WO2015099518A1 - Stand for testing for seismic resistance - Google Patents

Stand for testing for seismic resistance Download PDF

Info

Publication number
WO2015099518A1
WO2015099518A1 PCT/KZ2014/000013 KZ2014000013W WO2015099518A1 WO 2015099518 A1 WO2015099518 A1 WO 2015099518A1 KZ 2014000013 W KZ2014000013 W KZ 2014000013W WO 2015099518 A1 WO2015099518 A1 WO 2015099518A1
Authority
WO
WIPO (PCT)
Prior art keywords
seismic
model
foundation
robots
platform
Prior art date
Application number
PCT/KZ2014/000013
Other languages
French (fr)
Russian (ru)
Inventor
Корганбай Сагнаевич ШОЛАНОВ
Original Assignee
Республиканское Государственное Предприятие На Праве Хозяйственного Ведения "Казахский Национальный Технический Университет Им. К. И. Сатпаева" Министерства Образования И Науки Республики Казахстан
Корганбай Сагнаевич ШОЛАНОВ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Республиканское Государственное Предприятие На Праве Хозяйственного Ведения "Казахский Национальный Технический Университет Им. К. И. Сатпаева" Министерства Образования И Науки Республики Казахстан, Корганбай Сагнаевич ШОЛАНОВ filed Critical Республиканское Государственное Предприятие На Праве Хозяйственного Ведения "Казахский Национальный Технический Университет Им. К. И. Сатпаева" Министерства Образования И Науки Республики Казахстан
Publication of WO2015099518A1 publication Critical patent/WO2015099518A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/06Multidirectional test stands

Definitions

  • the invention relates to the field of technology designed to simulate an earthquake, can be used to certify seismic isolation and seismic protection systems for antiseismicity.
  • This technical complex which has an exciter of oscillations in the form of an electro-hydraulic vibration-pulse source of seismic vibrations, installed at a certain distance from the building under test, cannot reproduce the proper seismic effect on the building foundation.
  • the presented stand for seismic testing of objects most fully reflects the movement of the earth's crust during an earthquake, but seismic impacts reproduce movements only in the horizontal and vertical directions, which is not sufficient for the reproduction of seismic effects, since the seismic effect is not only vertical and horizontal, but also in arbitrary direction.
  • the task is to create a system that most fully simulates the movement of the earth's crust during earthquakes, which could be used not only to test models of buildings and structures for earthquake resistance, but also to certify seismic insulating or seismic protection systems for antiseismicity.
  • a stand which consists of a tested building model or other objects and a foundation model, and tested seismic insulating or seismic protection systems and devices are installed between the building model and the foundation model .
  • passive seismic isolating devices in the form of balls installed under the building model were selected.
  • SHOL OR platform robots with pneumatic or other drives are installed under the building between the foundation model and the stand base. The number of robots depends on the weight of the models of the objects, foundation, seismic insulating and seismic protection systems.
  • the SHOLKOR robot as an earthquake simulator makes it possible to obtain any spatial effect on the foundation. Indeed, in view of the fact that in each SHOLKOR robot the upper platform relative to the lower (in this case, fixed platform) has six controlled degrees of freedom, these robots together can provide any spatial movement of the foundation layout. In the initial (stationary) position, the lengths of the connecting links have some average values. Depending on what kind of movement it is necessary to perform, the lengths of the connecting links may decrease, increase or remain unchanged.
  • the proposed stand (Fig. 1) consists of a tested building model or other objects 3, a foundation model 4. Moreover, between the building model and the foundation model, the tested seismic insulating or seismic protection systems and devices are installed. As an example, in Fig. 1, passive seismic isolating devices-2 in the form of balls installed under the building model are selected. In order to simulate the movement of the earth's crust during an earthquake, 1 - SHOLKOR robots with pneumatic or other drives are installed under the building between the stationary base 0 and the layout of the foundation 4. The number of robots depends on the weight of the models of the objects, the foundation, seismic isolation and seismic protection devices.
  • the SHOLKOR robot ( Figure 2) consists of: the upper 12 and lower 11 platforms connected by links 5-10 of variable length. At the nodal points AB Ci, A 2 , B 2 , C 2 links are connected via spherical joints.
  • a feature of these robots is that by changing the length of the connecting links with the help of controlled drives, 95 six controlled degrees of mobility of the upper and lower platforms relative to each other are obtained.
  • the unique property of the manipulator is that the movements of the drives are performed independently of each other, i.e. each change in the length of the connecting link corresponds to a certain position of the platforms.
  • the anti-seismic test bench works as follows: SHOLKOR robots - 1, mounted on a fixed base - 0, moving with connecting links 5 - 10 of the top
  • 105 platform which serves as a support for the foundation - 4, transmit the specified spatial motion that simulates seismic effects on seismic insulating and seismic protection devices - 2, on the building model - 4. or another test object.
  • the software acts on the foundation - 1 with a strictly specified amplitude and frequency, then fixing the amplitude and frequency on the building model, and making a comparative analysis, we determine how much it reduces the level of seismic effects transmitted through seismic isolation or seismic protection systems 2 on the building model, i.e. we determine the level seismic reduction impact through the use of seismic insulating or seismic protection systems and devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

The invention relates to technology which is intended for simulating earthquakes, and can be used for certifying the seismic resistance of seismic isolation systems and seismic protection systems. Proposed is a stand which is comprised of a model to be tested, said model being of a building or of other entities, and of a model of a foundation, wherein seismic isolation or seismic protection systems and devices to be tested are installed between the model of the building, at the bottom part thereof, and the model of the foundation. In order to simulate the movement of the earth's crust during an earthquake, SHOLKOR robots, having pneumatic or other actuators, are installed between a stationary base and the model of the foundation. Using SHOLKOR platform robots for earthquake simulation makes it possible to produce any spatial movement of the foundation because, in each SHOLKOR robot, an upper platform has six controllable degrees of freedom relative to a lower platform (in this case, the stationary base), and said robots can together provide for any spatial movement of the model of the foundation. By setting an amplitude and frequency on the model of the building, and carrying out a comparative analysis, it is possible to determine the amount by which the level of seismic impact decreases when transmitted through a specific seismic isolation or seismic protection system.

Description

СТЕНД ДЛЯ ИСПЫТАНИЯ НА АНТИСЕЙСМИЧНОСТЬ  ANTI-SEISMICITY TEST STAND
СЕЙСМИКАЛЫВДА КДРСЫ СЫНАУ YIHIH АРНАЛГАН СТЕНД  SEISMICALYWDA KDRSA SINAU YIHIH ARNALGAN STAND
Изобретение относится к области техники предназначенной для имитации землетрясения, может быть использовано для аттестации сейсмоизолирующих и сеисмозащитных систем на антисейсмичность.  The invention relates to the field of technology designed to simulate an earthquake, can be used to certify seismic isolation and seismic protection systems for antiseismicity.
Существующие в настоящее время расчетные и экспериментальные методы по аттестации сейсмоизолирующих и сейсмозащитных систем на анисейсичность не могут учесть все многообразие реальных механических связей в составе сложных систем и строительных конструкций, поэтому достоверность и надежность этих методов аттестации крайне низка.  The currently existing calculation and experimental methods for certification of seismic insulating and seismic protection systems for aniseismicity cannot take into account the whole variety of real mechanical connections in complex systems and building structures, therefore the reliability and reliability of these certification methods is extremely low.
Существует технический комплекс [Патент на полезную модель РФ Ν_>77429, Устройство для динамических испытаний сейсмостойкости зданий и сооружений, опубликовано 20.10.2008 Бюл. N229, МПК G01M 7/00] для исследования сейсмостойкости зданий и сооружений, включающее возбудитель колебаний, выполненный в виде электрогидравлического вибрационно-импульсного источника сейсмических колебаний, устанавливаемого на грунт, на определенном расстоянии от исследуемого объекта, систему управления, приборы регистрации колебаний, устанавливаемые на исследуемом объекте, датчики, преобразующие механические колебания в электрический сигнал, аппаратуру регистрации сигналов датчиков, устанавливаемых на исследуемый объект и соединенных с блоком регистрации сигналов сейсмоприемников. There is a technical complex [Patent for a utility model of the Russian Federation Ν_> 77429, Device for dynamic testing of earthquake resistance of buildings and structures, published on 10/20/2008 Bull. N229, IPC G01M 7/00] for studying the seismic resistance of buildings and structures, including an exciter of excitation, made in the form of an electro-hydraulic vibration-pulse source of seismic vibrations installed on the ground at a certain distance from the object under study, a control system, vibration recording instruments installed on the object under study, sensors that convert mechanical vibrations into an electrical signal, recording equipment signals of sensors installed on the object under study and connected to the registration unit of the signals of geophones.
Данный технический комплекс, имеющий возбудитель колебаний в виде электрогидравлического вибрационно-импульсного источника сейсмических колебаний, установленный на некотором расстоянии от испытуемого здания не может воспроизвести должное сейсмическое воздействие на фундамент здания.  This technical complex, which has an exciter of oscillations in the form of an electro-hydraulic vibration-pulse source of seismic vibrations, installed at a certain distance from the building under test, cannot reproduce the proper seismic effect on the building foundation.
Наиболее близок по своему техническому решению к предлагаемому изобретению стенд для сейсмических испытаний объектов [Патент на полезную модель РФ JY°127463, Опубликовано: 27.04.2013 Бюл. JM 12, МПК G01M 7/00], содержащий платформу для установки исследуемого объекта, опирающуюся на опоры, связанные с грунтом, и упругие элементы, установленные между платформой и грунтом, а также устройства, создающие вертикальный и горизонтальный сейсмоудары с помощью взрыва взрывчатых веществ, установленные под платформой и по периметру платформы, устройства, создающие сейсмоудар, выполнены в виде металлических цилиндров, заглушённых с одной стороны и открытых с другой, причем устройства, создающие горизонтальный сейсмоудар, заглушёнными концами уперты в платформу, а открытыми концами направлены в сторону от ее центра, кроме того, устройства, создающие вертикальный сейсмоудар, расположены на выдвижной плите, размещенной под центром платформы. Приведенный стенд для сейсмических испытаний объектов наиболее полно отражает движение земной коры при землетрясении, но сейсмоудары воспроизводят движения только в горизонтальном и вертикальном направлениях, что является не достаточным для воспроизводства сейсмических воздействий, так как сейсмическое воздействие бывает не только вертикальным и горизонтальным, но и в произвольном направлении. Ставится задача создания системы наиболее полно имитирующего движения земной коры при землетрясениях, которое можно было бы использовать не только для испытания макетов зданий и сооружений на сейсмостойскость, но параллельно для аттестации сейсмоизолирующих или сейсмозащитных системы на антисейсмичность. Для решения этой задачииспытание зданий и сооружений на сейсмостойскость, и параллельное исследование сейсмоизолирующих или сейсмозащитных систем и устройств осуществляется стендом, который состоит из испытываемого макета здания или других объектов и макета фундамента, причем между макетом здания и макетом фундамента устанавливаются испытываемые сейсмоизолирующие или сейсмозащитные системы и устройства. В качестве примера выбраны пассивные сейсмоизолирующие устройства в виде шаров, установленные под макетом здания. Для того, чтобы имитировать движение земной коры во время землетрясения под зданием между макетом фундамента и основанием стенда устанавливаются платформенные роботы SHOL OR с пневматическими или другими приводами. Количество роботов зависит от веса макетов объектов, фундамента, сейсмоизолирующих и сейсмозащитных з систем. Применение в качестве имитатора землетрясения робота SHOLKOR, дает возможность получить любое пространственное воздействие на фундамент. Действительно, ввиду того, что в каждом роботе SHOLKOR верхняя платформа относительно нижней (в данном случае неподвижной платформы) имеет шесть управляемых степеней свободы, эти роботы в совокупности могут обеспечить любое пространственное движение макета фундамента. В начальном (стационарном) положении длины соединительных звеньев имеют некоторые средние значения. В зависимости от того какое движение необходимо выполнить длины соединительных звеньев могут уменьшаться, увеличиваться или оставаться неизменными. The closest in technical solution to the proposed invention stand for seismic testing of objects [Patent for a utility model of the Russian Federation JY ° 127463, Published: 04/27/2013 Bull. JM 12, IPC G01M 7/00], containing a platform for installing the test object, based on supports connected with the ground, and elastic elements installed between the platform and the ground, as well as devices that create vertical and horizontal seismic impacts using explosives, installed under the platform and around the perimeter of the platform, devices that create a seismic impact are made in the form of metal cylinders that are muffled on one side and open on the other, and devices that create a horizontal seismic impact are muffled we are rested against the platform, and with open ends directed away from its center, in addition, devices that create a vertical seismic impact are located on a drawer located under the center of the platform. The presented stand for seismic testing of objects most fully reflects the movement of the earth's crust during an earthquake, but seismic impacts reproduce movements only in the horizontal and vertical directions, which is not sufficient for the reproduction of seismic effects, since the seismic effect is not only vertical and horizontal, but also in arbitrary direction. The task is to create a system that most fully simulates the movement of the earth's crust during earthquakes, which could be used not only to test models of buildings and structures for earthquake resistance, but also to certify seismic insulating or seismic protection systems for antiseismicity. To solve this problem, testing of buildings and structures for earthquake resistance, and parallel study of seismic insulating or seismic protection systems and devices is carried out by a stand, which consists of a tested building model or other objects and a foundation model, and tested seismic insulating or seismic protection systems and devices are installed between the building model and the foundation model . As an example, passive seismic isolating devices in the form of balls installed under the building model were selected. In order to simulate the movement of the earth's crust during an earthquake, SHOL OR platform robots with pneumatic or other drives are installed under the building between the foundation model and the stand base. The number of robots depends on the weight of the models of the objects, foundation, seismic insulating and seismic protection systems. The use of the SHOLKOR robot as an earthquake simulator makes it possible to obtain any spatial effect on the foundation. Indeed, in view of the fact that in each SHOLKOR robot the upper platform relative to the lower (in this case, fixed platform) has six controlled degrees of freedom, these robots together can provide any spatial movement of the foundation layout. In the initial (stationary) position, the lengths of the connecting links have some average values. Depending on what kind of movement it is necessary to perform, the lengths of the connecting links may decrease, increase or remain unchanged.
Предлагаемый стенд (Фиг.1) состоит: из испытываемого макета здания или других объектов 3, макета фундамента 4. Причем между макетом здания и макетом фундаментом устанавливаются испытываемые сейсмоизолирующие или сейсмозащитные системы и устройства. В качества примера на фиг.1 выбраны пассивные сейсмоизолирующие устройства-2 в виде шаров, установленные под макетом здания. Для того, чтобы имитировать движение земной коры во время землетрясения, под зданием между неподвижным основание 0 и макетом фундамента 4 устанавливаются 1 - роботы SHOLKOR с пневматическими или другими приводами. Количество роботов зависит от веса макетов объектов, фундамента, сейсмоизолирующих и сейсмозащитных устройств.  The proposed stand (Fig. 1) consists of a tested building model or other objects 3, a foundation model 4. Moreover, between the building model and the foundation model, the tested seismic insulating or seismic protection systems and devices are installed. As an example, in Fig. 1, passive seismic isolating devices-2 in the form of balls installed under the building model are selected. In order to simulate the movement of the earth's crust during an earthquake, 1 - SHOLKOR robots with pneumatic or other drives are installed under the building between the stationary base 0 and the layout of the foundation 4. The number of robots depends on the weight of the models of the objects, the foundation, seismic isolation and seismic protection devices.
Робот SHOLKOR (Фиг.2) состоит: из верхней 12 и нижней 11 платформ соединенных звеньями 5-10 переменной длины. В узловых точках A B Ci, A2,B2,C2 звенья соединяются посредством сферических соединений. Особенность этих роботов заключается в том что, изменяя длины соединительных звеньев с помощью управляемых приводов, получают 95 шесть управляемых степеней подвижности верхней и нижней платформы друг относительно друга. При этом уникальное свойство манипулятора в том, что движения приводов выполняются независимо друг от друга, т.е. каждому изменению длины соединительного звена соответствует определенное положение платформ. В пределах допускаемых шарнирами иThe SHOLKOR robot (Figure 2) consists of: the upper 12 and lower 11 platforms connected by links 5-10 of variable length. At the nodal points AB Ci, A 2 , B 2 , C 2 links are connected via spherical joints. A feature of these robots is that by changing the length of the connecting links with the help of controlled drives, 95 six controlled degrees of mobility of the upper and lower platforms relative to each other are obtained. Moreover, the unique property of the manipulator is that the movements of the drives are performed independently of each other, i.e. each change in the length of the connecting link corresponds to a certain position of the platforms. Within the limits of hinges and
100 геометрическими размерами можно получить требуемое пространственное положение верхней платформы относительно нижней. 100 geometric dimensions, you can get the required spatial position of the upper platform relative to the lower.
Стенд для испытания на антисейсмичность работает следующим образом: роботы SHOLKOR - 1, установленные на неподвижном основании - 0, совершая движение с помощью соединительных звеньев 5 - 10 верхней The anti-seismic test bench works as follows: SHOLKOR robots - 1, mounted on a fixed base - 0, moving with connecting links 5 - 10 of the top
105 платформой, которая служит опорой для фундамента - 4, передают заданное пространственное движение, имитирующее сейсмическое воздействие, на сейсмоизолирующие и сейсмозащитные устройства - 2, на макет здания - 4. либо другой испытуемый объект. 105 platform, which serves as a support for the foundation - 4, transmit the specified spatial motion that simulates seismic effects on seismic insulating and seismic protection devices - 2, on the building model - 4. or another test object.
Так как пространственное движение верхней платформы робота - 1 Since the spatial motion of the upper platform of the robot is 1
ПО воздействует на фундамент - 1 со строго заданной амплитудой и частотой, то фиксируя амплитуду и частоту на макете здания, и делая сравнительный анализ определяем, на сколько снижает уровень сейсмического воздействия передаваемого через сейсмоизолирующие или сейсмозащитные системы 2 на макет здания т.е мы определяем уровень снижения сейсмического воздействия за счет использования сейсмоизолирующих или сейсмозащитных систем и устройств. The software acts on the foundation - 1 with a strictly specified amplitude and frequency, then fixing the amplitude and frequency on the building model, and making a comparative analysis, we determine how much it reduces the level of seismic effects transmitted through seismic isolation or seismic protection systems 2 on the building model, i.e. we determine the level seismic reduction impact through the use of seismic insulating or seismic protection systems and devices.

Claims

Формула изобретения Claim
Стенд для испытания на антисейсмичность состоящий из верхней платформы, на которой располагаются испытываемые объекты, например, макет здания и устройства или системы сейсмоизоляции, сейсмозащиты и неподвижного основания между которыми устанавливаются устройства имитирующие движения земной коры при землетрясении отличающийся тем, что платформа, на которой расположены испытываемые объекты может совершать произвольные пространственные движения, колебания в любой плоскости с заданной амплитудой и ускорениями; An antiseismic test bench consisting of an upper platform on which test objects are located, for example, a model of a building and a device or seismic isolation system, seismic protection and a fixed base between which devices simulating the movement of the earth's crust during an earthquake are installed, characterized in that the platform on which the test objects can make arbitrary spatial movements, oscillations in any plane with a given amplitude and accelerations;
По п.1 отличающийся тем, что в качестве устройств имитирующих движение земной коры при землетрясении используются шестиподвижные платформенные роботы SHOLKOR с управляемыми пневмоприводами, гидроприводами или электромеханическими приводами.  According to claim 1, characterized in that as devices simulating the movement of the earth's crust during an earthquake, SHOLKOR six-moving platform robots with controlled pneumatic drives, hydraulic drives or electromechanical drives are used.
По п.2 отличающийся тем, что верхние платформы роботов жестко связаны с основанием макета фундамента, а нижние платформы жестко связаны с основанием стенда.  According to claim 2, characterized in that the upper platforms of the robots are rigidly connected to the base of the layout of the foundation, and the lower platforms are rigidly connected to the base of the stand.
PCT/KZ2014/000013 2013-12-25 2014-09-05 Stand for testing for seismic resistance WO2015099518A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KZ20131959 2013-12-25
KZ2013/1959.1 2013-12-25

Publications (1)

Publication Number Publication Date
WO2015099518A1 true WO2015099518A1 (en) 2015-07-02

Family

ID=53479272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KZ2014/000013 WO2015099518A1 (en) 2013-12-25 2014-09-05 Stand for testing for seismic resistance

Country Status (1)

Country Link
WO (1) WO2015099518A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107192525A (en) * 2017-06-13 2017-09-22 南昌大学 A kind of civil engineering structure shock test device
CN108489700A (en) * 2018-05-11 2018-09-04 四川大学 It is a kind of to simulate dynamic response test device and test method of the meizoseismal area tunnel by bottom entering type impact load
CN108627313A (en) * 2018-05-11 2018-10-09 四川大学 A kind of dynamic response test device and test method that simulation meizoseismal area side slope is coupled by bottom entering type side direction type
CN108645587A (en) * 2018-05-11 2018-10-12 四川大学 It is a kind of to simulate dynamic response test device and test method of the meizoseismal area tunnel by lateral impact load
CN108663180A (en) * 2018-05-11 2018-10-16 中国地质调查局成都地质调查中心(西南地质科技创新中心) A kind of dynamic response test device and test method that simulation tunnel shakes by normal fault reversed fault hair
CN108680323A (en) * 2018-05-11 2018-10-19 四川省地质调查院 A kind of dynamic response test device and test method that simulation tunnel shakes by strike-slip fault hair
CN108918060A (en) * 2018-05-11 2018-11-30 中国地质调查局成都地质调查中心(西南地质科技创新中心) A kind of dynamic response test device and test method that simulation tunnel is coupled by bottom entering type side direction type
CN108919339A (en) * 2018-05-11 2018-11-30 中国地质调查局成都地质调查中心(西南地质科技创新中心) It is a kind of simulation meizoseismal area side slope by lateral impact load dynamic response test device and test method
CN111175154A (en) * 2020-01-13 2020-05-19 温州大学 Test device for realizing multi-body continuous impact of centrifugal machine
CN111595682A (en) * 2020-04-09 2020-08-28 中国平煤神马能源化工集团有限责任公司 Large-scale complex surrounding rock condition anchoring and grouting integrated coupling effect test system and method
CN115508035A (en) * 2022-11-22 2022-12-23 唐山学院 Anti-seismic civil test equipment and arrangement method
CN117191319A (en) * 2023-11-08 2023-12-08 美达源控股集团股份有限公司 Assembled steel construction building shock resistance detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6966154B1 (en) * 1997-08-13 2005-11-22 Plandesign International Llc Earthquake protection consisting of vibration-isolated mounting of buildings and objects using virtual pendulums with long cycles
KZ18893A (en) * 2006-02-10 2007-11-15
KZ19303A (en) * 2006-05-30 2008-04-15 Korganbay Sagnaevich Sholanov Managing system of protection from off nominal mechanical effect of basis (options)
RU127463U1 (en) * 2012-08-07 2013-04-27 Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования "Сибирский государственный университет телекоммуникаций и информатики" (ФГОУ ВПО СибГУТИ) STAND FOR DYNAMIC TESTS OF OBJECTS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6966154B1 (en) * 1997-08-13 2005-11-22 Plandesign International Llc Earthquake protection consisting of vibration-isolated mounting of buildings and objects using virtual pendulums with long cycles
KZ18893A (en) * 2006-02-10 2007-11-15
KZ19303A (en) * 2006-05-30 2008-04-15 Korganbay Sagnaevich Sholanov Managing system of protection from off nominal mechanical effect of basis (options)
RU127463U1 (en) * 2012-08-07 2013-04-27 Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования "Сибирский государственный университет телекоммуникаций и информатики" (ФГОУ ВПО СибГУТИ) STAND FOR DYNAMIC TESTS OF OBJECTS

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107192525A (en) * 2017-06-13 2017-09-22 南昌大学 A kind of civil engineering structure shock test device
CN108645587B (en) * 2018-05-11 2019-09-10 四川大学 It is a kind of simulation meizoseismal area tunnel by lateral impact load dynamic response test device and test method
CN108645587A (en) * 2018-05-11 2018-10-12 四川大学 It is a kind of to simulate dynamic response test device and test method of the meizoseismal area tunnel by lateral impact load
CN108919339B (en) * 2018-05-11 2019-09-10 中国地质调查局成都地质调查中心(西南地质科技创新中心) It is a kind of simulation meizoseismal area side slope by lateral impact load dynamic response test device and test method
CN108663180A (en) * 2018-05-11 2018-10-16 中国地质调查局成都地质调查中心(西南地质科技创新中心) A kind of dynamic response test device and test method that simulation tunnel shakes by normal fault reversed fault hair
CN108680323A (en) * 2018-05-11 2018-10-19 四川省地质调查院 A kind of dynamic response test device and test method that simulation tunnel shakes by strike-slip fault hair
CN108918060A (en) * 2018-05-11 2018-11-30 中国地质调查局成都地质调查中心(西南地质科技创新中心) A kind of dynamic response test device and test method that simulation tunnel is coupled by bottom entering type side direction type
CN108919339A (en) * 2018-05-11 2018-11-30 中国地质调查局成都地质调查中心(西南地质科技创新中心) It is a kind of simulation meizoseismal area side slope by lateral impact load dynamic response test device and test method
CN108489700B (en) * 2018-05-11 2019-09-10 四川大学 It is a kind of simulation meizoseismal area tunnel by bottom entering type impact load dynamic response test device and test method
CN108663180B (en) * 2018-05-11 2019-09-10 中国地质调查局成都地质调查中心(西南地质科技创新中心) A kind of dynamic response test device and test method that simulation tunnel shakes by normal fault reversed fault hair
CN108489700A (en) * 2018-05-11 2018-09-04 四川大学 It is a kind of to simulate dynamic response test device and test method of the meizoseismal area tunnel by bottom entering type impact load
CN108918060B (en) * 2018-05-11 2019-09-10 中国地质调查局成都地质调查中心(西南地质科技创新中心) A kind of dynamic response test device and test method that simulation tunnel is coupled by bottom entering type side direction type
CN108627313A (en) * 2018-05-11 2018-10-09 四川大学 A kind of dynamic response test device and test method that simulation meizoseismal area side slope is coupled by bottom entering type side direction type
CN108627313B (en) * 2018-05-11 2019-09-10 四川大学 A kind of dynamic response test device and test method that simulation meizoseismal area side slope is coupled by bottom entering type side direction type
CN108680323B (en) * 2018-05-11 2019-09-10 四川省地质调查院 A kind of dynamic response test device and test method that simulation tunnel shakes by strike-slip fault hair
CN111175154A (en) * 2020-01-13 2020-05-19 温州大学 Test device for realizing multi-body continuous impact of centrifugal machine
CN111175154B (en) * 2020-01-13 2023-01-03 温州大学 Test device for realizing multi-body continuous impact of centrifugal machine
CN111595682A (en) * 2020-04-09 2020-08-28 中国平煤神马能源化工集团有限责任公司 Large-scale complex surrounding rock condition anchoring and grouting integrated coupling effect test system and method
CN111595682B (en) * 2020-04-09 2023-10-31 中国平煤神马控股集团有限公司 Large-scale complex surrounding rock condition anchoring and grouting integrated coupling effect test system and method
CN115508035A (en) * 2022-11-22 2022-12-23 唐山学院 Anti-seismic civil test equipment and arrangement method
CN115508035B (en) * 2022-11-22 2023-03-24 唐山学院 Anti-seismic civil test equipment and arrangement method
CN117191319A (en) * 2023-11-08 2023-12-08 美达源控股集团股份有限公司 Assembled steel construction building shock resistance detection device
CN117191319B (en) * 2023-11-08 2024-01-26 美达源控股集团股份有限公司 Assembled steel construction building shock resistance detection device

