WO2015099432A1 - Multi-pipe type carbon dioxide capture device - Google Patents

Multi-pipe type carbon dioxide capture device Download PDF

Info

Publication number
WO2015099432A1
WO2015099432A1 PCT/KR2014/012769 KR2014012769W WO2015099432A1 WO 2015099432 A1 WO2015099432 A1 WO 2015099432A1 KR 2014012769 W KR2014012769 W KR 2014012769W WO 2015099432 A1 WO2015099432 A1 WO 2015099432A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
carbon dioxide
adsorption
desorption
heat exchange
Prior art date
Application number
PCT/KR2014/012769
Other languages
French (fr)
Korean (ko)
Inventor
조형희
문호규
유환주
최원춘
강나영
박용기
서휘민
박선영
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2015099432A1 publication Critical patent/WO2015099432A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/08Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds according to the "moving bed" method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/40098Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating with other heating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a carbon dioxide capture device, and more particularly to a carbon dioxide capture device that can selectively collect and separate the carbon dioxide contained in the exhaust gas.
  • CCS carbon capture and storage
  • CO2 capture technology can be divided into post-combustion capture, pre-combustion capture and pure oxygen capture according to the application of the capture step, and membrane separation technology (membrane separation) that concentrates using a membrane according to the principle of capturing carbon dioxide, amine Or liquid phase separation using liquid adsorbents such as ammonia water, or solid phase separation using solid adsorbents such as alkali or alkaline earth metals.
  • membrane separation technology membrane separation
  • Dry capture technology consists of the development of solid state adsorbents with carbon dioxide adsorption capacity and the process of capturing carbon dioxide using these solid state adsorbents, and the carbon dioxide collection efficiency is greatly influenced by the composition of the adsorption process as well as the performance of the solid state adsorbent.
  • the solid phase adsorbent may be broadly classified into organic, inorganic, carbon, organic-inorganic hybrid, and the like, and may be classified into physical adsorbents and chemical adsorbents according to the type of carbon dioxide adsorbed on the adsorbent.
  • An organic adsorbent is an amine polymer adsorbent
  • an inorganic adsorbent is a zeolite-based, alkali or alkaline earth metal-based adsorbent
  • a carbon-based adsorbent is an activated carbon-based adsorbent modified with an alkali metal
  • an organic-inorganic hybrid adsorbent is MOF
  • Porous silica adsorbents grafted with organic materials having amine groups are mainly used.
  • Zeolite and carbon-based adsorbents exhibit the physical adsorption characteristics of carbon dioxide, and other adsorbents exhibit the chemical adsorption characteristics that carbon dioxide reacts with the adsorbent chemically. (Energy Environ. Sci. 2011, 4, 42. ChemSusChem 2009, 2, 796.)
  • Dry capture technology consists of adsorbing carbon dioxide to an adsorbent object and desorbing and separating the adsorbed carbon dioxide. Adsorption and desorption of carbon dioxide can occur reversibly. Adsorption and desorption of carbon dioxide can be induced through heat exchange or changes in external pressure.
  • the process of capturing carbon dioxide using a dry adsorbent is a pressure swing adsorption (PSA) process using a pressure difference as a method for desorbing adsorbed carbon dioxide, and a temperature swing adsorption (Temperature Swing Adsorption) method using a temperature difference. TSA) process.
  • PSA pressure swing adsorption
  • TSA temperature swing adsorption
  • the pressure swing adsorption process using a fixed bed adsorption tower is advantageous for the capture of small scale carbon dioxide, but the fluidized bed adsorption and desorption can be easily scaled up when a large amount of carbon dioxide is emitted, such as a power plant or a large combustion furnace.
  • a tower temperature swing adsorption process is advantageous.
  • the present invention aims to continuously capture a large amount of carbon dioxide using a solid adsorbent, and may be classified into a temperature swing adsorption process consisting of a fluid adsorption tower and a fluid desorption tower.
  • Adsorption towers and desorption towers used in the temperature swing adsorption process may be classified into a bubbled fluidized bed having a high adsorbent concentration and a diluted fluidized bed having a low adsorbent concentration, depending on the operating area.
  • a high-speed fluidized bed adsorption tower for capturing carbon dioxide using a dry dry adsorbent and Disclosed is a carbon dioxide fluidized bed collection process of a temperature swing adsorption concept composed of a bubble fluidized bed desorption tower.
  • the dry capture process of the temperature swing adsorption concept requires enormous energy of 2 GJ / t-CO 2 or more to desorb the carbon dioxide adsorbed to the adsorbent to the temperature swing adsorption process, which increases the cost of the capture together with the adsorbent cost. It acts as a factor. Therefore, in order to lower the collection cost, it is very important to develop a technology capable of effectively desorbing carbon dioxide adsorbed from the adsorbent with low energy.
  • the first problem to be solved by the present invention is to use the heat generated in the adsorption process of carbon dioxide in the desorption process of carbon dioxide, carbon dioxide capture that can reduce the energy required for carbon dioxide capture and separation by making this heat exchange efficiently. To provide a device.
  • the second problem to be solved by the present invention is to provide a carbon dioxide capture device that can be transferred to the reactor in which desorption of carbon dioxide occurs while effectively preventing the heat generated in the reactor in which the adsorption of carbon dioxide occurs to the outside.
  • the third problem to be solved by the present invention is to provide a carbon dioxide capture device to improve the heat exchange efficiency by forming a vortex or turbulence in the movement of the carbon dioxide and the adsorbent packed in the reactor.
  • the present invention is a carbon dioxide capture device for selectively separating the carbon dioxide from the exhaust gas containing carbon dioxide in order to achieve the first object, the adsorption of carbon dioxide and carbon dioxide desorption while the filled carbon dioxide adsorbent circulates the adsorption reactor and desorption reactor A plurality of carbon dioxide adsorption and desorption unit continuously occurring, the heat of adsorption generated in the adsorption reactor of the at least one carbon dioxide adsorption and desorption unit is transferred to the desorption reactor of the other carbon dioxide adsorption and desorption unit to perform mutual heat exchange, and the adsorption reactor in which the mutual heat exchange is performed Provided is a carbon dioxide capture device is inserted into the desorption reactor, the desorption reactor is inserted into the adsorption reactor.
  • the adsorption reactor in which the mutual heat exchange is performed may be inserted into the center of the desorption reactor.
  • the adsorption reactor in which the mutual heat exchange is made of a plurality of bundles the adsorption reactor consisting of the plurality of bundles may be uniformly inserted into the desorption reactor.
  • the desorption reactor of another carbon dioxide adsorption desorption unit is inserted into the desorption reactor inserted into the desorption reactor, or the desorption of other carbon dioxide into the desorption reactor into which the adsorption reactor is inserted A negative adsorption reactor can be inserted.
  • the vortex forming means may be formed on the wall surface of the adsorption reactor or the desorption reactor in which the mutual heat exchange is performed.
  • a protrusion or a depression may be formed on the wall surface of the adsorption reactor or the desorption reactor in which the mutual heat exchange is performed.
  • the present invention is a carbon dioxide capture device for selectively separating the carbon dioxide from the exhaust gas containing carbon dioxide, in order to achieve the second object, the carbon dioxide adsorption of the carbon dioxide adsorption and carbon dioxide desorption while circulating the adsorption reactor and desorption reactor
  • a plurality of carbon dioxide adsorption and desorption unit that occurs continuously, the heat of adsorption generated in the adsorption reactor of the at least one carbon dioxide adsorption and desorption unit is transferred to the desorption reactor of the other carbon dioxide adsorption and desorption unit to form a mutual heat exchange
  • the adsorption reactor and the desorption reactor is tubular It consists of, and the adsorption reactor is a mutual heat exchange is provided to surround the outer surface of the desorption reactor, or the desorption reactor provides a carbon dioxide capture device, characterized in that installed to surround the outer surface of the adsorption reactor.
  • a protrusion or a depression may be formed on the outer surface or the inner surface of the adsorption reactor or the desorption reactor.
  • the present invention is a carbon dioxide capture device for selectively separating the carbon dioxide from the exhaust gas containing carbon dioxide in order to achieve the third object, the carbon dioxide adsorbent filled with the adsorption and carbon dioxide desorption while circulating the adsorption reactor and desorption reactor And a plurality of carbon dioxide adsorption and desorption units which are continuously generated, and the heat of adsorption generated in the adsorption reactor of the at least one carbon dioxide adsorption and desorption unit is transferred to the desorption reactor of the other carbon dioxide adsorption and desorption unit, whereby mutual heat exchange is performed.
  • a carbon dioxide capture device characterized in that a protrusion or a depression for forming a vortex in the desorption reactor is formed.
  • the carbon dioxide capture device of the present invention has the following effects.
  • the carbon dioxide capture device of the present invention uses heat generated in the adsorption process of carbon dioxide in the desorption process of carbon dioxide, thereby reducing energy consumption.
  • the heat exchange can be efficiently performed because the adsorption reactor in which heat exchange is performed during the adsorption and desorption of carbon dioxide is inserted into the desorption reactor or the desorption reactor is inserted into the adsorption reactor.
  • Adsorption reactor that exchanges heat during the adsorption and desorption of carbon dioxide covers the outer surface of the desorption reactor, or desorption reactor covers the outer surface of the adsorption reactor, thereby reducing the heat leakage to the outside.
  • the adsorption reactor which performs heat exchange is inserted into the desorption reactor consisting of a plurality of tubular shapes, or the desorption reactor is composed of a plurality of tubular shapes and inserted into the adsorption reactor. It is possible to improve the heat exchange efficiency.
  • Desorption reactors are installed at the same time both inside and outside of the adsorption reactor where carbon dioxide adsorption takes place, allowing for more efficient heat exchange.
  • FIG. 1 is a view for explaining the concept that the heat exchange between the adsorption reactor and the desorption reactor in the carbon dioxide capture device of the present invention.
  • Figure 2 shows a carbon dioxide capture device in which the adsorption reactor is inserted into the desorption reactor.
  • FIG 3 illustrates a carbon dioxide capture device in which a plurality of adsorption reactors are inserted into a desorption reactor.
  • FIG. 4 illustrates a carbon dioxide capture device in which a desorption reactor is installed inside and outside the adsorption reactor.
  • FIG. 5 illustrates a carbon dioxide capture device in which a desorption reactor is installed outside and inside the adsorption reactor, and the adsorption reactor is installed outside the desorption reactor.
  • FIG. 6 is a view for explaining heat exchange occurring in a structure in which a lip turbulator is installed on a wall of an adsorption reactor or a desorption reactor.
  • Figure 7 shows various configurations of the lip turbulator that can be applied to the carbon dioxide capture device of the present invention.
  • FIG. 9 is a view for explaining changes in gas flow and solid flow generated by the lip turbulator.
  • FIG. 10 is a view showing radial particle distribution in a high speed fluidized bed reactor in operation.
  • FIG. 11 is a view for explaining a process in which heat exchange occurs on a wall of a reactor in which a protrusion and a depression type turbulator are installed.
  • FIG. 13 is a view for explaining changes in gas flow and solid flow that occur in a turbulator having a gentle inclination angle at the start of the protrusion.
  • FIG. 14 is a view for explaining changes in gas flow and solid flow that occur in a turbulator having a gentle inclination angle at the start of the depression.
  • 15 is a view for explaining the height and arrangement interval of the lip in the reactor to which the lip turbulator is applied.
  • FIG. 16 is a view for explaining the height of the protrusion, the depth of the recess, and the arrangement interval in the reactor to which the protrusion and the recess are applied.
  • the carbon dioxide capture device of the present invention is a carbon dioxide capture device for selectively separating carbon dioxide from a flue gas containing carbon dioxide, and a plurality of carbon dioxide adsorption and carbon dioxide desorption occur continuously while a packed carbon dioxide adsorbent circulates through an adsorption reactor and a desorption reactor.
  • a carbon dioxide adsorption desorption unit, and the heat of adsorption generated in the adsorption reactor of at least one carbon dioxide adsorption desorption unit is transferred to another desorption reactor of the other carbon dioxide adsorption / desorption unit to perform mutual heat exchange, and the adsorption reactor in which the mutual heat exchange is performed is inserted into the desorption reactor. Or, the desorption reactor is inserted into the adsorption reactor.
  • the present invention is to maintain and improve the heat exchange efficiency (when the process is large) of the gas-adsorbent heat exchange type fluidized bed reactor (bubble fluidized bed or high-speed fluidized bed) for the multi-stage carbon dioxide dry capture process configuration.
  • the present invention carbon dioxide through heat exchange in a multi-stage carbon dioxide dry capture process
  • the heat exchange efficiency for the process configuration may be maintained as the size of the multi-stage carbon dioxide dry capture process reactor increases.
  • the present invention provides a method for constructing a multi-tubular heat exchange type fluidized bed reactor for a multi-stage carbon dioxide dry capture process and a method for improving heat transfer at the reactor wall, and a desorption reaction with a carbonation reactor in which an exothermic reaction occurs and an endothermic reaction occurs.
  • the adsorption reactor can be configured in multiple (multi-tube-bundled) forms.
  • the carbon dioxide adsorption reactor in which the exothermic reaction takes place may be manufactured in an annular form and a desorption reactor may be installed on the inner and outer surfaces of the reactor.
  • a rib turbulator as a vortex forming means that is a heat transfer improving device on the wall of the heat exchanger for improving heat transfer on the wall of such a heat exchange type fluidized bed reactor (double pipe, multi pipe (bundle), annular (triple pipe, quadruple)).
  • Groove type turbulators, protrusions, and depressions can be formed in multiple arrangements.
