WO2015103776A1 - 频谱检测方法、装置及基站 - Google Patents

频谱检测方法、装置及基站 Download PDF

Info

Publication number
WO2015103776A1
WO2015103776A1 PCT/CN2014/070481 CN2014070481W WO2015103776A1 WO 2015103776 A1 WO2015103776 A1 WO 2015103776A1 CN 2014070481 W CN2014070481 W CN 2014070481W WO 2015103776 A1 WO2015103776 A1 WO 2015103776A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
base station
auxiliary device
detection
information
Prior art date
Application number
PCT/CN2014/070481
Other languages
English (en)
French (fr)
Inventor
张健
曾清海
黄曲芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14878150.3A priority Critical patent/EP3079281B1/en
Priority to CN201480000902.3A priority patent/CN105103477B/zh
Priority to PCT/CN2014/070481 priority patent/WO2015103776A1/zh
Publication of WO2015103776A1 publication Critical patent/WO2015103776A1/zh
Priority to US15/205,340 priority patent/US10237006B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a spectrum detection method, apparatus, and base station.
  • spectrum management is used to efficiently utilize the wireless spectrum, for example, to divide the spectrum into licensed spectrum and unlicensed spectrum, wherein the unlicensed spectrum includes industrial, scientific, and medical (Industrial, Scientific, and Medical).
  • the frequency band of equipment such as medical, referred to as ISM).
  • LTE Long Term evolution
  • the unlicensed spectrum is shared by many users. These users may belong to different radio access technologies (RATs) such as radar, LTE, Wireless Fidelity (WiFi), Bluetooth (Bluetooth). Etc., so that LTE cannot determine whether an LTE user is interfered by other communication system devices in the process of using the unlicensed spectrum.
  • RATs radio access technologies
  • the present invention provides a spectrum detection method, apparatus, and base station for reducing interference between devices of different communication systems in the same frequency spectrum.
  • the embodiment of the present invention provides a shared spectrum detection method, including: the first base station sends spectrum detection information to the auxiliary device, where the spectrum detection information is used to instruct the auxiliary device to detect and/or report the first spectrum. Is it occupied?
  • the first base station receives the first spectrum state information sent by the auxiliary device, so that the first base station determines whether the first spectrum of the area where the auxiliary device is located is occupied.
  • the first base station receives the first spectrum state information sent by the auxiliary device, so that the first base station determines the first area of the area where the auxiliary device is located. Whether the spectrum is occupied, including:
  • the first base station receives the first spectrum state information that is sent by the auxiliary device, including:
  • the first base station receives the first spectrum state information that is sent by the auxiliary device by using a scheduling request SR mode or a dedicated preamble mode.
  • the first spectrum state information is obtained by the auxiliary device after detecting according to a preset radio frame mode.
  • the radio frame mode includes at least one radio frame, where the radio frame includes information about whether the first spectrum is available or The spectrum has information on the opportunities available.
  • the first base station determines the auxiliary according to the first spectrum state information Before the first spectrum of the area where the device is located is occupied, the method further includes:
  • the first base station sends detection configuration information to the auxiliary device by using the second spectrum, so that the auxiliary device detects the first spectrum, where the detection configuration information includes frequency information of the first spectrum, and wireless At least one of the access technology RAT information, the type of detection, the detection report period, and the threshold value of the trigger detection result report; or any combination thereof; or
  • the first base station sends, by using the second transmit power, the detection configuration information to the auxiliary device by using the first frequency spectrum, so that the auxiliary device detects the first frequency spectrum, where the detection configuration information includes the first At least one of frequency information of a spectrum, radio access technology RAT information, detection type, detection report period, threshold value of a trigger detection result report, or any combination thereof, the second transmission power being the first base station
  • the second transmit power is less than or equal to the first transmit power according to the transmit power on the first frequency spectrum obtained by the self-detection.
  • the method before the sending, by the first base station, the spectrum detection information to the auxiliary device, the method further includes:
  • the first base station sends a signal by using a second transmit power, where the second transmit power is the first a base station according to its own detection of the transmit power on the first spectrum, the second transmit power is less than or equal to the first transmit power, the signal includes: a primary synchronization signal PSS, a secondary synchronization signal SSS, a cell The reference signal CRS, the channel state information reference signal, at least - in the CSI-RS.
  • the first base station receives first spectrum state information that is sent by the auxiliary device, so that the first base station determines After the first spectrum of the area where the auxiliary device is located, the method further includes: the first base station transmitting a signal by using the first transmit power, where the signal includes: a synchronization signal PSS, a secondary synchronization signal SSS, and a reference Signal CRS, channel state information reference signal CSI-RS.
  • the auxiliary device is configured by the first base station on the first spectrum The coverage of the corresponding cell or the coverage edge, or the auxiliary device is set in the coverage of the cell corresponding to the first spectrum on the second spectrum or the coverage edge.
  • the first base station according to the first spectrum state information, determining the first area of the area where the auxiliary device is located Before the spectrum is occupied, it also includes:
  • the first base station obtains detection capability information of the auxiliary device, and the detection capability information includes a transmission frequency range and/or a detection type of the auxiliary device.
  • the first base station receives the first spectrum state information that is sent by the auxiliary device, After the first base station determines whether the first spectrum of the area where the auxiliary device is located is occupied, the method further includes:
  • the embodiment of the present invention provides a shared spectrum detecting apparatus, including: a sending module, configured to send spectrum detecting information to an auxiliary device, where the spectrum detecting information is used to indicate that the auxiliary device detects and/or reports Whether a spectrum is occupied;
  • the receiving module is configured to receive the first spectrum state information sent by the auxiliary device, so that the first base station determines whether the first spectrum of the area where the auxiliary device is located is occupied.
  • the processing module is specifically configured to use, according to the first frequency Generating the state information, determining that the first spectrum is unoccupied, and then determining, according to the location information of the auxiliary device, the first transmit power on the first spectrum.
  • the receiving module is configured to receive, by using the scheduling request SR mode or a dedicated preamble mode, the receiving device First spectrum state information.
  • the first spectrum state information is obtained by the auxiliary device after detecting according to a preset radio frame mode.
  • the radio frame mode includes at least one radio frame, where the radio frame includes information about whether the first spectrum is available or The spectrum has information on the opportunities available.
  • the sending module is further configured to send, by using the second spectrum, the auxiliary device Detecting configuration information, so that the auxiliary device detects the first frequency spectrum; or, is further configured to send, by using the second transmit power, the detection configuration information to the auxiliary device by using the first frequency spectrum, so that the auxiliary The device detects a state of the first spectrum, where the detection configuration information includes at least one of frequency information, RAT information, a detection type, a detection report period, and a threshold value of a trigger detection result report, or any combination thereof.
  • the second power is a transmit power on the first frequency spectrum obtained according to a self-detection, and the second transmit power is less than or equal to the first transmit power.
  • the sending module is further configured to send a signal by using the second transmit power
  • the second transmit power is the transmit power on the first frequency spectrum obtained by the first base station according to the self-detection, and the second transmit power is less than or equal to the first transmit power
  • the signal includes: At least one of a synchronization signal PSS, a secondary synchronization signal SSS, a cell reference signal CRS, and a channel state information reference signal CSI-RS.
  • the sending module is further configured to send a signal by using the first transmit power, where the signal includes: a primary synchronization signal PSS, secondary synchronization signal SSS, cell reference signal CRS, channel state information reference signal CSI-RS.
  • the auxiliary device is configured to be in a coverage area of the first base station corresponding to the cell coverage or a coverage edge, or the auxiliary device is disposed in the second base station in the second Within the coverage of the corresponding cell on the spectrum or the coverage edge of the first base station.
  • the receiving module is further configured to obtain detection capability information of the auxiliary device, where the detection capability information includes The transmission frequency range and/or detection type of the auxiliary device.
  • the sending module is further configured to send, to the second base station, whether the spectrum is sent The occupied information, the second base station is connected to the first base station.
  • an embodiment of the present invention provides a base station, including: a transmitter, a receiver, a memory, and a processor respectively connected to the transmitter, the receiver, and the memory, where
  • the transmitter is configured to send spectrum detection information to the auxiliary device, where the spectrum detection information is used to instruct the auxiliary device to detect and/or report whether the first spectrum is occupied;
  • the receiver is configured to receive first spectrum state information sent by the auxiliary device, so that the first base station determines whether the first spectrum of the area where the auxiliary device is located is occupied.
  • the processor is configured to determine, according to the first spectrum state information, that the first spectrum is not occupied, and then, according to the location information of the auxiliary device, determine that The first transmit power on the first spectrum.
  • the receiver is configured to receive, by using the scheduling request SR mode or a dedicated preamble mode, the receiving device First spectrum state information.
  • the first spectrum state information is obtained by the auxiliary device after detecting according to a preset radio frame mode.
  • the radio frame mode includes at least one radio frame, where the radio frame includes information about whether the first spectrum is available or The spectrum has information on the opportunities available.
  • the transmitter is further configured to send, by using the second spectrum, the auxiliary device Detecting configuration information, so that the auxiliary device detects the first spectrum; or And transmitting, by using the second transmit power, the detection configuration information to the auxiliary device by using the first frequency spectrum, so that the auxiliary device detects a state of the first frequency spectrum, where the detection configuration information includes frequency information, a RAT At least one of the information, the type of detection, the detection report period, and the threshold value of the trigger detection result report, the second power being the transmission power on the first spectrum obtained according to the self detection.
  • the transmitter is further configured to send a signal by using the second transmit power
  • the second transmit power is the transmit power on the first frequency spectrum obtained by the first base station according to the self-detection, and the second transmit power is less than or equal to the first transmit power
  • the signal includes: At least one of a synchronization signal PSS, a secondary synchronization signal SSS, a cell reference signal CRS, and a channel state information reference signal CSI-RS.
  • the transmitter is further configured to send a signal by using the first transmit power, where the signal includes: a synchronization signal PSS And a secondary synchronization signal SSS, a cell reference signal CRS, and a channel state information reference signal CSI-RS.
  • the auxiliary device is configured to be corresponding to the first base station on the first spectrum The coverage of the cell or the coverage edge, or the auxiliary device is set in the coverage of the cell corresponding to the first base station on the second spectrum or the coverage edge of the first base station.
  • the receiver is further configured to obtain detection capability information of the auxiliary device, where the detection capability information includes The transmission frequency range and/or detection type of the auxiliary device.
  • the transmitter is further configured to send, to the second base station, whether the spectrum is sent The occupied information, the second base station is connected to the first base station.
  • the spectrum detection method, the device, and the base station provided by the embodiment of the present invention send spectrum detection information to the auxiliary device by using the first base station, where the spectrum detection information is used to indicate whether the auxiliary device detects whether the first spectrum is occupied, and then the first base station receives the assistance.
  • the first spectrum state information sent by the device so that the first base station determines whether the first spectrum of the area where the auxiliary device is located is occupied.
  • the first base station can determine whether the user equipment interferes with other communication system equipments in the process of using the first frequency spectrum, thereby realizing sharing the same frequency spectrum with other communication system equipments.
  • FIG. 1 is a schematic flow chart of a spectrum detecting method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an applicable scenario according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an applicable scenario according to still another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an applicable scenario according to still another embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of a spectrum detecting method according to still another embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a spectrum detecting method according to still another embodiment of the present invention.
  • FIG. 7 is a schematic flowchart diagram of a spectrum detecting method according to still another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a spectrum detecting apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a spectrum detecting apparatus according to still another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the shared spectrum detection method provided by the embodiment of the present invention may be specifically applied to a communication system that shares a spectrum with other communication systems, where the communication system may be a Long Term Evolution (LTE) system, or a code division multiple access (Code Division). Multiple Access (CDMA) 2000 system, Universal Mobile Telecommunications System (UMTS) system, Global System of Mobibration (GSM) system, etc.
  • LTE Long Term Evolution
  • CDMA code division multiple access
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System of Mobibration
  • the shared spectrum detecting method provided in this embodiment may be specifically implemented by using a shared spectrum detecting apparatus or a base station, where the shared spectrum is
  • the detection device can be integrated in the base station, and the shared spectrum detection device can be implemented in software and/or hardware.
  • the method and apparatus provided in this embodiment are described in detail below by taking the communication system as the LTE system and other communication systems as the WiFi system.
  • FIG. 1 is a schematic flow chart of a spectrum detecting method according to an embodiment of the present invention.
  • Figure 2 is a schematic illustration of an application scenario of an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an applicable scenario according to still another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an applicable scenario according to still another embodiment of the present invention.
  • the spectrum detection method provided in this embodiment specifically includes the following steps:
  • Step 101 The first base station sends spectrum detection information to the auxiliary device, where the spectrum detection information is used to indicate that the auxiliary device detects whether the first spectrum is occupied.
  • the specific implementation manner may be: first, the first base station determines whether the first spectrum is idle, and if it is already occupied, that is, the first base station. Determining that the first spectrum in the coverage area is already occupied, the first base station does not occupy the first spectrum in a time period, and if the first spectrum is idle, the first base station is based on the first spectrum state information, That is, if the first base station determines that the first spectrum in the coverage area is idle, the first base station may further determine, according to the auxiliary device, whether the first spectrum is occupied, determining the first spectrum in the area where the auxiliary device is located. Is it occupied?
  • the auxiliary device may receive the spectrum detection information, perform spectrum detection or spectrum sensing or measurement, and report the detection result, or directly report the spectrum detection information.
  • the detection result, and the detection result may be a result obtained by detecting according to the pre-configured measurement configuration information.
  • the measurement configuration information may be pre-configured in the auxiliary device, or the measurement configuration information may be sent to the auxiliary device by using the first base station. In the present invention, detection or sensing or measurement can be used interchangeably.
  • the spectrum detection information is carried in broadcast signaling or dedicated signaling.
  • the spectrum detection information may be carried by a single-user based dedicated signaling indicated by a Physical Downlink Control Channel (PDCCH) or an Enhanced Physical Downlink Control Channel (EPDCCH).
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • MAC CE Medium Access Control Control Element
  • the spectrum detection information may include one or more frequency information, and a radio access technology (Radio Access Technology, RAT for short) At least one of the information, the type of the detection, the detection result reporting period, and the threshold value of the triggering detection result report, wherein the frequency information may be a frequency range, a channel number corresponding to the first spectrum, or a physical cell identifier ( Physical Cel l Ident i ty (referred to as PCI).
  • a radio access technology Radio Access Technology, RAT for short
