WO2015102221A1 - 계단 구조의 하이브리드 전극조립체 - Google Patents

계단 구조의 하이브리드 전극조립체 Download PDF

Info

Publication number
WO2015102221A1
WO2015102221A1 PCT/KR2014/010499 KR2014010499W WO2015102221A1 WO 2015102221 A1 WO2015102221 A1 WO 2015102221A1 KR 2014010499 W KR2014010499 W KR 2014010499W WO 2015102221 A1 WO2015102221 A1 WO 2015102221A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode assembly
unit cells
battery
cell
Prior art date
Application number
PCT/KR2014/010499
Other languages
English (en)
French (fr)
Inventor
김영훈
신영준
권성진
김동명
김기웅
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/039,947 priority Critical patent/US10505230B2/en
Priority to JP2016534143A priority patent/JP2017503311A/ja
Priority to EP14876738.7A priority patent/EP3062379B1/en
Priority to CN201480065337.9A priority patent/CN105830266B/zh
Publication of WO2015102221A1 publication Critical patent/WO2015102221A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a hybrid electrode assembly having a step structure.
  • lithium secondary batteries with high energy density, high operating voltage, and excellent storage and life characteristics are used for various mobile devices as well as various electronic products. It is widely used as an energy source.
  • Lithium secondary batteries are largely classified into cylindrical batteries, square batteries, pouch-type batteries, and the like according to their appearance, and may be classified into lithium ion batteries, lithium ion polymer batteries, lithium polymer batteries, and the like depending on the type of electrolyte.
  • a pouch type battery refers to a battery in which an electrode assembly and an electrolyte are sealed inside a pouch type case of a laminate sheet including a resin layer and a metal layer.
  • the electrode assembly accommodated in the battery case has a structure of jelly-roll type (winding type), stacking type (lamination type), or composite type (stack / folding type).
  • FIG. 1 schematically illustrates a structure of a pouch type secondary battery including a stacked electrode assembly.
  • an electrode assembly 30 made of a positive electrode, a negative electrode, and a solid electrolyte coating separator disposed therebetween is formed inside the pouch type battery case 20. And two electrode leads 40 and 41 electrically connected to the negative electrode tabs 31 and 32 are sealed to be exposed to the outside.
  • the battery case 20 is composed of a case body 21 including a concave shape accommodating portion 23 on which the electrode assembly 30 can be seated, and a cover 22 integrally connected to the body 21. have.
  • the battery case 20 is made of a laminate sheet, and is composed of an outer resin layer 20a forming an outermost shell, a barrier metal layer 20b for preventing the penetration of materials, and an inner resin layer 20c for sealing. .
  • a plurality of positive electrode tabs 31 and a plurality of negative electrode tabs 32 are fused to each other and coupled to the electrode leads 40 and 41.
  • a heat sealer (not shown)
  • a short is generated between the heat welder and the electrode leads 40 and 41.
  • the insulating film 50 is attached to the upper and lower surfaces of the electrode leads 40 and 41 to prevent it and to secure the sealing property between the electrode leads 40 and 41 and the battery case 20.
  • the battery cells are configured to include electrode assemblies of the same size or capacity, in order to make a novel structure in consideration of various designs of devices to which the battery cells are applied, the capacity of the battery cells is reduced or larger. There is a problem in that the design of the device must be changed in size.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • An object of the present invention is to design the electrode assembly constituting the battery cell to be mounted in a variety of spaces of the device, to maximize the utilization of the internal space of the device, in the external structure of the device having a generally rectangular structure In addition, to provide an electrode assembly that can be efficiently mounted in a device having a variety of appearances.
  • Electrode assembly according to the present invention for achieving this object,
  • An electrode assembly comprising unit cells composed of an electrode plate laminate having a separator interposed between electrode plates consisting of an anode or a cathode,
  • the electrode assembly is composed of a combination of two or more kinds of unit cells of different sizes
  • the unit cells are configured to be stacked in the height direction based on the plane,
  • the base unit cells positioned below the electrode assembly have two or more base unit cells wound by one sheet separation film to form an integrated base structure.
  • the remaining sub unit cells except for the base unit cells have a structure in which the separators are stacked with the separator interposed therebetween.
  • the electrode assembly according to the present invention can be produced in a battery cell having a variety of capacities and sizes based on the specific structure as described above, in the manufacture of a device equipped with such a battery cell, the battery cell is a variety of space of the device It can be installed in the system, maximizing the space utilization inside the device.
  • the size difference of the unit cells is not particularly limited, and for example, at least one of the thickness, width (width) and width (length) of the unit cell may have a different structure.
  • the base unit cells located in the lower portion of the electrode assembly of the unit cells are wound by two or more base unit cells by a sheet-like separation film to form an integrated base structure
  • the The base unit cells may be configured of bicells having the same type of electrodes positioned on both sides in a structure in which one or more anodes and one or more cathodes are stacked with a separator interposed therebetween.
  • the area of the negative electrode should be larger than that of the positive electrode in order to prevent waste of battery stability and capacity, so that the integrated base structure has a structure in which the two bicells at the end of the winding are respectively positioned at both ends of the windings. It may be composed of the C-type bicells.
  • the bicells are formed in the same size and are wound by one sheet-type separation film to form an integrated base structure, thereby securing a desired level of rigidity.
  • the sub unit cells have a structure in which the base unit cells constituting the integrated base structure are stacked in a height direction with respect to a plane. Specifically, the sub unit cells have a full cell structure in which electrode types of electrode plates located on both sides are different from each other. It can be configured as.
  • the sub unit cells are stacked in an arrangement in which the unit cells are reduced in size from the bottom to the top of the electrode assembly with the same thickness, so that the outer surface of the electrode assembly has a step-shaped step shape as a whole. It may be made of a structure.
  • the full cells may have a structure in which polarities of the larger electrode plates are all cathodes among the electrode plates adjacent to each other with the separator interposed therebetween.
  • the base unit cells may be configured to be larger than the thickness, width and width of each of the sub unit cells, and in the pole plates adjacent to the base unit cell and the full cell,
  • the polarity of the negative electrode and the full plate of the pole plate may be composed of the positive electrode.
  • the area of the negative electrode should be larger than that of the positive electrode in order to prevent the stability of the battery and the waste of capacity of the battery, which will be described in more detail below.
  • the capacity ratio (N / P ratio or counter ratio) to the opposing area of the anode and cathode at the boundary of the unit cells refers to the opposing area of the anode and cathode constituting the unit cell having a larger opposing area among the stacked unit cells. Equal to or greater than the capacity ratio (N / P ratio or counter ratio).
  • the ratio of the opposing cells at the boundary of the unit cells is smaller than the opposing ratio of the positive electrode and the negative electrode constituting the unit cell having a relatively large opposite area, problems may occur in the performance and safety of the lithium secondary battery incorporating the electrode assembly according to the present invention. Therefore, it is not preferable.
  • the ratio of the ratio of the counters of the positive electrode and the negative electrode facing at the boundary of the unit cells and the counter ratio of the positive electrode and the negative electrode constituting the unit cell is 1: 1 to 3: 1, 1: 1 to 2: 1, 1: 1 to 1.5 It may be: 1, and the counter ratio may be calculated using Equation 1 below.
  • the negative electrode charge capacity per unit area is calculated as the negative electrode loading amount per unit area (g / cm 2 ) ⁇ the ratio (%) of the negative electrode active material in the active material ⁇ the negative electrode charge capacity per unit weight (mAh / g);
  • Cathode efficiency is (discharge capacity of negative electrode / charge capacity of negative electrode) x 100;
  • the design capacity per anode area is the design capacity / coated anode area
  • the design capacity is calculated as positive electrode loading amount (g / cm 2 ) x positive electrode active material ratio (%) in the active material x positive electrode charge amount per unit weight (mAh / g) minus the irreversible capacity of the negative electrode (mAh).
  • the charge capacity of the positive electrode per unit weight, the charge capacity of the negative electrode per unit weight, discharge capacity and irreversible capacity, etc. can be measured through the following method, respectively.
  • Negative loading amount per unit area definition Weight of the negative electrode active material coated on the negative electrode current collector per unit area.
  • the counter ratio at the boundary of the electrode groups is greater than the counter ratio between the positive electrode and the negative electrode constituting the electrode group having a large opposite area, and the loading amount of the positive electrode constituting the n-th electrode group and n +
  • the loading amount of the anode constituting the first electrode group is the same, and the loading amount of the cathode constituting the n + 1 th electrode group may be larger than the loading amount of the cathode constituting the n-th electrode group.
  • the loading amount of the cathode constituting the n + 1 th electrode group and the loading amount of the cathode constituting the nth electrode group are the same, and the loading amount of the anode constituting the nth electrode group is n + 1 th electrode group. It can be comprised larger than the loading amount of the anode which comprises.
  • the ratio of the ratio between the anode and the cathode constituting the n-th electrode group and the ratio between the anode and the cathode constituting the n + 1-th electrode group stacked on the n-th electrode group may be 1: 1.
  • the counter ratio between the positive electrode and the negative electrode constituting the n + 1th electrode group stacked on the nth electrode group may be larger than the counter ratio between the positive electrode and the negative electrode constituting the n-th electrode group.
  • the size or area of the electrode constituting the n-th electrode group may have a structure larger than the size or area of the electrode constituting the n + 1th electrode group.
  • the loading amount of the anode constituting the n-1 th electrode group, the n-th electrode is the same, and the loading amount of the cathode constituting the n-1 th electrode group and the cathode constituting the n + 1 th electrode group
  • the loading amount of may be greater than the loading amount of the cathode constituting the n-th electrode group.
  • the loading amount of the negative electrode constituting the n-th electrode group, the loading amount of the negative electrode constituting the n-th electrode group and the loading amount of the negative electrode constituting the n + 1th electrode group are the same,
  • the loading amount of the positive electrode constituting the positive electrode may be greater than the loading amount of the positive electrode constituting the n ⁇ 1 th electrode group and the loading amount of the positive electrode constituting the n + 1 th electrode group.
  • the ratio of the ratio between the anode and the cathode constituting the n-th electrode group and the ratio between the anode and the cathode constituting the n + 1th electrode group stacked on the n-th electrode group is 1: 1
  • the n-th is The ratio of the ratio between the anode and the cathode constituting the electrode group and the ratio between the anode and the cathode constituting the n-1 th electrode group stacked on the n-th electrode group in the height opposite direction with respect to the plane is 1: 1.
  • the ratio between the anode and the cathode constituting the n + 1th electrode group stacked on the n-th electrode group may be greater than the ratio of the anode and the cathode constituting the n-th electrode group, and the n-th electrode group
  • the ratio between the anode and the cathode constituting the n-th electrode group stacked on the n-th electrode group in a direction opposite to the height relative to the plane may be greater than the ratio of the anode and the cathode.
  • the size or area of the electrode constituting the n-th electrode group is larger than the size or area of the electrode constituting the n-1th electrode group and the size or area of the electrode constituting the n + 1th electrode group.
  • an electrode group having a relatively small opposite area is satisfied as long as it satisfies a condition equal to or greater than that between the positive and negative electrodes constituting the electrode group having a relatively large opposite area.
  • the opposing ratio of the positive electrode and the negative electrode constituting the same may be equal to or greater than that of the positive electrode and the negative electrode constituting the electrode group having a relatively large opposite area.
  • an electrode having a relatively small opposite area is satisfied as long as it satisfies a condition equal to or larger than that between the positive electrode and the negative electrode constituting the electrode group having a relatively large opposite area.
  • the loading amount of the negative electrode constituting the group may be equal to or larger than the loading amount of the negative electrode constituting the electrode group having a relatively large opposite area.
  • an electrode having a relatively small opposite area is satisfied as long as it satisfies a condition equal to or larger than that between the positive and negative electrodes constituting the electrode group having a relatively large opposite area.
  • the loading amount of the anode constituting the group may be equal to or smaller than the loading amount of the anode constituting the electrode group having a relatively large opposite area.
  • the loading amount of the electrode can be confirmed by the thickness of the electrode, the confirmation of the thickness of the electrode can be confirmed using ion milling.
  • the electrode tabs of the electrode plates having the same polarity may be formed to protrude from the respective electrode plates so as to be arranged at positions sharing the same virtual vertical line.
  • the remaining electrode tabs may be formed at positions sharing an imaginary vertical line with the electrode tabs of the electrode plates of the smallest size. Can be.
  • each of the positive electrode tabs may be formed at a position sharing a virtual vertical line with the positive electrode tab of the smallest positive electrode plate based on the position where the positive electrode tab of the smallest positive electrode plate is formed.
  • the plane means any plane and thus may be the ground or may be a plane perpendicular to the ground. Therefore, the electrode plates may be stacked in the height direction on the ground, or may be a structure stacked in the height direction on a plane perpendicular to the ground.
  • the plane may be considered as preferentially referring to the ground.
  • the height direction from the plane may be considered to refer to a direction opposite to the direction in which gravity acts, and the direction opposite to the height direction refers to a direction in which gravity acts.
  • the stacking along the height direction with respect to the plane may mean that the electrode plates may be stacked from the ground in the direction of gravity and / or the direction opposite to gravity.
  • the stacking direction of the electrode plates may be in the direction of gravity and / or in the direction opposite to gravity.
  • the staircase structure may be formed when two electrode groups having different sizes are stacked in a state where a separation film is interposed and surrounds one side, an opposite side, or one side and an opposite side of the electrode groups with the separation film. Can be.
  • the step structure three electrode groups of different sizes are laminated so that the electrode plates having opposite polarities facing each other with the separation film therebetween, one side, the opposite side or one side of each electrode group as the separation film. And it can also be formed when surrounding the opposite side.
  • the sub unit cells may have a structure in which two or more full cells are bonded by heat and pressure in a state where a separator is interposed in order to secure a desired level of rigidity.
  • the full cell is composed of a stacked structure in the order of a separator, an anode, a separator, a cathode, a separator, the full cells bonded by the heat and pressure additionally includes a fixing member on one side to ensure the stability of the laminated structure Can be.
  • the unit cells may have a structure in which electrode terminals are stacked to be arranged at the same position.
  • the present invention also provides a battery cell in which the electrode assembly is built in a battery case.
  • the electrode tabs of the unit cells in the unit cells of the electrode assembly may be configured to be coupled to one electrode lead to form a battery cell electrode terminal.
  • the battery cell may be, for example, a pouch-type battery cell in which an electrode assembly is built in a pouch-type case, but is not limited thereto.
  • the pouch-type battery cell may have a structure in which an electrode assembly is embedded in a battery case of a laminate sheet including a resin layer and a metal layer in a state of being connected to electrode terminals protruding out of the battery case.
  • the battery case is manufactured to a thickness having a predetermined flexibility that can be formed step-shaped step. That is, if the thickness of the battery case is too thick, there is a risk of damage due to lack of flexibility in the process of forming a step, there is a disadvantage that the volume and weight of the battery cell itself increases, on the contrary, if the thickness of the battery case is too thin.
  • the battery case is preferably manufactured to a thickness of 50 to 200 ⁇ m having an appropriate flexibility and durability.
  • the upper case and the lower case constituting the battery case may be independent members from each other, or may be substantially one member having one end connected to each other.
  • Steps of the step shape of the housing of the battery case may be formed in various ways. For example, a method of inserting a battery case into a die in which a stepped step is formed on the inner surface and applying a pressure to form a stepped step in the housing may be used.
  • inserting an electrode assembly in which electrodes of different sizes or unit cells are stacked in a battery case accommodating part and applying a vacuum to the accommodating part may form a stepped step by shrinking the accommodating part.
  • a vacuum to the accommodating part may form a stepped step by shrinking the accommodating part.
  • the electrode assembly has a structure in which a plurality of electrodes or unit cells having different plane sizes are stacked, and the electrode assembly is mounted on an accommodating part of the battery case, and vacuum is applied to the accommodating part. In response to this, the battery case is deformed while being deformed to form a stepped step.
  • This vacuum application method not only solves the problem of manufacturing a new battery case every time the design of the electrode assembly is changed, but also suppresses a phenomenon in which stress is locally concentrated.
  • the accommodating part of the battery case may be formed to have a sufficient size to allow the electrode assembly to be seated, and in one preferred example, the stepped portion forming step may have a curved shape corresponding to the stepped shape in a vertical cross section. Therefore, when the vacuum is applied, when the curved portion of the accommodating portion is in close contact with the electrode assembly such that the excess space between the curved portion of the accommodating portion and the electrode assembly is removed, the contracted size may be minimized.
  • the accommodating part of the battery case may have a hemispherical shape including a planar portion corresponding to the top size of the electrode assembly.
  • the part which consists of hemispherical shape of a accommodating part is deform
  • the battery cell may be a lithium ion battery or a lithium ion polymer battery cell, but is not limited thereto.
  • a lithium ion battery is composed of a positive electrode, a negative electrode, a separator, and a lithium salt-containing nonaqueous electrolyte.
  • the positive electrode is prepared by, for example, applying a mixture of a positive electrode active material, a conductive material, and a binder to a positive electrode current collector, followed by drying, and optionally, a filler is further added to the mixture.
  • the conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the negative electrode is manufactured by coating and drying a negative electrode active material on a negative electrode current collector, and optionally, the components as described above may optionally be further included.
  • carbon such as hardly graphitized carbon and graphite type carbon
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
  • a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • the lithium salt-containing non-aqueous electrolyte solution consists of a polar organic electrolyte solution and a lithium salt.
  • a non-aqueous liquid electrolyte an organic solid electrolyte, an inorganic solid electrolyte, and the like are used.
  • N-methyl- 2-pyrrolidinone a propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma
  • Butyl lactone 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and eth
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 has a nitride, halides, sulfates, such as Li, such as S-SiS 2 can be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
  • the non-aqueous electrolyte solution includes, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, and hexaphosphate triamide.
  • halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
  • the present invention also provides a device including the battery cell as a power source, the device is a mobile phone, portable computer, smartphone, tablet PC, smart pad, netbook, LEV (Light Electronic Vehicle), electric vehicle, It may be selected from a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage device.
  • the device is a mobile phone, portable computer, smartphone, tablet PC, smart pad, netbook, LEV (Light Electronic Vehicle), electric vehicle, It may be selected from a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage device.
  • the present invention also provides a battery pack containing two or more of the battery cells as a unit battery. That is, a battery pack having a structure in which two or more battery cells are connected in series and / or in parallel as a unit battery, and the battery pack is a mobile phone, a portable computer, a smartphone, a tablet PC, a smart pad, a netbook, a LEV. Light electronic vehicles, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and power storage devices.
  • FIG. 1 is an exploded perspective view of a general structure of a conventional battery cell
  • FIG. 2 is a perspective view of a battery cell according to one embodiment of the present invention.
  • FIG. 3 is a vertical sectional view of FIG. 2;
  • FIG. 4 is a perspective view of an electrode assembly according to one embodiment of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing the structure of an electrode plate laminate according to one embodiment of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing the structure of an electrode plate laminate according to still another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing the structure of a unit cell according to one embodiment of the present invention.
  • FIG. 8 is a schematic view of a fixing structure of the electrode plate laminate of FIG. 5.
  • FIG. 2 is a perspective view of a battery cell according to an embodiment of the present invention
  • Figure 3 is a vertical cross-sectional view of FIG.
  • the battery cell 100 is a structure in which the electrode assembly 120 is embedded in the pouch battery case 110 of the laminate sheet, and electrode leads electrically connected to the electrode assembly 120 ( 130 has a structure that protrudes to the outside of the battery case (110).
  • the battery case 110 includes an upper case 111 and a lower case 112, and an accommodating part 116 for mounting the electrode assembly 120 is formed in the upper case 111.
  • the electrode assembly 120 has a plurality of unit cells 122, 124, and 126 of different sizes stacked in a height direction with respect to a plane, and the accommodating part of the battery case 110 includes a plurality of unit cells 122 and 124.
  • 126 has a structure in which a stepped step 114 in a step shape is formed corresponding to the outer surface shape of the stacked structure.
  • the battery cell 100 having such a structure may be manufactured as a battery cell having various capacities and sizes, and not only can be easily mounted to a space where a conventional battery cell is difficult to mount, but also a space limited according to the internal structure of the device.
  • the battery cell can be equipped with a larger capacity, thereby maximizing the internal space utilization of the device.
  • FIG. 4 is a perspective view schematically showing an electrode assembly according to an embodiment of the present invention.
  • the electrode assembly 200 is wound with five base unit cells 221, 222, 223, 224, and 225 having the same size by one sheet-type separation film 210.
  • the unitary base structure 220 is formed, and the sub unit cells 231 and 232 are stacked in the height direction with respect to the plane of the base unit cells 221, 222, 223, 224, and 225. .
  • the base unit cells 221, 222, 223, 224, and 225 are composed of bi-cells having the same type of electrodes positioned on both sides in a structure in which a cathode and a cathode are laminated with a separator interposed therebetween.
  • the base unit cell 223 located at the center of the winding and the two base unit cells 221 and 225 at the end of the winding are composed of a C-type bi-cell having a cathode located at both ends thereof.
  • a where the anodes are positioned at both ends of the base unit cells 222 and 224 positioned between the two base unit cells 221 and 225 at the end of the winding and the base unit cell 223 positioned at the center of the winding. It consists of a bi-cell.
  • the sub-unit cells 231 and 232 are formed of full-cells having different electrode types of electrode plates positioned on both sides thereof, and the thicknesses of the sub-unit cells 231 and 232 are the same and are relatively small from the lower side to the upper side of the electrode assembly 200.
  • Unit cells of size are stacked sequentially. That is, it is comprised by the structure laminated continuously in an arrow direction.
  • the sub unit cells 231 and 232 are configured to be smaller than the size of the base unit cells 221, 222, 223, 224 and 225, and the base unit cell 221 and the sub unit cell 232 are In the adjacent pole plates, the polarity of the pole plate of the base unit cell 221 is the negative pole and the pole plate of the sub unit cell 232 is constituted by the positive pole.
  • the electrode assembly 200 having such a structure is a hybrid type in which the sub-cells 231 and 232 of the full cell structure are stacked in the direction of the arrow on the top of the integrated base structure 220 in which the bicells are wound by the sheet type separator 210. Having a structure, the degree of freedom of the thickness of the sub-unit cells 231 and 232 forming the step 240 can be increased as compared to the electrode assembly composed of only the bi-cells. Therefore, by including the integrated base structure 220 as compared to the electrode assembly consisting of only full cells, it is possible to ensure the desired level of rigidity in the battery cell.
  • FIG. 5 shows the structure of the electrode plate laminate according to one embodiment of the present invention
  • FIG. 6 shows a schematic cross-sectional view of the structure of the electrode plate laminate according to another embodiment of the present invention.
  • One electrode plate laminate is made of a structure in which the separator plate 610, the negative electrode plate 620, the separator plate 630, and the positive electrode plate 640 are bonded in a stacked state as shown in FIG.
  • the other electrode plate laminate has a structure in which a separator plate 710, a cathode plate 720, and a separator plate 730 are laminated in a state of being sequentially stacked, as shown in FIG.
  • FIG. 7 illustrates a unit cell according to an embodiment of the present invention. Specifically, a unit cell having a structure in which the electrode plate laminate of FIG. 6 is stacked on the top of the electrode plate laminate on which the electrode plate laminates of FIG. Is shown.
  • FIG. 8 illustrates an embodiment in which a fixing member is further added to the electrode stack of FIG. 5. Specifically, the fixing member T1 is further added to the side or front surface of the electrode plate stack 600.
  • the front surface of the electrode stack 600 may be implemented in a manner of taping, or as shown in (b), it may be implemented in the form of a fixing member T2 for fixing only both sides of the electrode stack 600. .
  • the electrode plate laminate illustrated in FIGS. 5 to 8 it has been described as having a structure in which anodes or cathodes having the same thickness are laminated and bonded to form a bicell, but according to the shape and size of a battery cell applied thereto, a full cell or It is also possible to apply to various electrode plate laminates of different sizes in the form of a bicell.
  • the electrode assembly according to the present invention by using a hybrid electrode assembly at the same time to form a stepped step, it is easy to ensure the mounting space of the battery cell, as well as to maximize the utilization of the internal space of the device.
  • a battery cell of high capacity can be used for the device, and the device can be further miniaturized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 발명은 양극 또는 음극으로 이루어진 극판들 사이에 분리막이 개재된 구조의 극판 적층체로 구성된 유닛셀들을 포함하는 전극조립체로서, 상기 전극조립체는 크기가 서로 다른 두 종류 이상의 유닛셀들의 조합으로 이루어져 있고, 상기 유닛셀들이 평면을 기준으로 높이 방향으로 적층되어 있는 구조로 구성되어 있으며, 상기 유닛셀들 중에서 전극조립체의 하부에 위치하는 베이스 유닛셀들은 하나의 시트형 분리필름에 의해 2개 이상의 베이스 유닛셀들이 권취되어 일체형 베이스 구조를 이루고 있고, 상기 베이스 유닛셀들을 제외한 나머지 서브 유닛셀들은 각각 분리막이 개재된 상태로 적층되어 있는 구조로 이루어져 있는 것을 특징으로 하는 전극조립체를 제공한다.

Description

계단 구조의 하이브리드 전극조립체
본 발명은 계단 구조의 하이브리드 전극조립체에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요의 증가로, 이차전지의 수요 또한 급격히 증가하고 있으며, 그 중에서도 에너지 밀도와 작동전압이 높고 보존과 수명 특성이 우수한 리튬 이차전지는 각종 모바일 기기는 물론 다양한 전자제품의 에너지원으로 널리 사용되고 있다.
리튬 이차전지는 그것의 외형에 따라 크게 원통형 전지, 각형 전지, 파우치형 전지 등으로 분류되며, 전해액의 형태에 따라 리튬이온 전지, 리튬이온 폴리머 전지, 리튬 폴리머 전지 등으로 분류되기도 한다.
모바일 기기의 소형화에 대한 최근의 경향으로 인해, 두께가 얇은 각형 전지, 파우치형 전지에 대한 수요가 증가하고 있으며, 특히, 형태의 변형이 용이하고 제조비용이 저렴하며 중량이 작은 파우치형 전지에 대한 관심이 높은 실정이다.
일반적으로, 파우치형 전지는 수지층과 금속층을 포함하는 것으로 구성된 라미네이트 시트의 파우치형 케이스 내부에 전극조립체와 전해질이 밀봉되어 있는 전지를 말한다. 전지케이스에 수납되는 전극조립체는 젤리-롤형(권취형), 스택형(적층형), 또는 복합형(스택/폴딩형)의 구조로 이루어져 있다.
도 1에는 스택형 전극조립체를 포함하고 있는 파우치형 이차전지의 구조가 모식적으로 도시되어 있다.
도 1을 참조하면, 파우치형 이차전지(10)는, 파우치형 전지케이스(20)의 내부에, 양극, 음극 및 이들 사이에 배치되는 고체 전해질 코팅 분리막으로 이루어진 전극조립체(30)가 그것의 양극 및 음극 탭들(31, 32)과 전기적으로 연결되는 두 개의 전극리드(40, 41)가 외부로 노출되도록 밀봉되어 있는 구조로 이루어져 있다.
전지케이스(20)는 전극조립체(30)가 안착될 수 있는 오목한 형상의 수납부(23)를 포함하는 케이스 본체(21)와 그러한 본체(21)에 일체로서 연결되어 있는 커버(22)로 이루어져 있다.
전지케이스(20)는 라미네이트 시트로 이루어져 있으며, 최외각을 이루는 외측 수지층(20a), 물질의 관통을 방지하는 차단성 금속층(20b), 및 밀봉을 위한 내측 수지층(20c)으로 구성되어 있다.
스택형 전극조립체(30)는 다수의 양극 탭들(31)과 다수의 음극 탭들(32)이 각각 융착되어 전극리드(40, 41)에 함께 결합되어 있다. 또한, 케이스 본체(21)의 상단부(24)와 커버(22)의 상단부가 열융착기(도시하지 않음)에 의해 열융착될 때 그러한 열융착기와 전극리드(40, 41) 간에 쇼트가 발생하는 것을 방지하고 전극리드(40, 41)와 전지케이스(20)와의 밀봉성을 확보하기 위하여, 전극리드(40, 41)의 상하면에 절연필름(50)이 부착된다.
그러나, 최근에는 슬림한 타입 또는 다양한 디자인 트랜드로 인하여 새로운 형태의 전지셀이 요구되고 있는 실정이다.
즉, 상기와 같은 전지셀들은 동일한 크기 또는 용량의 전극조립체를 포함하는 것으로 구성되어 있으므로, 전지셀이 적용되는 디바이스의 다양한 디자인을 고려한 신규한 구조로 만들기 위해서는, 전지셀의 용량을 줄이거나 더 큰 크기로 디바이스의 디자인을 변경해야 하는 문제점이 있다.
또한, 이러한 디자인 변경 과정에서 전기적 연결 방식이 복잡해짐으로 인해 소망하는 조건을 만족하는 전지셀의 제작이 어려워지는 문제점도 있다.
더욱이, 전극조립체의 형상에 따라 전지케이스를 별도로 제작하여야 하는 문제점도 존재한다.
따라서, 전지셀이 적용되는 디바이스의 모양에 따라 용이하게 적용 가능한 전극조립체, 전지케이스 및 이를 포함하는 전지셀에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 발명의 목적은 전지셀을 구성하는 전극조립체를 디바이스의 다양한 공간에 장착될 수 있도록 하는 구조로 설계하여, 디바이스의 내부 공간의 활용도를 극대화시키고, 일반적으로 장방형의 구조를 가지는 디바이스의 외형 구조에서 벗어나 여러가지 외형을 가지는 디바이스에서도 효율적으로 장착이 가능한 전극조립체를 제공하는 것이다.
이러한 목적을 달성하기 위한 본 발명에 따른 전극조립체는,
양극 또는 음극으로 이루어진 극판들 사이에 분리막이 개재된 구조의 극판 적층체로 구성된 유닛셀들을 포함하는 전극조립체로서,
상기 전극조립체는 크기가 서로 다른 두 종류 이상의 유닛셀들의 조합으로 이루어져 있고,
상기 유닛셀들이 평면을 기준으로 높이 방향으로 적층되어 있는 구조로 구성되어 있으며,
상기 유닛셀들 중에서 전극조립체의 하부에 위치하는 베이스 유닛셀들은 하나의 시트형 분리필름에 의해 2개 이상의 베이스 유닛셀들이 권취되어 일체형 베이스 구조를 이루고 있고,
상기 베이스 유닛셀들을 제외한 나머지 서브 유닛셀들은 각각 분리막이 개재된 상태로 적층되어 있는 구조로 이루어져 있다.
따라서, 본 발명에 따른 전극조립체는 상기와 같은 특정한 구조에 기반하여 다양한 용량 및 크기를 가진 전지셀로 제작될 수 있고, 이러한 전지셀을 장착하는 디바이스의 제조에 있어서, 전지셀이 디바이스의 다양한 공간에 장착될 수 있으므로, 디바이스 내부 공간 활용도를 극대화 시킬 수 있다.
또한, 서로 다른 크기의 유닛셀들이 상하로 적층된 구조로 이루어져 있으므로, 전지용량을 증대시킴과 동시에 콤팩트 한 구조로 잉여 공간의 활용도를 향상시킬 수 있다.
상기 유닛셀들의 크기 차이는 특별히 한정되는 것은 아니며, 예를 들어, 유닛셀의 두께, 너비(가로 길이) 및 폭(세로 길이) 중의 적어도 하나가 다른 구조일 수 있다.
한편, 앞서 설명한 바와 같이, 상기 유닛셀들 중에서 전극조립체의 하부에 위치하는 베이스 유닛셀들은 하나의 시트형 분리필름에 의해 2개 이상의 베이스 유닛셀들이 권취되어 일체형 베이스 구조를 이루게 되며, 구체적으로, 상기 베이스 유닛셀들은 1개 이상의 양극과 1개 이상의 음극이 분리막이 개재된 상태로 적층된 구조에서 양면에 위치한 전극의 종류가 동일한 바이셀들로 구성될 수 있다.
또한, 일반적으로, 전지의 안정성 측면 및 전지의 용량 낭비를 막기 위해서는 음극의 면적이 양극의 면적보다 커야 하므로, 상기 일체형 베이스 구조는 권취 종료 부위의 2개의 바이셀들이 양단에 각각 음극이 위치하는 구조의 C형 바이셀들로 구성될 수 있다.
상기 바이셀들은 동일한 크기로 형성되어 하나의 시트형 분리필름에 의해 권취되어 일체형 베이스 구조를 이루므로, 소망하는 수준의 강성을 확보할 수 있다.
한편, 서브 유닛셀들은 일체형 베이스 구조를 이루는 베이스 유닛셀들에 평면을 기준으로 높이 방향으로 적층되는 구조를 이루고 있으며, 구체적으로, 상기 서브 유닛셀들은 양면에 위치한 극판들의 전극 종류가 서로 다른 풀셀 구조로 구성될 수 있다.
하나의 구체적인 예에서, 상기 서브 유닛셀들은 각각 동일한 두께로 전극조립체의 하부로부터 상부 방향으로 유닛셀들의 크기가 작아지는 배열로 적층되어, 전체적으로 전극조립체의 외면 형상이 계단 형상의 단차가 형성되는 구조로 이루어진 구조일 수 있다.
이러한 구조에서, 상기 풀셀들은 분리막을 사이에 두고 상호 인접하고 있는 극판들 중에서, 상대적으로 크기가 큰 극판의 극성이 모두 음극인 구조로 구성될 수 있다.
또 하나의 구체적인 예에서, 상기 베이스 유닛셀들은 서브 유닛셀들 각각의 두께, 너비 및 폭보다 크게 구성될 수 있으며, 상기 베이스 유닛셀과 풀셀이 인접하고 있는 극판들에서, 베이스 유닛셀의 극판의 극성이 음극이고 풀셀의 극판이 양극으로 구성될 수 있다.
앞서 설명한 바와 같이, 일반적으로, 전지의 안정성 측면 및 전지의 용량 낭비를 막기 위해서는 음극의 면적이 양극의 면적보다 많아야 하므로, 이에 대해서는 이하에서 더욱 구체적으로 설명기로 한다.
단위셀들의 경계에서의 양극과 음극의 대향 면적에 대한 용량비(N/P ratio 또는 대항비)는 적층된 단위셀들 중에서 대향 면적이 상대적으로 큰 단위셀을 구성하는 양극과 음극의 대향 면적에 대한 용량비(N/P ratio 또는 대항비)와 같거나 크다.
단위셀들의 경계에서의 대항비가 대향 면적이 상대적으로 큰 단위셀을 구성하는 양극과 음극의 대항비 보다 작은 경우에는 본 발명에 따른 전극 조립체를 내장하는 리튬 이차전지의 성능 및 안전성에서 문제가 발생할 수 있으므로 바람직하지 않다.
단위셀들의 경계에서 대면하는 양극과 음극의 대항비와 단위셀을 구성하는 양극과 음극의 대항비의 비는, 1:1 내지 3:1, 1:1 내지 2:1, 1:1 내지 1.5:1 일 수 있고, 상기 대항비는 하기의 식 1을 이용하여 산출할 수 있다.
Figure PCTKR2014010499-appb-I000001
상기 식 1에서,
단위 면적당 음극 충전용량은, 단위 면적당 음극 로딩량(g/cm2) × 활물질 중 음극 활물질의 비율(%) × 단위 무게 당 음극충전용량(mAh/g)으로 계산되고;
음극 효율은, (음극의 방전용량/음극의 충전용량) × 100 이며;
양극 단위면적당 설계용량은, 설계용량 / 코팅된 양극면적이며;
또, 상기 설계용량은, 양극 로딩량(g/cm2) × 활물질 중 양극 활물질 비율(%) × 단위 무게당 양극충전량(mAh/g) - 음극의 비가역용량(mAh)으로 계산된다.
한편, 단위 무게 당 양극의 충전용량, 단위 무게 당 음극의 충전 용량, 방전 용량 및 비가역용량 등은 각각 하기와 같은 방법을 통해 측정될 수 있다.
(1) 단위 무게당 양극의 충전 용량 측정방법: 반쪽 셀(Half Cell)을 만들어 한쪽 전극을 평가하고자 하는 양극으로 하고 상대전극을 리튬 금속으로 구성하여 낮은 율속(0.2C 이후)으로 충전할 때의 용량을 측정하여 반쪽 셀(Half Cell)의 무게로 정규화(Normalize) 한 값.
(2) 단위 무게당 음극의 충전 용량 측정방법: 반쪽 셀(Half Cell)을 만들어 한쪽 전극을 평가하고자 하는 음극으로 하고 상대전극을 리튬 금속으로 구성하여 낮은 율속(0.2C 이후)로 충전할 때의 용량을 측정 하여 반쪽 셀(Half Cell)의 무게로 정규화(Normalize) 한 값.
(3) 단위 무게당 음극의 방전 용량 측정방법: 반쪽 셀(Half Cell)을 만들어 한쪽 전극을 평가하고자 하는 음극으로 하고 상대전극을 리튬 금속으로 구성하여 낮은 율속(0.2C 이후)로 충전 후 방전할 때의 용량을 측정 하여 반쪽 셀(Half Cell)의 무게로 정규화(Normalize) 한 값.
(4) 단위 무게당 음극의 비가역 용량 측정방법: 음극의 반쪽 셀(Half Cell)의 1회 충방전 시 나타나는 용량의 차이를 측정.
(5) 단위 면적당 음극 로딩량 정의: 단위 면적당 음극 집전체에 코팅되는 음극 활물질의 무게.
(6) 단위 면적당 양극 로딩량 정의: 단위 면적당 양극 집전체에 코팅되는 양극 활물질의 무게.
전극군들의 경계에서의 대항비가 대향 면적이 상대적으로 큰 전극군을 구성하는 양극과 음극의 대항비 보다 크게 하기 위한 하나의 구체적인 실시예에서, n 번째 전극군을 구성하는 양극의 로딩량과 n+1 번째 전극군을 구성하는 양극의 로딩량은 동일하고, n+1 번째 전극군을 구성하는 음극의 로딩량은 n 번째 전극군을 구성하는 음극의 로딩량보다 크게 구성할 수 있다.
또한, n+1 번째 전극군을 구성하는 음극의 로딩량과 n 번째 전극군을 구성하는 음극의 로딩량은 동일하고, n 번째 전극군을 구성하는 양극의 로딩량은 n+1 번째 전극군을 구성하는 양극의 로딩량보다 크게 구성할 수 있다.
이 경우, n 번째 전극군을 구성하는 양극과 음극의 대항비와 n 번째 전극군 상에 적층된 n+1 번째 전극군을 구성하는 양극과 음극의 대항비의 비가 1:1 일 수 있다.
또, n 번째 전극군을 구성하는 양극과 음극의 대항비보다 n 번째 전극군 상에 적층된 n+1 번째 전극군을 구성하는 양극과 음극의 대항비가 큰 구조로 구성될 수 있다.
여기서, n 번째 전극군을 구성하는 전극의 크기 또는 면적은 n+1 번째 전극군을 구성하는 전극의 크기 또는 면적에 비해 큰 구조일 수 있다.
한편, 전극군들의 경계에서의 대항비가 전극군을 구성하는 양극과 음극의 대항비 보다 크게 하기 위한 다른 하나의 구체적인 실시예에서, n-1 번째 전극군을 구성하는 양극의 로딩량, n 번째 전극군을 구성하는 양극의 로딩량과 n+1 번째 전극군을 구성하는 양극의 로딩량은 동일하고, n-1 번째 전극군을 구성하는 음극의 로딩량과 n+1 번째 전극군을 구성하는 음극의 로딩량은 n 번째 전극군을 구성하는 음극의 로딩량보다 클 수 있다.
또한, n-1 번째 전극군을 구성하는 음극의 로딩량, n 번째 전극군을 구성하는 음극의 로딩량과 n+1 번째 전극군을 구성하는 음극의 로딩량은 동일하고, n 번째 전극군을 구성하는 양극의 로딩량은 n-1 번째 전극군을 구성하는 양극의 로딩량과 n+1 번째 전극군을 구성하는 양극의 로딩량보다 클 수 있다.
이 경우, n 번째 전극군을 구성하는 양극과 음극의 대항비와 n 번째 전극군 상에 적층된 n+1 번째 전극군을 구성하는 양극과 음극의 대항비의 비는 1:1 이고, n 번째 전극군을 구성하는 양극과 음극의 대항비와 평면을 기준으로 높이 반대방향으로 n 번째 전극군 상에 적층된 n-1 번째 전극군을 구성하는 양극과 음극의 대항비의 비는 1:1 일 수 있다.
또, n 번째 전극군을 구성하는 양극과 음극의 대항비 보다 n 번째 전극군 상에 적층된 n+1 번째 전극군을 구성하는 양극과 음극의 대항비가 클 수 있고, n 번째 전극군을 구성하는 양극과 음극의 대항비 보다 평면을 기준으로 높이 반대방향으로 n 번째 전극군 상에 적층된 n-1 번째 전극군을 구성하는 양극과 음극의 대항비가 클 수 있다.
여기서, n 번째 전극군을 구성하는 전극의 크기 또는 면적은, n-1 번째 전극군을 구성하는 전극의 크기 또는 면적과 n+1 번째 전극군을 구성하는 전극의 크기 또는 면적에 비해 크다.
전극군들의 경계에서의 대항비가 적층된 전극군들 중에서 대향 면적이 상대적으로 큰 전극군을 구성하는 양극과 음극의 대항비와 같거나 큰 조건을 만족하는 이상, 대향 면적이 상대적으로 작은 전극군을 구성하는 양극과 음극의 대항비는 대향 면적이 상대적으로 큰 전극군을 구성하는 양극과 음극의 대항비와 같거나 클 수 있다.
또한, 전극군들의 경계에서의 대항비가 적층된 전극군들 중에서 대향 면적이 상대적으로 큰 전극군을 구성하는 양극과 음극의 대항비와 같거나 큰 조건을 만족하는 한, 대향 면적이 상대적으로 작은 전극군을 구성하는 음극의 로딩량은 대향 면적이 상대적으로 큰 전극군을 구성하는 음극의 로딩량과 같거나 클 수 있다.
또, 전극군들의 경계에서의 대항비가 적층된 전극군들 중에서 대향 면적이 상대적으로 큰 전극군을 구성하는 양극과 음극의 대항비와 같거나 큰 조건을 만족하는 한, 대향 면적이 상대적으로 작은 전극군을 구성하는 양극의 로딩량은 대향 면적이 상대적으로 큰 전극군을 구성하는 양극의 로딩량과 같거나 작을 수 있다.
전극의 공극률이 동일한 조건에서, 전극의 로딩량은 전극의 두께로 확인할 수 있고, 전극의 두께의 확인은 이온 밀링을 이용하여 확인할 수 있다.
상기한 단위셀들의 적층 구조 또는 전극군들의 적층 구조에서, 동일한 극성을 가진 극판들의 각각의 전극탭들은 동일한 가상의 수직선을 공유하는 위치에 배열되도록 각각의 극판들로부터 돌출되어 형성되어 있을 수 있다.
즉, 동일한 극성을 가진 극판들 중에서 가장 작은 크기의 극판의 전극탭이 형성된 위치를 기준으로, 나머지 전극탭들은 상기한 가장 작은 크기의 극판의 전극탭과 가상의 수직선을 공유하는 위치에 형성되어 있을 수 있다.
예를 들어, 각각의 양극탭들은, 가장 크기가 작은 양극판의 양극탭이 형성된 위치를 기준으로, 상기 가장 작은 크기의 양극판의 양극탭과 가상의 수직선을 공유하는 위치에 형성되어 있을 수 있다.
상기 구조에서, 평면은 임의의 평면을 의미하므로 지면일 수도 있고, 지면에 수직한 평면일 수도 있다. 따라서, 상기한 극판들은 지면에서 높이방향으로 적층되어 있을 수 있고, 지면에 수직한 평면에서 높이방향을 따라 적층되어 있는 구조일 수도 있다.
이해의 편의를 위하여, 이하에서는, 상기 평면은 지면을 지칭하는 것으로 우선적으로 고려할 수 있다. 이 경우, 상기 평면으로부터의 높이 방향은 중력이 작용하는 방향과 반대 방향을 지칭하고, 높이 방향과 반대 방향은 중력이 작용하는 방향을 지칭하는 것으로 생각할 수 있다.
예를 들어, 상기에서, 평면을 기준으로 높이 방향을 따라 적층된다”는 것은, 극판들이 지면으로부터 중력 방향 및/또는 중력 반대 방향으로 적층될 수 있음을 의미할 수 있다. 따라서, 극판들의 적층 방향은 중력 방향 및/또는 중력 반대 방향일 수 있다.
구체적으로, 상기 계단 구조는 서로 다른 크기의 2 개의 전극군들이 분리 필름이 개재된 상태에서 적층되고, 분리 필름으로 전극군들의 일측면, 대향 측면, 또는 일측면 및 대향 측면을 감싸는 경우에 형성될 수 있다.
또한, 상기 계단 구조는, 서로 다른 크기의 3 개의 전극군들이 분리 필름을 사이에 두고 서로 반대 극성을 갖는 극판들이 대면하도록 적층되고, 분리 필름으로 각각의 전극군들의 일측면, 대향 측면 또는 일측면 및 대향 측면을 감싸는 경우에도 형성될 수 있다.
전술한 설명으로 세 개 이상의 계단 구조가 형성되는 경우는 당업자가 쉽게 이해할 수 있으므로, 이에 대한 구체적인 설명은 생략하기로 한다.
한편, 상기 서브 유닛셀들은 소망하는 수준의 강성을 확보하기 위하여 2개 이상의 풀셀들이 분리막이 개재된 상태에서 열과 압력에 의해 접착되어 있는 구조로 이루어질 수 있다.
이때, 상기 풀셀은 분리막, 양극, 분리막, 음극, 분리막 순서로 적층된 구조로 구성되고, 상기 열과 압력에 의해 접착되어 있는 풀셀들은 일 측면에 고정부재를 추가로 포함하여 적층구조의 안정성을 확보할 수 있다.
또한, 상기 유닛셀들은 전극 단자들이 동일한 위치에 배열되도록 적층되는 구조일 수 있다.
본 발명은 또한, 상기 전극조립체가 전지케이스에 내장되어 있는 전지셀을 제공한다.
구체적으로, 상기 전극조립체의 유닛셀들에서 각 유닛셀들의 전극 탭들은 하나의 전극리드에 결합되어 전지셀 전극단자를 형성하는 구조로 이루어질 수 있다.
상기 전지셀은, 예를 들어, 파우치형 케이스에 전극조립체가 내장되어 있는 파우치형 전지셀일 수 있지만, 그것 만으로 한정되는 것은 아니다.
상기 파우치형 전지셀은, 구체적으로, 수지층과 금속층을 포함하는 라미네이트 시트의 전지케이스에 전극조립체가 전지케이스의 외부로 돌출된 전극단자들과 연결된 상태로 내장되어 있는 구조일 수 있다.
상기 전지케이스는 계단 형상의 단차가 형성될 수 있는 소정의 유연성을 가지는 두께로 제조된다. 즉, 상기 전지케이스의 두께가 너무 두꺼우면 단차를 형성하는 과정에서 유연성의 부족으로 파손의 위험이 있으며, 전지셀 자체의 부피 및 무게가 증가하는 단점이 있고, 반대로 전지케이스의 두께가 너무 얇으면 외부충격 등에 의해 전지케이스가 쉽게 파손되는 문제가 발생한다. 따라서, 상기 전지케이스는 적절한 유연성 및 내구성을 가지는 50 내지 200 μm 의 두께로 제조되는 것이 바람직하다.
이러한 전지케이스를 구성하는 상부 케이스와 하부 케이스는 서로 독립적인 부재들일 수도 있고, 일측 단부가 상호 연결되어 있는 실질적인 하나의 부재일 수도 있다.
상기 전지케이스의 수납부의 계단 형상의 단차는 여러가지 방법으로 형성될 수 있다. 예를 들어, 내면에 계단 형상의 단차가 형성된 다이에 전지케이스를 삽입하고 압력을 가하여 수납부에 계단 형상의 단차를 형성시키는 방법이 사용될 수 있다.
더욱 바람직하게는, 서로 다른 크기의 전극들 또는 유닛셀들이 적층된 전극조립체를 전지케이스의 수납부에 삽입하고, 상기 수납부 내부에 진공을 인가하여 상기 수납부가 수축함으로써 계단 형상의 단차를 형성시킬 수 있다.
즉, 상기 전극조립체는 평면 크기가 다른 다수의 전극들 또는 유닛셀들이 적층되어 있는 구조로 이루어지는 바, 이러한 전극조립체를 전지케이스의 수납부에 장착하고, 상기 수납부에 진공을 가하면 전극조립체의 외형에 대응하여 전지케이스가 수축하면서 변형되어 계단 형상의 단차가 형성된다.
이러한 진공 인가 방식은 전극조립체의 디자인이 바뀔 때마다 새로운 전지케이스를 제조하여야 하는 문제점을 해결할 수 있을 뿐만 아니라, 응력이 국부적으로 집중되는 현상을 억제할 수 있다.
상기 전지케이스의 수납부는 전극조립체가 안착될 수 있는 충분한 크기로 형성되며, 하나의 바람직한 예에서, 계단 형상의 단차 형성 부위가 수직 단면상으로 단차 형상에 대응하여 곡면 형상으로 이루는 구조일 수 있다. 따라서, 진공의 인가 시, 상기 수납부의 곡면 부위와 전극조립체 사이의 잉여 공간이 제거되도록 상기 수납부의 곡면 부위가 전극조립체에 밀착될 때, 수축되는 크기를 최소화할 수 있다.
하나의 구체적인 예에서, 상기 전지케이스의 수납부는 전극조립체의 상단 크기에 대응하는 평면 부위를 포함하는 반구형 형상으로 이루어질 수 있다. 이 경우, 수납부의 반구형 형상으로 이루어진 부위가 변형되어 계단 형상의 단차가 형성된다.
상기 전지셀은 리튬이온 전지 또는 리튬이온 폴리머 전지셀일 수 있지만, 이들만으로 한정되지 않음은 물론이다.
일반적으로, 리튬이온 전지는 양극, 음극, 분리막, 및 리튬염 함유 비수 전해액으로 구성되어 있다.
상기 양극은, 예를 들어, 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 음극은 음극 집전체 상에 음극 활물질을 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 선택적으로 더 포함될 수도 있다.
상기 음극 활물질로는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe’yOz (Me: Mn, Fe, Pb, Ge; Me’: Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
리튬염 함유 비수계 전해액은, 극성 유기 전해액과 리튬염으로 이루어져 있다. 전해액으로는 비수계 액상 전해액, 유기 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수계 액상 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수계 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
본 발명은 또한, 상기 전지셀을 전원으로 포함하고 있는 디바이스를 제공하는 바, 상기 디바이스는 휴대폰, 휴대용 컴퓨터, 스마트폰, 태플릿 PC, 스마트 패드, 넷북, LEV(Light Electronic Vehicle), 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 및 전력저장장치 등으로부터 선택되는 것일 수 있다.
본 발명은 또한, 상기 전지셀을 단위전지로서 둘 이상 포함하고 있는 전지팩을 제공한다. 즉, 상기 전지셀을 단위전지로서 둘 이상을 직렬 및/또는 병렬로 연결한 구조의 전지팩을 제공하고, 이러한 전지팩은 휴대폰, 휴대용 컴퓨터, 스마트폰, 태플릿 PC, 스마트 패드, 넷북, LEV(Light Electronic Vehicle), 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 및 전력저장장치 등의 디바이스에 사용될 수 있다.
이들 디바이스의 구조 및 그것의 제작 방법은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명은 생략한다.
도 1은 종래의 전지셀의 일반적인 구조에 대한 분해 사시도이다;
도 2는 본 발명의 하나의 실시예에 따른 전지셀에 대한 사시도이다;
도 3는 도 2의 수직 단면도이다;
도 4는 본 발명의 하나의 실시예에 따른 전극조립체의 사시도다;
도 5는 본 발명의 하나의 실시예에 따른 극판 적층체의 구조를 모식적으로 도시한 단면도이다;
도 6은 본 발명의 또 다른 실시예에 따른 극판 적층체의 구조를 모식적으로 도시한 단면도이다;
도 7은 본 발명의 하나의 실시예에 따른 유닛셀의 구조를 모식적으로 도시한 단면도이다;
도 8는 도 5의 극판 적층체의 고정구조의 모식도이다.
이하에서는, 본 발명의 실시예에 따른 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 2는 본 발명의 하나의 실시예에 따른 전지셀의 사시도가 도시되어 있고, 도 3에는 도 2의 수직 단면도가 모식적으로 도시되어 있다.
도 2 및 도 3을 참조하면, 전지셀(100)은 전극조립체(120)가 라미네이트 시트의 파우치 전지케이스(110)에 내장되어 있는 구조로서, 전극조립체(120)와 전기적으로 연결된 전극리드들(130)이 전지케이스(110) 외부로 돌출되어 있는 구조로 이루어져 있다. 전지케이스(110)는 상부 케이스(111) 및 하부 케이스(112)로 구성되며, 상부 케이스(111)에는 전극조립체(120)의 장착을 위한 수납부(116)가 형성되어 있다.
전극조립체(120)는 크기가 다른 다수의 유닛셀들(122, 124, 126)이 평면을 기준으로 높이 방향으로 적층되어 있고, 전지케이스(110)의 수납부는 다수의 유닛셀들(122, 124, 126)이 적층된 구조의 외면 형상에 대응하여 계단 형상의 단차(114)가 형성된 구조로 이루어져 있다.
이러한 구조의 전지셀(100)은 다양한 용량 및 크기를 가지는 전지셀로 제작될 수 있고, 종래의 전지셀이 장착되기 곤란했던 공간까지 용이하게 장착 가능할 뿐 만 아니라, 디바이스의 내부 구조에 따라 한정된 공간에서 더 큰 용량을 가지는 전지셀을 장착할 수 있으므로 디바이스 내부 공간 활용도를 극대화시킬 수 있다.
도 4는 본 발명의 하나의 실시예에 따른 전극조립체를 나타내는 사시도가 모식적으로 도시되어 있다.
도 4를 참조하면, 본 발명에 따른 전극조립체(200)는 하나의 시트형 분리필름(210)에 의해 동일한 크기를 가지는 5개의 베이스 유닛셀들(221, 222, 223, 224, 225)이 권취되어 일체형 베이스 구조(220)를 이루고 있고, 베이스 유닛셀들(221, 222, 223, 224, 225)의 평면을 기준으로 높이 방향으로 서브 유닛셀들(231, 232)이 적층되어 있는 구조로 구성된다.
베이스 유닛셀들(221, 222, 223, 224, 225)은 양극과 음극이 분리막이 개재된 상태로 적층된 구조에서 양면에 위치한 전극의 종류가 동일한 바이셀(bi-cell)들로 구성되어 있으며, 권취 중심부에 위치하는 베이스 유닛셀(223)과 권취 종료 부위의 2개의 베이스 유닛셀들(221, 225)이 양단에 각각 음극이 위치하는 구조의 C형 바이셀(bi-cell)로 구성되며, 권취 종료 부위의 2개의 베이스 유닛셀들(221, 225)과 권취 중심부에 위치하는 베이스 유닛셀(223) 사이에 위치하는 베이스 유닛셀들(222, 224)이 양단에 각각 양극이 위치하는 A형 바이셀(bi-cell)로 구성된다.
서브 유닛셀들(231, 232)은 양면에 위치한 극판들의 전극 종류가 서로 다른 풀셀(full-cell)로 구성되며, 각각의 두께는 동일하고 전극조립체(200)의 하부로부터 상부 방향으로 상대적으로 작은 크기의 유닛셀들이 순차적으로 적층된다. 즉, 화살표 방향으로 연속적으로 적층되는 구조로 구성된다.
또한, 서브 유닛셀들(231, 232)은 베이스 유닛셀들(221, 222, 223, 224, 225)의 크기보다 상대적으로 작게 구성되며, 베이스 유닛셀(221)과 서브 유닛셀(232)이 인접하고 있는 극판들에서, 베이스 유닛셀(221)의 극판의 극성이 음극이고 서브 유닛셀(232)의 극판이 양극으로 구성된다.
이러한 구조의 전극조립체(200)는 바이셀들이 시트형 분리막(210)에 의해 권취되는 일체형 베이스 구조(220)의 상단에 화살표 방향으로 풀셀 구조의 서브 유닛셀들(231, 232)이 적층되는 하이브리형 구조를 가지게 되어, 바이셀들만으로 구성하는 전극조립체에 비해서 단차(240)를 형성하는 서브 유닛셀들(231, 232)의 두께의 자유도를 높일 수 있다. 따라서, 풀셀들로만 구성하는 전극조립체에 비해 일체형 베이스 구조(220)를 포함함으로써, 전지셀에 소망하는 수준의 강성을 확보할 수 있다.
도 5는 본 발명의 하나의 실시예에 따른 극판 적층체의 구조를 도시하고 있고, 도 6은 본 발명의 또 다른 실시예에 따른 극판 적층체의 구조의 모식적인 단면도를 도시하고 있다.
하나의 극판 적층체는 도 5에 도시된 구조와 같이 분리판(610), 음극판(620), 분리판(630), 양극판(640)이 순차적으로 적층된 상태로 접합된 구조로 이루어져 있다.
또한, 또 다른 극판 적층체는, 도 6에 도시되는 구조와 같이, 분리판(710), 음극판(720), 분리판(730)이 순차적으로 적층된 상태로 접합된 구조로 이루어져 있다.
도 7은 본 발명의 하나의 실시예에 따른 유닛셀이 도시되어 있고, 구체적으로, 도 5의 극판 적층체들이 적층된 극판 적층체의 최상단에 도 6의 극판 적층체가 적층된 구조의 유닛셀이 도시되어 있다.
도 8에는, 도 5의 극판 적층체에 고정부재가 더 부가된 실시예가 도시되어 있다. 구체적으로 극판 적층체(600)의 측면 또는 전면에는 고정부재(T1)가 더 부가되어 있다.
단순 적층구조로 인해 적층 상태의 안정성을 확보하기 위해, 적층된 구조의 측면에 별도의 스트라이프 형태의 고정부재를 이용하여 고정할 수 있으며, 이러한 고정부재는 도 8의 (a)에 도시된 것과 같이, 극판 적층체(600)의 전면을 테이핑하는 방식으로 구현하거나, (b)에 도시된 바와 같이, 극판 적층체(600)의 양측면 만을 고정하는 고정부재(T2)의 형태로 구현하는 것도 가능하다.
도 5 내지 8에 도시되어 있는 극판 적층체의 경우, 동일한 두께의 양극 또는 음극들이 적층되어 바이셀 형태를 이루도록 접합되어 있는 구조인 것으로 설명되어 있지만, 적용되는 전지셀의 형태 및 크기에 따라 풀셀 또는 바이셀의 형태로서 크기가 상이한 다양한 극판 적층체에 적용되는 것도 가능하다.
본 발명이 속한 분양에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명에 따른 전극조립체는 하이브리형 전극조립체를 동시에 사용하여 계단형 단차를 형성시킴으로써, 전지셀의 장착 공간 확보를 용이하게 하고, 디바이스 내부 공간 활용도를 극대화 시킬 수 있을 뿐만 아니라, 디바이스에 고용량의 전지셀 사용이 가능하며 디바이스를 더욱 소형화시킬 수 있는 효과가 있다.
또한, 전극조립체와 전지케이스와 구조적 특징으로 인한 디자인의 변경이 필요한 경우에도 소망하는 형상의 전지셀을 용이하게 제조할 수 있다.

Claims (24)

  1. 양극 또는 음극으로 이루어진 극판들 사이에 분리막이 개재된 구조의 극판 적층체로 구성된 유닛셀들을 포함하는 전극조립체로서,
    상기 전극조립체는 크기가 서로 다른 두 종류 이상의 유닛셀들의 조합으로 이루어져 있고,
    상기 유닛셀들이 평면을 기준으로 높이 방향으로 적층되어 있는 구조로 구성되어 있으며,
    상기 유닛셀들 중에서 전극조립체의 하부에 위치하는 베이스 유닛셀들은 하나의 시트형 분리필름에 의해 2개 이상의 베이스 유닛셀들이 권취되어 일체형 베이스 구조를 이루고 있고,
    상기 베이스 유닛셀들을 제외한 나머지 서브 유닛셀들은 각각 분리막이 개재된 상태로 적층되어 있는 구조로 이루어져 있는 것을 특징으로 하는 전극조립체.
  2. 제 1 항에 있어서, 상기 서로 다른 두 종류 이상의 유닛셀들은 유닛셀의 두께, 너비(가로 길이) 및 폭(세로 길이) 중의 적어도 하나가 다른 것을 특징으로 하는 전극조립체.
  3. 제 1 항에 있어서, 상기 베이스 유닛셀들은 1개 이상의 양극과 1개 이상의 음극이 분리막이 개재된 상태로 적층된 구조에서 양면에 위치한 전극의 종류가 동일한 바이셀들로 이루어져 있는 것을 특징으로 하는 전극조립체.
  4. 제 3 항에 있어서, 일체형 베이스 구조는 권취 종료 부위의 2개의 바이셀들이 양단에 각각 음극이 위치하는 구조의 C형 바이셀들로 구성되어 있는 것을 특징으로 하는 전극조립체.
  5. 제 3 항에 있어서, 상기 바이셀들은 동일한 크기로 구성되어 있는 것을 특징으로 하는 전극조립체.
  6. 제 1 항에 있어서, 상기 서브 유닛셀들은 양면에 위치한 극판들의 전극 종류가 서로 다른 풀셀인 것을 특징으로 하는 전극조립체.
  7. 제 6 항에 있어서, 상기 서브 유닛셀들은 전극조립체의 하부로부터 상부 방향으로 유닛셀들의 크기가 작아지는 배열로 적층되어 있는 것을 특징으로 하는 전극조립체.
  8. 제 6 항에 있어서, 상기 풀셀들은 분리막을 사이에 두고 상호 인접하고 있는 극판들 중에서, 상대적으로 크기가 큰 극판의 극성이 모두 음극인 것을 특징으로 하는 전극조립체.
  9. 제 6 항에 있어서, 상기 서브 유닛셀들의 각각의 두께는 동일한 것을 특징으로 하는 전극조립체.
  10. 제 1 항에 있어서, 상기 베이스 유닛셀들은 서브 유닛셀들 각각의 두께, 너비 및 폭보다 크게 구성되어 있는 것을 특징으로 하는 전극조립체.
  11. 제 10 항에 있어서, 상기 베이스 유닛셀과 풀셀이 인접하고 있는 극판들에서, 베이스 유닛셀의 극판의 극성이 음극이고 풀셀의 극판이 양극인 것을 특징으로 하는 전극조립체.
  12. 제 1 항에 있어서, 상기 서브 유닛셀들은 2개 이상의 풀셀들이 분리막이 개재된 상태에서 열과 압력에 의해 접착되어 있는 구조로 이루어진 것을 특징으로 하는 전극조립체.
  13. 제 12 항에 있어서, 상기 풀셀은 분리막, 양극, 분리막, 음극, 분리막 순서로 적층되어 있는 것을 특징으로 하는 전극조립체.
  14. 제 12 항에 있어서, 상기 열과 압력에 의해 접착되어 있는 풀셀들은 일 측면에 고정부재를 추가로 포함하고 있는 것을 특징으로 하는 전극조립체.
  15. 제 1 항에 있어서, 상기 유닛셀들은 전극 단자들이 동일한 위치에 배열되도록 적층되어 있는 것을 특징으로 하는 전극조립체.
  16. 제 1 항 내지 제 15 항 중 어느 하나에 따른 전극조립체가 전지케이스에 내장되어 있는 것을 특징으로 하는 전지셀.
  17. 제 16 항에 있어서, 상기 전극조립체의 유닛셀들에서 각 유닛셀들의 전극 탭들은 하나의 전극리드에 결합되어 전지셀 전극단자를 형성하는 구조로 이루어진 것을 특징으로 하는 전지셀.
  18. 제 17 항에 있어서, 상기 전지셀은 파우치형 케이스에 전극조립체가 내장되어 있는 파우치형 전지셀인 것을 특징으로 하는 전지셀.
  19. 제 16 항에 있어서, 상기 전지케이스는 전극조립체에 대응하는 형상으로 이루어진 것을 특징으로 하는 전지셀.
  20. 제 16 항에 있어서, 상기 전지셀은 리튬이온 이차전지 또는 리튬이온 폴리머 이차전지인 것을 특징으로 하는 전지셀.
  21. 제 16 항에 따른 전지셀을 둘 이상 포함하고 있는 것을 특징으로 하는 전지팩.
  22. 제 16 항에 따른 전지셀 또는 제 21 항에 따른 전지팩을 하나 이상 포함하고 있는 것을 특징으로 하는 디바이스.
  23. 제 22 항에 있어서, 상기 전지셀 또는 전지팩의 잉여 공간에 디바이스의 시스템 부품이 위치하는 것을 특징으로 하는 디바이스.
  24. 제 22 항에 있어서, 상기 디바이스는 휴대폰, 휴대용 컴퓨터, 스마트폰, 스마트 패드, 넷북, LEV(Light Electronic Vehicle), 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 및 전력저장장치로부터 선택되는 것을 특징으로 하는 디바이스.
PCT/KR2014/010499 2014-01-06 2014-11-04 계단 구조의 하이브리드 전극조립체 WO2015102221A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/039,947 US10505230B2 (en) 2014-01-06 2014-11-04 Hybrid electrode assembly of stair-like structure
JP2016534143A JP2017503311A (ja) 2014-01-06 2014-11-04 階段構造のハイブリッド電極組立体
EP14876738.7A EP3062379B1 (en) 2014-01-06 2014-11-04 Hybrid electrode assembly having stepped structure
CN201480065337.9A CN105830266B (zh) 2014-01-06 2014-11-04 阶梯状结构的混合型电极组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140001373A KR101617423B1 (ko) 2014-01-06 2014-01-06 계단 구조의 하이브리드 전극조립체
KR10-2014-0001373 2014-01-06

Publications (1)

Publication Number Publication Date
WO2015102221A1 true WO2015102221A1 (ko) 2015-07-09

Family

ID=53493541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010499 WO2015102221A1 (ko) 2014-01-06 2014-11-04 계단 구조의 하이브리드 전극조립체

Country Status (6)

Country Link
US (1) US10505230B2 (ko)
EP (1) EP3062379B1 (ko)
JP (1) JP2017503311A (ko)
KR (1) KR101617423B1 (ko)
CN (1) CN105830266B (ko)
WO (1) WO2015102221A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3136466A1 (en) * 2015-08-27 2017-03-01 Samsung SDI Co., Ltd. Manufacture method of electrode assembly

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102002315B1 (ko) * 2015-08-17 2019-10-01 주식회사 엘지화학 용량과 크기가 상이한 단위셀들로 구성된 비정형 전극조립체 및 이를 포함하는 전지셀
KR101995038B1 (ko) * 2015-09-30 2019-07-01 주식회사 엘지화학 부착 방식의 유닛셀을 포함하는 하이브리드 전극조립체
CN107799836A (zh) * 2016-09-07 2018-03-13 中兴通讯股份有限公司 固态电池制作方法、固态电池及终端
KR102016643B1 (ko) * 2016-09-19 2019-08-30 주식회사 엘지화학 이차전지
JP2018170130A (ja) * 2017-03-29 2018-11-01 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG 蓄電素子
KR102217447B1 (ko) 2017-07-06 2021-02-22 주식회사 엘지화학 이차전지
KR20200058173A (ko) * 2018-11-19 2020-05-27 삼성에스디아이 주식회사 이차 전지
CN109686919A (zh) * 2019-01-10 2019-04-26 金能电池(东莞)有限公司 一种新型的纽扣电池
KR20230060119A (ko) * 2021-10-27 2023-05-04 주식회사 엘지에너지솔루션 전극 조립체 및 이를 포함하는 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010005561A1 (en) * 1999-12-09 2001-06-28 Kazuo Yamada Secondary battery and electronic instrument using it
KR20010082059A (ko) * 2000-02-08 2001-08-29 성재갑 중첩 전기화학 셀 및 그의 제조 방법
US20110183183A1 (en) * 2010-01-26 2011-07-28 Grady Steven C Battery arrays, constructions and method
KR20130103437A (ko) * 2012-03-08 2013-09-23 주식회사 엘지화학 계단 구조의 전지팩
KR20130106781A (ko) * 2012-03-20 2013-09-30 주식회사 엘지화학 계단 구조의 전극 조립체 및 복합 전극 조립체

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925857B1 (ko) * 2006-03-14 2009-11-06 주식회사 엘지화학 향상된 안전성의 다중 중첩식 전기화학 셀
KR100987300B1 (ko) * 2007-07-04 2010-10-12 주식회사 엘지화학 스택-폴딩형 전극조립체 및 그것의 제조방법
US20130236768A1 (en) 2012-03-08 2013-09-12 Lg Chem, Ltd. Battery pack of stair-like structure
KR20130118716A (ko) 2012-04-20 2013-10-30 주식회사 엘지화학 전극 조립체, 이를 포함하는 전지셀 및 디바이스
KR20130132231A (ko) 2012-05-25 2013-12-04 주식회사 엘지화학 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010005561A1 (en) * 1999-12-09 2001-06-28 Kazuo Yamada Secondary battery and electronic instrument using it
KR20010082059A (ko) * 2000-02-08 2001-08-29 성재갑 중첩 전기화학 셀 및 그의 제조 방법
US20110183183A1 (en) * 2010-01-26 2011-07-28 Grady Steven C Battery arrays, constructions and method
KR20130103437A (ko) * 2012-03-08 2013-09-23 주식회사 엘지화학 계단 구조의 전지팩
KR20130106781A (ko) * 2012-03-20 2013-09-30 주식회사 엘지화학 계단 구조의 전극 조립체 및 복합 전극 조립체

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3062379A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3136466A1 (en) * 2015-08-27 2017-03-01 Samsung SDI Co., Ltd. Manufacture method of electrode assembly
CN106486701A (zh) * 2015-08-27 2017-03-08 三星Sdi株式会社 电极组件、其制造方法及可再充电电池
US10355303B2 (en) 2015-08-27 2019-07-16 Samsung Sdi Co., Ltd. Electrode assembly, manufacturing method thereof, and rechargeable battery
CN106486701B (zh) * 2015-08-27 2021-05-25 三星Sdi株式会社 电极组件、其制造方法及可再充电电池

Also Published As

Publication number Publication date
KR101617423B1 (ko) 2016-05-03
KR20150081662A (ko) 2015-07-15
JP2017503311A (ja) 2017-01-26
EP3062379A4 (en) 2016-10-12
US20170033407A1 (en) 2017-02-02
EP3062379A1 (en) 2016-08-31
CN105830266A (zh) 2016-08-03
CN105830266B (zh) 2019-03-19
EP3062379B1 (en) 2018-07-25
US10505230B2 (en) 2019-12-10

Similar Documents

Publication Publication Date Title
WO2015102221A1 (ko) 계단 구조의 하이브리드 전극조립체
WO2016048002A1 (ko) 둘 이상의 케이스 부재들을 포함하는 각형 전지셀
WO2017095002A1 (ko) 셀 케이스의 밀봉 신뢰성이 향상된 비정형 구조의 전지셀
WO2016167457A1 (ko) 전극 탭들과 전극 리드의 탭-리드 결합부가 공간부에 위치하는 전극조립체
WO2015030405A1 (ko) 방열 구조를 가지는 단위모듈 제조용 모듈 하우징 및 이를 포함하는 전지모듈
WO2015046709A1 (ko) 가열 부재를 포함하는 전지셀 절곡 장치
WO2017034210A1 (ko) 상대 전극전위의 측정을 위한 기준 전극을 포함하고 있는 전지셀의 제조 방법 및 이로 제조된 전지셀
WO2017188605A1 (ko) 규격화된 구조에 기반하여 제조 공정성이 우수하면서도 전극리드의 절연 성능이 향상된 전지셀 및 이를 포함하는 전지팩
WO2010101384A2 (ko) 파우치 및 이를 포함하는 이차전지
WO2016056875A2 (ko) 전극조립체 및 이의 제조방법
WO2016204410A1 (ko) 이차전지 및 그 제조방법
WO2017082530A1 (ko) 돌출 연장부와 탭 연결부를 구비한 전극 리드를 포함하고 있는 전지셀
WO2017105098A1 (ko) 가압과 열 인가 면적이 증대된 전지케이스의 밀봉 장치
WO2017069453A1 (ko) 복수의 전극 탭들이 형성되어 있는 단위 전극을 포함하는 파우치형 전지셀
WO2014126369A1 (ko) 비정형 구조의 전지셀
WO2020209529A1 (ko) 단락 유도 부재를 포함하는 전지셀 및 이를 이용한 안전성 평가방법
WO2015046751A1 (ko) 곡면 구조의 전지팩
WO2017099333A1 (ko) 가스 흡착제가 포함되어 있는 전극 리드를 구비한 전지셀
WO2019009576A1 (ko) 비대칭 노치가 형성된 전극리드를 포함하는 파우치형 이차전지
WO2021054595A1 (ko) 2개 이상의 금속 호일 사이에 저항층을 포함하는 전극 집전체, 이를 포함하는 전극 및 리튬 이차전지
KR102046000B1 (ko) 온도 센싱 기능이 향상된 전지팩
WO2021025358A1 (ko) 내부 단락 유도를 위한 전기화학소자 및 이를 이용한 안전성 평가방법
WO2014126359A1 (ko) 경사 구조의 전극조립체 및 이를 포함하는 전지셀
WO2014200176A1 (ko) 실링부가 경화성 물질로 절연되어 있는 파우치형 전지셀의 제조방법
KR100875607B1 (ko) 스택형 전극 조립체를 포함하고 있는 안전성이 향상된 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876738

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014876738

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014876738

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016534143

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15039947

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE