WO2015100602A1 - 一种时分双工tdd模式的信号传输方法和设备 - Google Patents

一种时分双工tdd模式的信号传输方法和设备 Download PDF

Info

Publication number
WO2015100602A1
WO2015100602A1 PCT/CN2013/091076 CN2013091076W WO2015100602A1 WO 2015100602 A1 WO2015100602 A1 WO 2015100602A1 CN 2013091076 W CN2013091076 W CN 2013091076W WO 2015100602 A1 WO2015100602 A1 WO 2015100602A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
analog
digital
digital signal
compressed
Prior art date
Application number
PCT/CN2013/091076
Other languages
English (en)
French (fr)
Inventor
王勇
王伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/091076 priority Critical patent/WO2015100602A1/zh
Priority to CN201380002583.5A priority patent/CN105009468A/zh
Publication of WO2015100602A1 publication Critical patent/WO2015100602A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Definitions

  • the present invention relates to the field of communications, and in particular, to a signal transmission method and apparatus for a Time Division Duplex (TDD) mode.
  • TDD Time Division Duplex
  • TDD mode Frequency Division Duplex
  • FDD Frequency Division Duplex
  • the characteristics of the transmission signal in FDD mode are:
  • the receiving and transmitting signals are carried by two separate symmetric frequency channels, and the frequency band (uplink and downlink frequency interval 190 MHz) is used to ensure the separation of the receiving and transmitting channels.
  • transmitting signals in FDD mode requires paired frequency resources, so that various frequency resources cannot be used.
  • TDD mode to transmit signals in the communication system.
  • the received and transmitted signals use different time slots of the same frequency carrier as channel bearers, and time is used to ensure separation of the receive channel and the transmit channel.
  • the signal transmission process in the TDD mode in the prior art generally includes: first dividing different time slots for the transmission signal and the reception signal, and then transmitting signals in different time slots divided on the channel of the same frequency. In this way, the signal transmission process takes a long time and increases the consumption of air interface resources.
  • Embodiments of the present invention provide a TDD mode signal transmission method and device, which are used to solve the problem of long time consumption and large air interface resource consumption in the TDD mode signal transmission process.
  • a TDD mode signal transmission method comprising: acquiring a first digital signal having a time characteristic;
  • a signal is received during a wait time between transmitting the first compressed digital signal.
  • the acquiring the first digital signal having the time characteristic includes: Receiving at least one digitally modulated carrier signal;
  • the received at least one digitally modulated carrier signal is combined to obtain a first digital signal.
  • the acquiring the first digital signal having the time characteristic includes:
  • the analog demodulated RF signal is subjected to analog-to-digital conversion to obtain a first digital signal.
  • the first digital signal segment is subjected to time domain compression
  • the first compressed digital signal that forms the multi-segment interval includes:
  • the first read rate is N times the first write rate, and the N is an integer and is greater than
  • the method before the sending the multi-segment interval of the first compressed digital signal, the method further includes:
  • the first preamble and the control signal are the same as the sampling rate of the first compressed digital signal
  • Combining each of the first compressed digital signals with the first preamble and control signal; the transmitting the first compressed digital signal of the multi-segment interval includes:
  • the sending The multi-segment interval first compressed digital signal includes:
  • the transmitting the first compressed digital signal of the multi-segment interval includes:
  • a second aspect provides a TDD mode signal transmission method, the method comprising: acquiring a time-domain compressed second compressed digital signal from the received signal;
  • the obtaining, by the time-domain compressed second compressed digital signal, the received signal includes:
  • the analog-demodulated signal is subjected to analog-to-digital conversion to obtain an analog-to-digital converted signal, and the analog-to-digital converted signal is a second compressed digital signal, or the analog-to-digital converted signal includes: Compressing the digital signal and the second preamble and control signal;
  • the obtaining the second compressed digital signal after the time domain compression from the received signal further includes:
  • the performing the time-domain broadening of the second compressed digital signal to obtain the second digital signal having the time characteristic includes:
  • the second write rate is N times the second read rate, where N is an integer and is greater than
  • the sending the second digital signal includes:
  • the sending the second digital signal includes:
  • a TDD mode signal transmission device comprising: a processor and a first transceiver device;
  • the processor is configured to acquire a first digital signal having a time characteristic; segmenting the first digital signal into a time domain compression to form a first compressed digital signal with a plurality of intervals;
  • a first transceiver device configured to transmit the first compressed digital signal of the plurality of intervals under the control of the processor, and receive the microwave signal within a waiting time between transmitting the first compressed digital signal.
  • the signal transmission device further includes: a second transceiver device, a combining circuit;
  • the second transceiver device is configured to receive at least one digitally modulated carrier signal and transmit the signal to the combining circuit;
  • the combining circuit is configured to combine the received at least one digitally modulated carrier signal to obtain a first digital signal
  • the processor is specifically configured to acquire a first digital signal from the combining circuit.
  • the signal transmission device further includes The second transceiver device, the first analog demodulator, and the first analog to digital converter;
  • the second transceiver device is configured to receive a radio frequency signal and transmit the same to the first analog demodulator
  • the first analog demodulator is configured to perform analog demodulation on the radio frequency signal received by the second transceiver device;
  • the first analog-to-digital converter is configured to perform analog-to-digital conversion on the radio frequency signal that is analog-demodulated by the first analog demodulator to obtain a first digital signal;
  • the processor is specifically configured to acquire a first digital signal from the first analog to digital converter.
  • the signal transmission device further includes: a first buffer;
  • the processor is specifically configured to write the first digital signal into the first buffer at a first write rate, and segment from the first buffer at a first read rate Reading the first digital signal to obtain a plurality of intervals of the first compressed digital signal; wherein the first read rate is greater than the first write rate.
  • the processor is further configured to: acquire a first preamble and a control signal, and combine each of the first compressed digital signals with the first preamble and control signal The first preamble and control signal are the same as the first compressed digital signal;
  • the first transceiver device is specifically configured to send, after the control of the processor, a plurality of intervals of the first compressed digital signal and the first preamble and control signal combined signals.
  • the signal transmission device further includes: a first digital-to-analog conversion , the first analog modulator;
  • the first digital-to-analog converter is configured to perform digital-to-analog conversion on the multi-segment interval first compressed digital signal obtained by the processor;
  • the first analog modulator is configured to perform analog modulation on a plurality of intervals of the first compressed digital signal that is digital-analog converted by the first digital-to-analog converter;
  • the first transceiver device is specifically configured to send the signal that is analog-modulated by the first analog modulator; or
  • the first digital-to-analog converter is configured to perform digital-to-analog conversion on a signal obtained by combining a plurality of intervals of the first compressed digital signal and the first preamble and the control signal;
  • the first analog modulator is configured to perform analog modulation on a signal obtained by combining the first compressed digital signal and the first preamble and the control signal after the digital-to-analog conversion of the first digital-to-analog converter;
  • the first transceiver device is specifically configured to send a signal that is analog-modulated by the first analog modulator.
  • a TDD mode signal transmission device includes: a processor, configured to acquire a time-domain compressed second compressed digital signal from the received signal; and the second compression The digital signal is time-domain broadened to obtain a second digital signal having temporal characteristics;
  • the second transceiver device is further configured to send the second digital signal under the control of the processor.
  • the signal transmission device further includes: a second analog demodulator, a second analog-to-digital converter;
  • the second analog demodulator is configured to perform analog demodulation on a signal received by the first transceiver device
  • the second analog-to-digital converter is configured to perform analog-to-digital conversion on the analog demodulated signal of the second analog demodulator to obtain an analog-to-digital converted signal, where the analog-to-digital converted signal is The second compressed digital signal, or the analog-to-digital converted signal includes: a second compressed digital signal and a second preamble and a control signal;
  • the processor is specifically configured to acquire the second compressed digital signal from the second analog-to-digital converter.
  • the processor is specifically configured to perform analog-to-digital conversion of the second analog-to-digital converter Splitting the second compressed digital signal and the second preamble and control signal, respectively.
  • the signal transmission device further includes: a second buffer;
  • the processor is specifically configured to write the second compressed digital signal into the second buffer at a second write rate, and read the second buffer from the second buffer Deriving a second compressed digital signal to obtain a second digital signal; wherein the second write rate is greater than the second read rate.
  • the signal transmission device further includes: a split circuit, a second transceiver device;
  • the branching circuit is configured to split the second digital signal obtained by the processor to obtain at least one carrier signal, and transmit the at least one carrier signal to the second transceiver;
  • the second transceiver device is specifically configured to send the at least one carrier signal under control of the processor
  • the processor is specifically configured to transmit the second digital signal to the shunt circuit.
  • the signal transmission device further includes: a second digital-to-analog converter, a second analog modulator, and a second transceiver device;
  • the second digital-to-analog converter is configured to perform digital-to-analog conversion on the second digital signal obtained by the processor;
  • the second analog modulator is configured to perform analog modulation on a signal that is digital-to-analog converted by the second digital-to-analog converter;
  • the second transceiver device is specifically configured to send, after being controlled by the processor, a signal that is analog-modulated by the second analog modulator.
  • the processor is specifically configured to transmit the second digital signal to the second digital to analog converter.
  • the signal transmission method and device for the TDD mode provided by the embodiment of the present invention perform time domain compression on the first digital signal segment to be sent, and obtain a first compressed digital signal with multiple intervals, wherein idle time occurs after time domain compression. a segment, so that after transmitting a first compressed digital signal and before transmitting the next compressed first digital signal, there is a waiting time for no signal to be transmitted, and during the waiting time, the signal can be received; The transmission and reception can be alternated to complete the signal transmission in the TDD mode. Since the embodiment of the present invention compresses the signal in the time domain, the time for occupying the air interface is reduced, thereby reducing the air interface resource. Consumption.
  • FIG. 1 is a schematic diagram of a signal transmission method in a TDD mode according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of time domain compression for a digital signal according to an embodiment of the present invention
  • FIG. 3 is a timing diagram of a digital signal according to an embodiment of the present invention
  • Schematic diagram of domain compression
  • FIG. 4 is a schematic diagram of a preferred time domain compression method according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of another TDD mode signal transmission method according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of another TDD mode signal transmission method according to an embodiment of the present invention
  • FIG. a schematic diagram of the first digital signal segment performing time domain compression
  • FIG. 8 is a timing diagram of reading and writing the first digital signal in the first embodiment of the present invention
  • FIG. 9 is a schematic diagram of splitting the analog-to-digital converted signal to obtain the second compression according to the first embodiment of the present invention
  • a schematic diagram of the digital signal and the second preamble and control signal
  • FIG. 10 is a schematic diagram showing time domain broadening of the second compressed digital signal according to Embodiment 1 of the present invention.
  • FIG. 1 is a timing diagram of reading and writing the second compressed digital signal in the first embodiment of the present invention
  • FIG. 1 is a first compressed digital signal and a first preamble and control in each segment according to the first embodiment of the present invention; Schematic diagram of signal combination;
  • FIG. 13 is a schematic structural diagram of a TDD mode signal transmission device according to Embodiment 2 of the present invention.
  • FIG. 14 is a schematic structural diagram of another TDD mode signal transmission device according to Embodiment 2 of the present invention.
  • FIG. 15 is a schematic structural diagram of another TDD mode signal transmission device according to Embodiment 2 of the present invention.
  • FIG. 16 is a structural diagram of another TDD mode signal transmission device according to Embodiment 2 of the present invention. Schematic diagram
  • FIG. 17 is a schematic structural diagram of another TDD mode signal transmission device according to Embodiment 2 of the present invention.
  • FIG. 18 is a schematic structural diagram of another TDD mode signal transmission device according to Embodiment 2 of the present invention.
  • FIG. 19 is a schematic structural diagram of another TDD mode signal transmission device according to Embodiment 2 of the present invention.
  • FIG. 20 is a schematic structural diagram of another TDD mode signal transmission device according to Embodiment 2 of the present invention.
  • FIG. 21 is a schematic diagram of a signal transmission scenario of a radio remote unit according to Embodiment 3 of the present invention
  • FIG. 22 is a schematic structural diagram of a signal transmission device of a TDD mode according to Embodiment 5 of the present invention
  • FIG. 23 is a schematic structural diagram of another TDD mode signal transmission device according to Embodiment 5 of the present invention.
  • FIG. 24 is a schematic structural diagram of another TDD mode signal transmission device according to Embodiment 5 of the present invention.
  • FIG. 25 is a schematic structural diagram of another TDD mode signal transmission device according to Embodiment 5 of the present invention.
  • 26 is a schematic structural diagram of another TDD mode signal transmission device according to Embodiment 5 of the present invention.
  • FIG. 27 is a schematic structural diagram of another TDD mode signal transmission device according to Embodiment 5 of the present invention.
  • FIG. 28 is a schematic structural diagram of another TDD mode signal transmission device according to Embodiment 5 of the present invention.
  • FIG. 29 is a schematic structural diagram of another TDD mode signal transmission device according to Embodiment 5 of the present invention.
  • FIG. 30 is a schematic diagram of a signal transmission scenario of a microwave repeater according to Embodiment 6 of the present invention. detailed description
  • an embodiment of the present invention provides a TDD mode signal transmission method, where an execution body may be a TDD mode signal transmission device, including the following steps:
  • S10 acquires a first digital signal having a time characteristic.
  • the first digital signal having a time characteristic means the signal not only has information indicating the amplitude, but also has strict time interval information. That is to say, there is a strict order relationship and time interval between the previous sample point and the next sample point of the signal.
  • the first digital signal segment is subjected to time domain compression to form a plurality of intervals of the first compressed digital signal, and the plurality of spaced first compressed digital signals are transmitted.
  • the so-called time domain compression means that a digital signal having a duration of T is compressed in the time domain to obtain a compressed digital signal having a duration of T', where T' ⁇ T.
  • the so-called segmentation time domain compression refers to: performing time domain compression on a digital signal of each time period in a digital signal whose duration (including: multiple time periods) is ,, and obtaining a digital signal corresponding to each time period. Compressing the digital signal; wherein, the sum of the durations of the respective compressed digital signals is ⁇ ', ⁇ ' ⁇ ⁇ .
  • this embodiment provides a preferred time domain compression method, which specifically includes the following steps:
  • the written digital signal is read from the buffer at a read rate fr (fr > fw), so that the time interval of the digital signal can be compressed to obtain a compressed digital signal.
  • the signal may include: a signal that is not compressed in the time domain, so that after receiving the signal, the signal recovery method provided in the prior art may be used to receive the multi-segment signal in the TDD mode. Process it.
  • the signal may include: a time domain compressed signal, how to recover the received signal in this case, which will be elaborated in the following embodiments.
  • the signal transmission method of the TDD mode performs time domain compression on the first digital signal segment to be sent to obtain a first compressed digital signal with multiple intervals, wherein an idle time period occurs after compression in the time domain. Therefore, after transmitting a first compressed digital signal and before transmitting the next compressed first digital signal, there is a waiting time for no signal to be transmitted, and during the waiting time, the signal can be received; and then the signal is sent by the above method. And the reception can be alternated to complete the signal transmission in the TDD mode. Since the embodiment of the present invention uses a portion of the time originally used for transmitting signals to perform signal reception, the transmission time of the signal is shortened, and since the compressed signal is transmitted, the consumption of the air interface resources can be reduced.
  • the executor of each step in the foregoing embodiment may be a signal transmission device of the local end, and the embodiment of the present invention further provides a signal transmission method, as shown in FIG. 5, for the signal transmission device of the TDD mode. :
  • the signal transmitting device of the local end transmits the first compressed digital signal
  • the signal received by the signal transmitting device of the opposite end at least includes the first compressed digital signal. That is to say, the second compressed digital signal here is actually the first compressed digital signal transmitted by the local signal transmitting device.