  • the frequency information may be a frequency range, a channel number corresponding to the first spectrum, or a physical cell identifier ( Physical Cel l Ident i ty (referred to as PCI).
  • the auxiliary device may be set in the coverage of the cell corresponding to the first spectrum of the first base station or the coverage edge, or the auxiliary device is set in the coverage of the cell corresponding to the second spectrum on the second base station. Or covering the edge, for example based on the second spectrum, such as the coverage of the cell on the licensed spectrum, or based on the first spectrum, such as the coverage of the cell on the unlicensed spectrum.
  • the applicable scenarios for the auxiliary device settings include at least the following three types:
  • the WiFi base station or the Access Point is located in the downlink coverage of the LTE base station, and the LTE base station is also located in the downlink coverage of the WiFi base station, and
  • the auxiliary device is set in the range covered by the WiFi base station and the LTE base station.
  • the auxiliary device simultaneously receives the data or signal sent by the LTE base station and the WiFi base station, thereby Generate co-channel interference.
  • the WiFi base station is located in the downlink coverage of the LTE base station, and the LTE base station is also located outside the downlink coverage of the WiFi base station, and the auxiliary device is set in the downlink coverage of the WiFi base station.
  • the auxiliary device simultaneously receives data or signals transmitted by the LTE base station and the Wi-Fi base station, thereby generating co-channel interference.
  • the WiFi base station is located outside the downlink coverage of the LTE base station, and the LTE base station is also located outside the downlink coverage of the WiFi base station, and the downlink coverage of the WiFi base station and the downlink coverage of the LTE base station There are overlapping areas.
  • the auxiliary device is disposed in the overlapping area. When the LTE base station and the WiFi base station simultaneously transmit data or signals in the same spectrum, the auxiliary device simultaneously receives data or signals sent by the LTE base station and the WiFi base station, thereby generating co-channel interference.
  • the downlink coverage may be the coverage of the cell corresponding to the first spectrum by the first base station, or the coverage of the cell corresponding to the second spectrum by the first base station, where no limitation is imposed. .
  • the first base station when the WiFi base station sends data or a signal on the first spectrum to be occupied by the first base station, the first base station, that is, the LTE base station, may detect that the first spectrum is occupied;
  • the first base station when the WiFi base station transmits data or signals on the first spectrum, the first base station, that is, the LTE base station cannot detect that the first spectrum is occupied.
  • the first base station determines that the first spectrum to be occupied is idle, it is determined whether the first spectrum is occupied according to the first spectrum state information, that is, the auxiliary device detects whether the first spectrum is occupied.
  • the auxiliary device is a user equipment (User Equipment, UE for short) or an auxiliary detecting unit, and the auxiliary detecting unit may be a wireless transmitting and receiving device, such as a remote radio head (RRH) or a sensor (sensor) or a machine type.
  • RRH remote radio head
  • MTC Machine Type Communication
  • LTE small base station small l eNB
  • relay wireless relay
  • the first spectrum state information is obtained by the first base station through an optical fiber or a wireless interface disposed between the auxiliary device and the base station, and the wireless interface may adopt a wireless technology such as LTE technology, microwave technology, or wifi technology.
  • the auxiliary device communicates with the first base station by using any one of a radio frequency (RF) or a baseband, an Un interface, and an X2 interface.
  • RF radio frequency
  • the communication between the auxiliary device and the first base station is ideal, and the immediate delay can be neglected, for example, almost zero; if the communication between the auxiliary detecting unit and the base station is not ideal, that is, there is a certain delay, The Cognitive Pilot Channel (CPC) or the UE communicates in the air interface to reduce the delay.
  • CPC Cognitive Pilot Channel
  • Step 102 The first base station receives the first spectrum state information sent by the auxiliary device, so that the first base station determines whether the first spectrum of the area where the auxiliary device is located is occupied.
  • the first spectrum state information is a message that the auxiliary device detects whether the first spectrum is occupied.
  • the first base station may receive the first spectrum state information that is sent by the auxiliary device by using the scheduling request SR mode or the dedicated preamble mode.
  • the first base station determines, according to the first spectrum state information, whether the first spectrum of the area in which the auxiliary device is occupied is at least two types:
  • the first base station determines that the first spectrum is unoccupied according to the first spectrum state information, and then, the first base station determines, according to the location information of the auxiliary device, the first transmit power on the first spectrum, where The first transmit power may be a maximum transmit power or a maximum allowable transmit power or a nominal power of the first base station.
  • the first base station determines, according to the first spectrum state information, that the first spectrum is occupied, and the first base station uses the second transmit power to transmit, for example, may continue to transmit by using the power of transmitting the spectrum detection information to the auxiliary device. .
  • the first base station determines the first transmit power on the first frequency spectrum according to the location information of the auxiliary device, that is, after adjusting the power of transmitting the data or the signal on the frequency spectrum, the first base station transmits the first transmit power.
  • the UE is informed that the UE is located in the downlink coverage of the first base station in the first transmission power.
  • the first base station receives the first spectrum state information obtained by the auxiliary device, where the first spectrum state information is obtained after the auxiliary device detects according to the preset radio frame mode.
  • the radio frame mode includes at least one radio frame, the radio frame includes information about whether the spectrum is available or information that the spectrum has an available opportunity.
  • the former means that the base station can transmit data and/or signals directly on the spectrum in the LTE technology according to the radio frame mode, and the operation can be based on the negotiation between the base station and the different system in advance or the base station does not care whether the different system is in use or not.
  • the latter means that the base station has the opportunity to transmit data and/or signals in LTE, but may decide whether to transmit data and/or signals in LTE based on the detection result of the base station, and the auxiliary device still needs to detect to determine whether there is really LTE data and/or signal.
  • the first base station may further include:
  • the first base station sends a signal by using a first transmit power, where the signal includes: a primary synchronization signal (PSS), a secondary synchronization signal (Synchronization signal), a cell reference signal (Cel) l Reference Signal (CRS), Channel Status Indication Reference Signal (CSI-RS), demodulation reference signal DMRS, etc.
  • PSS primary synchronization signal
  • Synchronization signal Synchronization signal
  • Cel cell reference signal
  • CRS Channel Status Indication Reference Signal
  • CSI-RS Channel Status Indication Reference Signal
  • DMRS demodulation reference signal
  • the first base station sends spectrum detection information to the auxiliary device, where the spectrum detection information is used to indicate whether the auxiliary device detects whether the first spectrum is occupied, and then the first base station receives the first spectrum state information sent by the auxiliary device. So that the first base station determines whether the first spectrum of the area where the auxiliary device is located is occupied. Thereby, the first base station can determine whether the user equipment is interfered by other communication system equipments in the process of using the first frequency spectrum, thereby realizing sharing the same frequency spectrum with other communication system equipments.
  • the method may further include:
  • the first base station obtains location information of the auxiliary device.
  • the implementation manner of obtaining the location information of the auxiliary device by the first base station may specifically include: a positioning technology, a geo-location database, and an operation management and maintenance system (Operations. Administration and Maintenance, referred to as 0AM) Any of a variety of technical means.
  • 0AM operation management and maintenance system
  • the location information of the auxiliary device may also be sent to the base station together with the first spectrum state information, for example, a Global Positioning System (GPS) similar to accurate location information or timing advance value (Timing Advance) Approximate location information such as TA).
  • GPS Global Positioning System
  • Timing Advance Timing Advance
  • the method may further include:
  • the first base station obtains the detection capability information of the auxiliary device, wherein the detection capability information includes a transmission frequency range and/or a detection type of the auxiliary device.
  • the method may further include:
  • the first base station sends the detection configuration information to the auxiliary device through the first spectrum by using the second transmission power, so that the auxiliary device detects the state of the first spectrum.
  • the first base station sends the detection configuration information to the auxiliary device through the second spectrum, so that the auxiliary device detects the first spectrum.
  • the second power is the transmit power on the first spectrum obtained by the first base station according to the self-detection.
  • the detection configuration information may include at least one of frequency information of the first frequency spectrum, radio access technology RAT information, detection type, detection report period, and threshold value of the trigger detection report, where the frequency information may be It is the frequency range, the channel number corresponding to the spectrum, or the physical cell identifier (Physical Cel l Identity, PCI for short).
  • the detection configuration information may be pre-configured in the auxiliary device, or the detection configuration information may be sent to the auxiliary device through the first base station.
  • the first base station is configured to enable the auxiliary device to detect the state of the first spectrum, and after the first base station needs to determine whether the spectrum is occupied according to the first spectrum state information, the method can be quickly obtained.
  • the first spectrum state information is configured to enable the auxiliary device to detect the state of the first spectrum, and after the first base station needs to determine whether the spectrum is occupied according to the first spectrum state information, the method can be quickly obtained.
  • the detection configuration information is carried in broadcast signaling or dedicated signaling.
  • the measurement configuration information is carried in the following instructions, for example, by PDCCH or EPDCCH
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Mobile Broadband Control Channel
  • the method may further include:
  • the first base station uses the second power to transmit a signal, and the second power is less than or equal to the first power, and the signal includes: at least one of: PSS, SSS, CRS, CSI-RS, and DMRS. Further, the signal may further include: notifying the UE of the LTE-enabled message, scheduling signaling, and the like. Further, the first base station sends a downlink signal transmission power to the auxiliary device, where the transmission power is used for the reference signal received power (Reference Signal Received Power, RSRP for short) and the reference signal received quality (RSRQ).
  • CSI measurement includes Channel Quality Indication (CSII), Precoding Matrix Indicator (PMI), and Rank Indication. Wait.
  • CSII Channel Quality Indication
  • PMI Precoding Matrix Indicator
  • Rank Indication Wait.
  • the first base station after determining, by the first base station, the first transmit power on the spectrum, the first base station further includes:
  • the first base station sends information about whether the spectrum is occupied to the second base station, and the second base station is connected to the first base station, for example, there is an X2 interface between the first base station and the second base station.
  • FIG. 5 is a schematic flowchart diagram of a spectrum detecting method according to still another embodiment of the present invention.
  • the auxiliary device in this embodiment is an auxiliary detecting unit, gPRRH or sensor or Machine Type Communication (MTC) device or LTE small base station (small eNB) or wireless relay. Or any other similar wireless point/radio dot device.
  • the spectrum to be occupied by the first base station is the first spectrum, and the method may include: Step 501: The first base station detects whether the spectrum to be occupied is idle.
  • the implementation manner of the first base station detecting whether the spectrum to be occupied is idle includes any of the following: an energy sensing or an energy detection method; a covariance matrix detection.
  • Matched Filter Detection Cyclostationary Feature Detection ⁇ Received Signal Strength Indication (RSSI), Interference Measurement (Interference Measurement) ⁇ Signal To Noise Rate (SNR) ), Signal To Interference Noise Rate (SINR), RSRP, RSRQ, Rise Over Thermal (R0T), channel quality indicator (CQI, channel quality indication), etc.
  • physical layer detection can be completed in tens of microseconds, such as 20 microseconds, which can be much smaller than an Orthogonal Frequency Diviation Multiplexing (OFDM) symbol of the LTE system.
  • OFDM Orthogonal Frequency Diviation Multiplexing
  • Step 502 After the first base station determines that the spectrum to be occupied is idle, the first base station sends spectrum detection information to the auxiliary detecting unit.
  • the spectrum detection information is used to notify the auxiliary detecting unit whether the spectrum is occupied.
  • the spectrum detection information is carried in broadcast signaling or dedicated signaling.
  • the spectrum detection information may carry the single-user-based dedicated signaling indicated by the PDCCH or the EPDCCH or the multi-user based group scheduling signaling or the broadcast signaling, or based on the interface between the first base station and the auxiliary detecting unit. Signaling.
  • the first base station carries the frequency information, the detection threshold, and/or the time length information of the expected occupied spectrum in the spectrum detection information, where the frequency information may be one or more frequency ranges or channel numbers or physical cell identifiers, where the foregoing information It can also be pre-configured to the auxiliary detection unit, and the control information is not carried.
  • the first base station may send the CTS frame to reserve the spectrum for a certain period of time.
  • the first base station may perform at least one of the following behaviors according to the downlink transmit power determined by the detection capability range: sending the LTE primary synchronization signal and the SSS, the CRS, the CSI-RS, and the sending the LTE to enable And transmitting, by the first base station, information about downlink transmit power to the auxiliary detecting unit, where the information of the transmit power is used by the auxiliary detecting unit to measure RSRP, RSRQ, CSI, etc. .
  • Step 503 The auxiliary detecting unit receives the spectrum detecting information sent by the first base station, and detects the spectrum and/or directly reports the existing measurement result.
  • the manner in which the auxiliary detecting unit detects the spectrum includes: detecting the state of the unlicensed spectrum by using physical layer energy detection or covariance matrix detection, and immediately reporting one or more frequency ranges to the base station or The channel number and its corresponding spectrum state, for example, may be notified to the first base station by physical layer signaling.
  • the first base station may configure a detection threshold for the auxiliary detection unit in advance, and the auxiliary detection unit sends the spectrum detection response information to the first base station only when the measurement result is greater than or less than the threshold.
  • the auxiliary detection unit When the auxiliary detection unit has acquired the detection result, it immediately receives the spectrum detection information of the first base station. Report the corresponding spectrum status to the base station.
  • the auxiliary detection unit sends the physical layer signal or the MAC layer CTS frame occupation spectrum according to the time length information of the expected spectrum, wherein the lengths of the different spectrums may be the same or different.
  • Step 504 The first base station receives the spectrum detection response information sent by the auxiliary detection unit, where the spectrum detection response information carries the first spectrum state information.
  • the first base station determines the first transmit power in the spectrum according to the location information of the auxiliary detecting unit. Further, after the first base station determines the first transmit power in the spectrum, the first transmit power is used to send the LTE primary synchronization signal PSS and the secondary synchronization signal SSS, the transmit cell reference signal CRS, and/or the channel state information reference signal CSI to the UE.
  • the RS and/or the demodulation reference signal DMRS the base station transmits at least one of a message notifying the LTE on to the UE, and transmitting the scheduling signaling to the UE.
  • Step 505 The first base station determines, according to the first spectrum state information, whether the first spectrum of the area where the auxiliary device is located is occupied.
  • step 506 is performed. If the first base station determines that the first spectrum of the area where the auxiliary device is located is occupied, step 507 is performed.
  • Step 506 The first base station determines that the first spectrum of the area where the auxiliary device is located is occupied, and determines that the second transmit power is used on the first spectrum.
  • the second transmit power in this embodiment may be the power of transmitting spectrum detection information to the secondary base station.
  • Step 507 The first base station determines that the first spectrum of the area where the auxiliary device is located is unoccupied, and determines the first transmit power on the first frequency spectrum according to the location information of the auxiliary device.
  • the first transmit power may be the maximum transmit power or the nominal power or the maximum allowable transmit power of the first base station.
  • FIG. 6 is a schematic flowchart diagram of a spectrum detecting method according to still another embodiment of the present invention.
  • the auxiliary device in this embodiment is a UE, and the method may include:
  • Step 601 The first base station detects whether the spectrum to be occupied is idle.
  • Step 602 After the first base station determines that the spectrum to be occupied is idle, the first base station sends spectrum detection information to the UE. Specifically, the first base station may select an appropriate UE to detect according to the location information of the UE or the fingerprint information, for example, in the second applicable scenario, the UE located in the downlink coverage of the Wi-Fi base station, or In the third applicable scenario, the UE located in the overlapping area of the downlink coverage of the Wi-Fi base station and the downlink coverage of the LTE base station.
  • the spectrum detection information is used to notify the auxiliary device whether the spectrum is occupied or not.
  • the spectrum detection information is carried in broadcast signaling or dedicated signaling.
  • the spectrum detection information may carry the single-user-based dedicated signaling indicated by the PDCCH or the EPDCCH or the multi-user based group scheduling signaling or the broadcast signaling, or based on the interface between the first base station and the auxiliary device. make.
  • the first base station carries the frequency information, the detection threshold, and/or the time length information of the expected occupied spectrum in the spectrum detection information, where the frequency information may be a frequency range or a channel number or a physical cell identifier, and the foregoing information may also be pre-configured.
  • the control information is not carried.
  • the first base station may send the CTS frame reserved spectrum for a certain time.
  • the first base station may also perform at least one of the following behaviors according to the downlink transmit power determined by the detection capability range: sending the LTE primary synchronization signal PSS and SSS, CRS, CSI-RS, DMRS, and sending And transmitting, by the first base station, downlink signal transmission power, where the transmission power is used by the auxiliary device to measure RSRP, RSRQ, CSI, and the like.
  • Step 603 The UE receives spectrum detection information sent by the first base station, and detects the spectrum.
  • the manner in which the auxiliary device detects the spectrum includes: detecting the state of the unlicensed spectrum by using physical layer energy detection or covariance matrix detection, and immediately reporting one or more frequency ranges or channels to the base station. The number and its corresponding spectrum state, for example, may be notified to the first base station by physical layer signaling.
  • Step 604 The first base station receives the spectrum detection response information sent by the UE, where the spectrum detection response information carries the first spectrum state information.
  • the UE may notify the base station by using the physical layer signaling, for example, the cell in the PCel l or other spectrum may send the special format signaling through the Physical Up Control Channel (PUCCH).
  • the scheduling request may be used by the base station to allocate the time-frequency domain resource of the SR for feeding back the spectrum detection state to the UE in the control information for notifying the UE to perform spectrum detection, or by using the radio resource control signaling in advance.
  • the UE configures a time-frequency domain resource of the SR for feeding back the spectrum detection state.
  • the UE may also send a physical random access channel (PRACH) configured on the unlicensed spectrum.
  • PRACH physical random access channel
  • a dedicated preamble is used to notify the base station of the spectrum state.
  • the random access channel may be used only for the UE to feed back the spectrum state information; the dedicated preamble may notify the UE to perform spectrum detection.
  • the control information is carried or pre-configured to the UE.
  • the UE may also notify the base station of the spectrum state by using a Medium Access Control Control Element (MAC CE), and the base station may allocate a time frequency for the UE to send the MAC CE in the control information that informs the UE to perform spectrum detection. Domain resource.
  • the UE feedback information may further include information such as the frequency range information or the channel number, the location information, and the Timing Advance Value (TA value), and is used by the base station to determine the location and distance of the UE.
  • the base station may configure the detection threshold, the detection result report condition, and the like for the UE in advance, and the UE sends the feedback information to the base station only when the measurement result is greater than or less than the threshold.
  • Step 605 The first base station determines, according to the first spectrum state information, whether the first spectrum of the area where the auxiliary device is located is occupied.
  • step 606 if yes, go to step 606; if no, go to step 607.
  • Step 606 The first base station determines that the first spectrum of the area where the UE is located is occupied, and determines that the second transmit power is used on the first spectrum.
  • Step 607 The first base station determines that the first spectrum of the area where the UE is located is not occupied, and determines the first transmit power on the first spectrum according to the location information of the UE.
  • FIG. 7 is a schematic flowchart diagram of a spectrum detecting method according to still another embodiment of the present invention.
  • the auxiliary device in this embodiment is a UE, or an auxiliary detecting unit, and the method may include:
  • Step 701 The first base station receives the first spectrum state information obtained by the auxiliary device, where the first spectrum state information is obtained after the auxiliary device detects according to the preset radio frame mode.
  • the radio frame mode includes at least one radio frame, the radio frame containing information as to whether the spectrum is available or information that the spectrum has an available opportunity.
  • the former means that the base station can transmit data and/or signals directly on the spectrum in the LTE technology according to the radio frame mode, and the operation can be based on the negotiation between the base station and the different system in advance or the base station does not care whether the different system is in use or not.
  • the latter means that the base station has the opportunity to transmit data and/or signals in LTE, but may decide whether to transmit data and/or signals in LTE based on the detection result of the base station, and the auxiliary device still needs to detect to determine whether there is really LTE data and/or signal.
  • the radio frame mode may be in the form of a bitmap, and the bitmap may be set in units of one or more radio frames, wherein one radio frame includes 10 subframes, and one subframe is 1 Milliseconds, for example, the subframe mode in units of 1 radio frame may be 11111 11100.
  • the first base station and the auxiliary device perform spectrum detection on the first subframe in the subframe represented by the value "1" according to the foregoing subframe mode, and once the spectrum is idle, the occupied value "1" is represented. All sub-frames; if the spectrum is detected to be busy, the sub-frame represented by the first value "1" after the sub-frame represented by the value "0" is waited for the spectrum detection to resume.
  • the detected frequency range or channel number can be pre-configured or negotiated dynamically or semi-static between the base station and the auxiliary detection unit.
  • the first base station directly sends the LTE data and/or the signal according to the foregoing subframe mode in the first subframe of the subframe represented by the value “1”, and the auxiliary detecting unit is in the subframe represented by the value “1”.
  • the first sub-frame begins to measure directly
  • the auxiliary device may detect whether the spectrum is idle by using any one of the methods in step 501.
  • the auxiliary device may send the first spectrum state information to the first base station whenever the spectrum is idle, or send the first spectrum state information to the first base station after each detection, where the first The spectrum state information includes a frequency range or a channel number corresponding to the spectrum, or according to a previously agreed frequency range or channel number.
  • the first base station may configure the measurement threshold, the reporting condition, and the like for the auxiliary device in advance, and the auxiliary device sends the first spectrum state information to the base station only when the measurement result is greater than or less than the threshold.
  • Step 702 The first base station determines, according to the location information of the auxiliary device, the first transmit power in the spectrum.
  • FIG. 8 is a schematic structural diagram of a spectrum detecting apparatus according to an embodiment of the present invention.
  • the shared spectrum detecting apparatus includes: a sending module 801 and a receiving module 802, where the sending module 801 is configured to send spectrum detecting information to the auxiliary device, where the spectrum detecting information is used to instruct the auxiliary device to detect the first spectrum.
  • the receiving module 802 is configured to receive the first spectrum state information sent by the auxiliary device, so that the first base station determines whether the first spectrum of the area where the auxiliary device is located is occupied.
  • the first base station sends spectrum detection information to the auxiliary device, where the spectrum detection information is used to indicate whether the auxiliary device detects whether the first spectrum is occupied, and then the first base station receives the first spectrum state information sent by the auxiliary device. So that the first base station determines whether the first spectrum of the area where the auxiliary device is located is occupied. Thereby, the first base station can determine whether the user equipment interferes with other communication system equipments in the process of using the first frequency spectrum, thereby realizing sharing the same frequency spectrum with other communication system equipments.
  • FIG. 9 is a schematic structural diagram of a spectrum detecting apparatus according to still another embodiment of the present invention. As shown in FIG.
  • the shared spectrum detecting apparatus further includes a processing module 803, where the processing module 803 is specifically configured to determine, according to the first spectrum state information, that the first spectrum is not occupied. Then, based on the location information of the auxiliary device, the first transmit power on the first frequency spectrum is determined.
  • the receiving module 802 is specifically configured to receive the first spectrum state information that is sent by the auxiliary device by using the scheduling request SR mode or the dedicated preamble mode.
  • the spectrum detection information is carried in broadcast signaling or dedicated signaling.
  • the first spectrum state information is obtained after the auxiliary device detects according to the preset radio frame mode.
  • the radio frame mode includes at least one radio frame, and the radio frame includes information about whether the first spectrum is available or information that the spectrum has an available opportunity.
  • the sending module 801 is further configured to send, by using the second spectrum, the detection configuration information to the auxiliary device, so that the auxiliary device detects the first frequency spectrum; or, The power sends the detection configuration information to the auxiliary device through the first spectrum, so that the auxiliary device detects the state of the first spectrum, and the detection configuration information includes the frequency information, the RAT information, the detection type, the detection report period, and the threshold for triggering the detection result report.
  • the second power is a transmit power on the first frequency spectrum obtained according to the self-detection, and the second transmit power is less than or equal to the first transmit power.
  • the detection configuration information is carried in broadcast signaling or dedicated signaling.
  • the sending module 801 is further configured to send a signal by using a second transmit power, where the second transmit power is a transmit power of the first spectrum obtained by the first base station according to the self-detection, and second.
  • the transmit power is less than or equal to the first transmit power
  • the signal includes: at least one of a primary synchronization signal PSS, a secondary synchronization signal SSS, a cell reference signal CRS, and a channel state information reference signal CSI-RS.
  • the sending module 801 is further configured to transmit a signal by using a first transmit power, where the signal includes: a synchronization signal PSS, a secondary synchronization signal SSS, a cell reference signal CRS, and a channel state information reference signal CSI-RS.
  • the auxiliary device is set in the cell coverage area or the coverage edge of the first base station corresponding to the first spectrum, or the auxiliary device is set in the cell corresponding to the second spectrum in the first base station. Within the coverage or coverage edge of the first base station.
  • the first spectrum state information is obtained by the first base station through an optical fiber or a wireless interface disposed between the auxiliary device and the base station.
  • the auxiliary device is a user equipment or an auxiliary detecting unit, and the auxiliary detecting unit is a transmitting and receiving device having a detecting or detecting capability for the first spectrum; further, based on the foregoing embodiment
  • the auxiliary device communicates with the first base station by using any one of a radio frequency, a baseband, an Un interface, and an X2 interface.
  • the receiving module 802 is further configured to obtain location information of the auxiliary device.
  • the receiving module 802 is further configured to obtain detection capability information of the auxiliary device, where the detection capability information includes a transmission frequency range and/or a detection type of the auxiliary device.
  • the sending module 801 is further configured to send information to the second base station whether the spectrum is occupied, and the second base station is connected to the first base station.
  • the first base station can determine whether the user equipment is interfered by other communication system devices during the process of using the first frequency spectrum, thereby realizing sharing the same frequency spectrum with other communication system devices.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station includes: a transmitter 901, a receiver 902, a memory 903, and a processor 904 connected to the transmitter 901, the receiver 902, and the memory 903, respectively, where the transmitter 901 is configured to assist
  • the device sends the spectrum detection information, where the spectrum detection information is used to indicate whether the auxiliary device detects whether the first spectrum is occupied.
  • the receiver 902 is configured to receive the first spectrum state information sent by the auxiliary device, so that the first base station determines the area where the auxiliary device is located. Whether the first spectrum is occupied.
  • the first base station sends spectrum detection information to the auxiliary device, where the spectrum detection information is used to indicate whether the auxiliary device detects whether the first spectrum is occupied, and then the first base station receives the first spectrum state information sent by the auxiliary device. And the first base station determines whether the first spectrum of the area where the auxiliary device is located is occupied, and the first spectrum state information is a message that the auxiliary device detects whether the first spectrum is occupied. Thereby, the first base station can determine whether the user equipment is interfered by other communication system equipments in the process of using the first spectrum, thereby realizing sharing the same spectrum with other communication system devices.
  • the base station further includes: a processor 904, configured to determine, according to the first spectrum state information, that the first spectrum is not occupied, and then, according to the auxiliary device The location information of the device determines the first transmit power on the first spectrum.
  • the receiver 902 is specifically configured to receive the first spectrum state information that is sent by the auxiliary device by using the scheduling request SR mode or the dedicated preamble mode.
  • the spectrum detection information is carried in broadcast signaling or dedicated signaling. Further, based on the foregoing embodiment, the first spectrum state information is obtained after the auxiliary device detects according to the preset radio frame mode.
  • the radio frame mode includes at least one radio frame, and the radio frame includes information on whether the first spectrum is available or information that the spectrum has an available opportunity.
  • the transmitter 901 is further configured to send, by using the second spectrum, detection configuration information to the auxiliary device, so that the auxiliary device detects the first frequency spectrum; or, The spectrum sends the detection configuration information to the auxiliary device, so that the auxiliary device detects the state of the first spectrum, where the detection configuration information includes the frequency information, the RAT information, the detection type, the detection report period, and the threshold value of the trigger detection result report.
  • the second power is a transmit power on the first frequency spectrum obtained according to the self-detection, and the second transmit power is less than or equal to the first transmit power.
  • the detection configuration information is carried in the broadcast signaling or the dedicated signaling.
  • the transmitter 901 is further configured to send a signal by using a second transmit power, where the second transmit power is a transmit power of the first spectrum obtained by the first base station according to the self-detection, and the second transmit power is less than Or equal to the first transmit power, the signal includes: at least one of a primary synchronization signal PSS, a secondary synchronization signal SSS, a cell reference signal CRS, and a channel state information reference signal CSI-RS.
  • the transmitter 901 is further configured to transmit a signal by using a first transmit power, where the signal includes: a synchronization signal PSS, a secondary synchronization signal SSS, a cell reference signal CRS, and a channel state information reference signal CSI_RS.
  • the auxiliary device is set in the coverage of the cell corresponding to the first spectrum of the first base station or the coverage edge, or the coverage of the auxiliary device is set in the cell corresponding to the second spectrum on the second base station. Within the range or the coverage edge of the first base station.
  • the first spectrum state information is obtained by the first base station through an optical fiber or a wireless interface disposed between the auxiliary device and the base station.
  • the auxiliary device is a user equipment or an auxiliary detecting unit, and the auxiliary detecting unit is a transmitting and receiving device having a detecting or detecting capability for the first spectrum;
  • the auxiliary device communicates with the first base station by using any one of a radio frequency, a baseband, an Un interface, and an X2 interface.
  • the receiver 902 is further configured to obtain location information of the auxiliary device.
  • the receiver 902 is further configured to obtain detection capability information of the auxiliary device, where the detection capability information includes a transmission frequency range and/or a detection type of the auxiliary device.
  • the transmitter 901 is further configured to send information about whether the spectrum is occupied to the second base station, and the second base station is connected to the first base station.
  • the first base station can determine whether the user equipment is interfered by other communication system devices during the process of using the first frequency spectrum, thereby realizing sharing the same frequency spectrum with other communication system devices.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the above-described method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as ⁇ , RAM, disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种频谱检测方法、装置及基站,该方法通过在本实施例中,通过第一基站向辅助设备发送频谱检测信息,该频谱检测信息用以指示辅助设备检测第一频谱是否被占用,接着,第一基站接收辅助设备发送的第一频谱状态信息,以使第一基站确定辅助设备所在区域的第一频谱是否被占用。从而实现了第一基站可以确定用户设备在使用第一频谱的过程中是否被其他通信系统设备干扰,进而实现了与其他通信系统设备共享同一频谱。

