WO2015100741A1 - 快门式三维眼镜的灰度驱动方法 - Google Patents

快门式三维眼镜的灰度驱动方法 Download PDF

Info

Publication number
WO2015100741A1
WO2015100741A1 PCT/CN2014/070147 CN2014070147W WO2015100741A1 WO 2015100741 A1 WO2015100741 A1 WO 2015100741A1 CN 2014070147 W CN2014070147 W CN 2014070147W WO 2015100741 A1 WO2015100741 A1 WO 2015100741A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
lens
gamma
glasses
period
Prior art date
Application number
PCT/CN2014/070147
Other languages
English (en)
French (fr)
Inventor
方斌
杨智名
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/235,807 priority Critical patent/US9473765B2/en
Publication of WO2015100741A1 publication Critical patent/WO2015100741A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0254Control of polarity reversal in general, other than for liquid crystal displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/008Aspects relating to glasses for viewing stereoscopic images

Definitions

  • the present invention relates to a grayscale driving method for shutter type three-dimensional glasses, and more particularly to a grayscale driving method for shutter type three-dimensional glasses that can adjust the brightness of left and right eyes.
  • Suitable for Shutter Glasses three dimension, SG 3D) display devices usually need to have a higher screen refresh rate (usually up to 120 Hz or 240 Hz), while the shutter-type 3D glasses are fixed at 60 Hz to achieve a 3D effect.
  • a display device such as a display, a projector, etc.
  • the image is alternately generated in a frame sequence, and the frame signals are transmitted wirelessly, and the received 3D glasses are refreshed.
  • the two eyes of the viewer see different images that are quickly switched, and create an illusion in the brain (the camera can't shoot the effect), and then watch it. Stereoscopic image.
  • FIG. 1A shows a list of input signal polarity transitions when the input signal is a left black and white screen for a pixel position of the left or right lens in the 3D glasses.
  • L0 and L255 respectively represent grayscale signals of a black-and-white screen. If the L0 signal is positive polarity, the L255 signal is negative polarity. On the other hand, if the L0 signal is negative, the L255 signal is positive. In addition, the L0 signal has a small voltage difference, and both the positive polarity and the negative polarity voltage are close to the common voltage (V-com), while the L255 signal has a large differential voltage, and both the positive polarity and the negative polarity voltage are far from the common voltage (V-com).
  • the L255 signal is always positive, and the L0 signal is always negative, and a DC like DC appears for a long time.
  • the residual charge of the (DC) operation will faintly leave the image on the position of the 3D glasses, and the so-called 3D image residue will appear (3D Image sticking, 3D IS) problem.
  • Figure 1B shows a list of input signal polarity transitions for improved 3D image sticking for one of the pixel locations in the 3D glasses.
  • the signal of L255 or L0 has both a positive polarity and a negative polarity, solving the problem of 3D afterimage.
  • the difference in brightness between the left and right eyes becomes large in the 3D display.
  • the problem of 3D image ghosting occurs in the difference between the left and right eye luminances, which affects the effect of 3D display.
  • 3D display lower left and right eye brightness difference is due to low color shift (Low In the design of color washout), when the shared capacitor is redistributed to the entire pixel charge, the odd frame is inconsistent with the even frame.
  • An object of the present invention is to provide a gray scale driving method for improving the problem of 3D image sticking and 3D ghosting of conventional active shutter type 3D glasses.
  • Another object of the present invention is to provide a shutter type 3D glasses through which the problem of 3D afterimage and 3D ghosting can be improved.
  • the invention constructs an active shutter three-dimensional (three dimension, 3D) a grayscale driving method for glasses, the method comprising: sequentially inputting a first signal and a second signal into the first lens and the second lens of the 3D glasses in a cycle every two frames, And the first signal input in the period is the same polarity as the second signal; and the polarity of the first signal and the second signal is changed when the period enters a next period; During the period of the cycle, the third signal and the fourth signal are respectively input to the first lens and the second lens, respectively adjusting the first signal and the first lens and the second lens The gamma voltage of the second signal.
  • the first signal and the second signal are image grayscale signals to provide images on the first lens and the second lens
  • the third signal is
  • the fourth signal is programmable gamma (programmable A gamma, P-gamma) signal to dynamically adjust the gamma voltage of the first signal and the second signal.
  • the third signal and the fourth signal adjust the gamma voltage of the first signal and the second signal according to a gamma curve.
  • Another object of the present invention is to provide a shutter type 3D glasses through which the problem of 3D afterimage and 3D ghosting can be improved.
  • the present invention constructs a shutter type 3D glasses, which includes a first lens for receiving a left eye image, a second lens for receiving a right eye image, and a liquid crystal layer respectively disposed on The first lens and the second lens; and the control module are electrically connected to the first lens and the second lens respectively, and include: a source driving integrated circuit, configured to output the first signal and the first Two signals to respectively control image gradation of the liquid crystal layer of the first lens and the second lens; and a programmable gamma integrated circuit (P-gamma IC), configured to output a third signal and a fourth signal, wherein the first signal and the second signal of the first lens and the second lens are respectively adjusted by the third signal and the fourth signal Gamma voltage.
  • a source driving integrated circuit configured to output the first signal and the first Two signals to respectively control image gradation of the liquid crystal layer of the first lens and the second lens
  • P-gamma IC programmable gamma integrated circuit
  • the first signal and the second signal are image gray signals
  • the third signal and the fourth signal are programmable gamma (programmable Gamma, P-gamma) signal.
  • the first signal and the second signal are image gray signals
  • the third signal and the fourth signal are programmable gamma (programmable Gamma, P-gamma) signal.
  • Another object of the present invention is to provide a gray scale driving method capable of dynamically adjusting the brightness of left and right eyes in 3D display.
  • the present invention proposes a shutter type three-dimensional (three dimension, 3D) a grayscale driving method for glasses, comprising the steps of sequentially inputting a first signal and a second signal from the source driving integrated circuit to the first of the 3D glasses in a cycle every two frames.
  • the first signal and the second signal input in the lens and the second lens are all of the same polarity; and the first signal and the second are transformed when the cycle enters a next cycle
  • the polarity of the signal; and during the period, the third and fourth signals are from the programmable gamma integrated circuit (P-gamma ICs are respectively input to the first lens and the second lens, and respectively adjust gamma voltages of the first signal and the second signal in the first lens and the second lens.
  • P-gamma ICs are respectively input to the first lens and the second lens, and respectively adjust gamma voltages of the first signal and the second signal in the first lens and the second lens.
  • the first signal and the second signal are image grayscale signals to provide images on the first lens and the second lens
  • the third signal is
  • the fourth signal is programmable gamma (programmable A gamma, P-gamma) signal to dynamically adjust the gamma voltage of the first signal and the second signal.
  • the third signal and the fourth signal adjust the gamma voltage of the first signal and the second signal according to a gamma curve.
  • 1A shows a signal polarity conversion list when the input signal is a left black and white screen in a pixel position of the left or right lens of the shutter type 3D glasses;
  • Figure 1B shows a list of input signal polarity transitions for one of the left or right eyeglasses of the 3D glasses
  • FIG. 1C shows an input signal polarity conversion list for improving the residual image of the 3D image for one of the left or right lens of the 3D glasses.
  • FIG. 2 is a diagram showing an input signal polarity conversion list for improving a 3D image ghost or a 3D image afterimage for a pixel position of the 3D glasses in the embodiment of the present invention
  • FIG. 3 shows a driving method of active shutter type 3D glasses according to a preferred embodiment of the present invention
  • FIG. 4 is a block diagram showing active shutter type 3D glasses according to an embodiment of the present invention.
  • Figure 5A shows a gamma plot of a single programmable gamma signal applied to a first lens and a second lens
  • Figure 5B shows a gamma plot of two programmable gamma signals applied to the first lens and the second lens.
  • the second lens 2 shows an input signal polarity conversion list for a pixel position on a first lens or a second lens of a 3D glasses in an embodiment of the present invention.
  • the first lens of the 3D glasses is for receiving a left eye image and the second lens is for receiving a right eye image.
  • the first lens can be used to receive a right eye image and the second lens can be used to receive a left eye image, which is not limited herein. As shown in FIG.
  • a gamma signal is added to adjust the brightness of the left and right eyes to achieve equal brightness of the left and right eyes.
  • the adjustment of the gamma signal is a reference gamma curve.
  • a gamma curve In a display device, there is a nonlinear relationship between the brightness of a pixel and the voltage applied to a pixel, and a curve embodying such a nonlinear relationship is called a gamma curve.
  • the signal of the general pixel is a data signal.
  • the gamma signal in the embodiment of the present invention is preferably a programmable gamma signal (programmable) Gamma Signal, P-gamma), programmable gamma signal can be generated by adding a programmable gamma IC outside the source driver integrated circuit (IC), programmable by the programmable gamma IC through the source driver IC The gamma signal is applied to the pixel, which in turn adjusts the voltage of the pixel grayscale.
  • step S302 the first signal and the second signal are sequentially input into the first lens and the second lens of the 3D glasses in a period of two frames, and the first signal is input in the period. It has the same polarity as the second signal.
