WO2015099282A1 - Composite nonwoven fabric and preparation method therefor - Google Patents

Composite nonwoven fabric and preparation method therefor Download PDF

Info

Publication number
WO2015099282A1
WO2015099282A1 PCT/KR2014/010397 KR2014010397W WO2015099282A1 WO 2015099282 A1 WO2015099282 A1 WO 2015099282A1 KR 2014010397 W KR2014010397 W KR 2014010397W WO 2015099282 A1 WO2015099282 A1 WO 2015099282A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
carboxymethyl cellulose
composite nonwoven
composite
substrate
Prior art date
Application number
PCT/KR2014/010397
Other languages
French (fr)
Korean (ko)
Inventor
임정남
김태희
도성준
김윤진
김채화
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2015099282A1 publication Critical patent/WO2015099282A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/587Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives characterised by the bonding agents used
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • D06M15/05Cellulose or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • D06M15/05Cellulose or derivatives thereof
    • D06M15/09Cellulose ethers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • D01F6/625Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters derived from hydroxy-carboxylic acids, e.g. lactones
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters

Definitions

  • the present invention relates to a composite nonwoven fabric and a method for producing the same, and more particularly, to a composite nonwoven fabric having a good liquid absorption and a high transparency at the time of absorption, and directly coated on the wound surface to serve as a temporary artificial skin and a method for producing the same. .
  • Skin not only protects the human body from various harmful environments such as microorganisms, ultraviolet rays, and chemicals, but also inhibits water evaporation, thereby preventing dehydration and regulating body temperature. to be.
  • the skin of the human body has a property to protect the wound and to naturally heal when wounds, burns, etc.
  • the wound covering material is used as a method to effectively protect the wound and to speed up the healing.
  • the characteristics of wound coating should be excellent in biocompatibility, so that there is no rejection reaction to the wounded area, enough to absorb the body fluid discharged from the wounded area, and high moisture permeability to prevent the invasion of normal skin around the wound. It must be breathable to maintain.
  • the wound site was covered with the wound covering material, so that the wound healing process was not seen, the healing process could not be checked, and the wound infection or the need for replacement of the bandage could not be checked, so the wound covering material had to be removed. In this case, even if the wound is not sufficiently healed, the wound covering material is removed, which may cause serious problems such as damage to the skin and disruption of the healing process.
  • the problem to be solved by the present invention is to provide a composite non-woven fabric having excellent liquid absorption and high transparency at the time of liquid absorption, is directly coated on the wound surface to serve as a temporary artificial skin.
  • Another object of the present invention is to provide a method for producing the composite nonwoven fabric.
  • Another object of the present invention is to provide a sanitary article using the composite nonwoven fabric described above.
  • Nonwoven substrates composed of one or two or more fibers selected from the group consisting of polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers formed by electrospinning;
  • It comprises a carboxymethyl cellulose coating layer formed on at least one of the two sides of the nonwoven fabric substrate or the internal pores of the nonwoven substrate,
  • a composite nonwoven fabric is provided that is opaque in the non-absorbed state and becomes transparent in the absorbed state.
  • the average pore size of the composite nonwoven fabric may be 5 ⁇ m or less.
  • the average diameter of the fibers may be 100 to 4,000 nm.
  • the lactic acid content of the lactic acid-glycolic acid copolymer may be 10 to 90 molar ratio.
  • the loading amount of the carboxymethyl cellulose coating layer may be 1 to 30 parts by weight based on 100 parts by weight of the nonwoven fabric substrate.
  • Transparency after absorbing the composite nonwoven fabric in 0.9% saline for 30 seconds may be 60% or more.
  • the liquid absorption ratio of the composite nonwoven fabric may be 4 g / g or more.
  • Preparing an electrospinning solution by dissolving one or two or more mixtures selected from the group consisting of polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers in a solvent;
  • a method for producing a composite nonwoven fabric comprising coating a carboxymethyl cellulose solution on the nonwoven substrate to form a carboxymethyl cellulose coating layer.
  • the carboxymethyl cellulose solution may be prepared by dissolving carboxymethyl cellulose in a mixed solvent of water and a non-solvent having a surface tension lower than that of the carboxymethyl cellulose.
  • the content of the non-solvent in the mixed solvent may be 5 to 60% by weight.
  • the method may further include calendering the nonwoven substrate after the electrospinning to form the nonwoven substrate before or after coating the carboxymethyl cellulose solution.
  • a sanitary article using the above-described composite nonwoven fabric is provided.
  • the hygiene article may be a medical coating, an absorbent hygiene article, a food packaging material, or a mask pack.
  • FIG. 1 is a graph evaluating the hydrophilicity of the composite nonwoven fabric prepared in Example 1 and the nonwoven fabric prepared in Comparative Example 1.
  • FIG. 1 is a graph evaluating the hydrophilicity of the composite nonwoven fabric prepared in Example 1 and the nonwoven fabric prepared in Comparative Example 1.
  • Example 4 is a photograph showing the results of comparative evaluation of the transparency of the liquid absorption of Example 1 and Comparative Example 3.
  • 5 and 6 are SEM pictures of the surface of the composite nonwoven fabric prepared in Example 1 and Comparative Example 3, respectively.
  • Polylactic acid refers to the entire polymer composed of lactic acid (Lactic acid) as a monomer, and is a polymer synthesized by using L-lactic acid, which is fermented by microorganisms from renewable resources such as polymer lactic acid and starch, as a monomer.
  • L-lactic acid which is fermented by microorganisms from renewable resources such as polymer lactic acid and starch, as a monomer.
  • thermal and physical properties may vary.
  • Lactic acid-glycolic acid copolymers are copolymers having a common repeating unit derived from polylactic acid and polyglycolic acid, respectively. At this time, the polyglycolic acid has a characteristic of being absorbed and degraded in vivo by aliphatic polyester having a very simple structural unit (-O-CH 2 -CO-).
  • polylactic acid and lactic acid-glycolic acid copolymers are generally used as medical products and biomaterials as biocompatible and biodegradable thermoplastic polyesters which are recognized worldwide.
  • the polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers are characterized as being hydrophobic or having a low degree of wettability, in whole or in part. Therefore, when polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers are used as a medical, in particular, wound covering material, the liquid absorption characteristics of the secretion discharged from the wound area are lowered, thereby adhering to the wound area, and as temporary artificial skin. There was a limit to not functioning enough.
  • the present inventors include a nonwoven substrate made of fibers of polylactic acid, polycaprolactone or lactic acid-glycolic acid copolymer formed by electrospinning; And a carboxymethyl cellulose coating layer formed on at least one of both surfaces of the nonwoven fabric substrate or the internal pores of the nonwoven fabric substrate, which is opaque in the non-absorbed state and transparent in the absorbed state.
  • the nonwoven substrate of the composite nonwoven fabric consists of one or two or more fibers selected from the group consisting of polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers formed by electrospinning.
  • polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers as described above, provide excellent biocompatibility, biodegradability, and the like, which are basic properties of the composite nonwoven fabric.
  • the content of lactic acid in the lactic acid-glycolic acid copolymer may be adjusted to preferably 10 to 90 molar ratio, more preferably 10 to 70 molar ratio.
  • the content of lactic acid it is easy to prepare a solution for electrospinning, and the biodegradation property is improved, and biodegradation may occur well over time even if it remains on the wound surface.
  • the nonwoven substrate is formed of the fiber by electrospinning, which can thin the substrate while fully exhibiting the properties of biodegradable, biocompatible polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymer, This is because the pore size of the substrate can be easily adjusted, has high flexibility, and improves the coating property on the skin.
  • the fibers of the lactic acid, polycaprolactone and lactic acid-glycolic acid copolymers forming the nonwoven substrate have an average diameter of 100 to 4,000 nm, more preferably 500 to 3,000 nm. When the diameter of the fiber satisfies this range, the pore size of the substrate can be controlled sufficiently small without increasing the thickness of the nonwoven substrate, and the flexibility of the nonwoven fabric can be improved.
  • the composite nonwoven fabric according to the present invention includes a carboxymethyl cellulose coating layer on at least one of both sides of the nonwoven fabric substrate or internal pores of the nonwoven substrate.
  • the carboxymethyl cellulose coating layer improves hydrophilicity, liquid absorption, and the like by improving the disadvantages of the hydrophobic property of the nonwoven substrate made of one or two or more fibers selected from the group consisting of polylactic acid, polycaprolactone, and lactic acid-glycolic acid copolymers. And maintain a moist environment at the wound site. Also,
  • the loading amount of the carboxymethyl cellulose coating layer may be 1 to 30 parts by weight based on 100 parts by weight of the nonwoven fabric substrate.
  • the loading amount of the carboxymethyl cellulose coating layer satisfies this range, pore control is easily improved to improve the absorption characteristics of the final composite nonwoven fabric and to prevent bacterial invasion from external infectious agents.
  • the carboxymethyl cellulose coating layer may be coated on at least one surface of the nonwoven fabric substrate, or in accordance with the pore size control of the nonwoven substrate, carboxymethyl cellulose may be incorporated into the space inside the pores to form a coating layer.
  • carboxymethyl cellulose coating layer may be coated on at least one surface of the nonwoven fabric substrate, or in accordance with the pore size control of the nonwoven substrate, carboxymethyl cellulose may be incorporated into the space inside the pores to form a coating layer.
  • the greater the degree of penetration of the carboxymethyl cellulose coating layer into the voids inside the pores of the nonwoven fabric substrate the better the liquid absorption characteristics as well as the surface of the nonwoven fabric substrate, thereby increasing the overall liquid absorption ratio of the nonwoven substrate.
  • the composite nonwoven fabric of the present invention is applied to the wound site, the absorption property to secretion such as body fluids is excellently improved, which may result in better wound healing.
  • the average pore size of the composite nonwoven fabric may be 5 ⁇ m or less, preferably 0.2 to 5 ⁇ m, more preferably 0.5 to 2 ⁇ m.
  • the average pore size of this composite nonwoven fabric may be affected by the average size of the original nonwoven substrate and the loading amount and coating aspect of the carboxymethyl cellulose coating layer to be coated.
  • the average pore size of the composite nonwoven fabric can be controlled according to the conditions of the calendering process, that is, the temperature and the pressure.
  • the composite nonwoven fabric has a carboxymethyl cellulose coating layer on a nonwoven substrate made of one or two or more fibers selected from the group consisting of hydrophobic polylactic acid, polycaprolactone, and lactic acid-glycolic acid copolymers, thereby improving hydrophilicity, particularly absorption characteristics. It is characterized by being improved. Absorption characteristics of such a composite nonwoven fabric can be evaluated through the weight change before and after the absorption in the sample of a predetermined weight, as follows.
  • Absorption magnification (g / g) [(weight of sample after absorption)-(weight of sample before absorption)] / (weight of sample before absorption)
  • the liquid absorption ratio of such a composite nonwoven fabric may be 4 g / g or more, preferably 4 to 30 g / g, more preferably 6 to 20 g / g.
  • the absorption ratio of the composite nonwoven fabric satisfies this range, the wound site is placed in an appropriate wet environment when coated on the wound site, and the body adhesiveness discharged from the wound site is absorbed to improve skin adhesion of the nonwoven fabric.
  • the composite nonwoven fabric according to the present invention has the property of being opaque in the non-absorbed state and transparent in the absorbed state. This property is due to the fact that the skin adhesion of the nonwoven fabric is improved and the scattering of light is reduced with absorption.
  • the normal nonwoven fabric has a problem of removing the wound covering made of the nonwoven fabric to observe the skin condition in order to observe the wound site. In this case, the wound site is not completely treated. Removing the wound covering can cause extreme pain for the patient.
  • the transparency after absorbing the composite nonwoven fabric in 0.9% saline for 30 seconds may be 60% or more, preferably 60 to 95%, more preferably 75 to 90%.
  • Transparency was compared using the Gretag Macbeth colorimeter (CE 3100) using the reflectance measurement method in the visible wavelength range of 400 ⁇ 700nm under the D65 standard light source by the following equation.
  • the transparency of the composite nonwoven fabric satisfies this range, when the body fluid or saline solution is absorbed into the composite nonwoven fabric, the wound site may be easily observed even when the composite nonwoven fabric is attached.
  • the composite nonwoven fabric when the composite nonwoven fabric is opaque in the non-absorbed state, it means that the transparency is less than 60% by the transparency measurement method.
  • the composite nonwoven fabric of the present invention may have a thickness of 50 to 500 ⁇ m, more preferably 100 to 300 ⁇ m. When satisfying the thickness range of the composite nonwoven fabric, it is advantageous to improve the transparency and flexibility of the nonwoven fabric.
  • a method for preparing a composite nonwoven fabric includes preparing a electrospinning solution by dissolving one or two or more mixtures selected from the group consisting of polylactic acid, polycaprolactone, and lactic acid-glycolic acid copolymers in a solvent. step; Electrospinning the spinning solution to form a nonwoven substrate; And coating a carboxymethyl cellulose solution on the nonwoven substrate to form a carboxymethyl cellulose coating layer.
  • Electrospinning is used to produce the nonwoven substrate of the present invention.
  • one or two or more mixtures selected from the group consisting of polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers must be dissolved in a solvent to prepare an electrospinning solution.
  • the solvent used may uniformly dissolve one or two or more mixtures selected from the group consisting of polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers, and radioactive. Any of these high solvents can be used without limitation, examples being trifluoroacetic acid, dimethylformamide, dimethylsulfoxide, chloroform, trifluoroethylene, acetone, hexafluoroisopropanol, methylene chloride, tetrahydrofuran, acetic acid and formic acid Etc. may be used, and they may be used as one or two or more mixed solvents.
  • the content of one or two or more mixtures selected from the group consisting of polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymer added in the electrospinning solution is 5 to 20% by weight in the total electrospinning solution, more preferably. Preferably from 8 to 15% by weight.
  • the weight percentage is adjusted in this way, it is possible to obtain an electrospinning solution which is uniformly dissolved and has an appropriate viscosity and is easy to handle. As a result, spinning properties may be improved, and the diameter distribution of the manufactured fiber may be uniform.
  • one or two or more mixtures selected from the group consisting of polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers are used as co-solvents of dimethyl formamide and chloroform with excellent emissivity for easy removal of residual solvents. It can be completely dissolved so that there are no impurities, and stirred at room temperature for about 12 hours before being used for electrospinning.
  • the prepared electrospinning solution is electrospun to form a nonwoven substrate.
  • polymers such as polylactic acid, polycaprolactone, or lactic acid-glycolic acid copolymers do not have a constant molecular weight due to their properties, so it is important to control process conditions when producing fibers by electrospinning.
  • the basic electrospinning device used in the present invention is equipped with a syringe fitted with 21G to 24G nozzles made of stainless steel in an integrally configured positive charge high voltage generator, an integrated drum and a metered discharge pump.
  • a syringe fitted with 21G to 24G nozzles made of stainless steel in an integrally configured positive charge high voltage generator, an integrated drum and a metered discharge pump.
  • the structure and morphology are analyzed and the best reproducible electrospinning condition is obtained. Applied.
  • the electrospinning device in an embodiment of the present invention, the electrospinning solution prepared by dissolving one or two or more mixtures selected from the group consisting of polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymer in a solvent
  • Any device capable of electrospinning may be applied without limitation, and examples thereof include a syringe type, a wire type, a drum type, and the like, but are not limited thereto.
  • the electrospinning is preferably carried out under the electrospinning conditions of 5 to 20% by weight of the mixed solution, voltage 5 to 100 kV, discharge rate of the solution of 0.1 to 10 ml / h and spinning distance of 3 to 50 cm. .
  • the carboxymethyl cellulose solution is coated on the obtained nonwoven fabric substrate to form a carboxymethyl cellulose coating layer.
  • the carboxymethyl cellulose solution may be prepared by dissolving carboxymethyl cellulose in a mixed solvent of water and alcohol.
  • carboxymethyl cellulose is well soluble in water, whereas polylactic acid, polycaprolactone, or lactic acid-glycolic acid copolymers are hydrophobic.
  • a nonwoven substrate made of one or two or more fibers selected from the group consisting of coalescing, it is difficult to uniformly attach the aqueous solution of carboxymethyl cellulose to the nonwoven substrate.
  • the non-solvent having a lower surface tension than water and a non-solvent of carboxymethyl cellulose as a solvent is mixed, the surface tension of the resulting solution is lower than that of the aqueous solution, thereby uniformly coating the carboxymethyl cellulose solution on the nonwoven fabric substrate.
  • the content of the non-solvent in the mixed solvent is 5 to 60% by weight, more preferably 10 to 30% by weight.
  • the content of the non-solvent is less than 5%, the effect of adding the non-solvent is insignificant, and when the content of the non-solvent is greater than 60%, the non-solvent cannot dissolve the carboxymethyl cellulose. have.
  • alcohols such as methanol, ethanol, isopropyl alcohol, acetone, methylene chloride, chloroform, and the like may be used alone or as a mixture of two or more thereof.
  • the coating amount of the carboxymethyl cellulose solution may be adjusted so that the loading amount of the carboxymethyl cellulose coating layer is 1 to 30 parts by weight based on 100 parts by weight of the nonwoven substrate. have.
  • the non-woven substrate coated with the carboxymethyl cellulose solution may be hot air dried or vacuum dried at room temperature or 40 to 120 ° C. to obtain a composite nonwoven fabric.
  • the obtained composite nonwoven fabric may be further subjected to a calendering process at a temperature of 200 to 600 psi at room temperature to 100 ° C. By passing through such a calendering process, the pore size and thickness of the finally obtained composite nonwoven fabric can be adjusted.
  • the composite nonwoven fabric of the present invention may be usefully used in various medical coatings, absorbent hygiene products, food packaging materials, mask packs, and the like, and may have particularly suitable properties as a wound coating material serving as a temporary artificial skin during burn treatment.
  • DMF dimethylformamide
  • a voltage of 15 kV, a spinning distance of 20 cm, and a fluid velocity of 6 ml / h were fixed using an electrospinning apparatus and spun for 5 hours on a rotating drum current collector to obtain a nonwoven substrate. Thereafter, the obtained nonwoven substrate was washed with ethanol and dried in a vacuum oven for 24 hours at room temperature to finally prepare a nonwoven substrate having an average pore size of 11.6 ⁇ m.
  • the prepared nonwoven fabric substrate was immersed in 0.4 wt% carboxymethyl cellulose solution prepared by dissolving carboxymethyl cellulose in a mixed solvent having a weight ratio of ethanol and water of 20:80 for 10 seconds, and then dried at 80 ° C. for 1 hour to average A composite nonwoven fabric having a pore size of 4.9 ⁇ m and a thickness of 159 ⁇ m was prepared. At this time, the loading amount of carboxymethyl cellulose was 21 parts by weight based on 100 parts by weight of the nonwoven fabric.
  • DMF dimethylformamide
  • a voltage of 20 kV, a spinning distance of 20 cm, and a fluid velocity of 6 ml / h were fixed and spun on a rotating drum current collector for 6 hours to obtain a nonwoven substrate.
  • the obtained nonwoven substrate was washed with ethanol and dried in a vacuum oven for 24 hours at room temperature to obtain a nonwoven substrate having an average pore size of 7 ⁇ m, which was then calendered at a pressure of 500 psi at room temperature, and the average pore size was 4.1 ⁇ m.
  • the phosphorous nonwoven substrate was finally produced.
  • the prepared nonwoven fabric substrate was immersed in 0.4 wt% carboxymethyl cellulose solution prepared by dissolving carboxymethyl cellulose in a mixed solvent having a weight ratio of ethanol and water of 20:80 for 10 seconds, and then dried at 80 ° C. for 1 hour to average A composite nonwoven fabric having a pore size of 3.1 ⁇ m and a thickness of 104 ⁇ m was prepared. At this time, the loading amount of the carboxymethyl cellulose was 14 parts by weight based on 100 parts by weight of the nonwoven fabric.
  • DMF dimethylformamide
  • a voltage of 20 kV, a spinning distance of 19 cm, and a fluid speed of 6 ml / h were fixed and spun on a rotating drum current collector for 8 hours to obtain a nonwoven substrate.
  • the obtained nonwoven substrate was washed with ethanol and dried in a vacuum oven for 24 hours at room temperature to prepare a nonwoven substrate having an average pore size of 5.4 ⁇ m.
  • the prepared nonwoven fabric substrate was immersed in 0.4 wt% carboxymethyl cellulose solution prepared by dissolving carboxymethyl cellulose in a mixed solvent having a weight ratio of ethanol and water of 20:80 for 10 seconds, and then dried at 80 ° C. for 1 hour to average A composite nonwoven fabric having a pore size of 1.9 ⁇ m and a thickness of 181 ⁇ m was prepared. At this time, the loading amount of the carboxymethyl cellulose was 20 parts by weight based on 100 parts by weight of the nonwoven fabric.
  • DMF methylformamide
  • a voltage of 20 kV, a spinning distance of 20 cm, and a fluid velocity of 5 ml / h were fixed and spun on a rotating drum current collector for 6 hours to obtain a nonwoven substrate.
  • the resulting nonwoven substrate was then prepared in a vacuum oven at 45 ° C. for 24 hours.
  • the prepared nonwoven fabric substrate was immersed in a 0.04 wt% carboxymethyl cellulose solution prepared by dissolving carboxymethyl cellulose in a mixed solvent having a weight ratio of ethanol and water of 30:70 for 10 seconds, and then dried at 40 ° C. for 30 minutes to average.
  • a composite nonwoven fabric having a pore size of 4.6 ⁇ m and a thickness of 78 ⁇ m was prepared.
  • a nonwoven substrate prepared in the same manner as in Example 1 was prepared except that the step of immersing the carboxymethyl cellulose solution was not performed.
  • a nonwoven substrate prepared in the same manner as in Example 3 was prepared except that the step of immersing the carboxymethyl cellulose solution was not performed.
  • a composite nonwoven fabric substrate was prepared in the same manner as in Example 1, except that only water was used instead of ethanol and water mixed solvent in the preparation of the carboxymethyl cellulose solution in the immersion treatment in the carboxymethyl cellulose solution.
  • the contact angle is measured based on the KS L 2110 standard using an image analyzer (Drop shape analysis system; DSA 100, KRUSS GmbH) using the image analyzer (Drop shape analysis system; DSA 100, KRUSS GmbH). It was. Using the above evaluation method, the hydrophilicity of the nonwoven fabrics prepared in Example 1 and Comparative Example 1 was evaluated, and the results are shown in FIG.
  • a sample of 3 cm 3 cm is cut out of the nonwoven fabric under standard conditions, and the weight is measured accurately.
  • the sample is immersed in 0.9% saline for 30 seconds. Thereafter, one end of the nonwoven fabric is pulled out with tweezers, and then waited until the saline solution no longer drops, the weight at the time of liquid absorption is measured, and the liquid absorption ratio is calculated by the following equation.
  • Example 2 After applying the composite nonwoven fabric prepared in Example 1 on the wound site and the substrate, the transparency was visually evaluated after the absorption of 0.9% physiological saline for 30 seconds (left picture) and after (right picture). Are shown in FIGS. 2 and 3, respectively.
  • Example 4 After the nonwoven fabrics prepared in Example 1 and Comparative Example 3 were absorbed with 0.9% physiological saline for 30 seconds, transparency was visually evaluated, and a photograph of the observed non-woven fabric was shown in FIG. 4.
  • the composite nonwoven fabrics prepared in Examples 1 and 3 and the nonwoven substrates prepared in Comparative Examples 1 and 2 were absorbed in 0.9% physiological saline for 30 seconds, and then visible light wavelength range was measured under a D65 standard light source using a Gretag Macbeth colorimeter (CE 3100). It was compared by the following formula using the reflectance measurement method at phosphorus 400 to 700nm.
  • the solvent used in the carboxymethyl cellulose solution for forming the carboxymethyl cellulose coating layer is a mixed solvent of water and ethanol
  • the carboxymethyl cellulose penetrates uniformly between the electrospun fibers while the water
  • the carboxymethyl cellulose is very nonuniformly distributed in a part of the sole solvent. This is because the nonwoven fabric made of the electrospun biodegradable polymer exhibits hydrophobicity, and when the water having a large surface tension is used as the sole solvent, the hydrophilicity is large, making it difficult to penetrate the aqueous solution of carboxymethyl cellulose.
  • the alcohol and water mixed solvent is used, the surface tension is lowered, thereby facilitating the penetration between the hydrophobic nonwoven fabrics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

Provided are a composite nonwoven fabric and a preparation method therefor, the composite nonwoven fabric comprising: a nonwoven fabric base material formed, by electrospinning, of at least one or two types of fibers selected from the group consisting of copolymers of polylactic acid, polycaprolactone and lactic acid-glycolic acid; and a carboxymethylcellulose coating layer formed on both surfaces of the nonwoven fabric base material or in at least one of pores inside the nonwoven fabric base material, wherein the composite nonwoven fiber becomes opaque in a non-liquid absorbing state and becomes transparent in a liquid-absorbing state.

