WO2015101276A1 - 有支点微摩擦或无摩擦径向永磁悬浮轴承 - Google Patents

有支点微摩擦或无摩擦径向永磁悬浮轴承 Download PDF

Info

Publication number
WO2015101276A1
WO2015101276A1 PCT/CN2014/095478 CN2014095478W WO2015101276A1 WO 2015101276 A1 WO2015101276 A1 WO 2015101276A1 CN 2014095478 W CN2014095478 W CN 2014095478W WO 2015101276 A1 WO2015101276 A1 WO 2015101276A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnet
annular
friction
stator
Prior art date
Application number
PCT/CN2014/095478
Other languages
English (en)
French (fr)
Inventor
李国坤
王朝贤
Original Assignee
李国坤
王朝贤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李国坤, 王朝贤 filed Critical 李国坤
Priority to US15/108,958 priority Critical patent/US20170023057A1/en
Priority to EP14877470.6A priority patent/EP3096030A4/en
Publication of WO2015101276A1 publication Critical patent/WO2015101276A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/041Passive magnetic bearings with permanent magnets on one part attracting the other part
    • F16C32/0412Passive magnetic bearings with permanent magnets on one part attracting the other part for radial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means
    • F16C39/063Permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/26Speed, e.g. rotational speed

Definitions

  • This invention relates to bearings, and more particularly to radial permanent magnet suspension bearings having fulcrums.
  • the invention patent No. 01136634.6 magnetic suspension bearing
  • the invention patent 200710099004.X applied in 2007 "recommended magnet assembly, all forever
  • the magnetic full suspension bearing and the combined wind photovoltaic power generation system also adopts a permanent magnet to form a pull magnetic circuit to form a fulcrum magnetic suspension bearing.
  • the combination of the push-pull magnetic circuit used in the patent full-permanent full-suspension radial bearing of 01136634.6 is complicated, and it is difficult to debug the suspension.
  • the prior art usually adopts a part of the permanent magnet suspension (non-permanent permanent magnet suspension) bearing, because the proportion of the permanent magnet suspension in the support of the shaft and the load is not large, and the supporting force of the permanent magnet suspension bearing is not large, so for 50,000 rpm Many mechanical turning systems within / minutes, the bearing volume and weight are large.
  • the invention solves the technical problem that the existing permanent magnet suspension radial bearing has complicated structure and is difficult to assemble, and the permanent magnet suspension bearing in the non-permanent permanent magnet suspension radial bearing has a small proportion and a small supporting force, so that the whole bearing has a large volume and weight.
  • the utility model provides a fulcrum radial permanent magnet suspension bearing with simple structure, easy production and assembly, large proportion of permanent magnet suspension bearings, large supporting force, micro-friction or no friction.
  • a fulcrum micro-friction or frictionless radial permanent magnet suspension bearing comprising a support bearing disposed on a horizontal shaft as a support fulcrum, and a permanent magnet suspension bearing disposed on the horizontal shaft at an axial distance from the support bearing, the permanent magnet suspension bearing including a stator pull magnet disposed on the stator housing through the magnetically permeable base body and a rotor puller disposed on the horizontal shaft through the annular magnetic conductive base body and having a radial gap with the stator pull magnet and forming an axial pull magnetic circuit Pushing a magnet, the rotor pull magnet is composed of two or more annular permanent magnets which are closely arranged in the axial direction and alternately distributed in the axial direction, and the stator pull magnet is disposed at the axis of the horizontal axis Above the horizontal plane, which is symmetrical to the vertical vertical plane of the horizontal axis, is composed of two or more partial annular permanent magnets which are closely arranged in the axial direction and whose magnetic poles are
  • the partial annular permanent magnets and the annular permanent magnets located at the same axial position and below have the same axial width.
  • the partial annular permanent magnets and the annular permanent magnets located at the same axial position and below have the same radial thickness.
  • the length of the magnetically permeable base of the two push-pull magnets in the axial direction is equal to the axial length of the two push-pull magnets to which they are fixed.
  • the central annular angle of the partial annular permanent magnet constituting the stator pull magnet is between 100° and 160°.
  • the central angle is preferably 120°.
  • the support bearings are two, and are respectively axially spaced apart on both sides of one of the permanent magnet suspension bearings.
  • the permanent magnet suspension bearings are two, and are respectively disposed at an axial interval on one side of one of the support bearings.
  • the annular permanent magnet and the corresponding partial annular permanent magnet are respectively three or four.
  • the magnetically permeable substrate is a soft magnetic material such as A3 steel.
  • Each of the partial annular permanent magnets that are closely attached in the axial direction has the same axial width and radial thickness, and the axially-width and radial thickness of the respective annular permanent magnets that are closely fitted in the axial direction are the same.
  • stator pull magnet and the rotor pull magnet which constitute the axial pull magnetic circuit are respectively disposed on the stator housing and the horizontal shaft, in particular, the stator pull magnet is disposed only above the horizontal plane where the horizontal axis is located ( The upper half ring) not only greatly reduces the amount of permanent magnets, but also greatly increases the suction force, which makes the radial permanent magnet suspension bearing not only simple in structure, easy in production and assembly, but also has large supporting force, which can greatly reduce the load of the mechanical support bearing.
  • the bearing of the magnetic suspension bearing accounts for a large proportion, and even the radial gap can be adjusted according to the size of the load to achieve micro friction or no friction.
  • Figure 1 is a schematic view of the structure of the present invention
  • Figure 2 is a view taken along line A of Figure 1;
  • Figure 3 is an embodiment of a support bearing, two permanent magnet suspension bearings of the present invention.
  • Figure 4 is an embodiment of two support bearings, one permanent magnet suspension bearing of the present invention.
  • stator housing 1: stator housing, 2: horizontal axis, 3: permanent magnet suspension bearing, 31: stator pulling magnet; 32: rotor pulling magnet, 322: magnetically conductive substrate, 33: supplementary annular member, 4: support bearing.
  • the fulcrum micro-friction or frictionless radial permanent magnet suspension bearing of the present invention comprises a support bearing 4 disposed on the horizontal shaft 2 as a support fulcrum, and a spacer shaft disposed on the horizontal shaft 2 and the support bearing 4
  • the permanent magnet suspension bearing 3 includes a stator pulling magnet 31 disposed on the stator housing 1 through the magnetically conductive base 322 and correspondingly disposed on the horizontal shaft 2 through the annular magnetically conductive substrate 322, a rotor pulling magnet 32 having a radial gap d with the stator pulling magnet 31 and forming an axial pulling magnetic circuit, the rotor pulling magnet 32 being tightly held by two or more in the axial direction
  • the ring-shaped permanent magnets are arranged in close contact with each other and the magnetic poles are alternately distributed in the axial direction.
  • the stator pulling magnets 31 are arranged on the horizontal plane of the horizontal axis 2 and are perpendicular to the vertical plane of the horizontal axis 2
  • Two or more partial annular permanent magnets are arranged in close contact with each other in the axial direction and the magnetic poles are alternately distributed in the axial direction, and the polarities of the corresponding annular permanent magnets and the annular permanent magnets in the same axial position are opposite.
  • the radial gap is within the effective range of the magnetic force of the two pull magnets; the stator pull magnet 31 of FIG. 1 is closely attached to the three axially permanent magnets from the left to the right in the axial direction, and the polarities thereof are respectively N.
  • the corresponding rotor pull magnet 32 is also closely attached to the three annular permanent magnets from left to right in the axial direction, and their polarities are S, N, S, respectively.
  • the stator pull magnet can have four partial annular permanent magnets in the axial direction
  • the corresponding rotor pull magnet can have four annular permanent magnets in the axial direction
  • the stator pull magnet can have two or four axial directions.
  • the corresponding rotor pulling magnets may have the same number of two or more annular permanent magnets as the partial annular permanent magnets in the axial direction. In Fig.
  • the partial annular permanent magnets and the annular permanent magnets at the same axial position have the same axial width; preferably, the corresponding annular permanent magnets and annular permanent magnets at the same axial position
  • the radial thickness is the same, which can change the regular load outside the interference to zero, which can greatly reduce the friction, wear and prolong the service life. Especially in high-speed machinery, the volume of the motor and pump can be greatly reduced.
  • the three partial annular permanent magnets are the same size, that is, the axial width and the radial thickness of the respective partial annular permanent magnets which are closely adhered in the axial direction are the same, and the three annular permanent magnets are also the same size, that is, along the Each of the annular permanent magnets that are axially closely fitted has the same axial width and radial thickness.
  • the partial annular permanent magnet and the annular permanent magnet may be two, four or more.
  • the magnetically conductive base 322 of the stator pull magnet 31 is matched in the circumferential direction with a portion of the annular permanent magnet constituting the stator pull magnet 31, that is, the magnetically conductive base 322 of the stator pull magnet 31 and the stator are pulled.
  • the magnet 31 is also a partial annular member through which the stator pull magnet 31 is fixed to the stator housing 1, and when the invention is used as a bearing for the motor, it is fixed to the motor housing.
  • the complementary annular member 33 complementary to the annular member of the stator pulling magnet 31 and its magnetically permeable base 322 is formed of a non-magnetic material, so that the stator is pulled by the magnet 31 only. It is placed in the upper part of the horizontal axis, which greatly reduces its weight, and the setting of the pull magnetic circuit greatly increases the specific gravity of the permanent magnet suspension bearing relative to the supporting bearing.
  • the length of the magnetically conductive base 322 of the two push magnets is equal to the axial length of the two push magnets 31, 32 which are fixed thereto, so as to ensure a complete working magnetic circuit and enhance the permanent magnet suspension force.
  • the central annular angle of the partial annular permanent magnet constituting the stator pull magnet is between 100° and 160°.
  • the central angle is preferably 120°.
  • the support bearings of FIG. 4 are two, which are respectively axially spaced apart on both sides of one of the permanent magnet suspension bearings.
  • the magnetically permeable substrate is a soft magnetic material such as A3 steel.
  • the stator housing 1 is a non-magnetic material such as stainless steel, and serves only as a branch of the fulcrum.
  • the brace bearing 4 can be an oil lubricated bearing or a self-lubricating ceramic bearing. Balance the bearing load with the upward magnetic attraction, so that the positive pressure on the bearing is zero, forming micro-friction or no friction, greatly reducing energy consumption and no wear, the bearing can be repair-free, because the friction is reduced to 1/50. It can extend the bearing life by 50 times and can not change bearings.
  • the invention Compared with the existing magnetic suspension bearing, the invention has the advantages of extremely low cost, convenient production and installation, and can be widely used in the field of horizontal shaft transmission of various industries, greatly improving the production efficiency in these fields and increasing the working speed, thereby greatly reducing The volume greatly reduces the production cost and greatly improves the social and economic benefits.

Abstract

一种径向永磁悬浮轴承,包括:水平轴(2)、支撑轴承(4),和径向永磁悬浮轴承(3),所述永磁悬浮轴承(3)包括通过导磁基体(322)设置在定子壳体(1)上的定子拉推磁体(31)和对应通过环形导磁基体(322)设置在水平轴(2)上、与所述定子拉推磁体(31)具有径向间隙并形成轴向拉推磁路的转子拉推磁体(32),所述转子拉推磁体(32)由两个或两个以上在轴向紧密贴合设置且磁极沿轴向交替分布的环形永磁体构成,所述定子拉推磁体(31)由设置在水平轴(2)轴心所在水平面之上、对称于水平轴竖直中垂面的、由两个或两个以上在轴向紧密贴合设置且磁极沿轴向交替分布的环形永磁体构成。该轴承结构简单,大大减少了能耗,做到无磨损,轴承免维修。

Description

有支点微摩擦或无摩擦径向永磁悬浮轴承 技术领域:
本发明涉及轴承,特别涉及有支点的径向永磁悬浮轴承。
背景技术:
本申请第一发明人2001年申请的发明专利01136634.6“磁悬浮轴承”涉及到采用永磁体构成拉推磁路组成无支点磁悬浮轴承,2007年申请的发明专利200710099004.X“斥推磁体组件、全永磁全悬浮轴承及组合风力光伏发电系统”也采用了永磁体构成拉推磁路组成无支点磁悬浮轴承。对于径向轴承,01136634.6号专利全永磁全悬浮径向轴承使用的拉推磁路组合结构复杂,实现悬浮很难调试。而现有技术通常采用部分永磁悬浮(非全永磁悬浮)的轴承,由于对轴及负载的支撑中永磁悬浮所占的比重不大,及永磁悬浮轴承的支撑力不大,因此对于5万转/分以内的众多机械转动系统,其轴承的体积和重量都较大。
发明内容:
本发明解决现有全永磁悬浮径向轴承结构复杂,难装配,而非全永磁悬浮径向轴承中永磁悬浮轴承所占比重不大、支撑力不大,使整个轴承体积和重量大的技术问题,提供一种结构简单、生产装配容易、永磁悬浮轴承所占比重大、支撑力大、能实现微摩擦或无摩擦的有支点径向永磁悬浮轴承。
本发明的技术方案是这样的:
有支点微摩擦或无摩擦径向永磁悬浮轴承,包括设置在水平轴上作为支撑支点的支撑轴承,和设置在水平轴上与支撑轴承间隔轴向距离的永磁悬浮轴承,所述永磁悬浮轴承包括通过导磁基体设置在定子壳体上的定子拉推磁体和对应通过环形导磁基体设置在水平轴上、与所述定子拉推磁体具有径向间隙并形成轴向拉推磁路的转子拉推磁体,所述转子拉推磁体由两个或两个以上在轴向紧密贴合设置且磁极沿轴向交替分布的环形永磁体构成,所述定子拉推磁体由设置在水平轴轴心所在水平面之上、对称于水平轴竖直中垂面的、由两个或两个以上在轴向紧密贴合设置且磁极沿轴向交替分布的部分环形永磁体构成,且相同轴向位置上、下对应的部分环形永磁体和环形永磁体的磁极极性相反,所述径向间隙在两拉推磁体磁力的有效作用范围内;所述定子拉推磁体的导磁基体在周向上与构成所述定子拉推磁体的部分环形永磁体匹配,与所述定子拉推磁体及其导磁基体所构成的部分环形构件互补为环形筒体的补充环形构件由非磁材料构成。
位于相同轴向位置上、下对应的部分环形永磁体和环形永磁体的轴向宽度相同。
位于相同轴向位置上、下对应的部分环形永磁体和环形永磁体的径向厚度相同。
两拉推磁体的导磁基体在轴向的长度均等于其所固定的两所述拉推磁体的轴向长度。
构成所述定子拉推磁体的部分环形永磁体的圆心角为100°——160°之间。
所述圆心角优选为120°。
所述支撑轴承为两个,分别沿轴向间隔设置在一个所述永磁悬浮轴承的两侧。
所述永磁悬浮轴承为两个,分别沿轴向间隔设置在一个所述支撑轴承两侧。
所述环形永磁体和对应的部分环形永磁体分别为三个或四个。
所述导磁基体为A3钢等软磁材料。
所述沿轴向紧密贴合的各个部分环形永磁体的轴向宽度、径向厚度相同,所述沿轴向紧密贴合的各个环形永磁体的轴向宽度和径向厚度相同。
技术效果:
本发明由于在定子壳体和水平轴上分别设置构成轴向拉推磁路的定子拉推磁体和转子拉推磁体,特别是所述定子拉推磁体只设置有水平轴心所在水平面之上(上半环),不但大大减少了永磁体用量,而且大大增加了上吸力,使得这样的径向永磁悬浮轴承不但结构简单、生产装配容易,而且支撑力大,可以大大减小机械支撑轴承的负载,使磁悬浮轴承的支撑占较大的比重,甚至还可根据负载的大小,调整径向间隙,实现微摩擦或无摩擦。
附图说明:
图1是本发明结构示意图;
图2是图1的A向视图;
图3为本发明一个支撑轴承,两个永磁悬浮轴承的实施例;
图4为本发明两个支撑轴承,一个永磁悬浮轴承的实施例。
1:定子壳体,2:水平轴,3:永磁悬浮轴承,31:定子拉推磁体;32:转子拉推磁体,322:导磁基体,33:补充环形构件,4:支撑轴承。
具体实施方式:
下面结合附图对本发明做进一步的说明。
参见图3和4,本发明的有支点微摩擦或无摩擦径向永磁悬浮轴承,包括设置在水平轴2上作为支撑支点的支撑轴承4,和设置在水平轴2上与支撑轴承4间隔轴向距离的永磁悬浮轴承3,见图1,永磁悬浮轴承3包括通过导磁基体322设置在定子壳体1上的定子拉推磁体31和对应通过环形导磁基体322设置在水平轴2上、与所述定子拉推磁体31具有径向间隙d并形成轴向拉推磁路的转子拉推磁体32,所述转子拉推磁体32由两个或两个以上在轴向紧 密贴合设置且磁极沿轴向交替分布的环形永磁体构成,所述定子拉推磁体31由设置在水平轴2轴心所在水平面之上、对称于水平轴2竖直中垂面的、由两个或两个以上在轴向紧密贴合设置且磁极沿轴向交替分布的部分环形永磁体构成,且相同轴向位置上、下对应的部分环形永磁体和环形永磁体的极性相反,所述径向间隙在两拉推磁体磁力的有效作用范围内;图1中的定子拉推磁体31沿轴向从左到右紧密贴合有三个部分环形永磁体,其极性分别是N、S、N,对应的转子拉推磁体32沿轴向从左到右也紧密贴合有三个环形永磁体,其极性分别是S、N、S。当然,定子拉推磁体沿轴向可以有四个部分环形永磁体,对应的转子拉推磁体沿轴向可以有四个环形永磁体,或者定子拉推磁体沿轴向可以有两个或四个以上的部分环形永磁体,对应的转子拉推磁体沿轴向可以有与部分环形永磁体相同数量的两个或四个以上的环形永磁体。图1中,位于相同轴向位置上、下对应的部分环形永磁体和环形永磁体的轴向宽度相同;优选地,位于相同轴向位置上、下对应的部分环形永磁体和环形永磁体的径向厚度相同,这样可将干扰外的经常承载变为零,可以大大减少摩擦、磨损,延长使用寿命,特别用在高速机械上可使电机、泵等体积大大缩小。优选地,三个部分环形永磁体大小尺寸相同,即,沿轴向紧密贴合的各个部分环形永磁体的轴向宽度和径向厚度相同,三个环形永磁体也大小尺寸相同,即,沿轴向紧密贴合的各个环形永磁体的轴向宽度和径向厚度相同。当然,部分环形永磁体和环形永磁体可以是两个、四个或更多。所述定子拉推磁体31的导磁基体322在周向上与构成所述定子拉推磁体31的部分环形永磁体的匹配,也就是说,定子拉推磁体31的导磁基体322与定子拉推磁体31同为部分环形构件,定子拉推磁体31通过它固定在定子壳体1上,当本发明作为电机的轴承时,即是固定在电机壳体上。见图2,与所述定子拉推磁体31及其导磁基体322所构成的部分环形构件互补为环形筒体的补充环形构件33由非磁材料构成,这样,通过将定子拉推磁体31只设置在水平轴的上半部分,大大减小了其重量,而拉推磁路的设置大大增加了永磁悬浮轴承相对于支撑轴承的使用比重,根据轴和负载的重量,通过调节径向间隙d的大小以获得与轴和负载的重量相同的永磁悬浮力,从而可以形成对整个水平轴2的微摩擦或无摩擦悬浮,这样支撑轴承只在有扰动时起支撑作用。
两拉推磁体的导磁基体322在轴向的长度均等于其所固定的两拉推磁体31、32的轴向长度,这样能保证形成完整的工作磁路,增强永磁悬浮力。
优选地,构成所述定子拉推磁体的部分环形永磁体的圆心角为100°——160°之间。所述圆心角优选为120°。
见图3所述永磁悬浮轴承为两个,分别沿轴向间隔设置在一个所述支撑轴承两侧。
图4所述支撑轴承为两个,分别沿轴向间隔设置在一个所述永磁悬浮轴承的两侧。
所述导磁基体为A3钢等软磁材料。定子壳体1为不锈钢等非磁材料,仅作为支点的支 撑轴承4可以采用油润滑轴承,也可采用自润滑陶瓷轴承。用方向向上的磁吸引力平衡轴承负荷,从而轴承上的正压力为零,形成微摩擦或无摩擦,大大减少能耗,也无磨损,轴承可免维修,因为摩擦力减至1/50,就可延长轴承寿命50倍,可以不换轴承。本发明相对于现有磁悬浮轴承,成本极为低廉,生产、安装非常方便,可广泛地用于各行各业水平轴传动的领域,极大提高这些领域的生产效率,提高工作转速,从而大大减小体积,大大降低生产成本,极大提高社会经济效益。

Claims (16)

  1. 有支点微摩擦或无摩擦径向永磁悬浮轴承,包括设置在水平轴上作为支撑支点的支撑轴承,和设置在水平轴上与支撑轴承间隔轴向距离的永磁悬浮轴承,所述永磁悬浮轴承包括通过导磁基体设置在定子壳体上的定子拉推磁体和对应通过环形导磁基体设置在水平轴上、与所述定子拉推磁体具有径向间隙并形成轴向拉推磁路的转子拉推磁体,所述转子拉推磁体由两个或两个以上在轴向紧密贴合设置且磁极沿轴向交替分布的环形永磁体构成,所述定子拉推磁体由设置在水平轴轴心所在水平面之上、对称于水平轴竖直中垂面的、由两个或两个以上在轴向紧密贴合设置且磁极沿轴向交替分布的部分环形永磁体构成,且相同轴向位置上、下对应的部分环形永磁体和环形永磁体的极性相反,所述径向间隙在两拉推磁体磁力的有效作用范围内;所述定子拉推磁体的导磁基体在周向上与构成所述定子拉推磁体的部分环形永磁体匹配,与所述定子拉推磁体及其导磁基体所构成的部分环形构件互补为环形筒体的补充环形构件由非磁材料构成。
  2. 根据权利要求1所述的有支点微摩擦或无摩擦径向永磁悬浮轴承,其特征在于位于相同轴向位置上、下对应的部分环形永磁体和环形永磁体的轴向宽度相同。
  3. 根据权利要求1或2所述的所述的有支点微摩擦或无摩擦径向永磁悬浮轴承,其特征在于位于相同轴向位置上、下对应的部分环形永磁体和环形永磁体的径向厚度相同。
  4. 根据权利要求1-3之一所述的有支点微摩擦或无摩擦径向永磁悬浮轴承,其特征在于两拉推磁体的导磁基体在轴向的长度均等于其所固定的两所述拉推磁体的轴向长度。
  5. 根据权利要求1-4之一所述的有支点微摩擦或无摩擦径向永磁悬浮轴承,其特征在于构成所述定子拉推磁体的部分环形永磁体的圆心角为100°——160°之间。
  6. 根据权利要求5所述的有支点微摩擦或无摩擦径向永磁悬浮轴承,其特征在于所述圆心角为120°。
  7. 根据权利要求1-6之一所述的有支点微摩擦或无摩擦径向永磁悬浮轴承,其特征在于所述支撑轴承为两个,分别沿轴向间隔设置在一个所述永磁悬浮轴承的两侧。
  8. 根据权利要求1-6之一所述的有支点微摩擦或无摩擦径向永磁悬浮轴承,其特征在于所述永磁悬浮轴承为两个,分别沿轴向间隔设置在一个所述支撑轴承两侧。
  9. 根据权利要求1-8之一所述的有支点微摩擦或无摩擦径向永磁悬浮轴承,其特征在于所述环形永磁体和对应的部分环形永磁体分别为三个或四个。
  10. 根据权利要求1-9之一所述的有支点微摩擦或无摩擦径向永磁悬浮轴承,其特征在于所述导磁基体为软磁材料,优选为A3钢。
  11. 根据权利要求1-10之一所述的有支点微摩擦或无摩擦径向永磁悬浮轴承,其特征在于所述沿轴向紧密贴合的各个部分环形永磁体的轴向宽度和径向厚度相同,所述沿轴向紧密 贴合的各个环形永磁体的轴向宽度和径向厚度相同。
  12. 永磁悬浮轴承,包括通过导磁基体设置在定子壳体上的定子拉推磁体和对应通过环形导磁基体设置在水平轴上、与所述定子拉推磁体具有径向间隙并形成轴向拉推磁路的转子拉推磁体,其特征在于所述转子拉推磁体由两个或两个以上在轴向紧密贴合设置且磁极沿轴向交替分布的环形永磁体构成,所述定子拉推磁体由设置在水平轴轴心所在水平面之上、对称于水平轴竖直中垂面的、由两个或两个以上在轴向紧密贴合设置且磁极沿轴向交替分布的部分环形永磁体构成,且相同轴向位置上、下对应的部分环形永磁体和环形永磁体的极性相反,所述径向间隙在两拉推磁体磁力的有效作用范围内;所述定子拉推磁体的导磁基体在周向上与构成所述定子拉推磁体的部分环形永磁体匹配,与所述定子拉推磁体及其导磁基体所构成的部分环形构件互补为环形筒体的补充环形构件由非磁材料构成。
  13. 根据权利要求12所述的有支点微摩擦或无摩擦径向永磁悬浮轴承,其特征在于位于相同轴向位置上、下对应的部分环形永磁体和环形永磁体的轴向宽度相同。
  14. 根据权利要求12或13所述的所述的有支点微摩擦或无摩擦径向永磁悬浮轴承,其特征在于位于相同轴向位置上、下对应的部分环形永磁体和环形永磁体的径向厚度相同。
  15. 根据权利要求12-14之一所述的永磁悬浮轴承,其特征在于两拉推磁体的导磁基体在轴向的长度均等于其所固定的两所述拉推磁体的轴向长度。
  16. 根据权利要求12-15之一所述的有支点微摩擦或无摩擦径向永磁悬浮轴承,其特征在于构成所述定子拉推磁体的部分环形永磁体的圆心角为100°——160°之间。
PCT/CN2014/095478 2013-12-30 2014-12-30 有支点微摩擦或无摩擦径向永磁悬浮轴承 WO2015101276A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/108,958 US20170023057A1 (en) 2013-12-30 2014-12-30 Radial permanent magnetic suspension bearing having micro-friction or no friction of pivot point
EP14877470.6A EP3096030A4 (en) 2013-12-30 2014-12-30 Pivoting micro-friction or friction-free radial permanent magnet floating bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310743494.8 2013-12-30
CN201310743494.8A CN104747596B (zh) 2013-12-30 2013-12-30 有支点无摩擦径向永磁悬浮轴承

Publications (1)

Publication Number Publication Date
WO2015101276A1 true WO2015101276A1 (zh) 2015-07-09

Family

ID=53493239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095478 WO2015101276A1 (zh) 2013-12-30 2014-12-30 有支点微摩擦或无摩擦径向永磁悬浮轴承

Country Status (4)

Country Link
US (1) US20170023057A1 (zh)
EP (1) EP3096030A4 (zh)
CN (1) CN104747596B (zh)
WO (1) WO2015101276A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106321631B (zh) * 2016-09-12 2019-06-14 南京科技职业学院 一种五自由度磁悬浮轴承系统
US11555679B1 (en) 2017-07-07 2023-01-17 Northrop Grumman Systems Corporation Active spin control
CN109421914A (zh) * 2017-08-30 2019-03-05 深圳市道通智能航空技术有限公司 可折叠的机架和无人机
US11578956B1 (en) 2017-11-01 2023-02-14 Northrop Grumman Systems Corporation Detecting body spin on a projectile
CN112005022B (zh) * 2018-02-15 2022-06-03 贝甘技术股份公司 用于能量储存的大型飞轮
CN108980206A (zh) * 2018-09-29 2018-12-11 王文学 全永磁动态全悬浮轴承
CN109281937B (zh) * 2018-12-02 2023-10-27 迈格钠磁动力股份有限公司 一种永磁悬浮轴承转子
CN109281938B (zh) * 2018-12-02 2023-10-24 迈格钠磁动力股份有限公司 一种设置磁体防护结构的永磁悬浮轴承
CN109296640A (zh) * 2018-12-02 2019-02-01 迈格钠磁动力股份有限公司 一种高承载能力的永磁悬浮轴承
CN110242669B (zh) * 2019-06-20 2024-01-26 迈格钠磁动力股份有限公司 一种永磁辅助支撑型水润滑轴承和海洋运输设备
CN110626478A (zh) * 2019-08-30 2019-12-31 湖南高精特电装备有限公司 一种潜水浮力装备
CN110606176A (zh) * 2019-09-02 2019-12-24 湖南高精特电装备有限公司 一种潜水水下推进器
CN110894854B (zh) * 2019-09-25 2021-06-04 北京工业大学 一种集成永磁悬浮的重载气浮主轴
US11573069B1 (en) 2020-07-02 2023-02-07 Northrop Grumman Systems Corporation Axial flux machine for use with projectiles
CN112546425B (zh) * 2020-10-29 2021-07-23 苏州心擎医疗技术有限公司 磁悬浮马达和磁悬浮血泵
CN113819143B (zh) * 2021-09-30 2023-12-22 北京京冶轴承股份有限公司 一种高速列车转向架混合支撑装置以及转向架
CN114607704B (zh) * 2022-04-01 2023-08-04 李国坤 一种径向永磁悬浮轴承

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86100495A (zh) * 1985-02-04 1986-10-01 斯克弗·诺瓦有限公司 一种带有推力轴承的设备
CN1350128A (zh) * 2000-10-25 2002-05-22 李国坤 磁悬浮轴承
US20050140228A1 (en) * 2003-12-25 2005-06-30 Delta Electronics, Inc. Magnetic bearing system
CN101979888A (zh) * 2010-10-06 2011-02-23 潘家烺 能与普通转轴轴承组合消除轴承承载力的永磁能悬浮轴承
CN202001498U (zh) * 2011-01-11 2011-10-05 张平 一种永磁悬浮轴承及其安装结构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3614181A (en) * 1970-07-02 1971-10-19 Us Air Force Magnetic bearing for combined radial and thrust loads
JPS49104536U (zh) * 1972-12-27 1974-09-07
US5182533A (en) * 1991-10-11 1993-01-26 Csd, Inc. Magnetically levitated spinning axel display apparatus
US5506459A (en) * 1995-09-15 1996-04-09 Ritts; Gary Magnetically balanced spinning apparatus
US6657344B2 (en) * 2001-09-05 2003-12-02 The Regents Of The University Of California Passive magnetic bearing for a horizontal shaft
US6861778B2 (en) * 2003-02-28 2005-03-01 Valentin M. Izraelev System for passive and stable suspension of a rotor in rotor/stator assemblies
CN102042169A (zh) * 2009-10-14 2011-05-04 卓向东 多层反吸磁悬浮风力发电机
CN102052402B (zh) * 2009-10-30 2013-06-19 张平 一种永磁悬浮轴承和永磁悬浮轴承组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86100495A (zh) * 1985-02-04 1986-10-01 斯克弗·诺瓦有限公司 一种带有推力轴承的设备
CN1350128A (zh) * 2000-10-25 2002-05-22 李国坤 磁悬浮轴承
US20050140228A1 (en) * 2003-12-25 2005-06-30 Delta Electronics, Inc. Magnetic bearing system
CN101979888A (zh) * 2010-10-06 2011-02-23 潘家烺 能与普通转轴轴承组合消除轴承承载力的永磁能悬浮轴承
CN202001498U (zh) * 2011-01-11 2011-10-05 张平 一种永磁悬浮轴承及其安装结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3096030A4 *

Also Published As

Publication number Publication date
EP3096030A1 (en) 2016-11-23
CN104747596B (zh) 2017-06-30
EP3096030A4 (en) 2017-11-15
CN104747596A (zh) 2015-07-01
US20170023057A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
WO2015101276A1 (zh) 有支点微摩擦或无摩擦径向永磁悬浮轴承
CN101979888B (zh) 能与普通转轴轴承组合消除轴承承载力的永磁能悬浮轴承
CN201818660U (zh) 永磁径向轴承
CN204572784U (zh) 一种并联式永磁磁悬浮轴承
CN102537047B (zh) 一种预载荷径向永磁轴承
CN203702863U (zh) 径向斥力永磁悬浮轴承
CN110332235B (zh) 一种被动式永磁斥力型磁轴承结构
WO2015067191A1 (zh) 有支点微摩擦或无摩擦轴向永磁悬浮轴承
CN203362830U (zh) 轴向单向推力永磁悬浮轴承
CN205190530U (zh) 一种无支点、无摩擦永磁磁悬浮轴承
CN100458198C (zh) 一种自适应转子重量的永磁推力轴承
CN101825140A (zh) 一种永磁悬浮轴承
CN108547868B (zh) 一种半自由度的径向充磁的混合型轴向磁轴承
CN201874992U (zh) 永磁能悬浮轴承
CN108506343B (zh) 一种半自由度的轴向充磁的混合型轴向磁轴承
CN104930056A (zh) 具有径向轴向两种悬浮功能的磁悬浮轴承
CN202220798U (zh) 一种半静磁磁悬浮卧式轴承
CN100547900C (zh) 磁悬浮风力发电机
CN200982348Y (zh) 自适应转子重量的永磁推力轴承
CN201386741Y (zh) 非平衡磁悬浮轴承
CN108953376B (zh) 一种永磁体在转子上的半自由度混合型轴向磁轴承
CN201412450Y (zh) 非平衡磁力悬浮轴承
CN202270984U (zh) 预载荷永磁轴承支承的电主轴
CN105275991B (zh) 一种电网发电机用新型自稳定被动磁轴承
CN202674017U (zh) 非平衡磁轴承

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014877470

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014877470

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15108958

Country of ref document: US