Description

频谱检测方法、 装置及基站
技术领域 本发明涉及通信技术领域, 尤其涉及一种频谱检测方法、 装置及基站。 背景技术 在现代通信中, 人们采用频谱管理对无线频谱进行有效地利用, 例如, 将频谱分为授权频谱和非授权频谱, 其中, 非授权频谱包括用于工业、 科学 和医疗 ( Industrial , scientific and medical , 简称 ISM) 等设备的频段。
随着分组业务和智能终端的迅速发展, 高速、 大数据量业务对频谱的需 求不断增力口, 可以将第三代合作伙伴项目 ( the 3rd generation partnership project , 简称 3GPP ) 的长期演进系统 (long term evolution, 简称 LTE) 应用在非授权频谱, 从而有效利用非授权频谱资源, 提高 LTE用户的可用频 谱带宽。
然而, 非授权频谱由很多用户共享, 这些用户可能属于不同的无线接入 技术(radio access technology,简称 RAT ) ,如雷达、 LTE、无线保真(Wireless Fidel ity, 简称 WiFi )、 蓝牙 (bluetooth) 等, 从而 LTE无法确定 LTE用户 在使用非授权频谱的过程中是否被其他其他通信系统设备干扰。 发明内容 本发明提供一种频谱检测方法、 装置及基站, 用以减少不同通信系统的 设备在同一频谱之间的干扰。
第一个方面, 本发明实施例提供一种共享频谱检测方法, 包括: 第一基站向辅助设备发送频谱检测信息, 所述频谱检测信息用以指示所 述辅助设备检测和 /或报告第一频谱是否被占用;
所述第一基站接收所述辅助设备发送的第一频谱状态信息, 以使所述第 一基站确定所述辅助设备所在区域的所述第一频谱是否被占用。
在第一种可能的实现方式中, 所述第一基站接收所述辅助设备发送的第 一频谱状态信息, 以使所述第一基站确定所述辅助设备所在区域的所述第一 频谱是否被占用, 包括:
所述第一基站根据所述第一频谱状态信息,确定所述第一频谱未被占用; 所述第一基站根据所述辅助设备的位置信息, 确定在所述第一频谱上的 第一发射功率。
结合第一个方面的第一种可能的实现方式,在第二种可能的实现方式中, 所述第一基站接收所述辅助设备发送的第一频谱状态信息, 包括;
所述第一基站接收所述辅助设备采用调度请求 SR 方式或专用前导方式 发送的所述第一频谱状态信息。
结合第一个方面的实现方式, 在第三种可能的实现方式中, 所述第一频 谱状态信息为所述辅助设备根据预先设置的无线帧模式检测后获得的。
结合第一个方面的第三种可能的实现方式,在第四种可能的实现方式中, 所述无线帧模式包括至少一个无线帧, 所述无线帧包含所述第一频谱是否可 用的信息或者所述频谱有可用机会的信息。
结合第一个方面至第一个方面的第四种可能的任意一种实现方式, 在第 五种可能的实现方式中, 所述第一基站根据所述第一频谱状态信息, 确定所 述辅助设备所在区域的所述第一频谱是否被占用之前, 还包括:
所述第一基站通过第二频谱向所述辅助设备发送检测配置信息, 以使所 述辅助设备对所述第一频谱进行检测, 所述检测配置信息包括所述第一频谱 的频率信息、 无线接入技术 RAT信息、 检测类型、 检测报告周期、 触发检测 结果报告的门限值中的至少一种或其任意组合; 或者
所述第一基站采用第二发射功率通过所述第一频谱向所述辅助设备发送 检测配置信息, 以使所述辅助设备对所述第一频谱进行检测, 所述检测配置 信息包括所述第一频谱的频率信息、 无线接入技术 RAT信息、 检测类型、 检 测报告周期、 触发检测结果报告的门限值中的至少一种或其任意组合, 所述 第二发射功率为所述第一基站根据自身检测获得的在所述第一频谱上的发射 功率, 所述第二发射功率小于或等于所述第一发射功率。
结合第一个方面至第一个方面的第五种可能的任意一种实现方式, 在第 六种可能的实现方式中, 所述第一基站向辅助设备发送频谱检测信息之前, 还包括:
所述第一基站采用第二发射功率发送信号, 所述第二发射功率为所述第 一基站根据自身检测获得的在所述第一频谱上的发射功率, 所述第二发射功 率小于或等于所述第一发射功率, 所述信号包括: 主同步信号 PSS、 辅同步 信号 SSS、 小区参考信号 CRS、 信道状态信息参考信号 (channel state information reference signal ) CSI—RS中的至少——禾中。
结合第一个方面的第一种可能的实现方式,在第七种可能的实现方式中, 所述第一基站接收所述辅助设备发送的第一频谱状态信息, 以使所述第一基 站确定所述辅助设备所在区域的所述第一频谱是否被占用之后, 还包括: 所述第一基站采用所述第一发射功率发送信号, 所述信号包括: 同步信 号 PSS、 辅同步信号 SSS、 参考信号 CRS、 信道状态信息参考信号 CSI-RS。
结合第一个方面至第一个方面的第七种可能的任意一种实现方式, 在第 八种可能的实现方式中, 所述辅助设备设置于所述第一基站在所述第一频谱 上对应的小区覆盖范围内或覆盖边缘, 或者, 所述辅助设备设置于所述第一 基站在第二频谱上对应的小区的覆盖范围内或覆盖边缘。
结合第一个方面的第八种可能的实现方式,在第九种可能的实现方式中, 所述第一基站根据所述第一频谱状态信息, 确定所述辅助设备所在区域的所 述第一频谱是否被占用之前, 还包括:
所述第一基站获得所述辅助设备的检测能力信息, 所述检测能力信息包 括所述辅助设备的发送频率范围和 /或检测类型。
结合第一个方面至第一个方面的第九种可能的任意一种实现方式, 在第 十种可能的实现方式中, 所述第一基站接收所述辅助设备发送的第一频谱状 态信息, 以使所述第一基站确定所述辅助设备所在区域的所述第一频谱是否 被占用之后, 还包括:
所述第一基站向第二基站发送所述频谱是否被占用的信息, 所述第二基 站与所述第一基站连接。
第二个方面, 本发明实施例提供一种共享频谱检测装置, 包括: 发送模块, 用于向辅助设备发送频谱检测信息, 所述频谱检测信息用以 指示所述辅助设备检测和 /或报告第一频谱是否被占用;
接收模块, 用于接收所述辅助设备发送的第一频谱状态信息, 以使所述 第一基站确定所述辅助设备所在区域的所述第一频谱是否被占用。
在第一种可能的实现方式中, 所述处理模块, 具体用于根据所述第一频 谱状态信息, 确定所述第一频谱未被占用, 接着, 根据所述辅助设备的位置 信息, 确定在所述第一频谱上的第一发射功率。
结合第二个方面的第一种可能的实现方式,在第二种可能的实现方式中, 所述接收模块,具体用于接收所述辅助设备采用调度请求 SR方式或专用前导 方式发送的所述第一频谱状态信息。
结合第二个方面的实现方式, 在第三种可能的实现方式中, 所述第一频 谱状态信息为所述辅助设备根据预先设置的无线帧模式检测后获得的。
结合第二个方面的第三种可能的实现方式,在第四种可能的实现方式中, 所述无线帧模式包括至少一个无线帧, 所述无线帧包含所述第一频谱是否可 用的信息或者所述频谱有可用机会的信息。
结合第二个方面至第二个方面的第四种可能的任意一种实现方式, 在第 五种可能的实现方式中, 所述发送模块, 还用于通过第二频谱向所述辅助设 备发送检测配置信息, 以使所述辅助设备对所述第一频谱进行检测; 或者, 还用于采用第二发射功率通过所述第一频谱向所述辅助设备发送检测配置信 息, 以使所述辅助设备对所述第一频谱的状态进行检测, 所述检测配置信息 包括频率信息、 RAT 信息、 检测类型、 检测报告周期、 触发检测结果报告的 门限值中的至少一种或其任意组合, 所述第二功率为根据自身检测获得的在 所述第一频谱上的发射功率, 所述第二发射功率小于或等于所述第一发射功 率。
结合第二个方面至第二个方面的第五种可能的任意一种实现方式, 在第 六种可能的实现方式中, 所述发送模块, 还用于采用所述第二发射功率发送 信号, 所述第二发射功率为所述第一基站根据自身检测获得的在所述第一频 谱上的发射功率, 所述第二发射功率小于或等于所述第一发射功率, 所述信 号包括: 主同步信号 PSS、 辅同步信号 SSS、 小区参考信号 CRS、 信道状态信 息参考信号 CSI-RS中的至少一种。
结合第二个方面的第一种可能的实现方式,在第七种可能的实现方式中, 所述发送模块, 还用于采用所述第一发射功率发送信号, 所述信号包括: 主 同步信号 PSS、 辅同步信号 SSS、 小区参考信号 CRS、 信道状态信息参考信号 CSI- RS。
结合第二个方面至第二个方面的第七种可能的任意一种实现方式, 在第 八种可能的实现方式中, 所述辅助设备设置于第一基站在所述第一频谱上对 应的小区覆盖范围内或覆盖边缘, 或者, 所述辅助设备设置于所述第一基站 在第二频谱上对应的小区的覆盖范围内或所述第一基站的覆盖边缘。
结合第二个方面的第八种可能的实现方式,在第九种可能的实现方式中, 所述接收模块, 还用于获得所述辅助设备的检测能力信息, 所述检测能力信 息包括所述辅助设备的发送频率范围和 /或检测类型。
结合第二个方面至第二个方面的第九种可能的任意一种实现方式, 在第 十六种可能的实现方式中, 所述发送模块, 还用于向第二基站发送所述频谱 是否被占用的信息, 所述第二基站与所述第一基站连接。
第三个方面, 本发明实施例提供一种基站, 包括: 发送器、 接收器、 存 储器以及分别与所述发送器、 所述接收器和所述存储器连接的处理器, 其 中,
所述发送器, 用于向辅助设备发送频谱检测信息, 所述频谱检测信息用 以指示所述辅助设备检测和 /或报告第一频谱是否被占用;
所述接收器, 用于接收所述辅助设备发送的第一频谱状态信息, 以使所 述第一基站确定所述辅助设备所在区域的所述第一频谱是否被占用。
在第一种可能的实现方式中, 处理器, 具体用于根据所述第一频谱状态 信息, 确定所述第一频谱未被占用, 接着, 根据所述辅助设备的位置信息, 确定在所述第一频谱上的第一发射功率。
结合第三个方面的第一种可能的实现方式,在第二种可能的实现方式中, 所述接收器,具体用于接收所述辅助设备采用调度请求 SR方式或专用前导方 式发送的所述第一频谱状态信息。
结合第三个方面的实现方式, 在第三种可能的实现方式中, 所述第一频 谱状态信息为所述辅助设备根据预先设置的无线帧模式检测后获得的。
结合第三个方面的第三种可能的实现方式,在第四种可能的实现方式中, 所述无线帧模式包括至少一个无线帧, 所述无线帧包含所述第一频谱是否可 用的信息或者所述频谱有可用机会的信息。
结合第三个方面至第三个方面的第五种可能的任意一种实现方式, 在第 六种可能的实现方式中, 所述发送器, 还用于通过第二频谱向所述辅助设备 发送检测配置信息, 以使所述辅助设备对所述第一频谱进行检测; 或者, 还 用于采用第二发射功率通过所述第一频谱向所述辅助设备发送检测配置信 息, 以使所述辅助设备对所述第一频谱的状态进行检测, 所述检测配置信息 包括频率信息、 RAT 信息、 检测类型、 检测报告周期、 触发检测结果报告的 门限值中的至少一种或其任意组合, 所述第二功率为根据自身检测获得的在 所述第一频谱上的发射功率。
结合第三个方面至第三个方面的第五种可能的任意一种实现方式, 在第 六种可能的实现方式中, 所述发送器, 还用于采用所述第二发射功率发送信 号, 所述第二发射功率为所述第一基站根据自身检测获得的在所述第一频谱 上的发射功率, 所述第二发射功率小于或等于所述第一发射功率, 所述信号 包括: 主同步信号 PSS、 辅同步信号 SSS、 小区参考信号 CRS、 信道状态信息 参考信号 CSI-RS中的至少一种。
结合第三个方面的第一种可能的实现方式,在第七种可能的实现方式中, 所述发送器, 还用于采用所述第一发射功率发送信号, 所述信号包括: 同步 信号 PSS、辅同步信号 SSS、小区参考信号 CRS、信道状态信息参考信号 CSI-RS。
结合第三个方面至第七个方面的第九种可能的任意一种实现方式, 在第 八种可能的实现方式中, 所述辅助设备设置于第一基站在所述第一频谱上对 应的小区覆盖范围内或覆盖边缘, 或者, 所述辅助设备设置于所述第一基站 在第二频谱上对应的小区的的覆盖范围内或所述第一基站的覆盖边缘。
结合第三个方面的第八种可能的实现方式,在第九种可能的实现方式中, 所述接收器, 还用于获得所述辅助设备的检测能力信息, 所述检测能力信息 包括所述辅助设备的发送频率范围和 /或检测类型。
结合第三个方面至第三个方面的第九种可能的任意一种实现方式, 在第 十六种可能的实现方式中, 所述发送器, 还用于向第二基站发送所述频谱是 否被占用的信息, 所述第二基站与所述第一基站连接。
本发明实施例提供的频谱检测方法、 装置及基站, 通过第一基站向辅助 设备发送频谱检测信息, 该频谱检测信息用以指示辅助设备检测第一频谱是 否被占用, 接着, 第一基站接收辅助设备发送的第一频谱状态信息, 以使第 一基站确定辅助设备所在区域的第一频谱是否被占用。 从而实现了第一基站 可以确定用户设备在使用第一频谱的过程中是否被其他通信系统设备干扰, 进而实现了与其他通信系统设备共享同一频谱。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明一实施例的频谱检测方法的流程示意图;
图 2为本发明一实施例的适用场景的示意图;
图 3为本发明又一实施例的适用场景的示意图;
图 4为本发明再一实施例的适用场景的示意图;
图 5为本发明又一实施例的频谱检测方法的流程示意图;
图 6为本发明再一实施例的频谱检测方法的流程示意图;
图 7为本发明再一实施例的频谱检测方法的流程示意图;
图 8为本发明一实施例的频谱检测装置的结构示意图;
图 9为本发明又一实施例的频谱检测装置的结构示意图;
图 10为本发明一实施例的基站的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供的共享频谱检测方法具体可以应用于通信系统与其他 通信系统共享频谱时, 其中, 该通信系统可以为长期演进 (Long Term Evolution, 简称 LTE) 系统、 码分多址 (Code Division Multiple Access , 简称 CDMA ) 2000系统、 通用移动通信系统 (Universal Mobi le Telecommunications System, 简称 UMTS)系统、 全球移动通讯系统 (Global System of Mobi le communication, 简称 GSM) 系统等。 本实施例提供的共 享频谱检测方法具体可以通过共享频谱检测装置或基站来执行, 该共享频谱 检测装置可以集成在基站中,该共享频谱检测装置可以采用软件和 /或硬件的 方式来实现。 以下以通信系统为 LTE系统和其他通信系统为 WiFi系统为例, 对 本实施例提供的方法及装置进行详细地说明。
图 1为本发明一实施例的频谱检测方法的流程示意图。 图 2为本发明一实 施例的适用场景的示意图。 图 3为本发明又一实施例的适用场景的示意图。 图 4为本发明再一实施例的适用场景的示意图。 如图 1所示, 本实施例提供的频 谱检测方法具体包括如下步骤:
步骤 101、 第一基站向辅助设备发送频谱检测信息, 该频谱检测信息用 以指示辅助设备检测第一频谱是否被占用。
在本实施例中, 第一基站准备占用该第一频谱发送数据或信号时, 具体 的实现方式可以为, 首先第一基站自身确定该第一频谱是否空闲, 若已经被 占用, 即第一基站确定在自身覆盖范围内的该第一频谱已经被占用, 则在一 时长内第一基站不占用该第一频谱, 若该第一频谱为空闲, 则第一基站根据 第一频谱状态信息, 也就是说, 若第一基站确定在自身覆盖范围内的该第一 频谱为空闲, 则第一基站可以进一步的根据辅助设备检测第一频谱是否被占 用的信息, 确定辅助设备所在区域该第一频谱是否被占用。