Description

복합 부직포 및 이의 제조 방법Composite Nonwovens and Methods for Making the Same
본 발명은 복합 부직포 및 이의 제조 방법에 관한 것이고, 보다 구체적으로는, 우수한 흡액성과 흡액시 높은 투명성을 가지며, 상처면에 직접 피복되어 임시 인공 피부 역할을 하는 복합 부직포 및 이의 제조 방법에 관한 것이다. The present invention relates to a composite nonwoven fabric and a method for producing the same, and more particularly, to a composite nonwoven fabric having a good liquid absorption and a high transparency at the time of absorption, and directly coated on the wound surface to serve as a temporary artificial skin and a method for producing the same. .
본 출원은 2013년 12월 27일에 출원된 한국출원 제10-2013-0166050호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.This application claims priority based on Korean Patent Application No. 10-2013-0166050, filed December 27, 2013, and all the contents disclosed in the specification and drawings of the application are incorporated in this application.
피부는 외부의 미생물이나 자외선, 화학물질과 같은 여러 가지 유해 환경으로부터 인체를 보호할 뿐만 아니라 수분증발을 억제함으로써 탈수를 방지하고 체온을 조절하는 역할을 하는, 우리 몸 중 가장 큰 표면적을 차지하는 중요한 기관이다.Skin not only protects the human body from various harmful environments such as microorganisms, ultraviolet rays, and chemicals, but also inhibits water evaporation, thereby preventing dehydration and regulating body temperature. to be.
한편, 산업 사회가 발전함에 따라, 심한 화상, 외상, 창상, 욕창 및 피부질환과 같은 다양한 원인에 의한 피부 손상의 가능성은 점점 더 커지고 있으며, 이때, 일차봉합이 불가능한 창상은 피부이식이 불가피한 심한 결함을 남기기도 한다. On the other hand, as the industrial society develops, the possibility of skin damage due to various causes such as severe burns, trauma, wounds, bedsores and skin diseases is increasing. At this time, wounds that cannot be closed first are severe defects in which skin transplantation is inevitable. It can also leave.
따라서, 손상된 피부조직의 복구는 매우 중요한 문제이며 상처의 치료를 신속하게 하고 이차적인 각종 부작용을 최소화하기 위해서는 적절한 창상 피복재를 이용한 상처치료는 필수적이다.Therefore, the repair of damaged skin tissue is a very important problem, and in order to promptly heal wounds and to minimize secondary side effects, wound treatment using an appropriate wound coating material is essential.
특히, 인체의 피부는 창상, 화상 등이 발생하는 경우, 상처부위를 방어하고 자연 치유하려는 성질을 가지고 있는데, 이러한 경우 상처부위를 효과적으로 보호하고 치유속도를 높이기 위한 방법으로 창상 피복재가 사용되며, 이러한 창상 피복재가 갖추어야 할 특성은 생체적합성이 우수하여 상처부위에 대한 거부반응이 없고, 상처부위로부터 배출되는 체액을 충분히 흡수할 수 있어야 하며, 상처주변에 정상피부의 침연 등을 방지하기 위하여 높은 투습도를 유지할 수 있는 투습성이 있어야 한다는 점 등이다.In particular, the skin of the human body has a property to protect the wound and to naturally heal when wounds, burns, etc. In this case, the wound covering material is used as a method to effectively protect the wound and to speed up the healing. The characteristics of wound coating should be excellent in biocompatibility, so that there is no rejection reaction to the wounded area, enough to absorb the body fluid discharged from the wounded area, and high moisture permeability to prevent the invasion of normal skin around the wound. It must be breathable to maintain.
기존의 얇은 막 형태의 창상 피복재는, 상처부위를 습한 상태로 유지하여 괴사 조직의 용해와 육아조직의 형성을 촉진하여 상처치유를 촉진시켰으나, 상처주위에 지나치게 많은 체액 등의 배출물이 고임으로써 주위의 피부가 짓무르게 되고, 배출물이 밖으로 새어 나오게 되어 임의로 배출시켜 주어야 하는 문제점이 있었다. 또한, 투습성을 향상시키기 위하여 추가적으로 물리/화학적으로 기공을 형성시켜야 하는 단점이 있다. Conventional thin-film wound coatings promote wound healing by keeping the wound moist, promoting dissolution of necrotic tissue and formation of granulation tissue, but by releasing too much body fluid and other discharges around the wound. The skin is crushed, the discharge leaked out there was a problem that should be discharged randomly. In addition, there is a disadvantage in that the pores must be additionally formed physically and chemically in order to improve moisture permeability.
또한, 상처 부위가 창상 피복재로 가려져서 창상의 치유 경과를 보지 못하고, 치유 경과를 체크 하거나 창상의 감염 혹은 붕대의 교환의 필요를 체크할 수가 없어서, 반드시 창상 피복재를 제거해야만 했다. 이 경우, 상처가 충분히 치유되지 않았음에도 창상 피복재를 제거하게 되어, 피부의 손상이나, 치유 과정을 방해하는 등의 심각한 문제가 발생할 수 있다.In addition, the wound site was covered with the wound covering material, so that the wound healing process was not seen, the healing process could not be checked, and the wound infection or the need for replacement of the bandage could not be checked, so the wound covering material had to be removed. In this case, even if the wound is not sufficiently healed, the wound covering material is removed, which may cause serious problems such as damage to the skin and disruption of the healing process.
따라서, 상처 부위의 배출물에 대한 흡액성과 동시에 투명성도 구비하는 창상 피복재의 개발이 여전히 요구되고 있다.Therefore, there is still a need for development of a wound coating material having both liquid absorptivity and transparency to the discharge of the wound site.
본 발명이 해결하려는 과제는 우수한 흡액성과 흡액시 높은 투명성을 가지며, 상처면에 직접 피복되어 임시 인공 피부 역할을 하는 복합 부직포를 제공하는 것이다.The problem to be solved by the present invention is to provide a composite non-woven fabric having excellent liquid absorption and high transparency at the time of liquid absorption, is directly coated on the wound surface to serve as a temporary artificial skin.
본 발명이 해결하려는 다른 과제는 상기 복합 부직포의 제조 방법을 제공하는 것이다. Another object of the present invention is to provide a method for producing the composite nonwoven fabric.
본 발명이 해결하려는 다른 과제는, 전술한 복합 부직포를 이용한 위생 물품을 제공하는 것이다.Another object of the present invention is to provide a sanitary article using the composite nonwoven fabric described above.
이러한 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, In order to solve this problem, according to an aspect of the present invention,
전기방사에 의해 형성된 폴리락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 섬유로 이루어진 부직포 기재; 및 Nonwoven substrates composed of one or two or more fibers selected from the group consisting of polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers formed by electrospinning; And
상기 부직포 기재의 양면 또는 부직포 기재의 내부 기공 중 적어도 1종 이상에 형성된 카르복시메틸 셀룰로오스 코팅층을 포함하고, It comprises a carboxymethyl cellulose coating layer formed on at least one of the two sides of the nonwoven fabric substrate or the internal pores of the nonwoven substrate,
비흡액 상태에서는 불투명하고, 흡액 상태에서는 투명화되는 복합 부직포가 제공된다.A composite nonwoven fabric is provided that is opaque in the non-absorbed state and becomes transparent in the absorbed state.
상기 복합 부직포의 평균 기공 크기가 5 ㎛ 이하일 수 있다.The average pore size of the composite nonwoven fabric may be 5 μm or less.
상기 섬유의 평균 직경이 100 내지 4,000 nm일 수 있다.The average diameter of the fibers may be 100 to 4,000 nm.
상기 락트산-글리콜산 공중합체 중 락트산의 함량이 10 내지 90 몰비일 수 있다.The lactic acid content of the lactic acid-glycolic acid copolymer may be 10 to 90 molar ratio.
상기 카르복시메틸 셀룰로오스 코팅층의 로딩양이 부직포 기재 100 중량부 기준으로 1 내지 30 중량부일 수 있다. The loading amount of the carboxymethyl cellulose coating layer may be 1 to 30 parts by weight based on 100 parts by weight of the nonwoven fabric substrate.
상기 복합 부직포를 0.9% 생리식염수에 30초간 흡액시킨 후의 투명도가 60% 이상일 수 있다. Transparency after absorbing the composite nonwoven fabric in 0.9% saline for 30 seconds may be 60% or more.
상기 복합 부직포의 흡액 배율이 4 g/g 이상일 수 있다.The liquid absorption ratio of the composite nonwoven fabric may be 4 g / g or more.
본 발명의 다른 측면에 따르면,According to another aspect of the invention,
폴리락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물을 용매에 용해하여 전기 방사 용액을 준비하는 단계;Preparing an electrospinning solution by dissolving one or two or more mixtures selected from the group consisting of polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers in a solvent;
상기 방사액을 전기 방사하여 부직포 기재를 형성하는 단계; 및Electrospinning the spinning solution to form a nonwoven substrate; And
상기 부직포 기재 상에 카르복시메틸 셀룰로오스 용액을 코팅하여 카르복시메틸 셀룰로오스 코팅층을 형성하는 단계를 포함하는 복합 부직포의 제조 방법이 제공된다.There is provided a method for producing a composite nonwoven fabric comprising coating a carboxymethyl cellulose solution on the nonwoven substrate to form a carboxymethyl cellulose coating layer.
상기 카르복시메틸 셀룰로오스 용액이 물과, 상기 카르복시메틸 셀룰로오스의 비용매이면서도 물보다 표면 장력이 낮은 비용매의 혼합 용매에 카르복시메틸 셀룰로오스를 용해시켜 제조될 수 있다. The carboxymethyl cellulose solution may be prepared by dissolving carboxymethyl cellulose in a mixed solvent of water and a non-solvent having a surface tension lower than that of the carboxymethyl cellulose.
상기 혼합 용매 중 상기 비용매의 함량이 5 내지 60 중량%일 수 있다.The content of the non-solvent in the mixed solvent may be 5 to 60% by weight.
상기 전기 방사하여 부직포 기재를 형성한 후 카르복시메틸 셀룰로오스 용액을 코팅하기 전 또는 코팅한 후에 상기 부직포 기재를 캘린더링 처리하는 단계를 더 포함할 수 있다.The method may further include calendering the nonwoven substrate after the electrospinning to form the nonwoven substrate before or after coating the carboxymethyl cellulose solution.
본 발명의 다른 측면에 따르면, 전술한 복합 부직포를 이용한 위생 물품이 제공된다.According to another aspect of the present invention, a sanitary article using the above-described composite nonwoven fabric is provided.
상기 위생 물품이 의료용 피복재, 흡수성 위생용품, 식품 포장재, 또는 마스크 팩일 수 있다.The hygiene article may be a medical coating, an absorbent hygiene article, a food packaging material, or a mask pack.
본 발명에 따르면, 우수한 흡액성과 흡액시 높은 투명성을 가지며, 상처면에 직접 피복되어 임시 인공 피부 역할을 하고, 외부 감염원으로부터 세균 침투를 차단하여 2차 감염의 문제를 해소할 수 있는 복합 부직포 및 이를 이용한 위생 물품을 제공할 수 있다.According to the present invention, a composite nonwoven fabric having excellent liquid absorptivity and high transparency at the time of liquid absorption, which is directly coated on the wound surface, serves as a temporary artificial skin, and can eliminate the problem of secondary infection by blocking bacterial penetration from an external infectious agent; Sanitary articles using the same can be provided.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings, which are attached to this specification, illustrate exemplary embodiments of the present invention, and together with the detailed description of the present invention, serve to further understand the technical spirit of the present invention. It should not be construed as limited to.
도 1은 실시예 1에서 제조된 복합 부직포 및 비교예 1에서 제조된 부직포의 친수성을 평가한 그래프이다.1 is a graph evaluating the hydrophilicity of the composite nonwoven fabric prepared in Example 1 and the nonwoven fabric prepared in Comparative Example 1. FIG.
도 2 및 3은 실시예 1에서 제조된 복합 부직포 및 비교예 1에서 제조된 부직포의 흡액시 투명성을 평가한 결과를 각각 나타낸 사진이다.2 and 3 are photographs showing the results of evaluating the transparency of the composite nonwoven fabric prepared in Example 1 and the nonwoven fabric prepared in Comparative Example 1 during liquid absorption.
도 4 는 실시예 1 및 비교예 3의 흡액시 투명성을 비교 평가한 결과를 나타낸 사진이다.4 is a photograph showing the results of comparative evaluation of the transparency of the liquid absorption of Example 1 and Comparative Example 3.
도 5 및 6은 실시예 1 및 비교예 3에서 제조된 복합 부직포의 표면을 각각 관찰한 SEM 사진이다.5 and 6 are SEM pictures of the surface of the composite nonwoven fabric prepared in Example 1 and Comparative Example 3, respectively.
이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiments of the present invention and do not represent all of the technical spirit of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
폴리락트산(PLA)이라 함은 락트산(Lactic acid)을 단량체로 구성한 폴리머 전체를 지칭하며, 고분자유산, 전분 등 재생 가능한 자원에서 미생물로 발효해 만든 L-유산을 단량체로 이용하여 화학 합성된 폴리머이고, 이성질체 D-Lactide, L-Lactide 함량 및 배열(랜덤공중합, 블럭공중합)에 따라 열특성 및 물리적 특성 등이 달라질 수 있다. Polylactic acid (PLA) refers to the entire polymer composed of lactic acid (Lactic acid) as a monomer, and is a polymer synthesized by using L-lactic acid, which is fermented by microorganisms from renewable resources such as polymer lactic acid and starch, as a monomer. Depending on the isomer D-Lactide and L-Lactide content and arrangement (random copolymerization, block copolymerization), thermal and physical properties may vary.
락트산-글리콜산 공중합체(PLGA, polylactic-co-glycolic acid)는 폴리락트산과 폴리글리콜산으로부터 각각 유래되는 반복단위를 공통으로 갖고 있는 공중합체이다. 이때, 폴리글리콜산은 아주 단순한 구조단위(-O-CH2 -CO-)를 갖는 지방족 폴리에스테르로 생체 내에서 흡수ㅇ분해되는 특성이 있다. Lactic acid-glycolic acid copolymers (PLGA, polylactic-co-glycolic acid) are copolymers having a common repeating unit derived from polylactic acid and polyglycolic acid, respectively. At this time, the polyglycolic acid has a characteristic of being absorbed and degraded in vivo by aliphatic polyester having a very simple structural unit (-O-CH 2 -CO-).
그 결과, 이러한 폴리락트산과, 락트산-글리콜산 공중합체는 세계적으로 인정받는 생체적합성, 생분해성 열가소성 폴리에스테르로써 일반적으로 의료용 물품이나 생체재료로 많이 이용되고 있다. As a result, such polylactic acid and lactic acid-glycolic acid copolymers are generally used as medical products and biomaterials as biocompatible and biodegradable thermoplastic polyesters which are recognized worldwide.
하지만 상기 폴리락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체는 전체적으로 또는 부분적으로, 소수성이거나, 낮은 정도의 습윤성을 갖는 특징을 가지고 있다. 따라서, 폴리락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체를 의료용, 특히 창상 피복용 재료로서 사용할 경우, 상처 부위에서 배출되는 분비액의 흡액 특성이 저하되어 상처 부위와의 밀착성, 임시적인 인공 피부로서의 기능을 충분히 발휘하지 못한다는 한계가 있었다. 또한, 상처 부위가 외부 감염원에 따른 제2의 상해를 방지하기 위해서 상기 폴리락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체를 이용한 소재 개발시 조직의 기공 크기 등의 제어의 필요성이 높아지고 있다. 더불어, 흡액성이 개선되는 것에 부가하여 상처 부위를 도포한 경우에도 상처 부위의 상태를 용이하게 관찰하여 시의 적절하게 치료 및 처리를 가능하게 하는 필요성도 더 요구되고 있다.However, the polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers are characterized as being hydrophobic or having a low degree of wettability, in whole or in part. Therefore, when polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers are used as a medical, in particular, wound covering material, the liquid absorption characteristics of the secretion discharged from the wound area are lowered, thereby adhering to the wound area, and as temporary artificial skin. There was a limit to not functioning enough. In addition, in order to prevent a second injury caused by an external infectious agent, the necessity of controlling the pore size and the like of the tissue is increased in developing a material using the polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymer. In addition to the improvement of the liquid absorption property, there is a further need for the need to easily observe the state of the wound site to enable timely treatment and treatment even when the wound site is applied.
이러한 의료용 소재의 최신의 다양한 특성에 대한 요구를 해결하기 위하여, 본 발명자들은 전기방사에 의해 형성된 폴리락트산, 폴리카프로락톤 또는 락트산-글리콜산 공중합체의 섬유로 이루어진 부직포 기재; 및 상기 부직포 기재의 양면 또는 부직포 기재의 내부 기공 중 적어도 1종 이상에 형성된 카르복시메틸 셀룰로오스 코팅층을 포함하고, 비흡액 상태에서는 불투명하고, 흡액 상태에서는 투명화되는 복합 부직포를 제공하게 되었다.In order to solve the demand for the latest various properties of such medical materials, the present inventors include a nonwoven substrate made of fibers of polylactic acid, polycaprolactone or lactic acid-glycolic acid copolymer formed by electrospinning; And a carboxymethyl cellulose coating layer formed on at least one of both surfaces of the nonwoven fabric substrate or the internal pores of the nonwoven fabric substrate, which is opaque in the non-absorbed state and transparent in the absorbed state.
상기 복합 부직포의 부직포 기재는 전기방사에 의해 형성된 폴리락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 섬유로 이루어진다.The nonwoven substrate of the composite nonwoven fabric consists of one or two or more fibers selected from the group consisting of polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers formed by electrospinning.
상기 폴리락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체는 전술한 바와 같이, 본 복합 부직포에서 기본적으로 갖추어야 될 특성인 우수한 생체적합성, 및 생분해성 등을 제공한다.The polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers, as described above, provide excellent biocompatibility, biodegradability, and the like, which are basic properties of the composite nonwoven fabric.
이때, 상기 락트산-글리콜산 공중합체 중 락트산의 함량은 바람직하게는 10 내지 90 몰비, 더 바람직하게는 10 내지 70 몰비로 조절될 수 있다. 이렇게 락트산의 함량의 조절하는 경우, 전기방사를 위한 용액 제조가 용이하고, 생분해 특성이 개선되며, 상처면에 잔류하더라도 시간 경과에 따라 생분해가 잘 일어날 수 있다.At this time, the content of lactic acid in the lactic acid-glycolic acid copolymer may be adjusted to preferably 10 to 90 molar ratio, more preferably 10 to 70 molar ratio. In the case of adjusting the content of lactic acid, it is easy to prepare a solution for electrospinning, and the biodegradation property is improved, and biodegradation may occur well over time even if it remains on the wound surface.
본 발명에서 부직포 기재는 전기방사에 의한 섬유로 형성하게 되는데, 이는 생분해성, 생체적합성의 폴리락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체의 특성을 충분히 발휘하면서, 기재를 박막화할 수 있으며, 기재의 기공 크기를 용이하게 조절할 수 있고, 고유연성을 가지게 되어, 피부에의 피복성을 개선시킬 수 있기 때문이다.In the present invention, the nonwoven substrate is formed of the fiber by electrospinning, which can thin the substrate while fully exhibiting the properties of biodegradable, biocompatible polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymer, This is because the pore size of the substrate can be easily adjusted, has high flexibility, and improves the coating property on the skin.
상기 부직포 기재를 형성하는 락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체의 섬유는 100 내지 4,000 nm, 더 바람직하게는 500 내지 3,000 nm의 평균 직경을 가진다. 상기 섬유의 직경이 이러한 범위를 만족하는 경우, 부직포 기재의 두께를 증가시키지 않으면서도, 기재의 기공 크기를 충분히 작게 제어할 수 있고, 부직포의 유연성을 향상시킬 수 있다. The fibers of the lactic acid, polycaprolactone and lactic acid-glycolic acid copolymers forming the nonwoven substrate have an average diameter of 100 to 4,000 nm, more preferably 500 to 3,000 nm. When the diameter of the fiber satisfies this range, the pore size of the substrate can be controlled sufficiently small without increasing the thickness of the nonwoven substrate, and the flexibility of the nonwoven fabric can be improved.
본 발명에 따른 복합 부직포는, 상기 부직포 기재의 양면 또는 부직포 기재의 내부 기공 중 적어도 1종 이상에 카르복시메틸 셀룰로오스 코팅층을 구비한다.The composite nonwoven fabric according to the present invention includes a carboxymethyl cellulose coating layer on at least one of both sides of the nonwoven fabric substrate or internal pores of the nonwoven substrate.
이러한 카르복시메틸 셀룰로오스 코팅층은 폴리락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 섬유로 이루어진 부직포 기재가 갖는 소수성 특성의 단점을 개선하여 친수성, 흡액성 등을 부여하고, 상처 부위에 습윤 환경을 유지시키는 역할을 한다. 또한, The carboxymethyl cellulose coating layer improves hydrophilicity, liquid absorption, and the like by improving the disadvantages of the hydrophobic property of the nonwoven substrate made of one or two or more fibers selected from the group consisting of polylactic acid, polycaprolactone, and lactic acid-glycolic acid copolymers. And maintain a moist environment at the wound site. Also,
상기 카르복시메틸 셀룰로오스 코팅층의 로딩양이 부직포 기재 100 중량부 기준으로 1 내지 30 중량부일 수 있다. 상기 카르복시메틸 셀룰로오스 코팅층의 로딩양이 이러한 범위를 만족하는 경우, 최종 복합 부직포의 흡액 특성을 탁월하게 개선하고, 외부 감염원으로부터의 세균 침입을 방지하도록 기공 제어가 용이하다.The loading amount of the carboxymethyl cellulose coating layer may be 1 to 30 parts by weight based on 100 parts by weight of the nonwoven fabric substrate. When the loading amount of the carboxymethyl cellulose coating layer satisfies this range, pore control is easily improved to improve the absorption characteristics of the final composite nonwoven fabric and to prevent bacterial invasion from external infectious agents.
상기 카르복시메틸 셀룰로오스 코팅층은 부직포 기재의 적어도 일면 상에 코팅될 수도 있고, 부직포 기재의 기공 크기 조절에 따라서, 기공 내부의 공간에도 카르복시메틸 셀룰로오수가 함입하여 코팅층을 형성할 수도 있다. 특히, 상기 카르복시메틸 셀룰로오스 코팅층이 부직포 기재의 기공 내부의 공간에 함입하는 정도가 클수록, 부직포 기재 표면뿐만 아니라 내부에서의 흡액 특성이 개선되어 부직포 기재의 전체적인 흡액 배율이 증가할 수 있다. 그 결과, 본 발명의 복합 부직포를 상처 부위에 도포시 체액 등의 분비액에 대한 흡수 특성이 탁월히 개선되어 상처 치유에 보다 우수하게 결과를 낳을 수 있다.The carboxymethyl cellulose coating layer may be coated on at least one surface of the nonwoven fabric substrate, or in accordance with the pore size control of the nonwoven substrate, carboxymethyl cellulose may be incorporated into the space inside the pores to form a coating layer. In particular, the greater the degree of penetration of the carboxymethyl cellulose coating layer into the voids inside the pores of the nonwoven fabric substrate, the better the liquid absorption characteristics as well as the surface of the nonwoven fabric substrate, thereby increasing the overall liquid absorption ratio of the nonwoven substrate. As a result, when the composite nonwoven fabric of the present invention is applied to the wound site, the absorption property to secretion such as body fluids is excellently improved, which may result in better wound healing.
상기 복합 부직포의 평균 기공 크기는 5 ㎛ 이하, 바람직하게는 0.2 내지 5 ㎛, 더 바람직하게는 0.5 내지 2 ㎛ 일 수 있다. 이러한 복합 부직포의 평균 기공 크기는, 애초 부직포 기재의 평균 크기 및 코팅되는 카르복시메틸 셀룰로오스 코팅층의 로딩양 및 코팅 양상에 따라서 영향을 받을 수 있다. 또한, 부직포 기재에 카르복시메틸 셀룰로오스 코팅층을 형성한 이후에 캘린더 공정을 거치게 된다면, 이러한 캘린더 공정의 조건, 즉 온도 및 압력에 따라서도 복합 부직포의 평균 기공 크기를 제어할 수 있게 된다. The average pore size of the composite nonwoven fabric may be 5 μm or less, preferably 0.2 to 5 μm, more preferably 0.5 to 2 μm. The average pore size of this composite nonwoven fabric may be affected by the average size of the original nonwoven substrate and the loading amount and coating aspect of the carboxymethyl cellulose coating layer to be coated. In addition, if the calendering process is performed after the carboxymethyl cellulose coating layer is formed on the nonwoven fabric base, the average pore size of the composite nonwoven fabric can be controlled according to the conditions of the calendering process, that is, the temperature and the pressure.
상기 복합 부직포의 평균 기공 크기가 이러한 범위를 만족하는 경우, 황색포도상구균과 같은 외부 감염원이 복합 부직포를 통과하여 상처 부위에 접근하는 것을 원천적으로 차단할 수 있고, 적절한 통기성을 부여할 수 있다. When the average pore size of the composite nonwoven fabric satisfies this range, external infectious agents such as Staphylococcus aureus may fundamentally block access to the wound site through the composite nonwoven fabric, and may provide appropriate breathability.
상기 복합 부직포는 소수성인 폴리락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 섬유로 이루어진 부직포 기재에 카르복시메틸 셀룰로오스 코팅층을 구비함으써 친수성, 특히 흡액 특성이 개선되는 것을 특징으로 하고 있다. 이러한 복합 부직포의 흡액 특성은 하기와 같이, 소정 중량의 시료에 있어서, 흡액 전과 흡액 후의 중량 변화를 통해서 평가될 수 있다. The composite nonwoven fabric has a carboxymethyl cellulose coating layer on a nonwoven substrate made of one or two or more fibers selected from the group consisting of hydrophobic polylactic acid, polycaprolactone, and lactic acid-glycolic acid copolymers, thereby improving hydrophilicity, particularly absorption characteristics. It is characterized by being improved. Absorption characteristics of such a composite nonwoven fabric can be evaluated through the weight change before and after the absorption in the sample of a predetermined weight, as follows.
흡액 배율 (g/g) = [(흡액 후의 시료의 무게 g)-(흡액 전 시료의 무게 g)]/(흡액 전 시료의 무게 g)Absorption magnification (g / g) = [(weight of sample after absorption)-(weight of sample before absorption)] / (weight of sample before absorption)
이러한 복합 부직포의 흡액 배율은, 4 g/g 이상, 바람직하게는 4 내지 30 g/g, 더 바람직하게는 6 내지 20 g/g 일 수 있다. 상기 복합 부직포의 흡액 배율이 이러한 범위를 만족하는 경우, 상처 부위에 피복시 상처 부위가 적정 습윤 환경에 놓이고, 상처 부위에서 배출되는 체액을 흡액하여 부직포의 피부 밀착성이 향상될 수 있다.The liquid absorption ratio of such a composite nonwoven fabric may be 4 g / g or more, preferably 4 to 30 g / g, more preferably 6 to 20 g / g. When the absorption ratio of the composite nonwoven fabric satisfies this range, the wound site is placed in an appropriate wet environment when coated on the wound site, and the body adhesiveness discharged from the wound site is absorbed to improve skin adhesion of the nonwoven fabric.
본 발명에 따른 복합 부직포는 비흡액 상태에서는 불투명하고, 흡액 상태에서는 투명화되는 특성을 가진다. 이러한 특성은 부직포의 피부 밀착성이 향상되고 흡액에 따라 빛의 산란성이 감소되는 것에서 기인하는 것이다. The composite nonwoven fabric according to the present invention has the property of being opaque in the non-absorbed state and transparent in the absorbed state. This property is due to the fact that the skin adhesion of the nonwoven fabric is improved and the scattering of light is reduced with absorption.
통상적으로 피부에 상해를 입은 경우, 상처 부위가 치료되는 과정을 살펴 보는 것이 적절한 처리를 할 수 있다는 면에서 중요하다. 하지만, 통상의 부직포는 상처면의 상태가 보이지 않기 때문에 상처 부위를 관찰하기 위해서는 부직포로 만들어진 창상 피복재를 제거한 후 피부 상태를 관찰해야 하는 번거로움이 있었고, 이때, 상처 부위가 완전히 치료되지 않은 단계에서 창상 피복재를 제거할 때 환자에게 극심한 고통을 유발할 수 있다. In general, if the skin is injured, it is important to look at how the wound is treated, so that proper treatment is possible. However, in order to observe the wound site, the normal nonwoven fabric has a problem of removing the wound covering made of the nonwoven fabric to observe the skin condition in order to observe the wound site. In this case, the wound site is not completely treated. Removing the wound covering can cause extreme pain for the patient.
이와 관련하여, 상기 복합 부직포를 0.9% 생리식염수에 30초간 흡액시킨 후의 투명도가 60% 이상, 바람직하게는 60 내지 95%, 더 바람직하게는 75 내지 90%일 수 있다. 투명도는 Gretag Macbeth 측색기 (CE 3100)을 이용하여 D65 표준광원 하에서 가시광선 파장 범위인 400 ~ 700nm에서의 반사율 측정 방법을 이용하여 다음 식에 의해 비교하였다. In this regard, the transparency after absorbing the composite nonwoven fabric in 0.9% saline for 30 seconds may be 60% or more, preferably 60 to 95%, more preferably 75 to 90%. Transparency was compared using the Gretag Macbeth colorimeter (CE 3100) using the reflectance measurement method in the visible wavelength range of 400 ~ 700nm under the D65 standard light source by the following equation.
Op = 100 - Σ R i /j O p = 100-Σ R i / j
Op : 투명도(%)O p : Transparency (%)
R i = i (i = 1 ~ j)번째 파장값에 상응하는 반사율Reflectance corresponding to R i = i ( i = 1 ~ j ) th wavelength
j = 반사율 측정회수 j = reflectance count
상기 복합 부직포의 투명도가 이러한 범위를 만족하는 경우, 체액이나 생리식염수가 복합 부직포에 흡액되는 경우, 복합 부직포가 부착된 상태에서도 상처 부위의 관찰이 용이할 수 있다.When the transparency of the composite nonwoven fabric satisfies this range, when the body fluid or saline solution is absorbed into the composite nonwoven fabric, the wound site may be easily observed even when the composite nonwoven fabric is attached.
또한, 상기 복합 부직포가 비흡액 상태에서는 불투명하다라고 함은 상기 투명도 측정방법에 의할 때, 투명도가 60% 미만인 것을 의미한다.In addition, when the composite nonwoven fabric is opaque in the non-absorbed state, it means that the transparency is less than 60% by the transparency measurement method.
본 발명의 복합 부직포 50 내지 500 ㎛, 더 바람직하게는 100 내지 300 ㎛ 의 두께를 가질 수 있다. 이렇게 복합 부직포의 두께 범위를 만족하는 경우, 부직포의 투명성 및 유연성을 개선하는데 유리하다.The composite nonwoven fabric of the present invention may have a thickness of 50 to 500 μm, more preferably 100 to 300 μm. When satisfying the thickness range of the composite nonwoven fabric, it is advantageous to improve the transparency and flexibility of the nonwoven fabric.
본 발명의 다른 측면에 따른 복합 부직포의 제조 방법은, 폴리락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물을 용매에 용해하여 전기 방사 용액을 준비하는 단계; 상기 방사액을 전기 방사하여 부직포 기재를 형성하는 단계; 및 상기 부직포 기재 상에 카르복시메틸 셀룰로오스 용액을 코팅하여 카르복시메틸 셀룰로오스 코팅층을 형성하는 단계를 포함한다.According to another aspect of the present invention, a method for preparing a composite nonwoven fabric includes preparing a electrospinning solution by dissolving one or two or more mixtures selected from the group consisting of polylactic acid, polycaprolactone, and lactic acid-glycolic acid copolymers in a solvent. step; Electrospinning the spinning solution to form a nonwoven substrate; And coating a carboxymethyl cellulose solution on the nonwoven substrate to form a carboxymethyl cellulose coating layer.
본 발명의 부직포 기재를 제조하기 위해 전기방사법을 사용한다. 전기방사를 위해서는 폴리락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물을 용매에 용해하여 전기 방사 용액을 준비하여야 한다.Electrospinning is used to produce the nonwoven substrate of the present invention. For electrospinning, one or two or more mixtures selected from the group consisting of polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers must be dissolved in a solvent to prepare an electrospinning solution.
본 발명에서 전기방사 용액을 제조하기 위해, 사용되는 용매로는 폴리락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물을 균일하게 용해시킬 수 있고, 방사성이 높은 용매라면 제한 없이 사용될 수 있으며, 그 예로는 트리플루오로아세트산, 디메틸포름아마이드, 디메틸설폭시드, 클로로포름, 트리플루오로에틸렌, 아세톤, 헥사플루오로이소프로판올, 메틸렌클로라이드, 테트라히드로푸란, 아세트산 및 포름산 등이 사용될 수 있으며, 이들은 하나 또는 둘 이상의 혼합용매로서 사용될 수도 있다. In order to prepare the electrospinning solution in the present invention, the solvent used may uniformly dissolve one or two or more mixtures selected from the group consisting of polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers, and radioactive. Any of these high solvents can be used without limitation, examples being trifluoroacetic acid, dimethylformamide, dimethylsulfoxide, chloroform, trifluoroethylene, acetone, hexafluoroisopropanol, methylene chloride, tetrahydrofuran, acetic acid and formic acid Etc. may be used, and they may be used as one or two or more mixed solvents.
이때, 상기 전기방사 용액에서 첨가된 폴리락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물의 함량은 전체 전기방사 용액 중 5 내지 20 중량%, 더 바람직하게는 8 내지 15 중량%로 조절될 수 있다. 이렇게 중량%를 조절하는 경우, 균일하게 용해되면서 적정한 점도를 가져 취급이 용이한 전기방사 용액을 얻을 수 있으며, 그 결과 방사 특성이 개선되고, 제조한 섬유의 직경 분포가 균일해질 수 있다. At this time, the content of one or two or more mixtures selected from the group consisting of polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymer added in the electrospinning solution is 5 to 20% by weight in the total electrospinning solution, more preferably. Preferably from 8 to 15% by weight. When the weight percentage is adjusted in this way, it is possible to obtain an electrospinning solution which is uniformly dissolved and has an appropriate viscosity and is easy to handle. As a result, spinning properties may be improved, and the diameter distribution of the manufactured fiber may be uniform.
바람직하게는, 잔류 용매 제거가 용이한 방사성이 우수한 디메틸 포름아미드와 클로로포름의 공용매로 사용하여, 폴리락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물을 불순물이 없도록 완전히 용해시키고, 상온에서 12 시간 정도 교반시킨 후 전기방사에 사용할 수 있다. Preferably, one or two or more mixtures selected from the group consisting of polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers are used as co-solvents of dimethyl formamide and chloroform with excellent emissivity for easy removal of residual solvents. It can be completely dissolved so that there are no impurities, and stirred at room temperature for about 12 hours before being used for electrospinning.
다음으로, 상기 준비된 전기 방사 용액을 전기 방사하여 부직포 기재를 형성한다.Next, the prepared electrospinning solution is electrospun to form a nonwoven substrate.
통상적인 전기방사 시스템 및 이론에 의하면 전기방사 공정은 고전압 하에서 수행되어야 하고, 정전방사의 특성상 챔버 내부의 공기조건도 상당히 중요하다. 이와 같이 일반적인 공정에 의해 섬유를 제조하는 경우 방사챔버의 환경(온도, 습도)에 민감한 정전기적 공정상의 특성으로 인해 섬유의 형태에 미세한 변화가 생기게 되고 재현성 있는 소재를 만들기 힘들다. Conventional electrospinning systems and theories suggest that the electrospinning process must be performed under high voltage, and the air condition inside the chamber is also of great importance due to the nature of electrostatic spinning. As such, when the fiber is manufactured by a general process, due to the electrostatic process characteristics sensitive to the environment (temperature, humidity) of the spinning chamber, fine changes in the shape of the fiber are difficult to produce a reproducible material.
특히 폴리락트산, 폴리카프로락톤 또는 락트산-글리콜산 공중합체와 같은 고분자는 그 특성상 분자량이 일정하지 않으므로 전기방사에 의한 섬유 제조시 공정 조건의 제어가 중요하다.Particularly, polymers such as polylactic acid, polycaprolactone, or lactic acid-glycolic acid copolymers do not have a constant molecular weight due to their properties, so it is important to control process conditions when producing fibers by electrospinning.
본 발명에서 사용한 기본적인 전기방사장치는 (+)전하 고전압 발생기와 집적드럼 및 정량토출 펌프가 일체형으로 구성된 것에 스테인리스스틸 재질의 21G 내지 24G 노즐을 끼운 시린지를 장착한 것이다. 본 발명에서는 다양한 공정인자 중 섬유형태에 중요한 영향을 주는 용액의 농도, 인가전압, 방사거리, 유체속도 등에 따른 각각의 섬유 시트를 제조 후 구조 및 형태를 분석하고 재현성이 가장 좋은 전기방사조건을 구하여 적용하였다. The basic electrospinning device used in the present invention is equipped with a syringe fitted with 21G to 24G nozzles made of stainless steel in an integrally configured positive charge high voltage generator, an integrated drum and a metered discharge pump. In the present invention, after fabrication of each fiber sheet according to the concentration of solution, applied voltage, spinning distance, fluid velocity, etc., which have an important influence on fiber morphology among various process factors, the structure and morphology are analyzed and the best reproducible electrospinning condition is obtained. Applied.
또한, 본 발명의 일 실시예에 따른 전기방사장치는, 폴리락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물을 용매에 용해하여 만든 전기 방사 용액을 전기방사할 수 있는 장치라면 제한 없이 적용될 수 있고, 그 예로는 시린지 타입, 와이어 타입, 드럼 타입 등이 있으나, 여기에 한정되지는 않는다.In addition, the electrospinning device according to an embodiment of the present invention, the electrospinning solution prepared by dissolving one or two or more mixtures selected from the group consisting of polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymer in a solvent Any device capable of electrospinning may be applied without limitation, and examples thereof include a syringe type, a wire type, a drum type, and the like, but are not limited thereto.
본 발명에서 전기방사는 바람직하게는, 혼합용액의 농도 5~20 중량%, 전압5~100 kV, 용액의 토출속도 0.1 내지 10 ㎖/h 및 방사거리 3 내지 50 ㎝의 전기방사 조건으로 수행한다. In the present invention, the electrospinning is preferably carried out under the electrospinning conditions of 5 to 20% by weight of the mixed solution, voltage 5 to 100 kV, discharge rate of the solution of 0.1 to 10 ml / h and spinning distance of 3 to 50 cm. .
다음으로, 상기 얻어진 부직포 기재 상에 카르복시메틸 셀룰로오스 용액을 코팅하여 카르복시메틸 셀룰로오스 코팅층을 형성한다.Next, the carboxymethyl cellulose solution is coated on the obtained nonwoven fabric substrate to form a carboxymethyl cellulose coating layer.
상기 카르복시메틸 셀룰로오스 용액은 물과 알코올의 혼합 용매에 카르복시메틸 셀룰로오스를 용해시켜 제조될 수 있다.The carboxymethyl cellulose solution may be prepared by dissolving carboxymethyl cellulose in a mixed solvent of water and alcohol.
통상적으로 카르복시메틸 셀룰로오스는 물에 잘 녹지만, 이에 반해서 폴리락트산, 폴리카프로락톤 또는 락트산-글리콜산 공중합체는 소수성을 띄므로, 카르복시메틸 셀룰로오스 수용액으로 폴리락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 섬유로 이루어진 부직포 기재를 코팅할 경우, 카르복시메틸 셀룰로오스 수용액을 부직포 기재에 균일하게 부착하는 것에 어려움이 있다. 하지만, 용매로서 물 외에 카르복시메틸 셀룰로오스의 비용매이면서도 물보다 표면 장력이 낮은 비용매를 혼합할 경우 얻어지는 용액의 표면장력이 수용액 보다는 떨어져 부직포 기재에 카르복시메틸 셀룰로오스 용액을 균일하게 코팅할 수 있게 된다. Typically, carboxymethyl cellulose is well soluble in water, whereas polylactic acid, polycaprolactone, or lactic acid-glycolic acid copolymers are hydrophobic. When coating a nonwoven substrate made of one or two or more fibers selected from the group consisting of coalescing, it is difficult to uniformly attach the aqueous solution of carboxymethyl cellulose to the nonwoven substrate. However, when the non-solvent having a lower surface tension than water and a non-solvent of carboxymethyl cellulose as a solvent is mixed, the surface tension of the resulting solution is lower than that of the aqueous solution, thereby uniformly coating the carboxymethyl cellulose solution on the nonwoven fabric substrate.
이때, 상기 혼합 용매 중 비용매의 함량은 5 내지 60 중량%, 더 바람직하게는 10 내지 30 중량%이다. 이때, 비용매의 함량이 5% 미만일 경우 비용매 첨가의 효과가 미미하고, 60% 초과인 경우 비용매가 카르복시메틸 셀룰로오스를 녹이지 못하기 때문에 카르복시메틸 셀룰로오스가 일부 불용화되어 석출되거나 응집되는 특성이 있다.At this time, the content of the non-solvent in the mixed solvent is 5 to 60% by weight, more preferably 10 to 30% by weight. In this case, when the content of the non-solvent is less than 5%, the effect of adding the non-solvent is insignificant, and when the content of the non-solvent is greater than 60%, the non-solvent cannot dissolve the carboxymethyl cellulose. have.
상기 비용매로는 메탄올, 에탄올, 이소프로필알콜 등의 알코올, 아세톤, 메틸렌 클로라이드, 클로로포름 등이 단독 또는 2종 이상의 혼합물로 사용될 수 있다.As the non-solvent, alcohols such as methanol, ethanol, isopropyl alcohol, acetone, methylene chloride, chloroform, and the like may be used alone or as a mixture of two or more thereof.
이때, 카르복시메틸 셀룰로오스 용액을 부직포 기재에 코팅할 경우에, 전술한 바와 같이 카르복시메틸 셀룰로오스 코팅층의 로딩양이 부직포 기재 100 중량부 기준으로 1 내지 30 중량부가 되도록 카르복시메틸 셀룰로오스 용액의 코팅양을 조절할 수 있다.At this time, when the carboxymethyl cellulose solution is coated on the nonwoven substrate, the coating amount of the carboxymethyl cellulose solution may be adjusted so that the loading amount of the carboxymethyl cellulose coating layer is 1 to 30 parts by weight based on 100 parts by weight of the nonwoven substrate. have.
상기 카르복시메틸 셀룰로오스 용액이 코팅된 부직포 기재는 상온 또는 40 내지 120 ℃의 조건에서 열풍 건조 혹은 진공 건조하여 복합 부직포를 얻을 수 있다.The non-woven substrate coated with the carboxymethyl cellulose solution may be hot air dried or vacuum dried at room temperature or 40 to 120 ° C. to obtain a composite nonwoven fabric.
또한, 상기 건조 처리 이후에, 얻어진 복합 부직포를 상온 내지 100 ℃에서 200 내지 600 psi의 압력으로 캘린더링하는 공정을 더 거칠 수 있다. 이러한 캘린더링 공정을 거침으로써, 최종적으로 얻어지는 복합 부직포의 기공 크기나 두께를 조절할 수 있게 된다.In addition, after the drying treatment, the obtained composite nonwoven fabric may be further subjected to a calendering process at a temperature of 200 to 600 psi at room temperature to 100 ° C. By passing through such a calendering process, the pore size and thickness of the finally obtained composite nonwoven fabric can be adjusted.
본 발명의 복합 부직포는, 다양한 의료용 피복재, 흡수성 위생용품, 식품 포장재, 마스크 팩 등에 유용하게 사용될 수 있으며, 특히 화상치료시 임시 인공 피부 역할을 하는 창상 피복재로서 특히 적합한 특성을 가질 수 있다.The composite nonwoven fabric of the present invention may be usefully used in various medical coatings, absorbent hygiene products, food packaging materials, mask packs, and the like, and may have particularly suitable properties as a wound coating material serving as a temporary artificial skin during burn treatment.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다. Hereinafter, examples will be described in detail to help understand the present invention. However, embodiments according to the present invention can be modified in many different forms, the scope of the invention should not be construed as limited to the following examples. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.
실시예 1Example 1
락트산-글리콜산 공중합체(PLGA) (락트산: 글리콜산 = 70:30 중량비)를 디메틸포름아미드(DMF)과 클로로포름의 혼합 용매(중량비 = 1:9)에 10 중량%가 되도록 녹여 전기 방사 용액을 준비하였다. The lactic acid-glycolic acid copolymer (PLGA) (lactic acid: glycolic acid = 70:30 weight ratio) is dissolved in a mixed solvent of dimethylformamide (DMF) and chloroform (weight ratio = 1: 9) to 10% by weight to form an electrospinning solution. Ready.
이후, 전기 방사 장치 이용하여 전압 15kV, 방사거리 20cm, 유체속도 6ml/h으로 고정시키고 회전드럼 집전판에 5시간 동안 방사하여 부직포 기재를 얻었다. 그 후 얻어진 부직포 기재를 에탄올로 수세한 후 진공오븐에서 상온 24시간 동안 건조하여 평균 기공 크기가 11.6 ㎛인 부직포 기재를 최종적으로 제조하였다.Thereafter, a voltage of 15 kV, a spinning distance of 20 cm, and a fluid velocity of 6 ml / h were fixed using an electrospinning apparatus and spun for 5 hours on a rotating drum current collector to obtain a nonwoven substrate. Thereafter, the obtained nonwoven substrate was washed with ethanol and dried in a vacuum oven for 24 hours at room temperature to finally prepare a nonwoven substrate having an average pore size of 11.6 μm.
상기 제조한 부직포 기재를 에탄올과 물의 중량 비율이 20:80인 혼합 용매에 카르복시메틸 셀룰로오스를 녹여 제조한 0.4 중량%의 카르복시메틸 셀룰로오스 용액에 10초 간 침지한 후 80℃에서 1 시간 동안 건조하여 평균 기공크기가 4.9 ㎛이며 두께가 159 ㎛인 복합 부직포를 제조하였다. 이때, 카르복시메틸 셀룰로오스의 로딩양은 부직포 100 중량부 기준으로 21 중량부였다.The prepared nonwoven fabric substrate was immersed in 0.4 wt% carboxymethyl cellulose solution prepared by dissolving carboxymethyl cellulose in a mixed solvent having a weight ratio of ethanol and water of 20:80 for 10 seconds, and then dried at 80 ° C. for 1 hour to average A composite nonwoven fabric having a pore size of 4.9 μm and a thickness of 159 μm was prepared. At this time, the loading amount of carboxymethyl cellulose was 21 parts by weight based on 100 parts by weight of the nonwoven fabric.
실시예 2 Example 2
락트산-글리콜산 공중합체(PLGA) (락트산: 글리콜산 = 70:30 중량비)를 디메틸포름아미드(DMF)과 클로로포름의 혼합 용매(중량비 = 1:9)에 10 중량%가 되도록 녹여 전기 방사 용액을 준비하였다. The lactic acid-glycolic acid copolymer (PLGA) (lactic acid: glycolic acid = 70:30 weight ratio) is dissolved in a mixed solvent of dimethylformamide (DMF) and chloroform (weight ratio = 1: 9) to 10% by weight to form an electrospinning solution. Ready.
이후, 전기 방사 장치를 이용하여 전압 20kV, 방사거리 20cm, 유체속도 6ml/h로 고정시키고 회전드럼 집전판에 6시간 동안 방사하여 부직포 기재를 얻었다. 그 후 얻어진 부직포 기재를 에탄올로 수세한 후 진공오븐에서 상온 24시간 동안 건조하여 평균 기공 크기가 7 ㎛인 부직포 기재를 얻고, 이를 다시 상온에서 500 psi의 압력으로 캘린더링하여 평균 기공크기가 4.1 ㎛인 부직포 기재를 최종적으로 제조하였다.Thereafter, using an electrospinning apparatus, a voltage of 20 kV, a spinning distance of 20 cm, and a fluid velocity of 6 ml / h were fixed and spun on a rotating drum current collector for 6 hours to obtain a nonwoven substrate. Thereafter, the obtained nonwoven substrate was washed with ethanol and dried in a vacuum oven for 24 hours at room temperature to obtain a nonwoven substrate having an average pore size of 7 μm, which was then calendered at a pressure of 500 psi at room temperature, and the average pore size was 4.1 μm. The phosphorous nonwoven substrate was finally produced.
상기 제조한 부직포 기재를 에탄올과 물의 중량 비율이 20:80인 혼합 용매에 카르복시메틸 셀룰로오스를 녹여 제조한 0.4 중량%의 카르복시메틸 셀룰로오스 용액에 10초 간 침지한 후 80℃에서 1 시간 동안 건조하여 평균 기공크기가 3.1 ㎛이며 두께가 104 ㎛인 복합 부직포를 제조하였다. 이때, 카르복시메틸 셀룰로오스의 로딩양은 부직포 100 중량부 기준으로 14 중량부였다.The prepared nonwoven fabric substrate was immersed in 0.4 wt% carboxymethyl cellulose solution prepared by dissolving carboxymethyl cellulose in a mixed solvent having a weight ratio of ethanol and water of 20:80 for 10 seconds, and then dried at 80 ° C. for 1 hour to average A composite nonwoven fabric having a pore size of 3.1 μm and a thickness of 104 μm was prepared. At this time, the loading amount of the carboxymethyl cellulose was 14 parts by weight based on 100 parts by weight of the nonwoven fabric.
실시예 3 Example 3
락트산-글리콜산 공중합체(PLGA) (락트산: 글리콜산 = 70:30 중량비)를 디메틸포름아미드(DMF)과 클로로포름의 혼합 용매(중량비 = 1:9)에 10 중량%가 되도록 녹여 전기 방사 용액을 준비하였다. The lactic acid-glycolic acid copolymer (PLGA) (lactic acid: glycolic acid = 70:30 weight ratio) is dissolved in a mixed solvent of dimethylformamide (DMF) and chloroform (weight ratio = 1: 9) to 10% by weight to form an electrospinning solution. Ready.
이후, 전기 방사 장치를 이용하여 전압 20kV, 방사거리 19cm, 유체속도 6ml/h로 고정시키고 회전드럼 집전판에 8시간 동안 방사하여 부직포 기재를 얻었다. 그 후 얻어진 부직포 기재를 에탄올로 수세한 후 진공오븐에서 상온 24시간 동안 건조하여 평균 기공 크기가 5.4㎛인 부직포 기재를 제조하였다.Thereafter, using an electrospinning device, a voltage of 20 kV, a spinning distance of 19 cm, and a fluid speed of 6 ml / h were fixed and spun on a rotating drum current collector for 8 hours to obtain a nonwoven substrate. Thereafter, the obtained nonwoven substrate was washed with ethanol and dried in a vacuum oven for 24 hours at room temperature to prepare a nonwoven substrate having an average pore size of 5.4 μm.
상기 제조한 부직포 기재를 에탄올과 물의 중량 비율이 20:80인 혼합 용매에 카르복시메틸 셀룰로오스를 녹여 제조한 0.4 중량%의 카르복시메틸 셀룰로오스 용액에 10초 간 침지한 후 80℃에서 1 시간 동안 건조하여 평균 기공크기가 1.9 ㎛이며 두께가 181 ㎛인 복합 부직포를 제조하였다. 이때, 카르복시메틸 셀룰로오스의 로딩양은 부직포 100 중량부 기준으로 20 중량부였다.The prepared nonwoven fabric substrate was immersed in 0.4 wt% carboxymethyl cellulose solution prepared by dissolving carboxymethyl cellulose in a mixed solvent having a weight ratio of ethanol and water of 20:80 for 10 seconds, and then dried at 80 ° C. for 1 hour to average A composite nonwoven fabric having a pore size of 1.9 μm and a thickness of 181 μm was prepared. At this time, the loading amount of the carboxymethyl cellulose was 20 parts by weight based on 100 parts by weight of the nonwoven fabric.
실시예 4Example 4
폴리카프로락톤을 메틸포름아미드(DMF)과 클로로포름의 혼합 용매(중량비 = 3:7)에 12 중량%가 되도록 녹여 전기 방사 용액을 준비하였다. Polycaprolactone was dissolved in a mixed solvent of methylformamide (DMF) and chloroform (weight ratio = 3: 7) to 12% by weight to prepare an electrospinning solution.
이후, 전기 방사 장치 이용하여 전압 20kV, 방사거리 20cm, 유체속도 5ml/h으로 고정시키고 회전드럼 집전판에 6시간 동안 방사하여 부직포 기재를 얻었다. 그 후 얻어진 부직포 기재를 진공오븐에서 45℃ 24시간 동안 부직포 기재를 제조하였다.Thereafter, using an electrospinning apparatus, a voltage of 20 kV, a spinning distance of 20 cm, and a fluid velocity of 5 ml / h were fixed and spun on a rotating drum current collector for 6 hours to obtain a nonwoven substrate. The resulting nonwoven substrate was then prepared in a vacuum oven at 45 ° C. for 24 hours.
상기 제조한 부직포 기재를 에탄올과 물의 중량 비율이 30:70인 혼합 용매에 카르복시메틸 셀룰로오스를 녹여 제조한 0.04 중량%의 카르복시메틸 셀룰로오스 용액에 10초 간 침지한 후 40℃에서 30분 동안 건조하여 평균 기공크기가 4.6 ㎛이며 두께가 78 ㎛인 복합 부직포를 제조하였다. The prepared nonwoven fabric substrate was immersed in a 0.04 wt% carboxymethyl cellulose solution prepared by dissolving carboxymethyl cellulose in a mixed solvent having a weight ratio of ethanol and water of 30:70 for 10 seconds, and then dried at 40 ° C. for 30 minutes to average. A composite nonwoven fabric having a pore size of 4.6 μm and a thickness of 78 μm was prepared.
비교예 1Comparative Example 1
카르복시메틸 셀룰로오스 용액에 침지 처리하는 단계를 더 실시하지 않은 점을 제외하고는, 실시예 1과 동일한 방법으로 제조된 부직포 기재를 제조하였다.A nonwoven substrate prepared in the same manner as in Example 1 was prepared except that the step of immersing the carboxymethyl cellulose solution was not performed.
비교예 2Comparative Example 2
카르복시메틸 셀룰로오스 용액에 침지 처리하는 단계를 더 실시하지 않은 점을 제외하고는, 실시예 3과 동일한 방법으로 제조된 부직포 기재를 제조하였다.A nonwoven substrate prepared in the same manner as in Example 3 was prepared except that the step of immersing the carboxymethyl cellulose solution was not performed.
비교예 3Comparative Example 3
카르복시메틸 셀룰로오스 용액에 침지 처리하는 단계에서 카르복시메틸 셀룰로오스 용액 제조시 에탄올과 물 혼압 용매 대신 물 만을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 복합 부직포 기재를 제조하였다.A composite nonwoven fabric substrate was prepared in the same manner as in Example 1, except that only water was used instead of ethanol and water mixed solvent in the preparation of the carboxymethyl cellulose solution in the immersion treatment in the carboxymethyl cellulose solution.
특성 평가Property evaluation
평균 기공 크기 측정Average pore size measurement
상기 실시예 1 내지 3에서 제조된 부직포 기재, 복합 부직포 및 비교예 1 및 2에서 제조된 부직포 기재의 기공크기를 측정기기(Capillary Flow Porometer, CFP-1200AEL, Porous Materials Inc.)를 이용하여 평균기공크기를 측정하였다.Average pore size of the nonwoven fabric substrate, the composite nonwoven fabric prepared in Examples 1 to 3, and the nonwoven fabric substrate prepared in Comparative Examples 1 and 2 using a capillary flow porometer (CFP-1200AEL, Porous Materials Inc.) The size was measured.
친수성 평가 (접촉각)Hydrophilicity Evaluation (Contact Angle)
접촉각은 부직포 표면에 deionized water 2 ~ 5 ㎕ 를 적하시켜 형성되는 액체면과 고체면이 이루는 각을 image analyzer (Drop shape analysis system; DSA 100, KRUSS GmbH)를 이용하여 KS L 2110 규격에 근거하여 측정하였다. 상기의 평가 방법을 이용하여, 실시예 1 및 비교예 1에서 제조된 부직포의 친수성을 평가 하였고, 그 결과를 도 1로 나타내었다.The contact angle is measured based on the KS L 2110 standard using an image analyzer (Drop shape analysis system; DSA 100, KRUSS GmbH) using the image analyzer (Drop shape analysis system; DSA 100, KRUSS GmbH). It was. Using the above evaluation method, the hydrophilicity of the nonwoven fabrics prepared in Example 1 and Comparative Example 1 was evaluated, and the results are shown in FIG.
흡액 배율 평가Absorption Magnification Evaluation
표준 상태하의 부직포로부터 3 cm ㅧ 3 cm의 시료를 잘라내어, 중량을 정확하게 측정한다. 상기 시료를 0.9% 생리식염수에 넣어 30 초간 침지한다. 그 후, 핀셋으로 부직포의 한쪽 끝을 잡아 꺼낸 후 생리식염수가 더 이상 떨어지지 않을 때까지 기다린 후 흡액시 무게를 측정해, 하기 식에 의해 흡액 배율을 계산한다.A sample of 3 cm 3 cm is cut out of the nonwoven fabric under standard conditions, and the weight is measured accurately. The sample is immersed in 0.9% saline for 30 seconds. Thereafter, one end of the nonwoven fabric is pulled out with tweezers, and then waited until the saline solution no longer drops, the weight at the time of liquid absorption is measured, and the liquid absorption ratio is calculated by the following equation.
흡액 배율(g/g)Absorption magnification (g / g)
= [(흡액 후의 시료의 무게 g)-(흡액 전 시료의 무게 g)]/(흡액 전 시료의 무게 g)= [(Weight of sample after absorption)-(weight of sample before absorption)] / (weight of sample before absorption)
상기의 평가 방법을 이용하여, 실시예 및 비교예에서 제조된 부직포의 흡액 배율을 평가하였고, 그 결과를 하기 표 1로 나타내었다.Using the above evaluation method, the absorption ratio of the nonwoven fabric prepared in Examples and Comparative Examples was evaluated, and the results are shown in Table 1 below.
표 1
실시예 1 실시예 2 실시예 3 실시예 4 비교예 1 비교예 2
흡액 배율(g/g) 8.4 6.1 8.7 6.0 2.7 2.4
Table 1
Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2
Absorption magnification (g / g) 8.4 6.1 8.7 6.0 2.7 2.4
흡액시 투명성 평가Transparency Evaluation on Absorption
(1) 육안 평가(1) visual evaluation
실시예 1에서 제조된 복합 부직포를 상처 부위 및 기판 상에 도포한 후에 0.9% 생리식염수를 30초 동안 흡액시키기 전(좌측 사진) 후(우측 사진)의 투명성을 육안으로 평가하였고, 이를 관찰한 사진을 도 2 및 3에 각각 나타내었다.After applying the composite nonwoven fabric prepared in Example 1 on the wound site and the substrate, the transparency was visually evaluated after the absorption of 0.9% physiological saline for 30 seconds (left picture) and after (right picture). Are shown in FIGS. 2 and 3, respectively.
실시예 1과 비교예 3에서 제조한 부직포를 0.9% 생리식염수를 30초간 흡액시킨 후 투명성을 육안으로 평가하였고 이를 관찰한 사진을 도 4에 나타내었다.After the nonwoven fabrics prepared in Example 1 and Comparative Example 3 were absorbed with 0.9% physiological saline for 30 seconds, transparency was visually evaluated, and a photograph of the observed non-woven fabric was shown in FIG. 4.
이상의 도 2 내지 4를 참조하면, 실시예 1의 복합 부직포의 경우 0.9% 생리식염수를 30초 동안 흡액 후, 피복 대상물이 완전히 비춰 보일 정도로 투명성이 현저하게 중가 해지며, 또한 에탄올과 물 혼압 용매 대신 물 만을 사용하여 카르복시메틸 셀룰로오스 용액을 제조하여 카르복시메틸 셀룰로오스 코팅층을 형성한 비교예 3에 비해서도 투명성이 완전히 차이가 있음을 알 수 있다.2 to 4, in the case of the composite nonwoven fabric of Example 1, after absorbing 0.9% physiological saline for 30 seconds, the transparency is significantly increased so that the coating object is completely visible, and instead of the solvent mixed with ethanol and water It can be seen that transparency is completely different from Comparative Example 3 in which a carboxymethyl cellulose solution was prepared using only water to form a carboxymethyl cellulose coating layer.
(2) 반사율 측정법에 의한 투명도 평가(2) Evaluation of transparency by reflectance measuring method
실시예 1 및 3에서 제조된 복합 부직포 및 비교예 1, 2에서 제조된 부직포 기재를 0.9% 생리식염수에 30초간 흡액시킨 후 Gretag Macbeth 측색기 (CE 3100)을 이용하여 D65 표준 광원하에서 가시광선 파장 범위인 400 내지 700nm에서의 반사율 측정 방법을 이용하여 다음 식에 의해 비교하였다. The composite nonwoven fabrics prepared in Examples 1 and 3 and the nonwoven substrates prepared in Comparative Examples 1 and 2 were absorbed in 0.9% physiological saline for 30 seconds, and then visible light wavelength range was measured under a D65 standard light source using a Gretag Macbeth colorimeter (CE 3100). It was compared by the following formula using the reflectance measurement method at phosphorus 400 to 700nm.
Op = 100 - Σ R i /j O p = 100-Σ R i / j
Op : 투명도(%)O p : Transparency (%)
R i = i (i = 1 ~ j)번째 파장값에 상응하는 반사율Reflectance corresponding to R i = i ( i = 1 ~ j ) th wavelength
j = 반사율 측정회수 j = reflectance count
그 결과를 하기 표 2로 나타내었다.The results are shown in Table 2 below.
표 2
실시예 1 실시예 2 실시예 3 실시예 4 비교예 1 비교예 2
투명도 (%) 80.8 83.3 82.0 80.8 55.6 37.1
TABLE 2
Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2
Transparency (%) 80.8 83.3 82.0 80.8 55.6 37.1
(3) 복합 부직포의 표면 관찰 (3) surface observation of composite nonwoven fabric
실시예 1 및 비교예 3에서 제조된 복합 부직포의 표면을 SEM 사진으로 관찰한 결과를 도 5 및 6에 각각 나타내었다.SEM photographs of the surfaces of the composite nonwoven fabrics prepared in Example 1 and Comparative Example 3 are shown in FIGS. 5 and 6, respectively.
도 5 및 6을 참조하면, 카르복시메틸 셀룰로오스 코팅층을 형성하기 위한 카르복시메틸 셀룰로오스 용액에 사용하는 용매가 물과 에탄올의 혼합용매인 경우 카르복시메틸 셀룰로오스가 전기 방사한 섬유 사이에 균일하게 침투한 반면에 물 단독 용매인 경우 카르복시메틸 셀룰로오스가 극히 일부분에 불균일하게 분포한다는 것을 알 수 있다. 이는 전기 방사한 생분해성 고분자로 이루어진 부직포가 소수성을 나타내 표면 장력이 큰 물을 단독 용매로 사용했을 때 친수성이 커 카르복시메틸 셀룰로오스 수용액의 침투가 어려워지기 때문이다. 이에 반에 알코올과 물 혼합 용매를 사용할 경우 표면장력이 떨어져 소수성인 부직포 사이로의 침투가 용이해지기 때문이다.Referring to FIGS. 5 and 6, when the solvent used in the carboxymethyl cellulose solution for forming the carboxymethyl cellulose coating layer is a mixed solvent of water and ethanol, the carboxymethyl cellulose penetrates uniformly between the electrospun fibers while the water It can be seen that the carboxymethyl cellulose is very nonuniformly distributed in a part of the sole solvent. This is because the nonwoven fabric made of the electrospun biodegradable polymer exhibits hydrophobicity, and when the water having a large surface tension is used as the sole solvent, the hydrophilicity is large, making it difficult to penetrate the aqueous solution of carboxymethyl cellulose. On the other hand, when the alcohol and water mixed solvent is used, the surface tension is lowered, thereby facilitating the penetration between the hydrophobic nonwoven fabrics.

Claims (14)

  1. 전기방사에 의해 형성된 폴리락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 섬유로 이루어진 부직포 기재; 및 Nonwoven substrates composed of one or two or more fibers selected from the group consisting of polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers formed by electrospinning; And
    상기 부직포 기재의 양면 또는 부직포 기재의 내부 기공 중 적어도 1종 이상에 형성된 카르복시메틸 셀룰로오스 코팅층을 포함하고, It comprises a carboxymethyl cellulose coating layer formed on at least one of the two sides of the nonwoven fabric substrate or the internal pores of the nonwoven substrate,
    비흡액 상태에서는 불투명하고, 흡액 상태에서는 투명화되는 복합 부직포.A composite nonwoven fabric that is opaque in the non-absorbed state and becomes transparent in the absorbed state.
  2. 제1항에 있어서, The method of claim 1,
    상기 복합 부직포의 평균 기공 크기가 5 ㎛ 이하인 것을 특징으로 하는 복합 부직포. Composite nonwoven fabric, characterized in that the average pore size of the composite nonwoven fabric is 5 ㎛ or less.
  3. 제1항에 있어서,The method of claim 1,
    상기 섬유의 평균 직경이 100 내지 4,000 nm인 것을 특징으로 하는 복합 부직포.Composite nonwoven fabric, characterized in that the average diameter of the fiber 100 to 4,000 nm.
  4. 제1항에 있어서,The method of claim 1,
    상기 락트산-글리콜산 공중합체 중 락트산의 함량이 10 내지 90 몰비인 것을 특징으로 하는 복합 부직포.The composite nonwoven fabric, characterized in that the lactic acid content of the lactic acid-glycolic acid copolymer is 10 to 90 molar ratio.
  5. 제1항에 있어서,The method of claim 1,
    상기 카르복시메틸 셀룰로오스 코팅층의 로딩양이 부직포 기재 100 중량부 기준으로 1 내지 30 중량부인 것을 특징으로 하는 복합 부직포.Composite woven fabric, characterized in that the loading amount of the carboxymethyl cellulose coating layer is 1 to 30 parts by weight based on 100 parts by weight of the nonwoven fabric base.
  6. 제1항에 있어서, The method of claim 1,
    상기 복합 부직포를 0.9% 생리식염수에 30초간 흡액시킨 후의 투명도가 60% 이상인 것을 특징으로 하는 복합 부직포.The composite nonwoven fabric is characterized in that the transparency after absorbing the composite nonwoven fabric in 0.9% saline for 30 seconds 60% or more.
  7. 제1항에 있어서, The method of claim 1,
    상기 복합 부직포의 흡액 배율이 4 g/g 이상인 것을 특징으로 하는 복합 부직포.The liquid absorption ratio of the said composite nonwoven fabric is 4 g / g or more, The composite nonwoven fabric characterized by the above-mentioned.
  8. 폴리락트산, 폴리카프로락톤 및 락트산-글리콜산 공중합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물을 용매에 용해하여 전기 방사 용액을 준비하는 단계;Preparing an electrospinning solution by dissolving one or two or more mixtures selected from the group consisting of polylactic acid, polycaprolactone and lactic acid-glycolic acid copolymers in a solvent;
    상기 전기 방사 용액을 전기 방사하여 부직포 기재를 형성하는 단계; 및Electrospinning the electrospinning solution to form a nonwoven substrate; And
    상기 부직포 기재 상에 카르복시메틸 셀룰로오스 용액을 코팅하여 카르복시메틸 셀룰로오스 코팅층을 형성하는 단계를 포함하는 복합 부직포의 제조 방법.A method for producing a composite nonwoven fabric comprising coating a carboxymethyl cellulose solution on the nonwoven substrate to form a carboxymethyl cellulose coating layer.
  9. 제8항에 있어서, The method of claim 8,
    상기 카르복시메틸 셀룰로오스 용액이 물과, 상기 카르복시메틸 셀룰로오스의 비용매이면서도 물보다 표면 장력이 낮은 비용매의 혼합 용매에 카르복시메틸 셀룰로오스를 용해시켜 제조되는 것을 특징으로 하는 복합 부직포의 제조 방법.And the carboxymethyl cellulose solution is prepared by dissolving carboxymethyl cellulose in a mixed solvent of water and a non-solvent having a surface tension lower than that of water and a nonsolvent of the carboxymethyl cellulose.
  10. 제9항에 있어서, The method of claim 9,
    상기 혼합 용매 중 상기 비용매의 함량이 5 내지 60 중량%인 것을 특징으로 하는 복합 부직포의 제조 방법.Method for producing a composite nonwoven fabric, characterized in that the content of the non-solvent in the mixed solvent is 5 to 60% by weight.
  11. 제9항에 있어서, The method of claim 9,
    상기 카르복시메틸 셀룰로오스의 비용매가 알코올, 아세톤, 메틸렌 클로라이드, 및 클로로포름으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 복합 부직포의 제조 방법.The non-solvent of the carboxymethyl cellulose is at least one member selected from the group consisting of alcohol, acetone, methylene chloride, and chloroform.
  12. 제8항에 있어서, The method of claim 8,
    상기 전기 방사하여 부직포 기재를 형성한 후 카르복시메틸 셀룰로오스 용액을 코팅하기 전 또는 코팅한 후에 상기 부직포 기재를 캘린더링 처리하는 단계를 더 포함하는 것을 특징으로 하는 복합 부직포의 제조 방법.And calendering the nonwoven substrate after the electrospinning to form the nonwoven substrate before or after coating the carboxymethyl cellulose solution.
  13. 제1항 내지 제7항 중 어느 한 항의 복합 부직포를 포함하는 위생 물품.A hygiene article comprising the composite nonwoven of claim 1.
  14. 제13항에 있어서, 상기 위생 물품이 의료용 피복재, 흡수성 위생용품, 식품 포장재, 또는 마스크 팩인 것을 특징으로 하는 위생 물품.The hygiene article according to claim 13, wherein the hygiene article is a medical coating, an absorbent hygiene article, a food packaging material, or a mask pack.
PCT/KR2014/010397 2013-12-27 2014-10-31 Composite nonwoven fabric and preparation method therefor WO2015099282A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0166050 2013-12-27
KR1020130166050A KR101524810B1 (en) 2013-12-27 2013-12-27 Composite non-woven fabric and process for preparing the same

Publications (1)

Publication Number Publication Date
WO2015099282A1 true WO2015099282A1 (en) 2015-07-02

Family

ID=53479098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010397 WO2015099282A1 (en) 2013-12-27 2014-10-31 Composite nonwoven fabric and preparation method therefor

Country Status (2)

Country Link
KR (1) KR101524810B1 (en)
WO (1) WO2015099282A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109137264A (en) * 2018-07-07 2019-01-04 东莞市联洲知识产权运营管理有限公司 A method of antibacterial medical dressing is prepared using electrostatic spinning
DE102017008637A1 (en) * 2017-09-14 2019-03-14 Trevira Gmbh Polymer fiber with improved long-term dispersibility
CN115671404A (en) * 2022-10-11 2023-02-03 中国科学院大学深圳医院(光明) Anti-adhesion composite material and preparation method and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101901360B1 (en) * 2017-05-10 2018-09-27 단국대학교 산학협력단 Mask Pack With High Hydrostatic Pressure Based On Capillary Effect
KR101954875B1 (en) * 2017-05-26 2019-05-30 단국대학교 산학협력단 Mask Pack With Electrical Stimulation
KR102272324B1 (en) * 2019-12-03 2021-07-02 주식회사 피앤씨랩스 Manufacturing method of carboxylated cellulose fabric and manufacturing method of facial mask using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110066615A (en) * 2009-12-11 2011-06-17 주식회사 원바이오젠 Biodegradable nanofiber sheet comprising chitosan for anti-adhesion membrane and process for preparing the same
KR20130094197A (en) * 2010-04-22 2013-08-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Nonwoven fibrous webs containing chemically active particulates and methods of making and using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110066615A (en) * 2009-12-11 2011-06-17 주식회사 원바이오젠 Biodegradable nanofiber sheet comprising chitosan for anti-adhesion membrane and process for preparing the same
KR20130094197A (en) * 2010-04-22 2013-08-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Nonwoven fibrous webs containing chemically active particulates and methods of making and using same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017008637A1 (en) * 2017-09-14 2019-03-14 Trevira Gmbh Polymer fiber with improved long-term dispersibility
WO2019053074A1 (en) * 2017-09-14 2019-03-21 Trevira Gmbh Polymer fiber having improved long-term dispersibility
CN111094647A (en) * 2017-09-14 2020-05-01 特雷维拉股份有限公司 Polymer fibers with improved long-term dispersibility
JP2020536178A (en) * 2017-09-14 2020-12-10 トレヴィラ ゲーエムベーハー Polymer fibers with improved long-term dispersibility
JP7234217B2 (en) 2017-09-14 2023-03-07 トレヴィラ ゲーエムベーハー Polymer fiber with improved long-term dispersibility
JP7459223B2 (en) 2017-09-14 2024-04-01 トレヴィラ ゲーエムベーハー Polymer fibers with improved long-term dispersibility
CN109137264A (en) * 2018-07-07 2019-01-04 东莞市联洲知识产权运营管理有限公司 A method of antibacterial medical dressing is prepared using electrostatic spinning
CN115671404A (en) * 2022-10-11 2023-02-03 中国科学院大学深圳医院(光明) Anti-adhesion composite material and preparation method and application thereof
CN115671404B (en) * 2022-10-11 2023-12-26 中国科学院大学深圳医院(光明) Anti-adhesion composite material and preparation method and application thereof

Also Published As

Publication number Publication date
KR101524810B1 (en) 2015-06-02

Similar Documents

Publication Publication Date Title
WO2015099282A1 (en) Composite nonwoven fabric and preparation method therefor
KR100835082B1 (en) Crosslinked polyvinyl alcohol nanofiber web using eletrospinning and process for preparing the same
WO2017188635A1 (en) Nanofiber composite membrane for guided bone regeneration, and manufacturing method therefor
Chagas et al. Bilayered electrospun membranes composed of poly (lactic-acid)/natural rubber: A strategy against curcumin photodegradation for wound dressing application
WO2020096404A1 (en) Ultraviolet protection patch and application method thereof
Dhasmana et al. Silk fibroin protein modified acellular dermal matrix for tissue repairing and regeneration
WO2021177536A1 (en) Hemostatic tool and fabrication method therefor
WO2019203556A1 (en) Medical dressing material having chitosan fabric sponge structure and manufacturing method therefor
WO2018106076A1 (en) Styptic material including calcium carboxymethyl cellulose powder and water-soluble chitosan compound powder, and method for producing same
WO2017082446A1 (en) Biodegradable polymer film and method for producing same
WO2019088331A1 (en) Medical material produced using collagen and method for producing same
Fiorentini et al. Plant-based biocomposite films as potential antibacterial patches for skin wound healing
WO2012086988A2 (en) Artificial silk membrane having excellent flexibility and suturing ability and method of manufacturing the same
KR20100024122A (en) Wound dressing using nano fiber and manufacturing method
Pourhojat et al. Preparation of antibacterial electrospun Poly lactic-co–glycolic acid nanofibers containing Hypericum Perforatum with bedsore healing property and evaluation of its drug release performance
WO2014148765A1 (en) Dental nanofiber chip equipped with medication and method for manufacturing same
KR101599029B1 (en) Composite non-woven fabric and process for preparing the same
WO2012081944A2 (en) Dental membrane and method of manufacturing the same
KR102180459B1 (en) Covering materials for wound capable of pH detection, and method for manufacturing the same
WO2023191184A1 (en) Non-woven fabric using hyaluronate fiber and method for manufacturing same
WO2018079899A1 (en) Method for manufacturing dry/wet wound dressing, and wound dressing manufactured thereby
WO2022124508A1 (en) Injectable composition for tissue repair and method for preparing same
WO2015046943A1 (en) Lyocell material for cigarette filter and method for preparing same
WO2017069366A1 (en) Dental barrier membrane using silk matrix and method of manufacturing the same
WO2023106475A1 (en) Nanofiber sheet for regeneration and reinforcement of soft tissue and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875651

Country of ref document: EP

Kind code of ref document: A1