  • the carbon dioxide capture device is composed of three stages of low temperature, medium temperature, high temperature stage. In each stage, the adsorbent is circulated between the reactor where the adsorption of carbon dioxide occurs and the reactor where desorption of carbon dioxide occurs, and the heat of reaction generated during the adsorption reaction at the high temperature of the upper stage is used as energy for the desorption reaction of carbon dioxide. .
  • the outside of the desorption reactor may be provided with a heat insulating means for preventing the external leakage of heat.
  • Figure 2 shows a carbon dioxide capture device in which the adsorption reactor is inserted into the desorption reactor.
  • the carbon dioxide adsorption reactor is configured to be inserted into the carbon dioxide desorption reactor, where the heat of adsorption is generated while the adsorbent of the adsorption reactor adsorbs carbon dioxide, and the heat is desorbed through the wall of the adsorption reactor. Desorption of carbon dioxide from the adsorbent is carried to the reactor.
  • the adsorption reactor and the desorption reactor shown in the drawings are adsorbing reactors and desorption reactors of different temperature stages adjacent to each other, and the adsorbents packed in the adsorption reactor and the adsorbents packed in the desorption reactor are different from each other.
  • the adsorbents having different temperature adsorption and desorption temperatures may be made of different materials, different crystalline materials, different doping materials may be used, or different doping amounts.
  • the structure of the adsorption reactor and the desorption reactor in which the mutual heat exchange is performed is preferably such that the adsorption reactor is inserted into the center of the desorption reactor in view of the efficiency of heat exchange.
  • the adsorption reactor is inserted into the desorption reactor in the form of the reactor, the desorption reactor may be modified to be inserted into the adsorption reactor, the desorption reactor wraps the outer surface of the adsorption reactor, or the adsorption reactor is desorption reactor If the shape surrounding the outer surface of the reactor can be modified in various forms.
  • the adsorption reactor is composed of a plurality of tubular reactor, it is installed in the form inserted into the desorption reactor.
  • the heat generated in the adsorption reactor is transferred to the desorption reactor as described in FIG. 2, but the external area of the adsorption reactor may be increased to improve heat exchange efficiency.
  • the number of adsorption reactors can be varied, and the arrangement of adsorption reactors can also be varied in consideration of heat exchange efficiency.
  • the diameter of the adsorption reactor may be designed differently in consideration of heat exchange efficiency. This type of reactor is advantageous for the large size of the reactor. This is because the larger the diameter of the reactor, the larger the area where heat exchange takes place.
  • the plurality of adsorption reactors inserted into the desorption reactor are preferably inserted in the inside of the desorption reactor in consideration of heat exchange efficiency.
  • FIG. 4 illustrates a carbon dioxide capture device in which a desorption reactor is installed inside and outside the adsorption reactor.
  • the adsorption reactor is formed in an annular shape, a larger diameter annular desorption reactor is installed outside the adsorption reactor, and a tubular desorption reactor is installed in the inner space of the adsorption reactor.
  • the heat generated in the adsorption reactor is similar to that of FIGS. 3 and 4, but heat exchange is performed inside and outside the adsorption reactor, thereby improving heat exchange efficiency.
  • FIG. 5 illustrates a carbon dioxide capture device in which a desorption reactor is installed outside and inside the adsorption reactor, and the adsorption reactor is installed outside the desorption reactor.
  • the adsorption reactor and the desorption reactor are sequentially inserted, and heat is transferred from the adsorption reactor to the desorption reactor.
  • the number of adjacent installations of the adsorption reactor and the desorption reactor may be increased, which may be more necessary when the reactor is enlarged.
  • a multiple adsorption reactor of the type shown in FIG. 3 may be applied to the reactor having such a structure.
  • FIG. 6 is a view for explaining heat exchange occurring in a structure in which a lip turbulator is installed on a wall of an adsorption reactor or a desorption reactor.
  • 6A is a reactor having a structure in which no lip turbulator is formed
  • (B) is a reactor having a structure in which a lip turbulator is formed.
  • the temperature of the adsorption reactor is driven higher than the temperature of the desorption reactor, the heat flow is generated by the temperature difference formed along the wall surface of the adsorption reactor or the wall of the desorption reactor.
  • a lip turbulator is installed on the wall surface of the adsorption reactor or the wall surface of the desorption reactor.
  • the lip turbulator is formed to protrude from the wall, and forms a vortex in the gas flow and the adsorbent flow inside the reactor to effectively transfer heat from the adsorbent or gas to the wall of the reactor, and the heat transfer wall.
  • FIG. 7 shows the configuration of the lip turbulator that can be applied to the carbon dioxide capture device of the present invention.
  • (a) of FIG. 7 illustrates a structure in which lip turbulators are continuously formed side by side in a longitudinal direction on the outer surface or the inner surface of the reactor (inlined array, continuous rib), and (b) The turbulator is formed in the form of broken side by side (inlined array, discreted rib), (C) is the structure in which the lip turbulator is staggered (Staggered array), and (D) is the lip turbulator with the slope (Angled array, continuous rib), (e) is the structure where the lip turbulator is bent and broken with an inclination (Angled array, discrete rib), and (bar) is the lip turbulator is inclined.
  • (Angled array, discreted rib) is a structure in which the lip turbulator is continuously formed in the shape of being bent from the top with an inclination (Angled array, conti) nuous rib), (a) is a structure in which the lip turbulator is inclined upwardly with a slope and is continuously formed (Angled array, continuous rib).
  • (Angled array, continuous rib), (car) is a continuous structure in which the lip turbulator is inclined (Diagonal array, continuous rib), (ka) is in the form that the lip turbulator has a slope (Diagonal array, continuous rib), (ta) is a structure in which the lip turbulator is formed in a continuous vertical form (Vertical array, continuous rib), (below) is a structure in which the lip turbulator is formed in a broken vertical form (Vertical array, discrete rib).
  • Each embodiment may be selected or combined in consideration of the density, size, temperature, etc. of the adsorbent.
  • the sectional structure of the lip turbulator can also be configured in various ways.
  • the sectional shape of the lip turbulator may be formed in a quadrangular, trapezoid, triangle, or circular shape, or the shape of the lip turbulator may be roundly deformed in the figure. Can be done.
  • 8 shows a turbulator of a continuous ring type lip and an inner continuous groove type turbulator.
  • 8A shows a continuous ring type rib turbulator formed on the outside of the carbon dioxide adsorption reactor, and (b) shows a continuous groove type turbulator inside the carbon dioxide adsorption reactor. (continuous groove) is formed.
  • the continuous ring-type lip turbulator or the continuous groove-type turbulator may be in the form of a plurality of rings formed in parallel or helically connected.
  • the outer continuous ring type lip turbulator can change the adsorbent flow inside the carbon dioxide desorption reactor, and the inner continuous groove type turbulator can change the adsorbent flow inside the adsorption reactor.
  • Such continuous lip turbulators and groove type turbulators have a residence time of particles (cluster form) near the wall in a high-flow fluidized bed reactor in which core-annular particle distributions occur.
  • the contact rate can be increased to improve bed-to-wall or wall-to-bed heat transfer characteristics.
  • FIG. 9 is a view for explaining changes in gas flow and solid flow generated by the lip turbulator.
  • FIG. 9A is a diagram of a reactor of a high density bed (bubble fluidized bed) type
  • (B) is a diagram of a reactor of a low density bed (rapid fluidized bed) type.
  • the adsorbent is filled into the reactor at a high density, and the solid flow, which is the flow of the adsorbent, is formed from the top to the bottom, and the adsorbent moves while contacting the lip turbulator. Therefore, the time required for heat exchange is increased and the contact area required for heat exchange is also increased, resulting in improved heat exchange efficiency.
  • a gas flow that is formed in the opposite direction to the solid flow also forms a vortex near the lip turbulator.
  • the adsorbent is filled with a low density inside the reactor so that there is an empty space between the adsorbents and moves inside the reactor (movable in the form of a cluster), but also in contact with the lip turbulator.
  • heat exchange can occur more efficiently as the probability of separation of cluster-type absorbents by vortex formation increases.
  • FIG. 10 is a diagram showing radial particle distribution in a high speed fluidized bed reactor in operation (Wirth and Seiter, 1991).
  • a thin air layer (approximately particle free zone) of about 0.2-0.9 mm is present on the wall of the reactor, which acts as a resistance to heat transfer by particles (cluster or strand-annuls region). Therefore, by installing the structure on the wall of the reactor, vortex generation is induced to break the thin air layer on the wall or to install a protrusion-type structure in the wall region with falling strands to increase the probability of contact with the reactor. It is possible to increase heat transfer by increasing the residence time of the particles or by increasing the residence time of the particles.
  • FIG. 11 is a view for explaining a process of heat exchange occurring in a lip turbulator of a protrusion and a depression type.
  • FIG. 11A is a case where a depression is formed on the wall boundary between the adsorption reaction portion and the desorption reaction portion
  • (B) is a case where a protrusion is formed on the wall boundary between the adsorption reaction portion and the desorption reaction portion.
  • the contact area with the adsorbent is increased by the protrusions or depressions, and the heat transfer efficiency may be increased by the vortex formation.
  • protrusions and depressions may be formed together on the surface of the adsorption reactor or desorption reactor, protrusions may be formed on the adsorption reactor, and depressions may be formed on the desorption reactor, and vice versa.
  • the arrangement of the protrusions and the depressions formed in the reactor may be formed by forming the protrusions and the depressions on the same horizontal line and alternating in the longitudinal direction as shown in (A), and the horizontal lines as shown in (B). It is also possible to form alternately in the longitudinal direction. In addition, in consideration of the temperature difference formed in the reactor in the longitudinal direction, it is also possible to change the formation density, the formation size, and the like of the protrusion and the depression.
  • FIG. 13A is a phenomenon occurring in a high density bed (bubble fluidized bed), and (B) is a phenomenon occurring in a low density bed (high speed fluidized bed).
  • Vortex occurs in the gas flow and the solid flow along the slope of the protrusion.
  • groups of particles in the form of clusters or strands may flow down near the protrusions to separate the group of particles by vortices by the protrusions, thereby increasing heat transfer between the single particles and the wall surface. Since the inclination angle of the starting portion of the protrusion is formed smoothly, the collision angle with the protrusion is small, and thus the adsorbent can be prevented from being broken by the collision.
  • 14 is a view for explaining the change in the gas flow and the solid flow made in the depression turbulence (gradle) of the gentle start portion inclination angle.
  • 14A is a phenomenon occurring in a high density bed (bubble fluidized bed)
  • (B) is a phenomenon occurring in a low density bed (high speed fluidized bed).
  • Vortex occurs in the gas flow and the solid flow along the slope of the depression.
  • an increase in the contact area can be expected to increase heat transfer. Since the inclination angle of the start portion of the depression is formed gently, it is possible to prevent the adsorbent from being broken by the collision.
  • the height (e) of the lip is preferably at least the thickness of the air layer (0.2 to 0.9 mm) between the reactor wall and the adsorbent group (annulus) generated during the high-speed fluidized bed operation, and the height above the predetermined height is reduced to reduce the attrition of the absorbent. It is preferable not to exceed it. Considering these factors, it is desirable that the appropriate lip height be about 1 to 10 times the diameter of the adsorbent (Geldart group A particles: average adsorbent diameter of 100 to 200 micrometers).
  • the preferred arrangement spacing P of the ribs is preferably 2 ⁇ P / e ⁇ 100.
  • the spacing is the spacing necessary for the infiltration of particles or reattachment of flow between the lip, and the infiltration of particles and reattachment of flow can improve heat transfer.
  • the shape of the lip to be installed is preferably made of a smooth (round) to reduce the consumption of the adsorbent, it may be made of a soft material to reduce the consumption or destruction of the adsorbent.
  • FIG. 16 is a view for explaining the height of the protrusion, the depth of the recess, and the arrangement interval in the reactor to which the protrusion and the recess are applied.
  • the height e of the protrusion is preferably at least the thickness of the air layer (0.2 to 0.9 mm) between the reactor wall and the adsorbent group (annulus) generated during the high-speed fluidized bed operation, and the height above the predetermined height is reduced in order to reduce the attrition of the absorbent. It is preferable not to exceed it. Considering these factors, it is preferable that the height of the appropriate protrusion is about 1 to 10 times the diameter of the adsorbent (Geldart group A particles: average adsorbent diameter of 100 to 200 micrometers).
  • the depth of the depression can be designed to be equal to the height of the protrusion.
  • the arrangement interval P of the protrusions and recesses is 2 ⁇ P / e ⁇ 100.
  • the spacing is the spacing necessary for the infiltration of particles or reattachment of flow between the lip, and the infiltration of particles and reattachment of flow can improve heat transfer.
  • the protrusions and recesses to be installed are preferably made of a smooth curved round to reduce the consumption of the adsorbent, and may be made of a soft material to reduce the consumption or destruction of the adsorbent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A carbon dioxide capture device of the present invention is a carbon dioxide capture device for selectively separating carbon dioxide from exhaust gas including the carbon dioxide, and comprises a plurality of carbon dioxide absorption and desorption units in which carbon dioxide absorption and carbon dioxide desorption continuously occur while a filled carbon dioxide absorbent circulates in an absorption reactor and a desorption reactor, wherein: absorption heat generated from an absorption reactor of at least one carbon dioxide absorption and desorption unit is transferred to a desorption reactor of another carbon dioxide absorption and desorption unit such that a mutual heat exchange occurs; and the absorption reactor, in which the mutual heat exchange occurs, is inserted into the desorption reactor, or the desorption reactor is inserted into the absorption reactor.