需要说明的是, 辅助设备可以接收到频谱检测信息后进行频谱检测 ( spectrum detect ion ) 或步员谱感知 ( spectrum sensing ) 或检测 (measurement )并报告检测结果, 或者接收到频谱检测信息后直接报告检测 结果,而检测结果可以是根据预先配置的测量配置信息进行检测获得的结果。 其中, 该测量配置信息可以预先配置在辅助设备, 或者, 该测量配置信息可 以通过第一基站发送给辅助设备。在本发明中, 检测或感知或测量可以互用。
在本实施例中, 该频谱检测信息携带在广播信令或专用信令。 例如, 该 频谱检测信息可以携带在物理下行控制信道 (Physical Downl ink Control Channel , 简称 PDCCH) 或增强的物理下行控制信道 (Enhanced PDCCH, 简称 EPDCCH, )所指示的基于单用户的专用信令或者基于多用户的组调度信令或者 广播信令, 或者, 基于第一基站和辅助设备之间的接口信令; 专用信令情况 下该频谱检测信息也可以携带在媒体接入控制控制元 (Medium Access Control Control Element , 简称为 MAC CE)。 该频谱检测信息可以包括一个 或多个频率信息、 无线接入技术 (Radio Access Technology, 简称为 RAT ) 信息、 检测类型、 检测结果报告周期、 触发检测结果报告的门限值中的至少 一种或其任意组合, 其中, 该频率信息可以为频率范围、 第一频谱对应的信 道号或物理小区标识 (Phys ical Cel l Ident i ty , 简称为 PCI ) 。
在本实施例中, 辅助设备可以设置于第一基站在第一频谱上对应的小区 覆盖范围内或覆盖边缘, 或者, 辅助设备设置于第一基站在第二频谱上对应 的小区的覆盖范围内或覆盖边缘, 例如可以基于第二频谱, 如授权频谱上小 区的覆盖范围, 或, 基于第一频谱, 如非授权频谱上小区的覆盖范围。 对于 该辅助设备设置的适用场景至少包括以下三种:
第一种适用场景, 如图 2所示, WiFi基站或接入点 (Access Point , 简 称为 AP )位于 LTE基站的下行覆盖范围内, 同时, LTE基站也位于 WiFi基站 的下行覆盖范围内, 并且, 辅助设备设置在 WiFi基站与 LTE基站共同覆盖的 范围内, 在 LTE基站和 WiFi基站在同一频谱同时发送数据或信号时, 辅助设 备会同时接收到 LTE基站和 WiFi基站发送的数据或信号,从而产生同频干扰。
第二种适用场景, 如图 3所示, WiFi基站位于 LTE基站的下行覆盖范围内, 同时, LTE基站也位于 WiFi基站的下行覆盖范围外,并且,辅助设备设置在 WiFi 基站的下行覆盖范围内, LTE基站和 WiFi基站在同一频谱同时发送数据或信号 时, 辅助设备会同时接收到 LTE基站和 Wi-Fi基站发送的数据或信号, 从而产 生同频干扰。
第三种适用场景, 如图 4所示, WiFi基站位于 LTE基站的下行覆盖范围外, LTE基站也位于 WiFi基站的下行覆盖范围外, 同时, WiFi基站的下行覆盖范围 与 LTE基站的下行覆盖范围有重叠区域。 辅助设备设置在该重叠区域内, LTE 基站和 WiFi基站在同一频谱同时发送数据或信号时, 辅助设备会同时接收到 LTE基站和 WiFi基站发送的数据或信号, 从而产生同频干扰。
在上述三种适用场景中, 该下行覆盖范围可以为第一基站在第一频谱上 对应的小区覆盖范围, 或者, 第一基站在第二频谱上对应的小区的覆盖范围, 在此不做限制。
需要说明的是, 在第一种适用场景下, WiFi基站在第一基站准备占用的 第一频谱上发送数据或信号时, 第一基站, 即 LTE基站可以检测到该第一频 谱被占用; 而对于第二种适用场景和第三种适用场景, WiFi基站在该第一频 谱上发送数据或信号时, 第一基站, 即 LTE基站无法检测到该第一频谱被占 用, 因此在第一基站确定准备占用的第一频谱为空闲之后, 需要根据第一频 谱状态信息, 即辅助设备检测第一频谱是否被占用的信息, 确定第一频谱是 否被占用, 其中, 该辅助设备为用户设备 (User Equipment , 简称 UE) 或辅 助检测单元, 该辅助检测单元可以为无线发送接收设备, 如远端无线射频头 (Remote Radio Head,简称 RRH)或传感器(sensor )或机器类型通信(Machine Type Communication, 简称 MTC) 设备或 LTE小基站 ( smal l eNB ) 或无线中 继 (relay ) 或其它类似的无线发送 /接收点 (radio dot ) 设备等。
需要说明的是, 第一频谱状态信息由第一基站通过设置在辅助设备与基 站之间的光纤或无线接口获得, 该无线接口可以采用 LTE技术、 微波技术、 wifi技术等无线技术。
可选的, 辅助设备与第一基站通过射频 (Radio Frequency, 简称 RF) 或基带 (baseband ) 、 Un接口、 X2接口中的任一方式进行通信。
需要说明的是, 辅助设备与第一基站之间的通信是理想的, 即时延可以 忽略, 例如几乎为零; 辅助检测单元和基站之间的通信非理想即存在一定时 延的情况下, 可以采用认知导频信道 (Cognitive Pi lot Channel , 简称 CPC ) 或者 UE在空口转发等方式进行通信以降低延迟。
步骤 102、 第一基站接收辅助设备发送的第一频谱状态信息, 以使第一 基站确定辅助设备所在区域的第一频谱是否被占用。
该第一频谱状态信息为辅助设备检测第一频谱是否被占用的消息。
举例来讲,第一基站可以接收辅助设备采用调度请求 SR方式或专用前导 方式发送的第一频谱状态信息。
在本实施例中, 对于第一基站根据第一频谱状态信息, 确定辅助设备所 在区域的第一频谱是否被占用的实现方式至少包括以下两种:
第一种实现方式, 第一基站根据第一频谱状态信息, 确定第一频谱未被 占用, 接着, 第一基站根据辅助设备的位置信息, 确定在第一频谱上的第一 发射功率, 其中, 该第一发射功率可以为第一基站的最大发射功率或最大允 许发射功率或标称功率等。
第二种实现方式, 第一基站根据第一频谱状态信息, 确定第一频谱被占 用, 则第一基站采用第二发射功率进行发射, 例如可以继续采用向辅助设备 发送频谱检测信息的功率进行发射。 在本实施例中, 第一基站根据辅助设备的位置信息, 确定在第一频谱上 的第一发射功率, 即调整在该频谱上发送数据或信号的功率之后, 第一基站 将第一发射功率告知 UE, 该 UE位于第一基站在第一发射功率的下行覆盖范 围内。
在上述实施例的基础上, 第一基站接收辅助设备获得的第一频谱状态信 息, 该第一频谱状态信息为辅助设备根据预先设置的无线帧模式检测后获得 的。 其中, 该无线帧模式包括至少一个无线帧, 该无线帧包含该频谱是否可 用的信息或者所述频谱有可用机会的信息。 前者指基站可以根据无线帧模式 在某些子帧直接在所述频谱上以 LTE技术发送数据和 /或信号,这种操作可以 基于基站事先和异系统进行的协商或者基站不顾异系统是否在使用; 后者指 基站有机会以 LTE发送数据和 /或信号,但可能基于基站的检测结果决定是否 以 LTE发送数据和 /或信号,辅助设备仍然需要检测以判断是否真的有 LTE数 据和 /或信号。
可选的, 第一基站根据辅助设备的位置信息, 确定在该频谱上的第一发 射功率之后, 还可以包括:
第一基站采用第一发射功率发送信号, 其中, 信号包括: 同步信号 (Primary Synchroni zation Signal , 简称为 PSS )、辅同步信号 ( Secondary Synchroni zation Signal , 简禾尔为 SSS ) 、 小区参考信号 ( Cel l Reference Signal , 简称为 CRS )、信道状态信息参考信号 (Channel Status Indication Reference Signal , 简称为 CSI-RS ) 、 解调参考信号 DMRS等。
在本实施例中, 通过第一基站向辅助设备发送频谱检测信息, 该频谱检 测信息用以指示辅助设备检测第一频谱是否被占用, 接着, 第一基站接收辅 助设备发送的第一频谱状态信息, 以使第一基站确定辅助设备所在区域的第 一频谱是否被占用。 从而实现了第一基站可以确定用户设备在使用第一频谱 的过程中是否被其他通信系统设备干扰, 进而实现了与其他通信系统设备共 享同一频谱。
在上述实施例的基础上, 第一基站根据所述第一频谱状态信息, 确定所 述辅助设备所在区域的所述第一频谱是否被占用之前, 还可以包括:
第一基站获得辅助设备的位置信息。 在本实施例中, 对于第一基站获得辅助设备的位置信息的实现方式具体 可以包括: 定位技术、 地理位置数据库 (Geo-location database ) , 操作管 理禾口维护系统 (Operations. Administration and Maintenance, 简称 0AM) 等多种技术手段中的任意一种。 需要说明的是, 在辅助设备的位置发生变化 后, 需要及时告知第一基站。 另外, 辅助设备的位置信息也可以和第一频谱 状态信息一起发送给基站, 例如可以是全球卫星定位系统 (Global Positioning Satel l ite System, 简称 GPS ) 类似精确的位置信息或者定时提 前值 (Timing Advance, 简称 TA) 之类大致的位置信息。
进一步的, 在上述实施例的基础上, 在根据第一频谱状态信息, 确定频 谱是否被占用之前, 还可以包括:
第一基站获得辅助设备的检测能力信息, 其中, 该检测能力信息包括辅 助设备的发送频率范围和 /或检测类型。
在上述实施例的基础上, 根据第一频谱状态信息, 确定辅助设备所在区 域的第一频谱是否被占用之前, 还可以包括:
第一基站采用第二发射功率通过第一频谱向辅助设备发送检测配置信 息, 以使辅助设备对第一频谱的状态进行检测。 或者
第一基站通过第二频谱向辅助设备发送检测配置信息, 以使辅助设备对 第一频谱进行检测。
在本实施例中, 第二功率为第一基站根据自身检测获得的在第一频谱上 的发射功率。 该检测配置信息可以包括第一频谱的频率信息、 无线接入技术 RAT 信息、 检测类型、 检测报告周期、 触发检测报告的门限值中的至少一种 或其任意组合, 其中, 该频率信息可以为频率范围、 频谱对应的信道号或物 理小区标识 (Physical Cel l Identity, 简称 PCI ) 。
需要说的是, 该检测配置信息可以预先配置在辅助设备, 或者, 该检测 配置信息可以通过第一基站发送给辅助设备。
本实施例实现了第一基站以使辅助设备对该第一频谱的状态进行检测, 并在第一基站需要后, 根据第一频谱状态信息, 确定所述频谱是否被占用时, 可以快速的获得该第一频谱状态信息。
需要说明的是, 该检测配置信息携带在广播信令或专用信令。
具体的, 该测量配置信息携带在以下指令中, 如, PDCCH或 EPDCCH所指 示的基于单用户的专用信令、 基于多用户的组调度信令、 广播信令, 或者, 基于第一基站和辅助设备之间的接口信令。
可选的, 在上述实施例的基础上, 根据第一频谱状态信息, 确定频谱是 否被占用之前, 还可以包括:
第一基站采用该第二功率发送信号, 第二功率小于或等于第一功率, 该 信号包括: PSS、 SSS、 CRS、 CSI-RS、 DMRS中的至少一种。 进一步的, 该信号 还可以包括通知 UE该 LTE开启的消息以及调度信令等。更进一步的, 第一基站 向辅助设备发送下行信号发射功率, 该发射功率用于辅助设备测量参考信号 接收功率 (Reference Signal Received Power, 简称 RSRP) 、 参考信号接收 质量 (Reference Signal Received Quality, 简称 RSRQ) 、 信道状态信息 ( Channel Statusinformation, 简称 CSI) 等, CSI测量包括信道质量指示 (Channel Quality Indication, 简称为 CQI) 、 预编码矩阵指示(Precoding Matrix Indicator, 简称为 PMI) 、 秩指示 (Rank Indication) 等。
在上述实施例的基础上, 第一基站根据辅助设备的位置信息, 确定在频 谱上的第一发射功率之后, 还包括:
第一基站向第二基站发送频谱是否被占用的信息, 该第二基站与第一基 站连接, 例如第一基站和第二基站间存在 X2接口。
图 5为本发明又一实施例的频谱检测方法的流程示意图。 如图 5所示, 本 实施例中的辅助设备为辅助检测单元, gPRRH或传感器(sensor)或机器类型 通信 (Machine Type Communication, 简称为 MTC) 设备或 LTE小基站 (small eNB) 或无线中继或其它类似的无线发送 /接收点 (radio dot) 设备中的任意 一种。 本实施例中第一基站准备占用的频谱为第一频谱, 该方法可以包括: 步骤 501、 第一基站检测准备占用的频谱是否为空闲。
具体的, 第一基站检测准备占用的频谱是否为空闲的实现方式包括以下 任意——禾中: 物理层會 ^量检测 (energy sensing或 energy detection)^ 协方差 矩阵检测 (covariance matrix detection). 匹配滤波检测 (Matched Filter Detection)^ 循环平稳特征检测 (Cyclostationary Feature Detection)^ 接收信号强度指示 (Received Signal Strength Indication, 简称 RSSI)、 干扰测量 (Interference Measurement )^ 信噪比 (Signal To Noise Rate, 简称 SNR)、 信干噪比 (Signal To Interference Noise Rate, 简称 SINR)、 RSRP、 RSRQ、热噪声攀升(Ri se Over Thermal ,简称 R0T)、信道质量指示(CQI, channel qual ity indication ) 等。 通常, 物理层检测可以在数十微秒如 20 微秒时间内完成, 可以远小于 LTE系统 1个正交频分多路复用 (orthogonal frequency divi sion multiplexing, 简禾尔 OFDM )符号 ( symbol ) 的时间 71. 43 微秒; 协方差矩阵检测需要更长的时间, 但可以达到更高的检测精度。
步骤 502、第一基站确定准备占用的频谱为空闲之后, 第一基站向辅助检 测单元发送频谱检测信息。
在本实施例中, 该频谱检测信息用以通知辅助检测单元检测频谱是否被 占用。 该频谱检测信息携带在广播信令或专用信令。 例如, 该频谱检测信息 可以携带在 PDCCH或 EPDCCH所指示的基于单用户的专用信令或者基于多用户 的组调度信令或者广播信令, 或者, 基于第一基站和辅助检测单元之间的接 口信令。
