WO2015098928A1 - Inhibitor of il-1 and tnf activities - Google Patents

Inhibitor of il-1 and tnf activities Download PDF

Info

Publication number
WO2015098928A1
WO2015098928A1 PCT/JP2014/084076 JP2014084076W WO2015098928A1 WO 2015098928 A1 WO2015098928 A1 WO 2015098928A1 JP 2014084076 W JP2014084076 W JP 2014084076W WO 2015098928 A1 WO2015098928 A1 WO 2015098928A1
Authority
WO
WIPO (PCT)
Prior art keywords
agent
berbamine
alkaloid
mbmx
test
Prior art date
Application number
PCT/JP2014/084076
Other languages
French (fr)
Japanese (ja)
Inventor
聖志 高津
嘉勝 平井
良憲 長井
孝之 松永
Original Assignee
国立大学法人 富山大学
富山県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 富山大学, 富山県 filed Critical 国立大学法人 富山大学
Priority to JP2015554938A priority Critical patent/JPWO2015098928A1/en
Publication of WO2015098928A1 publication Critical patent/WO2015098928A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4741Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having oxygen as a ring hetero atom, e.g. tubocuraran derivatives, noscapine, bicuculline
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4375Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having nitrogen as a ring heteroatom, e.g. quinolizines, naphthyridines, berberine, vincamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/59Menispermaceae (Moonseed family), e.g. hyperbaena or coralbead
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives

Definitions

  • the present invention relates to diabetes, disease states and conditions characterized by insulin resistance, decreased functional pancreatic ⁇ -cell mass, hyperglycemia, hyperlipidemia, obesity, metabolic syndrome, arteriosclerosis, autoinflammatory disease (gout Etc.) and for the treatment or prevention of rheumatoid arthritis, inflammatory bowel disease, sepsis.
  • IL-1 Interleukin 1
  • IL-1 is an inflammatory cytokine produced and secreted from many cells such as macrophages, monocytes, fibroblasts, vascular endothelial cells, and synovial cells (Non-patent Document 1).
  • IL-1 released from production cells induces local and systemic inflammatory effects via IL-1 receptors expressed in various cells.
  • IL-1 also causes a series of biological actions mediated through the induction of other inflammatory mediators such as prostaglandin E2 (PGE2), tumor necrosis factor (TNF, IL-6, IL-8, corticotropin).
  • PGE2 prostaglandin E2
  • TNF tumor necrosis factor
  • IL-6 tumor necrosis factor
  • IL-8 corticotropin
  • the IL-1 family of cytokines is composed of 11 members, but the effects of IL-1 ⁇ , IL-1 ⁇ , IL-1Ra (IL-1 receptor antagonist), and IL-18 are inflamed in humans and experimental animals. Has been studied in sexually transmitted disease states.
  • IL-1 ⁇ , IL-1 ⁇ and IL-1Ra bind to the IL-1 receptor with similar affinity, but are expressed by different genes, have different primary amino acid sequences, and have different physiological activities.
  • Metabolic syndrome is a collection of hyperinsulinemia, impaired glucose tolerance, obesity, visceral fat accumulation, hypertension, and lipid metabolism abnormalities characterized by hyperlipidemia. Insulin resistance is closely related to these disease states and is a powerful risk factor for developing type 2 diabetes, heart attacks, strokes, and arteriosclerosis in the future.
  • Inflammatory cytokines including IL-1 have been shown to mediate inflammation in adipose tissue that is thought to be involved in insulin resistance (Non-Patent Document 6). Although TNF ⁇ and IL-6 were known to make adipocytes insulin resistant, IL-1 also inhibited insulin signaling by phosphorylating the serine residue of IRS-1 (Insulin Receptor Substrate 1). It has been reported to induce insulin resistance (Non-patent Document 7). Autoinflammatory disease is a general term for syndromes in which the involvement of autoantibodies, such as that seen in autoimmune diseases, is denied, among the main features of symptoms derived from inflammation such as fever and skin rash.
  • Non-patent Document 8 Non-patent Document 8
  • IL-1 receptor antagonists as IL-1 inhibitor therapy
  • anti-TNF antibodies as TNF inhibitor therapy
  • IL-6 receptor-inhibiting antibodies have been approved as therapeutic agents for rheumatoid arthritis and are used in clinical practice as IL-6 inhibitory therapies, all of which are more effective than conventional standard drug therapies.
  • Patent Document 1 discloses an NF- ⁇ activity inhibitor containing as an active ingredient an alkaloid derived from a plant belonging to the genus Stefania belonging to the family Rubiaceae.
  • improvement of pancreatic ⁇ -cell function, preservation of functional pancreatic ⁇ -cell amount, improvement of insulin resistance, treatment of diabetes, prevention of diabetes onset, improvement and prevention of obesity, and inflammation The object and action differ from the invention disclosed in Patent Document 1 in that it has been found useful for the treatment and prevention of autoinflammatory diseases involving cytokines.
  • the present invention treats diabetes and prevents the onset of complications, as well as a therapeutic method that changes the natural history of diabetes, as an effective means for preventing progression, is non-invasive, safe, simple, economical, etc.
  • An object is to provide a inflammatory cytokine activity inhibitor that is satisfied. It is another object of the present invention to provide a therapeutic / preventive agent for autoinflammatory diseases that is effective in inhibiting inflammatory cytokine activity.
  • Inhibitors of interleukin-1 (IL-1) and tumor necrosis factor (TNF), which are inflammatory cytokines according to the present invention, are alkaloids derived from plants of the genus Stefania and their derivatives and their pharmaceuticals It is characterized by containing at least one or more kinds of active ingredients among the chemically acceptable salts.