Description

다중관형 이산화탄소 포집장치Multi-tubular CO2 Collector
본 발명은 이산화탄소 포집장치에 관한 것으로서, 더욱 상세하게는 배가스에 포함된 이산화탄소를 선택적으로 포집하여 분리할 수 있는 이산화탄소 포집장치에 관한 것이다.The present invention relates to a carbon dioxide capture device, and more particularly to a carbon dioxide capture device that can selectively collect and separate the carbon dioxide contained in the exhaust gas.
최근 지구 온난화로 인하여 극지방의 빙하가 녹으면서 해수면이 상승하고 있으며, 기후 변화에 의하여 지구 곳곳에서 기상 이변이 발생하고 있다. 이러한 지구 온난화는 이산화탄소와 같은 온실가스 방출에 기인한다고 알려져 있으며, 이산화탄소의 방출량을 규제하기 위한 국제적 규약이 체결되고 있고, 탄소 배출권의 도입 등에 의하여 이산화탄소의 방출을 억제하는 것이 각국의 경제 이슈가 되고 있다. 이산화탄소의 배출량을 감소시키기 위한 노력은 태양 에너지, 풍력 에너지와 같이 화석 연료를 대체할 수 있는 대체 에너지를 개발하려는 방향과, 화석 연료에서 발생된 이산화탄소를 대기 중으로 방출하지 않고 포집하여 저장하려는 방향으로 진행되고 있다. 후자의 기술을 이산화탄소 포집 및 저장 기술(carbon capture and storage, CCS)이라고 하는데, 크게는 발전소나 제철소에서 발생된 이산화탄소를 포집하는 분야의 기술과, 포집된 이산화탄소를 지중 또는 해양에 저장하는 기술로 나누어진다. Recently, due to global warming, the sea level is rising as the polar glaciers are melting, and due to climate change, extreme weather is occurring everywhere in the world. Such global warming is known to be caused by greenhouse gas emissions such as carbon dioxide, and international conventions for regulating the amount of carbon dioxide are being signed, and the suppression of carbon dioxide emissions by introducing carbon credits has become a national economic issue. . Efforts to reduce carbon dioxide emissions are directed towards developing alternative energy sources to replace fossil fuels, such as solar and wind energy, and to capture and store carbon dioxide from fossil fuels without releasing them into the atmosphere. It is becoming. The latter technique is called carbon capture and storage (CCS) technology, which is largely divided into technology in the field of capturing carbon dioxide generated from a power plant or steel mill and storage of carbon dioxide in the ground or the ocean. Lose.
이산화탄소를 포집하는 기술은 포집 단계의 적용에 따라서 연소 후 포집, 연소 전 포집, 순산소 포집으로 나눌 수 있으며, 이산화탄소를 포집하는 원리에 따라서 분리막을 사용하여 농축하는 막 포집 기술(membrane separation), 아민 또는 암모니아수 등의 액체 흡착제를 사용하는 액상 포집 기술(liquid phase separation), 알칼리 또는 알칼리 토금속 등과 같은 고체상의 흡착제를 사용하는 건식 포집 기술(solid phase separation)로 구분할 수 있다.CO2 capture technology can be divided into post-combustion capture, pre-combustion capture and pure oxygen capture according to the application of the capture step, and membrane separation technology (membrane separation) that concentrates using a membrane according to the principle of capturing carbon dioxide, amine Or liquid phase separation using liquid adsorbents such as ammonia water, or solid phase separation using solid adsorbents such as alkali or alkaline earth metals.
건식 포집 기술은 크게 이산화탄소 흡착능을 갖는 고상 흡착제의 개발과 이들 고상 흡착제를 사용하여 이산화탄소를 포집하는 공정으로 구성되어 있으며, 이산화탄소 포집 효율은 고상 흡착제의 성능뿐만 아니라 흡착 공정의 구성에 크게 영향을 받는다. 고상 흡착제는 물질의 종류에 따라 크게 유기계, 무기계, 탄소계, 유-무기 하이브리드계 등으로 구분될 수 있고, 이산화탄소가 흡착제에 흡착되는 형태에 따라 물리적 흡착제, 화학적 흡착제로 구분될 수 있다. 유기계 흡착제로는 아민계 고분자 흡착제가, 무기계 흡착제로는 제올라이트계 또는 알칼리, 알칼리 토금속계 흡착제가, 탄소계 흡착제로는 알칼리 금속으로 수식된 활성탄계 흡착제가, 유-무기 하이브리드계 흡착제로는 MOF, 아민기를 갖는 유기물로 그래프팅(grafting)된 다공성 실리카 흡착제가 주로 사용되고 있다. 제올라이트계 및 카본계 흡착제는 이산화탄소가 물리적 흡착하는 특성을 나타내고 있으며, 그 외의 흡착제들은 화학적으로 이산화탄소가 흡착제와 반응하여 흡착되는 화학적 흡착특성을 나타낸다.(Energy Environ. Sci. 2011, 4, 42. ChemSusChem 2009, 2, 796.)Dry capture technology consists of the development of solid state adsorbents with carbon dioxide adsorption capacity and the process of capturing carbon dioxide using these solid state adsorbents, and the carbon dioxide collection efficiency is greatly influenced by the composition of the adsorption process as well as the performance of the solid state adsorbent. The solid phase adsorbent may be broadly classified into organic, inorganic, carbon, organic-inorganic hybrid, and the like, and may be classified into physical adsorbents and chemical adsorbents according to the type of carbon dioxide adsorbed on the adsorbent. An organic adsorbent is an amine polymer adsorbent, an inorganic adsorbent is a zeolite-based, alkali or alkaline earth metal-based adsorbent, a carbon-based adsorbent is an activated carbon-based adsorbent modified with an alkali metal, an organic-inorganic hybrid adsorbent is MOF, Porous silica adsorbents grafted with organic materials having amine groups are mainly used. Zeolite and carbon-based adsorbents exhibit the physical adsorption characteristics of carbon dioxide, and other adsorbents exhibit the chemical adsorption characteristics that carbon dioxide reacts with the adsorbent chemically. (Energy Environ. Sci. 2011, 4, 42. ChemSusChem 2009, 2, 796.)
건식 포집 기술은 이산화탄소를 흡착 대상체에 흡착시키는 단계와, 흡착된 이산화탄소를 탈착시켜서 분리하는 단계로 이루어진다. 이산화탄소의 흡착과 탈착은 가역적으로 일어날 수 있는데, 이산화탄소의 흡착과 탈착은 열의 교환 또는 외부 압력의 변화를 통하여 유도할 수 있다. 이와 같이 건식 흡착제를 사용하여 이산화탄소를 포집하는 공정은 흡착된 이산화탄소를 탈착하기 위한 방법으로 압력차를 이용하는 압력 스윙 흡착(Pressure Swing Adsorption, PSA) 공정과, 온도차를 이용하는 온도 스윙 흡착(Temperature Swing Adsorption, TSA) 공정으로 구분된다. 일반적으로 작은 규모의 이산화탄소 포집에는 고정층 흡착탑을 사용한 압력 스윙 흡착 공정이 유리하나, 발전소나 대형 연소로와 같이 배출되는 이산화탄소의 양이 많은 경우에는 스케일 업(scale-up)이 용이한 유동층 흡착 및 탈착탑으로 구성된 온도 스윙 흡착 공정이 유리하다.Dry capture technology consists of adsorbing carbon dioxide to an adsorbent object and desorbing and separating the adsorbed carbon dioxide. Adsorption and desorption of carbon dioxide can occur reversibly. Adsorption and desorption of carbon dioxide can be induced through heat exchange or changes in external pressure. The process of capturing carbon dioxide using a dry adsorbent is a pressure swing adsorption (PSA) process using a pressure difference as a method for desorbing adsorbed carbon dioxide, and a temperature swing adsorption (Temperature Swing Adsorption) method using a temperature difference. TSA) process. In general, the pressure swing adsorption process using a fixed bed adsorption tower is advantageous for the capture of small scale carbon dioxide, but the fluidized bed adsorption and desorption can be easily scaled up when a large amount of carbon dioxide is emitted, such as a power plant or a large combustion furnace. A tower temperature swing adsorption process is advantageous.
본 발명은 고체 흡착제를 이용하여 연속적으로 대용량의 이산화탄소를 포집하는 것을 목적으로 하며, 유동 흡착탑 및 유동 탈착탑으로 구성된 온도 스윙 흡착 공정으로 분류될 수 있다. 온도 스윙 흡착 공정에 사용되는 흡착탑 및 탈착탑은 운전 영역에 따라 탑 내에서의 흡착제 농도가 높은 기포 유동층(Bubbling Fluidized Bed)과 흡착제 농도가 낮은 고속 유동층(Diluted Fluidized Bed)으로 구분할 수 있다. 이러한 기포 유동층과 고속 유동층을 흡착탑과 탈착탑에 적용하면, i) 고속 유동층-고속 유동층, ii) 고속 유동층-기포 유동층, iii) 기포 유동층-고속 유동층, iv)기포 유동층-기포 유동층의 4가지 조합의 구성이 도출될 수 있다("Fluidization Engineering", D. Kunii and O. Levenspiel, Robert E. Krieger, 1977).The present invention aims to continuously capture a large amount of carbon dioxide using a solid adsorbent, and may be classified into a temperature swing adsorption process consisting of a fluid adsorption tower and a fluid desorption tower. Adsorption towers and desorption towers used in the temperature swing adsorption process may be classified into a bubbled fluidized bed having a high adsorbent concentration and a diluted fluidized bed having a low adsorbent concentration, depending on the operating area. When the bubble fluidized bed and the high-speed fluidized bed are applied to the adsorption tower and the desorption column, four combinations of i) a high-speed fluidized bed-high fluidized bed, ii) a high-speed fluidized bed-bubbled fluidized bed, iii) a bubbled fluidized bed-high-speed fluidized bed, and iv) a bubbled fluidized bed-bubble fluidized bed Can be derived ("Fluidization Engineering", D. Kunii and O. Levenspiel, Robert E. Krieger, 1977).
이와 관련된 선행기술로는 한국공개특허 제2005-0003767호, 제2010-0099929호, 제2011-0054948호 등이 있는데, 상기 선행기술에서는 고체상의 건식 흡착제를 사용하여 이산화탄소를 포집하는데 있어 고속유동층 흡착탑 및 기포유동층 탈착탑으로 구성된 온도 스윙 흡착 개념의 이산화탄소 유동층 포집공정에 대하여 개시하고 있다. 그러나, 이와 같은 온도 스윙 흡착 개념의 건식 포집 공정은 흡착제에 흡착된 이산화탄소를 온도 스윙 흡착 공정으로 탈착시키기 위해서 2 GJ/t-CO2 이상의 막대한 에너지가 소요되기 때문에 흡착제 비용과 함께 포집 비용을 증가시키는 요인으로 작용하고 있다. 따라서 포집비용을 낮추기 위해서는 흡착제로부터 흡착된 이산화탄소를 적은 에너지로 효과적으로 탈착시킬 수 있는 기술의 개발이 매우 중요하다.Prior arts related to this include Korean Patent Publication Nos. 2005-0003767, 2010-0099929, 2011-0054948, etc. In the prior art, a high-speed fluidized bed adsorption tower for capturing carbon dioxide using a dry dry adsorbent and Disclosed is a carbon dioxide fluidized bed collection process of a temperature swing adsorption concept composed of a bubble fluidized bed desorption tower. However, the dry capture process of the temperature swing adsorption concept requires enormous energy of 2 GJ / t-CO 2 or more to desorb the carbon dioxide adsorbed to the adsorbent to the temperature swing adsorption process, which increases the cost of the capture together with the adsorbent cost. It acts as a factor. Therefore, in order to lower the collection cost, it is very important to develop a technology capable of effectively desorbing carbon dioxide adsorbed from the adsorbent with low energy.
따라서, 본 발명이 해결하고자 하는 첫 번째 과제는 이산화탄소의 흡착 과정에서 발생한 열을 이산화탄소의 탈착 과정에서 이용하며, 이러한 열교환이 효율적으로 이루어지도록 하여 이산화탄소 포집 및 분리에 필요한 에너지를 절감시킬 수 있는 이산화탄소 포집장치를 제공하는 것이다.Therefore, the first problem to be solved by the present invention is to use the heat generated in the adsorption process of carbon dioxide in the desorption process of carbon dioxide, carbon dioxide capture that can reduce the energy required for carbon dioxide capture and separation by making this heat exchange efficiently. To provide a device.
본 발명이 해결하고자 하는 두 번째 과제는 이산화탄소의 흡착이 일어나는 반응기에서 발생된 열이 외부로 유출되는 것을 효과적으로 방지하면서 이산화탄소의 탈착이 일어나는 반응기로 전달될 수 있도록 하는 이산화탄소 포집장치를 제공하는 것이다.The second problem to be solved by the present invention is to provide a carbon dioxide capture device that can be transferred to the reactor in which desorption of carbon dioxide occurs while effectively preventing the heat generated in the reactor in which the adsorption of carbon dioxide occurs to the outside.
본 발명이 해결하고자 하는 세 번째 과제는 반응기 내부에 충진된 이산화탄소 및 흡착제의 운동에 와류 또는 난류를 형성시켜 열 교환 효율을 향상시킨 이산화탄소 포집장치를 제공하는 것이다.The third problem to be solved by the present invention is to provide a carbon dioxide capture device to improve the heat exchange efficiency by forming a vortex or turbulence in the movement of the carbon dioxide and the adsorbent packed in the reactor.
본 발명은 상기 첫 번째 과제를 달성하기 위하여, 이산화탄소가 포함된 배가스에서 이산화탄소를 선택적으로 분리하기 위한 이산화탄소 포집장치로서, 충진된 이산화탄소 흡착제가 흡착반응기와 탈착반응기를 순환하면서 이산화탄소의 흡착과 이산화탄소 탈착이 연속적으로 일어나는 복수개의 이산화탄소 흡착탈착부를 포함하고, 적어도 하나의 이산화탄소 흡착탈착부의 흡착반응기에서 발생된 흡착열이 다른 이산화탄소 흡탈착부의 탈착반응기로 전달되어 상호 열교환이 이루어지며, 상기 상호 열교환이 이루어지는 흡착반응기가 탈착반응기 내부에 삽입되거나, 탈착반응기가 흡착반응기 내부에 삽입된 것을 특징으로 하는 이산화탄소 포집장치를 제공한다.The present invention is a carbon dioxide capture device for selectively separating the carbon dioxide from the exhaust gas containing carbon dioxide in order to achieve the first object, the adsorption of carbon dioxide and carbon dioxide desorption while the filled carbon dioxide adsorbent circulates the adsorption reactor and desorption reactor A plurality of carbon dioxide adsorption and desorption unit continuously occurring, the heat of adsorption generated in the adsorption reactor of the at least one carbon dioxide adsorption and desorption unit is transferred to the desorption reactor of the other carbon dioxide adsorption and desorption unit to perform mutual heat exchange, and the adsorption reactor in which the mutual heat exchange is performed Provided is a carbon dioxide capture device is inserted into the desorption reactor, the desorption reactor is inserted into the adsorption reactor.
본 발명의 일 구현예에 따르면, 상기 상호 열교환이 이루어지는 흡착반응기는 탈착반응기의 중심에 삽입될 수 있다.According to one embodiment of the present invention, the adsorption reactor in which the mutual heat exchange is performed may be inserted into the center of the desorption reactor.
본 발명의 다른 구현예에 따르면, 상기 상호 열교환이 이루어지는 흡착반응기는 복수개의 다발로 이루어지고, 상기 복수개의 다발로 이루어진 흡착반응기가 탈착반응기 내부에 균일하게 삽입될 수 있다.According to another embodiment of the present invention, the adsorption reactor in which the mutual heat exchange is made of a plurality of bundles, the adsorption reactor consisting of the plurality of bundles may be uniformly inserted into the desorption reactor.
본 발명의 또 다른 구현예에 따르면, 상기 탈착반응기 내부에 삽입된 흡착반응기의 내부에 다른 이산화탄소 흡착탈착부의 탈착반응기가 삽입되거나, 상기 흡착반응기가 내부에 삽입된 탈착반응기의 내부에 다른 이산화탄소 흡착탈착부의 흡착반응기가 삽입될 수 있다.According to another embodiment of the present invention, the desorption reactor of another carbon dioxide adsorption desorption unit is inserted into the desorption reactor inserted into the desorption reactor, or the desorption of other carbon dioxide into the desorption reactor into which the adsorption reactor is inserted A negative adsorption reactor can be inserted.
본 발명의 또 다른 구현예에 따르면, 상기 상호 열교환이 이루어지는 흡착반응기 또는 탈착반응기의 벽면에 와류형성수단이 형성될 수 있다.According to another embodiment of the present invention, the vortex forming means may be formed on the wall surface of the adsorption reactor or the desorption reactor in which the mutual heat exchange is performed.