  • the signal transmission device of the opposite end can receive the signal after receiving a compressed digital signal and before waiting for the next compressed digital signal, and then obtain the first signal from the received signal.
  • Two compressed digital signals This can shrink Short transmission time and can reduce the consumption of air interface resources.
  • time domain broadening is opposite to the meaning of the above-mentioned time domain compression, which means: a signal having a duration of T' is broadened in the time domain to obtain a broadened signal of duration T, where T > r .
  • the peer signal transmission device can send the second digital signal to other devices at the opposite end.
  • the signal transmission method provided by the embodiment of the present invention can enable the signal transmission device at the opposite end to restore the compressed signal sent by the local signal transmission device, and obtain the signal that the local signal transmission device originally sends to the opposite signal transmission device.
  • the present invention also provides an embodiment in which a signal transmission device has both a signal compression function and a signal restoration function.
  • the signal transmission device of the local end may further have a function of signal restoration.
  • the method provided by the present invention may be based on the embodiment shown in FIG. 1 , further after completing the foregoing S 1 03, if step S 1 03
  • the received signal includes: a second compressed digital signal that is compressed in the time domain, and as shown in FIG. 6, the method may further include:
  • the signal can be received from the signal transmitting device of the opposite end, and the second compressed digital signal can be obtained therefrom; the second compressed digital signal is obtained by the signal transmitting device of the opposite end to compress the signal to be sent to the local device through time domain compression. of.
  • S1 05 performing time domain broadening on the second compressed digital signal to obtain a second digital signal having time characteristics.
  • S106 Send the second digital signal.
  • the signal transmission device in the local TDD mode sends the second digital signal to other devices on the local end.
  • the embodiment of the present invention not only shortens the transmission time of the signal, but also reduces the consumption of the air interface resource; and can also restore the received compressed signal. Specific examples will be given below, and the above methods will be described in detail.
  • the Common Public Radio Interface is a Radio Remote Unit (RRU) and a Base-station Baseband Unit (BBU).
  • RRU Radio Remote Unit
  • BBU Base-station Baseband Unit
  • signal transmission is performed using a wireless method.
  • the signal transmission method of the TDD mode provided above is described in detail below for the transmission scenario of the CPRI signal. Specifically, the method includes the following steps:
  • Step 1 Obtain a first digital signal having a time characteristic.
  • this step may include:
  • the digital modulation is mainly to re-express the '0, or '1' of the code domain with different characteristics of another digital signal.
  • the phase of the complex signal can be expressed as 90 degrees '0, and 270 degrees means '1, .
  • the original code domain signal is 0110, then after this digital modulation, the original code domain signal becomes (0, i) (0, -i) (0, _i) (0, i).
  • the original code domain signal can also be represented by different amplitudes of another signal.
  • a signal of -5 represents '0, and 5 represents ' ⁇ .
  • the original code domain signal becomes (-5) (5) (-5) (5).
  • Common digital modulation methods include: Amplitude Shift Keying (ASK) modulation, Frequency Shift Keying (FSK) modulation, Phase Shift Keying (Phase Shift Keying) PSK) Modulation, Quadrature Amplitude Modulation (QAM), Poor Differential Phase Shift Keying (DPSK) modulation method.
  • ASK Amplitude Shift Keying
  • FSK Frequency Shift Keying
  • PSK Phase Shift Keying
  • PSK Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • DPSK Poor Differential Phase Shift Keying
  • the received at least one digitally modulated carrier signal is combined by a variable rate and a variable frequency operation to obtain a first digital signal.
  • Step 2 Perform phase-domain compression on the first digital signal segment to form a first compressed digital signal with multiple intervals.
  • this step specifically includes:
  • the first digital signal is written into the first buffer at a first write rate fw1.
  • the timing chart for reading and writing the first digital signal is as shown in FIG. 8. It can be seen that since the reading is fast, the writing is slow, so that each time a piece of data is read, it is necessary to wait for a while, otherwise no data is readable, and thus a data is read for a period of time, in a state of idle for a while, wherein The idle time can be used for signal reception, thus providing conditions for signal transmission in TDD mode.
  • Step 3 Send the first compressed digital signal of the plurality of intervals.
  • this step may include:
  • Step 4 Receive a signal within a waiting time between transmitting the first compressed digital signal. In this step, assuming that the signal includes a time domain compressed signal, then step 5 can be performed at this time.
  • Step 5 Obtain the second compressed digital signal after the time domain compression from the received signal, and the step may include: (1) Perform analog demodulation on the received signal.
  • analog-to-digital converted signal is a second compressed digital signal, or the analog-to-digital converted signal includes : a second compressed digital signal and a second preamble and control signal;
  • the step further includes:
  • Step 6 Perform time domain broadening of the second compressed digital signal to obtain a second digital signal having time characteristics.
  • this step specifically includes:
  • the second write rate fw2 is greater than the second read rate f r 2 .
  • fw2 N*f r 2
  • N is an integer and greater than 1.
  • a timing chart for reading and writing the second compressed digital signal is as shown in FIG. It can be seen that since the writing is fast, the reading is slow, so that each time a piece of data is written, it is necessary to wait for a while, otherwise the data cannot be read, and thus a continuous signal is formed, thereby completing the second compressed digital signal. Time domain broadening.
  • Step 7 Send the second digital signal.
  • this step may include:
  • the second digital signal may be split by variable rate and frequency conversion to obtain at least one carrier signal.
  • the signal transmission method of the TDD mode performs time domain compression on the first digital signal segment to be sent, and obtains a first compressed digital signal with multiple intervals, wherein the time domain is After compression, an idle period of time occurs, so that after transmitting a first compressed digital signal and before transmitting the next compressed digital signal, there is a waiting time for no signal to be transmitted. During the waiting time, the signal can be performed. Receiving; Further, transmission and reception of signals by the above method can be alternately performed to complete signal transmission in the TDD mode.
  • step 2 before step 3, the method further includes:
  • the step 3 may be specifically: transmitting the signal of the first compressed digital signal and the combination of the first preamble and the control signal in multiple intervals.
  • step 3 may include:
  • the first embodiment is described by taking a signal transmission device with both a time domain compression function and a time domain broadening (reduction) function as an example. It should be noted that, if a signal transmission device only has a time domain compression function, the signal transmission method may only perform the above steps 1 - 4; if a signal transmission device only has a time domain broadening function, then the signal transmission method It is possible to perform only the above steps 5 - 7.
  • the present embodiment provides a TDD mode signal transmission device 60 that can perform the method described in Embodiment 1.
  • the signal transmission device 60 includes: a processor 601 and a first transceiver device 602;
  • the processor 601 is configured to acquire a first digital signal having a time characteristic; and perform time domain compression on the first digital signal segment to form a first compressed digital signal with multiple intervals;
  • the first transceiver device 602 is configured to send the The first compressed digital signal is separated by a plurality of intervals, and receives a microwave signal during a waiting time between transmitting the first compressed digital signal.
  • the signal transmission device 60 further includes: a second transceiver device 603, a combining circuit 604;
  • the second transceiver device 603 is configured to receive at least one digitally modulated carrier signal and transmit the signal to the combining circuit 604;
  • the combining circuit 604 is configured to combine the received at least one digitally modulated carrier signal to obtain a first digital signal
  • the processor 601 is specifically configured to acquire a first digital signal from the combining circuit 604.
  • the signal transmission device 60 further includes: a first buffer 605; the processor 601 is specifically configured to write the first digital signal to the first write rate In the first buffer 605, the first digital signal is segmentally read from the first buffer 605 at a first read rate, to obtain a plurality of intervals of the first compressed digital signal; The first read rate is greater than the first write rate.
  • the processor 601 is further configured to: acquire a first preamble and a control signal, and combine each of the first compressed digital signals with the first preamble and control signal; the first preamble and control signal and The first compressed digital signal has the same sampling rate;
  • the first transceiver device 602 is specifically configured to send, after the processor 601, a plurality of intervals of the first compressed digital signal and the first preamble and control signal combined signals.
  • the signal transmission device 60 further includes: a first digital-to-analog converter 606, a first analog modulator 607;
  • the first digital-to-analog converter 606 is configured to perform digital-to-analog conversion on the multi-segment first compressed digital signal obtained by the processor 601.
  • the first analog modulator 607 is configured to perform analog modulation on the multi-segment first compressed digital signal that is digital-to-analog converted by the first digital-to-analog converter 606;
  • the first transceiver device 602 is specifically configured to send the signal that is analog-modulated by the first analog modulator 607; or
  • the first digital-to-analog converter 606 is configured to convert the first compressed digital signal and the plurality of intervals a signal combined with a combination of pilot and control signals for digital-to-analog conversion;
  • the first analog modulator 607 is configured to perform analog modulation on a signal obtained by combining the first compressed digital signal and the first preamble and the control signal after the digital-to-analog conversion of the first digital-to-analog converter 606;
  • the first transceiver device 602 is specifically configured to send the signal that is analog-modulated by the first analog modulator 607.
  • the signal transmission device uses a part of the time for transmitting the signal to receive the signal, thereby shortening the time of signal transmission, and also transmitting the compressed signal, thereby reducing air interface resources. Consumption.
  • the signal transmission device 60 has the function of time domain compression but does not have the function of widening the time domain, the following devices or functions may not be included. If the signal transmission device 60 has both a time domain compression function and a time domain widening function, the following devices or functions may be further included.
  • the processor 601 is further configured to: obtain, by using the signal received by the first transceiver device 602, a second compressed digital signal that is compressed in a time domain; and perform the time domain of the second compressed digital signal. Broadening to obtain a second digital signal with temporal characteristics;
  • the second transceiver device 603 is configured to send the second digital signal under the control of the processor 601.
  • the signal transmission device 60 further includes: a second analog demodulator 608, a second analog to digital converter 609;
  • the second analog demodulator 608 is configured to perform analog demodulation on a signal received by the first transceiver device 602.
  • the second analog-to-digital converter 609 is configured to perform analog-to-digital conversion on the analog-demodulated signal of the second analog demodulator 608 to obtain an analog-to-digital converted signal, and the analog-to-digital converted signal.
  • the second compressed digital signal, or the analog-to-digital converted signal includes: a second compressed digital signal and a second preamble and control signal;
  • the processor 601 is configured to acquire the second compressed digital signal from the second analog-to-digital converter 609.
  • the processor 601 is specifically configured to split the analog-to-digital converted signal by the second analog-to-digital converter 609 to obtain the second compressed digital signal and the second preamble and control signal, respectively. .
  • the signal transmission device 60 further includes: a second buffer 60A.
  • the processor 601 is specifically configured to write the second compressed digital signal at a second write rate. Reading, in the second buffer 60A, the second compressed digital signal from the second buffer 60A at a second read rate to obtain a second digital signal; wherein the second write rate is greater than The second read rate.
  • the signal transmission device 60 further includes: a branching circuit 60B; the branching circuit 60B is configured to split the second digital signal obtained by the processor 601 to obtain at least a carrier signal, and transmitting the at least one carrier signal to the second transceiver device 603;
  • the second transceiver device 603 is specifically configured to send the at least one carrier signal under the control of the processor 601.
  • the processor 601 is specifically configured to transmit the second digital signal to the shunt circuit
  • the embodiment of the present invention not only shortens the transmission time of the signal, but also reduces the consumption of the air interface resource; and can also restore the received compressed signal.
  • the signal transmission device can also have the function of widening the time domain but does not have the function of time domain compression.
  • the signal transmission device 70 can include:
  • the processor 701 is configured to obtain a time-domain compressed second compressed digital signal from the received signal, and perform time domain widening on the second compressed digital signal to obtain a second digital signal having a time characteristic.
  • the second transceiver device 702 is configured to send the second digital signal under the control of the processor 701.
  • the signal transmission device 70 may further include: a first transceiver device 700, the first transceiver device 700 is configured to receive a signal, and the processor 701 is specifically configured to acquire a signal received from the first transceiver device 700. Two compressed signals.
  • the signal transmission device 70 further includes: a second analog demodulator 703, a second analog to digital converter 704;
  • the second analog demodulator 703 is configured to perform analog demodulation on the received signal.
  • the signal received from the first transceiver device 700 is subjected to analog demodulation.
  • the second analog-to-digital converter 704 is configured to perform analog-to-digital conversion on the analog-demodulated signal of the second analog demodulator 703 to obtain an analog-to-digital converted signal, and the analog-to-digital converted signal.
  • the second compressed digital signal, or the analog-to-digital converted signal includes: a second compressed digital signal and a second preamble and control signal;
  • the processor 701 is configured to acquire the second compressed digital signal from the second analog to digital converter 704.
  • the processor 701 is specifically configured to perform analog-to-digital conversion on the second analog-to-digital converter 704. The signals are split to obtain the second compressed digital signal and the second preamble and control signal, respectively.
  • the signal transmission device 70 further includes: a second buffer 70A;
  • the processor 701 is specifically configured to write the second compressed digital signal into the second buffer 70A at a second write rate, and from the second buffer 70A at a second read rate. Reading the second compressed digital signal to obtain a second digital signal; wherein the second write rate is greater than the second read rate.
  • the signal transmission device 70 further includes: a dividing circuit 70B;
  • the branching circuit 70B is configured to split the second digital signal obtained by the processor 701 to obtain at least one carrier signal, and transmit the at least one carrier signal to the second transceiver device 702;
  • the second transceiver device 702 is specifically configured to send the at least one carrier signal under the control of the processor 701.
  • the processor 701 is specifically configured to transmit the second digital signal to the shunt circuit
  • the signal transmission device 70 can restore the received compressed signal.
  • Embodiments of the present invention provide a TDD mode signal transmission system, the system comprising: a pair of TDD mode signal transmission devices, the signal transmission device having both a time domain compression function and a time domain broadening function.
  • This system can be applied to the transmission scene of the CPRI signal shown in Fig. 21.
  • the CPR I interface of the BBU is connected to the TDD mode signal transmission device A through a fiber or cable;
  • the TDD mode signal transmission device B is connected to the RRU CPRI interface through a fiber or cable;
  • the RRU is connected to the RF antenna. ;
  • TDD mode signal transmission device A and TDD mode signal transmission device B wirelessly transmit signals.
  • the optical fiber may not be directly connected due to factors such as the construction environment or the natural environment. Therefore, the device provided in the second embodiment is required to convert the CPRI signal output by the BBU into a microwave signal, and the microwave signal is The space is transmitted, and the received microwave signal is converted into a CPR I signal by another device provided in the above second embodiment, and the CPR I signal is transmitted to the RRU.
  • the device provided in the second embodiment is required to convert the CPRI signal output by the BBU into a microwave signal, and the microwave signal is The space is transmitted, and the received microwave signal is converted into a CPR I signal by another device provided in the above second embodiment, and the CPR I signal is transmitted to the RRU.
  • the process of signal transmission specifically includes: Step a l, the BBU outputs a CPRI signal.
  • the C P R I signal is at least one digitally modulated carrier signal.
  • Step a2 the TDD mode signal transmission device A converts the CPR I signal into a microwave signal according to the steps 1 - 3 in the first embodiment.
  • Step a 3 the TDD mode signal transmission device B converts the received microwave signal into a CPR I signal according to step 4-7 in the first embodiment.
  • Step a4 The RRU receives the CPR I signal sent by the signal transmission device B in the TDD mode.
  • Step a5 The RRU sends the received CPRI signal through the radio frequency antenna.
  • the process of signal transmission specifically includes: Step bl.
  • the RF antenna receives the CPR I signal.
  • Step b2 The RRU sends the CPR I signal.
  • Step b 3 The TDD mode signal transmission device B converts the CPR I signal into a microwave signal according to steps 1 - 3 in the first embodiment.
  • step b4 the signal transmission device A in the TDD mode converts the received microwave signal into a CPR I signal according to step 4-7 in the first embodiment.
  • step b5 The BBU receives the CPR I signal sent by the signal transmission device A of the TDD mode.