Similar Documents

Publication Publication Date Title
WO2015099518A1 (en) Stand for testing for seismic resistance
Dashti et al. Development of dynamic centrifuge models of underground structures near tall buildings
Tabatabaiefar et al. Detail design, building and commissioning of tall building structural models for experimental shaking table tests
Türker et al. Experimental and numerical investigation of brace configuration effects on steel structures
Mason Seismic performance assessment in dense urban environments
Chang et al. Experimental study on adjustable tuned mass damper to reduce floor vibration due to machinery
Newland et al. Isolation of buildings from ground vibration: a review of recent progress
CN103106816A (en) Movable building seismic performance dynamic simulation analyzer
RU2654339C1 (en) Vibration stand for testing building constructions for seismic load
Roia et al. Dynamic tests on an existing rc school building retrofitted with “dissipative towers”
Pitilakis et al. Numerical simulation of large-scale soil-foundation-structure interaction experiments in The EuroProteas facility
Pagano et al. Wire rope springs for passive vibration control of a light steel structure
Pitilakis et al. System identification of soil-foundation structure systems by means of ambient noise records: the case of EuroProteas model structure in Euroseistest
Mota Shake table acceleration tracking performance impact on dynamic similitude
Anthoine et al. Introducing students to structural dynamics and earthquake engineering
Islam et al. Study of dynamic behavior of a three story model frame
RU2024955C1 (en) Stand for modelling seismic effect of earthquake on structure model
RU2681253C1 (en) Seismic platform
Brown Seismic analysis and shake table modeling: using a shake table for building analysis
Shakal et al. Highlights of Strong‐Motion Data from the M 6.0 South Napa Earthquake of August 24, 2014
Manos et al. Study of the dynamic soil-structure interaction of a bridge pier model based on structure and soil measurements
Roh et al. Development of the portable ground motion simulator of an earthquake
RU139154U1 (en) STAND FOR RESEARCH OF SEISMIC RESISTANCE OF THE STRUCTURE AT HORIZONTAL VIBRATIONS (OPTIONS)
Facciolo et al. Interactive Physical Experiments in an Advanced Undergraduate Structural Dynamics Course
Vargas Real-Time Hybrid Simulation Study of a Rolling Pendulum Equipment Isolation System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874218

Country of ref document: EP

Kind code of ref document: A1