可选的, 第一基站在频谱检测信息中携带频率信息、检测门限和 /或预期 占用频谱的时间长度信息, 其中频率信息可以为一个或多个频率范围或信道 号或物理小区标识, 上述信息也可以预先配置给辅助检测单元, 则控制信息 中不用携带。可选的,第一基站可以发送 CTS帧预留频谱一定的时间。可选的, 第一基站也可以先根据其检测能力范围决定的下行发射功率进行至少以下行 为中的一种或多种: 发送 LTE主同步信号和 SSS、 CRS、 CSI-RS、 送通知 LTE开 启的消息、 向 UE发送调度信令中的至少一种; 进一步的, 第一基站向辅助检 测单元发送下行信号发射功率的信息, 该发射功率的信息用于辅助检测单元 测量 RSRP、 RSRQ、 CSI等。
步骤 503、辅助检测单元接收第一基站发送的频谱检测信息, 并对该频谱 进行检测和 /或直接报告现有测量结果。
在本实施例中, 辅助检测单元对该频谱进行检测的方式至少包括: 通过 物理层能量检测或者协方差矩阵检测等方法检测非授权频谱的状态, 并立即 向基站报告一个或多个频率范围或信道号及其对应的频谱状态, 例如可以通 过物理层信令通知第一基站。
可选的, 第一基站可以事先为辅助检测单元配置检测门限, 辅助检测单 元仅在测量结果大于或小于门限时才向第一基站发送频谱检测响应信息。 在 辅助检测单元已获取检测结果时, 则接收到第一基站的频谱检测信息时立即 向基站报告对应频谱状态。 可选的, 辅助检测单元根据预期占用频谱的时间 长度信息发送物理层信号或者 MAC层 CTS帧占用频谱, 其中, 不同频谱对应的 时间长度可以相同或者不同。
步骤 504、第一基站接收辅助检测单元发送的频谱检测响应信息, 该频谱 检测响应信息携带第一频谱状态信息。
具体的, 第一基站根据辅助检测单元的位置信息, 确定在频谱上的第一 发射功率。 进一步的, 第一基站确定在频谱上的第一发射功率之后, 采用第 一发射功率向 UE发送 LTE主同步信号 PSS和辅同步信号 SSS、发送小区参考信号 CRS和 /或信道状态信息参考信号 CSI-RS和 /或解调参考信号 DMRS、 基站向 UE 发送通知 LTE开启的消息、 向 UE发送调度信令的至少一种。
步骤 505、第一基站根据第一频谱状态信息, 确定辅助设备所在区域的第 一频谱是否被占用。
具体的, 若第一基站确定辅助设备所在区域的第一频谱被占用, 则执行 步骤 506。若第一基站确定辅助设备所在区域的第一频谱被占用, 则执行步骤 507 ο
步骤 506、第一基站确定辅助设备所在区域的第一频谱被占用, 确定在第 一频谱上的采用第二发射功率。
本实施例中的第二发射功率可以为向辅助基站发送频谱检测信息的功 率。
步骤 507、 第一基站确定辅助设备所在区域的第一频谱未被占用, 并根 据辅助设备的位置信息, 确定在第一频谱上的第一发射功率。
举例来讲, 该第一发射功率可以为第一基站的最大发射功率或标称功率 或最大允许发射功率。
图 6为本发明再一实施例的频谱检测方法的流程示意图。 如图 6所示, 本 实施例中的辅助设备为 UE, 该方法可以包括:
步骤 601、 第一基站检测准备占用的频谱是否为空闲。
本实施例步骤 601的实现方式与步骤 501的实现方式类似,在此不再赘述。 步骤 602、第一基站确定准备占用的频谱为空闲之后, 第一基站向 UE发送 频谱检测信息。 具体的, 第一基站可以根据 UE的位置信息或指紋 (f inger print ) 信息 选择合适的 UE进行检测, 例如, 在第二适用场景, 位于 Wi-Fi基站的下行覆盖 范围内的 UE , 或者, 在第三适用场景, 位于 Wi-Fi基站的下行覆盖范围与 LTE 基站的下行覆盖范围有重叠区域的 UE。
该频谱检测信息用以通知辅助设备检测频谱是否被占用。 该频谱检测信 息携带在广播信令或专用信令。 例如, 该频谱检测信息可以携带在 PDCCH或 EPDCCH所指示的基于单用户的专用信令或者基于多用户的组调度信令或者广 播信令, 或者, 基于第一基站和辅助设备之间的接口信令。
可选的, 第一基站在频谱检测信息中携带频率信息、检测门限和 /或预期 占用频谱的时间长度信息, 其中频率信息可以为频率范围或信道号或物理小 区标识, 上述信息也可以预先配置给辅助检测单元, 则控制信息中不用携带。 可选的, 第一基站可以发送 CTS帧预留频谱一定的时间。 可选的, 第一基站也 可以先根据其检测能力范围决定的下行发射功率进行至少以下行为中的一种 或多种: 发送 LTE主同步信号 PSS和 SSS、 CRS、 CSI- RS、 DMRS、 发送通知 LTE 开启的消息、 发送调度信令中的至少一种; 进一步的, 第一基站向 UE发送下 行信号发射功率, 该发射功率用于辅助设备测量 RSRP、 RSRQ、 CSI等。
步骤 603、 UE接收第一基站发送的频谱检测信息, 并对该频谱进行检测。 在本实施例中, 辅助设备对该频谱进行检测的方式至少包括: 通过物理 层能量检测或者协方差矩阵检测等方法检测非授权频谱的状态, 并立即向基 站报告一个或多个频率范围或信道号及其对应的频谱状态, 例如可以通过物 理层信令通知第一基站。
步骤 604、第一基站接收 UE发送的频谱检测响应信息, 该频谱检测响应信 息携带第一频谱状态信息。
举例来讲, UE可以通过物理层信令通知基站, 例如可以在 PCel l或其它 频谱上的小区通过物理上行控制信道 (Phys ical Upl ink Control Channe l , 简称 PUCCH ) 上发送特殊格式的信令, 如调度请求 (schedul ing request , 简称 SR ),基站可以在通知 UE进行频谱检测的控制信息中为 UE分配用于反馈频 谱检测状态的 SR的时频域资源、 或者事先通过无线资源控制信令为 UE配置用 于反馈频谱检测状态的 SR的时频域资源。 UE还可以通过在非授权频谱上配置 的物理随机接入信道 ( Phys i cal Random Access Channel , 简称 PRACH ) 发 送专用 (dedicated)前导 (preamble )通知基站频谱状态, 对于非授权频谱 仅用于下行业务的情况, 随机接入信道可以仅用于 UE反馈频谱状态信息; 专 用前导可以在通知 UE进行频谱检测的控制信息中携带或者预先配置给 UE。 UE 还可以使用媒体接入控制层的控制单元 (Medium Access Control Control Element , 简称 MAC CE ) 通知基站频谱状态, 基站可以在通知 UE进行频谱检 测的控制信息中分配用于 UE发送 MAC CE的时频域资源。 可选的, UE反馈信息 还可以包含频率范围信息或信道号、 位置信息、 上行定时提前值 (Timing Advance Value , 简称 TA value ) 等信息, 用于基站判断 UE的位置和距离等。 可选的, 基站可以事先为 UE配置检测门限、 检测结果报告条件等信息, UE仅 在测量结果大于或小于门限时才向基站发送反馈信息。
步骤 605、第一基站根据第一频谱状态信息, 辅助设备所在区域的第一频 谱是否被占用。
具体的, 若是, 则执行步骤 606; 若否, 则执行步骤 607。
步骤 606、第一基站确定 UE所在区域的第一频谱被占用, 确定在第一频谱 上的采用第二发射功率。
步骤 607、第一基站确定 UE所在区域的第一频谱未被占用, 并根据 UE的位 置信息, 确定在第一频谱上的第一发射功率。
图 7为本发明再一实施例的频谱检测方法的流程示意图。 如图 7所示, 本 实施例中的辅助设备为 UE, 或者辅助检测单元, 该方法可以包括:
步骤 701、第一基站接收辅助设备获得的第一频谱状态信息, 该第一频谱 状态信息为辅助设备根据预先设置的无线帧模式检测后获得的。
在本实施例中, 该无线帧模式包括至少一个无线帧, 该无线帧包含该频 谱是否可用的信息或者所述频谱有可用机会的信息。 前者指基站可以根据无 线帧模式在某些子帧直接在所述频谱上以 LTE技术发送数据和 /或信号, 这种 操作可以基于基站事先和异系统进行的协商或者基站不顾异系统是否在使 用; 后者指基站有机会以 LTE发送数据和 /或信号, 但可能基于基站的检测结 果决定是否以 LTE发送数据和 /或信号, 辅助设备仍然需要检测以判断是否真 的有 LTE数据和 /或信号。
举例来讲, 无线帧模式可以按照位图 (bitmap) 的方式, 位图可以按照 1 个或多个无线帧为单位进行设置, 其中 1个无线帧包括 10个子帧, 1个子帧为 1 毫秒, 例如, 按照 1个无线帧为单位的子帧模式可以为 11111 11100。 其中, 第 一基站和辅助设备根据上述子帧模式在值 " 1 "所代表的子帧中的第一个子帧 开始进行频谱检测, 一旦检测到频谱空闲, 则至多占用值 " 1 "所代表的所有 子帧; 如果检测到频谱忙, 则等待到值 " 0 "所代表的子帧后的第一个值 " 1 " 所代表的子帧重新开始频谱检测。 所检测的频率范围或信道号可以预先配置 或者动态或者半静态在基站和辅助检测单元之间协商。 或者第一基站根据上 述子帧模式在值 " 1 "所代表的子帧中的第一个子帧开始直接发送 LTE数据和 / 或信号, 辅助检测单元在值 " 1 "所代表的子帧中的第一个子帧开始直接测量
LTE信号的 RSRP、 RSRQ、 CSI等信息。
需要说明的是,在第一基站接收辅助设备获得的第一频谱状态信息之前, 辅助设备可以通过步骤 501中的任意一种方式对频谱是否为空闲进行检测。
可选的, 辅助设备可以在每当检测到频谱空闲时, 发送第一频谱状态信 息给第一基站, 或者在每次检测后均向第一基站发送第一频谱状态信息, 其 中, 该第一频谱状态信息包含频率范围或该频谱对应的信道号, 或者按照事 先约定的频率范围或信道号。 可选的, 第一基站可以事先为辅助设备配置测 量门限、 报告条件等信息, 辅助设备仅在测量结果大于或小于门限时才向基 站发送第一频谱状态信息。
步骤 702、第一基站根据辅助设备的位置信息, 确定在频谱上的第一发射 功率。
图 8为本发明一实施例的频谱检测装置的结构示意图。 如图 8所示, 该 共享频谱检测装置, 包括: 发送模块 801和接收模块 802, 其中, 发送模块 801, 用于向辅助设备发送频谱检测信息, 频谱检测信息用以指示辅助设备检 测第一频谱是否被占用; 接收模块 802, 用于接收辅助设备发送的第一频谱 状态信息, 以使第一基站确定辅助设备所在区域的第一频谱是否被占用。
在本实施例中, 通过第一基站向辅助设备发送频谱检测信息, 该频谱检 测信息用以指示辅助设备检测第一频谱是否被占用, 接着, 第一基站接收辅 助设备发送的第一频谱状态信息, 以使第一基站确定辅助设备所在区域的第 一频谱是否被占用。 从而实现了第一基站可以确定用户设备在使用第一频谱 的过程中是否被其他通信系统设备干扰, 进而实现了与其他通信系统设备共 享同一频谱。 图 9为本发明又一实施例的频谱检测装置的结构示意图。 如图 9所示, 在上述实施例的基础上, 该共享频谱检测装置, 还包括, 处理模块 803, 该 处理模块 803, 具体用于根据第一频谱状态信息, 确定第一频谱未被占用, 接着, 根据辅助设备的位置信息, 确定在第一频谱上的第一发射功率。
进一步的, 在上述实施例的基础上, 接收模块 802, 具体用于接收辅助 设备采用调度请求 SR方式或专用前导方式发送的第一频谱状态信息。
在上述实施例的基础上, 频谱检测信息携带在广播信令或专用信令。 在上述实施例的基础上, 第一频谱状态信息为辅助设备根据预先设置的 无线帧模式检测后获得的。
进一步的, 在上述实施例的基础上, 无线帧模式包括至少一个无线帧, 无线帧包含第一频谱是否可用的信息或者频谱有可用机会的信息。
进一步的, 在上述实施例的基础上, 发送模块 801, 还用于通过第二频 谱向辅助设备发送检测配置信息, 以使辅助设备对第一频谱进行检测; 或者, 还用于采用第二发射功率通过第一频谱向辅助设备发送检测配置信息, 以使 辅助设备对第一频谱的状态进行检测, 检测配置信息包括频率信息、 RAT信 息、 检测类型、 检测报告周期、 触发检测结果报告的门限值中的至少一种或 其任意组合, 第二功率为根据自身检测获得的在第一频谱上的发射功率, 第 二发射功率小于或等于第一发射功率。
在上述实施例的基础上, 检测配置信息携带在广播信令或专用信令。 进一步的, 在上述实施例的基础上, 发送模块 801, 还用于采用第二发 射功率发送信号, 第二发射功率为第一基站根据自身检测获得的在第一频谱 上的发射功率, 第二发射功率小于或等于第一发射功率, 信号包括: 主同步 信号 PSS、辅同步信号 SSS、小区参考信号 CRS、信道状态信息参考信号 CSI-RS 中的至少一种。
在上述实施例的基础上, 发送模块 801, 还用于采用第一发射功率发送 信号, 信号包括: 同步信号 PSS、 辅同步信号 SSS、 小区参考信号 CRS、 信道 状态信息参考信号 CSI-RS。
进一步的, 在上述实施例的基础上, 辅助设备设置于第一基站在第一频 谱上对应的小区覆盖范围内或覆盖边缘, 或者, 辅助设备设置于第一基站在 第二频谱上对应的小区的覆盖范围内或第一基站的覆盖边缘。 在上述实施例的基础上, 第一频谱状态信息由第一基站通过设置在辅助 设备与基站之间的光纤或无线接口获得。
进一步的, 在上述实施例的基础上, 辅助设备为用户设备或辅助检测单 元, 辅助检测单元为具有对第一频谱有检测或检测能力的发送接收设备; 进一步的, 在上述实施例的基础上, 辅助设备与第一基站通过射频、 基 带、 Un接口、 X2接口中的任一方式进行通信。
进一步的, 在上述实施例的基础上, 接收模块 802, 还用于获得辅助设 备的位置信息。
在上述实施例的基础上, 接收模块 802, 还用于获得辅助设备的检测能 力信息, 检测能力信息包括辅助设备的发送频率范围和 /或检测类型。
在上述实施例的基础上, 发送模块 801, 还用于向第二基站发送频谱是 否被占用的信息, 第二基站与第一基站连接。
在本实施例中, 实现了第一基站可以确定用户设备在使用第一频谱的过 程中是否被其他其他通信系统设备干扰, 进而实现了与其他通信系统设备共 享同一频谱。
图 10为本发明一实施例的基站的结构示意图。 如图 10所示, 该基站, 包括: 发送器 901、 接收器 902、 存储器 903以及分别与发送器 901、 接收器 902和存储器 903连接的处理器 904, 其中, 发送器 901, 用于向辅助设备发 送频谱检测信息,频谱检测信息用以指示辅助设备检测第一频谱是否被占用; 接收器 902, 用于接收辅助设备发送的第一频谱状态信息, 以使第一基站确 定辅助设备所在区域的第一频谱是否被占用。
在本实施例中, 通过第一基站向辅助设备发送频谱检测信息, 该频谱检 测信息用以指示辅助设备检测第一频谱是否被占用, 接着, 第一基站接收辅 助设备发送的第一频谱状态信息, 以使第一基站确定辅助设备所在区域的第 一频谱是否被占用, 该第一频谱状态信息为辅助设备检测第一频谱是否被占 用的消息。 从而实现了第一基站可以确定用户设备在使用第一频谱的过程中 是否被其他其他通信系统设备干扰, 进而实现了与其他通信系统设备共享同 一频谱。
在上述实施例的基础上, 该基站还包括: 处理器 904, 该处理器 904具 体用于根据第一频谱状态信息, 确定第一频谱未被占用, 接着, 根据辅助设 备的位置信息, 确定在第一频谱上的第一发射功率。
进一步的, 在上述实施例的基础上, 接收器 902, 具体用于接收辅助设 备采用调度请求 SR方式或专用前导方式发送的第一频谱状态信息。
在上述实施例的基础上, 频谱检测信息携带在广播信令或专用信令。 进一步的, 在上述实施例的基础上, 第一频谱状态信息为辅助设备根据 预先设置的无线帧模式检测后获得的。