  • the signal transmission system of the TDD mode performs time domain compression on the first digital signal segment to be transmitted, and obtains a first compressed digital signal with multiple intervals, wherein idle time occurs after time domain compression. a period of time, so that after transmitting a first compressed digital signal and before transmitting the next compressed first digital signal, there is a waiting time for no signal to be transmitted, and during the waiting time, the signal can be received; The transmission and reception of signals can be alternated to complete the signal transmission in the TDD mode.
  • Embodiment 4 Since the embodiment of the present invention uses a part of the time for transmitting a signal, the signal is received, thereby shortening the time of signal transmission, and also compressing the signal in the time domain, thereby reducing the time occupied by the air interface. Can reduce the consumption of air interface resources.
  • Embodiment 4 Since the embodiment of the present invention uses a part of the time for transmitting a signal, the signal is received, thereby shortening the time of signal transmission, and also compressing the signal in the time domain, thereby reducing the time occupied by the air interface. Can reduce the consumption of air interface resources.
  • Step 1 Acquire a first digital signal having a time characteristic.
  • this step may include:
  • the baseband signal In a communication system, since the frequency of the baseband signal is low, the baseband signal is not suitable for direct transmission in the channel. In order to convert the baseband signal into a signal suitable for transmission in the channel, it is generally required to perform the baseband signal. Analog modulation, such that the spectrum of the baseband signal can be shifted so that the baseband signal can be transmitted in the channel.
  • the analog modulation refers to multiplying the baseband signal by a carrier signal to achieve the effect of shifting the spectrum of the baseband signal.
  • the radio frequency signal refers to a baseband signal that has been analog modulated.
  • the analog demodulation means that the baseband signal is separated from the carrier signal and restored to the original baseband signal.
  • Step 2 Perform segmentation of the first digital signal in time domain to form a multi-segment interval A compressed digital signal.
  • this step specifically includes:
  • the first digital signal is written into the first buffer at a first write rate fw1.
  • the timing diagram for reading and writing digital signals is shown in Figure 8. It can be seen that since the reading is fast and the writing is slow, it is necessary to wait for a while for each piece of data to be read, otherwise no data is readable, and thus a state of reading for a period of time, a state of being idle for a while, is formed. The time that is free can be used for signal reception, thus providing conditions for signal transmission in TDD mode.
  • Step 3 Send the first compressed digital signal of the plurality of intervals.
  • this step may include:
  • Step 4 Receive a signal within a waiting time between transmitting the first compressed digital signal. In this step, assuming that the signal includes a time domain compressed signal, then step 5 can be performed at this time.
  • Step 5 Acquire a second compressed digital signal compressed by the time domain from the received signal.
  • this step may include:
  • analog-to-digital converted signal is a second compressed digital signal, or the analog-to-digital converted signal includes : a second compressed digital signal and a second preamble and control signal;
  • the step further includes:
  • Step 6 Perform time domain broadening of the second compressed digital signal to obtain a second digital signal having time characteristics.
  • this step specifically includes:
  • the second write rate fw2 is greater than the second read rate f r 2 .
  • fw2 N* f r 2 , N is an integer and greater than 1.
  • a timing chart for reading and writing the second compressed digital signal is shown in FIG. It can be seen that since the writing is fast, the reading is slow, so that each time a piece of data is written, it is necessary to wait for a while, otherwise the data cannot be read, and thus a continuous signal is formed, thereby completing the second compressed digital signal. Time domain broadening.
  • Step 7 Send the second digital signal.
  • this step may include:
  • the signal transmission method of the TDD mode performs time domain compression on the first digital signal segment to be sent to obtain a first compressed digital signal with multiple intervals, wherein an idle time period occurs after compression in the time domain. Therefore, after transmitting a first compressed digital signal and before transmitting the next compressed first digital signal, there is a waiting time for no signal to be transmitted, and during the waiting time, the signal can be received; and then the signal is sent by the above method. And the reception can be alternated to complete the signal transmission in the TDD mode.
  • the method further includes the following steps:
  • step 3 is specifically: transmitting a signal of a combination of the first compressed digital signal and the first preamble and control signal of a plurality of intervals.
  • step 3 may include:
  • the fourth embodiment is described by taking a signal transmission device with both a time domain compression function and a time domain broadening (reduction) function as an example. It should be noted that, if a signal transmission device only has a time domain compression function, the signal transmission method may only perform the above steps 1 - 4; if a signal transmission device only has a time domain broadening function, then the signal transmission method It is possible to perform only the above steps 5 - 7.
  • the present embodiment provides a TDD mode signal transmission device 200 that can perform the method described in Embodiment 4, and the signal transmission device 200 includes: a processor 2001 and a first transceiver device 2002;
  • the processor 2001 is configured to acquire a first digital signal having a time characteristic; and perform time domain compression on the first digital signal segment to form a first compressed digital signal with multiple intervals;
  • the first transceiver device 2002 is configured to send the plurality of intervals of the first compressed digital signal under the control of the processor 2001, and receive the waiting time between sending the first compressed digital signal Microwave signal.
  • the signal transmission device 200 further includes: a second transceiver device 2003, a first analog demodulator 2004, and a first analog to digital converter 2005;
  • the second transceiver device 2003 is configured to receive a radio frequency signal and transmit the same to the first analog demodulator 2004;
  • the first analog demodulator 2004 is configured to receive by the second transceiver device 2003
  • the radio frequency signal is subjected to analog demodulation
  • the first analog-to-digital converter 2005 is configured to perform analog-to-digital conversion on the radio frequency signal that is analog-demodulated by the first analog demodulator 2004 to obtain a first digital signal;
  • the processor 2001 is specifically configured to acquire a first digital signal from the first analog to digital converter 2005.
  • the signal transmission device 200 further includes: a first buffer 2006; the processor 2001 is specifically configured to write the first digital signal to the first write rate.
  • the first buffer 2006 the first digital signal is segmentally read from the first buffer 2006 at a first read rate to obtain a plurality of intervals of the first compressed digital signal; wherein The first read rate is greater than the first write rate.
  • the processor 2001 is further configured to: acquire a first preamble and a control signal, and combine each of the first compressed digital signals with the first preamble and control signal; the first preamble and control signal and The first compressed digital signal has the same sampling rate;
  • the first transceiver device 2002 is specifically configured to send, after the processor 2001, a plurality of intervals of the first compressed digital signal and the first preamble and control signal combined signals.
  • the signal transmission device 200 further includes: a first digital-to-analog converter 2007, a first analog modulator 2008;
  • the first digital-to-analog converter 2007 is configured to perform digital-to-analog conversion on the multi-segment interval first compressed digital signal obtained by the processor 2001;
  • the first analog modulator 2008 is configured to perform analog modulation on the first compressed digital signal of the multi-segment interval after the digital-to-analog conversion by the first digital-to-analog converter 2007;
  • the first transceiver device 2002 is specifically configured to send a signal that is simulated and modulated by the first analog modulator 2008; or
  • the first digital-to-analog converter 2007 is configured to perform digital-to-analog conversion on a signal obtained by combining a plurality of intervals of the first compressed digital signal and the first preamble and the control signal;
  • the first analog modulator 2008 is configured to perform analog modulation on a signal obtained by combining the first compressed digital signal and the first preamble and the control signal after the digital-to-analog conversion of the first digital-to-analog converter 2007;
  • the first transceiver device 2002 is specifically configured to send the signal that is analog modulated by the first analog modulator 2008.
  • the signal transmission device 200 uses a part of the time for transmitting a signal to receive the signal, thereby shortening the time of signal transmission, and also reducing the air interface resource because the compressed signal is transmitted. Consumption.
  • the signal transmission device 200 has the function of time domain compression but does not have the function of widening the time domain, the following devices or functions may not be included. If the signal transmission device 200 has both a time domain compression function and a time domain broadening function, the following devices or functions may be further included.
  • the processor 2001 is further configured to: obtain, by using the signal received by the first transceiver device 2002, the second compressed digital signal after the time domain compression; and perform the time domain of the second compressed digital signal. Broadening to obtain a second digital signal with temporal characteristics;
  • the second transceiver device 2003 is configured to send the second digital signal under the control of the processor 2001.
  • the signal transmission device 200 further includes: a second analog demodulator 2009, a second analog to digital converter 200A;
  • the second analog demodulator 2009 is configured to perform analog demodulation on a signal received by the first transceiver device 2002;
  • the second analog-to-digital converter 200A is configured to perform analog-to-digital conversion on the analog-demodulated signal of the second analog demodulator 2009 to obtain an analog-to-digital converted signal, and the analog-to-digital converted signal.
  • the second compressed digital signal, or the analog-to-digital converted signal includes: a second compressed digital signal and a second preamble and control signal;
  • the processor 2001 is specifically configured to acquire the second compressed digital signal from the second analog-to-digital converter 200A.
  • the processor 2001 is specifically configured to perform analog-to-digital conversion on the second analog-to-digital converter 200A.
  • the signals are split to obtain the second compressed digital signal and the second preamble and control signal, respectively.
  • the signal transmission device 200 further includes: a second buffer 200B;
  • the processor 2001 is specifically configured to write the second compressed digital signal into the second buffer 200B at a second write rate, and from the second buffer 200B at a second read rate. Reading the second compressed digital signal to obtain a second digital signal; wherein the second write rate is greater than the second read rate.
  • the signal transmission device 200 further includes: a second digital-to-analog converter 200C, a second analog modulator 200D;
  • the second digital-to-analog converter 200C is configured to perform digital-to-analog conversion on the second digital signal obtained by the processor 2001;
  • the second analog modulator 200D is configured to perform analog modulation on a signal that is digital-to-analog converted by the second digital-to-analog converter 200C;
  • the second transceiver device 2003 is specifically configured to send, after being controlled by the processor 2001, a signal that is analog-modulated by the second analog modulator.
  • the processor 2001 is specifically configured to transmit the second digital signal to the second digital to analog converter 200C.
  • the embodiment of the present invention not only shortens the transmission time of the signal, but also reduces the consumption of the air interface resource; and can also restore the received compressed signal.
  • the signal transmission device can also have the function of widening the time domain but does not have the function of time domain compression.
  • the signal transmission device 210 can include:
  • the processor 21 01 is configured to obtain a time-domain compressed second compressed digital signal from the received signal, and perform time domain widening on the second compressed digital signal to obtain a second digital signal having a time characteristic;
  • the second transceiver device 21 02 is configured to send the second digital signal under the control of the processor 2101.
  • the signal transmission device 210 may further include: a first transceiver device 21 00.
  • the first transceiver device 21 00 is configured to receive a signal
  • the processor 2101 is specifically configured to receive from the first transceiver device 2100.
  • the second compressed signal is obtained from the signal.
  • the signal transmission device 210 includes: a second analog demodulator 21 03, a second analog to digital converter 210A;
  • the second analog demodulator 2103 is configured to perform analog demodulation on the received signal.
  • the signal received by the first transceiver device 2100 can be analog demodulated.
  • the second analog-to-digital converter 210A is configured to perform analog-to-digital conversion on the analog-demodulated signal of the second analog demodulator 2103 to obtain an analog-to-digital converted signal, and the analog-to-digital converted signal.
  • the second compressed digital signal, or the analog-to-digital converted signal includes: a second compressed digital signal and a second preamble and control signal;
  • the processor 2101 is specifically configured to acquire the second compressed digital signal from the second analog-to-digital converter 21 OA.
  • the processor 2101 is specifically configured to perform analog-to-digital conversion on the second analog-to-digital converter 210A.
  • the signals are split to obtain the second compressed digital signal and the second preamble and control signal, respectively.
  • the signal transmission device 210 further includes: a second buffer 210B;
  • the processor 2101 is specifically configured to write the second compressed digital signal into the second buffer 210B at a second write rate, and from the second buffer 200B at a second read rate. Reading the second compressed digital signal to obtain a second digital signal; wherein the second write rate is greater than the second read rate.
  • the signal transmission device 210 further includes: a second digital to analog converter 210C, a second analog modulator 210D;
  • the second digital-to-analog converter 210C is configured to perform digital-to-analog conversion on the second digital signal obtained by the processor 2101.
  • the second analog modulator 210D is configured to perform analog modulation on a signal that is digital-to-analog converted by the second digital-to-analog converter 200C;
  • the second transceiver device 2102 is specifically configured to send, after being controlled by the processor 2101, a signal that is analog-modulated by the second analog modulator.
  • the processor 2101 is specifically configured to transmit the second digital signal to the second digital to analog converter 210C.
  • the signal transmission device 210 can restore the received compressed signal.
  • Embodiments of the present invention provide a TDD mode signal transmission system, the system comprising: a pair of TDD mode signal transmission devices, the signal transmission device having both a time domain compression function and a time domain broadening function.
  • the system can be applied to the signal transmission scene of the microwave repeater shown in FIG.
  • the RRU is connected to the radio frequency antenna; the TDD mode signal transmission device A and the radio frequency antenna wirelessly transmit signals; the TDD mode signal transmission device A and the TDD mode signal transmission device B are wirelessly transmitted.
  • the signal is transmitted between the signal transmission device B in the TDD mode and the user equipment (US er Equ i pmen t , UE for short).
  • the optical fiber may not be directly connected due to factors such as the construction environment or the natural environment. Therefore, it is necessary to convert the radio frequency signal received by the radio frequency antenna into a microwave signal by using the device provided in the above fourth embodiment, and The microwave signal is transmitted in space, and the received microwave signal is converted into a radio frequency signal by another device provided in the above fourth embodiment, and the radio frequency signal is transmitted to the UE.
  • the process of signal transmission specifically includes: Step a l.
  • the RRU sends a radio frequency signal.
  • Step a 2 The radio frequency antenna receives the radio frequency signal sent by the RRU, and sends the radio frequency signal.
  • Step a 3 The signal transmission device in the TDD mode A converts the radio frequency signal into a microwave signal according to steps 1 - 3 in the fourth embodiment.
  • Step a4 the TDD mode signal transmission device B converts the received microwave signal into a radio frequency signal according to step 4-7 in the fourth embodiment.
  • Step a 5 The UE receives the radio frequency signal sent by the signal transmission device B in the TD D mode.
  • the process of the signal transmission specifically includes: Step b: The UE sends a radio frequency signal.
  • Step b2 The signal transmission device B in the TDD mode converts the radio frequency signal into a microwave signal according to steps 1 - 3 in the fourth embodiment.
  • step b3 the signal transmission device A in the TDD mode converts the received microwave signal into a radio frequency signal and transmits it according to steps 4-7 in the fourth embodiment.
  • Step b4 The radio frequency antenna receives the radio frequency signal sent by the signal transmission device A in the TDD mode, and sends the radio frequency signal.
  • Step b5 The RRU receives the radio frequency signal.
  • the signal transmission system of the TDD mode performs time domain compression on the first digital signal segment to be transmitted, and obtains a first compressed digital signal with multiple intervals, wherein idle time occurs after time domain compression. a period of time, so that after transmitting a first compressed digital signal and before transmitting the next compressed first digital signal, there is a waiting time for no signal to be transmitted, and during the waiting time, the signal can be received; The transmission and reception of signals can be alternated to complete the signal transmission in the TDD mode.
  • the embodiment of the present invention uses a part of the time for transmitting a signal, the signal is received, thereby shortening the time of signal transmission, and also compressing the signal in the time domain, thereby reducing the time occupied by the air interface. Can reduce the consumption of air interface resources.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, i.e., may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a hardware plus software functional unit.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium, including
  • the dry commands are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform some of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a removable hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a magnetic disk, or an optical disk, and the like.
  • the medium of the program code includes: a USB flash drive, a removable hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a magnetic disk, or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

 本发明涉及通信领域,尤其涉及一种时分双工TDD模式的信号传输方法和设备。所述方法包括:获取具有时间特性的第一数字信号;将所迷第一数字信号分段进行时域压缩,形成多段间隔的第一压缩数字信号,并发送所述多段间隔的第一压缩数字信号;在发送所述第一压缩数字信号之间的等待时间内接收信号。

Description

一种时分双工 TDD模式的信号传输方法和设备 技术领域
本发明涉及通信领域, 尤其涉及一种时分双工 ( Time Division Duplex, 简称为 TDD)模式的信号传输方法和设备。
背景技术
在通信系统中, 信号的传输可以釆用两种基本模式: TDD模式和频分 双工(Frequency Division Duplex, 简称为 FDD)模式。 其中, FDD模式下 传输信号的特点是: 接收和发送信号使用分离的两个对称频率信道承载, 用频段 (上下行频率间隔 190MHz) 来保证接收和发送信道的分离。 然而, 釆用 FDD模式传输信号需要成对的频率资源,从而不能使用各种频率资源。
若是要充分利用频率资源 ,可以在通信系统中釆用 TDD模式传输信号。 具体的, 在釆用 TDD模式的通信系统中, 接收和发送信号使用同一频率载 波的不同时隙作为信道承载, 用时间来保证接收信道和发送信道的分离。
现有技术中 TDD模式的信号传输过程一般包括: 首先为发送信号和接 收信号划分不同的时隙, 之后在同一频率的信道上所划分的不同时隙中进 行信号的传输。 这样, 就会造成信号传输过程中耗时比较长, 增加了空口 资源的消耗。
发明内容
本发明的实施例提供一种 TDD模式的信号传输方法和设备, 用以解决 TDD模式信号传输过程中, 耗时较长、 空口资源消耗较大的问题。
为达到上述目的, 本发明的实施例釆用如下技术方案:
第一方面, 提供了一种 TDD模式的信号传输方法, 该方法包括: 获取具有时间特性的第一数字信号;
将所述第一数字信号分段进行时域压缩, 形成多段间隔的第一压缩数 字信号, 并发送所述多段间隔的第一压缩数字信号;
在发送所述第一压缩数字信号之间的等待时间内接收信号。
结合第一方面, 在第一种可能的实现方式中, 所述获取具有时间特性 的第一数字信号包括: 接收至少一路经数字调制后的载波信号;
将接收到的至少一路经数字调制后的载波信号合路, 得到第一数字信 号。
结合第一方面, 在第二种可能的实现方式中, 所述获取具有时间特性 的第一数字信号包括:
接收射频信号;
对接收到的所述射频信号进行模拟解调;
将模拟解调后的射频信号进行模数转换得到第一数字信号。
结合第一方面, 在第三种可能的实现方式中, 所述将第一数字信号分 段进行时域压缩, 形成多段间隔的第一压缩数字信号包括:
将所述第一数字信号以第一写入速率写入第一緩冲器中;
以第一读取速率从所述第一緩冲器中分段读取所述第一数字信号, 得 到多段间隔的第一压缩数字信号; 其中, 所述第一读取速率大于所述第一 写入速率。
结合第一方面的第三种可能的实现方式, 在第四种可能的实现方式 中, 所述第一读取速率为所述第一写入速率的 N倍, 所述 N为整数且大于
1。
结合第一方面, 在第五种可能的实现方式中, 在发送所述多段间隔的 第一压缩数字信号之前, 所述方法还包括:
获取第一前导及控制信号; 所述第一前导及控制信号与所述第一压缩 数字信号的釆样率相同;
将每一段所述第一压缩数字信号与第一前导及控制信号组合; 所述发送所述多段间隔的第一压缩数字信号包括:
发送多段间隔的所述第一压缩数字信号和所述第一前导及控制信号 组合后的信号。
结合第一方面, 或者第一方面的第一种至第五种可能的实现方式中的 任一种, 在第六种可能的实现方式中, 若需要发送第一压缩数字信号, 则 所述发送所述多段间隔的第一压缩数字信号包括:
将所述多段间隔的第一压缩数字信号进行数模转换; 将数模转换后的多段间隔的第一压缩数字信号进行模拟调制, 并将模 拟调制后的信号发送出去; 或者,
若需要发送第一压缩数字信号和第一前导及控制信号组合后的信号, 则所述发送所述多段间隔的第一压缩数字信号包括:
将多段间隔的第一压缩数字信号和第一前导及控制信号组合后的信 号进行数模转换;
将数模转换后多段间隔的第一压缩数字信号和第一前导及控制信号 组合后的信号进行模拟调制, 并将模拟调制后的信号发送出去。 第二方面, 提供了一种 TDD模式的信号传输方法, 该方法包括: 从接收到的信号中获取经时域压缩后的第二压缩数字信号;
将所述第二压缩数字信号进行时域展宽, 得到具有时间特性的第二数 字信号;
将所述第二数字信号发送出去。
结合第二方面, 在第一种可能的实现方式中, 所述从接收到的信号中 获取经时域压缩后的第二压缩数字信号包括:
将接收到的信号进行模拟解调;
将模拟解调后的信号进行模数转换, 得到模数转换后的信号, 所述模 数转换后的信号为第二压缩数字信号, 或者, 所述模数转换后的信号中包 括: 第二压缩数字信号和第二前导及控制信号;
若所述模数转换后的信号中包括: 第二压缩数字信号和第二前导及控 制信号, 则所述从接收到的信号中获取经时域压缩后的第二压缩数字信号 还包括:
将所述模数转换后的信号进行拆分分别得到所述第二压缩数字信号 和所述第二前导及控制信号。
结合第二方面, 在第二种可能的实现方式中, 所述将所述第二压缩数 字信号进行时域展宽, 得到具有时间特性的第二数字信号包括:
将所述第二压缩数字信号以第二写入速率写入第二緩冲器中; 以第二读取速率从所述第二緩冲器中读取所述第二压缩数字信号, 得 到第二数字信号; 其中, 所述第二写入速率大于所述第二读取速率。
结合第二方面的第二种可能的实现方式, 在第三种可能的实现方式 中, 所述第二写入速率为所述第二读取速率的 N倍, 所述 N为整数且大于
1。
结合第二方面, 在第四种可能的实现方式中, 所述将所述第二数字信 号发送出去包括:
将所述第二数字信号分路, 得到至少一路载波信号;
将所述至少一路载波信号发送出去。
结合第二方面, 在第五种可能的实现方式中, 所述将所述第二数字信 号发送出去包括:
将所述第二数字信号进行数模转换;
将经数模转换后的信号进行模拟调制;
将模拟调制后的信号发送出去。 第三方面, 提供了一种 TDD模式的信号传输设备, 该设备包括: 处理 器以及第一收发器件;
所述处理器, 用于获取具有时间特性的第一数字信号; 将所述第一数 字信号分段进行时域压缩, 形成多段间隔的第一压缩数字信号;
第一收发器件, 用于在所述处理器的控制下, 发送所述多段间隔的第 一压缩数字信号, 并在发送所述第一压缩数字信号之间的等待时间内, 接 收微波信号。
结合第三方面, 在第一种可能的实现方式中, 所述信号传输设备还包 括: 第二收发器件、 合路电路;
所述第二收发器件, 用于接收至少一路经数字调制后的载波信号, 并 传输给所述合路电路;
所述合路电路, 用于将接收到的至少一路经数字调制后的载波信号合 路, 得到第一数字信号;
所述处理器具体用于从所述合路电路中获取第一数字信号。
结合第三方面, 在第二种可能的实现方式中, 所述信号传输设备还包 括: 第二收发器件、 第一模拟解调器、 第一模数转换器;
所述第二收发器件, 用于接收射频信号, 并将其传输给所述第一模拟 解调器;
所述第一模拟解调器, 用于对由所述第二收发器件接收到的所述射频 信号进行模拟解调;
所述第一模数转换器, 用于将经所述第一模拟解调器模拟解调后的射 频信号进行模数转换得到第一数字信号;
所述处理器, 具体用于从所述第一模数转换器中获取第一数字信号。 结合第三方面, 在第三种可能的实现方式中, 所述信号传输设备还包 括: 第一緩冲器;
所述处理器, 具体用于将所述第一数字信号以第一写入速率写入所述 第一緩冲器中, 并以第一读取速率从所述第一緩冲器中分段读取所述第一 数字信号, 得到多段间隔的第一压缩数字信号; 其中, 所述第一读取速率 大于所述第一写入速率。
结合第三方面, 在第四种可能的实现方式中, 所述处理器还用于, 获 取第一前导及控制信号, 并将每一段所述第一压缩数字信号与第一前导及 控制信号组合; 所述第一前导及控制信号与所述第一压缩数字信号的釆样 率相同;
所述第一收发器件, 具体用于在所述处理器的控制下, 发送多段间隔 的所述第一压缩数字信号和所述第一前导及控制信号组合后的信号。
结合第三方面, 或第三方面的第一种至第四种可能的实现方式中的任 一种, 在第五种可能的实现方式中, 所述信号传输设备还包括: 第一数模 转换器、 第一模拟调制器;
所述第一数模转换器, 用于将所述处理器得到的所述多段间隔的第一 压缩数字信号进行数模转换;
所述第一模拟调制器, 用于将经所述第一数模转换器数模转换后的多 段间隔的第一压缩数字信号进行模拟调制;
所述第一收发器件, 具体用于将经所述第一模拟调制器模拟调制后的 信号发送出去; 或者, 所述第一数模转换器, 用于将多段间隔的第一压缩数字信号和第一前 导及控制信号组合后的信号进行数模转换;
所述第一模拟调制器, 用于将经所述第一数模转换器数模转换后多段 间隔的第一压缩数字信号和第一前导及控制信号组合后的信号进行模拟调 制;
所述第一收发器件, 具体用于将经所述第一模拟调制器模拟调制后的 信号发送出去。 结合第四方面, 提供了一种 TDD模式的信号传输设备, 该设备包括: 处理器, 用于从接收到的信号中获取经时域压缩后的第二压缩数字信 号; 将所述第二压缩数字信号进行时域展宽, 得到具有时间特性的第二数 字信号;
第二收发器件, 还用于在所述处理器的控制下, 将所述第二数字信号 发送出去。
结合第四方面, 在第一种可能的实现方式中, 所述信号传输设备还包 括: 第二模拟解调器、 第二模数转换器;
所述第二模拟解调器, 用于对由所述第一收发器件接收到的信号进行 模拟解调;
所述第二模数转换器, 用于将经所述第二模拟解调器模拟解调后的信 号进行模数转换, 得到模数转换后的信号, 所述模数转换后的信号为第二 压缩数字信号, 或者, 所述模数转换后的信号中包括: 第二压缩数字信号 和第二前导及控制信号;
若所述模数转换后的信号为第二压缩数字信号, 则所述处理器具体用 于从所述第二模数转换器中获取所述第二压缩数字信号。
若所述模数转换后的信号中包括: 第二压缩数字信号和第二前导及控 制信号, 则所述处理器具体用于将经所述第二模数转换器模数转换后的信 号进行拆分分别得到所述第二压缩数字信号和所述第二前导及控制信号。
结合第四方面, 在第二种可能的实现方式中, 所述信号传输设备还包 括:第二緩冲器; 所述处理器, 具体用于将所述第二压缩数字信号以第二写入速率写入 第二緩冲器中, 并以第二读取速率从所述第二緩冲器中读取所述第二压缩 数字信号, 得到第二数字信号; 其中, 所述第二写入速率大于所述第二读 取速率。
结合第四方面, 在第三种可能的实现方式中, 所述信号传输设备还包 括: 分路电路、 第二收发器件;
所述分路电路, 用于将所述处理器得到的所述第二数字信号分路, 得 到至少一路载波信号, 并将所述至少一路载波信号传输给所述第二收发器 件;
所述第二收发器件, 具体用于在所述处理器的控制下, 将所述至少一 路载波信号发送出去;
所述处理器, 具体用于将所述第二数字信号传输给所述分路电路。 结合第四方面, 在第四种可能的实现方式中, 所述信号传输设备还包 括: 第二数模转换器、 第二模拟调制器、 第二收发器件;
所述第二数模转换器, 用于将所述处理器得到的所述第二数字信号进 行数模转换;
所述第二模拟调制器, 用于将经所述第二数模转换器数模转换后的信 号进行模拟调制;
所述第二收发器件, 具体用于在所述处理器的控制下, 将经所述第二 模拟调制器模拟调制后的信号发送出去。
所述处理器, 具体用于将所述第二数字信号传输给所述第二数模转换 器。
本发明实施例提供的 TDD模式的信号传输方法和设备, 对待发送的第 一数字信号分段进行时域压缩, 得到多段间隔的第一压缩数字信号, 其中 经时域压缩后会出现空闲的时间段, 从而在发送一段第一压缩数字信号之 后、 发送下一段第一压缩数字信号之前就会存在没有信号需要发送的等待 时间, 在等待时间内, 就可以进行信号的接收; 进而经上述方法信号的发 送和接收能够交替进行, 完成 TDD模式的信号传输。 由于本发明实施例在 时域上对信号进行了压缩,缩小了占用空口的时间,因此能够减少空口资源 的消耗。
附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有 技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例中一种 TDD模式的信号传输方法的示意图; 图 2为本发明实施例中针对数字信号进行时域压缩的示意图; 图 3为本发明实施例中针对数字信号进行时域压缩的示意图; 图 4为本发明实施例中一种优选的时域压缩方式的示意图;
图 5为本发明实施例中另一种 TDD模式的信号传输方法的示意图; 图 6为本发明实施例中又一种 TDD模式的信号传输方法的示意图; 图 7为本发明实施例一中将所述第一数字信号分段进行时域压缩的示 意图;
图 8为本发明实施例一中读、 写所述第一数字信号的时序图; 图 9为本发明实施例一中将所述模数转换后的信号进行拆分分别得到 所述第二压缩数字信号和所述第二前导及控制信号的示意图;
图 1 0 为本发明实施例一中将所述第二压缩数字信号进行时域展宽的 示意图;
图 1 1为本发明实施例一中读、 写所述第二压缩数字信号的时序图; 图 1 2 为本发明实施例一中将每一段所述第一压缩数字信号与第一前 导及控制信号组合的示意图;
图 1 3为本发明实施例二中的一种 TDD模式的信号传输设备的结构示 意图;
图 1 4 为本发明实施例二中的另一种 TDD模式的信号传输设备的结构 示意图;
图 1 5 为本发明实施例二中的另一种 TDD模式的信号传输设备的结构 示意图;
图 1 6 为本发明实施例二中的另一种 TDD模式的信号传输设备的结构 示意图;
图 17 为本发明实施例二中的另一种 TDD模式的信号传输设备的结构 示意图;
图 18 为本发明实施例二中的另一种 TDD模式的信号传输设备的结构 示意图;
图 19 为本发明实施例二中的另一种 TDD模式的信号传输设备的结构 示意图;
图 20为本发明实施例二中的另一种 TDD模式的信号传输设备的结构 示意图;
图 21为本发明实施例三中射频拉远单元的信号传输场景的示意图; 图 22 为本发明实施例五中的一种 TDD模式的信号传输设备的结构示 意图;
图 23为本发明实施例五中的另一种 TDD模式的信号传输设备的结构 示意图;
图 24 为本发明实施例五中的另一种 TDD模式的信号传输设备的结构 示意图;
图 25 为本发明实施例五中的另一种 TDD模式的信号传输设备的结构 示意图;
图 26 为本发明实施例五中的另一种 TDD模式的信号传输设备的结构 示意图;
图 27 为本发明实施例五中的另一种 TDD模式的信号传输设备的结构 示意图;
图 28 为本发明实施例五中的另一种 TDD模式的信号传输设备的结构 示意图;
图 29 为本发明实施例五中的另一种 TDD模式的信号传输设备的结构 示意图;
图 30为本发明实施例六中微波直放站的信号传输场景的示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
下面结合附图对本发明实施例进行详细描述。
如图 1所示, 本发明实施例提供了一种 TDD模式的信号传输方法, 其 执行主体可以是 TDD模式的信号传输设备, 包括以下步骤:
S10 获取具有时间特性的第一数字信号。
其中, 所述具有时间特性的第一数字信号是指: 该信号不仅具有表征 幅度的信息, 同时还具有严格的时间间隔信息。 也就是说, 该信号的前一 个釆样点和后一个釆样点之间有严格的顺序关系和时间间隔。
5102、 将所述第一数字信号分段进行时域压缩, 形成多段间隔的第一 压缩数字信号, 并发送所述多段间隔的第一压缩数字信号。
所谓时域压缩是指:将一持续时间为 T的数字信号在时域上进行压缩 , 得到持续时间为 T' 的压缩数字信号, 其中, T' <T。 所谓分段进行时域压 缩是指: 将一持续时间 (包括: 多个时间段) 为 Τ的数字信号中每个时间 段的数字信号进行时域压缩, 得到各个时间段的数字信号所对应的压缩数 字信号; 其中, 各个压缩数字信号持续时间的总和为 Τ' , Τ' <Τ。
针对数字信号进行时域压缩可以参照图 2; 示例的, 如图 3所示, 将 持续时间为 Τ2、 时间间隔为 t2的数字信号, 按照 t2' ( t2' <t2 )的时间 间隔来恢复成持续时间为 T2' 的压缩数字信号, 其中, Τ2' = Τ2* 。
t2 针对图 3中如何对数字信号进行时域压缩的部分, 参考图 4本实施例 提供一种优选的时域压缩方式, 具体包括以下步骤:
( 1 ) 将数字信号以写入速率 fw写入一緩冲器中。
( 2 ) 以读取速率 fr ( fr > fw) 从所述緩冲器中读取所写入的数字信 号, 从而能够将数字信号的时间间隔压缩, 得到压缩后的数字信号。
5103、 在发送所述第一压缩数字信号之间的等待时间内, 接收信号。 具体的, 经过上述步骤 S102 得到的多段第一压缩数字信号是间隔存 在的, 即两段第一压缩数字信号之间存在空闲的时间段, 那么在发送一段 第一压缩数字信号之后就需要一段等待时间, 再发送下一段第一压缩数字 信号, 为了实现 TDD模式的信号传输, 每两段第一压缩数字信号之间的等 待时间可以用于接收信号。
其中, 此步骤中, 所述信号可以包括: 未经时域压缩的信号, 这样在 接收到所述信号之后, 就可以按照现有技术提供的信号还原方法, 对 TDD 模式下接收到的多段信号进行处理。 当然, 所述信号可以包括: 经过时域 压缩的信号, 这种情况下如何对接收到的信号进行还原, 在下面的实施例 中将评细阐述。
本发明实施例提供的 TDD模式的信号传输方法, 对待发送的第一数字 信号分段进行时域压缩, 得到多段间隔的第一压缩数字信号, 其中经时域 压缩后会出现空闲的时间段, 从而在发送一段第一压缩数字信号之后、 发 送下一段第一压缩数字信号之前就会存在没有信号需要发送的等待时间, 在等待时间内, 就可以进行信号的接收; 进而经上述方法信号的发送和接 收能够交替进行, 完成 TDD模式的信号传输。 由于本发明实施例使用了一 部分本来用于发送信号的时间, 进行信号的接收, 因此缩短了信号的传输 时间, 另外还因发送的是压缩后的信号, 因此能够减少空口资源的消耗。 上述实施例中各个步骤的执行主体可以是本端的信号传输设备, 那么 对于对端 TDD模式的信号传输设备而言, 本发明实施例还提供了一种信号 传输方法, 如图 5所示, 包括:
S 201、 从接收到的信号中获取经时域压缩后的第二压缩数字信号。 上述实施例中本端的信号传输设备是将第一压缩数字信号发送出去, 那么对端的信号传输设备接收到的信号中至少会包含有该第一压缩数字信 号。 也就是说, 此处的第二压缩数字信号实际上是本端信号传输设备发送 的第一压缩数字信号。
优选的, 对端的信号传输设备可以与本端的信号传输设备一样, 在发 送一段压缩数字信号之后、 发送下一段压缩数字信号之前的等待时间内, 进行信号的接收, 再从接收的信号中获取第二压缩数字信号。 这样能够缩 短传输时间, 并能够减少空口资源的消耗。
52 02、 将所述第二压缩数字信号进行时域展宽, 得到具有时间特性的 第二数字信号。
此步骤中, 所谓时域展宽与上述时域压缩的含义相反, 是指: 将一持 续时间为 T' 的信号在时域上进行展宽, 得到持续时间为 T的展宽信号, 其中, T > r 。
针对数字信号进行时域展宽可以参照图 2 ; 示例的, 如图 3所示, 将 持续时间为 T2 ' 、 时间间隔为 t 2' 的数字信号, 按照 t 2 ( i l > i V ) 的时 间间隔来展宽成持续时间为 T2的数字展宽信号, 其中, Τ2 = Τ2'*^。
t2'
52 03、 将所述第二数字信号发送出去。
示例的, 对端的信号传输设备可以将第二数字信号发送给对端的其他 设备。
通过本发明实施例提供的信号传输方法, 能够使得对端的信号传输设 备能够将本端信号传输设备发送的压缩信号进行还原, 得到本端的信号传 输设备原本要发送给对端信号传输设备的信号。 优选的, 本发明还提供了一个实施例, 可以让一个信号传输设备既有 信号压缩的功能, 又有信号还原的功能。 示例的, 可以上述本端的信号传 输设备进一步具备信号还原的功能, 那么, 本发明提供的方法可以在图 1 所示实施例的基础上, 进一步在完成上述 S 1 03之后, 若步骤 S 1 03接收到 的信号包括: 经时域压缩后的第二压缩数字信号, 则如图 6所示还可以包 括:
S 1 04、 从接收到的信号中获取经时域压缩后的第二压缩数字信号。 示例的, 可以从对端的信号传输设备接收信号, 并从中获取到第二压 缩数字信号; 该第二压缩数字信号是对端的信号传输设备把要发给本端设 备的信号经时域压缩后得到的。
S 1 05、 将所述第二压缩数字信号进行时域展宽, 得到具有时间特性的 第二数字信号。 S106、 将所述第二数字信号发送出去。
示例的, 可以是本端 TDD模式的信号传输设备将第二数字信号发送给 本端的其他设备。
这样, 本发明实施例不仅缩短了信号的传输时间, 另减少了空口资源 的消耗; 还能够将接收到压缩信号进行还原。 下面将列举具体实施例, 对上述方法进行详述。
实施例一、
在通信网络中, 通用公共无线接口 (The Common Public Radio Interface,简称为 CPRI)是射频拉远单元( Radio Remote Unit,简称为 RRU) 和基站基带单元 BBU ( Base-station Baseband Unit, 简称为 BBU) 之间的 接口, 通常使用光纤或电缆进行连接。 在本发明中, 使用无线方式进行信 号传输。 下面针对 CPRI信号的传输场景, 对上述提供的 TDD模式的信号传 输方法进行详述。 具体的, 所述方法包括以下步骤:
步骤 1、 获取具有时间特性的第一数字信号。
具体的, 此步骤可以包括:
(1) 接收至少一路经数字调制后的载波信号。
其中, 所述数字调制主要是将码域的 '0, 或 '1, 用另外一个数字信 号的不同特征重新表达。
示例的, 可以用复信号的相位 90度表示 '0, ,270度表示 '1, 。 这 样, 假设原始的码域信号为 0110, 那么经过这种数字调制后, 原始的码域 信号就变为了 ( 0, i ) ( 0, -i ) ( 0, _i ) ( 0, i ) 。
又示例的, 也可以用另外一个信号的不同幅度来表示, 比如一个信号 的 -5代表 '0, , 5代表 'Γ , 同样假设原始的码域信号为 0110, 那么经 过这种数字调制后, 原始的码域信号就变为了(-5) (5) (-5) (5)。
常见的数字调制方式包括: 幅移键控 ( Amplitude Shift Keying, 简称为 ASK)调制方式、 频移键控( Frequency Shift Keying, 简称为 FSK) 调制方式、 相移键控 (Phase Shift Keying, 简称为 PSK ) 调制方式、 正 交幅度调制 ( Quadrature Amplitude Modulation, 简称为 QAM ) 方式、 差 分相移键控 ( Differential Phase Shift Keying, 简称为 DPSK ) 调制方 式等。
( 2 ) 将接收到的至少一路经数字调制后的载波信号合路, 得到第一 数字信号。
其中, 所述接收到的至少一路经数字调制后的载波信号经过变速率和 变频操作后会合路, 得到第一数字信号。
步骤 2、 将所述第一数字信号分段进行时域压缩, 形成多段间隔的第 一压缩数字信号。
参照图 7, 此步骤具体包括:
( 1 ) 将第一数字信号以第一写入速率写入第一緩冲器中。
具体的, 将第一数字信号以第一写入速率 fwl写入第一緩冲器中。
( 2 ) 以第一读取速率从所述第一緩冲器中分段读取所述第一数字信 号, 得到多段间隔的第一压缩数字信号。
其中, 第一读取速率 frl 大于所述第一写入速率 fwl, 优选的, frl=N*fwl, N为整数且大于 1。 具体的, 读、 写第一数字信号的时序图如 图 8所示。 可见, 由于读取的快, 写入的慢, 这样每读取一段数据就要等 待一会儿, 否则就没有数据可读了, 于是就形成了读取一段时间的数据, 空闲一段时间的状态, 其中空闲出来的时间就可以用于信号的接收, 从而 为 TDD模式的信号传输提供了条件。
步骤 3、 发送所述多段间隔的第一压缩数字信号。
具体的, 此步骤可以包括:
( 1 ) 将所述多段间隔的第一压缩数字信号进行数模转换。
( 2 ) 将数模转换后的多段间隔的第一压缩数字信号进行模拟调制, 并将模拟调制后的信号发送出去。
步骤 4、 在发送所述第一压缩数字信号之间的等待时间内接收信号。 此步骤中, 假设所述信号中包括经过时域压缩的信号, 那么此时, 可 以执行步骤 5。
步骤 5、 从接收到的信号中获取经时域压缩后的第二压缩数字信号 具体的, 此步骤可以包括: ( 1 ) 将接收到的信号进行模拟解调。
( 2 ) 将模拟解调后的信号进行模数转换, 得到模数转换后的信号, 所述模数转换后的信号为第二压缩数字信号, 或者, 所述模数转换后的信 号中包括: 第二压缩数字信号和第二前导及控制信号;
若所述模数转换后的信号中包括: 第二压缩数字信号和第二前导及控 制信号, 则此步骤还包括:
( 3 ) 将所述模数转换后的信号进行拆分分别得到所述第二压缩数字 信号和所述第二前导及控制信号。 具体可以参照图 9。
步骤 6、 将所述第二压缩数字信号进行时域展宽, 得到具有时间特性 的第二数字信号。
参照图 10 , 此步骤具体包括:
( 1 ) 将所述第二压缩数字信号以第二写入速率写入第二緩冲器中。 具体的, 将待展宽的第二压缩数字信号以第二写入速率 fw2写入第二 緩冲器中。
( 2 ) 以第二读取速率从所述第二緩冲器中读取所述第二压缩数字信 号, 得到经时域展宽后的信号。
其中, 第二写入速率 fw2 大于所述第二读取速率 f r 2。 优选的, fw2=N*f r 2, N为整数且大于 1。 具体的, 读、 写所述第二压缩数字信号的 时序图如图 11所示。 可见, 由于写入的快, 读取的慢, 这样每写入一段数 据就要等待一会儿, 否则数据就读取不出来了, 于是就形成了连续不断的 信号, 从而完成了第二压缩数字信号的时域展宽。
步骤 7、 将所述第二数字信号发送出去。
具体的, 此步骤可以包括:
( 1 ) 将所述第二数字信号分路, 得到至少一路载波信号。
具体的,此步骤中,可以通过变速率和变频将所述第二数字信号分路, 得到至少一路载波信号。
( 2 ) 将所述至少一路载波信号通过 CPR I发送出去。
本发明实施例提供的 TDD模式的信号传输方法, 对待发送的第一数字 信号分段进行时域压缩, 得到多段间隔的第一压缩数字信号, 其中经时域 压缩后会出现空闲的时间段, 从而在发送一段第一压缩数字信号之后、 发 送下一段第一压缩数字信号之前就会存在没有信号需要发送的等待时间, 在等待时间内, 就可以进行信号的接收; 进而经上述方法信号的发送和接 收能够交替进行, 完成 TDD模式的信号传输。
可选的, 在上述步骤 2之后, 步骤 3之前, 所述方法还包括:
( 1 ) 获取第一前导及控制信号; 所述第一前导及控制信号与所述第 一压缩数字信号的釆样率相同。
( 2 ) 将每一段所述第一压缩数字信号与第一前导及控制信号组合。 具体可以参照图 12。
此时, 步骤 3具体可以是: 发送多段间隔的所述第一压缩数字信号和 所述第一前导及控制信号组合后的信号。
具体的, 步骤 3可以包括:
( 1 ) 将多段间隔的第一压缩数字信号和第一前导及控制信号组合后 的信号进行数模转换。
( 2 ) 将数模转换后多段间隔的第一压缩数字信号和第一前导及控制 信号组合后的信号进行模拟调制, 并将模拟调制后的信号发送出去。
实施例一是以一个信号传输设备既具备时域压缩功能、 又具备时域展 宽 (还原) 功能为例进行阐述的。 需要说明的是, 若一个信号传输设备只 具备时域压缩功能,那么该信号传输方法可以只进行上述的步骤 1-步骤 4 ; 若一个信号传输设备只具备时域展宽功能, 那么该信号传输方法可以只进 行上述步骤 5-步骤 7。 实施例二、
参照图 1 3 , 本实施例提供了一种可以执行实施例一中所述方法的 TDD 模式的信号传输设备 60 , 该信号传输设备 60包括: 处理器 601 以及第一 收发器件 602 ;
所述处理器 601 , 用于获取具有时间特性的第一数字信号; 将所述第 一数字信号分段进行时域压缩, 形成多段间隔的第一压缩数字信号;
所述第一收发器件 602 , 用于在所述处理器 601的控制下, 发送所述 多段间隔的第一压缩数字信号, 并在发送所述第一压缩数字信号之间的等 待时间内, 接收微波信号。
可选的,参照图 14 ,所述信号传输设备 60还包括:第二收发器件 603、 合路电路 604 ;
所述第二收发器件 603 ,用于接收至少一路经数字调制后的载波信号, 并传输给所述合路电路 604 ;
所述合路电路 604 , 用于将接收到的至少一路经数字调制后的载波信 号合路, 得到第一数字信号;
所述处理器 601具体用于从所述合路电路 604中获取第一数字信号。 可选的, 参照图 15 , 所述信号传输设备 60还包括: 第一緩冲器 605 ; 所述处理器 601 , 具体用于将所述第一数字信号以第一写入速率写入 所述第一緩冲器 605中, 并以第一读取速率从所述第一緩冲器 605中分段 读取所述第一数字信号, 得到多段间隔的第一压缩数字信号; 其中, 所述 第一读取速率大于所述第一写入速率。
可选的, 所述处理器 601还用于, 获取第一前导及控制信号, 并将每 一段所述第一压缩数字信号与第一前导及控制信号组合; 所述第一前导及 控制信号与所述第一压缩数字信号的釆样率相同;
所述第一收发器件 602 , 具体用于在所述处理器 601的控制下, 发送 多段间隔的所述第一压缩数字信号和所述第一前导及控制信号组合后的信 号。
可选的, 参照图 16 , 所述信号传输设备 60还包括: 第一数模转换器 606、 第一模拟调制器 607 ;
所述第一数模转换器 606 , 用于将所述处理器 601得到的所述多段间 隔的第一压缩数字信号进行数模转换;
所述第一模拟调制器 607 , 用于将经所述第一数模转换器 606数模转 换后的多段间隔的第一压缩数字信号进行模拟调制;
所述第一收发器件 602 , 具体用于将经所述第一模拟调制器 607模拟 调制后的信号发送出去; 或者,
所述第一数模转换器 606 , 用于将多段间隔的第一压缩数字信号和第 一前导及控制信号组合后的信号进行数模转换;
所述第一模拟调制器 607 , 用于将经所述第一数模转换器 606数模转 换后多段间隔的第一压缩数字信号和第一前导及控制信号组合后的信号进 行模拟调制;
所述第一收发器件 602 , 具体用于将经所述第一模拟调制器 607模拟 调制后的信号发送出去。
由于本发明实施例中信号传输设备使用了一部分本来用于发送信号 的时间, 进行信号的接收, 因此缩短了信号传输的时间, 另外还因发送的 是压缩后的信号, 因此能够减少空口资源的消耗。
需要说明的是, 若信号传输设备 60 具备时域压缩的功能但不具备时 域展宽的功能, 则可以不包含下面的器件或功能。 若信号传输设备 60既具 备时域压缩的功能、 又具备时域展宽的功能, 则可以进一步包含下面的器 件或功能。
可选的, 所述处理器 601 , 还用于从所述第一收发器件 602接收到的 信号中获取经时域压缩后的第二压缩数字信号; 将所述第二压缩数字信号 进行时域展宽, 得到具有时间特性的第二数字信号;
所述第二收发器件 603 , 用于在所述处理器 601的控制下, 将所述第 二数字信号发送出去。
可选的, 参照图 17 , 所述信号传输设备 60还包括: 第二模拟解调器 608、 第二模数转换器 609 ;
所述第二模拟解调器 608 , 用于对由所述第一收发器件 602接收到的 信号进行模拟解调;
所述第二模数转换器 609 , 用于将经所述第二模拟解调器 608模拟解 调后的信号进行模数转换, 得到模数转换后的信号, 所述模数转换后的信 号为第二压缩数字信号, 或者, 所述模数转换后的信号中包括: 第二压缩 数字信号和第二前导及控制信号;
若所述模数转换后的信号为第二压缩数字信号, 则所述处理器 601具 体用于从所述第二模数转换器 609中获取所述第二压缩数字信号。
若所述模数转换后的信号中包括: 第二压缩数字信号和第二前导及控 制信号, 则所述处理器 601具体用于将经所述第二模数转换器 609模数转 换后的信号进行拆分分别得到所述第二压缩数字信号和所述第二前导及控 制信号。
可选的, 参照图 18 , 所述信号传输设备 60还包括:第二緩冲器 60A; 所述处理器 601 , 具体用于将所述第二压缩数字信号以第二写入速率 写入第二緩冲器 60A中, 并以第二读取速率从所述第二緩冲器 60A中读取 所述第二压缩数字信号, 得到第二数字信号; 其中, 所述第二写入速率大 于所述第二读取速率。
可选的, 参照图 19 , 所述信号传输设备 60还包括: 分路电路 60B; 所述分路电路 60B , 用于将所述处理器 601得到的所述第二数字信号 分路, 得到至少一路载波信号, 并将所述至少一路载波信号传输给所述第 二收发器件 603 ;
所述第二收发器件 603 , 具体用于在所述处理器 601的控制下, 将所 述至少一路载波信号发送出去;
所述处理器 601 , 具体用于将所述第二数字信号传输给所述分路电路
60B。
这样, 本发明实施例不仅缩短了信号的传输时间, 另减少了空口资源 的消耗; 还能够将接收到压缩信号进行还原。 当然, 信号传输设备也可以具备时域展宽的功能但不具备时域压缩的 功能, 此时, 如图 20所示, 该信号传输设备 70可以包括:
处理器 701 , 用于从接收到的信号中获取经时域压缩后的第二压缩数 字信号; 将所述第二压缩数字信号进行时域展宽, 得到具有时间特性的第 二数字信号。
第二收发器件 702 , 用于在所述处理器 701的控制下, 将所述第二数 字信号发送出去。
其中, 该信号传输设备 70还可以进一步包括: 第一收发器件 700 , 该 第一收发器件 700用于接收信号, 所述处理器 701具体用于从第一收发器 件 700接收到的信号中获取第二压缩信号。 可选的, 所述信号传输设备 70还包括: 第二模拟解调器 703、 第二模 数转换器 704 ;
所述第二模拟解调器 703 , 用于对接收到的信号进行模拟解调; 可选 的, 对从第一收发器件 700接收到的信号进行模拟解调。
所述第二模数转换器 704 , 用于将经所述第二模拟解调器 703模拟解 调后的信号进行模数转换, 得到模数转换后的信号, 所述模数转换后的信 号为第二压缩数字信号, 或者, 所述模数转换后的信号中包括: 第二压缩 数字信号和第二前导及控制信号;
若所述模数转换后的信号为第二压缩数字信号, 则所述处理器 701具 体用于从所述第二模数转换器 704中获取所述第二压缩数字信号。
若所述模数转换后的信号中包括: 第二压缩数字信号和第二前导及控 制信号, 则所述处理器 701具体用于将经所述第二模数转换器 704模数转 换后的信号进行拆分分别得到所述第二压缩数字信号和所述第二前导及控 制信号。
可选的, 所述信号传输设备 70还包括:第二緩冲器 70A;
所述处理器 701 , 具体用于将所述第二压缩数字信号以第二写入速率 写入第二緩冲器 70A中, 并以第二读取速率从所述第二緩冲器 70A中读取 所述第二压缩数字信号, 得到第二数字信号; 其中, 所述第二写入速率大 于所述第二读取速率。
可选的, 所述信号传输设备 70还包括: 分路电路 70B;
所述分路电路 70B , 用于将所述处理器 701得到的所述第二数字信号 分路, 得到至少一路载波信号, 并将所述至少一路载波信号传输给所述第 二收发器件 702 ;
所述第二收发器件 702 , 具体用于在所述处理器 701的控制下, 将所 述至少一路载波信号发送出去;
所述处理器 701 , 具体用于将所述第二数字信号传输给所述分路电路
70B。
这样信号传输设备 70就能够将接收到压缩信号进行还原。 实施例三、
本发明实施例提供了一种 TDD模式的信号传输系统, 该系统包括: 一 对 TDD模式的信号传输设备, 该信号传输设备既具备时域压缩的功能、 又 具备时域展宽的功能。 该系统可以应用于图 21所示的 CPRI信号的传输场 景中。 从图 21可以看出, BBU的 CPR I接口通过光纤或电缆与 TDD模式的 信号传输设备 A连接; TDD模式的信号传输设备 B通过光纤或电缆与 RRU 的 CPRI接口连接; RRU与射频天线相连接; TDD模式的信号传输设备 A与 TDD模式的信号传输设备 B之间无线传输信号。
在该场景中, 由于施工环境或自然环境等因素, 光纤可能无法直接连 接, 因此需要使用一个上述实施例二中提供的设备将 BBU 输出的 CPRI信 号转换为微波信号, 并将所述微波信号在空间进行传输, 进而由另外一个 上述实施例二中提供的设备将接收到的微波信号转换为 CPR I信号,并将所 述 CPR I信号传输至 RRU。 下面对在此场景下如何信号传输进行说明。
对于由 BBU向 RRU发送信号的场景, 信号传输的过程具体包括: 步骤 a l、 BBU输出 CPRI信号。
其中, 所述 C P R I信号为至少一路经数字调制后的载波信号。
步骤 a2、 TDD模式的信号传输设备 A按照实施例一中的步骤 1- 3将所 述 CPR I信号转换为微波信号发送出去。
步骤 a 3、 TDD模式的信号传输设备 B按照实施例一中的步骤 4-7将接 收到的所述微波信号转换为 CPR I信号发送出去。
步骤 a4、 RRU接收 TDD模式的信号传输设备 B发送的所述 CPR I信号。 步骤 a5、 RRU将接收到的所述 CPRI信号通过射频天线发送出去。 对于由 RRU向 BBU 发送信号的场景, 信号传输的过程具体包括: 步骤 bl、 射频天线接收 CPR I信号。
步骤 b2、 RRU将所述 CPR I信号发送出去。
步骤 b 3、 TDD模式的信号传输设备 B按照实施例一中的步骤 1- 3将所 述 CPR I信号转换为微波信号发送出去。
步骤 b4、 TDD模式的信号传输设备 A按照实施例一中的步骤 4-7将接 收到的所述微波信号转换为 CPR I信号发送出去。 步骤 b 5、 BBU接收所述 TDD模式的信号传输设备 A发送的所述 CPR I 信号。
同样的, 本发明实施例提供的 TDD模式的信号传输系统, 对待发送的 第一数字信号分段进行时域压缩, 得到多段间隔的第一压缩数字信号, 其 中经时域压缩后会出现空闲的时间段, 从而在发送一段第一压缩数字信号 之后、 发送下一段第一压缩数字信号之前就会存在没有信号需要发送的等 待时间, 在等待时间内, 就可以进行信号的接收; 进而经上述方法信号的 发送和接收能够交替进行, 完成 TDD模式的信号传输。 由于本发明实施例 使用了一部分本来用于发送信号的时间, 进行信号的接收, 因此缩短了信 号传输的时间,另外还因在时域上对信号进行了压缩,缩小了占用空口的时 间, 因此能够减少空口资源的消耗。 实施例四、
下面针对微波直放站中釆用 TDD模式传输射频信号的场景, 对上述提 供的 TDD模式的信号传输方法进行详述。 具体的, 所述方法包括以下步骤: 步骤 1、 获取具有时间特性的第一数字信号。
具体的, 此步骤可以包括:
( 1 )接收射频信号。
在通信系统中, 由于基带信号的频率较低, 因此基带信号并不适宜在 信道中直接进行传输, 为了将所述基带信号转换为适合在信道中传输的信 号, 一般需要对所述基带信号进行模拟调制, 这样就可以将所述基带信号 的频谱进行搬移, 从而所述基带信号就可以在信道中传输。
所述模拟调制, 是指将所述基带信号与载波信号相乘, 从而达到基带 信号频谱搬移的效果。 此处, 所述射频信号指经过模拟调制后的基带信号。
( 2 ) 对接收到的所述射频信号进行模拟解调。
相应的, 所述模拟解调, 是指将所述基带信号与载波信号分离, 恢复 为原来的基带信号。
( 3 ) 将模拟解调后的射频信号进行模数转换得到第一数字信号。 步骤 2、 将所述第一数字信号分段进行时域压缩, 形成多段间隔的第 一压缩数字信号。
参照图 7 , 此步骤具体包括:
( 1 ) 将第一数字信号以第一写入速率写入第一緩冲器中。
具体的, 将第一数字信号以第一写入速率 fwl写入第一緩冲器中。
( 2 ) 以第一读取速率从所述第一緩冲器中分段读取所述第一数字信 号, 得到多段间隔的第一压缩数字信号。
其中, 第一读取速率 f r l 大于所述第一写入速率 fwl , 优选的, f r l=N*fwl , N为整数且大于 1。 具体的, 读、 写数字信号的时序图如图 8 所示。 可见, 由于读取的快, 写入的慢, 这样每读取一段数据就要等待一 会儿, 否则就没有数据可读了, 于是就形成了读取一段时间的数据, 空闲 一段时间的状态,其中空闲出来的时间就可以用于信号的接收,从而为 TDD 模式的信号传输提供了条件。
步骤 3、 发送所述多段间隔的第一压缩数字信号。
具体的, 此步骤可以包括:
( 1 ) 将所述多段间隔的第一压缩数字信号进行数模转换。
( 2 ) 将数模转换后的多段间隔的第一压缩数字信号进行模拟调制, 并将模拟调制后的信号发送出去。
步骤 4、 在发送所述第一压缩数字信号之间的等待时间内接收信号。 此步骤中, 假设所述信号中包括经过时域压缩的信号, 那么此时, 可 以执行步骤 5。
步骤 5、 从接收到的信号中获取经时域压缩后的第二压缩数字信号。 具体的, 此步骤可以包括:
( 1 ) 将接收到的信号进行模拟解调。
( 2 ) 将模拟解调后的信号进行模数转换, 得到模数转换后的信号, 所述模数转换后的信号为第二压缩数字信号, 或者, 所述模数转换后的信 号中包括: 第二压缩数字信号和第二前导及控制信号;
若所述模数转换后的信号中包括: 第二压缩数字信号和第二前导及控 制信号, 则此步骤还包括:
( 3 ) 将所述模数转换后的信号进行拆分分别得到所述第二压缩数字 信号和所述第二前导及控制信号。 具体可以参照图 9。
步骤 6、 将所述第二压缩数字信号进行时域展宽, 得到具有时间特性 的第二数字信号。
参照图 1 0 , 此步骤具体包括:
( 1 ) 将所述第二压缩数字信号以第二写入速率写入第二緩冲器中。 具体的, 将待展宽的第二压缩数字信号以第二写入速率 fw2写入第二 緩冲器中。
( 2 ) 以第二读取速率从所述第二緩冲器中读取所述第二压缩数字信 号, 得到经时域展宽后的信号。
其中, 第二写入速率 fw2 大于所述第二读取速率 f r 2。 优选的, fw2=N* f r 2 , N为整数且大于 1。 具体的, 读、 写所述第二压缩数字信号的 时序图如图 1 1所示。 可见, 由于写入的快, 读取的慢, 这样每写入一段数 据就要等待一会儿, 否则数据就读取不出来了, 于是就形成了连续不断的 信号, 从而完成了第二压缩数字信号的时域展宽。
步骤 7、 将所述第二数字信号发送出去。
具体的, 此步骤可以包括:
( 1 ) 将所述第二数字信号进行数模转换。
( 2 ) 将经数模转换后的信号进行模拟调制。
( 3 ) 将模拟调制后的信号发送出去。
本发明实施例提供的 TDD模式的信号传输方法, 对待发送的第一数字 信号分段进行时域压缩, 得到多段间隔的第一压缩数字信号, 其中经时域 压缩后会出现空闲的时间段, 从而在发送一段第一压缩数字信号之后、 发 送下一段第一压缩数字信号之前就会存在没有信号需要发送的等待时间, 在等待时间内, 就可以进行信号的接收; 进而经上述方法信号的发送和接 收能够交替进行, 完成 TDD模式的信号传输。 在上述步骤 2之后, 步骤 3之前, 所述方法还包括以下步骤:
( 1 ) 获取第一前导及控制信号; 所述第一前导及控制信号与所述第 一压缩数字信号的釆样率相同。 ( 2 ) 将每一段所述第一压缩数字信号与第一前导及控制信号组合。 具体可以参照图 12。
此时, 步骤 3具体是: 发送多段间隔的所述第一压缩数字信号和所述 第一前导及控制信号组合后的信号。
具体的, 步骤 3可以包括:
( 1 ) 将多段间隔的第一压缩数字信号和第一前导及控制信号组合后 的信号进行数模转换。
( 2 ) 将数模转换后多段间隔的第一压缩数字信号和第一前导及控制 信号组合后的信号进行模拟调制, 并将模拟调制后的信号发送出去。
实施例四是以一个信号传输设备既具备时域压缩功能、 又具备时域展 宽 (还原) 功能为例进行阐述的。 需要说明的是, 若一个信号传输设备只 具备时域压缩功能,那么该信号传输方法可以只进行上述的步骤 1-步骤 4 ; 若一个信号传输设备只具备时域展宽功能, 那么该信号传输方法可以只进 行上述步骤 5-步骤 7。 实施例五、
参照图 22 , 本实施例提供了一种可以执行实施例四中所述方法的 TDD 模式的信号传输设备 200 , 该信号传输设备 200包括: 处理器 2001以及第 一收发器件 2002 ;
所述处理器 2001 , 用于获取具有时间特性的第一数字信号; 将所述第 一数字信号分段进行时域压缩, 形成多段间隔的第一压缩数字信号;
所述第一收发器件 2002 , 用于在所述处理器 2001 的控制下, 发送所 述多段间隔的第一压缩数字信号, 并在发送所述第一压缩数字信号之间的 等待时间内, 接收微波信号。
可选的, 参照图 23 , 所述信号传输设备 200 还包括: 第二收发器件 2003、 第一模拟解调器 2004、 第一模数转换器 2005 ;
所述第二收发器件 2003 , 用于接收射频信号, 并将其传输给所述第一 模拟解调器 2004 ;
所述第一模拟解调器 2004 , 用于对由所述第二收发器件 2003接收到 的所述射频信号进行模拟解调;
所述第一模数转换器 2005 , 用于将经所述第一模拟解调器 2004模拟 解调后的射频信号进行模数转换得到第一数字信号;
所述处理器 2001 , 具体用于从所述第一模数转换器 2005 中获取第一 数字信号。
可选的,参照图 24 ,所述信号传输设备 200还包括:第一緩冲器 2006 ; 所述处理器 2001 ,具体用于将所述第一数字信号以第一写入速率写入 所述第一緩冲器 2006中, 并以第一读取速率从所述第一緩冲器 2006中分 段读取所述第一数字信号, 得到多段间隔的第一压缩数字信号; 其中, 所 述第一读取速率大于所述第一写入速率。
可选的, 所述处理器 2001 还用于, 获取第一前导及控制信号, 并将 每一段所述第一压缩数字信号与第一前导及控制信号组合; 所述第一前导 及控制信号与所述第一压缩数字信号的釆样率相同;
所述第一收发器件 2002 , 具体用于在所述处理器 2001 的控制下, 发 送多段间隔的所述第一压缩数字信号和所述第一前导及控制信号组合后的 信号。
可选的, 参照图 25 , 所述信号传输设备 200还包括: 第一数模转换器 2007、 第一模拟调制器 2008 ;
所述第一数模转换器 2007 , 用于将所述处理器 2001得到的所述多段 间隔的第一压缩数字信号进行数模转换;
所述第一模拟调制器 2008 , 用于将经所述第一数模转换器 2007数模 转换后的多段间隔的第一压缩数字信号进行模拟调制;
所述第一收发器件 2002 , 具体用于将经所述第一模拟调制器 2008模 拟调制后的信号发送出去; 或者,
所述第一数模转换器 2007 ,用于将多段间隔的第一压缩数字信号和第 一前导及控制信号组合后的信号进行数模转换;
所述第一模拟调制器 2008 , 用于将经所述第一数模转换器 2007数模 转换后多段间隔的第一压缩数字信号和第一前导及控制信号组合后的信号 进行模拟调制; 所述第一收发器件 2002 , 具体用于将经所述第一模拟调制器 2008模 拟调制后的信号发送出去。
由于本发明实施例中信号传输设备 200使用了一部分本来用于发送信 号的时间, 进行信号的接收, 因此缩短了信号传输的时间, 另外还因发送 的是压缩后的信号, 因此能够减少空口资源的消耗。
需要说明的是, 若信号传输设备 200具备时域压缩的功能但不具备时 域展宽的功能, 则可以不包含下面的器件或功能。 若信号传输设备 200既 具备时域压缩的功能、 又具备时域展宽的功能, 则可以进一步包含下面的 器件或功能。
可选的, 所述处理器 2001 , 还用于从所述第一收发器件 2002接收到 的信号中获取经时域压缩后的第二压缩数字信号; 将所述第二压缩数字信 号进行时域展宽, 得到具有时间特性的第二数字信号;
所述第二收发器件 2003 , 用于在所述处理器 2001 的控制下, 将所述 第二数字信号发送出去。
可选的, 参照图 26 , 所述信号传输设备 200还包括: 第二模拟解调器 2009、 第二模数转换器 200A;
所述第二模拟解调器 2009 , 用于对由所述第一收发器件 2002接收到 的信号进行模拟解调;
所述第二模数转换器 200A , 用于将经所述第二模拟解调器 2009模拟 解调后的信号进行模数转换, 得到模数转换后的信号, 所述模数转换后的 信号为第二压缩数字信号, 或者, 所述模数转换后的信号中包括: 第二压 缩数字信号和第二前导及控制信号;
若所述模数转换后的信号为第二压缩数字信号, 则所述处理器 2001 具体用于从所述第二模数转换器 200A中获取所述第二压缩数字信号。
若所述模数转换后的信号中包括: 第二压缩数字信号和第二前导及控 制信号, 则所述处理器 2001具体用于将经所述第二模数转换器 200A模数 转换后的信号进行拆分分别得到所述第二压缩数字信号和所述第二前导及 控制信号。
可选的,参照图 27 ,所述信号传输设备 200还包括:第二緩冲器 200B; 所述处理器 2001 ,具体用于将所述第二压缩数字信号以第二写入速率 写入第二緩冲器 200B中, 并以第二读取速率从所述第二緩冲器 200B中读 取所述第二压缩数字信号, 得到第二数字信号; 其中, 所述第二写入速率 大于所述第二读取速率。
可选的, 参照图 28 , 所述信号传输设备 200还包括: 第二数模转换器 200C、 第二模拟调制器 200D;
所述第二数模转换器 200C , 用于将所述处理器 2001得到的所述第二 数字信号进行数模转换;
所述第二模拟调制器 200D , 用于将经所述第二数模转换器 200C数模 转换后的信号进行模拟调制;
所述第二收发器件 2003 , 具体用于在所述处理器 2001 的控制下, 将 经所述第二模拟调制器模拟调制后的信号发送出去。
所述处理器 2001 ,具体用于将所述第二数字信号传输给所述第二数模 转换器 200C。
这样, 本发明实施例不仅缩短了信号的传输时间, 另减少了空口资源 的消耗; 还能够将接收到压缩信号进行还原。 当然, 信号传输设备也可以具备时域展宽的功能但不具备时域压缩的 功能, 此时, 如图 29所示, 信号传输设备 210可以包括:
处理器 21 01 ,用于从接收到的信号中获取经时域压缩后的第二压缩数 字信号; 将所述第二压缩数字信号进行时域展宽, 得到具有时间特性的第 二数字信号;
第二收发器件 21 02 , 用于在所述处理器 2101的控制下, 将所述第二 数字信号发送出去。
其中,所述信号传输设备 210还可以包括: 第一收发器件 21 00 ,此时, 该第一收发器件 21 00用于接收信号, 所述处理器 2101具体用于从第一收 发器件 2100接收到的信号中获取到第二压缩信号。
可选的, 所述信号传输设备 21 0还包括: 第二模拟解调器 21 03、 第二 模数转换器 210A; 所述第二模拟解调器 2103, 用于对接收到的信号进行模拟解调; 可选 的, 可以对第一收发器件 2100接收到的信号进行模拟解调。
所述第二模数转换器 210A, 用于将经所述第二模拟解调器 2103模拟 解调后的信号进行模数转换, 得到模数转换后的信号, 所述模数转换后的 信号为第二压缩数字信号, 或者, 所述模数转换后的信号中包括: 第二压 缩数字信号和第二前导及控制信号;
若所述模数转换后的信号为第二压缩数字信号, 则所述处理器 2101 具体用于从所述第二模数转换器 21 OA中获取所述第二压缩数字信号。
若所述模数转换后的信号中包括: 第二压缩数字信号和第二前导及控 制信号, 则所述处理器 2101具体用于将经所述第二模数转换器 210A模数 转换后的信号进行拆分分别得到所述第二压缩数字信号和所述第二前导及 控制信号。
可选的, 所述信号传输设备 210还包括:第二緩冲器 210B;
所述处理器 2101,具体用于将所述第二压缩数字信号以第二写入速率 写入第二緩冲器 210B中, 并以第二读取速率从所述第二緩冲器 200B中读 取所述第二压缩数字信号, 得到第二数字信号; 其中, 所述第二写入速率 大于所述第二读取速率。
可选的, 所述信号传输设备 210还包括: 第二数模转换器 210C、 第二 模拟调制器 210D;
所述第二数模转换器 210C, 用于将所述处理器 2101得到的所述第二 数字信号进行数模转换;
所述第二模拟调制器 210D, 用于将经所述第二数模转换器 200C数模 转换后的信号进行模拟调制;
所述第二收发器件 2102, 具体用于在所述处理器 2101 的控制下, 将 经所述第二模拟调制器模拟调制后的信号发送出去。
所述处理器 2101,具体用于将所述第二数字信号传输给所述第二数模 转换器 210C。
这样信号传输设备 210就能够将接收到压缩信号进行还原。 实施例六、
本发明实施例提供了一种 TDD模式的信号传输系统, 该系统包括: 一 对 TDD模式的信号传输设备, 该信号传输设备既具备时域压缩的功能、 又 具备时域展宽的功能。该系统可以应用于图 30所示的微波直放站的信号传 输场景中。 从图 30中可以看到, RRU与射频天线相连接; TDD模式的信号 传输设备 A与射频天线之间无线传输信号; TDD模式的信号传输设备 A与 TDD模式的信号传输设备 B之间无线传输信号; TDD模式的信号传输设备 B 与用户设备 ( Us er Equ i pmen t , 简称为 UE ) 之间无线传输信号。
在该场景中, 同样的, 由于施工环境或自然环境等因素, 光纤可能无 法直接连接, 因此需要使用一个上述实施例四中提供的设备将射频天线接 收到的射频信号变换为微波信号, 并将所述微波信号在空间进行传输, 进 而由另外一个上述实施例四中提供的设备将接收到的微波信号转换为射频 信号, 并将所述射频信号传输至 UE。 下面对在此场景下如何信号传输进行 说明。
对于由 RRU向 UE发送信号的场景, 信号传输的过程具体包括: 步骤 a l、 RRU发出射频信号。
步骤 a 2、 射频天线接收 RRU发出的所述射频信号, 并将所述射频信号 发送出去。
步骤 a 3、 TDD模式的信号传输设备 A按照实施例四中的步骤 1 - 3将所 述射频信号转换为微波信号发送出去。
步骤 a4、 TDD模式的信号传输设备 B按照实施例四中的步骤 4-7将接 收到的所述微波信号转换为射频信号发送出去。
步骤 a 5、 UE接收 TD D模式的信号传输设备 B发送的所述射频信号。 对于由 UE向 RRU发送信号的场景, 信号传输的过程具体包括: 步骤 b l、 UE发出射频信号。
步骤 b2、 TDD模式的信号传输设备 B按照实施例四中的步骤 1 - 3将所 述射频信号转换为微波信号发送出去。
步骤 b 3、 TDD模式的信号传输设备 A按照实施例四中的步骤 4-7将接 收到的所述微波信号转换为射频信号发送出去。 步骤 b4、射频天线接收 TDD模式的信号传输设备 A发送的所述射频信 号, 并将所述射频信号发送出去。
步骤 b5、 RRU接收所述射频信号。
同样的, 本发明实施例提供的 TDD模式的信号传输系统, 对待发送的 第一数字信号分段进行时域压缩, 得到多段间隔的第一压缩数字信号, 其 中经时域压缩后会出现空闲的时间段, 从而在发送一段第一压缩数字信号 之后、 发送下一段第一压缩数字信号之前就会存在没有信号需要发送的等 待时间, 在等待时间内, 就可以进行信号的接收; 进而经上述方法信号的 发送和接收能够交替进行, 完成 TDD模式的信号传输。 由于本发明实施例 使用了一部分本来用于发送信号的时间, 进行信号的接收, 因此缩短了信 号传输的时间,另外还因在时域上对信号进行了压缩,缩小了占用空口的时 间, 因此能够减少空口资源的消耗。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置 和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅 是示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实 现时可以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成 到另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论 的相互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单 元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地 方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的 部分或者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理包括, 也可以两个或两个以上单元集成在 一个单元中。 上述集成的单元既可以釆用硬件的形式实现, 也可以釆用硬 件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元, 可以存储在一个计算 机可读取存储介质中。 上述软件功能单元存储在一个存储介质中, 包括若 干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络 设备等) 执行本发明各个实施例所述方法的部分步骤。 而前述的存储介质 包括: U盘、 移动硬盘、 只读存储器 ( Read-On ly Memory , 简称 ROM ) 、 随 机存取存储器 ( Random Acce s s Memory , 简称 RAM ) 、 磁碟或者光盘等各 种可以存储程序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求 书
1、 一种时分双工 TDD模式的信号传输方法, 其特征在于, 包括: 获取具有时间特性的第一数字信号;
将所述第一数字信号分段进行时域压缩, 形成多段间隔的第一压缩数 字信号, 并发送所述多段间隔的第一压缩数字信号;
在发送所述第一压缩数字信号之间的等待时间内接收信号。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述获取具有时间特 性的第一数字信号包括:
接收至少一路经数字调制后的载波信号;
将接收到的至少一路经数字调制后的载波信号合路, 得到第一数字信 号。
3、 根据权利要求 1 所述的方法, 其特征在于, 所述获取具有时间特 性的第一数字信号包括:
接收射频信号;
对接收到的所述射频信号进行模拟解调;
将模拟解调后的射频信号进行模数转换得到第一数字信号。
4、 根据权利要求 1 所述的方法, 其特征在于, 所述将第一数字信号 分段进行时域压缩, 形成多段间隔的第一压缩数字信号包括:
将所述第一数字信号以第一写入速率写入第一緩冲器中;
以第一读取速率从所述第一緩冲器中分段读取所述第一数字信号, 得 到多段间隔的第一压缩数字信号; 其中, 所述第一读取速率大于所述第一 写入速率。
5、 根据权利要求 4 所述的方法, 其特征在于, 所述第一读取速率为 所述第一写入速率的 N倍, 所述 N为整数且大于 1。
6、 根据权利要求 1 所述的方法, 其特征在于, 在发送所述多段间隔 的第一压缩数字信号之前, 所述方法还包括:
获取第一前导及控制信号; 所述第一前导及控制信号与所述第一压缩 数字信号的釆样率相同;
将每一段所述第一压缩数字信号与第一前导及控制信号组合; 所述发送所述多段间隔的第一压缩数字信号包括:
发送多段间隔的所述第一压缩数字信号和所述第一前导及控制信号 组合后的信号。
7、 根据权利要求 1-6 任一项所述的方法, 其特征在于, 若需要发送 第一压缩数字信号, 则所述发送所述多段间隔的第一压缩数字信号包括: 将所述多段间隔的第一压缩数字信号进行数模转换;
将数模转换后的多段间隔的第一压缩数字信号进行模拟调制, 并将模 拟调制后的信号发送出去; 或者,
若需要发送第一压缩数字信号和第一前导及控制信号组合后的信号, 则所述发送所述多段间隔的第一压缩数字信号包括:
将多段间隔的第一压缩数字信号和第一前导及控制信号组合后的信 号进行数模转换;
将数模转换后多段间隔的第一压缩数字信号和第一前导及控制信号 组合后的信号进行模拟调制, 并将模拟调制后的信号发送出去。
8、 一种时分双工 TDD模式的信号传输方法, 其特征在于, 包括: 从接收到的信号中获取经时域压缩后的第二压缩数字信号;
将所述第二压缩数字信号进行时域展宽, 得到具有时间特性的第二数 字信号;
将所述第二数字信号发送出去。
9、 根据权利要求 8 所述的方法, 其特征在于, 所述从接收到的信号 中获取经时域压缩后的第二压缩数字信号包括:
将接收到的信号进行模拟解调;
将模拟解调后的信号进行模数转换, 得到模数转换后的信号, 所述模 数转换后的信号为第二压缩数字信号, 或者, 所述模数转换后的信号中包 括: 第二压缩数字信号和第二前导及控制信号;
若所述模数转换后的信号中包括: 第二压缩数字信号和第二前导及控 制信号, 则所述从接收到的信号中获取经时域压缩后的第二压缩数字信号 还包括:
将所述模数转换后的信号进行拆分分别得到所述第二压缩数字信号 和所述第二前导及控制信号。
1 0、 根据权利要求 8所述的方法, 其特征在于, 所述将所述第二压缩 数字信号进行时域展宽, 得到具有时间特性的第二数字信号包括:
将所述第二压缩数字信号以第二写入速率写入第二緩冲器中; 以第二读取速率从所述第二緩冲器中读取所述第二压缩数字信号, 得 到第二数字信号; 其中, 所述第二写入速率大于所述第二读取速率。
1 1、 根据权利要求 1 0 所述的方法, 其特征在于, 所述第二写入速率 为所述第二读取速率的 N倍, 所述 N为整数且大于 1。
1 2、 根据权利要求 8所述的方法, 其特征在于, 所述将所述第二数字 信号发送出去包括:
将所述第二数字信号分路, 得到至少一路载波信号;
将所述至少一路载波信号发送出去。
1 3、 根据权利要求 8所述的方法, 其特征在于, 所述将所述第二数字 信号发送出去包括:
将所述第二数字信号进行数模转换;
将经数模转换后的信号进行模拟调制;
将模拟调制后的信号发送出去。
1 4、 一种时分双工 TDD模式的信号传输设备, 其特征在于, 包括: 处 理器以及第一收发器件;
所述处理器, 用于获取具有时间特性的第一数字信号; 将所述第一数 字信号分段进行时域压缩, 形成多段间隔的第一压缩数字信号;
第一收发器件, 用于在所述处理器的控制下, 发送所述多段间隔的第 一压缩数字信号, 并在发送所述第一压缩数字信号之间的等待时间内, 接 收微波信号。
1 5、 根据权利要求 14 所述的设备, 其特征在于, 所述信号传输设备 还包括: 第二收发器件、 合路电路;
所述第二收发器件, 用于接收至少一路经数字调制后的载波信号, 并 传输给所述合路电路;
所述合路电路, 用于将接收到的至少一路经数字调制后的载波信号合 路, 得到第一数字信号;
所述处理器具体用于从所述合路电路中获取第一数字信号。
1 6、 根据权利要求 14 所述的设备, 其特征在于, 所述信号传输设备 还包括: 第二收发器件、 第一模拟解调器、 第一模数转换器;
所述第二收发器件, 用于接收射频信号, 并将其传输给所述第一模拟 解调器;
所述第一模拟解调器, 用于对由所述第二收发器件接收到的所述射频 信号进行模拟解调;
所述第一模数转换器, 用于将经所述第一模拟解调器模拟解调后的射 频信号进行模数转换得到第一数字信号;
所述处理器, 具体用于从所述第一模数转换器中获取第一数字信号。
1 7、 根据权利要求 14 所述的设备, 其特征在于, 所述信号传输设备 还包括: 第一緩冲器;
所述处理器, 具体用于将所述第一数字信号以第一写入速率写入所述 第一緩冲器中, 并以第一读取速率从所述第一緩冲器中分段读取所述第一 数字信号, 得到多段间隔的第一压缩数字信号; 其中, 所述第一读取速率 大于所述第一写入速率。
1 8、 根据权利要求 14所述的设备, 其特征在于,
所述处理器还用于, 获取第一前导及控制信号, 并将每一段所述第一 压缩数字信号与第一前导及控制信号组合; 所述第一前导及控制信号与所 述第一压缩数字信号的釆样率相同;
所述第一收发器件, 具体用于在所述处理器的控制下, 发送多段间隔 的所述第一压缩数字信号和所述第一前导及控制信号组合后的信号。
1 9、 根据权利要求 14-1 8任一项所述的设备, 其特征在于, 所述信号 传输设备还包括: 第一数模转换器、 第一模拟调制器;
所述第一数模转换器, 用于将所述处理器得到的所述多段间隔的第一 压缩数字信号进行数模转换;
所述第一模拟调制器, 用于将经所述第一数模转换器数模转换后的多 段间隔的第一压缩数字信号进行模拟调制; 所述第一收发器件, 具体用于将经所述第一模拟调制器模拟调制后的 信号发送出去; 或者,
所述第一数模转换器, 用于将多段间隔的第一压缩数字信号和第一前 导及控制信号组合后的信号进行数模转换;
所述第一模拟调制器, 用于将经所述第一数模转换器数模转换后多段 间隔的第一压缩数字信号和第一前导及控制信号组合后的信号进行模拟调 制;
所述第一收发器件, 具体用于将经所述第一模拟调制器模拟调制后的 信号发送出去。
20、 一种时分双工 TDD模式的信号传输设备, 其特征在于, 包括: 处理器, 用于接收到的信号中获取经时域压缩后的第二压缩数字信 号; 将所述第二压缩数字信号进行时域展宽, 得到具有时间特性的第二数 字信号;
第二收发器件, 还用于在所述处理器的控制下, 将所述第二数字信号 发送出去。
21、 根据权利要求 20 所述的设备, 其特征在于, 所述信号传输设备 还包括: 第二模拟解调器、 第二模数转换器;
所述第二模拟解调器, 用于对由所述第一收发器件接收到的信号进行 模拟解调;
所述第二模数转换器, 用于将经所述第二模拟解调器模拟解调后的信 号进行模数转换, 得到模数转换后的信号, 所述模数转换后的信号为第二 压缩数字信号, 或者, 所述模数转换后的信号中包括: 第二压缩数字信号 和第二前导及控制信号;
若所述模数转换后的信号为第二压缩数字信号, 则所述处理器具体用 于从所述第二模数转换器中获取所述第二压缩数字信号;
若所述模数转换后的信号中包括: 第二压缩数字信号和第二前导及控 制信号, 则所述处理器具体用于将经所述第二模数转换器模数转换后的信 号进行拆分分别得到所述第二压缩数字信号和所述第二前导及控制信号。
22、 根据权利要求 20 所述的设备, 其特征在于, 所述信号传输设备 还包括:第二緩冲器;
所述处理器, 具体用于将所述第二压缩数字信号以第二写入速率写入 第二緩冲器中, 并以第二读取速率从所述第二緩冲器中读取所述第二压缩 数字信号, 得到第二数字信号; 其中, 所述第二写入速率大于所述第二读 取速率。
23、 根据权利要求 20 所述的设备, 其特征在于, 所述信号传输设备 还包括: 分路电路、 第二收发器件;
所述分路电路, 用于将所述处理器得到的所述第二数字信号分路, 得 到至少一路载波信号, 并将所述至少一路载波信号传输给所述第二收发器 件;
所述第二收发器件, 具体用于在所述处理器的控制下, 将所述至少一 路载波信号发送出去;
所述处理器, 具体用于将所述第二数字信号传输给所述分路电路。
24、 根据权利要求 20 所述的设备, 其特征在于, 所述信号传输设备 还包括: 第二数模转换器、 第二模拟调制器、 第二收发器件;
所述第二数模转换器, 用于将所述处理器得到的所述第二数字信号进 行数模转换;
所述第二模拟调制器, 用于将经所述第二数模转换器数模转换后的信 号进行模拟调制;
所述第二收发器件, 具体用于在所述处理器的控制下, 将经所述第二 模拟调制器模拟调制后的信号发送出去;
所述处理器, 具体用于将所述第二数字信号传输给所述第二数模转换 器。
PCT/CN2013/091076 2013-12-31 2013-12-31 一种时分双工tdd模式的信号传输方法和设备 WO2015100602A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/091076 WO2015100602A1 (zh) 2013-12-31 2013-12-31 一种时分双工tdd模式的信号传输方法和设备
CN201380002583.5A CN105009468A (zh) 2013-12-31 2013-12-31 一种时分双工tdd模式的信号传输方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/091076 WO2015100602A1 (zh) 2013-12-31 2013-12-31 一种时分双工tdd模式的信号传输方法和设备