  • the first signal is input to the first lens in the first frame
  • the second signal is input into the second lens in the second frame
  • the first signal and the second signal are respectively Both are positive in the first frame and the second frame.
  • the first lens is for receiving a left eye image and the second lens is for receiving a right eye image.
  • the first lens can be used to receive a right eye image and the second lens can be used to receive a left eye image, which is not limited herein.
  • the first signal and the second signal respectively input in the timings of the first frame and the second frame are positive, but in different embodiments, the first frame and the second frame are The first signal and the second signal may also be negative polarity, and are not limited herein.
  • step S304 in the 3D display mode, the polarity of the first signal and the second signal are changed when entering the next cycle.
  • the polarities of the first signal and the second signal in the first period of the first frame and the second frame are positive, and in the third frame and the fourth frame.
  • the polarity of the first signal and the second signal in the second period is negative polarity.
  • step S306 in each cycle, the third signal and the fourth signal are respectively input to the first lens and the second lens, respectively, for adjusting the first signal and the second signal in the first lens and the second lens.
  • the horse voltage is equal to the brightness of the left or right eye.
  • the inputs of the third signal and the fourth signal are reference to a gamma curve to adjust the gamma voltages of the first signal and the second signal of the first lens or the second lens.
  • the first signal and the second signal are output by the source driving IC and are image data signals.
  • the third signal and the fourth signal are output by a programmable gamma IC as a programmable gamma signal.
  • FIG. 4 shows active shutter type 3D glasses in accordance with an embodiment of the present invention.
  • the active shutter type 3D glasses 40 include at least a first lens 402, a second lens 404, and a control module 406.
  • the first lens 402 is for receiving a left eye image
  • the second lens 404 is for receiving a right eye image.
  • the first lens 402 and the second lens 404 respectively include a liquid crystal layer 408, and the control module 406 is electrically connected to the first lens 402 and the second lens 404 respectively to control the image gray of the liquid crystal layer 408 of the first lens 402 and the second lens 404.
  • the first lens 402 and the second lens 404 are light transmissive and opaque.
  • the control module 406 includes a source driver IC 4062 and a programmable gamma IC 4064.
  • the source driving IC 4062 is configured to output the first signal and the second signal to respectively control the image gradation of the first lens 402 and the second lens 404, and convert the polarity of the first signal and the second signal during the cycle and period conversion.
  • the polarity of the first signal and the second signal in the first period of the first frame and the second frame is positive
  • the first signal in the second period of the third frame and the fourth frame The polarity with the second signal is negative.
  • the programmable gamma IC is configured to output the third signal and the fourth signal to adjust the voltages of the first signal and the second signal of the left and right eyes to achieve the purpose of adjusting the brightness of the left and right eyes.
  • the third signal and the fourth signal are respectively input into the first lens 402 and the second lens by the programmable gamma IC 4064. 404. Adjust the gamma voltages of the first signal and the second signal by using the third signal and the fourth signal, respectively, to achieve the purpose of adjusting brightness of the left and right eyes.
  • Figure 5A shows a gamma plot of a single programmable gamma signal applied to a first lens and a second lens.
  • FIG. 5A since only a single programmable gamma signal is input to the first lens and the second lens of the 3D glasses, the brightness on the left and right eyes is still different, and the first lens and the second lens are shown in the figure.
  • the gamma curve on the lens does not overlap into a line, so that the brightness seen by the left eye and the right eye is not the same.
  • Figure 5B shows a gamma plot of the application of two programmable gamma signals on the first lens and the second lens, respectively.
  • the two gamma signals are used to adjust the gamma voltages on the left and right eyeglasses respectively. Because the programmable gamma signals input on the first lens and the second lens are different, the voltages of the left and right eyes in the light and dark may be different. Different adjustments, in order to achieve equal brightness of the left and right eyes. As shown in FIG. 5B, the gamma curves on the first lens and the second lens overlap, and the brightness of the left and right eyes is equal.
  • the above-mentioned 3D glasses gray scale driving method can not only improve the 3D image sticking problem caused by the residual charge, but also improve the 3D image ghosting caused by the difference in brightness between left and right eyes, and utilize the active shutter. Style 3D glasses have a better effect when viewing 3D images.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

本发明提供一种快门(shutter)式三维(three dimension, 3D)眼镜的灰度驱动方法,其包含下列步骤:以每两帧为周期,于所述周期内依序输入第一信号与第二信号于所述3D眼镜的第一镜片与第二镜片中,且在所述周期内输入的所述第一信号与所述第二信号为相同极性;在所述周期进入下一周期时变换所述第一信号与所述第二信号的极性;以及在所述周期时期间,将第三信号与第四信号分别输入于所述第一镜片与所述第二镜片,分别调节所述第一镜片与所述第二镜片中所述第一信号与所述第二信号的伽马电压。

Description

快门式三维眼镜的灰度驱动方法 技术领域
本发明涉及一种快门式三维眼镜的灰度驱动方法,特别是涉及一种可调整左右眼亮度的快门式三维眼镜的灰度驱动方法。
背景技术
适用快门式三维眼镜(Shutter Glasses three dimension, SG 3D)的显示设备通常需要具有较高的屏幕刷新率(通常要达到120Hz或240Hz),而快门式3D眼镜的频率则固定为60Hz来实现3D效果。当3D信号输入到显示设备(诸如显示器、投影机等)后,影像便以帧(frame)序列的方式实现左右帧交替产生,通过无线方式将这些帧信号传输出去,负责接收的3D眼镜在刷新同步实现左右眼观看对应的影像,并且保持与2D视像相同的帧数,观众的两只眼睛看到快速切换的不同画面,并且在大脑中产生错觉(摄像机拍摄不出来效果),便观看到立体影像。
图1A显示3D眼镜中左眼镜片或右眼镜片的某一个像素位置而言,输入信号为左黑右白画面时的输入信号极性转换列表。如图1A所示,L0与L255分别表示黑白画面的灰度(Grayscale)信号,若L0信号为正极性,L255信号为负极性。反之,若L0信号为负极性,L255信号为正极性。另外,L0信号的压差较小,正极性和负极性电压都接近共同电压(V-com),而L255信号的压差大,正极性和负极性电压都远离共同电压(V-com)。因此,若在3D眼镜的某一位置的影像长时间显示某一个极性,如图1A的图表所示,L255信号一直是正极性,L0信号一直是负极性,长时间下来便会出现类似直流(DC)操作的电荷残留,会隐约在3D眼镜的该位置上残留影像画面,出现所谓的3D影像残留(3D image sticking,3D IS)的问题。
图1B显示对3D眼镜中的某一个像素位置而言,为改善3D影像残影的输入信号极性转换列表。如图1B所示,若将输入的影像数据信号的极性更改为每两个帧转换一次,对L255或L0的信号而言,既有正极性也有负极性,解决3D残影的问题。然而,在极性每两个帧转换一次的情况下,虽然解决了3D残影的问题,却衍生出另外一个问题:在3D显示下左右眼亮度差变大。如图1C所示,左右眼亮度差变大会出现3D影像重影的问题,影响3D显示的效果。3D显示下左右眼亮度差出现是因为低色偏(Low color washout)的设计中,分享电容对整个像素电荷重新分配时,奇数帧与偶数帧不一致所导致。
因此,存在一种需求设计灰度信号的驱动方式同时可以解决在SG 3D模式下的3D残影问题以及3D显示时左右眼亮度差过大而导致3D重影的问题。
技术问题
本发明的一个目的在提出一种灰度驱动方法,改善传统主动快门式3D眼镜3D残影问题与3D重影的问题。
本发明的另一个目的在提出一种快门式3D眼镜,透过此快门式3D眼镜可以改善3D残影与3D重影的问题。
技术解决方案
本发明构造了一种主动快门(shutter)式三维(three dimension, 3D)眼镜的灰度驱动方法,其方法包含:以每两帧为周期,于所述周期内依序输入第一信号与第二信号于所述3D眼镜的第一镜片与第二镜片中,且在所述周期内输入的所述第一信号与所述第二信号为相同极性;在所述周期进入下一周期时变换所述第一信号与所述第二信号的极性;以及在所述周期时期间,将第三信号与第四信号分别输入于所述第一镜片与所述第二镜片,分别调节所述第一镜片与所述第二镜片中所述第一信号与所述第二信号的伽马电压。
在本发明一实施例中,所述第一信号与所述第二信号为影像灰度(grayscale)信号以提供影像于所述第一镜片与所述第二镜片,而所述第三信号与所述第四信号为可编程伽马(programmable gamma, P-gamma)信号以动态调整所述第一信号与所述第二信号的所述伽马电压。
在本发明一实施例中,所述第三信号与所述第四信号依据伽马曲线来调整所述第一信号与所述第二信号的所述伽马电压。
本发明的另一个目的在提出一种快门式3D眼镜,透过此快门式3D眼镜可以改善3D残影与3D重影的问题。
为解决上述技术问题,本发明构造了一种快门(shutter)式3D眼镜,其包含第一镜片,用于接收左眼影像;第二镜片,用于接收右眼影像;液晶层,分别设置于所述第一镜片与所述第二镜片上;以及控制模块,分别电性连接所述第一镜片与所述第二镜片,且包含:源极驱动集成电路,用于输出第一信号与第二信号以分别控制所述第一镜片与所述第二镜片的所述液晶层的影像灰度;以及可编程伽马集成电路(P-gamma IC),用于输出第三信号与第四信号,藉由所述第三信号与第四信号分别调节所述第一镜片与所述第二镜片的所述第一信号与所述第二信号的伽马电压。
在本发明一实施例中,所述第一信号与所述第二信号为影像灰度信号,而所述第三信号与所述第四信号为可编程伽马(programmable gamma, P-gamma)信号。
在本发明一实施例中,所述第一信号与所述第二信号为影像灰度信号,而所述第三信号与所述第四信号为可编程伽马(programmable gamma, P-gamma)信号。
本发明的另一个目的在提出一种灰度驱动方法,可动态调整3D显示时左右眼的亮度。
为解决上述技术问题,本发明提出一种快门(shutter)式三维(three dimension, 3D)眼镜的灰度驱动方法,其包含下列步骤:以每两帧为周期,于所述周期内从源极驱动集成电路依序输入第一信号与第二信号于所述3D眼镜的第一镜片与第二镜片中,且在所述周期内输入的所述第一信号与所述第二信号皆为相同极性;在所述周期进入下一周期时变换所述第一信号与第二信号的极性;以及在所述周期期间,将第三信号与第四信号从可编程伽马集成电路(P-gamma IC)分别输入于所述第一镜片与所述第二镜片,分别调节所述第一镜片与所述第二镜片中所述第一信号与所述第二信号的伽马电压。
在本发明一实施例中,所述第一信号与所述第二信号为影像灰度(grayscale)信号以提供影像于所述第一镜片与所述第二镜片,而所述第三信号与所述第四信号为可编程伽马(programmable gamma, P-gamma)信号以动态调整所述第一信号与所述第二信号的所述伽马电压。
在本发明一实施例中,所述第三信号与所述第四信号依据伽马曲线来调整所述第一信号与所述第二信号的所述伽马电压。
有益效果
透过采用两组可编程伽马信号同时解决3D残影问题以及3D显示时左右眼所看到的亮度差的问题。
附图说明
图1A显示快门式3D眼镜的左眼镜片或右眼镜片中的某一个像素位置而言,输入信号为左黑右白画面时的信号极性转换列表;
图1B显示对3D眼镜的左眼镜片或右眼镜片中的某一个像素位置的输入信号极性转换列表;
图1C显示对3D眼镜的左眼镜片或右眼镜片中的某一个像素位置而言,为改善3D影像残影的输入信号极性转换列表。
图2显示本发明实施例中,对3D眼镜的某一个像素位置而言,为改善3D影像重影或3D影像残影的输入信号极性转换列表;
图3显示本发明较佳实施例的主动快门式3D眼镜的驱动方法;
图4显示本发明实施例的主动快门式3D眼镜的方块示意图;
图5A显示仅应用单一可编程伽马信号于第一镜片与第二镜片上的伽马曲线图;以及
图5B显示应用两个可编程伽马信号于第一镜片与第二镜片上的伽马曲线图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是以相同标号表示。
图2显示本发明实施例中,对3D眼镜的第一镜片或第二镜片上某一个像素位置的输入信号极性转换列表。3D眼镜的第一镜片用于接收左眼影像,第二镜片用于接收右眼影像。在不同实施例中,第一镜片可用于接收右眼影像,第二镜片可用于接收左眼影像,在此并不局限。如图2所示,为了改善因为左右眼的亮度差过大所造成的3D重影问题,根据本发明,除了灰度信号以外,在3D眼镜的第一镜片与第二镜片的输入信号中分别加入伽马(gamma)信号以调整左右眼的亮度,来达到左右眼亮度相等。而伽马信号的调整是参考伽马曲线。在显示设备中,像素的亮度和施加到像素的电压之间为一种非线性关系,而体现这种非线性关系的曲线称为伽马曲线。一般像素的信号为数据信号,由于像素的亮度和施加到像素的电压之间为一种非线性关系,因此可以根据伽马曲线调整数据信号的电压,进而达到调整左右眼的亮度相等。而在本发明实施例中的伽马信号较佳为可编程伽马信号(programmable gamma signal,P-gamma),可编程伽马信号可以藉由在源极驱动集成电路(IC)外再增加一个可编程伽马IC而产生,由可编程伽马IC通过源极驱动IC传送可编程伽马信号给像素,进而调整像素灰度的电压。
图3显示本发明较佳实施例的主动快门式3D眼镜的第一镜片与第二镜片的驱动方法。如图3所示,在步骤S302中,以每两帧为周期,依序输入第一信号与第二信号于3D眼镜的第一镜片与第二镜片中,且在周期内输入的第一信号与第二信号为相同极性。举例来说,以第一帧与第二帧为一个周期,第一信号在第一帧时输入第一镜片,第二信号在第二帧时输入第二镜片,第一信号与第二信号分别在第一帧与第二帧输入时都为正极性。第一镜片用于接收左眼影像,第二镜片用于接收右眼影像。在不同实施例中,第一镜片可用于接收右眼影像,第二镜片可用于接收左眼影像,在此并不局限。另外,在本发明的实施例中,在第一帧与第二帧的时序中分别输入的第一信号与第二信号为正极性,然而在不同实施例中,第一帧与第二帧的第一信号与第二信号也可以为负极性,在此并不局限。
在步骤S304中,3D显示模式下,在进入下一周期时变换第一信号与第二信号的极性。举例来说,在本发明的实施例中,在第一帧与第二帧的第一周期中的第一信号与第二信号的极性为正极性,而在第三帧与第四帧的第二周期中的第一信号与第二信号的极性为负极性。
在步骤S306中,在每一周期中,第三信号与第四信号分别输入于第一镜片与第二镜片,分别用于调节第一镜片与第二镜片中第一信号与第二信号的伽马电压,达到让左眼或右眼的亮度相等。第三信号与第四信号的输入是参考一伽马曲线以调整第一镜片或第二镜片的第一信号与第二信号的伽马电压。另外,第一信号与第二信号是由源极驱动IC所输出,为影像数据信号。而第三信号与第四信号是由一可程序伽马IC所输出,为可程序伽马信号。藉由上述的3D眼镜的驱动方法,调节第一镜片与第二镜片的伽马电压,改善左眼与右眼所看到的亮度,达到改善3D残影的同时更可以改善3D重影的问题。
图4显示本发明实施例的主动快门式3D眼镜。如图4所示,主动快门式3D眼镜40至少包含第一镜片402、第二镜片404与控制模块406。于本实施例中,第一镜片402用于接收左眼影像,第二镜片404用于接收右眼影像。第一镜片402与第二镜片404分别包含液晶层408,且控制模块406分别电性连接第一镜片402与第二镜片404以控制第一镜片402与第二镜片404的液晶层408的影像灰度,进而达到第一镜片402与第二镜片404透光与不透光。在本发明实施例中,控制模块406包含源极驱动IC4062与可编程伽马IC4064。源极驱动IC4062用于输出第一信号与第二信号分别控制第一镜片402与第二镜片404的影像灰度,且在周期与周期的转换时,变换第一信号与第二信号的极性。举例来说,在第一帧与第二帧的第一周期中的第一信号与第二信号的极性为正极性,而在第三帧与第四帧的第二周期中的第一信号与第二信号的极性为负极性。可编程伽马IC用于输出第三信号与第四信号以调整左右眼的第一信号与第二信号的电压,以达到调节左右眼亮度的目的。当第一信号与第二信号分别由源极驱动IC4062输入第一镜片402与第二镜片404,同时将第三信号与第四信号由可编程伽马IC4064分别输入第一镜片402与第二镜片404,利用第三信号与第四信号分别调节第一信号与第二信号的伽马电压,以达到调节左右眼亮度的目的。
图5A显示仅应用单一可编程伽马信号于第一镜片与第二镜片上的伽马曲线图。如图5A所示,由于仅输入单一可编程伽马信号于3D眼镜的第一镜片与第二镜片上,在左右眼上的亮度还是有所差别,图中所示的第一镜片与第二镜片上的伽马曲线并非重迭成一条线,由此可知左眼与右眼所看到的亮度并非相同。图5B显示应用两个可编程伽马信号分别于第一镜片与第二镜片上的伽马曲线图。利用两个可编程伽马信号分别调整左右眼镜片上的伽马电压,由于输入于第一镜片与第二镜片上的可编程伽马信号不同,可以针对左右眼在亮暗时的电压不同而做不同的调整,进而达到左右眼亮度相等。而如图5B所示,第一镜片与第二镜片上的伽马曲线为重迭,达到左右眼亮度相等。
藉由上述的3D眼镜的灰度驱动方法,不但可以改善因电荷残留而造成的3D残影问题,又可以改善因为左右眼亮度差变大而导致的3D影像重影的问题,让利用主动快门式3D眼镜在观看3D影像时有较佳的效果。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。
本发明的实施方式
工业实用性
序列表自由内容

Claims (9)

  1. 一种快门(shutter)式三维(three dimension, 3D)眼镜的灰度驱动方法,其包含:
    以每两帧为周期,于所述周期内依序输入第一信号与第二信号于所述3D眼镜的第一镜片与第二镜片中,且在所述周期内输入的所述第一信号与所述第二信号为相同极性;
    在所述周期进入下一周期时变换所述第一信号与所述第二信号的极性;以及
    在所述周期时期间,将第三信号与第四信号分别输入于所述第一镜片与所述第二镜片,分别调节所述第一镜片与所述第二镜片中所述第一信号与所述第二信号的伽马电压。
  2. 根据权利要求1所述的灰度驱动方法,其中所述第一信号与所述第二信号为影像灰度(grayscale)信号以提供影像于所述第一镜片与所述第二镜片,而所述第三信号与所述第四信号为可编程伽马(programmable gamma, P-gamma)信号以动态调整所述第一信号与所述第二信号的所述伽马电压。
  3. 根据权利要求1所述的灰度驱动方法,其中所述第三信号与所述第四信号依据伽马曲线来调整所述第一信号与所述第二信号的所述伽马电压。
  4. 一种快门(shutter)式3D眼镜,其包含:
    第一镜片,用于接收左眼影像;
    第二镜片,用于接收右眼影像;
    液晶层,分别设置于所述第一镜片与所述第二镜片上;以及
    控制模块,分别电性连接所述第一镜片与所述第二镜片,且包含:
    源极驱动集成电路,用于输出第一信号与第二信号以分别控制所述第一镜片与所述第二镜片的所述液晶层的影像灰度;以及
    可编程伽马集成电路(P-gamma IC),用于输出第三信号与第四信号,藉由所述第三信号与第四信号分别调节所述第一镜片与所述第二镜片的所述第一信号与所述第二信号的伽马电压。
  5. 根据权利要求4所述的3D眼镜,其中所述第一信号与所述第二信号为影像灰度信号,而所述第三信号与所述第四信号为可编程伽马(programmable gamma, P-gamma)信号。
  6. 根据权利要求5所述的3D眼镜,其中所述第三信号与所述第四信号依据伽马曲线动态调节所述第一信号与第二信号的伽马电压,使左右眼看到的亮度相同。
  7. 一种快门(shutter)式三维(three dimension, 3D)眼镜的灰度驱动方法,其包含:
    以每两帧为周期,于所述周期内从源极驱动集成电路依序输入第一信号与第二信号于所述3D眼镜的第一镜片与第二镜片中,且在所述周期内输入的所述第一信号与所述第二信号皆为相同极性;
    在所述周期进入下一周期时变换所述第一信号与第二信号的极性;以及
    在所述周期期间,将第三信号与第四信号从可编程伽马集成电路(P-gamma IC)分别输入于所述第一镜片与所述第二镜片,分别调节所述第一镜片与所述第二镜片中所述第一信号与所述第二信号的伽马电压。
  8. 根据权利要求7所述的灰度驱动方法,其中所述第一信号与所述第二信号为影像灰度(grayscale)信号以提供影像于所述第一镜片与所述第二镜片,而所述第三信号与所述第四信号为可编程伽马(programmable gamma, P-gamma)信号以动态调整所述第一信号与所述第二信号的所述伽马电压。
  9. 根据权利要求8所述的灰度驱动方法,其中所述第三信号与所述第四信号依据伽马曲线来调整所述第一信号与所述第二信号的所述伽马电压。
PCT/CN2014/070147 2013-12-30 2014-01-06 快门式三维眼镜的灰度驱动方法 WO2015100741A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/235,807 US9473765B2 (en) 2013-12-30 2014-01-06 Three-dimensional shutter glasses and grayscale driving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310745343.6 2013-12-30
CN201310745343.6A CN103731655A (zh) 2013-12-30 2013-12-30 快门式三维眼镜的灰度驱动方法

Publications (1)

Publication Number Publication Date
WO2015100741A1 true WO2015100741A1 (zh) 2015-07-09

Family

ID=50455560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070147 WO2015100741A1 (zh) 2013-12-30 2014-01-06 快门式三维眼镜的灰度驱动方法

Country Status (2)

Country Link
CN (1) CN103731655A (zh)
WO (1) WO2015100741A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105100769B (zh) * 2014-05-05 2018-08-28 浙江大学 一种视觉特效图像或视频对的生成方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036087A (zh) * 2009-09-30 2011-04-27 索尼公司 图像显示设备、图像显示观看系统以及图像显示方法
CN102469340A (zh) * 2010-11-17 2012-05-23 三星电子株式会社 显示设备和驱动该显示设备的方法
CN102511168A (zh) * 2010-06-18 2012-06-20 索尼公司 视频显示系统、快门眼镜和显示装置
US20120299884A1 (en) * 2011-05-25 2012-11-29 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Polarity reversal driving method for liquid crystal display panel, and apparatus thereof
CN102918581A (zh) * 2010-05-28 2013-02-06 夏普株式会社 液晶显示装置
US20130285994A1 (en) * 2011-01-06 2013-10-31 Sharp Kabushiki Kaisha Liquid crystal display device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097076A (zh) * 2009-12-10 2011-06-15 索尼公司 显示设备
KR101328787B1 (ko) * 2010-05-07 2013-11-13 엘지디스플레이 주식회사 영상표시장치 및 그 구동방법
JP2011250229A (ja) * 2010-05-28 2011-12-08 Sony Corp 映像信号処理装置及び映像信号処理方法、並びにコンピューター・プログラム
KR101303456B1 (ko) * 2010-06-22 2013-09-10 엘지디스플레이 주식회사 3차원 데이터 변조방법과 이를 이용한 액정표시장치
CN101895778B (zh) * 2010-07-15 2011-12-07 华映视讯(吴江)有限公司 减轻立体影像鬼影的方法及系统
KR101106492B1 (ko) * 2010-10-05 2012-01-20 어보브반도체 주식회사 3차원 셔터 안경 및 그 구동방법
CN102892011A (zh) * 2011-07-22 2013-01-23 友达光电股份有限公司 立体影像的显示方法
CN102237066A (zh) * 2011-08-18 2011-11-09 青岛海信电器股份有限公司 一种液晶显示器及提高图像对比度的方法
US9161025B2 (en) * 2011-08-29 2015-10-13 Zspace, Inc. Extended overdrive tables and use
KR101964892B1 (ko) * 2012-03-21 2019-04-05 삼성디스플레이 주식회사 입체 영상 표시 방법 및 이를 수행하는 표시 장치
CN102802001B (zh) * 2012-08-14 2014-10-22 深圳市华星光电技术有限公司 一种用于降低快门式3d液晶动态串扰的方法、装置以及液晶显示器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036087A (zh) * 2009-09-30 2011-04-27 索尼公司 图像显示设备、图像显示观看系统以及图像显示方法
CN102918581A (zh) * 2010-05-28 2013-02-06 夏普株式会社 液晶显示装置
CN102511168A (zh) * 2010-06-18 2012-06-20 索尼公司 视频显示系统、快门眼镜和显示装置
CN102469340A (zh) * 2010-11-17 2012-05-23 三星电子株式会社 显示设备和驱动该显示设备的方法
US20130285994A1 (en) * 2011-01-06 2013-10-31 Sharp Kabushiki Kaisha Liquid crystal display device
US20120299884A1 (en) * 2011-05-25 2012-11-29 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Polarity reversal driving method for liquid crystal display panel, and apparatus thereof

Also Published As

Publication number Publication date
CN103731655A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
KR101323468B1 (ko) 입체영상 표시장치와 그 구동방법
CN102036087B (zh) 图像显示设备、图像显示观看系统以及图像显示方法
WO2010064557A1 (ja) 画像伝送システム、画像伝送装置、画像伝送方法
US20110007136A1 (en) Image signal processing apparatus and image display
US9105227B2 (en) Electro-optical device and electronic apparatus
JP2010282089A5 (zh)
KR20120015009A (ko) 입체영상 표시장치와 그 구동방법
US10102811B2 (en) Method of displaying three-dimensional image and display apparatus using the same
JP2013073238A (ja) 立体映像表示装置及び方法
US20110221788A1 (en) Liquid crystal display and picture display system
US9521401B2 (en) Video display apparatus
US9514708B2 (en) Image processing apparatus, projector and image processing method
JP2014216920A (ja) 表示装置
KR20120053747A (ko) 입체 영상 표시 장치 및 그 구동 방법
US9177495B2 (en) Electro-optical device and electronic apparatus
WO2015100741A1 (zh) 快门式三维眼镜的灰度驱动方法
KR20150027604A (ko) 입체 영상 표시 장치 및 그것의 구동 방법
WO2015100756A1 (zh) 避免立体显示装置亮度不均的方法
KR20140122123A (ko) 입체 영상 표시 장치 및 그의 인버전 구동 방법
TW201303846A (zh) 光電裝置及電子機器
US9473765B2 (en) Three-dimensional shutter glasses and grayscale driving method thereof
WO2016033831A1 (zh) 过驱动方法、电路及显示装置
JP2011075668A (ja) 画像表示装置およびその駆動方法
JP2013117554A (ja) 電気光学装置および電子機器
KR20120076209A (ko) 입체 영상 표시장치와 그 픽셀 방전 시간 제어 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14235807

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875928

Country of ref document: EP

Kind code of ref document: A1