在上述实施例的基础上, 无线帧模式包括至少一个无线帧, 无线帧包含 第一频谱是否可用的信息或者频谱有可用机会的信息。
在上述实施例的基础上, 发送器 901, 还用于通过第二频谱向辅助设备 发送检测配置信息, 以使辅助设备对第一频谱进行检测; 或者, 还用于采用 第二发射功率通过第一频谱向辅助设备发送检测配置信息, 以使辅助设备对 第一频谱的状态进行检测, 检测配置信息包括频率信息、 RAT信息、 检测类 型、检测报告周期、触发检测结果报告的门限值中的至少一种或其任意组合, 第二功率为根据自身检测获得的在第一频谱上的发射功率, 第二发射功率小 于或等于第一发射功率。
进一步的, 在上述实施例的基础上, 检测配置信息携带在广播信令或专 用信令。
在上述实施例的基础上, 发送器 901, 还用于采用第二发射功率发送信 号,第二发射功率为第一基站根据自身检测获得的在第一频谱上的发射功率, 第二发射功率小于或等于第一发射功率, 信号包括: 主同步信号 PSS、 辅同 步信号 SSS、 小区参考信号 CRS、 信道状态信息参考信号 CSI-RS中的至少一 种。
进一步的, 在上述实施例的基础上, 发送器 901, 还用于采用第一发射 功率发送信号, 信号包括: 同步信号 PSS、 辅同步信号 SSS、 小区参考信号 CRS、 信道状态信息参考信号 CSI_RS。
在上述实施例的基础上, 辅助设备设置于第一基站在第一频谱上对应的 小区覆盖范围内或覆盖边缘, 或者, 辅助设备设置于第一基站在第二频谱上 对应的小区的的覆盖范围内或第一基站的覆盖边缘。
进一步的, 在上述实施例的基础上, 第一频谱状态信息由第一基站通过 设置在辅助设备与基站之间的光纤或无线接口获得。 在上述实施例的基础上, 辅助设备为用户设备或辅助检测单元, 辅助检 测单元为具有对第一频谱有检测或检测能力的发送接收设备;
在上述实施例的基础上, 辅助设备与第一基站通过射频、基带、 Un接口、 X2接口中的任一方式进行通信。
进一步的, 在上述实施例的基础上, 接收器 902, 还用于获得辅助设备 的位置信息。
在上述实施例的基础上, 接收器 902, 还用于获得辅助设备的检测能力 信息, 检测能力信息包括辅助设备的发送频率范围和 /或检测类型。
进一步的, 在上述实施例的基础上, 发送器 901, 还用于向第二基站发 送频谱是否被占用的信息, 第二基站与第一基站连接。
在本实施例中, 实现了第一基站可以确定用户设备在使用第一频谱的过 程中是否被其他其他通信系统设备干扰, 进而实现了与其他通信系统设备共 享同一频谱。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算机可 读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的步骤; 而 前述的存储介质包括: 匪、 RAM, 磁碟或者光盘等各种可以存储程序代码的 介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权利 要 求
1、 一种共享频谱检测方法, 其特征在于, 包括:
第一基站向辅助设备发送频谱检测信息, 所述频谱检测信息用以指示所 述辅助设备检测第一频谱是否被占用;
所述第一基站接收所述辅助设备发送的第一频谱状态信息, 以使所述第 一基站确定所述辅助设备所在区域的所述第一频谱是否被占用。
2、 根据权利要求 1所述的方法, 其特征在于, 所述第一基站接收所述辅 助设备发送的第一频谱状态信息, 以使所述第一基站确定所述辅助设备所在 区域的所述第一频谱是否被占用, 包括:
所述第一基站根据所述第一频谱状态信息,确定所述第一频谱未被占用; 所述第一基站根据所述辅助设备的位置信息, 确定在所述第一频谱上的 第一发射功率。
3、 根据权利要求 2所述的方法, 其特征在于, 所述第一基站接收所述辅 助设备发送的第一频谱状态信息, 以使所述第一基站确定所述辅助设备所在 区域的所述第一频谱是否被占用, 包括:
所述第一基站接收所述辅助设备采用调度请求 SR 方式或专用前导方式 发送的所述第一频谱状态信息。
4、 根据权利要求 1所述的方法, 其特征在于, 所述第一频谱状态信息为 所述辅助设备根据预先设置的无线帧模式检测后获得的。
5、 根据权利要求 4项所述的方法, 其特征在于, 所述无线帧模式包括至 少一个无线帧, 所述无线帧包含所述第一频谱是否可用的信息或者所述频谱 有可用机会的信息。
6、 根据权利要求 1-5任一项所述的方法, 其特征在于, 所述第一基站向 辅助设备发送频谱检测信息之前, 还包括:
所述第一基站通过第二频谱向所述辅助设备发送检测配置信息, 以使所 述辅助设备对所述第一频谱进行检测, 所述检测配置信息包括所述第一频谱 的频率信息、 无线接入技术 RAT信息、 检测类型、 检测结果报告周期、 触发 检测结果报告的门限值中的至少一种或其任意组合; 或者
所述第一基站采用第二发射功率通过所述第一频谱向所述辅助设备发送 检测配置信息, 以使所述辅助设备对所述第一频谱进行检测, 所述检测配置 信息包括所述第一频谱的频率信息、 无线接入技术 RAT信息、 检测类型、 检 测结果报告周期、 触发检测结果报告的门限值中的至少一种或其任意组合, 所述第二发射功率为所述第一基站根据自身检测获得的在所述第一频谱上的 发射功率, 所述第二发射功率小于或等于所述第一发射功率。
7、 根据权利要求 1-6任一项所述的方法, 其特征在于, 所述第一基站向 辅助设备发送频谱检测信息之前, 还包括:
所述第一基站采用第二发射功率发送信号, 所述第二发射功率为所述第 一基站根据自身检测获得的在所述第一频谱上的发射功率, 所述第二发射功 率小于或等于所述第一发射功率, 所述信号包括: 主同步信号 PSS、 辅同步 信号 SSS、小区参考信号 CRS、信道状态信息参考信号 CSI-RS中的至少一种。
8、 根据权利要求 2所述的方法, 其特征在于, 所述第一基站接收所述辅 助设备发送的第一频谱状态信息, 以使所述第一基站确定所述辅助设备所在 区域的所述第一频谱是否被占用之后, 还包括:
所述第一基站采用所述第一发射功率发送信号, 所述信号包括: 同步信 号 PSS、辅同步信号 SSS、小区参考信号 CRS、信道状态信息参考信号 CSI_RS。
9、 根据权利要求 1-8任一项所述的方法, 其特征在于, 所述辅助设备设 置于所述第一基站在所述第一频谱上对应的小区覆盖范围内或覆盖边缘, 或 者, 所述辅助设备设置于所述第一基站在第二频谱上对应的小区的覆盖范围 内或覆盖边缘。
10、 根据权利要求 9所述的方法, 其特征在于, 所述第一基站根据所述 第一频谱状态信息, 确定所述辅助设备所在区域的所述第一频谱是否被占用 之前, 还包括:
所述第一基站获得所述辅助设备的检测能力信息, 所述检测能力信息包 括所述辅助设备的发送频率范围和 /或检测类型。
11、 根据权利要求 1-10任一项所述的方法, 其特征在于, 所述第一基站 接收所述辅助设备发送的第一频谱状态信息, 以使所述第一基站确定所述辅 助设备所在区域的所述第一频谱是否被占用之后, 还包括:
所述第一基站向第二基站发送所述频谱是否被占用的信息, 所述第二基 站与所述第一基站连接。
12、 一种共享频谱检测装置, 其特征在于, 包括: 发送模块, 用于向辅助设备发送频谱检测信息, 所述频谱检测信息用以 指示所述辅助设备检测第一频谱是否被占用;
接收模块, 用于接收所述辅助设备发送的第一频谱状态信息, 以使所述 第一基站确定所述辅助设备所在区域的所述第一频谱是否被占用。
13、 根据权利要求 12所述的装置, 其特征在于, 还包括, 处理模块, 所 述处理模块, 具体用于根据所述第一频谱状态信息, 确定所述第一频谱未被 占用, 根据所述辅助设备的位置信息, 确定在所述第一频谱上的第一发射功 率。
14、 根据权利要求 13所述的装置, 其特征在于, 所述接收模块, 具体用 于接收所述辅助设备采用调度请求 SR 方式或专用前导方式发送的所述第一 频谱状态信息。
15、 根据权利要求 12所述的装置, 其特征在于, 所述第一频谱状态信息 为所述辅助设备根据预先设置的无线帧模式检测后获得的。
16、 根据权利要求 15项所述的装置, 其特征在于, 所述无线帧模式包括 至少一个无线帧, 所述无线帧包含所述第一频谱是否可用的信息或者所述频 谱有可用机会的信息。
17、 根据权利要求 12-16任一项所述的装置, 其特征在于, 所述发送模 块, 还用于通过第二频谱向所述辅助设备发送检测配置信息, 以使所述辅助 设备对所述第一频谱进行检测; 或者, 还用于采用第二发射功率通过所述第 一频谱向所述辅助设备发送检测配置信息, 以使所述辅助设备对所述第一频 谱的状态进行检测, 所述检测配置信息包括频率信息、 RAT信息、 检测类型、 检测报告周期、 触发检测结果报告的门限值中的至少一种或其任意组合, 所 述第二功率为根据自身检测获得的在所述第一频谱上的发射功率, 所述第二 发射功率小于或等于所述第一发射功率。
18、 根据权利要求 12-17任一项所述的装置, 其特征在于, 所述发送模 块, 还用于采用所述第二发射功率发送信号, 所述第二发射功率为所述第一 基站根据自身检测获得的在所述第一频谱上的发射功率, 所述第二发射功率 小于或等于所述第一发射功率, 所述信号包括: 主同步信号 PSS、 辅同步信 号 SSS、 小区参考信号 CRS、 信道状态信息参考信号 CSI-RS中的至少一种。
19、 根据权利要求 18所述的装置, 其特征在于, 所述发送模块, 还用于 采用所述第一发射功率发送信号, 所述信号包括: 同步信号 PSS、 辅同步信 号 SSS、 小区参考信号 CRS、 信道状态信息参考信号 CSI-RS。
20、 根据权利要求 12-19任一项所述的装置, 其特征在于, 所述辅助设 备设置于第一基站在所述第一频谱上对应的小区覆盖范围内或覆盖边缘, 或 者, 所述辅助设备设置于所述第一基站在第二频谱上对应的小区的覆盖范围 内或所述第一基站的覆盖边缘。
21、 根据权利要求 20所述的装置, 其特征在于, 所述接收模块, 还用于 获得所述辅助设备的检测能力信息, 所述检测能力信息包括所述辅助设备的 发送频率范围和 /或检测类型。
22、 根据权利要求 12-21任一项所述的装置, 其特征在于, 所述发送模 块, 还用于向第二基站发送所述频谱是否被占用的信息, 所述第二基站与所 述第一基站连接。
23、 一种基站, 其特征在于, 包括: 发送器、 接收器、 存储器以及分别 与所述发送器、 所述接收器和所述存储器连接的处理器, 其中,
所述发送器, 用于向辅助设备发送频谱检测信息, 所述频谱检测信息用 以指示所述辅助设备检测第一频谱是否被占用;
所述接收器, 用于接收所述辅助设备发送的第一频谱状态信息, 以使所 述第一基站确定所述辅助设备所在区域的所述第一频谱是否被占用。
24、 根据权利要求 23所述的基站, 其特征在于, 该包括处理器, 所述处 理器, 具体用于根据所述第一频谱状态信息, 确定所述第一频谱未被占用, 接着, 根据所述辅助设备的位置信息, 确定在所述第一频谱上的第一发射功 率。
25、 根据权利要求 24所述的基站, 其特征在于, 所述接收器, 具体用于 接收所述辅助设备采用调度请求 SR方式或专用前导方式发送的所述第一频 谱状态信息。
26、 根据权利要求 23所述的基站, 其特征在于, 所述第一频谱状态信息 为所述辅助设备根据预先设置的无线帧模式检测后获得的。
27、 根据权利要求 26项所述的基站, 其特征在于, 所述无线帧模式包括 至少一个无线帧, 所述无线帧包含所述第一频谱是否可用的信息或者所述频 谱有可用机会的信息。
28、 根据权利要求 23-27任一项所述的基站, 其特征在于, 所述发送器, 还用于通过第二频谱向所述辅助设备发送检测配置信息, 以使所述辅助设备 对所述第一频谱进行检测; 或者, 还用于采用第二发射功率通过所述第一频 谱向所述辅助设备发送检测配置信息, 以使所述辅助设备对所述第一频谱的 状态进行检测, 所述检测配置信息包括频率信息、 RAT信息、 检测类型、 检 测报告周期、 触发检测结果报告的门限值中的至少一种或其任意组合, 所述 第二功率为根据自身检测获得的在所述第一频谱上的发射功率, 所述第二发 射功率小于或等于所述第一发射功率。
29、 根据权利要求 23-28任一项所述的基站, 其特征在于, 所述发送器, 还用于采用所述第二发射功率发送信号, 所述第二发射功率为所述第一基站 根据自身检测获得的在所述第一频谱上的发射功率, 所述第二发射功率小于 或等于所述第一发射功率,所述信号包括:主同步信号 PSS、辅同步信号 sss、 小区参考信号 CRS、 信道状态信息参考信号 CSI-RS中的至少一种。
30、 根据权利要求 29所述的基站, 其特征在于, 所述发送器, 还用于采 用所述第一发射功率发送信号, 所述信号包括: 同步信号 PSS、 辅同步信号
SSS、 小区参考信号 CRS、 信道状态信息参考信号 CSI-RS。
31、 根据权利要求 23-30任一项所述的基站, 其特征在于, 所述辅助设 备设置于第一基站在所述第一频谱上对应的小区覆盖范围内或覆盖边缘, 或 者, 所述辅助设备设置于所述第一基站在第二频谱上对应的小区的的覆盖范 围内或所述第一基站的覆盖边缘。
32、 根据权利要求 31所述的基站, 其特征在于, 所述接收器, 还用于获 得所述辅助设备的检测能力信息, 所述检测能力信息包括所述辅助设备的发 送频率范围和 /或检测类型。
33、 根据权利要求 23-32任一项所述的基站, 其特征在于, 所述发送器, 还用于向第二基站发送所述频谱是否被占用的信息, 所述第二基站与所述第 一基站连接。
PCT/CN2014/070481 2014-01-10 2014-01-10 频谱检测方法、装置及基站 WO2015103776A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14878150.3A EP3079281B1 (en) 2014-01-10 2014-01-10 Frequency spectrum detection method and apparatus and base station
CN201480000902.3A CN105103477B (zh) 2014-01-10 2014-01-10 频谱检测方法、装置及基站
PCT/CN2014/070481 WO2015103776A1 (zh) 2014-01-10 2014-01-10 频谱检测方法、装置及基站
US15/205,340 US10237006B2 (en) 2014-01-10 2016-07-08 Spectrum detection method and apparatus, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/070481 WO2015103776A1 (zh) 2014-01-10 2014-01-10 频谱检测方法、装置及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/205,340 Continuation US10237006B2 (en) 2014-01-10 2016-07-08 Spectrum detection method and apparatus, and base station

Publications (1)

Publication Number Publication Date
WO2015103776A1 true WO2015103776A1 (zh) 2015-07-16

Family

ID=53523468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070481 WO2015103776A1 (zh) 2014-01-10 2014-01-10 频谱检测方法、装置及基站

Country Status (4)

Country Link
US (1) US10237006B2 (zh)
EP (1) EP3079281B1 (zh)
CN (1) CN105103477B (zh)
WO (1) WO2015103776A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3294028A4 (en) * 2015-08-18 2018-06-06 Huawei Technologies Co., Ltd. Data transmission method, device and system
CN113115320A (zh) * 2020-01-09 2021-07-13 大唐移动通信设备有限公司 一种频谱资源共享方法及其装置
WO2021169511A1 (zh) * 2020-02-26 2021-09-02 大唐移动通信设备有限公司 干扰测量方法、装置、网络侧设备及终端

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10212636B2 (en) * 2014-12-12 2019-02-19 Qualcomm Incorporated Techniques for managing handovers in an unlicensed radio frequency spectrum band
BR112019019713A2 (pt) * 2017-03-22 2020-04-14 Huawei Tech Co Ltd método, aparelho, e sistema de transmissão de sinais, e meio de armazenamento
CN109151836A (zh) * 2017-06-19 2019-01-04 中国移动通信有限公司研究院 一种接入方法、网络设备及移动通信终端
CN118201100A (zh) * 2017-09-28 2024-06-14 三星电子株式会社 用于在多个带宽部分上执行数据发射和测量的方法和网络节点
EP3729901A4 (en) * 2017-12-22 2021-07-07 ZTE Corporation METHOD AND WIRELESS COMMUNICATION DEVICE FOR PERFORMING FAILURE RECOVERY
CN108616720B (zh) * 2018-03-06 2020-02-07 西安大衡天成信息科技有限公司 一种多台站频谱监测数据压缩处理方法
CN111163474B (zh) * 2018-11-08 2023-10-24 中兴通讯股份有限公司 一种不同制式下的频谱共享方法、设备和存储介质
US11229050B2 (en) * 2019-03-29 2022-01-18 Samsung Electronics Co., Ltd. Method and apparatus for frame based equipment operation of NR unlicensed

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729165A (zh) * 2008-10-29 2010-06-09 中国移动通信集团公司 一种频谱检测周期确定方法及装置
CN101902251A (zh) * 2010-08-06 2010-12-01 北京邮电大学 基于lte的协作频谱检测方法和系统
CN103052095A (zh) * 2011-10-11 2013-04-17 普天信息技术研究院有限公司 频谱检测方法和系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8041380B2 (en) * 2007-04-26 2011-10-18 Lingna Holdings Pte., Llc Power control in cognitive radio systems based on spectrum sensing side information
KR100980677B1 (ko) * 2008-01-11 2010-09-07 한국과학기술원 인지 무선 통신 시스템의 주파수 스펙트럼 공유 최적화방법
US8072913B2 (en) * 2008-02-03 2011-12-06 Broadcom Corporation Collaborative coexistence of co-located mobile WiMAX, wireless LAN, and/or bluetooth radios
KR101559320B1 (ko) * 2008-02-18 2015-10-13 삼성전자주식회사 라이센스 대역 및 공유 대역의 효과적 사용을 위한 모바일시스템 및 기지국 시스템
US8451917B2 (en) * 2008-06-30 2013-05-28 Motorola Solutions, Inc. Method and apparatus for detection of orthogonal frequency division multiplexing (OFDM) signals by cognitive radios
KR20110050460A (ko) * 2008-07-22 2011-05-13 파워웨이브 코그니션, 인크. 개선형 애드혹 무선 통신
US20120120887A1 (en) * 2010-11-12 2012-05-17 Battelle Energy Alliance, Llc Systems, apparatuses, and methods to support dynamic spectrum access in wireless networks
CN102624465B (zh) 2011-01-30 2016-01-20 中兴通讯股份有限公司 一种认知无线电的感知辅助的方法及系统
CN102223191B (zh) * 2011-06-02 2014-11-05 电信科学技术研究院 一种空闲频谱的获取方法和设备
CN103959679B (zh) * 2011-08-11 2017-08-29 Lg电子株式会社 无线局域网系统中的动态频率选择的方法和设备
US8705398B2 (en) * 2011-09-12 2014-04-22 Broadcom Corporation Mechanism for signaling buffer status information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729165A (zh) * 2008-10-29 2010-06-09 中国移动通信集团公司 一种频谱检测周期确定方法及装置
CN101902251A (zh) * 2010-08-06 2010-12-01 北京邮电大学 基于lte的协作频谱检测方法和系统
CN103052095A (zh) * 2011-10-11 2013-04-17 普天信息技术研究院有限公司 频谱检测方法和系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3294028A4 (en) * 2015-08-18 2018-06-06 Huawei Technologies Co., Ltd. Data transmission method, device and system
CN113115320A (zh) * 2020-01-09 2021-07-13 大唐移动通信设备有限公司 一种频谱资源共享方法及其装置
WO2021139400A1 (zh) * 2020-01-09 2021-07-15 大唐移动通信设备有限公司 一种频谱资源共享方法及其装置
CN113115320B (zh) * 2020-01-09 2021-11-30 大唐移动通信设备有限公司 一种频谱资源共享方法及其装置
WO2021169511A1 (zh) * 2020-02-26 2021-09-02 大唐移动通信设备有限公司 干扰测量方法、装置、网络侧设备及终端

Also Published As

Publication number Publication date
US20160323049A1 (en) 2016-11-03
EP3079281B1 (en) 2019-06-19
CN105103477A (zh) 2015-11-25
EP3079281A4 (en) 2016-12-07
CN105103477B (zh) 2018-08-21
EP3079281A1 (en) 2016-10-12
US10237006B2 (en) 2019-03-19

Similar Documents

Publication Publication Date Title
JP6997335B2 (ja) 帯域幅部分動作のためのシステムおよび方法
EP3850776B1 (en) Device and method for sounding reference signal triggering and configuration in a new radio network
US10237006B2 (en) Spectrum detection method and apparatus, and base station
US10931483B2 (en) Device-to-device (D2D) communication management techniques
EP3577938B1 (en) Methods for determining reporting configuration based on ue power class
JP7040617B2 (ja) シグナリング指示及び受信方法、装置及び通信システム
TW202429925A (zh) 具有定位參考信號(prs)資源之不連續接收(drx)之互動
JP7478799B2 (ja) 通信システムにおける時間ドメイン割り当てを提供するためのシステムおよび方法
US10098142B2 (en) Terminal apparatus, base station apparatus, communication system, resource management method, and integrated circuit
JP2020053989A (ja) 搬送波感知による共用スペクトルにおけるlte波形を送信するための方法及び装置
EP3625897B1 (en) Csi-rs configuration for partial band retuning
EP3432678B1 (en) Device and method of configuring a secondary node and reporting in dual connectivity
US20210195458A1 (en) Early measurement report
CN110771218A (zh) 用于检测到的同步信号块的信令
KR20190056434A (ko) 랜덤 액세스 방법, 장치, 시스템, 단말기 및 기지국
US20230063450A1 (en) Positioning Capabilities of Reduced Capability New Radio Devices
EP4104616B1 (en) Random access resource configuration in different bandwidth parts for 2-step random access
US20220394757A1 (en) Two-step rach transmissions using guard band in unlicensed spectrum
EP3952369A1 (en) Communication method and communication device
EP4055751A1 (en) User equipment and base station involved in control channel signaling
US20210385859A1 (en) Method and apparatus for lbt option selection for wideband operation
WO2021237663A1 (en) Methods and apparatus for receiver assistance information-based resource allocation
WO2022011505A1 (zh) 波束管理方法、装置、设备及存储介质
CN114026940A (zh) 用于上行链路传输的方法、终端设备和网络节点
JP2024514131A (ja) 処理能力が制約されたシナリオにおいてマルチrtt測位を改善するためにprsとsrsとの関連付けを定義すること

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480000902.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878150

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014878150

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014878150

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE