WO2015100876A1 - Method for preparing liraglutide - Google Patents

Method for preparing liraglutide Download PDF

Info

Publication number
WO2015100876A1
WO2015100876A1 PCT/CN2014/075113 CN2014075113W WO2015100876A1 WO 2015100876 A1 WO2015100876 A1 WO 2015100876A1 CN 2014075113 W CN2014075113 W CN 2014075113W WO 2015100876 A1 WO2015100876 A1 WO 2015100876A1
Authority
WO
WIPO (PCT)
Prior art keywords
fmoc
resin
otbu
glu
gly
Prior art date
Application number
PCT/CN2014/075113
Other languages
French (fr)
Chinese (zh)
Inventor
路杨
杨东晖
方晨
周亮
刘少华
Original Assignee
杭州阿德莱诺泰制药技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州阿德莱诺泰制药技术有限公司 filed Critical 杭州阿德莱诺泰制药技术有限公司
Publication of WO2015100876A1 publication Critical patent/WO2015100876A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/04General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/605Glucagons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/1072General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
    • C07K1/1077General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups by covalent attachment of residues other than amino acids or peptide residues, e.g. sugars, polyols, fatty acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Endocrinology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Disclosed is a method for synthesizing liraglutide. The method comprises the specific steps: A) synthesizing a segment Fmoc-Lys-(Glu(Nα-Palmitoyl)-OtBu)-OH by using a liquid phase manner; B) coupling a resin solid-phase carrier and Fmoc-Gly-OH, so as to obtain Fmoc-Gly-resin; C) sequentially coupling amino acids with N-end Fmoc protection and side chain protection according to a liraglutide main chain peptide sequence by using a solid-phase synthesis method, a lysine tripeptide segment using Fmoc-Lys-(Glu(Nα-Palmitoyl)-OtBu)-OH; and D) performing splitting, purification and freeze-drying to obtain liraglutide. The method needs a short synthesis period and low cost, produces high yield, and is suitable for large-scale production.

Description

一种制备利拉鲁肽的方法 技术领域  Method for preparing liraglutide
本发明涉及一种多肽类药物的制备方法, 是一种合成的具有胰高血糖素样 肽 -l(GLP-l)受体激动剂的长效 II型糖尿病的治疗特效药-利拉鲁肽的制备方法。 背景技术  The present invention relates to a method for preparing a polypeptide drug, which is a synthetic therapeutic agent for long-acting type II diabetes mellitus having a glucagon-like peptide-1 (GLP-1) receptor agonist-liuraglutide Preparation method. Background technique
利拉鲁肽, 英名为: Liraglutide, 结构式如下:  Liraglutide, English name: Liraglutide, the structural formula is as follows:
Figure imgf000003_0001
月太序列为:
Figure imgf000003_0001
The monthly sequence is:
H-His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Al a-Ala-Lys(N-s-(N-a-Palmitoyl-L-y-glutamyl))-Glu-Phe-Ile-Ala-Trp-Leu-Val-Arg-Gl y-Arg-Gly-OH  H-His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Al a-Ala-Lys(Ns-(Na-Palmitoyl- Ly-glutamyl))-Glu-Phe-Ile-Ala-Trp-Leu-Val-Arg-Gl y-Arg-Gly-OH
利拉鲁肽是由丹麦诺和诺德公司开发的第一个也是目前唯——个长效人 GLP-1类似物, 具有 GLP-1受体激动剂作用, 在分子结构、 生物活性、 作用靶 点及免疫原性等方面与 GLP-1相似。 利拉鲁肽的分子结构与 GLP-l(7-37) 的同 源性达 97 %, 结构差异表现在 Lys34被 Arg替代, Lys26 经由谷氨酸介导发生 棕榈酰化, 脂肪酸侧链可以使利拉鲁肽在血液中与白蛋白可逆性地结合, 使利 拉鲁肽的作用时间延长, 且增强对 DPP-4酶降解的抵抗, 脂肪酸侧链还可以使 利拉鲁肽分子在注射部位自交联成七聚体, 从而延緩其自皮下吸引, 使其作用 时间可长达接近 24小时, 每天注射一次并且可在任意时间注射, 且低血糖发生 风险小。 此外, 本品还能够以血糖依耐性方式降低胰高血糖素的分泌, 并延迟 胃排空。 Liraglutide is the first and only long-acting human GLP-1 analogue developed by Novo Nordisk of Denmark. It has a GLP-1 receptor agonist function in molecular structure, biological activity, and action. Targets and immunogenicity are similar to GLP-1. The molecular structure of liraglutide is 97% homologous to GLP-1 (7-37). The structural difference is that Lys 34 is replaced by Arg. Lys 26 undergoes palmitoylation via glutamate, fatty acid side chains. It can make liraglutide reversibly bind to albumin in the blood, prolong the action time of liraglutide, and enhance the resistance to DPP-4 enzyme degradation. The fatty acid side chain can also make The liraglutide molecule self-crosslinks into a heptamer at the injection site, thereby delaying its subcutaneous attraction, allowing it to last for up to 24 hours, once a day and at any time, with a low risk of hypoglycemia. . In addition, this product can also reduce the secretion of glucagon in a blood glucose-dependent manner and delay gastric emptying.
诺和诺德的利拉鲁肽通过基因工程等生物学方法进行制备, 技术难度大, 生产成本高, 不利于利拉鲁肽的大规模生产。 US6268343B1 和 US6458924B2 报道了利拉鲁肽的固液合成法,中间体 GLP-l(7-37)-OH均需要反相 HPLC纯化, 再在液相条件下与 Na-Palmitoyl-Glu(OSu)-OtBu反应, 此方法需两次纯化, 合成 周期长, 废液多, 成本昂贵, 不利于大规模生产的缺点。 Novo Nordisk's liraglutide is prepared by biological methods such as genetic engineering, which is technically difficult and has high production cost, which is not conducive to large-scale production of liraglutide. US6268343B1 and US6458924B2 reported the synthesis of solid-liquid liraglutide, intermediate GLP-l (7-37) -OH require purified by Reverse Phase HPLC, then under liquid phase conditions with N a -Palmitoyl-Glu (OSu) -OtBu reaction, this method requires two purifications, a long synthesis cycle, a large amount of waste liquid, and is expensive, which is disadvantageous for the disadvantage of mass production.
WO2013037266A1公开了一种利拉鲁肽的制备方法, 具体步骤为: 通过 Fmoc固相合成法,按照利拉鲁肽主链肽序依次偶联具有 N端 Fmoc保护且侧链 保护的氨基酸, 其中赖氨酸釆用 Fmoc-Lys (Alloc ) -OH, 脱去 Alloc, 通过固相 合成法在赖氨酸侧链氨基上偶联 Palmitoyl-Glu-Offiu, 裂解后得到产品。 此方法 由于使用四 (三苯基膦)钯脱去 Alloc, 不仅使成本偏高, 不利于大规模生产, 还会使金属残留导致重金属含量超标, 导致产品质量和含量不高。  WO2013037266A1 discloses a preparation method of liraglutide, the specific steps are: sequentially, by Fmoc solid phase synthesis, according to the liraglutide main chain peptide sequence, an amino acid having N-terminal Fmoc protection and side chain protection, wherein For the guanidine, Fmoc-Lys (Alloc)-OH was used to remove Alloc, and Palmitoyl-Glu-Offiu was coupled to the amino group of the lysine side chain by solid phase synthesis, and the product was obtained after cleavage. This method, due to the use of tetrakis(triphenylphosphine)palladium to remove Alloc, not only makes the cost high, is not conducive to large-scale production, but also causes the metal residue to lead to excessive levels of heavy metals, resulting in low product quality and content.
综上所述, 现有利拉鲁肽的固相合成过程中, 由于合成周期长, 成本高, 收率低, 杂质多, 不适用于工业化生产。 发明内容  In summary, in the solid phase synthesis process of the existing liraglutide, due to the long synthesis cycle, high cost, low yield, and many impurities, it is not suitable for industrial production. Summary of the invention
本发明人用现有的合成方法, 制备利拉鲁肽, 发现现有技术存在的技术问 题是: 合成步骤较多, 合成周期长, 纯度和收率不高, 不适于工业化规模生产。 为此, 本发明人对利拉鲁肽的合成方法进行了研究, 从而得到了本发明的技术 方案。  The present inventors have prepared liraglutide by the existing synthesis method, and found that the technical problems existing in the prior art are: more synthetic steps, long synthesis cycle, low purity and yield, and unsuitable for industrial scale production. For this reason, the inventors have studied the synthesis method of liraglutide, thereby obtaining the technical scheme of the present invention.
本发明的目的是提供一种利拉鲁肽的固相合成方法。 本发明的合成路线如 图 1 所 示 : 首 先 通 过 液 相 方 法 合 成 赖 氨 酸 三 肽 片 段 Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH, 其次在活化剂系统的存在下, 由树脂 固相载体和 Fmoc-Gly-OH偶联得到 Fmoc-Gly-树脂, 然后通过固相合成法, 按 照利拉鲁肽主链肽序依次偶联具有 N端 Fmoc保护且侧链保护的氨基酸, 其中 赖氨酸三肽片段釆用 Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH, 最后裂解, 纯化, 冻干, 得到利拉鲁肽, 该利拉鲁肽的氨基酸序列如序列表(SEQ No. 1 )所示。 本发明中一些常用的缩写具有以下含义; It is an object of the present invention to provide a solid phase synthesis method of liraglutide. The synthetic route of the present invention is shown in Figure 1: First, the lysine tripeptide fragment Fmoc-Lys-(Glu(N a -Palmitoyl)-OtBu)-OH is synthesized by a liquid phase method, followed by the presence of an activator system. The Fmoc-Gly-resin is obtained by coupling the resin solid phase carrier and Fmoc-Gly-OH, and then the N-terminal Fmoc-protected and side-chain protected amino acid is sequentially coupled by the solid phase synthesis method according to the liraglutide main chain peptide sequence. , wherein the lysine tripeptide fragment is lysed and purified by Fmoc-Lys-(Glu(N a -Palmitoyl)-OtBu)-OH, Lyophilized to obtain liraglutide, and the amino acid sequence of the liraglutide is shown in the Sequence Listing (SEQ No. 1). Some commonly used abbreviations in the present invention have the following meanings;
Fmoc : 芴曱氧羰基  Fmoc : 芴曱oxycarbonyl
Fmoc-AA: 芴曱氧羰基保护的氨基酸  Fmoc-AA: Aminocarbonyl protected amino acid
DIC : N, Ν'-二异丙基碳化二亚胺  DIC : N, Ν'-diisopropylcarbodiimide
DCC : Ν, Ν'-二环己基碳二亚胺  DCC : Ν, Ν'-dicyclohexylcarbodiimide
PyBOP : 六氟磷酸苯并三唑 -1-基 -氧基三吡咯烷基磷  PyBOP : benzotriazole hexafluorophosphate-1-yl-oxytripyrrolidinyl phosphorus
HATU : 2-(7-偶氮苯并三氮唑) -Ν,Ν,Ν',Ν'-四曱基脲六氟磷酸酯  HATU : 2-(7-azobenzotriazole) -Ν,Ν,Ν',Ν'-tetradecylurea hexafluorophosphate
HOBt : 1- 羟基苯骈三唑  HOBt : 1-hydroxybenzotriazole
HOSu : N-羟基琥珀酰亚胺  HOSu : N-hydroxysuccinimide
tBu : 叔丁基 tBu : tert-butyl
Trt : 三苯曱基  Trt : triphenyl fluorenyl
Boc : 叔丁氧叛基  Boc : Tert-butyloxy
Palmitoyl : 棕榈酰基  Palmitoyl : Palmitoyl
Pbf : 2,2,4,6,7-五甲基二氢苯并呋喃 -5-磺醜基  Pbf : 2,2,4,6,7-pentamethyldihydrobenzofuran -5-sulfonyl
Tyr : 酪氨酸  Tyr : Tyrosine
lie : 异亮氨酸 Lie : isoleucine
Gin : 谷氨酰胺  Gin : Glutamine
Asn : 天冬酰胺  Asn : Asparagine
Cys : 半胱氨酸  Cys : Cysteine
Pro : 脯氨酸  Pro : Proline
Leu : 亮氨酸  Leu : Leucine
Gly : 甘氨酸  Gly : Glycine
Arg : 精氨酸  Arg : arginine
Val : 缬氨酸  Val : Proline
Trp : 色氨酸  Trp : tryptophan
Ala : 丙氨酸  Ala : Alanine
Phe : 苯丙氨酸  Phe : Phenylalanine
Glu : 谷氨酸 Lys : 赖氨酸 Glu : glutamic acid Lys : Lysine
Ser : 丝氨酸 Ser : Serine
Asp : 天冬氨酸 Asp : Aspartic acid
Thr : 苏氨酸 Thr : Threonine
His : 组氨酸 His : histidine
DMF : N, Ν'-二曱基曱酰胺  DMF : N, Ν'-dimercaptoamide
MeOH : 曱醇  MeOH : sterol
DCM : 二氯曱烷  DCM : Dichlorodecane
NMP : N-曱基吡咯烷酮  NMP : N-decylpyrrolidone
DMSO : 二曱基亚砜  DMSO : Dimercaptosulfoxide
TFA: 三氟醋酸  TFA: trifluoroacetic acid
EDT : 乙二疏醇  EDT : Ethylene
Piperidine : 六氢 pPiperidine: hexahydro p ratio
DMAP : 4-二曱氨基吡啶  DMAP : 4-diaminopyridine
DIEA : N, Ν'-二异丙基乙胺  DIEA : N, Ν'-diisopropylethylamine
ΤΜΡ : 2,4,6-三曱基吡啶。  ΤΜΡ : 2,4,6-tridecylpyridine.
ΝΜΜ: Ν-曱基吗啉  ΝΜΜ: Ν-mercaptomorpholine
2-CTC: 2-氯三苯曱基氯  2-CTC: 2-chlorotriphenylphosphonium chloride
为此本发明提供一种利拉鲁肽的合成方法, 其步骤如下:  To this end, the present invention provides a method for synthesizing liraglutide, the steps of which are as follows:
步 骤 1 , 通 过 液 相 方 法 合 成 赖 氨 酸 三 肽 片 段 Step 1 : synthesizing a lysine tripeptide fragment by a liquid phase method
Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH; Fmoc-Lys-(Glu(N a -Palmitoyl)-OtBu)-OH;
步骤 2, 在活化剂系统的存在下, 由树脂固相载体和 Fmoc-Gly-OH偶联得 到 Fmoc-Gly-树脂;  Step 2: Fmoc-Gly-resin is obtained by coupling a resin solid phase carrier and Fmoc-Gly-OH in the presence of an activator system;
步骤 3, 通过固相合成法, 按照利拉鲁肽主链肽序依次偶联具有 N端 Fmoc 保 护 且 侧 链保 护 的 氨基 酸 , 其 中 赖 氨 酸 三 肽 片 段 釆 用 Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH; Step 3, by solid phase synthesis, according to the liraglutide main chain peptide sequence, the amino acid having N-terminal Fmoc protection and side chain protection is sequentially coupled, wherein the lysine tripeptide fragment is Fmoc-Lys-(Glu(N) a -Palmitoyl)-OtBu)-OH;
步骤 4, 裂解, 纯化, 冻干, 得到利拉鲁肽。  Step 4, cleavage, purification, and lyophilization to obtain liraglutide.
其 中 , 步 骤 1 所 述 的 固 相 合 成 方 法 , 所 述 片 段 Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH 的液相合成为: 正十六烷酸、 HOSu、 DCC偶联得到 Palmitoyl-OSu活化酯, 然后和 H-Glu-OtBu反应得到二肽片段 Palmitoyl-Glu-OtBu ; Palmitoyl-Glu-OtBu 、 HOSu 、 DCC 偶 联 得 到 Palmitoyl-Glu(OSu)-OtBu活化酯, 然后和 Fmoc-Lys-OH反应得到赖氨酸三肽片 段 Fmoc-Ly s-(Glu(Na-Palmitoyl)-OtBu)-OH。 Wherein, in the solid phase synthesis method described in the step 1, the liquid phase synthesis of the fragment Fmoc-Lys-(Glu(N a -Palmitoyl)-OtBu)-OH is: n-hexadecanoic acid, HOSu, Coupling with Palmitoyl-OSu activated ester by DCC, then reacting with H-Glu-OtBu to obtain the dipeptide fragment Palmitoyl-Glu-OtBu; Palmitoyl-Glu-OtBu, HOSu, DCC coupling to obtain Palmitoyl-Glu(OSu)-OtBu activated ester Then, it is reacted with Fmoc-Lys-OH to obtain a lysine tripeptide fragment Fmoc-Ly s-(Glu(N a -Palmitoyl)-OtBu)-OH.
其中, 步骤 2所述的固相合成方法, 所述树脂固相载体釆用 2-CTC树脂, 所述活化剂系统选自 DIEA、 TMP 或 NMM, 所述 Fmoc-Gly-树脂为 0.10~0.35mmol/g取代度的 Fmoc-Gly-CTC树脂。  The solid phase synthesis method according to the second step, wherein the resin solid phase carrier is made of 2-CTC resin, the activator system is selected from DIEA, TMP or NMM, and the Fmoc-Gly-resin is 0.10-0.35 mmol. /g substitution degree Fmoc-Gly-CTC resin.
其中, 步骤 2所述的固相合成方法, 所述树脂固相载体釆用王树脂, 所述 活化剂系统由 DIC、 HOBt 和 DMAP 组成, 所述 Fmoc-Gly-王树脂为 0.10~0.35mmol/g取代度的 Fmoc-Gly-王树脂。  The solid phase synthesis method according to the second step, wherein the resin solid phase carrier is made of a king resin, the activator system is composed of DIC, HOBt and DMAP, and the Fmoc-Gly-king resin is 0.10 to 0.35 mmol/ Fmoc-Gly-king resin with degree of g substitution.
本发明中, 所述的树脂的取代度是釆用紫外吸光光度法测定的树脂的取代 度, 用 20%哌啶 /DMF溶液将偶联 Fmoc保护型氨基酸的树脂上的 Fmoc保护基 脱保护下来, 用紫外吸光光度法测定其浓度, 然后釆用含 Fmoc 的氨基酸标准 化合物例如 Fmoc-Leu-OH, 以外标法标定树脂上的 Fmoc的 mmol数值, 除以 树脂重量, 即得到树脂的取代度或称之为替代度。  In the present invention, the degree of substitution of the resin is the degree of substitution of the resin by ultraviolet spectrophotometry, and the Fmoc protecting group on the resin coupled with the Fmoc-protected amino acid is deprotected with a 20% piperidine/DMF solution. , the concentration is determined by ultraviolet spectrophotometry, and then the Fmoc molar value of the resin is calibrated with an amino acid standard compound containing Fmoc, such as Fmoc-Leu-OH, and the resin is used to determine the degree of substitution of the resin. Call it the degree of substitution.
其中, 步骤 3所述的固相合成方法,  Wherein the solid phase synthesis method described in step 3,
1 )釆用由体积比为 1 :4的哌啶和 DMF组成的去保护液脱除 Fmoc-Gly-树脂 上的 Fmoc保护基, 得到 H-Gly-树脂;  1) removing the Fmoc protecting group on the Fmoc-Gly-resin using a deprotecting solution consisting of piperidine and DMF in a volume ratio of 1:4 to obtain an H-Gly-resin;
2 )在偶联剂系统的存在下, H-Gly-树脂和 Fmoc保护且侧链保护的精氨酸 偶联得到 Fmoc-Arg(Pbf)-Gly-树脂;  2) H-Gly-resin and Fmoc-protected and side-chain-protected arginine are coupled to obtain Fmoc-Arg(Pbf)-Gly-resin in the presence of a coupling agent system;
3 ) 重复步骤 1 )、 2 ), 按照利拉鲁肽主链肽序依次进行氨基酸的偶联, 其 中赖氨酸釆用 Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH, 偶联氨基酸顺序为: Fmoc-Gly-OH 、 Fmoc-Arg(Pbf)-OH 、 Fmoc-Val-OH 、 Fmoc-Leu-OH 、 Fmoc-Trp(Boc)-OH 、 Fmoc-Ala-OH 、 Fmoc-Ile-OH 、 Fmoc-Phe-OH 、 Fmoc-Glu(OtBu)-OH、 Fmoc- Lys-(Glu(Na-Palmitoyl)-OtBu)-OH, Fmoc-Ala-OH、 Fmoc-Ala-OH 、 Fmoc-Gln(Trt)-OH 、 Fmoc-Gly-OH 、 Fmoc-Glu(OtBu)-OH 、 Fmoc-Leu-OH、 Fmoc-Tyr(tBu)-OH、 Fmoc-Ser(tBu)-OH、 Fmoc-Ser(tBu)-OH、 Fmoc-Val-OH、 Fmoc-Asp(OtBu)-OH、 Fmoc-Ser(tBu)-OH、 Fmoc-Thr(tBu)-OH、 Fmoc-Phe-OH 、 Fmoc-Thr(tBu)-OH 、 Fmoc-Gly-OH 、 Fmoc-Glu(OtBu)-OH 、 Fmoc-Ala -OH, Boc-His(Trt)-OH; 3) Repeat steps 1), 2), and sequentially perform amino acid coupling according to the liraglutide main chain peptide sequence, wherein lysine oxime is Fmoc-Lys-(Glu(N a -Palmitoyl)-OtBu)-OH, The amino acid sequence is: Fmoc-Gly-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Val-OH, Fmoc-Leu-OH, Fmoc-Trp(Boc)-OH, Fmoc-Ala-OH, Fmoc- Ile-OH , Fmoc-Phe-OH , Fmoc-Glu(OtBu)-OH, Fmoc- Lys-(Glu(N a -Palmitoyl)-OtBu)-OH, Fmoc-Ala-OH, Fmoc-Ala-OH, Fmoc -Gln(Trt)-OH, Fmoc-Gly-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Leu-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Ser (tBu)-OH, Fmoc-Val-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Phe-OH, Fmoc-Thr(tBu ) -OH , Fmoc-Gly-OH , Fmoc-Glu(OtBu)-OH , Fmoc-Ala -OH, Boc-His(Trt)-OH;
所述偶联剂系统包括缩合剂和反应溶剂, 所述缩合剂选自 DIC/HOBt、 PyBOP/HOBt/DIEA或 HATU/HOBt/DIEA; 所述反应溶剂选自 DMF、 DCM、 NMP、 DMSO或他们之间的任意组合。  The coupling agent system comprises a condensing agent selected from the group consisting of DIC/HOBt, PyBOP/HOBt/DIEA or HATU/HOBt/DIEA; and the reaction solvent is selected from DMF, DCM, NMP, DMSO or they Any combination between.
优选地, 步骤 3 ) 中, 氨基酸偶联过程中, 其中当缩合剂选择  Preferably, in step 3), during the amino acid coupling process, wherein when the condensing agent is selected
HATU/HOBt/DIEA时, When HATU/HOBt/DIEA,
H-Glu(OtBu)-Phe-Ile-Ala-Trp(Boc)-Leu-Val-Arg(Pbf)-Gly-Arg(Pbf)-Gly-树脂(以下 简称 AA-树脂): Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH:HATU:HOBt:DIEA的摩 尔比优选为: 1:3:3:3:3-1:5:5:5:5,即所述 Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH 和缩合剂 HATU/HOBt/DIEA这 4种物质的摩尔数相等, 它们各自相对于所述 AA树脂的摩尔比例为 3/1~5/1, 反应温度为 25~35°C, 反应时间为 2~3小时; 更优选, 它们各自相对于所述 AA树脂的摩尔比例为 5/1, 反应温度为 35°C, 反应时间为 2小时。 H-Glu(OtBu)-Phe-Ile-Ala-Trp(Boc)-Leu-Val-Arg(Pbf)-Gly-Arg(Pbf)-Gly-resin (hereinafter referred to as AA-resin): Fmoc-Lys-( The molar ratio of Glu(N a -Palmitoyl)-OtBu)-OH:HATU:HOBt:DIEA is preferably: 1:3:3:3:3-1:5:5:5:5, ie the Fmoc-Lys - (Glu(N a -Palmitoyl)-OtBu)-OH and the condensing agent HATU/HOBt/DIEA are equal in number of moles, and their respective molar ratios to the AA resin are 3/1 to 5/1. The reaction temperature is 25 to 35 ° C, and the reaction time is 2 to 3 hours; more preferably, the molar ratio of each of them is 5/1 with respect to the AA resin, the reaction temperature is 35 ° C, and the reaction time is 2 hours.
本发明的方法是经过筛选获得的, 筛选过程如下:  The method of the present invention is obtained by screening, and the screening process is as follows:
1 )摩尔比的选择: 1) Choice of molar ratio:
H-Glu(OtBu)-Phe-Ile-Ala-Trp(Boc)-Leu-Val-Arg(Pbf)-Gly-Arg(Pbf)-Gly-树 H-Glu(OtBu)-Phe-Ile-Ala-Trp(Boc)-Leu-Val-Arg(Pbf)-Gly-Arg(Pbf)-Gly-tree
月旨: Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH:HATU:HOBt:DIEA的摩尔比为:The purpose of the month: Fmoc-Lys-(Glu(N a -Palmitoyl)-OtBu)-OH:HATU:HOBt:DIEA molar ratio is:
1:3:3:3:3和 1:5:5:5:5; 1:3:3:3:3 and 1:5:5:5:5;
2 )反应温度的选择:  2) Selection of reaction temperature:
25°C和 350C; 25 ° C and 35 0 C;
3 )反应时间的选择: 3) Choice of reaction time:
2小时和 3小时。  2 hours and 3 hours.
为此提出了 8种实验条件:  Eight experimental conditions were proposed for this purpose:
实验条件 1 : 取 3.43g Experimental conditions 1 : Take 3.43g
H-Glu(OtBu)-Phe-Ile-Ala-Trp(Boc)-Leu-Val-Arg(Pbf)-Gly-Arg(Pbf)-Gly-树脂  H-Glu(OtBu)-Phe-Ile-Ala-Trp(Boc)-Leu-Val-Arg(Pbf)-Gly-Arg(Pbf)-Gly-resin
(1.0mmol)、 2.16g Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH (3.0 mmol), 0.41 g HOBt (3.0 mmol)和 1.14g HATU (3.0 mmol)加入 20ml DMF中搅拌溶解, 冷却到 0°C, 将 0.5ml DIEA (3.0 mmol)加入上述溶液中, 在 25°C反应 2小时, 然后依次偶联 剩下的氨基酸, 偶联氨基酸顺序为: Fmoc-Ala-OH、 Fmoc-Ala-OH, Fmoc-Gln(Trt)-OH、 Fmoc-Gly-OH, Fmoc-Glu(OtBu)-OH、 Fmoc-Leu-OH、 Fmoc-Tyr(tBu)-OH、 Fmoc-Ser(tBu)-OH、 Fmoc-Ser(tBu)-OH、 Fmoc-Val-OH, Fmoc-Asp(OtBu)-OH、 Fmoc-Ser(tBu)-OH、 Fmoc-Thr(tBu)-OH、 Fmoc-Phe-OH, Fmoc-Thr(tBu)-OH、 Fmoc-Gly-OH, Fmoc-Glu(OtBu)-OH、 Fmoc-Ala -OH, Boc-His(Trt)-OH, 裂解, 纯化, 冻干, 得到利拉鲁肽精肽; (1.0 mmol), 2.16 g Fmoc-Lys-(Glu(N a -Palmitoyl)-OtBu)-OH (3.0 mmol), 0.41 g HOBt (3.0 mmol) and 1.14 g HATU (3.0 mmol) were added to 20 ml DMF and stirred to dissolve. Cool to 0 ° C, add 0.5 ml DIEA (3.0 mmol) to the above solution, react at 25 ° C for 2 hours, and then couple the remaining amino acids in sequence. The amino acid sequence is: Fmoc-Ala-OH, Fmoc -Ala-OH, Fmoc-Gln(Trt)-OH, Fmoc-Gly-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Leu-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc- Ser(tBu)-OH, Fmoc-Val-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Phe-OH, Fmoc-Thr( tBu)-OH, Fmoc-Gly-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Ala-OH, Boc-His(Trt)-OH, cleavage, purification, lyophilization, to obtain liraglutide pedipeptide;
实验条件 2—8, 实验操作如实验条件 1 所示, 不同的实验条件及其实验结 果如下面的表 1所示:  Experimental conditions 2-8, experimental operations as shown in experimental conditions 1, different experimental conditions and their experimental results are shown in Table 1 below:
表 1  Table 1
Figure imgf000009_0001
Figure imgf000009_0001
以上结果表明, 实验条件 4的纯化效果最优。  The above results show that the purification effect of Experimental Condition 4 is optimal.
本发明的方法和现有技术相比具有明显的优势, 有关对比实验如下表 2 所 表 2 对比实验结果  The method of the invention has obvious advantages compared with the prior art, and the relevant comparative experiments are as shown in Table 2 below.
Figure imgf000009_0002
本发明的有益效果是: 选用片段 Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH直 接固相合成利拉鲁肽, 解决了现有技术存在的合成周期长, 成本高, 纯度低, 杂质多, 不适用于工业化生产的问题; 本发明提供了一种合成周期短、 成本低、 收率较高, 适合规模化生产的利拉鲁肽的合成工艺。
Figure imgf000009_0002
The beneficial effects of the invention are as follows: The direct solid phase synthesis of liraglutide by using the fragment Fmoc-Lys-(Glu(N a -Palmitoyl)-OtBu)-OH solves the long synthesis cycle, high cost and purity of the prior art. Low, high impurity, not suitable for industrial production; The present invention provides a synthesis process of liraglutide which is short in synthesis cycle, low in cost and high in yield and suitable for large-scale production.
附图说明 DRAWINGS
图 1本发明利拉鲁肽的合成路线; Figure 1 is a synthetic route of the liraglutide of the present invention;
图 2 赖氨酸三肽片段的 HPLC谱图; Figure 2 HPLC chromatogram of a lysine tripeptide fragment;
图 3利拉鲁肽粗肽的 HPLC谱图; Figure 3 is a HPLC chromatogram of the crude peptide of liraglutide;
图 4利拉鲁肽精肽的 HPLC谱图; Figure 4 HPLC chromatogram of liraglutide spermatine;
图 5赖氨酸三肽片段的质语语图; Figure 5 is a morphological language map of a lysine tripeptide fragment;
图 6实施例十三利拉鲁肽精肽质语语图。 具体实施方式: Figure 6 is a thirteenth diagram of liraglutide peptidic peptide. Detailed ways:
以下通过实施例进一步说明本发明。 The invention is further illustrated by the following examples.
具体地, 关于下面实施例中涉及的各商购氨基酸以及氨基酸片段, 以及各商 购树脂, 其生产厂家和商品型号如下:  Specifically, regarding the respective commercially available amino acids and amino acid fragments involved in the following examples, and each commercially available resin, the manufacturer and model number are as follows:
Fmoc保护基氨基酸原料、 2-CTC树脂和王树脂均为常规的市售试剂(厂家: 吉 尔 生化 ( 上海 ) 有 限公司 ; 化学 纯 ); 赖氨酸三肽片 段 Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH是本专利描述合成的。 Fmoc protecting group amino acid raw materials, 2-CTC resin and Wang resin are all conventional commercial reagents (manufacturer: Jill Biochemical (Shanghai) Co., Ltd.; chemically pure); lysine tripeptide fragment Fmoc-Lys-(Glu(N a -Palmitoyl)-OtBu)-OH is synthesized as described in this patent.
有机溶剂和其它原料来源均为市售品 (厂家: 国药集团化学试剂有限公司; 化学纯)。  The sources of organic solvents and other raw materials are commercially available (manufacturer: Sinopharm Chemical Reagent Co., Ltd.; chemically pure).
另夕卜, 下面实施例中提到的 "旋蒸浓缩" 以及 "冻干" 以及测定 HPLC和质 谱的条件和所用设备型号及生产厂家说明如下:  In addition, the conditions of "spin evaporation" and "freeze-drying" as mentioned in the examples below, as well as the conditions for determining HPLC and mass spectrometry, and the type of equipment used and the manufacturer's description are as follows:
旋蒸浓缩设备: 旋转蒸发仪 R-200/205 (瑞士 Buchi (布奇)公司);  Rotary distillation equipment: Rotary evaporator R-200/205 (Switzerland Buchi);
旋蒸浓缩条件: 30°C下, 真空 (-O.lMpa )条件下旋蒸浓缩, 浓缩后体积在 旋蒸前总体积 75%以下。  Condensation and concentration conditions: under vacuum (-O.lMpa) at 30 ° C, the mixture is concentrated by steaming, and the volume after concentration is 75% or less before the steaming.
冻干设备: 冻干机 FD-3 (北京博医康实验仪器有限公司);  Freeze-drying equipment: Freeze-drying machine FD-3 (Beijing Bo Yikang Experimental Instrument Co., Ltd.);
冻干条件: 将冻干盘放入冰箱冷冻室 (-20 °C) 中, 预冻 6 h。 开启冻干机, 打 开制冷, 预冷 30 min以上, 设置冻干曲线如下: 第一段: 在 -27 °C运行 16 h; 第二段: 在 -5°C运行 4 h; 第三段: 在 5°C运行 2 h; 第四段: 在 30°C运行 16 h。 Freeze-drying conditions: Place the lyophilized tray in the freezer (-20 °C) and pre-freeze for 6 h. Turn on the freeze dryer, turn on the refrigeration, pre-cool for more than 30 min, and set the freeze-drying curve as follows: First stage: 16 h at -27 °C; second stage: 4 h at -5 °C; third stage: 2 h at 5 °C; fourth stage: 16 h at 30 °C.
HPLC: Dionex 高效液相色谱仪; 用十八烷基硅烷键合硅胶( 5μπι, 250 4.6mm ) 为填充剂; 以 0.1%TFA溶液为流动相 A, 以乙腈为流动相 进行梯 度洗脱; 流速为每分钟 1.0ml; 检测波长为 220nm; 柱温 30°C。 取供试品溶液 20μ1, 注入液相色谱仪, 记录色谱图。  HPLC: Dionex high performance liquid chromatography; using octadecylsilane bonded silica gel (5μπι, 250 4.6mm) as a filler; 0.1% TFA solution as mobile phase A, gradient elution with acetonitrile as mobile phase; It is 1.0 ml per minute; the detection wavelength is 220 nm; the column temperature is 30 °C. Take 20 μl of the test solution and inject it into the liquid chromatograph to record the chromatogram.
质谱: MALDI-TOF-MS基质辅助激光解析电离飞行时间质谱; 仪器型号 为 AUTO FLEX SPEED TOF-TOF。 实施例一: Palmitoyl- OSu活化酯的合成  Mass spectrometry: MALDI-TOF-MS matrix-assisted laser desorption ionization time-of-flight mass spectrometry; instrument model is AUTO FLEX SPEED TOF-TOF. Example 1: Synthesis of Palmitoyl-OSu activated ester
称取 256.42g正十六烷酸( l.Omol ), 138.10g HOSu( 1.2mol )加入 2000ml THF 中, 冰水浴下加入 247.56g DCC ( 1.2mol ), 反应 1小时, 升温到室温反应 3小 时, 反应液过滤, 母液旋干, 加 DCM溶解, 过滤, 饱和碳酸氢钠洗 3遍, 纯 水 2遍, 反萃 2遍, 合并有机相, 无水碳酸钠干燥, 旋干, 冰乙醇重结晶 3次, 过滤, 固体油泵拉干的到 314.62g Palmitoyl-OSu活化酯, 收率 89%。  Weigh 256.42 g of n-hexadecanoic acid (1.0 mol), add 138.10 g of HOSu (1.2 mol) to 2000 ml of THF, and add 247.56 g of DCC (1.2 mol) under ice water bath, react for 1 hour, and warm to room temperature for 3 hours. The reaction solution was filtered, the mother liquor was spun dry, dissolved in DCM, filtered, washed with saturated sodium bicarbonate 3 times, purified water 2 times, stripped 2 times, combined organic phase, dried anhydrous sodium carbonate, spin dried, recrystallized from ice ethanol 3 The filter was filtered and the solid oil pump was dried to 314.62 g of Palmitoyl-OSu activated ester in a yield of 89%.
实施例二: Palmitoyl-Glu-OtBu的合成 Example 2: Synthesis of Palmitoyl-Glu-OtBu
称取 101.62g H-Glu-OtBu( 0.5mol )和 79.50g Na2C03( 0.75mol )加入到 500ml 水和 500ml THF的混合溶液中溶解, 称取 176.75g Palmitoyl-OSu ( 0.5mol )加 入到 500ml THF, 溶解后滴加上述混合溶液中, 室温下反应过夜, 用 10%稀盐 酸调节 PH到 7, 旋蒸除去 THF, 之后调节 PH到 3。 得到大量白色沉淀, 过滤。 将得到的白 色沉淀用冰乙醇重结晶。 固体油泵拉干的到 192. llg Palmitoyl-Glu-OtBu, 收率 87%。 101.62 g of H-Glu-OtBu (0.5 mol) and 79.50 g of Na 2 C0 3 (0.75 mol) were weighed and dissolved in a mixed solution of 500 ml of water and 500 ml of THF, and 176.75 g of Palmitoyl-OSu (0.5 mol) was weighed and added. After dissolving, 500 ml of THF was added dropwise to the above mixed solution, and the reaction was allowed to proceed overnight at room temperature, and the pH was adjusted to 7 with 10% diluted hydrochloric acid, and then THF was evaporated to remove THF. A large amount of white precipitate was obtained and filtered. The resulting white precipitate was recrystallized from iced ethanol. The solid oil pump was dried to 192. llg Palmitoyl-Glu-OtBu, yield 87%.
实施例三: Palmitoyl-Glu(OSu)-OtBu的合成 Example 3: Synthesis of Palmitoyl-Glu(OSu)-OtBu
称取 88.33g Palmitoyl-Glu-OtBu ( 0.2mol ), 27.62g HOSu ( 0.24mol )加入 1000ml THF中, 冰水浴下加入 49.51g DCC ( 0.24mol ), 反应 1小时, 升温到室 温反应 3小时, 反应液过滤, 母液旋干, 加 DCM溶解, 过滤, 饱和碳酸氢钠 洗 3遍, 纯水 2遍, 反萃 2遍, 合并有机相, 无水碳酸钠干燥, 旋干, 冰乙醇 重结晶 3次,过滤, 固体油泵拉干的到 94.81g Palmitoyl-Glu(OSu)-OtBu活化酯, 收率 88%。 实施例四: Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH的合成 Weigh 88.33g of Palmitoyl-Glu-OtBu (0.2mol), 27.62g of HOSu (0.24mol), add it to 1000ml of THF, add 49.51g of DCC (0.24mol) under ice water bath, react for 1 hour, and warm to room temperature for 3 hours. Liquid filtration, mother liquor spin dry, add DCM to dissolve, filter, wash with saturated sodium bicarbonate 3 times, 2 times of pure water, stripping 2 times, combine organic phase, dry anhydrous sodium carbonate, spin dry, recrystallize ice ethanol 3 times , filtered, solid oil pump was pulled dry to 94.81 g of Palmitoyl-Glu(OSu)-OtBu activated ester, yield 88%. Example 4: Synthesis of Fmoc-Lys-(Glu(N a -Palmitoyl)-OtBu)-OH
称取 36.74g Fmoc-Lys-OH ( O.lmol )和 15.90g Na2C03 ( 0.15mol )加入到 100ml水和 100ml THF的混合溶液中溶解,称取 53.87g Palmitoyl-Glu(OSu)-OtBu ( O.lmol )加入到 100ml THF, 溶解后滴加上述混合溶液中, 室温下反应过夜, 用 10%稀盐酸调节 PH到 7, 旋蒸除去 THF, 之后调节 PH到 3。 得到大量白色 沉淀, 过滤。 将得到的白色沉淀用冰乙醇重结晶。 固体油泵拉干的到 67.24g Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH,其 HPLC谱图如图 2所示, HPLC纯度 为 97.40%,收率 85%;其质语如图 5所示, [M+Na]+: 814.555、 [M+K]+: 830.605, 赖氨酸三肽片段 Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH的理论精确分子量为: 791.5, 样品质谱结果与理论分子量相符, 结构正确。 36.74 g of Fmoc-Lys-OH (0.1 mol) and 15.90 g of Na 2 C0 3 (0.15 mol) were weighed and dissolved in a mixed solution of 100 ml of water and 100 ml of THF, and 53.87 g of Palmitoyl-Glu(OSu)-OtBu was weighed. (O.lmol) was added to 100 ml of THF, dissolved, and the above mixed solution was added dropwise thereto, and the reaction was allowed to proceed overnight at room temperature, and the pH was adjusted to 7 with 10% diluted hydrochloric acid, and then THF was removed by rotary evaporation, and then pH was adjusted to 3. A large amount of white precipitate was obtained and filtered. The resulting white precipitate was recrystallized from iced ethanol. The solid oil pump was dried to 67.24g Fmoc-Lys-(Glu(N a -Palmitoyl)-OtBu)-OH, and its HPLC spectrum is shown in Figure 2. The HPLC purity is 97.40%, the yield is 85%; As shown in Figure 5, [M+Na] + : 814.555, [M+K] + : 830.605, the theoretical precision of the lysine tripeptide fragment Fmoc-Lys-(Glu(N a -Palmitoyl)-OtBu)-OH The molecular weight is: 791.5, and the mass spectrometry results of the sample are consistent with the theoretical molecular weight and the structure is correct.
实施例五: 取代度为 0.10mmol/g的 Fmoc-Gly-CTC树脂的合成 Example 5: Synthesis of Fmoc-Gly-CTC resin with a degree of substitution of 0.10 mmol/g
称取取代度为 0.40mmol/g的 2-CTC树脂 20g, 加入到固相反应柱中, 用 DMF洗涤 1次,用 DMF溶胀树脂 30分钟后,取 13.37g Fmoc-Gly-OH(45mmol) 用 DMF溶解, 冰水浴下加入 7.5ml DIEA(45mmol)活化后, 加入上述装有树脂 的反应柱中, 反应 2小时后, 加入 100ml无水曱醇封闭 1小时。 用 DMF洗涤 3 次, DCM洗涤 3次, 用无水曱醇封闭 30分钟, 曱醇收缩干燥, 得到 22.34g Fmoc-Gly-CTC树脂, 检测替代度为 0.10mmol/g。  20 g of 2-CTC resin having a degree of substitution of 0.40 mmol/g was weighed, added to a solid phase reaction column, washed once with DMF, and swelled with DMF for 30 minutes, and then 13.37 g of Fmoc-Gly-OH (45 mmol) was used. The DMF was dissolved, and 7.5 ml of DIEA (45 mmol) was added to the ice water bath to be activated, and then added to the above reaction column containing the resin. After reacting for 2 hours, 100 ml of anhydrous methanol was added and blocked for 1 hour. The mixture was washed 3 times with DMF, washed 3 times with DCM, blocked with anhydrous decyl alcohol for 30 minutes, and sterol was shrink-dried to obtain 22.34 g of Fmoc-Gly-CTC resin, and the detection substitution was 0.10 mmol/g.
实施例六: 取代度为 0.25mmol/g的 Fmoc-Gly-CTC树脂的合成 Example 6: Synthesis of Fmoc-Gly-CTC resin with a degree of substitution of 0.25 mmol/g
称取取代度为 0.95mmol/g的 2-CTC树脂 10g, 加入到固相反应柱中, 用 DMF洗涤 1次,用 DMF溶胀树脂 30分钟后,取 14.11g Fmoc-Gly-OH(47mmol) 用 DMF溶解, 冰水浴下加入 8.0ml DIEA(47mmol)活化后, 加入上述装有树脂 的反应柱中, 反应 2小时后, 加入 100ml无水曱醇封闭 1小时。 用 DMF洗涤 3 次, DCM洗涤 3次,用无水曱醇封闭 30分钟,曱醇收缩干燥,得到 Fmoc-Gly-CTC 树脂, 检测替代度为 0.25mmol/g。  10 g of 2-CTC resin having a degree of substitution of 0.95 mmol/g was weighed, added to a solid phase reaction column, washed once with DMF, and swollen with DMF for 30 minutes, and then taken with 14.11 g of Fmoc-Gly-OH (47 mmol). The DMF was dissolved, and 8.0 ml of DIEA (47 mmol) was added to the ice water bath to be activated, and then added to the above reaction column containing the resin. After reacting for 2 hours, 100 ml of anhydrous methanol was added and blocked for 1 hour. It was washed 3 times with DMF, washed 3 times with DCM, blocked with anhydrous decyl alcohol for 30 minutes, and sterol was shrink-dried to obtain Fmoc-Gly-CTC resin, and the detection substitution was 0.25 mmol/g.
实施例七: 取代度为 0.10mmol/g的 Fmoc-Gly-王树脂的合成 Example 7: Synthesis of Fmoc-Gly-King Resin with a degree of substitution of 0.10 mmol/g
称取取代度为 0.45mmol/g的王树脂 20g, 加入到固相反应柱中, 用 DMF 洗涤 1次,用 DMF溶胀树脂 30分钟后,取 13.37g Fmoc-Gly-OH(45mmol)、 6.01g HOBt(45mmol)用 DMF溶解,冰水浴下加入 7.0ml DIC(45mmol)活化后,加入上 述装有树脂的反应柱中, 5分钟后加入 2.75g DMAP(22.5mmol),反应 2小时后, 用 DMF洗涤 3次, DCM洗涤 3次, 用 100ml醋酸酐 /吡啶封端过夜, 曱醇收缩 干燥, 得到 Fmoc-Gly-王树脂, 检测替代度为 0.10mmol/g。 20 g of king resin having a degree of substitution of 0.45 mmol/g was weighed, added to a solid phase reaction column, washed once with DMF, and swelled with DMF for 30 minutes, and then 13.37 g of Fmoc-Gly-OH (45 mmol), 6.01 g. HOBt (45 mmol) was dissolved in DMF, activated by adding 7.0 ml of DIC (45 mmol) in an ice water bath, and then added to the reaction column containing the resin. After 5 minutes, 2.75 g of DMAP (22.5 mmol) was added, and after reacting for 2 hours, It was washed 3 times with DMF, washed 3 times with DCM, and capped with 100 ml of acetic anhydride/pyridine overnight, and the sterol was shrink-dried to obtain Fmoc-Gly-King resin, and the detection substitution was 0.10 mmol/g.
实施例八: 取代度为 0.25mmol/g的 Fmoc-Gly-王树脂的合成 Example 8: Synthesis of Fmoc-Gly-King Resin with a Degree of Substitution of 0.25 mmol/g
称取取代度为 0.75mmol/g的王树脂 20g, 加入到固相反应柱中, 用 DMF 洗涤 1次,用 DMF溶胀树脂 30分钟后,取 22.28g Fmoc-Gly-OH(75mmol) , 10.13g HOBt(75mmol)用 DMF溶解, 冰水浴下加入 11.6 ml DIC(75mmol)活化后, 加入 上述装有树脂的反应柱中, 5分钟后加入 4.5g DMAP(37.5mmol),反应 2小时后, 用 DMF洗涤 3次, DCM洗涤 3次, 用 100ml醋酸酐 /吡啶封端过夜, 曱醇收缩 干燥, 得到 22.54g Fmoc-Gly-王树脂, 检测替代度为 0.25mmol/g。  20 g of king resin having a degree of substitution of 0.75 mmol/g was weighed, added to a solid phase reaction column, washed once with DMF, and swollen with DMF for 30 minutes, and then 22.28 g of Fmoc-Gly-OH (75 mmol), 10.13 g was taken. HOBt (75 mmol) was dissolved in DMF, activated by adding 11.6 ml of DIC (75 mmol) in an ice water bath, and added to the reaction column containing the resin. After 5 minutes, 4.5 g of DMAP (37.5 mmol) was added, and after 2 hours of reaction, DMF was used. After washing 3 times, DCM was washed 3 times, capped with 100 ml of acetic anhydride/pyridine overnight, and sterol was shrink-dried to obtain 22.54 g of Fmoc-Gly-King resin, and the detection substitution was 0.25 mmol/g.
实施例九: 利拉鲁肽 CTC树脂的制备 Example 9: Preparation of liraglutide CTC resin
称取 4.46g取代度为 0.10mmol/g的 Fmoc-Gly-CTC树脂(lmmol),加入固相 反应柱中, 用 DMF洗涤 1次, 用 DMF溶胀 Fmoc-Gly-CTC树脂 30分钟后, 用 DMF:吡啶体积比为 4:1的混合溶液脱去 Fmoc保护, 然后用 DMF洗涤 6次, 称取 3.24g Fmoc-Arg(Pbf)-OH ( 5mmol )、 0.68g HOBt ( 5mmol )加入体积比为 1:1的 DCM和 DMF混合溶液, 冰水浴下加入 0.8ml DIC ( 5mmol )活化后, 加 入上述装有树脂的反应柱中, 室温下反应 2小时后, 以茚三酮法检测判断反应 终点, 如果树脂无色透明, 则表示反应完全; 树脂显色, 则表示反应不完全, 需要再反应 1 小时, 此判断标准适用于后续氨基酸偶联中以茚三酮法检测判断 反应终点。 重复上述脱除 Fmoc保护和加入相应氨基酸偶联的步骤, 按照利拉 鲁肽主链肽序, 依次完成 Fmoc-Gly-OH、 Fmoc-Arg(Pbf)-OH 、 Fmoc-Val-OH, Fmoc-Leu-OH、 Fmoc-Trp(Boc)-OH、 Fmoc-Ala-OH、 Fmoc-Ile-OH、 Fmoc-Phe-OH、 Fmoc-Glu(OtBu)-OH、 Fmoc- Lys-(Glu(Na-Palmitoyl)-OtBu)-OH, Fmoc-Ala-OH, Fmoc-Ala-OH 、 Fmoc-Gln(Trt)-OH 、 Fmoc-Gly-OH 、 Fmoc-Glu(OtBu)-OH 、 Fmoc-Leu-OH、 Fmoc-Tyr(tBu)-OH、 Fmoc-Ser(tBu)-OH、 Fmoc-Ser(tBu)-OH、 Fmoc-Val-OH, Fmoc-Asp(OtBu)-OH、 Fmoc-Ser(tBu)-OH、 Fmoc-Thr(tBu)-OH、 Fmoc-Phe-OH 、 Fmoc-Thr(tBu)-OH 、 Fmoc-Gly-OH 、 Fmoc-Glu(OtBu)-OH 、 Fmoc-Ala -OH、 Boc-His(Trt)-OH的偶联。 其中 Fmoc-Leu-OH和 Fmoc-Phe-OH 偶联时溶剂换为: 选用体积比为 1 :4 的 DMSO 和 DMF 混合溶液; Fmoc-Asp(OtBu)-OH 偶联 时偶联试 剂 换 为 : PyBOP/HOBt/DIEA; Boc-His(Trt)-OH偶联时偶联试剂换为: HATU/HOBt/DIEA, 偶联完毕, 将利拉 鲁肽 CTC树脂用 DMF洗涤 3次, DCM洗涤 3次, MeOH洗涤 3次, DCM洗 涤 3次, MeOH洗涤 3次, 抽干得到 9.67g 利拉鲁肽 CTC树脂。 Weigh 4.46 g of Fmoc-Gly-CTC resin (1 mmol) with a degree of substitution of 0.10 mmol/g, add to the solid phase reaction column, wash once with DMF, and swell Fmoc-Gly-CTC resin with DMF for 30 minutes, then use DMF. The mixed solution having a pyridine volume ratio of 4:1 was deprotected by Fmoc, and then washed 6 times with DMF, and 3.24 g of Fmoc-Arg(Pbf)-OH (5 mmol) and 0.68 g of HOBt (5 mmol) were weighed and added to a volume ratio of 1. :1 mixed solution of DCM and DMF, activated by adding 0.8 ml of DIC (5 mmol) in an ice water bath, added to the reaction column containing the resin, and reacted at room temperature for 2 hours, and then judged by the ninhydrin method. If the resin is colorless and transparent, it means the reaction is complete; if the resin develops color, it means the reaction is incomplete and needs to be reacted for another hour. This criterion is applicable to the subsequent amino acid coupling and the end point of the reaction is determined by the ninhydrin method. Repeating the above steps of removing Fmoc protection and adding the corresponding amino acid coupling, according to the liraglutide main chain peptide sequence, sequentially completing Fmoc-Gly-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Val-OH, Fmoc- Leu-OH, Fmoc-Trp(Boc)-OH, Fmoc-Ala-OH, Fmoc-Ile-OH, Fmoc-Phe-OH, Fmoc-Glu(OtBu)-OH, Fmoc- Lys-(Glu(N a - Palmitoyl)-OtBu)-OH, Fmoc-Ala-OH, Fmoc-Ala-OH, Fmoc-Gln(Trt)-OH, Fmoc-Gly-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Leu-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Val-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Ser(tBu)-OH , Fmoc-Thr(tBu)-OH, Fmoc-Phe-OH, Fmoc-Thr(tBu)-OH, Fmoc-Gly-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Ala-OH, Boc-His( Coupling of Trt)-OH. When Fmoc-Leu-OH and Fmoc-Phe-OH are coupled, the solvent is changed to: DMSO and DMF mixed solution with a volume ratio of 1:4; Fmoc-Asp(OtBu)-OH is coupled with the coupling reagent: PyBOP/HOBt/DIEA; The coupling reagent for Boc-His(Trt)-OH coupling was changed to: HATU/HOBt/DIEA. After coupling, the liraglutide CTC resin was washed 3 times with DMF, washed 3 times with DCM, and washed 3 times with MeOH. The DCM was washed 3 times, washed with MeOH 3 times, and dried to give 9.67 g of liraglutide CTC resin.
实施例十: 利拉鲁肽王树脂的制备 Example 10: Preparation of Liraglutide King Resin
称取 4.57g ( lmmol )取代度为 0.10mmol/g的 Fmoc-Gly-王树脂, 加入固相 反应柱中, 用 DMF洗涤 1次, 用 DMF溶胀 Fmoc-Gly-王树脂 30分钟后, 用 DMF:吡啶体积比为 4:1的混合溶液脱去 Fmoc保护, 然后用 DMF洗涤 6次,称 取 3.24g Fmoc-Arg(Pbf)-OH ( 5mmol )、 0.68g HOBt ( 5mmol )加入体积比为 1:1 的 DCM和 DMF混合溶液, 冰水浴下加入 0.8ml DIC ( 5mmol )活化后, 加入 上述装有树脂的反应柱中, 室温下反应 2小时后, 以茚三酮法检测判断反应终 点, 如果树脂无色透明, 则表示反应完全; 树脂显色, 则表示反应不完全, 需 要再反应 1 小时, 此判断标准适用于后续氨基酸偶联中以茚三酮法检测判断反 应终点。 重复上述脱除 Fmoc保护和加入相应氨基酸偶联的步骤, 按照利拉鲁 肽主链肽序, 依次完成 Fmoc-Gly-OH、 Fmoc-Arg(Pbf)-OH 、 Fmoc- Val-OH , Fmoc-Leu-OH、 Fmoc-Trp(Boc)-OH、 Fmoc-Ala-OH、 Fmoc-Ile-OH、 Fmoc-Phe-OH、 Fmoc-Glu(OtBu)-OH、 Fmoc- Lys-(Glu(Na-Palmitoyl)-OtBu)-OH , Fmoc-Ala-OH, Fmoc-Ala-OH 、 Fmoc-Gln(Trt)-OH 、 Fmoc-Gly-OH 、 Fmoc-Glu(OtBu)-OH 、 Fmoc-Leu-OH、 Fmoc-Tyr(tBu)-OH、 Fmoc-Ser(tBu)-OH、 Fmoc-Ser(tBu)-OH、 Fmoc-Val-OH, Fmoc-Asp(OtBu)-OH、 Fmoc-Ser(tBu)-OH、 Fmoc-Thr(tBu)-OH、 Fmoc-Phe-OH、 Fmoc-Thr(tBu)-OH、 Fmoc-Gly-OH、 Fmoc-Glu(OtBu)-OH、 Fmoc- Ala -OH, Boc-His(Trt)-OH的偶联。 Weigh 4.57 g (lmmol) of Fmoc-Gly-Wang resin with a degree of substitution of 0.10 mmol/g, add to the solid phase reaction column, wash once with DMF, and swell Fmoc-Gly-Wang resin with DMF for 30 minutes, then use DMF. The mixed solution having a pyridine volume ratio of 4:1 was deprotected by Fmoc, and then washed 6 times with DMF, and 3.24 g of Fmoc-Arg(Pbf)-OH (5 mmol) and 0.68 g of HOBt (5 mmol) were weighed and added to a volume ratio of 1. :1 mixture of DCM and DMF, activated by adding 0.8 ml of DIC (5 mmol) in an ice water bath, and then added to the reaction column containing the resin, and reacted at room temperature for 2 hours, and then judged by the ninhydrin method. If the resin is colorless and transparent, it means the reaction is complete; if the resin develops color, it means the reaction is incomplete and needs to be reacted for another hour. This criterion is applicable to the subsequent amino acid coupling and the end point of the reaction is determined by the ninhydrin method. Repeating the above steps of removing Fmoc protection and adding the corresponding amino acid coupling, according to the liraglutide main chain peptide sequence, sequentially completing Fmoc-Gly-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Val-OH, Fmoc- Leu-OH, Fmoc-Trp(Boc)-OH, Fmoc-Ala-OH, Fmoc-Ile-OH, Fmoc-Phe-OH, Fmoc-Glu(OtBu)-OH, Fmoc- Lys-(Glu(N a - Palmitoyl)-OtBu)-OH, Fmoc-Ala-OH, Fmoc-Ala-OH, Fmoc-Gln(Trt)-OH, Fmoc-Gly-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Leu-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Val-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Ser(tBu)-OH , Fmoc-Thr(tBu)-OH, Fmoc-Phe-OH, Fmoc-Thr(tBu)-OH, Fmoc-Gly-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Ala-OH, Boc-His( Coupling of Trt)-OH.
其中 Fmoc-Leu-OH和 Fmoc-Phe-OH偶联时溶剂换为: 选用体积比为 1:4 的 DMSO 和 DMF 混合溶液; Fmoc-Asp(OtBu)-OH 偶联时偶联试剂换为: PyBOP/HOBt/DIEA; Boc-His(Trt)-OH偶联时偶联试剂换为: HATU/HOBt/DIEA, 偶联完毕, 将利拉鲁肽王树脂用 DMF洗涤 3次, DCM洗涤 3次, MeOH洗涤 3次, DCM洗涤 3次, MeOH洗涤 3次, 抽干得到 9.78g 利拉鲁肽王树脂。 实施例十一: 利拉鲁肽王树脂的规模化制备  In the case where Fmoc-Leu-OH and Fmoc-Phe-OH are coupled, the solvent is replaced by: a mixed solution of DMSO and DMF in a volume ratio of 1:4; and the coupling reagent of Fmoc-Asp(OtBu)-OH is converted to: PyBOP/HOBt/DIEA; Boc-His(Trt)-OH coupling reagent was changed to: HATU/HOBt/DIEA, after coupling, the liraglutide resin was washed 3 times with DMF and 3 times with DCM. The MeOH was washed 3 times, DCM was washed 3 times, MeOH was washed 3 times, and dried to give 9.78 g of liraglutide resin. Example 11: Large-scale preparation of liraglutide resin
称取 4570g ( lmol )取代度为 0.10mmol/g的 Fmoc-Gly-王树脂, 加入固相 反应柱中, 用 DMF洗涤 1次, 用 DMF溶胀 Fmoc-Gly-王树脂 30分钟后, 用 DMF:吡啶体积比为 4:1的混合溶液脱去 Fmoc保护, 然后用 DMF洗涤 6次,称 取 3240g Fmoc-Arg(Pbf)-OH ( 5mol )、 682g HOBt ( 5mol )加入体积比为 1:1的 DCM和 DMF混合溶液, 冰水浴下加入 800ml DIC ( 5mol )活化后, 加入上述 装有树脂的反应柱中, 室温下反应 2 'J、时后, 以茚三酮法检测判断反应终点, 如果树脂无色透明, 则表示反应完全; 树脂显色, 则表示反应不完全, 需要再 反应 1 小时, 此判断标准适用于后续氨基酸偶联中以茚三酮法检测判断反应终 点。 重复上述脱除 Fmoc保护和加入相应氨基酸偶联的步骤, 按照利拉鲁肽主 链肽序, 依次完成 Fmoc-Gly-OH、 Fmoc-Arg(Pbf)-OH 、 Fmoc-Val-OH、 Fmoc-Leu-OH、 Fmoc-Trp(Boc)-OH、 Fmoc-Ala-OH、 Fmoc-Ile-OH、 Fmoc-Phe-OH、 Fmoc-Glu(OtBu)-OH、 Fmoc- Lys-(Glu(Na-Palmitoyl)-OtBu)-OH, Fmoc-Ala-OH, Fmoc-Ala-OH 、 Fmoc-Gln(Trt)-OH 、 Fmoc-Gly-OH 、 Fmoc-Glu(OtBu)-OH 、 Fmoc-Leu-OH、 Fmoc-Tyr(tBu)-OH、 Fmoc-Ser(tBu)-OH、 Fmoc-Ser(tBu)-OH、 Fmoc-Val-OH、 Fmoc-Asp(OtBu)-OH、 Fmoc-Ser(tBu)-OH、 Fmoc-Thr(tBu)-OH、 Fmoc-Phe-OH 、 Fmoc-Thr(tBu)-OH 、 Fmoc-Gly-OH 、 Fmoc-Glu(OtBu)-OH 、 Fmoc-Ala -OH、 Boc-His(Trt)-OH的偶联。 其中 Fmoc-Leu-OH和 Fmoc-Phe-OH 偶联时溶剂换为: 选用体积比为 1 :4 的 DMSO 和 DMF 混合溶液; Fmoc-Asp(OtBu)-OH 偶联 时偶联试 剂 换 为 : PyBOP/HOBt/DIEA; Boc-His(Trt)-OH偶联时偶联试剂换为: HATU/HOBt/DIEA, 偶联完毕, 将利拉 鲁肽王树脂用 DMF洗涤 3次, DCM洗涤 3次, MeOH洗涤 3次, DCM洗涤 3 次, MeOH洗涤 3次, 抽干得到 9795g 利拉鲁肽王树脂。 Weigh 4570g (lmol) of Fmoc-Gly-Wang resin with a degree of substitution of 0.10mmol/g, add it to the solid phase reaction column, wash it once with DMF, and swell Fmoc-Gly-Wang resin with DMF for 30 minutes. DMF: The mixed solution with a pyridine volume ratio of 4:1 was deprotected by Fmoc, and then washed 6 times with DMF, and 3240 g of Fmoc-Arg(Pbf)-OH (5 mol) and 682 g of HOBt (5 mol) were weighed to a volume ratio of 1: The mixed solution of DCM and DMF of 1 is activated by adding 800 ml of DIC (5 mol) in an ice water bath, and then added to the reaction column containing the resin, and reacted at room temperature for 2 'J, and then the end point of the reaction is determined by the ninhydrin method. If the resin is colorless and transparent, it means the reaction is complete; if the resin develops color, it means that the reaction is incomplete and needs to be reacted for another hour. This criterion is applicable to the subsequent amino acid coupling and the end point of the reaction is determined by the ninhydrin method. Repeating the above steps of removing Fmoc protection and adding the corresponding amino acid coupling, according to the liraglutide main chain peptide sequence, sequentially completing Fmoc-Gly-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Val-OH, Fmoc- Leu-OH, Fmoc-Trp(Boc)-OH, Fmoc-Ala-OH, Fmoc-Ile-OH, Fmoc-Phe-OH, Fmoc-Glu(OtBu)-OH, Fmoc- Lys-(Glu(N a - Palmitoyl)-OtBu)-OH, Fmoc-Ala-OH, Fmoc-Ala-OH, Fmoc-Gln(Trt)-OH, Fmoc-Gly-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Leu-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Val-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Ser(tBu)-OH , Fmoc-Thr(tBu)-OH, Fmoc-Phe-OH, Fmoc-Thr(tBu)-OH, Fmoc-Gly-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Ala-OH, Boc-His( Coupling of Trt)-OH. When Fmoc-Leu-OH and Fmoc-Phe-OH are coupled, the solvent is changed to: DMSO and DMF mixed solution with a volume ratio of 1:4; Fmoc-Asp(OtBu)-OH is coupled with the coupling reagent: PyBOP/HOBt/DIEA; Boc-His(Trt)-OH coupling reagent was changed to: HATU/HOBt/DIEA, after coupling, the liraglutide resin was washed 3 times with DMF and 3 times with DCM. The MeOH was washed 3 times, DCM was washed 3 times, MeOH was washed 3 times, and dried to obtain 9975 g of liraglutide resin.
实施例十二: 利拉鲁肽粗肽的制备 Example 12: Preparation of Liraglutide Crude Peptide
称取 100g 全保护的利拉鲁肽 CTC 树脂或者利拉鲁肽王树脂, 加入到 lOOOmL的三口圓底烧瓶中, 按 TFA:苯曱硫醚:苯曱醚: EDT=90: 5: 3:2的体积比 配置裂解液 10L, 将裂解液加入上述树脂中, 室温反应 2小时, 过滤, 用少量 TFA洗涤裂解后的树脂 3次, 合并滤液, 浓缩, 将浓缩后的液体加入到冰乙醚 中沉淀 1小时, 离心, 无水乙醚离心洗涤 6次, 真空干燥, 得到利拉鲁肽粗肽 34.13g, 其 HPLC语图如图 3所示, HPLC纯度 83.03%, 粗肽收率 78%。  Weigh 100g of fully protected liraglutide CTC resin or liraglutide resin, and add it to a 1000mL three-neck round bottom flask, according to TFA: phenyl sulfonyl ether: benzoquinone: EDT=90: 5: 3: The volume ratio of 2 is 10 L of the lysate, the lysate is added to the above resin, reacted at room temperature for 2 hours, filtered, and the cracked resin is washed 3 times with a small amount of TFA, the filtrate is combined, concentrated, and the concentrated liquid is added to ice diethyl ether. The mixture was precipitated for 1 hour, centrifuged, washed with diethyl ether for 6 times, and dried under vacuum to give 34.13 g of crude liraglutide. The HPLC chromatogram is shown in Fig. 3, the HPLC purity was 83.03%, and the crude peptide yield was 78%.
实施例十三: 利拉鲁肽精肽醋酸盐的制备 Example 13: Preparation of liraglutide spermine acetate
称取 3413g 利拉鲁肽粗肽用 50%乙腈 +50%水的混合溶液 30L溶解后, 通 过 C18或 C8柱 2次纯化、 转盐、 冷冻干燥后得到目标产物。 第一次纯化条件: 流动相为: A相: 0.1 %TFA; B相: 乙腈, 检测波长 220nm, 收集目的峰榴分。 第二次纯化条件: 流动相为: A相: 0.3%乙酸; B相: 乙腈。检测波长 220nm, 收集目的峰榴分。 转盐条件: 流动 相: A相: 20mM乙酸铵-水溶液; B相: 乙腈; 检测波长 220nm。 收集目的峰榴分, 旋蒸浓缩, 冻干得到利拉鲁肽醋酸 盐精肽 11.24g,其 HPLC语图如图 4所示, HPLC纯度 99.75%,纯化总收率 40%, 总收率 31%。 其质谱如图 6所示, [M]+: 3751.848, 利拉鲁肽的理论精确分子 量为: 3751.2, 样品质谱结果与理论分子量相符。 以上内容是结合具体的修选实施方式对本发明所作的进一步详细说明,不能 认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技 术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发明的保户范围。 Weigh 3413g of liraglutide crude peptide dissolved in 30% mixed solution of 50% acetonitrile + 50% water, then pass The target product was obtained after 2 purifications on a C18 or C8 column, salt transfer, and lyophilization. First purification conditions: The mobile phase is: Phase A: 0.1% TFA; Phase B: Acetonitrile, detection wavelength 220 nm, collection of target peaks. Second purification conditions: The mobile phase is: Phase A: 0.3% acetic acid; Phase B: acetonitrile. The detection wavelength was 220 nm, and the target peaks were collected. Salt transfer conditions: Mobile phase: Phase A: 20 mM ammonium acetate-water solution; Phase B: acetonitrile; detection wavelength 220 nm. The target peaks were collected, concentrated by steaming, and lyophilized to obtain 11.24 g of liraglutide acetate peptide. The HPLC diagram is shown in Figure 4. The HPLC purity was 99.75%, and the total purification yield was 40%. 31%. The mass spectrum is shown in Figure 6, [M] + : 3751.848, the theoretical exact molecular weight of liraglutide is: 3751.2, and the mass spectrometry results of the sample are consistent with the theoretical molecular weight. The above is a further detailed description of the present invention in connection with specific alternative embodiments, and it is not intended that the specific embodiments of the invention are limited to the description. For those skilled in the art to which the present invention pertains, a number of simple derivations or substitutions may be made without departing from the inventive concept.

Claims

权利要求书 Claim
1. 一种利拉鲁肽的合成方法, 所述方法步骤如下: A method for synthesizing liraglutide, the method steps being as follows:
步 骤 1 , 通 过 液 相 方 法 合 成 赖 氨 酸 三 肽 片 段 Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH; Step 1, synthesizing a lysine tripeptide fragment Fmoc-Lys-(Glu(N a -Palmitoyl)-OtBu)-OH by a liquid phase method;
步骤 2, 在活化剂系统的存在下, 由树脂固相载体和 Fmoc-Gly-OH偶联得 到 Fmoc-Gly-树脂;  Step 2: Fmoc-Gly-resin is obtained by coupling a resin solid phase carrier and Fmoc-Gly-OH in the presence of an activator system;
步骤 3, 通过固相合成法, 按照利拉鲁肽主链肽序依次偶联具有 N端 Fmoc 保 护 且 侧 链保 护 的 氨基 酸 , 其 中 赖 氨 酸 三 肽 片 段 釆 用 Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH; Step 3, by solid phase synthesis, according to the liraglutide main chain peptide sequence, the amino acid having N-terminal Fmoc protection and side chain protection is sequentially coupled, wherein the lysine tripeptide fragment is Fmoc-Lys-(Glu(N) a -Palmitoyl)-OtBu)-OH;
步骤 4, 裂解, 纯化, 冻干, 得到利拉鲁肽。  Step 4, cleavage, purification, and lyophilization to obtain liraglutide.
2. 根据权利要求 1所述的方法, 其特征是:  2. The method of claim 1 wherein:
其 中 , 步 骤 1 所 述 的 固 相 合 成 方 法 , 所 述 片 段 Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH的液相合成步骤为: 正十六烷酸、 HOSu 和 DCC偶联得到 Palmitoyl-OSu, 然后 Palmitoyl-OSu和 H-Glu-OtBu反应得到 二肽片段 Palmitoyl-Glu-OtBu; Palmitoyl-Glu-OtBu、 HOSu 和 DCC 偶联得到 Palmitoyl-Glu(OSu)-OtBu , 然后 Palmitoyl-Glu(OSu)-OtBu和 Fmoc-Lys-OH反应 得到赖氨酸三肽片段 Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH。 Wherein, in the solid phase synthesis method described in the step 1, the liquid phase synthesis step of the fragment Fmoc-Lys-(Glu(N a -Palmitoyl)-OtBu)-OH is: n-hexadecanoic acid, HOSu and DCC coupling Palmitoyl-OSu is obtained, then Palmitoyl-OSu and H-Glu-OtBu are reacted to obtain the dipeptide fragment Palmitoyl-Glu-OtBu; Palmitoyl-Glu-OtBu, HOSu and DCC are coupled to obtain Palmitoyl-Glu(OSu)-OtBu, then Palmitoyl- Glu(OSu)-OtBu and Fmoc-Lys-OH are reacted to obtain a lysine tripeptide fragment Fmoc-Lys-(Glu(N a -Palmitoyl)-OtBu)-OH.
3. 根据权利要求 1所述的方法, 其特征是:  3. The method of claim 1 wherein:
其中, 步骤 2所述的固相合成方法, 所述树脂固相载体釆用 2-CTC树脂, 所述活化剂系统选自 DIEA、 TMP 或 NMM, 所述 Fmoc-Gly-树脂为 0.10~0.35mmol/g取代度的 Fmoc-Gly-CTC树脂。  The solid phase synthesis method according to the second step, wherein the resin solid phase carrier is made of 2-CTC resin, the activator system is selected from DIEA, TMP or NMM, and the Fmoc-Gly-resin is 0.10-0.35 mmol. /g substitution degree Fmoc-Gly-CTC resin.
4. 根据权利要求 1所述的方法, 其特征是:  4. The method of claim 1 wherein:
其中, 步骤 2所述的固相合成方法, 所述树脂固相载体釆用王树脂, 所述 活化剂系统由 DIC、 HOBt 和 DMAP 组成, 所述 Fmoc-Gly-树脂为 0.10~0.35mmol/g取代度的 Fmoc-Gly-王树脂。  The solid phase synthesis method according to the second step, wherein the resin solid phase carrier is made of a king resin, the activator system is composed of DIC, HOBt and DMAP, and the Fmoc-Gly-resin is 0.10 to 0.35 mmol/g. Degree of substitution of Fmoc-Gly-King resin.
5. 根据权利要求 1所述的方法, 其特征是:  5. The method of claim 1 wherein:
其中, 步骤 3所述的固相合成方法包括如下步骤: 1 )釆用由体积比为 1:4 的哌啶和 DMF组成的去保护液脱除 Fmoc-Gly-树脂上的 Fmoc保护基, 得到 H-Gly-树脂; The solid phase synthesis method described in the step 3 comprises the following steps: 1) removing the Fmoc protecting group on the Fmoc-Gly-resin by using a deprotecting solution consisting of piperidine and DMF in a volume ratio of 1:4. H-Gly-resin;
2 )在偶联剂系统的存在下, H-Gly-树脂和 Fmoc保护且侧链保护的精氨 酸偶联得到 Fmoc-Arg(Pbf)-Gly-树脂;  2) H-Gly-resin and Fmoc-protected and side-chain-protected arginine are coupled to obtain Fmoc-Arg(Pbf)-Gly-resin in the presence of a coupling agent system;
3 ) 重复步骤 1 )、 2 ), 按照利拉鲁肽主链肽序依次进行氨基酸的偶联, 其 中赖氨酸三肽片段釆用 Fmoc-Lys-(Glu(Na-Palmitoyl)-OtBu)-OH; 3) Repeat steps 1) and 2) to sequence the amino acids according to the liraglutide main chain peptide sequence, wherein the lysine tripeptide fragment is Fmoc-Lys-(Glu(N a -Palmitoyl)-OtBu) -OH;
6. 根据权利要求 5所述的方法, 其特征是:  6. The method of claim 5, wherein:
所述偶联剂系统包括缩合剂和反应溶剂, 所述缩合剂选自 DIC/HOBt、 PyBOP/HOBt/DIEA或 HATU/HOBt/DIEA; 所述反应溶剂选自 DMF、 DCM、 NMP、 DMSO或他们之间的任意组合。  The coupling agent system comprises a condensing agent selected from the group consisting of DIC/HOBt, PyBOP/HOBt/DIEA or HATU/HOBt/DIEA; and the reaction solvent is selected from DMF, DCM, NMP, DMSO or they Any combination between.
PCT/CN2014/075113 2014-01-03 2014-04-10 Method for preparing liraglutide WO2015100876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410001671.XA CN103980358B (en) 2014-01-03 2014-01-03 A kind of method preparing Arg34Lys26-(N-EPSILON-(N-ALPHA-Palmitoyl-L-GAMMA-glutamyl))-GLP-1[7-37]
CN201410001671.X 2014-01-03

Publications (1)

Publication Number Publication Date
WO2015100876A1 true WO2015100876A1 (en) 2015-07-09

Family

ID=51272546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075113 WO2015100876A1 (en) 2014-01-03 2014-04-10 Method for preparing liraglutide

Country Status (2)

Country Link
CN (1) CN103980358B (en)
WO (1) WO2015100876A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009236A3 (en) * 2015-07-10 2017-02-16 Sanofi New exendin-4 derivatives as selective peptidic dual glp-1 / glucagon receptor agonists
US9670261B2 (en) 2012-12-21 2017-06-06 Sanofi Functionalized exendin-4 derivatives
US9694053B2 (en) 2013-12-13 2017-07-04 Sanofi Dual GLP-1/glucagon receptor agonists
US9751926B2 (en) 2013-12-13 2017-09-05 Sanofi Dual GLP-1/GIP receptor agonists
US9750788B2 (en) 2013-12-13 2017-09-05 Sanofi Non-acylated exendin-4 peptide analogues
US9758561B2 (en) 2014-04-07 2017-09-12 Sanofi Dual GLP-1/glucagon receptor agonists derived from exendin-4
US9771406B2 (en) 2014-04-07 2017-09-26 Sanofi Peptidic dual GLP-1/glucagon receptor agonists derived from exendin-4
US9775904B2 (en) 2014-04-07 2017-10-03 Sanofi Exendin-4 derivatives as peptidic dual GLP-1/glucagon receptor agonists
US9789165B2 (en) 2013-12-13 2017-10-17 Sanofi Exendin-4 peptide analogues as dual GLP-1/GIP receptor agonists
US9932381B2 (en) 2014-06-18 2018-04-03 Sanofi Exendin-4 derivatives as selective glucagon receptor agonists
CN110759990A (en) * 2019-10-31 2020-02-07 成都圣诺生物制药有限公司 Preparation method of linagliptin
WO2020127476A1 (en) 2018-12-19 2020-06-25 Krka, D.D., Novo Mesto Pharmaceutical composition comprising glp-1 analogue
US10758592B2 (en) 2012-10-09 2020-09-01 Sanofi Exendin-4 derivatives as dual GLP1/glucagon agonists
US10806797B2 (en) 2015-06-05 2020-10-20 Sanofi Prodrugs comprising an GLP-1/glucagon dual agonist linker hyaluronic acid conjugate
WO2021123228A1 (en) 2019-12-18 2021-06-24 Krka, D.D., Novo Mesto Pharmaceutical composition comprising glp-1 analogue
EP4345104A1 (en) 2022-09-30 2024-04-03 Bachem Holding AG Method for preparing liraglutide

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104356224A (en) * 2014-10-24 2015-02-18 杭州阿德莱诺泰制药技术有限公司 Preparation method of semaglutide
CN105753964A (en) * 2014-12-16 2016-07-13 深圳翰宇药业股份有限公司 Preparation method of semaglutide and intermediate of semaglutide
CN104497130A (en) * 2014-12-30 2015-04-08 杭州华津药业股份有限公司 Preparation method for lanreotide
EP3433267B1 (en) 2016-03-23 2022-08-24 Bachem Holding AG Method for preparing glucagon-like peptides
CN110615836B (en) * 2018-06-20 2022-09-13 鲁南制药集团股份有限公司 Solid-phase synthesis method of liraglutide
CN110191892B (en) * 2018-07-23 2022-04-26 深圳市健元医药科技有限公司 Alanine-lysine-glutamic acid tripeptide derivative and application thereof
CN110845600B (en) * 2018-08-21 2022-12-27 鲁南制药集团股份有限公司 Method for preparing liraglutide
CN109836368B (en) * 2019-03-14 2020-12-08 美药星(南京)制药有限公司 Preparation method of high-purity liraglutide side chain
JP2022526115A (en) * 2019-03-19 2022-05-23 エンゼン・バイオサイエンシズ・リミテッド Glucagon-like peptide-1 (GLP-1) receptor agonist and its analog manufacturing process
WO2021007703A1 (en) * 2019-07-12 2021-01-21 Shanghai Space Peptides Pharmaceutical Co., Ltd. A method for preparing liraglutide via a solid phase peptide synthesis
CN112279895B (en) * 2019-07-27 2023-03-14 深圳市健元医药科技有限公司 Preparation method of chemically synthesized acidic polypeptide
CN110835369A (en) * 2019-12-02 2020-02-25 苏州天马医药集团天吉生物制药有限公司 Method for synthesizing liraglutide
CN111892650A (en) * 2020-07-06 2020-11-06 辽宁药联制药有限公司 Solid-phase synthesis method of liraglutide
CN116730902B (en) * 2023-08-07 2023-11-21 杭州湃肽生化科技有限公司 Method for synthesizing liraglutide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043705A1 (en) * 1998-02-27 1999-09-02 Novo Nordisk A/S N-terminally truncated glp-1 derivatives
CN103275208A (en) * 2013-05-27 2013-09-04 成都圣诺生物制药有限公司 Preparation method for liraglutide
CN103288951A (en) * 2013-06-19 2013-09-11 深圳翰宇药业股份有限公司 Preparation method of liraglutide
CN103304660A (en) * 2013-07-12 2013-09-18 上海昂博生物技术有限公司 Synthetic method of liraglutide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102286092B (en) * 2011-09-14 2014-01-01 深圳翰宇药业股份有限公司 Solid-phase synthesis method of liraglutide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043705A1 (en) * 1998-02-27 1999-09-02 Novo Nordisk A/S N-terminally truncated glp-1 derivatives
CN103275208A (en) * 2013-05-27 2013-09-04 成都圣诺生物制药有限公司 Preparation method for liraglutide
CN103288951A (en) * 2013-06-19 2013-09-11 深圳翰宇药业股份有限公司 Preparation method of liraglutide
CN103304660A (en) * 2013-07-12 2013-09-18 上海昂博生物技术有限公司 Synthetic method of liraglutide

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10758592B2 (en) 2012-10-09 2020-09-01 Sanofi Exendin-4 derivatives as dual GLP1/glucagon agonists
US10253079B2 (en) 2012-12-21 2019-04-09 Sanofi Functionalized Exendin-4 derivatives
US9670261B2 (en) 2012-12-21 2017-06-06 Sanofi Functionalized exendin-4 derivatives
US9745360B2 (en) 2012-12-21 2017-08-29 Sanofi Dual GLP1/GIP or trigonal GLP1/GIP/glucagon agonists
US9750788B2 (en) 2013-12-13 2017-09-05 Sanofi Non-acylated exendin-4 peptide analogues
US9694053B2 (en) 2013-12-13 2017-07-04 Sanofi Dual GLP-1/glucagon receptor agonists
US9789165B2 (en) 2013-12-13 2017-10-17 Sanofi Exendin-4 peptide analogues as dual GLP-1/GIP receptor agonists
US9751926B2 (en) 2013-12-13 2017-09-05 Sanofi Dual GLP-1/GIP receptor agonists
US9758561B2 (en) 2014-04-07 2017-09-12 Sanofi Dual GLP-1/glucagon receptor agonists derived from exendin-4
US9771406B2 (en) 2014-04-07 2017-09-26 Sanofi Peptidic dual GLP-1/glucagon receptor agonists derived from exendin-4
US9775904B2 (en) 2014-04-07 2017-10-03 Sanofi Exendin-4 derivatives as peptidic dual GLP-1/glucagon receptor agonists
US9932381B2 (en) 2014-06-18 2018-04-03 Sanofi Exendin-4 derivatives as selective glucagon receptor agonists
US10806797B2 (en) 2015-06-05 2020-10-20 Sanofi Prodrugs comprising an GLP-1/glucagon dual agonist linker hyaluronic acid conjugate
US9982029B2 (en) 2015-07-10 2018-05-29 Sanofi Exendin-4 derivatives as selective peptidic dual GLP-1/glucagon receptor agonists
WO2017009236A3 (en) * 2015-07-10 2017-02-16 Sanofi New exendin-4 derivatives as selective peptidic dual glp-1 / glucagon receptor agonists
WO2020127476A1 (en) 2018-12-19 2020-06-25 Krka, D.D., Novo Mesto Pharmaceutical composition comprising glp-1 analogue
CN110759990A (en) * 2019-10-31 2020-02-07 成都圣诺生物制药有限公司 Preparation method of linagliptin
WO2021123228A1 (en) 2019-12-18 2021-06-24 Krka, D.D., Novo Mesto Pharmaceutical composition comprising glp-1 analogue
EP4345104A1 (en) 2022-09-30 2024-04-03 Bachem Holding AG Method for preparing liraglutide
WO2024068827A1 (en) 2022-09-30 2024-04-04 Bachem Holding Ag Method for preparing liraglutide

Also Published As

Publication number Publication date
CN103980358B (en) 2016-08-31
CN103980358A (en) 2014-08-13

Similar Documents

Publication Publication Date Title
WO2015100876A1 (en) Method for preparing liraglutide
US11518794B2 (en) Synthesis method for liraglutide with low racemate impurity
EP3398960B1 (en) Method for preparing semaglutide
US20130289241A1 (en) Method for preparing exenatide
DK2757107T3 (en) A process for the solid phase synthesis of liraglutide
JP7315683B2 (en) Process for preparing GIP/GLP1 dual agonists
US20110319594A1 (en) Method for producing bivalirudin
US8378066B2 (en) Insulinotropic peptide synthesis using solid and solution phase combination techniques
CN104356224A (en) Preparation method of semaglutide
WO2014199397A2 (en) Process for the preparation of liraglutide
US20100292436A1 (en) Method for producing bivalirudin
CN109575109B (en) Method for preparing degarelix by fragment condensation
KR20100036326A (en) Process for the production of pramlintide
CN106632655B (en) Preparation method of exenatide and product thereof
CN104211801A (en) Method for preparing lixisenatide
Nilsson et al. Synthesis and purification of amyloidogenic peptides
CN104356221B (en) A kind of method for preparing pexiganan
CN112062829B (en) Preparation method of elcatonin
CN115181174A (en) Preparation method of Tirzepatide
CN110642936B (en) Method for preparing teriparatide
WO2023089594A1 (en) Process for the preparation of tirzepatide or pharmaceutically acceptable salt thereof
US8846614B2 (en) Process for the synthesis of 37-mer peptide pramlintide
CN104447963B (en) A kind of method for preparing aviptadil
CN104447979B (en) A kind of method for preparing Nesiritide
US20220242913A1 (en) Novel intermediate used for biologically active polypeptide and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/10/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14877212

Country of ref document: EP

Kind code of ref document: A1