본 발명의 또 다른 구현예에 따르면, 상기 상호 열교환이 이루어지는 흡착반응기 또는 탈착반응기의 벽면에 돌출부 또는 함몰부가 형성될 수 있다.According to another embodiment of the present invention, a protrusion or a depression may be formed on the wall surface of the adsorption reactor or the desorption reactor in which the mutual heat exchange is performed.
본 발명은 상기 두 번째 과제를 달성하기 위하여, 이산화탄소가 포함된 배가스에서 이산화탄소를 선택적으로 분리하기 위한 이산화탄소 포집장치로서, 충진된 이산화탄소 흡착제가 흡착반응기와 탈착반응기를 순환하면서 이산화탄소의 흡착과 이산화탄소 탈착이 연속적으로 일어나는 복수개의 이산화탄소 흡착탈착부를 포함하고, 적어도 하나의 이산화탄소 흡착탈착부의 흡착반응기에서 발생된 흡착열이 다른 이산화탄소 흡탈착부의 탈착반응기로 전달되어 상호 열교환이 이루어지며, 상기 흡착반응기와 탈착반응기는 관형으로 이루어지고, 상기 상호 열교환이 이루어지는 흡착반응기가 탈착반응기의 외면을 감싸거나, 상기 탈착반응기가 흡착반응기의 외면을 감싸도록 설치되는 것을 특징으로 하는 이산화탄소 포집장치를 제공한다.The present invention is a carbon dioxide capture device for selectively separating the carbon dioxide from the exhaust gas containing carbon dioxide, in order to achieve the second object, the carbon dioxide adsorption of the carbon dioxide adsorption and carbon dioxide desorption while circulating the adsorption reactor and desorption reactor A plurality of carbon dioxide adsorption and desorption unit that occurs continuously, the heat of adsorption generated in the adsorption reactor of the at least one carbon dioxide adsorption and desorption unit is transferred to the desorption reactor of the other carbon dioxide adsorption and desorption unit to form a mutual heat exchange, the adsorption reactor and the desorption reactor is tubular It consists of, and the adsorption reactor is a mutual heat exchange is provided to surround the outer surface of the desorption reactor, or the desorption reactor provides a carbon dioxide capture device, characterized in that installed to surround the outer surface of the adsorption reactor.
본 발명의 일 구현예에 따르면, 상기 흡착반응기 또는 탈착반응기의 외면 또는 내면에 돌출부 또는 함몰부가 형성될 수 있다.According to one embodiment of the present invention, a protrusion or a depression may be formed on the outer surface or the inner surface of the adsorption reactor or the desorption reactor.
본 발명은 상기 세 번째 과제를 달성하기 위하여, 이산화탄소가 포함된 배가스에서 이산화탄소를 선택적으로 분리하기 위한 이산화탄소 포집장치로서, 충진된 이산화탄소 흡착제가 흡착반응기와 탈착반응기를 순환하면서 이산화탄소의 흡착과 이산화탄소 탈착이 연속적으로 일어나는 복수개의 이산화탄소 흡착탈착부를 포함하고, 적어도 하나의 이산화탄소 흡착탈착부의 흡착반응기에서 발생된 흡착열이 다른 이산화탄소 흡탈착부의 탈착반응기로 전달되어 상호 열교환이 이루어지며, 상기 상호 열교환이 이루어지는 흡착반응기와 탈착반응기에 와류를 형성하기 위한 돌출부 또는 함몰부가 형성된 것을 특징으로 하는 이산화탄소 포집장치를 제공한다.The present invention is a carbon dioxide capture device for selectively separating the carbon dioxide from the exhaust gas containing carbon dioxide in order to achieve the third object, the carbon dioxide adsorbent filled with the adsorption and carbon dioxide desorption while circulating the adsorption reactor and desorption reactor And a plurality of carbon dioxide adsorption and desorption units which are continuously generated, and the heat of adsorption generated in the adsorption reactor of the at least one carbon dioxide adsorption and desorption unit is transferred to the desorption reactor of the other carbon dioxide adsorption and desorption unit, whereby mutual heat exchange is performed. Provided is a carbon dioxide capture device characterized in that a protrusion or a depression for forming a vortex in the desorption reactor is formed.
본 발명의 이산화탄소 포집장치는 아래의 효과를 가진다.The carbon dioxide capture device of the present invention has the following effects.
1. 본 발명의 이산화탄소 포집장치는 이산화탄소의 흡착과정에서 발생된 열을 이산화탄소의 탈착과정에서 이용하므로 에너지 소모를 감소시킬 수 있다.1. The carbon dioxide capture device of the present invention uses heat generated in the adsorption process of carbon dioxide in the desorption process of carbon dioxide, thereby reducing energy consumption.
2. 이산화탄소의 흡착과 탈착 과정에서 열교환이 이루어지는 흡착반응기가 탈착반응기의 내부에 삽입되거나, 탈착반응기가 흡착반응기의 내부에 삽입되므로 열 교환이 효율적으로 이루어질 수 있다.2. The heat exchange can be efficiently performed because the adsorption reactor in which heat exchange is performed during the adsorption and desorption of carbon dioxide is inserted into the desorption reactor or the desorption reactor is inserted into the adsorption reactor.
3. 이산화탄소의 흡착과 탈착 과정에서 열교환이 이루어지는 흡착반응기가 탈착반응기의 외면을 감싸거나, 탈착반응기가 흡착반응기의 외면을 감싸므로 외부로의 열 유출을 감소시킬 수 있다.3. Adsorption reactor that exchanges heat during the adsorption and desorption of carbon dioxide covers the outer surface of the desorption reactor, or desorption reactor covers the outer surface of the adsorption reactor, thereby reducing the heat leakage to the outside.
4. 이산화탄소의 흡착과 탈착 과정에서 열교환이 이루어지는 흡착반응기가 복수개의 관형으로 이루어져 탈착반응기의 내부에 삽입되거나, 탈착반응기가 복수개의 관형으로 이루어져 흡착반응기의 내부에 삽입되므로 열 교환이 이루어지는 면적을 증가시켜 열교환 효율을 향상시킬 수 있다.4. In the adsorption and desorption process of carbon dioxide, the adsorption reactor which performs heat exchange is inserted into the desorption reactor consisting of a plurality of tubular shapes, or the desorption reactor is composed of a plurality of tubular shapes and inserted into the adsorption reactor. It is possible to improve the heat exchange efficiency.
5. 이산화탄소의 흡착이 일어나는 흡착반응기의 외부와 내부에 동시에 탈착반응기가 설치되어서 열 교환이 보다 효율적으로 이루어질 수 있다.5. Desorption reactors are installed at the same time both inside and outside of the adsorption reactor where carbon dioxide adsorption takes place, allowing for more efficient heat exchange.
도 1은 본 발명의 이산화탄소 포집장치에서 흡착반응기와 탈착반응기 사이에서 열 교환이 이루어지는 개념을 설명하기 위한 도면이다.1 is a view for explaining the concept that the heat exchange between the adsorption reactor and the desorption reactor in the carbon dioxide capture device of the present invention.
도 2는 흡착반응기가 탈착반응기 내부에 삽입된 형태의 이산화탄소 포집장치를 도시한 것이다.Figure 2 shows a carbon dioxide capture device in which the adsorption reactor is inserted into the desorption reactor.
도 3은 복수개의 흡착반응기가 탈착반응기의 내부에 삽입된 형태의 이산화탄소 포집장치를 도시한 것이다.3 illustrates a carbon dioxide capture device in which a plurality of adsorption reactors are inserted into a desorption reactor.
도 4는 흡착반응기의 외부와 내부에 탈착반응기가 설치된 형태의 이산화탄소 포집장치를 도시한 것이다.4 illustrates a carbon dioxide capture device in which a desorption reactor is installed inside and outside the adsorption reactor.
도 5는 흡착반응기의 외부와 내부에 탈착반응기가 설치되고, 다시 외부의 탈착반응기 외부에 흡착반응기가 설치된 형태의 이산화탄소 포집장치를 도시한 것이다.5 illustrates a carbon dioxide capture device in which a desorption reactor is installed outside and inside the adsorption reactor, and the adsorption reactor is installed outside the desorption reactor.
도 6은 흡착반응기 또는 탈착반응기의 벽면에 립 터뷸레이터가 설치된 형태의 구조에서 일어나는 열 교환을 설명하기 위한 도면이다.FIG. 6 is a view for explaining heat exchange occurring in a structure in which a lip turbulator is installed on a wall of an adsorption reactor or a desorption reactor.
도 7은 본 발명의 이산화탄소 포집장치에 적용될 수 있는 립 터뷸레이터의 다양한 구성을 나타낸 것이다.Figure 7 shows various configurations of the lip turbulator that can be applied to the carbon dioxide capture device of the present invention.
도 8은 연속 링 타입의 립 터뷸레이터와 내부 연속 그루브 타입의 터뷸레이터를 도시한 것이다.8 shows a continuous ring type lip turbulator and an inner continuous groove type turbulator.
도 9는 립 터뷸레이터에 의하여 발생하는 가스 플로우과 솔리드 플로우의 변화를 설명하기 위한 도면이다.FIG. 9 is a view for explaining changes in gas flow and solid flow generated by the lip turbulator.
도 10은 조업 중인 고속유동층 반응기에서 반경방향 입자분포를 나타내는 도면이다.10 is a view showing radial particle distribution in a high speed fluidized bed reactor in operation.
도 11은 돌출부와 함몰부 타입의 터뷸레이터가 설치된 반응기의 벽면에서 열교환이 일어나는 과정을 설명하기 위한 도면이다.FIG. 11 is a view for explaining a process in which heat exchange occurs on a wall of a reactor in which a protrusion and a depression type turbulator are installed.
도 12는 돌출부와 함몰부의 배치 방법에 대하여 설명하기 위한 도면이다.It is a figure for demonstrating the arrangement | positioning method of a protrusion and a recessed part.
도 13은 돌출부의 시작 부위 경사각이 완만한 형태의 터뷸레이터에서 이루어지는 가스 플로우와 솔리드 플로우의 변화를 설명하기 위한 도면이다.FIG. 13 is a view for explaining changes in gas flow and solid flow that occur in a turbulator having a gentle inclination angle at the start of the protrusion.
도 14는 함몰부의 시작 부위 경사각이 완만한 형태의 터뷸레이터에서 이루어지는 가스 플로우와 솔리드 플로우의 변화를 설명하기 위한 도면이다.FIG. 14 is a view for explaining changes in gas flow and solid flow that occur in a turbulator having a gentle inclination angle at the start of the depression.
도 15는 립 터뷸레이터가 적용된 반응기에서 립의 높이와 배열 간격을 설명하기 위한 도면이다.15 is a view for explaining the height and arrangement interval of the lip in the reactor to which the lip turbulator is applied.
도 16은 돌출부와 함몰부가 적용된 반응기에서 돌출부의 높이 및 함몰부의 깊이와 배열 간격을 설명하기 위한 도면이다.FIG. 16 is a view for explaining the height of the protrusion, the depth of the recess, and the arrangement interval in the reactor to which the protrusion and the recess are applied.
본 발명의 이산화탄소 포집장치는 이산화탄소가 포함된 배가스에서 이산화탄소를 선택적으로 분리하기 위한 이산화탄소 포집장치로서, 충진된 이산화탄소 흡착제가 흡착반응기와 탈착반응기를 순환하면서 이산화탄소의 흡착과 이산화탄소 탈착이 연속적으로 일어나는 복수개의 이산화탄소 흡착탈착부를 포함하고, 적어도 하나의 이산화탄소 흡착탈착부의 흡착반응기에서 발생된 흡착열이 다른 이산화탄소 흡탈착부의 탈착반응기로 전달되어 상호 열교환이 이루어지며, 상기 상호 열교환이 이루어지는 흡착반응기가 탈착반응기 내부에 삽입되거나, 탈착반응기가 흡착반응기 내부에 삽입된 것을 특징으로 한다.The carbon dioxide capture device of the present invention is a carbon dioxide capture device for selectively separating carbon dioxide from a flue gas containing carbon dioxide, and a plurality of carbon dioxide adsorption and carbon dioxide desorption occur continuously while a packed carbon dioxide adsorbent circulates through an adsorption reactor and a desorption reactor. A carbon dioxide adsorption desorption unit, and the heat of adsorption generated in the adsorption reactor of at least one carbon dioxide adsorption desorption unit is transferred to another desorption reactor of the other carbon dioxide adsorption / desorption unit to perform mutual heat exchange, and the adsorption reactor in which the mutual heat exchange is performed is inserted into the desorption reactor. Or, the desorption reactor is inserted into the adsorption reactor.
본 발명은 다단 이산화탄소 건식포집공정 구성을 위한 가스-흡착제 열교환형 유동층 반응기(기포유동층 또는 고속유동층)의 열교환 효율 유지(공정이 대형화될 때) 및 향상을 위한 것이다. 본 발명은 다단 이산화탄소 건식포집공정에서 열교환을 통해 이산화탄소 흡착 반응시 발생되는 반응열 사용효율을 높이기 위한 방법으로서, 다단 이산화탄소 건식포집공정 반응기의 사이즈가 커짐에 따른(scale-up) 공정 구성을 위한 열교환 효율을 유지시킬 수 있다. 보다 구체적으로 본 발명은 다단 이산화탄소 건식포집공정을 위한 다중관형 열교환형 유동층 반응기 구성방법과 반응기 벽면에서의 열전달 향상을 위한 방법으로서, 발열반응이 일어나는 이산화탄소 흡착반응기(carbonation reactor)와 흡열반응이 일어나는 탈착반응기(regeneration reactor) 내부 흡착제와의 접촉면적을 최대화하기 위해 흡착반응기를 여러 개(다중관-다발 형태)로 구성할 수 있다. 또는 발열반응이 일어나는 이산화탄소 흡착반응기를 환형형태로 제작하고 그 반응기 안쪽 면과 바깥쪽 면에 탈착반응기를 설치할 수 있다. 나아가, 이러한 열교환형 유동층 반응기(이중관, 다중관(다발), 환형(삼중관, 사중관)) 벽면에서의 열전달 향상을 위해 반응기 벽면에 열전달 향상장치인 와류형성수단으로서, 립 터뷸레이터(rib turbulator), 그루브 타입 터뷸레이터, 돌출부, 함몰부를 여러 배열로 형성할 수 있다.The present invention is to maintain and improve the heat exchange efficiency (when the process is large) of the gas-adsorbent heat exchange type fluidized bed reactor (bubble fluidized bed or high-speed fluidized bed) for the multi-stage carbon dioxide dry capture process configuration. The present invention carbon dioxide through heat exchange in a multi-stage carbon dioxide dry capture process As a method for increasing the use of the reaction heat generated during the adsorption reaction, the heat exchange efficiency for the process configuration may be maintained as the size of the multi-stage carbon dioxide dry capture process reactor increases. More specifically, the present invention provides a method for constructing a multi-tubular heat exchange type fluidized bed reactor for a multi-stage carbon dioxide dry capture process and a method for improving heat transfer at the reactor wall, and a desorption reaction with a carbonation reactor in which an exothermic reaction occurs and an endothermic reaction occurs. In order to maximize the contact area with the adsorbent inside the reactor, the adsorption reactor can be configured in multiple (multi-tube-bundled) forms. Alternatively, the carbon dioxide adsorption reactor in which the exothermic reaction takes place may be manufactured in an annular form and a desorption reactor may be installed on the inner and outer surfaces of the reactor. Furthermore, a rib turbulator as a vortex forming means that is a heat transfer improving device on the wall of the heat exchanger for improving heat transfer on the wall of such a heat exchange type fluidized bed reactor (double pipe, multi pipe (bundle), annular (triple pipe, quadruple)). ), Groove type turbulators, protrusions, and depressions can be formed in multiple arrangements.
아래에서 도면을 이용하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.