Publications (1)

Publication Number Publication Date
WO2015100602A1 true WO2015100602A1 (zh) 2015-07-09

Family

ID=53492954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/091076 WO2015100602A1 (zh) 2013-12-31 2013-12-31 一种时分双工tdd模式的信号传输方法和设备

Country Status (2)

Country Link
CN (1) CN105009468A (zh)
WO (1) WO2015100602A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85101794A (zh) * 1985-04-01 1987-01-31 菲利浦光灯制造公司 双工语言传送方法及其系统
CN1148758A (zh) * 1995-06-08 1997-04-30 日立电子株式会社 使用单频及其方法的一种无线通信设备
SE0202453L (sv) * 2002-08-19 2004-02-20 Ericsson Telefon Ab L M En metod för tidsdelad kommunikation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8989088B2 (en) * 2011-01-07 2015-03-24 Integrated Device Technology Inc. OFDM signal processing in a base transceiver system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85101794A (zh) * 1985-04-01 1987-01-31 菲利浦光灯制造公司 双工语言传送方法及其系统
CN1148758A (zh) * 1995-06-08 1997-04-30 日立电子株式会社 使用单频及其方法的一种无线通信设备
SE0202453L (sv) * 2002-08-19 2004-02-20 Ericsson Telefon Ab L M En metod för tidsdelad kommunikation

Also Published As

Publication number Publication date
CN105009468A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
KR101971968B1 (ko) 안테나를 구비한 차량을 이용한 통신 성능 향상 방법
EP3122109A1 (en) Communication control method and user terminal
CN112236984B (zh) 电子设备和通信方法
US11233684B2 (en) Non-coherent backscatter communications over ambient-based wireless source
JP2018515956A5 (zh)
US9313783B2 (en) Enhancing coordinated multi-point processing transmission through resource element muting
CN112910511B (zh) 一种基于轨道角动量oam的通信方法及网络设备、终端设备
KR101514590B1 (ko) 무선 데이터 송신 방법, 통신 시스템, 무선 단말 장치 및 무선 기지국 장치
US11245553B2 (en) Channel estimation fields for wireless networks
JP2009147609A (ja) 無線通信方法、無線通信システム、および中継局
WO2015100602A1 (zh) 一种时分双工tdd模式的信号传输方法和设备
EP4329251A1 (en) Channel recovery method and receiving end device
WO2009143752A1 (zh) 一种基带系统、基站和支持更软切换的处理方法
CN108737993B (zh) 一种设备到设备d2d通信方法及相关设备
WO2018084963A1 (en) Training unit generation for single carrier physical layer
JP2014082553A (ja) 無線lan通信装置、無線lan通信装置制御プログラム、及び無線lan通信装置制御方法
WO2023198009A1 (zh) 一种通信方法及装置
CN109474396A (zh) 一种用于无线通信的用户设备、基站中的方法和装置
JP5647094B2 (ja) 無線通信システム及び無線通信方法
KR20220058024A (ko) 통신 시스템에서 무선 신호의 송수신 방법 및 장치
KR20230043043A (ko) 다중-디바이스 동기화 및 데이터 송신
CN116980102A (zh) 一种通信方法及装置
WO2017168725A1 (ja) 基地局、無線通信端末装置、無線通信システムおよび応答処理方法
CN116684894A (zh) 基于网络节点的环境散射通信方法、系统、设备及介质
CN109076470A (zh) 信号传输方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900675

Country of ref document: EP

Kind code of ref document: A1