WO2015100961A1 - 调光方法、调光装置及计算机存储介质 - Google Patents

调光方法、调光装置及计算机存储介质 Download PDF

Info

Publication number
WO2015100961A1
WO2015100961A1 PCT/CN2014/080227 CN2014080227W WO2015100961A1 WO 2015100961 A1 WO2015100961 A1 WO 2015100961A1 CN 2014080227 W CN2014080227 W CN 2014080227W WO 2015100961 A1 WO2015100961 A1 WO 2015100961A1
Authority
WO
WIPO (PCT)
Prior art keywords
length
msdu
light source
physical layer
mpdu
Prior art date
Application number
PCT/CN2014/080227
Other languages
English (en)
French (fr)
Inventor
吕宁
支周
禹忠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/108,630 priority Critical patent/US9716550B2/en
Priority to EP14876388.1A priority patent/EP3091701B1/en
Publication of WO2015100961A1 publication Critical patent/WO2015100961A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks

Definitions

  • the present invention relates to dimming technology in the field of optical communications, and more particularly to a dimming method, a dimming device, and a computer storage medium. Background technique
  • Visible Light Communication (VLC) technology is a technique for short-range optical wireless communication using an optical medium having a wavelength of 400 nm (nm) to 700 nm visible to the naked eye.
  • VLC Visible Light Communication
  • the advantages associated with radio frequency interference (RF, Radio Frequency) system does not exist, and its spectrum is unlicensed spectrum use (Unlicensed Spectrum) 0 for data transmission using visible light, the transmission
  • the visible light source for example, a light emitting diode
  • the visible light source can be quickly turned on and off or the brightness of the visible light source can be modulated; at the receiving end, after receiving the modulated optical signal, it is converted into data that can be processed by the receiving end.
  • the transmitting end uses the idle pattern in the idle/receive state, that is, the dimming is realized by independently transmitting the frame for adjusting the brightness of the light, but the method lacks a specific implementation scheme for realizing the dimming function;
  • dimming is performed using an idle mode closely related to the modulation scheme and the channel coding scheme. This method can only adjust the brightness of the light source to a given amplitude, and cannot brighten the light source. Smooth adjustment of the degree, the flexibility of dimming is not enough. Summary of the invention
  • Embodiments of the present invention provide a dimming method and a dimming device, which ensure a light source without flicker while realizing a communication function, and realize a dimming in a visible light communication system that is flexible according to user requirements.
  • the embodiment of the invention provides a dimming method, and the method includes:
  • the MAC Service Data Unit (MSDU) is divided into a plurality of sub-MSDUs of equal length; the divided sub-MSDUs are respectively encapsulated into independent MAC protocol data.
  • MPDU MAC Protocol Data Unit
  • CF Cosmetic Frame
  • the MPDU and the CF are aggregated into a Physical Layer Service Data Unit (PSDU) in a Physical Layer Protocol Data Unit (PPDU), and the PPDU is transmitted.
  • PSDU Physical Layer Service Data Unit
  • PPDU Physical Layer Protocol Data Unit
  • An embodiment of the present invention further provides a dimming device, where the dimming device includes:
  • the splitting unit is configured to split the MSDU into a plurality of sub-MSDUs of equal length at the MAC layer, and the compensating unit is configured to encapsulate the divided sub-MSDUs into respective independent MPDUs, and according to the target luminance values of the light source respectively Each MPDU generates a CF;
  • An aggregation unit configured to aggregate the MPDU and the PSDU with the CF as a PPDU; and an optical driving unit configured to transmit the PPDU.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the dimming method described above.
  • the dimming technical solution adopted in the embodiment of the present invention is independent of the data transmission
  • the modulation mode and channel coding scheme used are encapsulated in the MPDU in the divided sub-MSDUs in the MAC layer, and the compensation frame in each MPDU includes the target luminance information of the light source, which can generate corresponding target luminances of different light sources.
  • the compensation is true, which overcomes the defect that the related technology can only perform the brightness adjustment of the predetermined amplitude, and realizes the smooth adjustment of the brightness of the light source, and the dimming is flexible.
  • FIG. 1 is a schematic flowchart 1 of an implementation process of a dimming method according to an embodiment of the present invention
  • FIG. 2 is a second schematic diagram of an implementation process of a dimming method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a frame structure of a MAC layer and a physical layer of the IEEE 802.15.7 standard
  • FIG. 4 is a schematic structural diagram of a PPDU according to an embodiment of the present invention
  • Figure 5 is a schematic diagram of a color/visible/dimming (CVD) frame structure in the IEEE 802.15.7 standard;
  • FIG. 6 is a schematic structural diagram of a dimming device according to an embodiment of the present invention. detailed description
  • the dimming method described in the embodiment of the present invention includes the following steps:
  • Step 101 In the Media Access Control (MAC) layer, split the MAC Data Service Unit (MSDU) into a plurality of sub-MSDUs of equal length.
  • MAC Media Access Control
  • MSDU MAC Data Service Unit
  • Step 102 Each of the divided sub-MSDUs is respectively encapsulated into mutually independent MAC Protocol Data Units (MPDUs), and a compensation frame (CF, respectively) is generated for the MPDUs according to a target value of the brightness of the light source. Compensatory Frame ).
  • MPDUs MAC Protocol Data Units
  • CF compensation frame
  • Step 103 The physical layer in the Physical-layer Protocol Data Unit (PPDU) is aggregated according to the MPDU and the CF corresponding to the MPDU.
  • Step 104 Transmit the generated PPDU.
  • the method before the splitting of the MSDU into a plurality of sub-MSDUs of equal length, the method further includes:
  • the length of the MSDU is determined to be less than or equal to the difference between the maximum data length and the physical layer overhead length, and the MAC layer overhead length.
  • the maximum data length is a product of a period T and a data rate of the link, and the period T is a reciprocal of a CFF (CFF).
  • the method when the length of the MSDU is greater than a maximum data length and a difference between a physical layer overhead length and a MAC layer overhead length, the method further includes:
  • the MSDU is re-segmented into a plurality of sub-MSDUs of equal length until it is determined that the length of the obtained sub-MSDU is less than or equal to the difference between the maximum data length and the physical layer overhead length, and the MAC layer overhead length.
  • the generating a CF for each MPDU according to a target brightness value of the light source includes:
  • CF is generated for each MPDU according to the target brightness value of the light source.
  • generating CF for each MPDU according to the target brightness value of the light source includes:
  • the target brightness value of the light source " c . rf" indicates the number of "1" in the overhead cost portion, indicating the number of "1” in the MSDU, " CF indicates the number of "1” in the CFD; ze c .
  • the length of the cost part, zeM c / represents the length of the MSDU, ⁇ ⁇ ⁇ represents the length of the CF; the cost includes a MAC layer header (MHR, MAC-layer HeadeR) field, a tail field of the MAC layer, physical Layer preamble field, physical layer header field, CF's header field, and padding (Pad) field.
  • MHR MAC layer header
  • MAC-layer HeadeR MAC-layer HeadeR
  • the method when determining that the actual brightness value of the light source is the same as the light source target brightness value, the method further includes: packaging the divided sub-MSDUs into respective independent MPDUs;
  • the MPDU is used as a PSDU part of the PPDU, and the PPDU is transmitted.
  • the MPDU is encapsulated as a data portion of the PPDU, and a PPDU encapsulating the MPDU is transmitted.
  • the method further includes:
  • the method when the determining that the length of the PSDU obtained by the aggregation is greater than the difference between the maximum data length and the physical layer overhead length, the method further includes:
  • the length of the PSDU obtained by the aggregation is less than or equal to the difference between the maximum data length and the physical layer overhead length, it indicates that the light source flicker problem that the user can feel does not occur during data transmission.
  • FIG. 2 is a schematic flowchart 2 of the implementation process of the dimming method according to the embodiment of the present invention.
  • the method includes the following steps: Step 201: Determine logical link control (LLC, Logical Link Control) number of sublayers According to the unit entering the MAC layer, it becomes the data part MSDU of the MPDU.
  • LLC Logical Link Control
  • step 202 is performed.
  • the MPDU transmitted at the MAC layer includes an MSDU as a data portion, and a MAC header and a Frame Check Sequence (FCS).
  • FCS Frame Check Sequence
  • Step 202 Determine whether the length of the MSDU is less than a difference between the maximum data length and the physical layer overhead length, and the MAC layer overhead length. If yes, go to step 203. Otherwise, go to step 210.
  • the difference between the maximum data length and the physical layer overhead length and the MAC layer overhead length refers to the difference between the maximum data length minus the physical layer overhead length and the MAC layer overhead length.
  • the maximum data length refers to the maximum data length that can be transmitted by the transmitting end of visible light communication in the period T, and is set to ⁇ . ⁇ , then ze, the value is shown in formula (1):
  • T is the reciprocal of CFF
  • raie is the data rate of the link
  • flicker critical fusion frequency is the lowest repetition frequency that does not cause flicker sensation
  • the length of the physical layer overhead refers to the sum of the length of the synchronization header (SHR, Synchronization HeadeR) and the length of the PHR field.
  • the length of the MAC layer overhead refers to the sum of the length of the MHR field and the FCS field of the MAC layer tail field.
  • Step 203 Determine whether the actual brightness value of the light source is equal to the light source target brightness value. If they are equal, perform step 204; otherwise, perform step 205.
  • Step 204 Transmit a PPDU.
  • the MPDU in step 201 is used as the data part of the PPDU, that is, the PSDU is encapsulated into the PPDU transmitted in the physical layer, and the PPDU is transmitted.
  • step 203 when the actual brightness value of the light source is equal to the target brightness value of the light source, it is not required The brightness value of the light source is adjusted. Therefore, when step 204 is performed, as shown in FIG. 3, the MPDU in step 201 is encapsulated as a data part (ie, PSDU) of the PPDU into the PPDU transmitted in the physical layer, and the PPDU further includes a preamble. Code and physical layer headers.
  • PSDU data part
  • Step 205 Determine the length of the aggregated MPDU (A-MPDU, Aggregated-MPDU) generated by the MSDU and the CF.
  • the A-MPDU is encapsulated into a data portion (ie, a PSDU) of the PPDU for transmission, and the MPDU (1) and the corresponding CF are used to aggregate the compensation frame with the data frame MSDU.
  • the data part of the PPDU (1) is aggregated, that is, PSDU (1), MPDU (2) and the corresponding CF (2) are aggregated into the data part of PPDU (1), namely PSDU (2), PPDU (1)
  • the PPDUs (2) include a corresponding Synchronization Header (SHR) field and a Physical-layer HeadR (PHR) field; the MPDU (1) and the MPDU (2) both include corresponding MHR fields, FCS fields, and Fill (Pad) field.
  • SHR Synchronization Header
  • PHR Physical-layer HeadR
  • the CFD in the CF is used to adjust the brightness of the light source.
  • the compensation frame CF is used to increase the brightness of the light source.
  • the CFD is the all "1" sequence, and the number of "1” represented by n-CF; when the actual luminance values of light sources is greater than the target luminance value, compensating for the lower light source luminance frame CF, when the frame data compensation section CFD all "0" sequence number "0" with n CF Representation; «
  • the relationship between CF and the target brightness value of the light source is shown in equation (2):
  • the parameter represents the target brightness target value of the light source
  • the parameter represents the number of "1” in the cost portion
  • " M3 ⁇ 4" C / represents the number of "1” in the MSDU
  • " CF represents the compensation The number of "1" in the frame data portion CFD
  • the cost represents the overhead other than the valid data, including the MHR field, the tail field SHR field of the MAC layer, the physical layer header field, the CF header field, and the Pad field
  • Indicates the length of the portion size MSDU indicates the length of the MSDU, «'ze CF indicates the length of CF
  • the Pad is used to align the 32-bit word boundary, consisting of a sequence of "0", "1”
  • the adjustment of the brightness of the light source is achieved by a sequence of "1" or "0" of different lengths. Now, therefore, the brightness of the corresponding light source is supported for smooth adjustment, that is, the amplitude of each adjustment can be set according to actual needs.
  • the CF for dimming in the embodiment of the present invention may adopt a color/visible/dimming (CVD) frame format in the IEEE 802.15.7 standard.
  • the MHR field includes control of a CVD frame.
  • the FCS field contains the check information of the MACMHR
  • the data part field contains the data content of the CVD frame.
  • the MHR field and the FCS field of the CVD frame constitute a CF header (CFH, CF, Compensatory Frame Header), and the data portion field of the CVD frame corresponds to the data portion of the CF, that is, the CFD.
  • the determination of CFD in CF can be achieved by pre-setting all "1" and all "0" sequences of different lengths.
  • the preset sequence of the corresponding length is directly given to the compensation frame. If the length of the sequence does not match the length of the determined compensation frame, the data portion of the determined compensation frame can be obtained by combining the preset sequences. For example: Pre-set all the "1" sequences with lengths of 100, 200 and 400 bits.
  • CFD can also be generated. The length is 300 (ie, 200 in 200 positions), 500 ( ⁇ 100 in 400), 600 ( ⁇ 200 in 400) and 700 (ie, 100 plus 200 plus 400) ) CF all " ⁇ , sequence.
  • Step 206 Determine whether the length of the A-MPDU is less than a difference between the maximum data length and the physical layer overhead length. If yes, go to step 209; otherwise, go to step 207.
  • the compensation frame length ze CF calculated by the formula (2) also needs to satisfy the following formula:
  • Equation (3) defines the maximum data length that can be transmitted each time when using compensation frame CF dimming. If formula (3) is not satisfied, a problem of light source flicker that the user can feel is transmitted when the PPDU is transmitted. This indicates that when the length of the A-MPDU is greater than the difference between the maximum data length ⁇ e M ⁇ c/ and the physical layer overhead length, the length of the MSDU or the sub-MSDU is too large and needs to be split. MSDU, or re-segmenting the MSDU to a shorter MSDU of shorter length.
  • Step 207 Split the MSDU into multiple sub-MSDUs of equal length.
  • Step 208 Determine whether the length of the sub-MSDU is less than a difference between the maximum data length and the physical layer overhead length, and the MAC layer overhead length. If yes, go to step 205; otherwise, go to step 207.
  • the length of the sub-MSDU obtained by dividing the MSDU is shorter than the length of the sub-MSDU obtained by dividing the MSDU, that is, when the m-th execution of step 207 is performed, the division of the MSDU is ⁇
  • the MSDU is divided into sub-MSDUs of equal length at the nth execution of step 207, and when m is smaller than n, tn is greater than t m .
  • Step 209 transmitting a PPDU.
  • the obtained sub-MSDUs are respectively encapsulated into independent MPDUs, and respectively generate compensation frames for each MPDU;
  • the aggregated MPDU and the compensated frame are A-MPDUs, and the A-MPDU is used as the data part of the PPDU ( That is, PSDU), and transmit PPDUs.
  • the MSDU of step 201 is divided into the MSDU (1) and the MSDU (2) shown in FIG. 4, and the length of the A-MPDU generated by the aggregation in step 20 is less than the difference between the maximum data length and the physical layer overhead length.
  • the PPDU (1) and the PPDU shown in FIG. 4 are transmitted (2 1
  • the A-MPDU is encapsulated into a data portion (ie, PSDU) of the PPDU, and the PPDU is transmitted.
  • Step 210 Split the MSDU into multiple sub-MSDUs of equal length.
  • Step 211 Determine whether the length of the sub-MSDU is less than a difference between the maximum data length and the physical layer overhead length, and the MAC layer overhead length. If yes, perform step 212; otherwise, execute According to 210.
  • the step 210 when the result of the determination in step 211 is no, when the step 210 is re-executed, the length of the sub-MSDU obtained by dividing the MSDU is shorter than the length of the sub-MSDU obtained by dividing the MSDU, that is, the MSDU is split into ⁇ when the mth execution is performed in step 210.
  • the MSDU is split into sub-MSDUs of equal length at the nth execution of step 210, and when m is smaller than n, tn is greater than t m .
  • Step 212 Determine whether the actual brightness value of the light source is equal to the light source target brightness value. If they are equal, perform step 213; otherwise, perform step 214.
  • Step 213 Transmit a PPDU.
  • the brightness value of the light source does not need to be adjusted, so that the sub-MSDUs obtained in the last step 210 are respectively packaged into independent MPDUs, without generating for each MPDU. Compensating the frame; using the encapsulated MPDU as the PSDU part of the PPDU and transmitting the PPDU.
  • Step 214 Determine a length of the A-MPDU generated according to the aggregation between the MSDU and the CF.
  • Step 215 Determine whether the length of the A-MPDU is less than a difference between the maximum data length and the physical layer overhead length. If yes, go to step 216; otherwise, go to step 217.
  • the length of the A-MPDU is less than the difference between the maximum data length and the physical layer overhead length, it means that when the A-MPDU is transmitted as the data part of the PPDU and the PSDU, there is no problem that the human eye can detect the flicker of the light source.
  • Step 216 transmitting a PPDU.
  • the A-MPDU is used as the data portion of the PPDU (ie, PSDU), and the PPDU is transmitted.
  • Step 217 The MSDU is divided into a plurality of sub-MSDUs of equal length, and step 215 is performed. The length of the MSDU obtained by dividing the MSDU in step 217 is smaller than the length of the MSDU obtained by dividing the MSDU before step 217, and when the step 217 is repeatedly performed, the length of the sub-MSDU obtained in step 217 is smaller than before.
  • step 217 the result The length of the sub-MSDU to be obtained, until the obtained sub-MSDU is aggregated with the corresponding CF to obtain the A-MPDU, the length of the A-MPDU is smaller than the difference between the maximum data length and the physical layer overhead length to ensure that the A-MPDU is to be used.
  • the data portion (ie, PSDU) of the PPDU is transmitted, the phenomenon that the light source flickers does not occur.
  • the embodiment of the invention further describes a computer readable medium, wherein the computer readable medium stores computer executable instructions, wherein the computer executable instructions are used to perform the dimming method shown in FIG. 1, or perform the method of FIG. The dimming method shown.
  • the dimming device may be disposed in a transmitting end of a visible light communication system, or may be disposed in a device independent of the transmitting end, as shown in FIG.
  • the dimming device includes:
  • the splitting unit 10 is configured to, at the MAC layer, split the MSDU into multiple sub-MSDUs of equal length;
  • the compensation unit 20 is configured to encapsulate the divided sub-MSDUs into separate MPDUs, and generate CFs for each MPDU according to the target luminance values of the light sources;
  • the aggregation unit 30 is configured to aggregate the MPDU and the PSDU whose CF is a PPDU.
  • the optical driving unit 40 is configured to transmit the PPDU.
  • the dimming device further includes:
  • the determining unit 50 is configured to trigger the dividing unit 10 when determining that the length of the MSDU is less than or equal to the maximum data length and the difference between the physical layer overhead length and the MAC layer overhead length.
  • the maximum data length is the product of the period T and the data rate of the link, and the period T is the reciprocal of the CFF.
  • the determining unit 50 is further configured to trigger the splitting unit 10 to re-segment the MSDU when determining that the length of the MSDU is greater than a maximum data length and a difference between a physical layer overhead length and a MAC layer overhead length. For multiple sub-MSDUs of equal length, up to the true The length of the obtained sub-MSDU is less than or equal to the difference between the maximum data length and the physical layer overhead length, and the MAC layer overhead length;
  • the dividing unit 10 is further configured to re-segment the MSDU into multiple sub-MSDUs of equal length
  • the compensation unit 20 is further configured to: when determining that the actual brightness value of the light source is different from the light source target brightness value, generate CF for each MPDU according to the target brightness value of the light source.
  • the compensation unit 20 is further configured to determine the length of the sequence of the data portion CFD of the CF according to the following formula: CF : + SlZe cp
  • n MSDU indicates the number of "1”s in the MSDU
  • CF indicates the number of "1”s in the CFD
  • ze c . rf Representing the length of the "wi portion, e M3 ⁇ 4" C / represents the length of the MSDU, " ⁇ indicates the length of the CF;
  • the cost includes the MHR field, the tail field of the MAC layer, the physical layer preamble field, Physical layer header field, CF header field, and Pad field.
  • the dimming device further includes:
  • the encapsulating unit 60 is configured to package the divided sub-MSDUs into respective independent MPDUs when the compensation unit 20 determines that the actual brightness value of the light source is the same as the brightness value of the light source target;
  • the optical driving unit 40 is further configured to use the MPDU as a PSDU part of the PPDU, and transmit the PPDU.
  • the determining unit 50 is further configured to determine, after the aggregation unit 30 aggregates the MPDU and the CF is a PSDU of the PPDU, that the length of the aggregated PSDU is less than or equal to the maximum data length and physical layer overhead. The difference in length.
  • the determining unit 50 is further configured to: when it is determined that the length of the PSDU obtained by the aggregation unit 30 is greater than a difference between the maximum data length and the physical layer overhead length,
  • the dividing unit 10 is configured to re-segment the MSDU into a plurality of sub-MSDUs of equal length, until the sub-MSDU obtained by the aggregation unit 30 according to the dividing unit 10, and according to the CF generated corresponding to the MSDU,
  • the aggregated PSDU is less than or equal to the difference between the maximum data length and the physical layer overhead length.
  • the modules in the dimming device can be implemented by a CPU, a processor, or a field programmable logic array (FPGA) in the dimming device.
  • FPGA field programmable logic array
  • the dimming technical solution adopted in the embodiment of the present invention is encapsulated in the MPDU in the divided sub-MSDU in the MAC layer, and the compensation frame in each MPDU includes the target luminance information of the light source. It is possible to generate the corresponding compensation true for the target brightness of different light sources, overcome the defect that the related technology can only perform the brightness adjustment of the predetermined amplitude, and realize the smooth adjustment of the brightness of the light source, and the dimming is flexible.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware aspects. Moreover, the invention can take the form of a computer program product embodied on one or more computer usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • These computer program instructions can also be stored in a bootable computer or other programmable data processing
  • the apparatus is readable in a computer readable memory in a particular manner, such that instructions stored in the computer readable memory produce an article of manufacture comprising an instruction device implemented in one or more flows and/or block diagrams of the flowchart The function specified in the box or in multiple boxes.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

本发明实施例公开了一种调光方法、调光装置及计算机存储介质,所述方法包括:在介质访问控制(MAC)层,分割MAC数据服务单元(MSDU)为多个长度相等的子MSDU;将分割后的子MSDU分别封装到各自独立的MAC协议数据单元(MPDU)中,并根据光源的目标亮度值分别为各MPDU生成补偿帧(CF);聚合所述MPDU和所述CF为物理层协议数据单元(PPDU)的物理层服务数据单元(PSDU),并传输所述PPDU。

Description

调光方法、 调光装置及计算机存储介质 技术领域
本发明涉及光通信领域的调光技术, 尤其涉及一种调光方法、 调光装 置及计算机存储介质。 背景技术
可见光通信(VLC, Visible Light Communication )技术, 是指使用人 肉眼可见的、 波长在 400纳米( nm )到 700nm范围内的光介质进行短距离 光无线通信的技术。 VLC技术具有不受电磁干扰、不存在与射频( RF, Radio Frequency ) 系统相关的干扰等优点, 并且其所使用的频谱范围是免许可频 谱(Unlicensed Spectrum )0 使用可见光进行数据传输时, 在发送端, 可以 通过快速地打开和关闭可见光源 (例如, 发光二极管)或者对可见光源亮 度进行调制; 在接收端, 接收到经过调制的光信号之后, 将其转化为接收 端可以处理的数据。
在使用可见光进行通信时, 首先必须保证在实现数据传输的同时, 不 影响到用户对照明设备的正常使用。 这需要考虑以下两个问题: 一是实现 数据的传输功能; 二是在保证在光源没有闪烁的前提下, 支持对光源亮度 进行调节即调光( Dimming )。
相关技术中, 调光主要有以下两种方式:
1 )发送端在空闲 /接收状态下, 使用空闲模式( idle pattern ), 即通过独 立地发送用于调节光亮度的帧来实现调光, 但该方式缺乏实现调光功能的 具体实现方案;
2 )在物理层, 使用与调制方式和信道编码方案密切相关的空闲模式进 行调光, 这种方式只能对光源进行既定幅度的亮度调节, 无法对光源的亮 度进行平滑调节, 调光的灵活度不够。 发明内容
本发明实施例提供一种调光方法及调光装置, 在实现通信功能的同时 确保光源无闪烁, 又实现了灵活的、 才 据用户需求的可见光通信系统中的 调光。
本发明实施例的技术方案是这样实现的:
本发明实施例提供一种调光方法, 所述方法包括:
在介质访问控制 (MAC, Media Access Control )层, 分割 MAC数据 服务单元( MSDU, MAC Service Data Unit )为多个长度相等的子 MSDU; 将分割后的子 MSDU 分别封装到各自独立的 MAC 协议数据单元 ( MPDU, MAC Protocol Data Unit ) 中, 并才艮据光源的目标亮度值分别为 各 MPDU生成 卜偿帧 (CF, Compensatory Frame );
聚合所述 MPDU 和所述 CF 为物理层协议数据单元 ( PPDU , Physical-layer Protocol Data Unit ) 中的物理层服务数据单元 (PSDU , Physical-layer Service Data Unit ), 并传输所述 PPDU。
本发明实施例还提供一种调光装置, 所述调光装置包括:
分割单元,配置为在 MAC层,分割 MSDU为多个长度相等的子 MSDU; 补偿单元, 配置为将分割后的子 MSDU分别封装到各自独立的 MPDU 中, 并才 据光源的目标亮度值分别为各 MPDU生成 CF;
聚合单元, 配置为聚合所述 MPDU和所述 CF为 PPDU的 PSDU; 光驱动单元, 配置为传输所述 PPDU。
本发明实施例还提供一种计算机存储介质, 所述计算机存储介质中存 储有计算机可执行指令, 所述计算机可执行指令用于执行以上所述的调光 方法。
本发明实施例中所采用的调光的技术方案, 独立于数据传输时的所采 用的调制方式和信道编码方案 ,在 MAC层中分割后的子 MSDU中在 MPDU 中封装, 且每个 MPDU中补偿帧包括了光源的目标亮度信息, 这就可以不 同光源的目标亮度生成对应的补偿真, 克服了相关技术只能进行既定幅度 亮度调节的缺陷, 实现了对光源的亮度进行平滑调节, 调光灵活。 附图说明
图 1为本发明实施例中调光方法的实现流程示意图一;
图 2为本发明实施例中调光方法的实现流程示意图二;
图 3为 IEEE802.15.7标准的 MAC层和物理层的帧结构示意图; 图 4为本发明实施例中 PPDU的结构示意图;
图 5为 IEEE 802.15.7标准中的颜色 /可见 /调光(CVD, Color Visible Dimming ) 帧结构示意图;
图 6为本发明实施例中调光装置的组成结构示意图。 具体实施方式
下面结合附图及具体实施例对本发明作进一步详细说明, 需要说明的 是, 在不冲突的情况下, 本发明实施例及实施例中的特征可以相互组合。
如图 1所示, 本发明实施例记载的调光方法包括以下步驟:
步驟 101 , 在介质访问控制 (MAC, Media Access Control )层, 分割 MAC数据服务单元( MSDU, MAC Service Data Unit ) 为多个长度相等的 子 MSDU。
步驟 102,将每个分割后的子 MSDU分别对应封装到相互独立的 MAC 协议数据单元(MPDU, MAC Protocol Data Unit ) 中, 并根据光源亮度的 目标值分别为所述 MPDU生成补偿帧 ( CF, Compensatory Frame )。
步驟 103 , 才 据所述 MPDU和与所述 MPDU对应的 CF, 聚合生成物 理层协议数据单元 ( PPDU, Physical-layer Protocol Data Unit ) 中的物理层 服务数据单元(PSDU, Physical-layer Service Data Unit )0
步驟 104, 传输所生成的 PPDU。
在一个实施方式中,在 MAC层分割 MSDU为多个长度相等的子 MSDU 之前, 所述方法还包括:
确定所述 MSDU 的长度小于等于最大数据长度依次与物理层开销长 度、 以及 MAC层开销长度的差值。
在一个实施方式中, 所述最大数据长度为周期 T与链路的数据速率的 乘积 , 所述周期 T为闪烁临界融合频率( CFF , Critical Flicker Frequency ) 的倒数。
在一个实施方式中, 确定所述 MSDU的长度大于最大数据长度依次与 物理层开销长度、 以及 MAC层开销长度的差值时, 所述方法还包括:
重新分割所述 MSDU为多个长度相等的子 MSDU, 直至确定所得到的 子 MSDU的长度小于等于所述最大数据长度依次与物理层开销长度、 以及 MAC层开销长度的差值。
在一个实施方式中, 所述根据光源的目标亮度值分别为各 MPDU生成 CF, 包括:
确定光源实际亮度值与光源目标亮度值不同时, 根据光源的目标亮度 值分别为各 MPDU生成 CF。
在一个实施方式中, 所述确定光源实际亮度值与光源目标亮度值不同 时, 根据光源的目标亮度值分别为各 MPDU生成 CF, 包括:
根据下式确定所述 CF的数据部分( CFD , Compensatory Frame Data ) 的序列的长度《CF
ncost + nMSDU + nCF _
SlZecost + SlZeMSDU + S lZeCF
其中, 表示光源的目标亮度值, "crf表示开销 cost部分中 "1"的个数, 表示 MSDU中 "1"的个数, "CF表示 CFD中 "1"的个数; zec。 表示所 述 cost部分的长度, zeM c/表示所述 MSDU的长度, ^^^表示所述 CF 的长度; 所述 cost包括 MAC层首部 ( MHR, MAC-layer HeadeR )字段、 MAC层的尾部字段、 物理层前导码字段、 物理层首部字段、 CF 的首部字 段和填充(Pad ) 字段。
在一个实施方式中, 确定光源实际亮度值与光源目标亮度值相同时, 所述方法还包括: 将所述分割后的子 MSDU分别封装到各自独立的 MPDU 中;
将所述 MPDU作为 PPDU的 PSDU部分, 并传输所述 PPDU。
即, 将所述 MPDU作为 PPDU的数据部分进行封装, 并传输封装有所 述 MPDU的 PPDU。
在一个实施方式中,所述聚合所述 MPDU和所述 CF为 PPDU的 PSDU 之后, 所述方法还包括:
确定聚合得到的所述 PSDU的长度小于等于所述最大数据长度与物理 层开销长度的差值。
在一个实施方式中, 所述确定聚合得到的所述 PSDU的长度大于所述 最大数据长度与物理层开销长度的差值时, 所述方法还包括:
重新分割所述 MSDU为多个长度相等的子 MSDU, 直至根据所述得到 的子 MSDU、 以及才 据与所述 MSDU对应生成的 CF , 聚合得到的 PSDU 小于等于所述最大数据长度与物理层开销长度的差值。
由于聚合得到的所述 PSDU的长度小于等于最大数据长度与物理层开 销长度的差值时, 表示在数据传输时, 不会出现用户可以感觉到的光源闪 烁问题。
下面对本发明实施例提供的调光方法作进一步详细说明, 图 2为本发 明实施例中调光方法的实现流程示意图二, 如图 2所示, 包括以下步驟: 步驟 201 , 确定逻辑链路控制 (LLC, Logical Link Control )子层的数 据单元进入 MAC层 , 成为 MPDU的数据部分 MSDU。
即, 在 LLC子层的数据单元进入 MAC层, 成为 MPDU的数据部分 MSDU时, 执行步驟 202。
如图 3所示, 在 MAC层传输的 MPDU包括作为数据部分的 MSDU、 以及 MAC首部和帧校验序列 (FCS, Frame Check Sequence )。
步驟 202, 判断 MSDU的长度是否小于最大数据长度与物理层开销长 度、 以及 MAC层开销长度的差值, 如果是, 则执行步驟 203 , 否则, 执行 步驟 210。
最大数据长度与物理层开销长度、 以及 MAC层开销长度的差值是指, 将最大数据长度依次减去物理层开销长度、 以及 MAC层开销长度, 所得到 的差值。
所述最大数据长度是指, 在周期 T 内可见光通信的发送端可以传输的 最大数据长度, 设为 ζ 。χ, 则 ze,的数值如公式(1 )所示:
sizemax = Tx data _ rate ( 1 ) 公式(1 ) 中, T是 CFF的倒数, raie是链路的数据速率; 闪烁临 界融合频率是不引起闪烁感觉的最低重复频率;
所述物理层开销长度是指同步头 (SHR, Synchronization HeadeR ) 字 段长度、 PHR字段长度的加和, MAC层开销长度是指 MHR字段长度、 MAC 层尾部字段即 FCS字段的加和。
步驟 203 , 判断光源的实际亮度值是否与光源目标亮度值相等, 如果相 等, 则执行步驟 204; 否则, 执行步驟 205。
步驟 204, 传输 PPDU。
将步驟 201中的 MPDU作为 PPDU的数据部分, 即 PSDU封装到在物 理层传输的 PPDU中, 并传输 PPDU。
步驟 203 中, 当光源的实际亮度值与光源目标亮度值相等时, 不需要 对光源的亮度值进行调节, 从而, 执行步驟 204时, 如图 3所示, 将步驟 201 中的 MPDU作为 PPDU的数据部分(即 PSDU )封装到在物理层传输 的 PPDU中 , PPDU还包括前导码和物理层首部。
步驟 205 , 确定才 据 MSDU与 CF聚合生成的聚合 MPDU ( A-MPDU, Aggregated-MPDU ) 的长度。
将补偿帧与数据帧 MSDU聚合, 生成 A-MPDU的结构示意图如图 4 所示, 所述 A-MPDU封装入 PPDU的数据部分(即 PSDU )来进行传输, MPDU ( 1 )和对应的 CF ( 1 )聚合为 PPDU ( 1 )的数据部分, 即 PSDU ( 1 ), MPDU ( 2 )和对应的 CF ( 2 )聚合为 PPDU ( 1 )的数据部分, 即 PSDU ( 2 ), PPDU ( 1 )、 PPDU ( 2 )均包括对应的同步头( SHR, Synchronization HeadeR ) 字段、物理层首部( PHR, Physical-layer HeadR )字段; MPDU ( 1 )和 MPDU ( 2 ) 均包括对应的 MHR字段、 FCS字段和填充(Pad )字段。
CF 中的 CFD用于对光源的亮度进行调节, 当光源实际亮度值小于光 源目标亮度值时, 补偿帧 CF用于调高光源亮度, 此时 CFD为全" 1 "序列, "1"的数量用 nCF表示; 当光源实际亮度值大于光源目标亮度值时, 补偿帧 CF用于调低光源亮度, 此时的补偿帧数据部分 CFD为全" 0"序列, "0"的数 量用 nCF表示; «CF与光源的目标亮度值的关系如公式(2 )所示:
_ ( 2 ) + + SlZecp
公式(2 ) 中, 参数 表示光源的目标亮度目标值, 参数《 表示开销 ( cost )部分中 "1"的个数, 《M¾)C/表示 MSDU中 "1 "的个数, "CF表示补偿帧 数据部分 CFD中 "1 "的个数;所述 cost表示有效数据之外的开销,包括 MHR 字段、 MAC层的尾部字段 SHR字段、 物理层首部字段、 CF的首部字段和 Pad字段; ^„表示所述 部分的长度, sizeMSDU表示 MSDU的长度, «'zeCF表示 CF的长度; 所述 Pad用于对齐 32位字边界, 由" 0"、 "1 "序列组 成;由于本实施例中对光源亮度的调节是通过不同长度的 "1 "或" 0"序列来实 现的, 因此, 支持对应光源的亮度进行平滑调节, 即每次调节的幅度可以 根据实际需要设置。
本发明实施例中用于调光的 CF,可以采用 IEEE 802.15.7标准中的颜色 /可见 /调光(CVD, Color Visible Dimming )帧格式, 如图 5所示, MHR字 段包含 CVD帧的控制信息, FCS字段包含 MACMHR的校检信息, 数据部 分字段包含 CVD帧的数据内容。对照图 4, CVD帧的 MHR字段和 FCS字 段, 构成了 CF的首部(CFH, CF, Compensatory Frame Header ), CVD帧 的数据部分字段对应 CF的数据部分即 CFD。
CF中 CFD的确定,可以通过预先设置不同长度的全 "1"和全" 0"序列的 实现。 在生成 CF时, 直接将预设的相应长度的序列赋予补偿帧即可。 如果 序列的长度与所确定的补偿帧的长度不匹配, 可以通过对预设序列进行组 合, 以得到所确定的补偿帧的数据部分。 比如: 预先设置有长度为 100位、 200位和 400位的全 "1 "序列, 在生成补偿帧时, 除了可以生成 CFD长度为 100位、 200位和 400位的 CF外, 还可以生成 CFD长度为 300位(即 100 位力口 200位)、 500位 ( ^ 100位力口 400位)、 600位 ( ^ 200位力口 400位 ) 和 700位 (即 100位加 200位加 400位 ) 的 CF全 "Γ,序列。
步驟 206, 判断 A-MPDU的长度是否小于最大数据长度与物理层开销 长度的差值, 如果是, 则执行步驟 209; 否则, 执行步驟 207。
实际应用中, 由公式( 2 )计算得到的补偿帧长度 zeCF还需要满足如 下公式:
SizecoSt + SizeMSDU + S izeCF ≤ Sizemca ^ 3 ) 公式(3 ) 限定了在采用补偿帧 CF调光时, 每次可传输的最大数据长 度。 如果不满足公式(3 ), 在传输 PPDU时, 会出现用户可以感觉到的光 源闪烁问题。 这说明, 当 A-MPDU的长度大于最大数据长度 ^eM^c/与物 理层开销长度《 的差值时, MSDU或者子 MSDU的长度过大, 需要分割 MSDU, 或重新分割 MSDU为长度更短的子 MSDU。
步驟 207, 分割 MSDU为多个长度相等的子 MSDU。
步驟 208, 判断子 MSDU的长度是否小于最大数据长度与物理层开销 长度、 以及 MAC层开销长度的差值, 如果是, 则执行步驟 205; 否则, 执 行步驟 207。
当步驟 208的判断结果为否, 重新执行步驟 207时, 分割 MSDU得到 的子 MSDU的长度前次分割 MSDU得到的子 MSDU长度更短, 即, 当步 驟 207第 m次执行时 MSDU的分割为 ^个长度相等的子 MSDU,步驟 207 第 n次执行时 MSDU的分割为 个长度相等的子 MSDU, 则当 m小于 n 时, tn大于 tm
步驟 209, 传输 PPDU。
将最后一次执行步驟 207之后, 得到的子 MSDU分别封装到各自独立 的 MPDU 中, 并分别为各 MPDU生成补偿帧; 聚合 MPDU和补偿帧为 A-MPDU,将 A-MPDU作为 PPDU的数据部分 (即 PSDU ),并传输 PPDU。
例如, 当将步驟 201的 MSDU分割为图 4所示的 MSDU ( 1 )和 MSDU ( 2 )后, 且在步驟 20聚合生成的 A-MPDU的长度小于最大数据长度与物 理层开销长度的差值时,则在本步驟中,传输图 4所示的 PPDU( 1 )和 PPDU ( 2 1
当步驟 206中, A-MPDU的长度大于最大数据长度 ew与物理层开 销长度《 ^的差值时, 表示在数据传输时, 不会出现用户可以感觉到的光 源闪烁问题,从而,步驟 209中,将 A-MPDU封装入 PPDU的数据部分(即 PSDU ), 并传输 PPDU。
步驟 210, 分割 MSDU为多个长度相等的子 MSDU。
步驟 211 , 确定子 MSDU的长度是否小于最大数据长度与物理层开销 长度、 以及 MAC层开销长度的差值, 如果是, 则执行步驟 212; 否则, 执 行步據 210。
当步驟 211的判断结果为否, 重新执行步驟 210时, 分割 MSDU得到 的子 MSDU的长度前次分割 MSDU得到的子 MSDU长度更短, 即, 当步 驟 210第 m次执行时 MSDU的分割为 ^个长度相等的子 MSDU,步驟 210 第 n次执行时 MSDU的分割为 个长度相等的子 MSDU, 则当 m小于 n 时, tn大于 tm
步驟 212, 判断光源的实际亮度值是否与光源目标亮度值相等, 如果相 等, 则执行步驟 213; 否则, 执行步驟 214。
步驟 213 , 传输 PPDU。
当光源的实际亮度值与光源目标亮度值相等时, 不需要对光源的亮度 值进行调节, 从而, 将最后一次执行步驟 210得到的子 MSDU分别封装到 各自独立的 MPDU中, 无需为各 MPDU生成补偿帧; 将封装后的 MPDU 作为 PPDU的 PSDU部分, 并传输 PPDU。
步驟 214 , 确定根据 MSDU与 CF聚合生成的 A-MPDU的长度。
步驟 215, 判断 A-MPDU的长度是否小于最大数据长度与物理层开销 长度的差值, 如果是, 则执行步驟 216; 否则, 执行步驟 217。
当 A-MPDU的长度小于最大数据长度与物理层开销长度的差值时, 表 示将 A-MPDU作为 PPDU的数据部分及 PSDU传输时, 不会出现人眼能够 觉察的光源闪烁问题。
步驟 216, 传输 PPDU。
将 A-MPDU作为 PPDU的数据部分 (即 PSDU ), 传输所述 PPDU。 步驟 217, 分割 MSDU为多个长度相等的子 MSDU, 并执行步驟 215。 步驟 217中分割 MSDU所得到的 MSDU的长度,小于步驟 217之前分 割 MSDU所得到的 MSDU的长度, 并且, 当步驟 217重复执行时, 每次执 行步驟 217所得到的子 MSDU的长度, 均小于之前步驟 217执行时, 所得 到的子 MSDU 的长度, 直至所得到的子 MSDU 与对应的 CF 聚合得到 A-MPDU时, A-MPDU的长度小于最大数据长度与物理层开销长度的差值, 以确保将所述 A-MPDU作为 PPDU的数据部分(即 PSDU )进行传输时, 不会发生光源闪烁的现象。
本发明实施例还记载一种计算机可读介质, 所述计算机可读介质中存 储有计算机可执行指令, 所述计算机可执行指令用于执行图 1 所示的调光 方法, 或执行图 2所示的调光方法。
图 6为本发明实施例中调光装置的结构示意图, 所述调光装置可以设 置在可见光通信系统的发送端中, 也可以设置于独立于所述发送端的设备 中, 如图 6所示, 所述调光装置包括:
分割单元 10, 配置为在 MAC层, 分割 MSDU为多个长度相等的子 MSDU;
补偿单元 20 , 配置为将分割后的子 MSDU分别封装到各自独立的 MPDU中, 并根据光源的目标亮度值分别为各 MPDU生成 CF;
聚合单元 30, 配置为聚合所述 MPDU和所述 CF为 PPDU的 PSDU; 光驱动单元 40, 配置为传输所述 PPDU。
其中, 所述调光装置还包括:
确定单元 50, 配置为在确定所述 MSDU的长度小于等于最大数据长度 依次与物理层开销长度、 以及 MAC层开销长度的差值时, 触发所述分割单 元 10。
其中, 所述最大数据长度为周期 T与链路的数据速率的乘积, 所述周 期 T为 CFF的倒数。
其中, 所述确定单元 50, 还配置为在确定所述 MSDU的长度大于最大 数据长度依次与物理层开销长度、 以及 MAC层开销长度的差值时,触发所 述分割单元 10重新分割所述 MSDU为多个长度相等的子 MSDU, 直至确 定所得到的子 MSDU的长度小于等于所述最大数据长度依次与物理层开销 长度、 以及 MAC层开销长度的差值;
所述分割单元 10,还配置为重新分割所述 MSDU为多个长度相等的子 MSDU
其中, 所述补偿单元 20, 还配置为确定光源实际亮度值与光源目标亮 度值不同时, 根据光源的目标亮度值分别为各 MPDU生成 CF
其中, 所述补偿单元 20, 还配置为^^据下式确定所述 CF的数据部分 CFD的序列的长度" CF: + SlZecp
其中, "表示光源的目标亮度值, " 表示 cost部分中 "1"的个数, nMSDU 表示 MSDU中 "1"的个数, "CF表示 CFD中 "1"的个数; zecrf表示所述《wi 部分的长度, eM¾)C/表示所述 MSDU的长度, 《^^表示所述 CF的长度; 所述 cost包括 MHR字段、 MAC层的尾部字段、 物理层前导码字段、 物理 层首部字段、 CF的首部字段和 Pad字段。
其中, 所述调光装置还包括:
封装单元 60,配置为在所述补偿单元 20确定光源实际亮度值与光源目 标亮度值相同时, 将所述分割后的子 MSDU分别封装到各自独立的 MPDU 中;
所述光驱动单元 40,还配置为将所述 MPDU作为 PPDU的 PSDU部分, 并传输所述 PPDU
其中,所述确定单元 50,还配置为在所述聚合单元 30聚合所述 MPDU 和所述 CF为 PPDU的 PSDU之后 确定聚合得到的所述 PSDU的长度小于 等于所述最大数据长度与物理层开销长度的差值。
其中, 所述确定单元 50,还配置为在确定所述聚合单元 30聚合得到的 所述 PSDU的长度大于所述最大数据长度与物理层开销长度的差值时, 触 发所述分割单元 10, 重新分割所述 MSDU为多个长度相等的子 MSDU, 直 至所述聚合单元 30根据所述分割单元 10分割得到的子 MSDU、 以及根据 与所述 MSDU对应生成的 CF, 聚合得到的 PSDU小于等于所述最大数据 长度与物理层开销长度的差值。
实际应用中, 所述调光装置中的模块, 均可由所述调光装置中的 CPU、 处理器、 或现场可编程逻辑阵列 (FPGA ) 实现。
综上所述, 本发明实施例中所采用的调光的技术方案,在 MAC层中分 割后的子 MSDU中在 MPDU中封装, 且每个 MPDU中补偿帧包括了光源 的目标亮度信息, 这就可以不同光源的目标亮度生成对应的补偿真, 克服 了相关技术只能进行既定幅度亮度调节的缺陷, 实现了对光源的亮度进行 平滑调节, 调光灵活。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产品。 因此, 本发明可采用硬件实施例、 软件实施例、 或结 合软件和硬件方面的实施例的形式。 而且, 本发明可采用在一个或多个其 中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序 产品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程 图和 /或方框图中的每一流程和 /或方框、以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得 通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现 在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功 能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理 设备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存 储器中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个 流程或多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备 上, 使得在计算机或其他可编程设备上执行一系列操作步驟以产生计算机 实现的处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现 在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功 能的步驟。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种调光方法, 所述方法包括:
在介质访问控制 MAC层, 分割 MAC数据服务单元 MSDU为多个长 度相等的子 MSDU;
将分割后的子 MSDU 分别封装到各自独立的 MAC 协议数据单元
MPDU中, 并根据光源的目标亮度值分别为各 MPDU生成补偿帧 CF; 聚合所述 MPDU和所述 CF为物理层协议数据单元 PPDU的物理层服 务数据单元 PSDU, 并传输所述 PPDU。
2、 根据权利要求 1所述的方法, 其中, 在 MAC层分割 MSDU为多个 长度相等的子 MSDU之前, 所述方法还包括:
确定所述 MSDU 的长度小于等于最大数据长度依次与物理层开销长 度、 以及 MAC层开销长度的差值。
3、 根据权利要求 2所述的方法, 其中, 所述最大数据长度为周期 T与 链路的数据速率的乘积, 所述周期 T为闪烁临界融合频率 CFF的倒数。
4、根据权利要求 2所述的方法, 其中, 确定所述 MSDU的长度大于最 大数据长度依次与物理层开销长度、 以及 MAC层开销长度的差值时, 所述 方法还包括:
重新分割所述 MSDU为多个长度相等的子 MSDU, 直至确定所得到的 子 MSDU的长度小于等于所述最大数据长度依次与物理层开销长度、 以及 MAC层开销长度的差值。
5、 根据权利要求 4所述的方法, 其中, 所述根据光源的目标亮度值分 别为各 MPDU生成 CF, 包括:
确定光源实际亮度值与光源目标亮度值不同时, 根据光源的目标亮度 值分别为各 MPDU生成 CF。
6、 根据权利要求 5所述的方法, 其中, 所述确定光源实际亮度值与光 源目标亮度值不同时,根据光源的目标亮度值分别为各 MPDU生成 CF , 包 括:
根据下式确定所述 CF的数据部分 CFD的序列的长度 nCF: + SlZecp
其中, 表示光源的目标亮度值, "crf表示开销 cost部分中 "1"的个数, nMSDU 示 MSDU中 "1 "的个数, nCF表示 CFD中 "1"的个数; size cost表示所 述 cost部分的长度, zeM c/表示所述 MSDU的长度, ^^^表示所述 CF 的长度; 所述 cost包括 MAC层的首部 MHR字段、 MAC层的尾部字段、 物理层前导码字段、 物理层首部字段、 CF的首部字段和填充 Pad字段。
7、 根据权利要求 5所述的方法, 其中, 所述方法还包括:
确定光源实际亮度值与光源目标亮度值相同时, 将所述分割后的子 MSDU分别封装到各自独立的 MAC协议数据单元 MPDU中;
将所述 MPDU作为 PPDU的 PSDU部分, 并传输所述 PPDU。
8、 才 据权利要求 5所述的方法, 其中, 所述聚合所述 MPDU和所述 CF为 PPDU的 PSDU之后, 所述方法还包括:
确定聚合得到的所述 PSDU的长度小于等于所述最大数据长度与物理 层开销长度的差值。
9、根据权利要求 8所述的方法,其中,所述确定聚合得到的所述 PSDU 的长度大于所述最大数据长度与物理层开销长度的差值时, 所述方法还包 括:
重新分割所述 MSDU为多个长度相等的子 MSDU, 直至根据所述得到 的子 MSDU、 以及才 据与所述 MSDU对应生成的 CF , 聚合得到的 PSDU 小于等于所述最大数据长度与物理层开销长度的差值。
10、 一种调光装置, 所述调光装置包括:
分割单元, 配置为在介质访问控制 MAC层, 分割 MAC数据服务单元 MSDU为多个长度相等的子 MSDU;
补偿单元, 配置为将分割后的子 MSDU分别封装到各自独立的 MAC 协议数据单元 MPDU中,并根据光源的目标亮度值分别为各 MPDU生成补 偿帧 CF;
聚合单元, 配置为聚合所述 MPDU和所述 CF为物理层协议数据单元 PPDU的物理层服务数据单元 PSDU;
光驱动单元, 配置为传输所述 PPDU。
11、 根据权利要求 10所述的调光装置, 其中, 所述调光装置还包括: 确定单元, 配置为在确定所述 MSDU的长度小于等于最大数据长度依 次与物理层开销长度、以及 MAC层开销长度的差值时,触发所述分割单元。
12、 根据权利要求 11所述的调光装置, 其中, 所述最大数据长度为周 期 T与链路的数据速率的乘积, 所述周期 T为闪烁临界融合频率 CFF的倒 数。
13、 根据权利要求 11所述的调光装置, 其中,
所述确定单元, 还配置为在确定所述 MSDU的长度大于最大数据长度 依次与物理层开销长度、 以及 MAC层开销长度的差值时, 触发所述分割单 元重新分割所述 MSDU为多个长度相等的子 MSDU, 直至确定所得到的子 MSDU 的长度小于等于所述最大数据长度依次与物理层开销长度、 以及 MAC层开销长度的差值;
所述分割单元, 还配置为重新分割所述 MSDU 为多个长度相等的子 MSDU。
14、 根据权利要求 13所述的调光装置, 其中,
所述补偿单元, 还配置为确定光源实际亮度值与光源目标亮度值不同 时, 根据光源的目标亮度值分别为各 MPDU生成 CF。
15、 根据权利要求 14所述的调光装置, 其中, 所述补偿单元, 还配置为^^据下式确定所述 CF的数据部分 CFD的序 列的长度 nCF: + SlZecp
其中, 表示光源的目标亮度值, 《 ^表示开销 cost部分中 "1"的个数, nMSDU 示 MSDU中 "1 "的个数, nCF表示 CFD中 "1"的个数; size cost表示所 述 cost部分的长度, zeMaw表示所述 MSDU的长度, ^^^表示所述 CF 的长度; 所述 cost包括 MAC层的首部 MHR字段、 MAC层的尾部字段、 物理层前导码字段、 物理层首部字段、 CF的首部字段和填充 Pad字段。
16、 根据权利要求 14所述的调光装置, 其中, 所述调光装置还包括: 封装单元, 配置为在所述补偿单元确定光源实际亮度值与光源目标亮 度值相同时, 将所述分割后的子 MSDU分别封装到各自独立的 MAC协议 数据单元 MPDU中;
所述光驱动单元, 还配置为将所述 MPDU作为 PPDU的 PSDU部分, 传输所述 PPDU。
17、 根据权利要求 14所述的调光装置, 其中,
所述确定单元, 还配置为在所述聚合单元聚合所述 MPDU和所述 CF 为 PPDU的 PSDU之后, 确定聚合得到的所述 PSDU的长度小于等于所述 最大数据长度与物理层开销长度的差值。
18、 根据权利要求 17所述的调光装置, 其中,
所述确定单元, 还配置为在确定所述聚合单元聚合得到的所述 PSDU 的长度大于所述最大数据长度与物理层开销长度的差值时, 触发所述分割 单元重新分割所述 MSDU为多个长度相等的子 MSDU, 直至所述聚合单元 根据所述分割单元分割得到的子 MSDU、 以及根据与所述 MSDU对应生成 的 CF , 聚合得到的 PSDU小于等于所述最大数据长度与物理层开销长度的 差值。
19、 一种计算机存储介质, 所述计算机存储介质中存储有计算机可执 行指令, 所述计算机可执行指令用于执行权利要求 1至 9任一项所述的调 光方法。
PCT/CN2014/080227 2013-12-30 2014-06-18 调光方法、调光装置及计算机存储介质 WO2015100961A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/108,630 US9716550B2 (en) 2013-12-30 2014-06-18 Dimming method, dimming device and computer storage medium
EP14876388.1A EP3091701B1 (en) 2013-12-30 2014-06-18 Dimming method, dimming device and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310746971.6 2013-12-30
CN201310746971.6A CN104753829B (zh) 2013-12-30 2013-12-30 调光方法及调光装置

Publications (1)

Publication Number Publication Date
WO2015100961A1 true WO2015100961A1 (zh) 2015-07-09

Family

ID=53493105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080227 WO2015100961A1 (zh) 2013-12-30 2014-06-18 调光方法、调光装置及计算机存储介质

Country Status (4)

Country Link
US (1) US9716550B2 (zh)
EP (1) EP3091701B1 (zh)
CN (1) CN104753829B (zh)
WO (1) WO2015100961A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160262052A1 (en) * 2015-03-06 2016-09-08 Apple Inc. Aggregated data frame structures
WO2018076263A1 (zh) * 2016-10-28 2018-05-03 华为技术有限公司 基于调光控制的传输方法及相关设备
US20240146492A1 (en) * 2022-10-31 2024-05-02 Comcast Cable Communications, Llc Communications Using Millimeter Waves

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101010913A (zh) * 2004-08-27 2007-08-01 三星电子株式会社 在无线个域网中应答发送的数据流的接收的方法和系统
CN101035195A (zh) * 2006-03-08 2007-09-12 深圳Tcl新技术有限公司 一种用于图像画质的调整方法
CN101558621A (zh) * 2006-12-12 2009-10-14 交互数字技术公司 用于经由高速下行链路分组接入来发射和接收分组的方法及设备
CN102595494A (zh) * 2012-02-07 2012-07-18 北京新岸线无线技术有限公司 一种数据传输方法和装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5611038A (en) 1991-04-17 1997-03-11 Shaw; Venson M. Audio/video transceiver provided with a device for reconfiguration of incompatibly received or transmitted video and audio information
KR100330241B1 (ko) 1998-08-26 2002-10-04 삼성전자 주식회사 무선패킷음성데이터통신장치및방법
KR100631271B1 (ko) 2004-08-07 2006-10-02 삼성전자주식회사 패킷 응집 전송 방법
US7474676B2 (en) 2004-09-10 2009-01-06 Mitsubishi Electric Research Laboratories, Inc. Frame aggregation in wireless communications networks
US7729236B2 (en) 2005-11-10 2010-06-01 Nokia Corporation Use of timing information for handling aggregated frames in a wireless network
US8107825B2 (en) * 2009-05-08 2012-01-31 Samsung Electronics Co., Ltd. Apparatus and method for support of dimming in visible light communication
US8620154B2 (en) * 2009-07-31 2013-12-31 Samsung Electronics Co., Ltd. Methods and apparatus for fast and energy-efficient light recovery in a visible light communication (VLC) system
US8731406B2 (en) * 2009-09-16 2014-05-20 Samsung Electronics Co., Ltd. Apparatus and method for generating high resolution frames for dimming and visibility support in visible light communication
US8774142B2 (en) * 2009-09-16 2014-07-08 Samsung Electronics Co., Ltd. Flexible and integrated frame structure design for supporting multiple topologies with visible light communication
CN105721053A (zh) * 2009-09-18 2016-06-29 交互数字专利控股公司 用于发现并关联vlc基础设施节点的方法以及vlc设备
US9197736B2 (en) 2009-12-31 2015-11-24 Digimarc Corporation Intuitive computing methods and systems
KR101181494B1 (ko) * 2010-05-25 2012-09-11 영남대학교 산학협력단 조명광원을 이용한 무선광통신 시스템의 송신 장치
US9337961B2 (en) 2010-06-15 2016-05-10 Qualcomm Incorporated Method and apparatus for sending very high throughput WLAN acknowledgment frames
US9112606B2 (en) * 2010-12-15 2015-08-18 Electronics And Telecommunications Research Institute Method and apparatus for transmitting and receiving data using visible light communication
EP2659600A1 (en) * 2011-03-16 2013-11-06 Siemens Aktiengesellschaft A method and device for notification in a system for visible-light communication
US8879924B2 (en) * 2012-01-25 2014-11-04 Electronics And Telecommunications Research Institute Visible light communication method using DMX-512 network and apparatuses for the same
CN104253652B (zh) * 2013-06-27 2018-01-30 中兴通讯股份有限公司 一种实现调光的方法及调光装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101010913A (zh) * 2004-08-27 2007-08-01 三星电子株式会社 在无线个域网中应答发送的数据流的接收的方法和系统
CN101035195A (zh) * 2006-03-08 2007-09-12 深圳Tcl新技术有限公司 一种用于图像画质的调整方法
CN101558621A (zh) * 2006-12-12 2009-10-14 交互数字技术公司 用于经由高速下行链路分组接入来发射和接收分组的方法及设备
CN102595494A (zh) * 2012-02-07 2012-07-18 北京新岸线无线技术有限公司 一种数据传输方法和装置

Also Published As

Publication number Publication date
US20160329962A1 (en) 2016-11-10
CN104753829A (zh) 2015-07-01
US9716550B2 (en) 2017-07-25
CN104753829B (zh) 2019-08-30
EP3091701A4 (en) 2017-01-11
EP3091701A1 (en) 2016-11-09
EP3091701B1 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
CN105659544B (zh) 用于控制无比率编码的消息的传输的系统、方法和设备
CN102883369B (zh) 一种用于选择增强型上行链路传输格式组合的方法及装置
TWI802762B (zh) 無線網路之多頻段電力管理方法和裝置
US9929847B2 (en) Shortened block acknowledgement with fragmentation acknowledgement signaling
JP6483254B2 (ja) マルチユーザネットワークのためのアップリンクデータのフラグメント化
JP2007300630A (ja) 無線通信システムにおいてsduの分割及び番号付けを行う方法及び装置
TWI766883B (zh) 用於傳送視訊之方法及資料傳送器
TWI757967B (zh) 資料發送的裝置和方法
WO2016119102A1 (zh) 缓存状态报告的处理方法、装置以及通信系统
JP2010522457A (ja) 無線通信チャネルを通した非圧縮されたビデオ伝送方法およびシステム
TW202040971A (zh) 基於封包的鏈路聚合架構
JP2014511077A (ja) 無線通信方法、送信装置及び受信装置
JP6369635B2 (ja) バッファ状態報告の生成方法、装置及び通信システム
JP2013543311A (ja) ワイヤレスディスプレイのためのパイプラインスライシングのための方法および装置
TWI663858B (zh) L2層資料封包處理方法和使用該方法的電子裝置
WO2015100961A1 (zh) 调光方法、调光装置及计算机存储介质
TW202123635A (zh) 序號擴大
US20160374081A1 (en) Short uplink responses for downlink transmissions
JP2023165904A (ja) フラグメンテーションを利用する無線通信方法及びそれを使用する無線通信端末
US9509403B2 (en) Method for implementing dimming, and dimming apparatus
TWI384826B (zh) 無線通訊系統提升傳輸效率的方法及其相關裝置
WO2013095517A1 (en) Implementing a protocol adaptation layer over an internet protocol
US10382813B2 (en) Content reproduction device and content reproduction method
WO2024021983A1 (zh) 通信方法及装置
WO2023217009A1 (zh) 数据传输方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876388

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15108630

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014876388

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014876388

Country of ref document: EP