도 1은 본 발명의 이산화탄소 포집장치에서 흡착반응기와 탈착반응기 사이에서 열 교환이 이루어지는 개념을 설명하기 위한 도면이다. 도 1을 참조하면, 이산화탄소 포집장치는 저온, 중온, 고온 스테이지의 3단으로 구성된다. 각 스테이지에서는 흡착제가 이산화탄소의 흡착이 일어나는 반응기와 이산화탄소의 탈착이 일어나는 반응기를 순환하게 되며, 상위 단(stage)의 높은 온도에서의 흡착반응시 발생하는 반응열을 이산화탄소 탈착반응시에 소요되는 에너지로 이용한다. 도면에는 도시하지 않았지만 탈착반응기의 외부에는 열의 외부 유출을 방지하기 위한 보온 수단이 구비될 수 있다.1 is a view for explaining the concept that the heat exchange between the adsorption reactor and the desorption reactor in the carbon dioxide capture device of the present invention. Referring to Figure 1, the carbon dioxide capture device is composed of three stages of low temperature, medium temperature, high temperature stage. In each stage, the adsorbent is circulated between the reactor where the adsorption of carbon dioxide occurs and the reactor where desorption of carbon dioxide occurs, and the heat of reaction generated during the adsorption reaction at the high temperature of the upper stage is used as energy for the desorption reaction of carbon dioxide. . Although not shown in the figure, the outside of the desorption reactor may be provided with a heat insulating means for preventing the external leakage of heat.
도 2는 흡착반응기가 탈착반응기 내부에 삽입된 형태의 이산화탄소 포집장치를 도시한 것이다. 도 2를 참조하면, 이산화탄소 흡착반응기는 이산화탄소 탈착반응기의 내부에 삽입된 형태로 구성되는데, 이때, 흡착반응기의 흡착제가 이산화탄소를 흡착하면서 흡착열이 발생하게 되고, 이 열은 흡착반응기의 벽을 통하여 탈착반응기로 전달되어 흡착제에서 이산화탄소의 탈착이 이루어진다. 이때, 도면에 도시된 흡착반응기와 탈착반응기는 서로 인접한 서로 다른 온도 스테이지의 흡착반응기와 탈착반응기이고, 흡착반응기에 충진된 흡착제와 탈착반응기에 충진된 흡착제는 서로 다른 온도의 이산화탄소 흡착 및 탈착 온도를 가지게 된다. 이를 위하여 서로 다른 온도의 흡착 및 탈착 온도를 가지는 흡착제는 서로 다른 물질로 이루어지거나, 서로 다른 결정질로 이루어질 수 있으며, 서로 다른 도핑물질이 이용되거나, 서로 다른 도핑량을 가질 수 있다. 상호 열 교환이 이루어지는 흡착반응기와 탈착반응기의 구조는 흡착반응기가 탈착반응기의 중심에 삽입되도록 하는 것이 열 교환의 효율상 바람직하다. 도면에서는 흡착반응기가 탈착반응기의 내부에 삽입된 형태의 반응기를 도시하였지만, 탈착반응기가 흡착반응기에 삽입되는 형태로 변형될 수 있으며, 탈착반응기가 흡착반응기의 외면을 감싸거나, 흡착반응기가 탈착반응기의 외면을 감싸는 형태라면 다양한 형태로 반응기의 구조가 변형될 수 있다.Figure 2 shows a carbon dioxide capture device in which the adsorption reactor is inserted into the desorption reactor. Referring to FIG. 2, the carbon dioxide adsorption reactor is configured to be inserted into the carbon dioxide desorption reactor, where the heat of adsorption is generated while the adsorbent of the adsorption reactor adsorbs carbon dioxide, and the heat is desorbed through the wall of the adsorption reactor. Desorption of carbon dioxide from the adsorbent is carried to the reactor. In this case, the adsorption reactor and the desorption reactor shown in the drawings are adsorbing reactors and desorption reactors of different temperature stages adjacent to each other, and the adsorbents packed in the adsorption reactor and the adsorbents packed in the desorption reactor are different from each other. Have. To this end, the adsorbents having different temperature adsorption and desorption temperatures may be made of different materials, different crystalline materials, different doping materials may be used, or different doping amounts. The structure of the adsorption reactor and the desorption reactor in which the mutual heat exchange is performed is preferably such that the adsorption reactor is inserted into the center of the desorption reactor in view of the efficiency of heat exchange. In the drawings, the adsorption reactor is inserted into the desorption reactor in the form of the reactor, the desorption reactor may be modified to be inserted into the adsorption reactor, the desorption reactor wraps the outer surface of the adsorption reactor, or the adsorption reactor is desorption reactor If the shape surrounding the outer surface of the reactor can be modified in various forms.
도 3은 복수개의 흡착반응기가 탈착반응기의 내부에 삽입된 형태의 이산화탄소 포집장치를 도시한 것이다. 도 3을 참조하면, 흡착반응기는 복수개의 관형반응기로 이루어지고, 탈착 반응기의 내부에 삽입된 형태로 설치된다. 이때, 흡착반응기에서 발생된 열이 탈착반응기로 전달되는 것을 도 2에서 설명된 것과 동일하지만, 흡착반응기의 외부 면적이 보다 증가하여 열교환 효율이 향상될 수 있다. 흡착반응기의 개수는 다양하게 변화시킬 수 있고, 흡착반응기의 배치 형태 또한 열교환 효율을 고려하여 다양하게 변화시킬 수 있다. 또한 열교환 효율을 고려하여 흡착반응기의 직경을 서로 다르게 설계할 수도 있다. 이러한 형태의 반응기는 반응기의 대형화에 유리하다. 반응기의 직경이 커지면 열교환이 일어나는 면적도 증가되어야 하기 때문이다. 탈착반응기의 내부에 삽입되는 복수개의 흡착반응기는 탈착반응기의 내부에 균일하게 분포되도록 삽입되는 것이 열교환 효율을 고려하여 바람직하다.3 illustrates a carbon dioxide capture device in which a plurality of adsorption reactors are inserted into a desorption reactor. Referring to Figure 3, the adsorption reactor is composed of a plurality of tubular reactor, it is installed in the form inserted into the desorption reactor. In this case, the heat generated in the adsorption reactor is transferred to the desorption reactor as described in FIG. 2, but the external area of the adsorption reactor may be increased to improve heat exchange efficiency. The number of adsorption reactors can be varied, and the arrangement of adsorption reactors can also be varied in consideration of heat exchange efficiency. In addition, the diameter of the adsorption reactor may be designed differently in consideration of heat exchange efficiency. This type of reactor is advantageous for the large size of the reactor. This is because the larger the diameter of the reactor, the larger the area where heat exchange takes place. The plurality of adsorption reactors inserted into the desorption reactor are preferably inserted in the inside of the desorption reactor in consideration of heat exchange efficiency.
도 4는 흡착반응기의 외부와 내부에 탈착반응기가 설치된 형태의 이산화탄소 포집장치를 도시한 것이다. 도 4를 참조하면, 흡착반응기는 환형으로 이루어지고, 흡착반응기의 외부에 보다 큰 직경의 환형 탈착반응기가 설치되고, 흡착반응기의 내부 공간에 관형의 탈착반응기가 설치되어 있다. 이러한 구현예에서도 흡착반응기에서 발생된 열이 탈착반응기로 전달되는 것은 도 3 및 도 4와 유사하지만, 흡착반응기의 내부와 외부에서 열 교환이 이루어지므로 열교환 효율이 향상될 수 있다. 도면에는 도시하지 않았지만, 도 3에 도시된 본 발명의 구현예와 도 4에 도시된 구현예가 결합된 형태, 즉 내부에 탈착반응기가 설치된 환형의 흡착반응기가 복수개로 구성되고, 이들 흡착반응기가 탈착반응기에 삽입된 형태로 설치된 이산화탄소 포집장치를 구성하는 것도 가능하다. 4 illustrates a carbon dioxide capture device in which a desorption reactor is installed inside and outside the adsorption reactor. Referring to FIG. 4, the adsorption reactor is formed in an annular shape, a larger diameter annular desorption reactor is installed outside the adsorption reactor, and a tubular desorption reactor is installed in the inner space of the adsorption reactor. In this embodiment, the heat generated in the adsorption reactor is similar to that of FIGS. 3 and 4, but heat exchange is performed inside and outside the adsorption reactor, thereby improving heat exchange efficiency. Although not shown in the drawings, the embodiment of the present invention shown in FIG. 3 and the embodiment shown in FIG. 4 are combined, that is, a plurality of cyclic adsorption reactors having a desorption reactor installed therein, and these adsorption reactors are desorption. It is also possible to construct a carbon dioxide capture device installed in the form inserted in the reactor.
도 5는 흡착반응기의 외부와 내부에 탈착반응기가 설치되고, 다시 외부의 탈착반응기 외부에 흡착반응기가 설치된 형태의 이산화탄소 포집장치를 도시한 것이다. 도 5를 참조하면, 흡착반응기와 탈착반응기가 순차적으로 삽입된 형태로 이루어지며, 흡착반응기에서 탈착반응기로 열의 이동이 이루어진다. 도면에는 도시하지 않았지만, 흡착반응기와 탈착반응기의 인접 설치 개수는 증가시킬 수 있으며, 이는 반응기가 대형화되는 경우에 더욱 필요할 수 있다. 또한, 이러한 구조의 반응기에 도 3에 도시된 형태의 다발 흡착반응기가 적용될 수도 있다.5 illustrates a carbon dioxide capture device in which a desorption reactor is installed outside and inside the adsorption reactor, and the adsorption reactor is installed outside the desorption reactor. Referring to FIG. 5, the adsorption reactor and the desorption reactor are sequentially inserted, and heat is transferred from the adsorption reactor to the desorption reactor. Although not shown in the drawings, the number of adjacent installations of the adsorption reactor and the desorption reactor may be increased, which may be more necessary when the reactor is enlarged. In addition, a multiple adsorption reactor of the type shown in FIG. 3 may be applied to the reactor having such a structure.
도 6은 흡착반응기 또는 탈착반응기의 벽면에 립 터뷸레이터가 설치된 형태의 구조에서 일어나는 열 교환을 설명하기 위한 도면이다. 도 6의 (가)는 립 터뷸레이터가 형성되지 않은 구조의 반응기이고, (나)는 립 터뷸레이터가 형성된 구조의 반응기이다. 도 6의 (가)를 참조하면, 흡착반응기의 온도는 탈착반응기의 온도보다 높게 구동되며, 흡착반응기의 벽면 또는 탈착반응기의 벽면을 따라 형성된 온도 차이에 의하여 열의 흐름이 발생한다. 도 6의 (나)를 참조하면, 흡착반응기의 벽면 또는 탈착반응기의 벽면에는 립 터뷸레이터가 설치되어 있다. 립 터뷸레이터는 벽면에서 돌출된 형태로 이루어지는데, 반응기 내부에서 일어나는 가스의 흐름 및 흡착제의 흐름에 와류를 형성하여 흡착제 또는 기체에서 열이 반응기의 벽면으로 효과적으로 전달되도록 하는 기능과, 열전달이 이루어지는 벽면의 표면적을 증가시켜서 열교환 효율을 향상시키는 기능을 한다. FIG. 6 is a view for explaining heat exchange occurring in a structure in which a lip turbulator is installed on a wall of an adsorption reactor or a desorption reactor. 6A is a reactor having a structure in which no lip turbulator is formed, and (B) is a reactor having a structure in which a lip turbulator is formed. Referring to Figure 6 (a), the temperature of the adsorption reactor is driven higher than the temperature of the desorption reactor, the heat flow is generated by the temperature difference formed along the wall surface of the adsorption reactor or the wall of the desorption reactor. Referring to FIG. 6B, a lip turbulator is installed on the wall surface of the adsorption reactor or the wall surface of the desorption reactor. The lip turbulator is formed to protrude from the wall, and forms a vortex in the gas flow and the adsorbent flow inside the reactor to effectively transfer heat from the adsorbent or gas to the wall of the reactor, and the heat transfer wall. By increasing the surface area of the function to improve the heat exchange efficiency.
도 7은 본 발명의 이산화탄소 포집장치에 적용될 수 있는 립 터뷸레이터의 구성을 나타낸 것이다. 도 7을 참조하면, 도 7의 (가)는 반응기의 외부면 또는 내부면에 립 터뷸레이터가 길이방향으로 나란하게 연속적으로 형성된 구조를 나타낸 것이고(inlined array, continuous rib), (나)는 립 터뷸레이터가 나란하게 끊어진 형태로 형성된 구조이며(inlined array, discreted rib), (다)는 립 터뷸레이터가 엇갈린 형태로 형성된 구조이며(Staggered array), (라)는 립 터뷸레이터가 경사를 가지고 아래쪽에서 꺾인 형태로 연속적으로 형성된 구조이며(Angled array, continuous rib), (마)는 립 터뷸레이터가 경사를 가지고 꺾이고 끊어진 형성된 구조이며(Angled array, discreted rib), (바)는 립 터뷸레이터가 경사를 가지고 꺾이면서 엇갈리고 끊어진 형성된 구조이며(Angled array, discreted rib), (사)는 립 터뷸레이터가 경사를 가지고 위쪽에서 꺾인 형태로 연속적으로 형성된 구조이며(Angled array, continuous rib), (아)는 립 터뷸레이터가 경사를 가지고 위쪽에서 꺾이고 끊어진 형태로 연속적으로 형성된 구조이며(Angled array, continuous rib), (자)는 립 터뷸레이터가 경사를 가지고 꺾이면서 엇갈리고 연속된 형성된 구조이며(Angled array, continuous rib), (차)는 립 터뷸레이터가 기울기를 가지는 형태로 연속적으로 형성된 구조이며(Diagonal array, continuous rib), (카)는 립 터뷸레이터가 기울기를 가지는 형태로 끊어진 형성된 구조이고(Diagonal array, continuous rib), (타)는 립 터뷸레이터가 연속 수직 형태로 형성된 구조이며(Vertical array, continuous rib), (하)는 립 터뷸레이터가 끊어진 수직 형태로 형성된 구조이다(Vertical array, discreted rib). 각각의 실시 형태는 흡착제의 밀도, 크기, 온도 등을 고려하여 선택하거나 결합시킬 수 있다. 도 7의 (거)를 참조하면, 립 터뷸레이터의 단면 구조 또한 다양하게 구성이 가능한데, 립 터뷸레이터의 단면은 사각형, 사다리꼴, 삼각형, 원형으로 이루어지거나, 상기 도형에서 모서리가 둥글게 변형된 형태로 이루어질 수 있다.Figure 7 shows the configuration of the lip turbulator that can be applied to the carbon dioxide capture device of the present invention. Referring to FIG. 7, (a) of FIG. 7 illustrates a structure in which lip turbulators are continuously formed side by side in a longitudinal direction on the outer surface or the inner surface of the reactor (inlined array, continuous rib), and (b) The turbulator is formed in the form of broken side by side (inlined array, discreted rib), (C) is the structure in which the lip turbulator is staggered (Staggered array), and (D) is the lip turbulator with the slope (Angled array, continuous rib), (e) is the structure where the lip turbulator is bent and broken with an inclination (Angled array, discrete rib), and (bar) is the lip turbulator is inclined. (Angled array, discreted rib), and (g) is a structure in which the lip turbulator is continuously formed in the shape of being bent from the top with an inclination (Angled array, conti) nuous rib), (a) is a structure in which the lip turbulator is inclined upwardly with a slope and is continuously formed (Angled array, continuous rib). (Angled array, continuous rib), (car) is a continuous structure in which the lip turbulator is inclined (Diagonal array, continuous rib), (ka) is in the form that the lip turbulator has a slope (Diagonal array, continuous rib), (ta) is a structure in which the lip turbulator is formed in a continuous vertical form (Vertical array, continuous rib), (below) is a structure in which the lip turbulator is formed in a broken vertical form (Vertical array, discrete rib). Each embodiment may be selected or combined in consideration of the density, size, temperature, etc. of the adsorbent. Referring to FIG. 7 (G), the sectional structure of the lip turbulator can also be configured in various ways. The sectional shape of the lip turbulator may be formed in a quadrangular, trapezoid, triangle, or circular shape, or the shape of the lip turbulator may be roundly deformed in the figure. Can be done.
도 8은 연속 링 타입 립의 터뷸레이터와 내부 연속 그루브 타입의 터뷸레이터를 도시한 것이다. 도 8의 (가)는 이산화탄소 흡착반응기의 외부에 연속 링 타입의 립 터뷸레이터(continuous ring shape rib turbulator)가 형성된 형태를 나타낸 것이고, (나)는 이산화탄소 흡착반응기의 내부에 연속 그루브 타입의 터뷸레이터(continuous groove)가 형성된 형태를 나타낸 것이다. 연속 링 타입의 립 터뷸레이터나 연속 그루브 타입의 터뷸레이터는 평행하게 형성된 복수개의 링 형태이거나 나선형으로 연결된 형태일 수 있다. 외부 연속 링 타입의 립 터뷸레이터는 이산화탄소 탈착반응기 내부의 흡착제 흐름에 변화를 줄 수 있고, 내부 연속 그루브 타입의 터뷸레이터는 흡착반응기 내부의 흡착제 흐름에 변화를 줄 수 있다. 이와 같은 연속형 립 터뷸레이터와 그루브 타입 터뷸레이터는 코어-애뉼라(core-annular) 형태의 입자분포가 나타나는 고속유동층 반응기에서 벽 근처에서의 입자들(cluster 형태)의 잔류 시간(residence time)과 접촉율을 높여 베드-투-월(bed-to-wall) 또는 월-투-베드(wall-to-bed) 열전달 특성을 향상 시킬 수 있다. 8 shows a turbulator of a continuous ring type lip and an inner continuous groove type turbulator. 8A shows a continuous ring type rib turbulator formed on the outside of the carbon dioxide adsorption reactor, and (b) shows a continuous groove type turbulator inside the carbon dioxide adsorption reactor. (continuous groove) is formed. The continuous ring-type lip turbulator or the continuous groove-type turbulator may be in the form of a plurality of rings formed in parallel or helically connected. The outer continuous ring type lip turbulator can change the adsorbent flow inside the carbon dioxide desorption reactor, and the inner continuous groove type turbulator can change the adsorbent flow inside the adsorption reactor. Such continuous lip turbulators and groove type turbulators have a residence time of particles (cluster form) near the wall in a high-flow fluidized bed reactor in which core-annular particle distributions occur. The contact rate can be increased to improve bed-to-wall or wall-to-bed heat transfer characteristics.
도 9는 립 터뷸레이터에 의하여 발생하는 가스 플로우와 솔리드 플로우의 변화를 설명하기 위한 도면이다. 도 9의 (가)는 높은 밀도 베드(기포 유동층) 타입의 반응기에 대한 도면이고, (나)는 낮은 밀도 베드(고속 유동층) 타입의 반응기에 관한 도면이다. 도 9의 (가)를 참조하면, 흡착제는 반응기 내부에 높은 밀도로 채워지고, 흡착제의 흐름인 솔리드 플로우(solid flow)는 위에서 아래쪽으로 이루어지는데, 립 터뷸레이터에 접촉하면서 흡착제가 이동하게 되고, 따라서 열 교환에 필요한 시간이 길어지고 열 교환에 필요한 접촉 면적도 증가하여 결과적으로 열 교환 효율이 향상된다. 또한 솔리드 플로우와 반대방향으로 형성되는 가스 플로우(gas flow)도 립 터뷸레이터 근처에서 와류가 형성된다. 도 9의 (나)를 참조하면, 흡착제는 반응기 내부에 낮은 밀도로 채워져서 흡착제 사이에 빈 공간이 존재하면서 반응기 내부에서 이동하게 되는데(클러스트 형태로 이동 가능), 이때에도 립 터뷸레이터와의 접촉이나 와류생성에 의해 클러스터 형태의 흡수제들이 분리될 확률이 높아지면서 열 교환이 보다 효율적으로 일어날 수 있다.FIG. 9 is a view for explaining changes in gas flow and solid flow generated by the lip turbulator. FIG. 9A is a diagram of a reactor of a high density bed (bubble fluidized bed) type, and (B) is a diagram of a reactor of a low density bed (rapid fluidized bed) type. Referring to (a) of FIG. 9, the adsorbent is filled into the reactor at a high density, and the solid flow, which is the flow of the adsorbent, is formed from the top to the bottom, and the adsorbent moves while contacting the lip turbulator. Therefore, the time required for heat exchange is increased and the contact area required for heat exchange is also increased, resulting in improved heat exchange efficiency. In addition, a gas flow that is formed in the opposite direction to the solid flow also forms a vortex near the lip turbulator. Referring to (b) of FIG. 9, the adsorbent is filled with a low density inside the reactor so that there is an empty space between the adsorbents and moves inside the reactor (movable in the form of a cluster), but also in contact with the lip turbulator In addition, heat exchange can occur more efficiently as the probability of separation of cluster-type absorbents by vortex formation increases.
도 10은 조업 중인 고속유동층 반응기에서 반경방향 입자분포를 나타내는 도면이다(Wirth and Seiter, 1991). 반응기 벽면에 약 0.2~0.9 mm의 얇은 공기층(approximately particle free zone)이 존재하게 되어 입자들(클러스터나 strand형태-annuls region)에 의한 열전달에 저항으로 작용하게 된다. 따라서 반응기 벽면에 구조물설치를 통해 와류 생성을 유도하여 벽면의 얇은 공기층을 깨뜨리거나 입자들의 분포가 높은 영역(wall region with falling strands)에 돌출부 형태 구조물을 설치하여 입자들과의 반응기와의 접촉 확률을 높이거나 입자들의 체류 시간(residence time)을 높여 열전달 증가가 가능하다. 10 is a diagram showing radial particle distribution in a high speed fluidized bed reactor in operation (Wirth and Seiter, 1991). A thin air layer (approximately particle free zone) of about 0.2-0.9 mm is present on the wall of the reactor, which acts as a resistance to heat transfer by particles (cluster or strand-annuls region). Therefore, by installing the structure on the wall of the reactor, vortex generation is induced to break the thin air layer on the wall or to install a protrusion-type structure in the wall region with falling strands to increase the probability of contact with the reactor. It is possible to increase heat transfer by increasing the residence time of the particles or by increasing the residence time of the particles.
도 11은 돌출부와 함몰부 타입의 립 터뷸레이터에서 열교환이 일어나는 과정을 설명하기 위한 도면이다. 도 11의 (가)는 흡착반응부와 탈착반응부 사이를 경계 짓는 벽면에 함몰부가 형성된 경우이고, (나)는 흡착반응부와 탈착반응부 사이를 경계 짓는 벽면에 돌출부가 형성된 경우이다. 돌출부 또는 함몰부에 의하여 흡착제와의 접촉면적이 증가하며, 와류 형성에 의하여 열전달 효율도 증가될 수 있다. 도면에는 도시하지 않았지만, 흡착반응기나 탈착반응기의 표면에 돌출부와 함몰부를 함께 형성할 수 있고, 흡착반응기에는 돌출부를 형성하고 탈착반응기에는 함몰부를 형성하는 것도 가능하며, 그 반대의 조합도 가능하다.FIG. 11 is a view for explaining a process of heat exchange occurring in a lip turbulator of a protrusion and a depression type. FIG. 11A is a case where a depression is formed on the wall boundary between the adsorption reaction portion and the desorption reaction portion, and (B) is a case where a protrusion is formed on the wall boundary between the adsorption reaction portion and the desorption reaction portion. The contact area with the adsorbent is increased by the protrusions or depressions, and the heat transfer efficiency may be increased by the vortex formation. Although not shown in the drawings, protrusions and depressions may be formed together on the surface of the adsorption reactor or desorption reactor, protrusions may be formed on the adsorption reactor, and depressions may be formed on the desorption reactor, and vice versa.
도 12는 돌출부와 함몰부의 배치 방법에 대하여 설명하기 위한 도면이다. 도 12를 참조하면, 반응기에 형성되는 돌출부와 함몰부의 배치는 (가)와 같이 돌출부와 함몰부를 동일한 수평 라인에 형성하고 길이방향으로 교번하여 형성하는 경우도 가능하고, (나)와 같이 수평 라인과 길이 방향으로 교번하여 형성하는 것도 가능하다. 또한, 반응기에 길이 방향으로 형성되는 온도차를 고려하여 돌출부와 함몰부의 형성 밀도 및 형성 크기 등을 변화시키는 것도 가능하다.It is a figure for demonstrating the arrangement | positioning method of a protrusion and a recessed part. Referring to FIG. 12, the arrangement of the protrusions and the depressions formed in the reactor may be formed by forming the protrusions and the depressions on the same horizontal line and alternating in the longitudinal direction as shown in (A), and the horizontal lines as shown in (B). It is also possible to form alternately in the longitudinal direction. In addition, in consideration of the temperature difference formed in the reactor in the longitudinal direction, it is also possible to change the formation density, the formation size, and the like of the protrusion and the depression.
도 13은 돌출부의 시작 부위 경사각이 완만한 형태의 돌출부 터뷸레이터(protrusion)에서 이루어지는 가스 플로우와 솔리드 플로우의 변화를 설명하기 위한 도면이다. 도 13의 (가)는 높은 밀도 베드(기포 유동층)에서 일어나는 현상이고, (나)는 낮은 밀도 베드(고속 유동층)에서 일어나는 현상이다. 돌출부의 경사를 따라 가스 플로우와 솔리드 플로우에 와류가 발생한다. 고속유동층에서는 클러스터 혹은 스트랜즈(strands) 형태의 입자들 그룹이 돌출부 근처를 이동(down flow)하면서 돌출부에 의한 와류에 의해 입자 그룹을 분리시켜 단일 입자들과 벽면과의 열전달을 높일 수 있다. 돌출부의 시작 부위 경사각이 완만하게 형성되므로 돌출부와의 충돌 각도가 작아지고, 따라서 흡착제가 충돌에 의하여 깨지는 것을 방지할 수 있다. It is a figure for demonstrating the change of the gas flow and solid flow which are made in the protrusion protrusion of a gentle shape of the starting part inclination angle of a protrusion. 13A is a phenomenon occurring in a high density bed (bubble fluidized bed), and (B) is a phenomenon occurring in a low density bed (high speed fluidized bed). Vortex occurs in the gas flow and the solid flow along the slope of the protrusion. In the high velocity fluidized bed, groups of particles in the form of clusters or strands may flow down near the protrusions to separate the group of particles by vortices by the protrusions, thereby increasing heat transfer between the single particles and the wall surface. Since the inclination angle of the starting portion of the protrusion is formed smoothly, the collision angle with the protrusion is small, and thus the adsorbent can be prevented from being broken by the collision.
도 14는 함몰부의 시작 부위 경사각이 완만한 형태의 함몰부 터뷸레이터(dimple)에서 이루어지는 가스 플로우와 솔리드 플로우의 변화를 설명하기 위한 도면이다. 도 14의 (가)는 높은 밀도 베드(기포 유동층)에서 일어나는 현상이고, (나)는 낮은 밀도 베드(고속 유동층)에서 일어나는 현상이다. 함몰부의 경사를 따라 가스 플로우와 솔리드 플로우에 와류가 발생한다. 또한 접촉면적의 증가로 이해 열전달 증가를 기대 할 수 있다. 함몰부의 시작 부위 경사각이 완만하게 형성되므로 흡착제가 충돌에 의하여 깨지는 것을 방지할 수 있다. 14 is a view for explaining the change in the gas flow and the solid flow made in the depression turbulence (gradle) of the gentle start portion inclination angle. 14A is a phenomenon occurring in a high density bed (bubble fluidized bed), and (B) is a phenomenon occurring in a low density bed (high speed fluidized bed). Vortex occurs in the gas flow and the solid flow along the slope of the depression. In addition, an increase in the contact area can be expected to increase heat transfer. Since the inclination angle of the start portion of the depression is formed gently, it is possible to prevent the adsorbent from being broken by the collision.
도 15는 립 터뷸레이터가 적용된 반응기에서 립의 높이와 배열 간격을 설명하기 위한 도면이다. 립의 높이(e)는 고속 유동층 운전 중 발생하는 반응기 벽면과 흡착제 그룹(annulus) 사이의 공기층 두께(0.2~0.9mm) 이상의 높이인 것이 바람직하고, 흡수제의 소모(attrition)를 줄이기 위하여 일정 이상의 높이는 초과하지 않는 것이 바람직하다. 이러한 요인들을 고려하면, 적절한 립의 높이는 흡착제 직경 대비 약 1~10배인 것이 바람직하다(Geldart group A 입자: 평균 흡착제 직경 100~200마이크로미터). 립의 바람직한 배열 간격(P)은 2 ≤ P/e ≤ 100 인 것이 바람직하다. 상기 배열 간격은 립 사이에 입자의 침투 또는 유동의 재부착을 위해 필요한 간격이며, 입자의 침투와 유동의 재부착은 열전달을 향상시킬 수 있다. 설치되는 립의 형태는 흡착제의 소모를 줄이기 위하여 부드러운(smooth) 곡면 형태(round)로 이루어지는 것이 바람직하고, 흡착제의 소모 또는 파괴를 줄이기 위하여 연성의 재료로 이루어질 수 있다.15 is a view for explaining the height and arrangement interval of the lip in the reactor to which the lip turbulator is applied. The height (e) of the lip is preferably at least the thickness of the air layer (0.2 to 0.9 mm) between the reactor wall and the adsorbent group (annulus) generated during the high-speed fluidized bed operation, and the height above the predetermined height is reduced to reduce the attrition of the absorbent. It is preferable not to exceed it. Considering these factors, it is desirable that the appropriate lip height be about 1 to 10 times the diameter of the adsorbent (Geldart group A particles: average adsorbent diameter of 100 to 200 micrometers). The preferred arrangement spacing P of the ribs is preferably 2 ≦ P / e ≦ 100. The spacing is the spacing necessary for the infiltration of particles or reattachment of flow between the lip, and the infiltration of particles and reattachment of flow can improve heat transfer. The shape of the lip to be installed is preferably made of a smooth (round) to reduce the consumption of the adsorbent, it may be made of a soft material to reduce the consumption or destruction of the adsorbent.
도 16은 돌출부와 함몰부가 적용된 반응기에서 돌출부의 높이 및 함몰부의 깊이와 배열 간격을 설명하기 위한 도면이다. 돌출부의 높이(e)는 고속 유동층 운전 중 발생하는 반응기 벽면과 흡착제 그룹(annulus) 사이의 공기층 두께(0.2~0.9mm) 이상의 높이인 것이 바람직하고, 흡수제의 소모(attrition)를 줄이기 위하여 일정 이상의 높이는 초과하지 않는 것이 바람직하다. 이러한 요인들을 고려하면, 적절한 돌출부의 높이는 흡착제 직경 대비 약 1~10배인 것이 바람직하다(Geldart group A 입자: 평균 흡착제 직경 100~200마이크로미터). 함몰부의 깊이는 돌출부의 높이와 동일하게 설계할 수 있다. 돌출부와 함몰부의 의 바람직한 배열 간격(P)은 2 ≤ P/e ≤ 100 인 것이 바람직하다. 상기 배열 간격은 립 사이에 입자의 침투 또는 유동의 재부착을 위해 필요한 간격이며, 입자의 침투와 유동의 재부착은 열전달을 향상시킬 수 있다. 설치되는 돌출부 및 함몰부의 형태는 흡착제의 소모를 줄이기 위하여 부드러운(smooth) 곡면 형태(round)로 이루어지는 것이 바람직하고, 흡착제의 소모 또는 파괴를 줄이기 위하여 연성의 재료로 이루어질 수 있다.FIG. 16 is a view for explaining the height of the protrusion, the depth of the recess, and the arrangement interval in the reactor to which the protrusion and the recess are applied. The height e of the protrusion is preferably at least the thickness of the air layer (0.2 to 0.9 mm) between the reactor wall and the adsorbent group (annulus) generated during the high-speed fluidized bed operation, and the height above the predetermined height is reduced in order to reduce the attrition of the absorbent. It is preferable not to exceed it. Considering these factors, it is preferable that the height of the appropriate protrusion is about 1 to 10 times the diameter of the adsorbent (Geldart group A particles: average adsorbent diameter of 100 to 200 micrometers). The depth of the depression can be designed to be equal to the height of the protrusion. Preferably, the arrangement interval P of the protrusions and recesses is 2 ≦ P / e ≦ 100. The spacing is the spacing necessary for the infiltration of particles or reattachment of flow between the lip, and the infiltration of particles and reattachment of flow can improve heat transfer. The protrusions and recesses to be installed are preferably made of a smooth curved round to reduce the consumption of the adsorbent, and may be made of a soft material to reduce the consumption or destruction of the adsorbent.
이상의 설명은 본 발명의 기술 사상을 일 구현 예를 이용하여 설명한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 갖는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에서 설명된 구현 예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이런 구현 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 한다.The above description has been made using the embodiments of the technical idea of the present invention, and those skilled in the art to which the present invention pertains various modifications and variations without departing from the essential characteristics of the present invention. Therefore, the embodiments described in the present invention are not intended to limit the technical spirit of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (9)

  1. 이산화탄소가 포함된 배가스에서 이산화탄소를 선택적으로 분리하기 위한 이산화탄소 포집장치에 있어서,In the carbon dioxide capture device for selectively separating the carbon dioxide from the exhaust gas containing carbon dioxide,
    충진된 이산화탄소 흡착제가 흡착반응기와 탈착반응기를 순환하면서 이산화탄소의 흡착과 이산화탄소 탈착이 연속적으로 일어나는 복수개의 이산화탄소 흡착탈착부를 포함하고, 적어도 하나의 이산화탄소 흡착탈착부의 흡착반응기에서 발생된 흡착열이 다른 이산화탄소 흡탈착부의 탈착반응기로 전달되어 상호 열교환이 이루어지며,The packed carbon dioxide adsorbent includes a plurality of carbon dioxide adsorption and desorption units in which carbon dioxide adsorption and carbon dioxide desorption occur continuously while circulating the adsorption reactor and the desorption reactor, and the heat of adsorption generated in the adsorption reactor of the at least one carbon dioxide adsorption and desorption unit is different. It is transferred to the negative desorption reactor to exchange heat with each other,
    상기 상호 열교환이 이루어지는 흡착반응기가 탈착반응기 내부에 삽입되거나, 탈착반응기가 흡착반응기 내부에 삽입된 것을 특징으로 하는 이산화탄소 포집장치.The adsorption reactor in which the mutual heat exchange is performed is inserted into the desorption reactor, or the desorption reactor is inserted into the adsorption reactor.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 상호 열교환이 이루어지는 흡착반응기는 탈착반응기의 중심에 삽입되는 것을 특징으로 하는 이산화탄소 포집장치.The adsorption reactor in which the mutual heat exchange is performed is inserted into the center of the desorption reactor.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 상호 열교환이 이루어지는 흡착반응기는 복수개의 다발로 이루어지고, 상기 복수개의 다발로 이루어진 흡착반응기가 탈착반응기 내부에 균일하게 삽입되는 것을 특징으로 하는 이산화탄소 포집장치.The adsorption reactor in which the mutual heat exchange is made of a plurality of bundles, carbon dioxide trapping device characterized in that the adsorption reactor consisting of a plurality of bundles is uniformly inserted into the desorption reactor.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 탈착반응기 내부에 삽입된 흡착반응기의 내부에 다른 이산화탄소 흡착탈착부의 탈착반응기가 삽입되거나,The desorption reactor of another carbon dioxide adsorption desorption unit is inserted into the adsorption reactor inserted into the desorption reactor,
    상기 흡착반응기가 내부에 삽입된 탈착반응기의 내부에 다른 이산화탄소 흡착탈착부의 흡착반응기가 삽입된 것을 특징으로 하는 이산화탄소 포집장치.Carbon dioxide capture device, characterized in that the adsorption reactor of the other carbon dioxide adsorption and desorption part is inserted into the desorption reactor in which the adsorption reactor is inserted.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 상호 열교환이 이루어지는 흡착반응기 또는 탈착반응기의 벽면에 와류형성수단이 형성된 것을 특징으로 하는 이산화탄소 포집장치.And a vortex forming means is formed on the wall surface of the adsorption reactor or the desorption reactor in which the mutual heat exchange is performed.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 상호 열교환이 이루어지는 흡착반응기 또는 탈착반응기의 벽면에 돌출부 또는 함몰부가 형성된 것을 특징으로 하는 이산화탄소 포집장치.The carbon dioxide collecting device, characterized in that the protrusion or the depression is formed on the wall surface of the adsorption reactor or the desorption reactor is a mutual heat exchange.
  7. 이산화탄소가 포함된 배가스에서 이산화탄소를 선택적으로 분리하기 위한 이산화탄소 포집장치에 있어서,In the carbon dioxide capture device for selectively separating the carbon dioxide from the exhaust gas containing carbon dioxide,
    충진된 이산화탄소 흡착제가 흡착반응기와 탈착반응기를 순환하면서 이산화탄소의 흡착과 이산화탄소 탈착이 연속적으로 일어나는 복수개의 이산화탄소 흡착탈착부를 포함하고, 적어도 하나의 이산화탄소 흡착탈착부의 흡착반응기에서 발생된 흡착열이 다른 이산화탄소 흡탈착부의 탈착반응기로 전달되어 상호 열교환이 이루어지며,The packed carbon dioxide adsorbent includes a plurality of carbon dioxide adsorption and desorption units in which carbon dioxide adsorption and carbon dioxide desorption occur continuously while circulating the adsorption reactor and the desorption reactor, and the heat of adsorption generated in the adsorption reactor of the at least one carbon dioxide adsorption and desorption unit is different. It is transferred to the negative desorption reactor to exchange heat with each other,
    상기 흡착반응기와 탈착반응기는 관형으로 이루어지고, 상기 상호 열교환이 이루어지는 흡착반응기가 탈착반응기의 외면을 감싸거나, 상기 탈착반응기가 흡착반응기의 외면을 감싸도록 설치되는 것을 특징으로 하는 이산화탄소 포집장치.And the adsorption reactor and the desorption reactor are tubular, and the adsorption reactor in which the mutual heat exchange is performed surrounds the outer surface of the desorption reactor, or the desorption reactor is installed to surround the outer surface of the adsorption reactor.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 흡착반응기 또는 탈착반응기의 외면 또는 내면에 돌출부 또는 함몰부가 형성된 것을 특징으로 하는 이산화탄소 포집장치.Carbon dioxide capture device characterized in that the protrusion or depression formed on the outer surface or the inner surface of the adsorption reactor or desorption reactor.
  9. 이산화탄소가 포함된 배가스에서 이산화탄소를 선택적으로 분리하기 위한 이산화탄소 포집장치에 있어서,In the carbon dioxide capture device for selectively separating the carbon dioxide from the exhaust gas containing carbon dioxide,
    충진된 이산화탄소 흡착제가 흡착반응기와 탈착반응기를 순환하면서 이산화탄소의 흡착과 이산화탄소 탈착이 연속적으로 일어나는 복수개의 이산화탄소 흡착탈착부를 포함하고, 적어도 하나의 이산화탄소 흡착탈착부의 흡착반응기에서 발생된 흡착열이 다른 이산화탄소 흡탈착부의 탈착반응기로 전달되어 상호 열교환이 이루어지며,The packed carbon dioxide adsorbent includes a plurality of carbon dioxide adsorption and desorption units in which carbon dioxide adsorption and carbon dioxide desorption occur continuously while circulating the adsorption reactor and the desorption reactor, and the heat of adsorption generated in the adsorption reactor of the at least one carbon dioxide adsorption and desorption unit is different. It is transferred to the negative desorption reactor to exchange heat with each other,
    상기 상호 열교환이 이루어지는 흡착반응기와 탈착반응기에 와류를 형성하기 위한 돌출부 또는 함몰부가 형성된 것을 특징으로 하는 이산화탄소 포집장치.And a protrusion or a depression for forming a vortex in the adsorption reactor and the desorption reactor in which the mutual heat exchange is performed.
PCT/KR2014/012769 2013-12-24 2014-12-23 Multi-pipe type carbon dioxide capture device WO2015099432A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0162854 2013-12-24
KR20130162854A KR101480654B1 (en) 2013-12-24 2013-12-24 Multiple-pipe type reactor for capturing of carbon dioxide

Publications (1)

Publication Number Publication Date
WO2015099432A1 true WO2015099432A1 (en) 2015-07-02

Family

ID=52588544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012769 WO2015099432A1 (en) 2013-12-24 2014-12-23 Multi-pipe type carbon dioxide capture device

Country Status (2)

Country Link
KR (1) KR101480654B1 (en)
WO (1) WO2015099432A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101982786B1 (en) * 2017-12-01 2019-05-28 한국에너지기술연구원 Fluidized bed reactor
KR102033745B1 (en) * 2019-06-28 2019-10-17 한국화학연구원 Apparatus and process for capturing of carbon dioxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003175311A (en) * 2001-08-27 2003-06-24 Air Products & Chemicals Inc Thermal swing adsorption method and adsorption unit and apparatus therefor
KR101045061B1 (en) * 2009-11-19 2011-06-29 한국에너지기술연구원 Carbon Dioxide Capture Apparatus with Multi-stage Fluidized Bed Heat Exchanger Type Regenerator
KR20130129526A (en) * 2012-05-21 2013-11-29 고등기술연구원연구조합 Indirect heating type volatile organic compounds reactor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2278639T3 (en) * 1999-10-15 2007-08-16 Abb Lummus Global Inc. CONVERSION OF NITROGEN OXIDES IN THE PRESENCE OF A CATALYST SUPPORTED BY A MESH TYPE STRUCTURE.
KR100471590B1 (en) * 2002-04-25 2005-03-08 박종후 Metallic monoliths substrate of 3-way catalytic converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003175311A (en) * 2001-08-27 2003-06-24 Air Products & Chemicals Inc Thermal swing adsorption method and adsorption unit and apparatus therefor
KR101045061B1 (en) * 2009-11-19 2011-06-29 한국에너지기술연구원 Carbon Dioxide Capture Apparatus with Multi-stage Fluidized Bed Heat Exchanger Type Regenerator
KR20130129526A (en) * 2012-05-21 2013-11-29 고등기술연구원연구조합 Indirect heating type volatile organic compounds reactor

Also Published As

Publication number Publication date
KR101480654B1 (en) 2015-01-13

Similar Documents

Publication Publication Date Title
US10413866B2 (en) System and method for carbon dioxide capture and sequestration
AU2014373727B2 (en) Rotating multi-monolith bed movement system for removing CO2 from the atmosphere
KR101381443B1 (en) Apparatus for capturing of carbon dioxide
KR101509389B1 (en) Stack of plate type reactor for capturing of carbon dioxide
CN102631905B (en) Desulfurized activated carbon regenerating column and method
KR102033745B1 (en) Apparatus and process for capturing of carbon dioxide
WO2007045048A1 (en) System and method for calcination/carbonation cycle processing
CN103801172B (en) Ciculation fluidized moving bed is used to catch CO in power-plant flue gas 2technique and device
WO2014142556A1 (en) Carbon dioxide collection device
KR101336778B1 (en) Dry sorbent CO2 capturing device using multi sorbents
CN210544365U (en) A reactant removes bed for flue gas desulfurization denitration treatment system
WO2015099432A1 (en) Multi-pipe type carbon dioxide capture device
CN112646614A (en) Moving bed type blast furnace gas desulfurization device and desulfurization method thereof
CN203507792U (en) Synchronous desulfurization and denitrification tower
CN103071474B (en) The burnt resolver of a kind of powdery and analytic method thereof
CN215524217U (en) Exhaust-heat boiler flue gas processing apparatus that flue gas was evenly arranged
CN213913046U (en) Moving bed reactor
CN203694875U (en) Radial cross-flow moving-bed reactor for removal of hydrogen sulfide by temperature swing adsorption
KR20140119520A (en) Method and Device for High Purity Hydrogen Generation with Fixed Catalyst
CN113828108A (en) Flue gas purification system and moving bed adsorption tower
CN114247262B (en) Molecular sieve adsorption method CO 2 Removal system and removal process
WO2013191513A1 (en) High-purity gas production apparatus and production method therefor
CN112892509A (en) Sulfur-carrying active coke fluidized regeneration tower, regeneration system and regeneration method
CN107355779A (en) A kind of Multistage tower-type adverse current bed air reactor suitable for the burning of solid fuel chemistry chain
CN103884016A (en) Efficient catalytic combustion device and method of dust-contained sulfur-contained low-concentration methane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874474

Country of ref document: EP

Kind code of ref document: A1