配置好 AISG设备的控制线和射频连线。然后在软件的配置上, 需要用户事 先保证配置好主控射频单板对象、需要配置的 AISG设备所需要关联的物理 天线、 物理天线和射频连线的配置关系等等。
硬件和软件的准备做好之后, 用户需要手动启动网管系统, 向基站系 统发送 AISG设备请求。 待扫描结果上报之后, 用户需要根据扫描结果, 依 据 AISG设备的业务规则, 去更改创建对应的 AISG设备。 下发到基站后, 网管系统会同步 AISG设备的配置到系统中。 用户如果需要调测 AISG, 需 要选中相应的 AISG设备记录, 对 AISG设备通过手动操作菜单来做调测。 调测完毕后用户需要手动清空扫描视图, 删除 AISG设备并重新下发到基 站。
在调测的过程中, 设备的扫描、 设备的下发生效、 天线的自动校准、 天线的倾角设置和查询, 都是需要比较长的时间。 天线设备的参数的调测 具有很大的灵活性,需要操作人员对天线业务和对网管 MOM ( Management Object Manager )设计原理的熟悉, 一旦调测失败, 相应的超时时间还会累 加。 因此,单 AISG天线调测业务非常繁瑣, 非常耗时,对于网管系统 LMT 来说, 针对各厂家批量调测不同的天线指标, 需要耗费极大的人力, 并且 无法由网管操作人员独立操作完成, 这就导致天线厂家和运维通过网管 LMT调测 AISG天线指标困难重重。
在 LMT中, AISG设备关联的硬件以及连线的配置、 扫描消息的下发 和上报、 AISG设备的配置下发、 AISG天线的自动校准、 设置倾角、 查询 倾角等各天馈调测消息下发、 AISG设备删除, 均需要网管操作人员手动去 保证操作顺序。 而涉及到的网管中的多处图形用户界面(GUI )入口, 网管 侧扫描节点和网元侧实际需要下发的 AISG设备节点, 由于协议类型、设备 类型、 子单元号的差异性, 使得扫描节点到网元设备节点的封装非常复杂, 要求对网管业务 MOM设计的高度熟悉。 对天线研发运维人员门槛太高, 对于各厂家天线开发人员调测自己厂家的天线参数有很大困难, 尤其是批 量调测, 由于每个配置流程都需要人工触发, 使得天线的调测过于耗时, 天线开发人员无法关注天线的指标, 而卡在网管系统的配置流程上。 发明内容
为解决现有存在的技术问题, 本发明实施例主要提供一种自动批量调 测 AISG电调天线的方法及装置。 根据本发明的一个方面,提供了一种自动批量调测 AISG电调天线的方 法, 包括:
向分别连接不同的 RRU的多个 AISG设备发送扫描请求;
接收来自所述多个 AISG设备根据扫描请求获得的包括设备信息的扫 描结果;
根据每个 AISG设备的扫描结果,为每个 AISG设备分别构造与其设备 信息相适应的天线调整文件;
将已建立的每个 AISG设备的天线调整文件依次下发给对应的 AISG设 备, 使其依次按照所述天线调整文件对天线进行调整。
根据本发明的另一方面,提供了一种自动批量调测 AISG电调天线的装 置, 包括:
扫描模块, 配置为向分别连接不同的 RRU的多个 AISG设备发送扫描 请求;
接收模块,配置为接收来自所述多个 AISG设备根据扫描请求获得的包 括设备信息的扫描结果;
构造模块, 配置为根据每个 AISG设备的扫描结果, 为所述多个 AISG 设备之每个分别构造与其设备信息相适应的天线调整文件;
调整模块,配置为将已建立的每个 AISG设备的天线调整文件依次下发 给对应的 AISG设备, 使其依次按照所述天线调整文件对天线进行调整。
与现有技术相比较, 本发明实施例的有益效果在于: 能够通过基于网 管系统 LMT的 AISG设备管理解耦网管 GUI和天馈业务的一键式批量调测 AISG 天馈指标的方法, 实现网管操作人员不再受制于网管的配置业务流 程, 降低网管操作的门槛, 节省调测时间。 附图说明
图 1是本发明实施例提供的自动批量调测 AISG电调天线的方法原理 图;
图 2是本发明实施例提供的自动批量调测 AISG电调天线的装置结构 图;
图 3是本发明实施例提供的自动批量调测 AISG电调天线的 R8882和 8863的 2T2R典型配置连线图;
图 4是本发明实施例提供的自动批量调测 AISG电调天线的待调测天线 类型的基本指标示意图;
图 5是本发明实施例提供的自动批量调测 AISG电调天线的批量天线调 测的预设配线方式拓朴图;
图 6是本发明实施例提供的自动批量调测 AISG电调天线的一键式工具 预设条件流程图;
图 7是本发明实施例提供的自动批量调测 AISG电调天线的天馈参数自 动调测基本关键点流程图;
图 8是本发明实施例提供的自动批量调测 AISG电调天线的基础配置单 设备扫描并调测参数一次数据流程图;
图 9是本发明实施例提供的自动批量调测 AISG电调天线的厂家实际的 配线方式示意图;
图 10是本发明实施例提供的自动批量调测 AISG电调天线的自动化调 测流程图;
图 11是本发明实施例提供的自动批量调测 AISG电调天线的自动封装 AISG设备对象下发后的拓朴图;
图 12是本发明实施例提供的自动批量调测 AISG电调天线的操作流程 细节及结果记录入自动化测试^艮告示意图。 具体实施方式
以下结合附图对本发明的优选实施例进行详细说明, 应当理解, 以下 所说明的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。 图 1是本发明实施例提供的自动批量调测 AISG电调天线的方法原理 图, 如图 1所示, 步骤如下:
步骤 S1: 向分别连接不同的 RRU的多个 AISG设备发送扫描请求。 步骤 S2: 接收来自所述多个 AISG设备根据扫描请求获得的包括设备 信息的扫描结果。
步骤 S3: 根据每个 AISG设备的扫描结果, 为所述多个 AISG设备之 每个分别构造与其设备信息相适应的天线调整文件。
在步骤 S3中, 所述的为所述多个 AISG设备之每个分别建立与其设备 信息相适应的天线调整文件的步骤包括:
根据每个扫描结果中的所述设备信息,在存储树上为每个 AISG设备构 造一个设备节点, 生成每个 AISG设备节点信息;
根据所述每个 AISG设备节点信息,为每个待调整 AISG设备配置天线 调整参数信息;
根据所述每个 AISG设备节点信息,建立已配置的每个天线调整参数信 息与每个待调整 AISG设备的对应关系;
根据每个待调整 AISG设备的所述天线调整参数信息和所述对应关系, 为每个待调整 AISG设备生成天线调整文件。
优选地,所述的每个 AISG设备节点信息至少包括 AISG版本号、 AISG 设备类型和 RRU信息。
优选地,所述的根据所述每个 AISG设备节点信息,为每个待调整 AISG 设备配置天线调整参数信息的步骤包括:
获取所述每个 AISG设备节点信息中的 AISG版本号和 AISG设备类型; 根据预置的所述 AISG版本号和 AISG设备类型与天线调整参数信息的 对应关系, 得到每个待调整 AISG设备的天线调整参数信息; 根据得到的所述天线调整参数信息,为所述每个待调整 AISG设备分别 配置相应的天线校准参数、 倾角设置参数和倾角查询参数。
优选地,所述的根据所述每个 AISG设备节点信息,建立已配置的每个 天线调整参数信息与每个待调整 AISG设备的对应关系的步骤包括:
获取所述每个 AISG设备节点信息中的 RRU信息;
根据所述 RRU信息, 得到已配置的每个天线调整参数信息与每个待调 整 AISG设备的对应关系,以便建立发送所述已配置的每个天线调整参数信 息的相应通道。
步骤 S4: 将已建立的每个 AISG设备的天线调整文件依次下发给对应 的 AISG设备, 使其依次按照所述天线调整文件对天线进行调整。
在步骤 S4中, 将所述已建立的每个 AISG设备的天线调整文件中的天 线调整参数信息经由已建立的发送所述天线调整参数信息的相应通道依次 发送给对应的 AISG设备。
所述对应的 AISG设备的天线依次执行所述天线调整文件中的调整参 数信息。
图 2是本发明实施例提供的自动批量调测 AISG电调天线的装置结构 图, 如图 2所示, 包括: 扫描模块 21、 接收模块 22、 构造模块 23和调整 模块 24。
所述扫描模块 21可以由网管系统的接口实现, 配置为向分别连接不同 的 RRU的多个 AISG设备发送扫描请求。
所述接收模块 22可以由网管系统的存储器实现, 配置为接收来自所述 多个 AISG设备根据扫描请求获得的包括设备信息的扫描结果。
所述构造模块 23可以由网管系统的处理器实现,配置为根据每个 AISG 设备的扫描结果,为所述多个 AISG设备之每个分别构造与其设备信息相适 应的天线调整文件。 其中, 所述构造模块 23的节点子模块配置为根据每个 扫描结果中的所述设备信息,在存储树上为每个 AISG设备构造一个设备节 点, 生成每个 AISG设备节点信息。 所述构造模块 23的节点子模块中配置 子模块配置为根据所述每个 AISG设备节点信息,为每个待调整 AISG设备 配置天线调整参数信息。 所述构造模块 23的节点子模块中路由子模块配置 为根据所述每个 AISG设备节点信息,建立已配置的每个天线调整参数信息 与每个待调整 AISG设备的对应关系。 所述构造模块 23的节点子模块中命 令子模块配置为根据每个待调整 AISG设备的所述天线调整参数信息和所 述对应关系, 为每个待调整 AISG设备生成天线调整文件。
其中, 所述配置子模块还包括 AISG单元、 查找单元和分配单元。 所述 配置子模块的 AISG单元配置为获取所述每个 AISG设备节点信息中的 AISG版本号和 AISG设备类型。 所述配置子模块的查找单元配置为根据预 置的所述 AISG版本号和 AISG设备类型与天线调整参数信息的对应关系, 得到每个待调整 AISG设备的天线调整参数信息。所述配置子模块的分配单 元配置为根据得到的所述天线调整参数信息,为所述每个待调整 AISG设备 分别配置相应的天线校准参数、 倾角设置参数和倾角查询参数。
所述路由子模块还包括 RUU单元和通道单元。所述路由子模块的 RRU 单元配置为获取所述每个 AISG设备节点信息中的 RRU信息。 所述路由子 模块的通道单元配置为根据所述 RRU信息, 得到已配置的每个天线调整参 数信息与每个待调整 AISG设备的对应关系,以便建立发送所述已配置的每 个天线调整参数信息的相应通道。
所述调整模块 24可以由网管系统的处理器、 存储器和接口结合实现, 配置为将已建立的每个 AISG设备的天线调整文件依次下发给对应的 AISG 设备, 使其依次按照所述天线调整文件对天线进行调整。
本发明实施例提供了一种天线厂家要求的特定场景, 此场景可以扩展, 不局限于此配置关系, 旨在根据此场景说明一下一键式调测涉及到的具体 的技术关键点, 此场景中涉及到的 RRU类型和物理配线关系以及 AISG设 备的类型 (本发明实施例只涉及到 RET的相关天馈类型, 暂不涉及塔放相 关类型), 都可以在后续做相应的扩展。
图 3是本发明实施例提供的自动批量调测 AISG电调天线的 R8882和 R8863的 2T2R典型配置连线图, 针对不同的天线厂家来说, 天线研发人员 能够根据某一类连线的配置, 批量调测一类天线设备类型的指标。 比如, 给出常用的一个配置场景,如图 3所示, RRU总共两种类型, R8882为 900M 的 8882-GUL9012, 8863为 2.1G的 8863-S2100( A8A )0 8882和 R8863 共用一个安德鲁的宽频天线(接上去后会加滤波器), 但是只有 R8882上会 接 AISG的线, R8863上不会接 AISG的线。 R8882和 R8863都先按照 2T2R 来, 也就是说如果按照一个站点接 6个 RRU来算的话,会有 3个 R8882接 AISG, 3个 R8863不接 AISG。
图 4是本发明实施例提供的自动批量调测 AISG电调天线的待调测天线 类型的基本指标示意图。 如图 4所示, 为厂家批量调测的天线指标参数。
图 5是本发明实施例提供的自动批量调测 AISG电调天线的批量天线调 测的预设配线方式拓朴图。 如图 5 所示, 在批量调测之前, 要保证实际物 理配线基本配置不变,每次一键式调测之前, 只需要更换不同的 AISG天线 设备; 同时, 在软件配置上, 基于 MOM对象化模型, 要保证通过 LMT事 先配置好的 3个 R8882-GUL9012作为主控 RRU,分别用于连接 AISG天线 设备,如远程电调单元( RET: Remote Electrical Tilt Unit ), 2个 R8863 S2100 ( A8A )不会用于连接 AISG天线设备。 3个 RRU分别和 FS单板连接出 6 个拓朴光纤连线,配置 6条用于后续关联 AISG天线设备的天线物理实体对 象 AntEntity, 同时配置 6条射频连线关联好物理天线和 RRU射频端口。
图 6是本发明实施例提供的自动批量调测 AISG电调天线的一键式工具 预设条件流程图, 如图 6所示, 软件和硬件的正确预设是保证一键式调测 流程正常启动的先决条件, 其基本流程为: 首先, 根据图 5 的批量天线调 测的预设配线方式拓朴图进行硬件条件的预设(即, 配置好物理连线)。 其 次, 进行软件条件预设(即, 网管软件按照硬件连线组装的基本对象进行 配置)。 最后, 直接接入一键式的调测系统。
图 7是本发明实施例提供的自动批量调测 AISG电调天线的天馈参数自 动调测基本关键点流程图。 如图 7所示, 一键式调测的流程需要一气呵成, 其中, 针对厂家指定场景的整个流程中需要连接设备扫描, 设备数据下发, 设备控制命令调测, 设备删除的流程。 同时, 预留扫描超时时间, 数据下 发生效时间, 设备自动校验时间, 设备控制命令设置查询时间, 并同时考 虑到容错时间, 比如扫描下发失败或者设备不生效时要保证流程继续进行, 不需要研发人员自动干预。
天馈参数自动调测基本关键点的具体流程为, 首先网管 LMT—键式启 动全机架扫描; 其次, 将针对网管 LMT的扫描请求上报的扫描结果构造的 实务操作配置文件自动下发给网元, 以建立网管与网元之间的配置; 再次, 网管 LMT根据实务操作配置文件自动发起天线的参数调测,并输出调测报 告, 最后网管 LMT完成清理工作。
图 8是本发明实施例提供的自动批量调测 AISG电调天线的基础配置单 设备扫描并调测参数一次数据流程图。 如图 8所示, 针对单设备, 单项流 程需要的预留时间及先后顺序的具体步骤为: 首先, CC 时钟控制板经由 RRU下发扫描请求给 AISG设备。 然后, AISG设备将根据扫描请求生成的 扫描结果经由 RRU上报给 CC时钟控制板,若超时时间在 10分钟内,则会 在 8分钟内将扫描结果上报给 CC时钟控制板。 最后, CC时钟控制板根据 扫描结果下发控制命令, 校准天线允许时间为 3 分钟, 设置倾角允许时间 为 1-2分钟, 查询倾角允许时间为 1-2分钟。
其中, 对于设备扫描需要解决的关键技术点有: 扫描结果中对于单子单元号的扫描上报, 一条扫描记录需要自动构造 一个 AISG设备对象下发前台,对于多子单元号则需要构造生成多子单元个 数个 AISG设备对象自动下发配置,这种是针对不同 AISG协议类型和不同 天线设备类型的自动化根据扫描结果对自动化增量 AISG下发数据的适配。
如果第一次扫描不成功, 在进行第二次扫描时间就会延长, 因为一次 扫描超时后, 前台无法做到删除所有的配置然后重置扫描时间, 因为这是 一个动态表的下发配置, 也就是说如果是发起全机架扫描, 下发一次超时 后, 再次的超时时间必然翻倍。 如果在前台 RRU链路都正常的情况下, 6 个 RRU同时进行扫描, 10分钟之内是不会超时的, 如果真的扫描超时, 此 时需要发起一个没有连接天线的 RRU的单机架扫描, 这时发起的扫描, 需 要用户手动填写一下单机架号, 这次扫描会在 7 分钟之内超时, 然后再由 用户继续发起全机架扫描, 这样超时时间就不会翻倍。 此关键点主要解决 一键式工具的时效性, 是自动化批量调测的效率的最大保证。
按照如此配置, 一次扫描需要 8分钟, 每个天线需要先自动校准再设 置倾角, 这个时间对于基站网元来说一般自动校准和设置倾角需要 3-5 分 钟, 按 5 分钟计算, 调试倾角是一个串行的工作, 只能调完一个天线再调 另外一个。 扫描全机架是一个并行的时间, 可以所有主控 RRU连接的天线 设备同时扫描, 等待结果上报。 扫描结果上报以后, 根据扫描记录自动创 建需要增量下发到前台的 AISG对象数据, 需要考虑到事务增量下发之后, 经过 MO转换为基站可识别的数据库数据。 同时, 同步到网管的面向消息 的中间件( MOM: Message-oriented Middleware )对象树中, 数据再次生效 的时间至少需要 2秒。在扫描之后下发 AISG配置之后, 需要等 1分钟的时 间才能操作天线, 进行自动校准的操作。 针对天线调测的特点, 这些因素 都是影响自动化批量调测效率的重要指标。
事实上,针对网管系统对 AISG设备数据的管理,业内的主要基站网管 软件的网管网元数据管理, 已经基于第三代合作伙伴计划 (3GPP: 3rd Generation Partnership Proj ect ) 的 MOM对象化管理的方式, 由表格化数据 的数据库管理的方式, 向着 MOM对象化数据管理的方式演进。
图 9是本发明实施例提供的自动批量调测 AISG电调天线的厂家实际的 配线方式示意图。 如图 9所示, 实际场景配置主要涉及到的是天线设备的 调测,涉及到的天线接口标准协议中, AISG1.1协议支持的设备类型是 RETC (单天线), AISG2.0协议支持的设备类型是 MULTI— RET (多天线), ETC (单天线)。 有很多厂家会对自己的 AISG设备的扫描和配置做定制, 同时 也衍生出比如 NSN私有协议, 或者是 LGPTMA等私有设备类型, 而这些 均适用于本发明。 另外, 对于天线厂家对于天线预设的不同配置情况, 比 如扩展出多块 FS单板连接多块 RRU同时扫描的情况, 仍然可以在本发明 中做扩展。 对于其他设备类型, 本发明可以同理扩展, 使得用户可以不用 去关注扫描对象与下发设备对象之间的关联, 而由网管 LMT自动去保证配 置的正确性。
图 10是本发明实施例提供的自动批量调测 AISG电调天线的自动化调 测流程图。 如图 10所示, 一键式批量自动化调测要考虑到扫描, 下发, 控 制, 删除配置的先后流程, 具体的触发流程如下:
步骤 1001 : 预设配置。 其中, 包括为光纤拓朴设置的 FS, RRU, 物理 天线和射频连线。
步骤 1002: —键式触发天线指标调测。 下发扫描 AISG请求消息, 并 进行 AISG扫描。
步骤 1003: 查看是否有扫描结果上报。 若有扫描结果上报, 则按照扫 描记录构造 AISG记录(其中包括配置主控单板, 关联物理天线, 序列号, 厂家信息等), 下发 MOM增量实务操作到前台, 执行步骤 1004; 若没有扫 描结果上报, 则扫描结束, 记录入自动化测试报告, 扫描过程失败。 步骤 1004: 查看增量是否同步成功。 若增量同步成功, 则写入报告, 串行依次调测 AISG设备, 依次对 AISG设备做自动校准天线, 执行步骤 1005; 若增量同步失败, 没有正确创建 AISG设备, 写入自动化测试报告。
步骤 1005: 查看校准是否完毕。 若校准完毕, 则写入报告, 串行调测 AISG设备, 依次对 AISG设备进行设置, 查询倾角, 执行步骤 1006; 若校 准未完毕, 则调测失败, 由于自动校准失败, 写入自动化测试报告。
步骤 1006: 查看调测是否完毕。 若调测完毕, 则写入报告, 自动化删 除 AISG扫描记录,自动化删除 AISG设备记录,更新删除物理天线和 AISG 的关联关系, 入炉如自动化测试报告; 若调测未完毕, 则调测失败, 由于 设置查询倾角失败, 写入自动化测试报告。
步骤 1007: 若下次自动化调测开始, 返回步骤 1002。
对于天线的很多封装用于适配网管对象树的细节, 天线厂家研发人员 不需要关心, 一键式触发从扫描到配置到调测的整体流程, 用户只需更换 不同设备, 再一键触发测试即可。 实施步骤如下:
步骤 1101:通过系统菜单进入基于 LMT的自动化调测系统,打开" AISG 天馈自动化监测" 界面, 常规选择 "全机架扫描", 通过 "天馈参数指标测 试" 一键触发自动调测。 具体包括:
( 1 )预设好连线配置,选择全机架扫描,一键式触发向网元发送 AISG 扫描请求, 等待扫描所有 RRU机架。
( 2 )常规操作, RRU不发生断链的情况下, 若超时时间在 10分钟内, 则会在 8分钟内有扫描结果通过 TRAP结构上报上来。 不管扫描结果是否 成功, 扫描字段内容记录入测试报告。
( 3 )非常规操作, 连线有误或有断链告警的情况下, 超时时间 10分 钟内不会有扫描结果上报, 扫描失败。 再次启动扫描超时时间会累加为 20 分钟, 后续超时会继续累加。 此时需启动单机架扫描, 保证每次扫描超时 时间不会累加, 均为 10分钟, 结果记录测试报告。
步骤 1102:扫描结果会通过简单网络管理协议( SNMP: Simple Network Management Protocol )的 TRAP上报机制上报上来, 上报结果封装为 MOM 对象树可以识别的 AISG数据对象结构, 由系统自动完成封装,并通过事务 增量下发事务操作的方式下发到基站系统中。 具体包括:
( 1 )遍历扫描记录, 基于 AISG1.1协议, RETC类设备对象, 需要构 造出 1条子单元号为 255的 AISG设备 MOM对象, 插入事务增量文件中, 等待下发。
( 2 )基于 AISG2.0协议, RETC类设备对象, 需要构造出 1条子单元 号为 255的 AISG设备 MOM对象, 插入事务增量文件中, 等待下发。
( 3 )基于 AISG2.0协议, MULTI— RET类设备对象, 需要构造出记录 数等于多子单元个数的 AISG设备 MOM对象,插入事务增量文件中,等待 下发。
( 4 )对每一条构造出的 AISG设备 MOM对象, 需要更新物理实体天 线对象, 修改其和 AISG设备对象的引用关系, 插入事务增量文件中, 等待 下发。
其中, 图 11是本发明实施例提供的自动批量调测 AISG电调天线的自 动封装 AISG设备对象下发后的拓朴图。 如图 11所示, 下发事务操作增量 文件, 同步到基站侧后, 需要 2秒时间同步到网管侧, 重新接入后在网管 侧数据生效。
步骤 1103: 事务增量下发后, 在网元侧生效, 自动触发调测天线设备 的基本参数, 包括自动校准, 设置查询倾角等。
图 12是本发明实施例提供的自动批量调测 AISG电调天线的操作流程 细节及结果记录到自动化测试报告示意图。 如图 12所示, 为一次性操作之 后的记录才艮告内容。 具体包括: ( 1 )遍历生效的所有 AISG天线设备对象, 串行操作。
( 2 )针对每一个 AISG天线设备对象, 下发自动校准控制命令, 超时 时间为 3分钟, 操作结果记录到自动化测试报告。
( 3 )针对每一个 AISG天线设备对象, 下发设置倾角控制命令, 超时 时间为 2分钟, 操作结果记录到自动化测试报告。
( 4 )针对每一个 AISG天线设备对象, 下发查询倾角控制命令, 超时 时间为 2分钟, 操作结果记录到自动化测试报告。
步骤 1104: 调测完毕后, 会自动删除网管侧的 AISG扫描数据并同步 到网元,以及删除网元侧的 AISG设备数据,结果记录到自动化测试报告中。 具体包括:
( 1 )遍历扫描记录, 删除所有扫描记录节点, 结果记录到自动化测试 报告。
( 2 )遍历所有 MOM对象树中的 AISG设备对象, 删除所有节点, 插 入事务增量文件中, 等待下发。
( 3 )对每一条构造出的 AISG设备对象, 需要更新物理实体天线对象, 删除其和 AISG设备对象的引用关系, 插入事务增量文件中, 等待下发。
( 4 )下发事务操作增量文件, 同步到基站侧后, 需要 2秒时间同步到 网管侧, 重新接入后在网管侧数据生效, 结果记录到自动化测试报告。
对于一键式触发从扫描到配置到调测的整体流程, 优选的实施步骤如 下:
步骤 1201 : 通过系统菜单进入 AISG天馈批量自动化调测系统, 打开 "AISG天馈自动化监测" 界面, 常规选择 "全机架扫描", 通过 "天馈参 数指标测试" 一键触发自动调测。 具体包括:
( 1 )扫描消息下发后, 等待 AISG扫描结果上报, 扫描记录中需要关 注的字段内容包括, AISG版本号, AISG设备类型, 多子单元号, 设备序 列号, 主控 RRU信息, 厂家编号等。
( 2 )如果在超时时间内有扫描结果上报, TRAP 结果会存入后台的 MOM树节点 AISG扫描节点 AISG Scan Unit, 扫描成功结果会记录到自动 化测试 告。
( 3 )如果扫描失败, 结果会记录到自动化测试报告, 由于扫描结果没 有上报, 因此流程不会继续进行, 可以查看测试报告, 会显示全机架扫描 超时的机架号。 此时需选择单机架扫描触发一键式调测, 单机架扫描会清 楚网管侧的数据库数据残留, 保证每次扫描超时时间不会累加。
步骤 1202: 根据扫描上报的扫描节点信息, 自动构造出需要下发到网 元的 AISG设备节点信息, 增量下发。 具体包括:
( 1 )基于 AISG1.1协议, RETC设备类型, 自动构造子单元号为 255 的一条 AISG设备节点 AISG Device, 填充必要的字段信息, 在增量文件中 标记为节点新增标记 "1"。
( 2 )基于 AISG2.0协议, RETC设备类型, 自动构造子单元号为 255 的一条 AISG设备节点 AISG Device, 填充必要的字段信息, 在增量文件中 标记为节点新增标记 "1"。
( 3 )基于 AISG2.0协议, MULTI— RET设备类型, 自动构造多子单元 号个数个 AISG设备节点 AISG Device, 填充必要的字段信息, 在增量文件 中标记每个节点新增标记 "I"。
( 4 )对每一条构造出的 AISG设备对象 AISG Device, 需要更新物理 实体天线对象 Ant Entity,修改其和 AISG设备对象的引用关系 Reserved By AISG Device, 标记为 "U" 插入事务增量文件中, 等待下发。
( 5 )下发事务操作增量文件, 填写事务增量操作流水号, 把数据变更 同步到网元侧, 再反构到网管侧。
步骤 1203: 遍历所有生效的 AISG设备对象 AISG Device, 串行下发控 制命令包括自动校准, 设置倾角, 查询倾角, 结果记录到自动化测试报告。 步骤 1204: 调测命令调试完毕后, 会自动删除网管侧的 AISG扫描数 据并同步到网元, 以及删除网元侧的 AISG设备数据,结果记录到自动化测 试报告中。 具体包括:
( 1 )删除所有的 AISG扫描节点 AISG Scan Unit, 更新后台数据库。 ( 2 )针对 AISG不同的协议类型, 不同的设备类型, 不同的多子单元 类型, 标记所有的 AISG设备节点 Aisg Device节点为删除 "D", 同时更新 所有的物理实体天线对象 Ant Entity, 删除其和 AISG设备对象的引用关系 Reserved By AISG Device , 填写增量操作事务号, 下发事务操作到网元侧, 结果记录到自动化测试^艮告。
按照天线厂家的配线关系预设物理连线关系,一键式触发 AISG天线从 扫描到配置到调测天线指标的自动化批量调试的方法, 使得不用切换软硬 件的连线配置, 通过一键式操作, 由软件自动完成 AISG天线设备的扫描, 下发, 调测发送控制命令。 对于整个流程中的操作结果统一记录到自动化 测试报告中, 由天线开发人员自主查询, 使得天线和网管的研发完全解耦。 其中, 测试结果通过自动化调测报告即可以发现各环节的问题, 实现对 AISG的调测功能的提高, 与网管业务的解耦, 这样就从根本上提高了天线 的调测效率。
因此, 天线开发人员可以不用受制于网管的配置业务流程, 内部业务 完全由软件自动实现, 厂家只需要关注天线设备自身的指标, 大大降低了 网管软件的操作门槛, 节省了调测时间。 同时, 厂家和运维也可不必再关 注网管的配置流程, 自动批量调测各厂家的 AISG天线指标。
此外, 在实际应用中, 网管 LMT基于批量自动化调测, 天线厂家研发 人员不需要关心网管业务, 指标调测时只需要提供本发明软件给天线厂家, 涉及到软件界面以及安全性问题,基于 LMT网管软件, 同时剥离网管 LMT 的主要 GUI界面,提供一键式的操作界面和自动化测试报告,在 LMT界面 层之上 #丈剥离, 只依赖于 LMT网管的对象化 MOM树。
其中, 基于 LMT的 MOM管理对象树结构, 剥离了根据网管扫描节点 构造出适应于网元的 AISG实际设备节点的复杂业务,避开通过网管研发人 员去保证 AISG设备节点的正确性以及和物理天线关联关系的正确性。不需 人为去操作扫描, 处理超时情况, 不需人为发送控制命令, 串行调测天线 系统, 完全通过一键式的操作方式把各流程连接起来, 实现了网管业务和 天线指标业务的高度解耦, 并大大降低了天线研发运维人员的调测难度, 网管 GUI的细节也不必暴露给天线厂家。
综上所述, 本发明具有以下技术效果: 能够通过基于网管系统 LMT的 AISG设备管理解耦网管 GUI和天馈业务的一键式批量调测 AISG天馈指标 的方法, 实现以下技术效果:
( 1 )使得基站系统的外接电调天线设备的扫描上报高度容错。 常规配 置下超时时间和断链情况下超时时间不会累加, 超时时间内没有正确上才艮 会启动单机架扫描, 并刷新网元的数据库, 使得一键式操作扫描的超时时 间不会累加, 提高扫描流程的效率。
( 2 )根据扫描结果自动创建出与其适配的 AISG天馈设备 MOM对象, 下发到基站系统做数据转换并存储到数据库。 避开了网管业务, 数据的适 配封装完全由系统自动完成, 使得网管业务和天线调测可以高度解耦, 降 低操作人员的使用门槛。
( 3 )通过实现对参数调测的定制, 设备有效后串行进行天馈参数的调 测和指标微调, 不需要人工手动干预。 对于所有设备的参数调测完全由系 统内部自动控制, 不需要操作人员关心, 提高操作效率。
根据以上技术效果, 运维人员即可通过自动化测试报告获得各业务环 节的操作结果, 进而去修改实际的物理配线, 查看实际的环境告警, 而不 用去关心网管软件侧的对象在软件上的连带关系。 这样就极大地方便了业 务的运营维护, 灵活适配不同天线厂家的设备环境, 使得厂家和运维可以 脱离网管的配置业务, 弱化了网管对天线配置的 GUI干预, 完成天馈厂家、 用户和运维与网管配置 GUI的解耦, 强大了厂家、 运维和用户对 AISG天 馈设备参数的调测功能。
尽管上文对本发明进行了详细说明, 但是本发明不限于此, 本技术领 域技术人员可以根据本发明的原理进行各种修改。 因此, 凡按照本发明原 理所作的修改, 都应当理解为落入本发明的保护范围。

Claims

权利要求书
1、 一种自动批量调测天线接口标准组织 AISG电调天线的方法, 该方 法包括:
向分别连接不同的射频拉远单元 RRU的多个 AISG设备发送扫描请求; 接收来自所述多个 AISG设备根据扫描请求获得的包括设备信息的扫 描结果;
根据每个 AISG设备的扫描结果,为每个 AISG设备分别构造与其设备 信息相适应的天线调整文件;
将已建立的每个 AISG设备的天线调整文件依次下发给对应的 AISG设 备, 使其依次按照所述天线调整文件对天线进行调整。
2、 根据权利要求 1所述的方法, 其中, 所述的为每个 AISG设备分别 建立与其设备信息相适应的天线调整文件的步骤包括:
根据每个扫描结果中的所述设备信息,在存储树上为每个 AISG设备构 造一个设备节点, 生成每个 AISG设备节点信息;
根据所述每个 AISG设备节点信息,为每个待调整 AISG设备配置天线 调整参数信息;
根据所述每个 AISG设备节点信息,建立已配置的每个天线调整参数信 息与每个待调整 AISG设备的对应关系;
根据每个待调整 AISG设备的所述天线调整参数信息和所述对应关系, 为每个待调整 AISG设备生成天线调整文件。
3、 根据权利要求 2所述的方法, 其中, 所述的每个 AISG设备节点信 息至少包括 AISG版本号、 AISG设备类型和 RRU信息。
4、根据权利要求 2或 3所述的方法,其中,所述的根据所述每个 AISG 设备节点信息, 为每个待调整 AISG设备配置天线调整参数信息的步骤包 括: 获取所述每个 AISG设备节点信息中的 AISG版本号和 AISG设备类型; 根据预置的所述 AISG版本号和 AISG设备类型与天线调整参数信息的 对应关系, 得到每个待调整 AISG设备的天线调整参数信息;
根据得到的所述天线调整参数信息,为所述每个待调整 AISG设备分别 配置相应的天线校准参数、 倾角设置参数和倾角查询参数。
5、根据权利要求 2或 3所述的方法,其中,所述的根据所述每个 AISG 设备节点信息,建立已配置的每个天线调整参数信息与每个待调整 AISG设 备的对应关系的步骤包括:
获取所述每个 AISG设备节点信息中的 RRU信息;
根据所述 RRU信息, 得到已配置的每个天线调整参数信息与每个待调 整 AISG设备的对应关系,以便建立发送所述已配置的每个天线调整参数信 息的相应通道。
6、 根据权利要求 2所述的方法, 其中, 所述的将已建立的每个 AISG 设备的天线调整文件依次下发给对应的 AISG设备,使其依次按照所述天线 调整文件对天线进行调整的步骤包括:
将所述已建立的每个 AISG设备的天线调整文件中的天线调整参数信 息经由已建立的发送所述天线调整参数信息的相应通道依次发送给对应的 AISG设备。
所述对应的 AISG设备的天线依次执行所述天线调整文件中的调整参 数信息。
7、 一种自动批量调测 AISG电调天线的装置, 该装置包括:
扫描模块, 配置为向分别连接不同的 RRU的多个 AISG设备发送扫描 请求;
接收模块,配置为接收来自所述多个 AISG设备根据扫描请求获得的包 括设备信息的扫描结果; 构造模块, 配置为根据每个 AISG设备的扫描结果, 为所述多个 AISG 设备之每个分别构造与其设备信息相适应的天线调整文件;
调整模块,配置为将已建立的每个 AISG设备的天线调整文件依次下发 给对应的 AISG设备, 使其依次按照所述天线调整文件对天线进行调整。
8、 根据权利要求 7所述的装置, 其中, 所述的构造模块还包括: 节点子模块, 配置为根据每个扫描结果中的所述设备信息, 在存储树 上为每个 AISG设备构造一个设备节点, 生成每个 AISG设备节点信息; 配置子模块, 配置为根据所述每个 AISG设备节点信息, 为每个待调整
AISG设备配置天线调整参数信息;
路由子模块, 配置为根据所述每个 AISG设备节点信息,建立已配置的 每个天线调整参数信息与每个待调整 AISG设备的对应关系;
命令子模块,配置为根据每个待调整 AISG设备的所述天线调整参数信 息和所述对应关系, 为每个待调整 AISG设备生成天线调整文件。
9、 根据权利要求 8所述的装置, 其中, 所述的配置子模块还包括: AISG单元, 配置为获取所述每个 AISG设备节点信息中的 AISG版本 号和 AISG设备类型;
查找单元,配置为根据预置的所述 AISG版本号和 AISG设备类型与天 线调整参数信息的对应关系,得到每个待调整 AISG设备的天线调整参数信 息;
分配单元, 配置为根据得到的所述天线调整参数信息, 为所述每个待 调整 AISG设备分别配置相应的天线校准参数、倾角设置参数和倾角查询参 数。
10、 根据权利要求 8所述的装置, 其中, 所述的路由子模块还包括: RRU单元, 配置为获取所述每个 AISG设备节点信息中的 RRU信息; 通道单元, 配置为根据所述 RRU信息, 得到已配置的每个天线调整参 数信息与每个待调整 AISG设备的对应关系,以便建立发送所述已配置的每 个天线调整参数信息的相应通道。
PCT/CN2014/080639 2014-01-07 2014-06-24 一种自动批量调测aisg电调天线的方法及装置 WO2015103854A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14878325.1A EP3094047A4 (en) 2014-01-07 2014-06-24 Method and device for automatically commissioning aisg remote electrical tilt antennas in batches

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410007140.1A CN104767631A (zh) 2014-01-07 2014-01-07 一种自动批量调测aisg电调天线的方法及装置
CN201410007140.1 2014-01-07

Publications (1)

Publication Number Publication Date
WO2015103854A1 true WO2015103854A1 (zh) 2015-07-16

Family

ID=53523508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080639 WO2015103854A1 (zh) 2014-01-07 2014-06-24 一种自动批量调测aisg电调天线的方法及装置

Country Status (3)

Country Link
EP (1) EP3094047A4 (zh)
CN (1) CN104767631A (zh)
WO (1) WO2015103854A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106207465A (zh) * 2016-08-30 2016-12-07 广东通宇通讯股份有限公司 一种电调天线用调节装置
CN111856160A (zh) * 2020-07-30 2020-10-30 苏州韦博通信技术有限公司 电调天线设备的测试系统
WO2021012835A1 (zh) * 2019-07-19 2021-01-28 中兴通讯股份有限公司 一种天馈参数优化方法、装置、网络设备及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018103097B3 (de) 2018-02-12 2019-04-18 Kathrein Se Verfahren zur Topologiebestimmung in einer Mobilfunk-Site, ein Computerprogramm, ein Computerprogramm-Produkt und eine entsprechende Mobilfunk-Site
CN110286285B (zh) * 2019-07-10 2022-02-01 深圳国人通信股份有限公司 一种测试aisg电调设备的测试设备及测试方法
CN112311601A (zh) * 2020-10-30 2021-02-02 中电凯杰科技有限公司 一种电机驱动器调测系统及方法
FI129552B (en) * 2020-12-03 2022-04-14 Elisa Oyj A computer-implemented method for controlling a telecommunications network
CN112804061B (zh) * 2021-01-04 2022-11-01 武汉虹信科技发展有限责任公司 电调天线控制器的数据传输方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101035328A (zh) * 2007-04-25 2007-09-12 中兴通讯股份有限公司 一种无线通信系统中电调天线控制的方法及系统
CN102333332A (zh) * 2011-05-27 2012-01-25 中兴通讯股份有限公司 Aisg设备控制方法、系统及aisg设备控制器
CN102456948A (zh) * 2010-10-27 2012-05-16 华为技术有限公司 电调天线的控制方法及系统、电调天线控制器及维护终端
CN102684798A (zh) * 2012-03-01 2012-09-19 中兴通讯股份有限公司 一种电调天线子系统仿真调测方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349408C (zh) * 2004-02-12 2007-11-14 华为技术有限公司 实现网管系统和网元设备配置数据实时同步的方法
CN1983857A (zh) * 2006-04-05 2007-06-20 华为技术有限公司 一种天线设备的参数配置方法和装置
CN101827357A (zh) * 2009-12-25 2010-09-08 华为技术有限公司 数据核查的方法、装置及系统
CN101827374B (zh) * 2009-12-31 2013-08-07 中兴通讯股份有限公司 用于管理电调天线的操作维护系统、控制器和射频子系统
CN101827375B (zh) * 2009-12-31 2014-11-05 中兴通讯股份有限公司 电调天线的管理系统和管理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101035328A (zh) * 2007-04-25 2007-09-12 中兴通讯股份有限公司 一种无线通信系统中电调天线控制的方法及系统
CN102456948A (zh) * 2010-10-27 2012-05-16 华为技术有限公司 电调天线的控制方法及系统、电调天线控制器及维护终端
CN102333332A (zh) * 2011-05-27 2012-01-25 中兴通讯股份有限公司 Aisg设备控制方法、系统及aisg设备控制器
CN102684798A (zh) * 2012-03-01 2012-09-19 中兴通讯股份有限公司 一种电调天线子系统仿真调测方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106207465A (zh) * 2016-08-30 2016-12-07 广东通宇通讯股份有限公司 一种电调天线用调节装置
CN106207465B (zh) * 2016-08-30 2023-08-08 广东通宇通讯股份有限公司 一种电调天线用调节装置
WO2021012835A1 (zh) * 2019-07-19 2021-01-28 中兴通讯股份有限公司 一种天馈参数优化方法、装置、网络设备及存储介质
CN111856160A (zh) * 2020-07-30 2020-10-30 苏州韦博通信技术有限公司 电调天线设备的测试系统

Also Published As

Publication number Publication date
EP3094047A1 (en) 2016-11-16
CN104767631A (zh) 2015-07-08
EP3094047A4 (en) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2015103854A1 (zh) 一种自动批量调测aisg电调天线的方法及装置
WO2015090091A1 (zh) 使用智能管理终端升级odn设备的方法及系统
WO2013097719A1 (zh) 资源同步方法和装置
US20140108490A1 (en) Device Management Method, Apparatus and System
EP1990950A1 (en) A management method for passive optical network terminal and system thereof
EP2523526A1 (en) Method and system for managing configuration of network management data
EP3107241A1 (en) Optical network system and management method
CN106454877A (zh) 一种基站开通方法及系统
CN104094555A (zh) 分布式结构管理协议
EP2068496B1 (en) Method and system for managing object instances
US10080205B2 (en) Method and apparatus for determining synchronisation references
CN103517300A (zh) 分布式基站的自发现方法、装置及系统
EP3051750B1 (en) Collection adaptor management method and system
CN103138978A (zh) 网络管理方法及系统
JP2004516691A (ja) 移動無線のメーカに依存しないomc‐nmcインタフェースを介してメーカ固有のハードウェア情報を更新する方法
CN107078949A (zh) 探测前传拓扑的方法和装置
KR20240113849A (ko) 결함 원인을 결정하는 방법 및 장치
CN110176964A (zh) 一种无线设备的生产测试系统及方法
CN102158374B (zh) 一种带宽限速测试方法和测试装置
US20120005315A1 (en) Method and server for transmitting large object
CN110532012B (zh) 一种分布式系统软件升级方法及装置
US20180270100A1 (en) Method and apparatus for data transfer between network devices
CN105323088A (zh) 跳板处理方法及装置
EP1998497A1 (en) Method for managing a management relationship in a network management system and enhanced element management system therefore
EP4040728A1 (en) Filtering information configuration method and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014878325

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014878325

Country of ref document: EP