  • the alkaloid is a bisbenzylisoquinoline compound, and specifically, may be any one or more of cephalanthin, berbamine, isotetrandrine, tetrandrine, cyclanine, and E6-berbamine. These compounds include those chemically synthesized.
  • alkaloids structural formulas of cephalanthin, berbamine, isotetrandrine, and cyclanine are shown in (1) to (4), respectively.
  • Examples of the plant belonging to the genus Stefania belonging to the genus Stefoniaceae used in the present invention include Stephania cepharantha, Stephania merrilli, Stephania crispa, Stephania venosa and the like.
  • alkaloids derived from Tamatsuki Rafuji As an active ingredient of the present invention, there can be used an alkaloid-containing fraction from Satsuma mushroom, a crystal obtained by separation and purification by a conventional method, the alkaloid derivative produced by a known method, and the like.
  • the alkaloid fraction can be separated by dissolving in an acidic aqueous solution such as an oxalic acid aqueous solution and collecting the precipitate formed by making the solution alkaline.
  • the obtained fraction may be used after purifying alkaloids by known methods such as various types of chromatography and recrystallization.
  • the alkaloid derivatives used in the present invention include acyl derivatives, alkyl derivatives, and carbamoyl derivatives.
  • the active ingredient When administering the drug of the present invention, the active ingredient may be used as it is, or it may be formulated into tablets, powders, granules, capsules and administered orally. Furthermore, it may be formulated into a suppository, an injection, an instillation, an eye drop, an external preparation and administered parenterally, but it is desirable to administer as an oral preparation.
  • tablets, powders, granules, and capsules are produced by conventional methods with the addition of binders, lubricants, disintegrants, coloring agents, flavoring agents, and the like as necessary.
  • preservative, antioxidant, a stabilizer, etc. can be added as needed.
  • the dose of the drug of the present invention varies depending on the disease, symptom, age, therapeutic treatment used in combination, etc., but when administered to humans as an oral preparation, 0.1 to 5 mg of the alkaloid, a derivative thereof, or a salt thereof. / Kg is administered once to several times a day.
  • the agents of the present invention can be used alone or in combination with at least one or more active agents that work in different modes of action. Active drugs include 1) sulfonylurea, 2) biguanide, 3) ⁇ -glucosidase inhibitor, 4) insulin sensitizer, 5) glucagon-like peptide (GLP-1), 6) DPP-4 inhibitor 7) Insulin 8) SGLT inhibitor.
  • the active agent used in combination may be a hyperlipidemia therapeutic agent, a non-steroidal anti-inflammatory agent, or a steroid agent.
  • the method of using the drug of the present invention includes treatment of type 1 diabetes, type 2 diabetes, obesity, hyperglycemia, insulin secretion disorder, insulin resistance and disease states and conditions characterized by insulin resistance or prevention of progression of the disease state, Can be used in mammals to prevent the occurrence of complications. Furthermore, it can be used as a therapeutic / prophylactic agent for inflammatory diseases effective in inhibiting IL-1 and TNF ⁇ activity. Since the drug according to the present invention can be used for the improvement or prevention of obesity and the like as described above, it can also be an agent for improving / preventing metabolic syndrome.
  • the foods and drinks can be produced as they are or mixed with raw materials of foods and drinks such as processed meat and soft drinks together with various nutritional components.
  • the active ingredient of the present invention when used as a health food, a dietary supplement, etc., it can be prepared in the form of tablets, capsules, powders, granules, suspensions, syrups, etc., using, for example, conventional means. it can.
  • the compounding amount of the active ingredient of the present invention in the above-mentioned food and drink varies depending on the addition form and administration form and can be selected from a wide range, but it is usually desirable to blend 0.01 to 1% by weight.
  • an IL-1 receptor antagonist (anakinra) is an expensive protein preparation that needs to be injected subcutaneously every day, and is not suitable as a long-term treatment for diabetes. Patients cause problems with adherence to the treatment system by self-injection and have issues such as reduced efficacy, safety and simplicity.
  • the medicament according to the present invention is a non-invasive, anti-diabetic agent / preventive agent for preserving pancreatic ⁇ -cell function that satisfies safety, convenience, economy, and the like, and has an inhibitory action on IL-1 and TNF ⁇ activity. Is an effective therapeutic / preventive agent for inflammatory diseases.
  • the active ingredient of the present invention has effects such as pancreatic ⁇ -cell protection or ⁇ -cell function maintenance, carbohydrate metabolism improvement, lipid metabolism improvement, and hyperlipidemia improvement. Furthermore, since it is derived from a natural product, it is excellent in safety, and can be routinely used in the form of a food or drink as a preventive / improving agent for metabolic syndrome.
  • An evaluation system for an IL-1 inhibitor compound is shown.
  • the cell death by human IL-1 ⁇ and mouse IL-1 ⁇ of human cell lines, the inhibitory action of human IL-1 receptor antagonist, and the effect of human IL-1 ⁇ neutralizing antibody are shown.
  • 2 shows the inhibitory effect of plant-derived alkaloid compounds on cell death by human IL-1 ⁇ .
  • 2 shows cell death by human TNF ⁇ and human IL-1 ⁇ and MB5C (cephalanthin) inhibitory action.
  • 2 shows the inhibitory action of MBMX (Takatsuki tsumugi extract alkaloid preparation) on cell death by human IL-1 ⁇ .
  • 2 shows the inhibitory action of MBMX on pancreatic ⁇ cell (MIN6) death by IL-1 ⁇ .
  • the effect (prophylactic administration test) of MBMX in a high fat diet-fed obesity model is shown.
  • the effect (prophylactic administration test) of MBMX in a high fat diet-fed obesity model is shown.
  • the effect (prophylactic administration test) of MBMX in a high fat diet-fed obesity model is shown.
  • the effect (therapeutic administration test) of MBMX in a high fat diet-fed obesity model is shown.
  • the effect (therapeutic administration test) of MBMX in a high fat diet-fed obesity model is shown.
  • the effect (therapeutic administration test) of MBMX in a high fat diet-fed obesity model is shown.
  • the effect (therapeutic administration test) of MBMX in a high fat diet-fed obesity model is shown.
  • the effect (therapeutic administration test) of MBMX in a high fat diet-fed obesity model is shown.
  • 2 shows the inhibitory action of MBMX on Prostaglandin E2 production by IL-1 ⁇ stimulation.
  • 2 shows the inhibitory action of MBMX on Prostaglandin E2 production by IL-1 ⁇ stimulation.
  • the effect (weight change) of MBMX in a type 2 obese diabetic mouse (db / db) is shown.
  • 2 shows the effect of MBMX on improving glucose metabolism in type 2 obese diabetic mice (db / db).
  • the effect (glucose tolerance test) of MBMX in type 2 obese diabetic mice (db / db) is shown.
  • the effect of MBMX on the feeding behavior of type 2 obese diabetic mice is shown.
  • the effect (weight change) of the MBMX-containing diet feeding in type 2 obese diabetic mice (db / db) is shown.
  • the effect (blood glucose level change) of the MBMX combination diet feeding in a type 2 obese diabetic mouse (db / db) is shown.
  • the effect (feeding amount change) of the MBMX-containing diet feeding in type 2 obese diabetic mice (db / db) is shown.
  • the effect (a glucose tolerance test) of the MBMX-containing diet feeding in type 2 obese diabetic mice (db / db) is shown.
  • the effect (insulin response ability test) of the MBMX-containing diet feeding in type 2 obese diabetic mice (db / db) is shown.
  • the insulin content in the pancreas in MBMX-containing diet fed db / db mice is shown.
  • the active ingredient according to the present invention was tested to have an inhibitory effect on the activity of IL-1 and TNF ⁇ against cell death and to have an obesity preventing effect and an obesity improving effect.
  • an inhibitory effect on prostaglandin E2 production by IL-1 ⁇ and IL-1 ⁇ stimulation was also confirmed.
  • IL-1 ⁇ Human and mouse interleukin 1 ⁇
  • IL-1 ⁇ interleukin 1 ⁇
  • TNF- ⁇ human tumor necrosis factor
  • IL-1Ra interleukin receptor antagonist
  • MBMX Alkaloid bulk powder
  • cephalanthin isotetrandrine
  • berbamine berbamine
  • cicleanine and its derivatives E6-berbamine
  • WAKO Chemicals Osaka, Japan
  • Funakoshi Co, Ltd Tokyo, Japan
  • Measurement kits for glucose, triglyceride, cholesterol, free fatty acids, GOT and GPT in blood are WAKO Chemicals (Osaka, Japan) and Funakoshi Co, Ltd (Tokyo, Japan), PGE2 measurement ELISA kit (R & D Systems Inc.) Obtained from Hirano Junyaku Kogyo.
  • IL-1 inhibitory compounds were evaluated by a cell culture method using IL-1 sensitive cell line A375S2 (Nakai S, Hirai Y, et al. Biochem. Biophy. Res. Commun. 154, 1189, 1988).
  • IL-1 sensitive cell line A375S2 Non-IL-1 sensitive cell line
  • MIN6 mouse pancreatic ⁇ cells were obtained from Dr. Miyazaki, graduate School of Medicine, Osaka University.
  • ⁇ High fat diet feeding test with MBMX-20 weeks administration test-> (A) Animal Mice (C57BL / 6J strain, 5-6 weeks old, male) were purchased from Sankyo Lab Service and subjected to the test after one week of preliminary breeding.
  • the high-fat diet combined with the test substance is a high-fat diet (D12492, 60% Kcal% Fat, Research Diets) or 0.05% MBMX (Kakensei) or 0.5 % Metformin (Wako Pure Chemical Industries, Ltd.) was uniformly mixed and then formed into pellets and stored in a refrigerator. Feeding was performed every two days, and the amount of food intake was measured. In the control group, a normal diet (D12450B, 10% Kcal% Fat, Research Diets) was fed. Mice were fed the test compound diet for 20 weeks and then dissected.
  • mice were laparotomized under ether anesthesia, blood was collected from the abdominal vena cava, and blood glucose, triglyceride, cholesterol, free fatty acid, GOT, GPT and the like were measured using a commercially available kit (Wako Pure Chemical Industries).
  • C Insulin responsiveness test Feeding high fat diet with test compound 19-week-old mice were fasted for 4 hours, blood was collected from the tail vein, and insulin (0.8 IU / kg, bovine pancreas-derived, sigma) solution was intraperitoneally injected Blood was collected at 30, 60 and 120 minutes, and blood glucose level was measured.
  • A Animal Mice (C57BL / 6J strain, 5-6 weeks old, male) were purchased from Sankyo Lab Service and subjected to the test after one week of preliminary breeding.
  • B Feeding high-fat diet to mice
  • the test compound-containing high-fat diet is a high-fat diet (D12492, 60% Kcal% Fat, Research Diets) and 0.05% MBMX (Tamazakitsu Rafuji plant extract alkaloid) Cephalantin powder, Kaken Seiyaku) or 0.02% pioglitazone (Funakoshi) were uniformly mixed and then formed into pellets, stored in a refrigerator, and fed every two days.
  • mice were fed a high fat diet for 12 weeks, the mice were replaced with a high fat diet containing a test substance, and further fed for 8 weeks, and then subjected to dissection. Mice were laparotomized under ether anesthesia, blood was collected from the abdominal vena cava, and blood glucose, triglyceride, cholesterol, free fatty acid, GOT and GPT were measured using a commercially available kit (Wako Pure Chemical Industries).
  • (C) Insulin responsiveness test Fast-fed 7-week-fed mice with test compound-containing high-fat diet, blood was collected from the tail vein, and insulin (0.8 IU / kg, bovine pancreas-derived, sigma) solution was intraperitoneally Blood was collected at 30, 60 and 120 minutes, and blood glucose level was measured.
  • ⁇ MBMX combination feeding test-Diabetes onset prevention test-> (A) Animals Spontaneously diabetic mice (db / db strain, 5 weeks old, male) were purchased from Sankyo Lab Service and subjected to the test after one week of preliminary breeding.
  • test compound diet Feeding the test compound diet to db / db mice
  • the test compound diet is 0.05% MBMX or 0.02% pioglitazone (Funakoshi) on a normal diet (Lab MR Stock Powder, Nippon Agricultural Products). After uniform mixing, the animals were fed and the food intake was weighed every two days. Mice were fed a diet for 10 weeks and then dissected. Mice were laparotomized under ether anesthesia, blood was collected from the abdominal vena cava, and blood glucose, triglyceride, cholesterol, free fatty acid, GOT and GPT were measured using a commercially available kit (Wako Pure Chemical Industries).
  • the graph shown in FIG. 1 shows the effect of IL-1 ⁇ on the number of days of culture of human cell lines, the vertical axis, and the increase in the amount of living cells.
  • the test was conducted as follows. Cell culture medium or IL-1 ⁇ (2.5 ng / ml) is added to each well of the tissue culture plate. After culturing for 2 to 5 days, 0.05% neutral red solution is added to each well, followed by culturing in a cell culture vessel for 2 hours to allow the living cells to incorporate the dye. Wash the dye that was not taken up into the cells. Next, the dye eluate is added to each well and stirred on a plate shaker at room temperature to elute the dye incorporated into the living cells.
  • OD540nm is measured with an automatic absorbance meter for microplate. The amount of living cells is calculated from the measured absorbance. As a result, it was confirmed that IL-1 ⁇ caused cell death in human cell lines and the amount of living cells did not increase.
  • human IL-1 receptor antagonist (hIL-1Ra) and human IL-1 ⁇ neutralization against cell death of human cell lines of human IL-1 ⁇ (hIL-1 ⁇ ), mouse IL-1 ⁇ (mIL-1 ⁇ ) The results of confirming the action of the antibody (hIL-1 ⁇ Ab) are shown in the graph of FIG.
  • Human IL-1 ⁇ (hIL-1 ⁇ ) is inhibited when human IL-1Ra (hIL-1Ra) is added to the cell death evaluation system for human cell lines using mouse IL-1 ⁇ (mIL-1 ⁇ ).
  • Human IL-1 ⁇ neutralizing antibody (hIL-1 ⁇ Ab) inhibits cell death by human IL-1 ⁇ but not mouse IL-1 ⁇ . Using this evaluation system, it was confirmed that compounds having IL-1Ra-like activity could be screened.
  • FIG. 3 is a graph showing the results of test evaluation of the inhibitory effect of various plant-derived alkaloid compounds on cell death by human IL-1 ⁇ .
  • MB5C cephalanthin
  • MB1D E6-berbamine
  • MB2D berbamine
  • MB7R isotetrandrine
  • MB1R cyclanine
  • IL-1Ra IL-1 receptor antagonist
  • FIG. 5 is a graph showing the results of an inhibitory action test of an alkaloid preparation (MBMX) extracted from Satsuma tsumugi on cell death caused by human IL-1 ⁇ .
  • MBMX alkaloid preparation
  • cephalanthin bulk powder sold by Kaken Seiyaku Co., Ltd. was used.
  • the main alkaloid components of MBMX are cephalanthin, isotetrandrine, berbamine and cicleanine.
  • MBMX showed an inhibitory effect on cell death by human IL-1 ⁇ in a dose-dependent manner.
  • the test result of the inhibitory action of MBMX on pancreatic ⁇ cell (MIN6) death by IL-1 is shown in the graph of FIG. (Method) 1 ⁇ 10 5 pancreatic ⁇ cells (MIN6), mouse IL-1 ⁇ (5 ng / ml) and MBMX are added to each well of a tissue culture plate and cultured. After 48 hours of culture, the amount of viable cells was calculated by taking the neutral red dye into the cells. As a result, as shown in the graph of FIG. 6, although IL-1 ⁇ caused pancreatic ⁇ -cell death, MBMX was confirmed to suppress pancreatic ⁇ -cell death due to IL-1 and to have a pancreatic ⁇ -cell protective effect. .
  • the results of the inhibitory action of MB-1 on the pancreatic ⁇ cell (MIN6) death of the main alkaloid components of MBMX, cephalanthin, isotetrandrine, berbamine and cyclanine are shown in the graph of FIG. (Method) 1 ⁇ 10 5 MIN6 cells, mouse IL-1 ⁇ (5 ng / ml) and each alkaloid compound are added to each well of a tissue culture plate and cultured. After culturing for 72 hours, the amount of viable cells was calculated by taking the neutral red dye into the cells. As a result, as shown in the graph of FIG. 7, IL-1 ⁇ causes MIN6 cell death, but each of the main components of MBMX suppresses MIN6 cell death in a concentration-dependent manner and has a pancreatic ⁇ -cell protective effect. It could be confirmed.
  • MBMX alkaloid preparation
  • the weight change is shown in the graph of FIG. 8, and the insulin responsiveness test result is shown in the graph of FIG.
  • the test drug was 0.05% MBMX (500 ⁇ g / g) and the diabetic drug metformin (Met) 0.5% (5 mg / g) as a positive control was mixed in a high fat diet and fed for 20 weeks.
  • mice fed a high fat diet for 19 weeks had a lower ability to respond to insulin than mice fed a normal diet.
  • mice fed with a high-fat diet containing 0.05% MBMX the insulin response ability was equivalent to that of a normal diet-fed mouse, and an effect of preventing a decrease in insulin response ability was obtained.
  • the results showed that mice fed with high fat diet increased triglycerides, free fatty acids, cholesterol, and abnormal liver function due to fatty liver compared to mice fed normal diet.
  • mice fed with a high fat diet containing 0.05% MBMX the effects of suppressing increases in triglycerides, free fatty acids and cholesterol and preventing deterioration of liver function were obtained.
  • FIG. 11 shows a graph of changes in body weight of mice
  • FIG. 12 shows the results of an insulin responsiveness test.
  • FIG. 13 and FIG. 14 show blood biochemical test results.
  • 0.05% MBMX 500 ⁇ g / g
  • 0.02% pioglitazone was fed as a positive control drug.
  • mice fed with a high fat diet decreased insulin response (insulin resistance) was observed.
  • mice fed with a high fat diet containing 0.05% MBMX for 7 weeks an effect of improving insulin responsiveness was obtained.
  • mice fed with a high fat diet an increase in insulin level and an increase in leptin level were observed.
  • mice with high fat diet containing 0.05% MBMX were able to improve insulin and leptin levels.
  • Serum lipid levels were elevated in mice fed a high fat diet. In mice fed with a high fat diet containing 0.05% MBMX, an effect of improving the serum lipid profile was obtained.
  • the results of evaluating the inhibitory action of the alkaloid preparation (MBMX) on prostaglandin E2 (PGE2) production by IL-1 ⁇ and IL-1 ⁇ stimulation are shown in the graphs of FIGS.
  • the graph in FIG. 15 is for IL-1 ⁇ stimulation
  • the graph in FIG. 16 is for IL-1 ⁇ stimulation.
  • FIG. 17 to FIG. 20 show the results (part 1) of the test of the effect of the alkaloid preparation (MBMX) on type 2 obese diabetic mice.
  • FIG. 17 shows changes in body weight
  • FIG. 18 shows changes in blood glucose level
  • FIG. 19 shows glucose tolerance test results
  • FIG. 20 shows changes in food intake.
  • weight gain (fat accumulation, water retention, etc.) was observed due to the versatility of the PPAR ⁇ agonist action.
  • the blood glucose level began to decrease from the third week of feeding, and decreased to 200 mg / dl or less by the eighth week.
  • the pioglitazone group no increase in blood glucose level was observed after the start of feeding, and the value was maintained at around 150 mg / dl.
  • Fasting blood glucose levels at 8 weeks after the start of the test were significantly lower in the MBMX group and the pioglitazone group than in the control group.
  • FIG. 21 to FIG. 25 show the results (part 2) of the test of the effect of the alkaloid preparation (MBMX) on type 2 obese diabetic mice.
  • 21 shows changes in body weight
  • FIG. 22 shows changes in blood glucose level
  • FIG. 23 shows the amount of food intake
  • FIG. 24 shows the glucose tolerance test results
  • FIG. 25 shows the insulin response ability test.
  • a db / db mouse having an abnormality in the leptin receptor, which is an appetite suppressive hormone is a model animal for diabetic condition that causes pancreatic ⁇ -cell atrophy and necrosis due to overeating, obesity, and insulin resistance.
  • mice Eight-week-old male db / db mice were fed a diet containing 0.01% or 0.05% MBMX for 10 weeks.
  • a glucose tolerance test was conducted at 10 weeks after the start of the test, an insulin responsiveness test was conducted at the 11th week of the test, and an insulin amount in the pancreas was measured by dissecting at the 12th week of the test.
  • Glucose tolerance test and insulin response test were performed in the usual way after fasting
  • FIG. (Method) A db / db mouse having an abnormality in the leptin receptor, which is an appetite suppressive hormone, is a disease state model animal that causes pancreatic ⁇ -cell atrophy and necrosis due to overeating, obesity, and insulin resistance.
  • the insulin content in the pancreas of db / db mice was measured at the 12th week of the start of the test. That is, male db / db mice were fed with a diet containing 0.01% or 0.05% MBMX.
  • the present invention relates to an inflammatory disease (diabetes, obesity-related disease, dementia, autoinflammatory disease, rheumatoid arthritis, inflammatory bowel disease, sepsis, etc.) effective in inhibiting inflammatory cytokines IL-1 and TNF ⁇ activity It can be widely used as a therapeutic agent and a preventive agent.
  • an inflammatory disease diabetes, obesity-related disease, dementia, autoinflammatory disease, rheumatoid arthritis, inflammatory bowel disease, sepsis, etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Diabetes (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Obesity (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Nutrition Science (AREA)
  • Emergency Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Cardiology (AREA)
  • Endocrinology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Rheumatology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

[Problem] The present invention addresses the problem of providing an inflammatory cytokine activity inhibitor which is non-invasive and satisfies requirements such as safety, convenience and economic performance, for the purpose of treating diabetes and preventing the development of diabetic complications and as a therapy method for altering the natural history of diabetes, or as an effective means for preventing the progression of diabetes. The present invention also addresses the problem of providing a therapeutic or prophylactic agent for autoinflammatory diseases for which an activity of inhibiting the activity of inflammatory cytokines is effective. [Solution] The inflammatory cytokine activity inhibitor is characterized by containing, as an active ingredient, at least one compound selected from an alkaloid originated from a plant belonging to the family Menispermaceae, the genus Stephania, a derivative of the alkaloid and a pharmaceutically acceptable salt of the alkaloid or the derivative.

Description

IL-1及びTNF活性阻害剤IL-1 and TNF activity inhibitors
 本発明は糖尿病、インスリン抵抗性を特徴とする疾患状態および病態、機能的膵β細胞量の低下、高血糖、高脂血症、肥満、代謝異常症候群、動脈硬化症、自己炎症性疾患(痛風など)ならびに慢性関節リウマチ、炎症性腸疾患、敗血症の治療あるいは予防のため医薬に関する。 The present invention relates to diabetes, disease states and conditions characterized by insulin resistance, decreased functional pancreatic β-cell mass, hyperglycemia, hyperlipidemia, obesity, metabolic syndrome, arteriosclerosis, autoinflammatory disease (gout Etc.) and for the treatment or prevention of rheumatoid arthritis, inflammatory bowel disease, sepsis.
 糖尿病はインスリン作用の不足による慢性高血糖を主徴とし、様々の特徴的な代謝異常を伴う疾患群であり、病態の進行に伴い、眼、腎臓、神経、及び血管を含む種々の器官に重篤な衰弱性合併症を引き起こす。
 遺伝的素因に、高脂肪食・運動不足・肥満といったインスリン抵抗性増大をきたす生活環境因子が加わって発症するものと考えられている。
 インターロイキン1(IL-1)はマクロファージ、単球、線維芽細胞、血管内皮細胞、滑膜細胞など多くの細胞から産生、分泌される炎症性サイトカインである(非特許文献1)。
 産生細胞から放出されたIL-1は種々の細胞に表現されているIL-1受容体を介して局所的および全身的炎症作用を惹起することが知られている。
 また、IL-1はプロスタグランジンE2(PGE2),腫瘍壊死因子(TNF,IL-6,IL-8,コルチコトロピンなどの他の炎症メディエータの誘導を通して媒介される一連の生物作用を引き起こす。
 IL-1ファミリーのサイトカインは11のメンバーで構成されているが、IL-1α,IL-1β,IL-1Ra(IL-1受容体アンタゴニスト)、及びIL-18の作用がヒト、実験動物の炎症性疾患状態で研究されている。
 IL-1α,IL-1β及びIL-1RaはIL-1受容体に同程度の親和性で結合するが、異なる遺伝子によって発現され、異なる一次アミノ酸配列を有し、生理学的活性も互いに異なる。
 近年、糖尿病の発症、悪化やインスリン分泌障害、インスリン抵抗性にIL-1βが関与していることを示す研究が多数報告されている(例えば、非特許文献2)。
 メタボリック症候群は、高インスリン血症、耐糖能異常、肥満、内臓脂肪蓄積、高血圧、ならびに高脂血を特徴とする脂質代謝異常などを集合したものである。
 インスリン抵抗性は、これらの疾患状態に密接に関連しており、将来、2型糖尿病、心臓発作、脳卒中、動脈硬化症を発症する強力なリスク因子である。
 IL-1を含む炎症性サイトカインがインスリン抵抗性に関与すると考えられる脂肪組織内の炎症を媒介することが示されている(非特許文献6)。
 TNFα、IL-6は脂肪細胞をインスリン抵抗性にすることは知られていたが、IL-1もIRS-1(Insulin Receptor Substrate 1)のセリン残基をリン酸化することによりインスリンシグナルの阻害、インスリン抵抗性を誘発することが報告された(非特許文献7)。
 自己炎症性疾患は発熱、皮疹など炎症に由来する症状を主徴とするもののうち、自己免疫疾患でみられるような自己抗体の関与が否定される症候群の総称である。
 近年、その多くがインフラマソームの機能異常によって発症することが解ってきた。
 インフラマソームによるカスパーゼー1の活性化とそれに引き続く活性型IL-1β産生の亢進が、全身性炎症を惹起すると考えられている。
 現在、抗IL-1薬が診療に用いられており、いずれも著しい効果をあげている。
 多くの自己炎症性疾患は遺伝性疾患であるが、IL-1とIL-1Raのバランスシステムの崩壊が自己炎症性疾患発症の原因と考え、一部の変形関節症、痛風、2型糖尿病を自己炎症性疾患に分類することを提唱している(非特許文献8)。
 炎症性サイトカインの自己免疫疾患に対する関与については、関節リウマチのモデルマウス及び関節リウマチ患者を中心に解析が進められ、IL-1阻害療法としてIL-1受容体アンタゴニスト、TNF阻害療法として抗TNF抗体、IL-6阻害療法としてIL-6受容体阻害抗体が関節リウマチの治療薬として承認され診療に用いられており、いずれも従来の標準的薬物療法を上回る効果をあげている。
Diabetes is a group of diseases with chronic hyperglycemia due to lack of insulin action and various characteristic metabolic abnormalities. As the disease progresses, it diminishes in various organs including eyes, kidneys, nerves, and blood vessels. Causes severe debilitating complications.
It is thought to develop due to genetic predisposing factors such as high fat diet, lack of exercise, obesity, and other living environment factors that increase insulin resistance.
Interleukin 1 (IL-1) is an inflammatory cytokine produced and secreted from many cells such as macrophages, monocytes, fibroblasts, vascular endothelial cells, and synovial cells (Non-patent Document 1).
It is known that IL-1 released from production cells induces local and systemic inflammatory effects via IL-1 receptors expressed in various cells.
IL-1 also causes a series of biological actions mediated through the induction of other inflammatory mediators such as prostaglandin E2 (PGE2), tumor necrosis factor (TNF, IL-6, IL-8, corticotropin).
The IL-1 family of cytokines is composed of 11 members, but the effects of IL-1α, IL-1β, IL-1Ra (IL-1 receptor antagonist), and IL-18 are inflamed in humans and experimental animals. Has been studied in sexually transmitted disease states.
IL-1α, IL-1β and IL-1Ra bind to the IL-1 receptor with similar affinity, but are expressed by different genes, have different primary amino acid sequences, and have different physiological activities.
In recent years, many studies showing that IL-1β is involved in the onset, worsening of diabetes, impaired insulin secretion, and insulin resistance have been reported (for example, Non-Patent Document 2).
Metabolic syndrome is a collection of hyperinsulinemia, impaired glucose tolerance, obesity, visceral fat accumulation, hypertension, and lipid metabolism abnormalities characterized by hyperlipidemia.
Insulin resistance is closely related to these disease states and is a powerful risk factor for developing type 2 diabetes, heart attacks, strokes, and arteriosclerosis in the future.
Inflammatory cytokines including IL-1 have been shown to mediate inflammation in adipose tissue that is thought to be involved in insulin resistance (Non-Patent Document 6).
Although TNFα and IL-6 were known to make adipocytes insulin resistant, IL-1 also inhibited insulin signaling by phosphorylating the serine residue of IRS-1 (Insulin Receptor Substrate 1). It has been reported to induce insulin resistance (Non-patent Document 7).
Autoinflammatory disease is a general term for syndromes in which the involvement of autoantibodies, such as that seen in autoimmune diseases, is denied, among the main features of symptoms derived from inflammation such as fever and skin rash.
In recent years, it has been understood that many of them are caused by abnormal function of inflammasome.
Activation of caspase 1 by inflammasome and subsequent enhancement of active IL-1β production is thought to cause systemic inflammation.
At present, anti-IL-1 drugs are used for medical care, and all have remarkable effects.
Many autoinflammatory diseases are inherited diseases, but the disruption of the balance system of IL-1 and IL-1Ra is considered to be the cause of the development of autoinflammatory diseases. Some osteoarthritis, gout, and type 2 diabetes It is proposed to classify as an autoinflammatory disease (Non-patent Document 8).
Regarding the involvement of inflammatory cytokines in autoimmune diseases, analysis is proceeding mainly in rheumatoid arthritis model mice and rheumatoid arthritis patients, and IL-1 receptor antagonists as IL-1 inhibitor therapy, anti-TNF antibodies as TNF inhibitor therapy, IL-6 receptor-inhibiting antibodies have been approved as therapeutic agents for rheumatoid arthritis and are used in clinical practice as IL-6 inhibitory therapies, all of which are more effective than conventional standard drug therapies.
 特許文献1には、ツヅラフジ科ステファニア属の植物を由来のアルカロイドを有効成分とするNF-κβ活性阻害剤を開示する。
 しかし、本発明が後述するように、膵β細胞機能の改善、機能的膵β細胞量の温存、インスリン抵抗性の改善により、糖尿病の治療、糖尿病発症の予防、肥満の改善と予防及び炎症性サイトカインが関与する自己炎症性疾患の治療、予防に有用であることを見出したものである点で、特許文献1に開示する発明と目的及び作用が相違する。
Patent Document 1 discloses an NF-κβ activity inhibitor containing as an active ingredient an alkaloid derived from a plant belonging to the genus Stefania belonging to the family Rubiaceae.
However, as described later in the present invention, improvement of pancreatic β-cell function, preservation of functional pancreatic β-cell amount, improvement of insulin resistance, treatment of diabetes, prevention of diabetes onset, improvement and prevention of obesity, and inflammation The object and action differ from the invention disclosed in Patent Document 1 in that it has been found useful for the treatment and prevention of autoinflammatory diseases involving cytokines.
日本国特開平11-180873号公報Japanese Laid-Open Patent Publication No. 11-180873
 本発明は、糖尿病を治療及び合併症の発症を予防するため並びに糖尿病の自然史を変える治療法、進行を防止する有効な手段として、非侵襲的で、安全性、簡便性、経済性などを満たした炎症性サイトカイン活性阻害剤の提供を目的とする。
また、炎症性サイトカイン活性阻害作用が有効な自己炎症性疾患の治療・予防剤の提供を目的とする。
The present invention treats diabetes and prevents the onset of complications, as well as a therapeutic method that changes the natural history of diabetes, as an effective means for preventing progression, is non-invasive, safe, simple, economical, etc. An object is to provide a inflammatory cytokine activity inhibitor that is satisfied.
It is another object of the present invention to provide a therapeutic / preventive agent for autoinflammatory diseases that is effective in inhibiting inflammatory cytokine activity.
 本発明に係る炎症性サイトカインであるインターロイキン-1(IL-1)及び腫瘍壊死因子(TNF)の活性阻害剤は、ツヅラフジ科ステファニア属の植物を由来とするアルカロイド及びその誘導体ならびにそれらの薬学的に許容される塩のうち、少なくとも1種以上を有効成分して含有していることを特徴とする。
 ここで、アルカロイドはビスベンジルイソキロリン(Bisbenzylisoquinoline)化合物であり、具体的には、セファランチン,ベルバミン,イソテトランドリン,テトランドリン,シクレアニン,E6-ベルバミンのうちいずれか1種以上であってよい。
 また、これらの化合物は、化学合成されたものを含む。
Inhibitors of interleukin-1 (IL-1) and tumor necrosis factor (TNF), which are inflammatory cytokines according to the present invention, are alkaloids derived from plants of the genus Stefania and their derivatives and their pharmaceuticals It is characterized by containing at least one or more kinds of active ingredients among the chemically acceptable salts.
Here, the alkaloid is a bisbenzylisoquinoline compound, and specifically, may be any one or more of cephalanthin, berbamine, isotetrandrine, tetrandrine, cyclanine, and E6-berbamine.
These compounds include those chemically synthesized.
 上記のアルカロイドのうち、セファランチン,ベルバミン,イソテトランドリン,及びシクレアニンの構造式を(1)~(4)にそれぞれ示す。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Among the alkaloids, structural formulas of cephalanthin, berbamine, isotetrandrine, and cyclanine are shown in (1) to (4), respectively.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 本発明に用いられるツヅラフジ科ステファニア属に属する植物としては、タマサキツヅラフジ(Stephania cepharantha),コウトウツヅラフジ(Stephania merrilli),イボツヅラフジ(Stephania crispa),ステファニア(Stephania venosa)等が例として挙げられる。
 本発明の有効成分としては、タマサキツヅラフジ由来のアルカロイドを用いるのが好ましい。
 本発明の有効成分としてはタマサキツヅラフジからのアルカロイド含有画分、また常法により分離精製して得られる結晶、公知の方法により製造される当該アルカロイド誘導体などを用いることができる。
 例えばタマサキツヅラフジの根茎、茎、葉、種子などを使用し、メタノール、エタノール、アセトン、酢酸エチルなどの溶媒で抽出し、抽出液を濃縮し、濃縮液を希塩酸、希硫酸、クエン酸水溶液、シュウ酸水溶液などの酸性水溶液に溶解し、溶解液をアルカリ性にして生じた沈殿物を採取することによりアルカロイド画分を分離できる。
 得られた画分を各種クロマトグラフィー、再結晶などの公知の方法によりアルカロイドを精製して用いてもよい。
 本発明に用いられるアルカロイドの誘導体としては、アシル誘導体、アルキル誘導体、カルバモイル誘導体などが挙げられる。
Examples of the plant belonging to the genus Stefania belonging to the genus Stefoniaceae used in the present invention include Stephania cepharantha, Stephania merrilli, Stephania crispa, Stephania venosa and the like. .
As the active ingredient of the present invention, it is preferable to use alkaloids derived from Tamatsuki Rafuji.
As an active ingredient of the present invention, there can be used an alkaloid-containing fraction from Satsuma mushroom, a crystal obtained by separation and purification by a conventional method, the alkaloid derivative produced by a known method, and the like.
For example, using the rhizomes, stems, leaves, seeds, etc., of the Japanese red snapper, extract with a solvent such as methanol, ethanol, acetone, ethyl acetate, concentrate the extract, The alkaloid fraction can be separated by dissolving in an acidic aqueous solution such as an oxalic acid aqueous solution and collecting the precipitate formed by making the solution alkaline.
The obtained fraction may be used after purifying alkaloids by known methods such as various types of chromatography and recrystallization.
Examples of the alkaloid derivatives used in the present invention include acyl derivatives, alkyl derivatives, and carbamoyl derivatives.
 本発明の薬剤を投与する場合、当該有効成分をそのまま用いてもよく、また、錠剤,散剤、顆粒剤、カプセル剤などに製剤化して経口的に投与してもよい。
 さらに、坐剤、注射剤、点滴剤、点眼剤、外用剤などに製剤化して非経口的に投与してもよいが、経口剤として投与することが望ましい。
 経口剤は、必要に応じて結合剤、滑沢剤、崩壊剤、着色剤、矯味剤などを加え錠剤,散剤、顆粒剤、カプセル剤を常法により製造する。
 また、必要に応じて防腐剤、抗酸化剤、安定化剤などを添加することができる。
 本発明の薬剤の投与量は、疾患、症状、年齢、併用される治療的措置などにより異なるが、経口剤としてヒトに投与する場合は、当該アルカロイド、その誘導体、その塩として0.1~5mg/kgを1日1回~数回に分けて投与する。
 本発明の薬剤は単独あるいは異なる作用様式で働く少なくとも1つまたは複数の活性薬剤と併用して用いることもできる。
 活性薬剤としては糖尿病治療薬剤の1)スルホニル尿素薬 2)ビグアナイド薬 3)αグルコシダーゼ阻害薬 4)インスリン抵抗性改善薬 5)グルカゴン様ペプチド(GLP-1)類似薬、6)DPP-4阻害薬 7)インスリン 8)SGLT阻害剤が挙げられる。
 更に別の態様において、併用する活性薬剤は高脂血症治療剤、非ステロイド性抗炎症剤、ステロイド剤であっても良い。
 本発明の薬剤の使用方法には、1型糖尿病、2型糖尿病、肥満、高血糖、インスリン分泌障害、インスリン抵抗性並びにインスリン抵抗性を特徴とする疾患状態及び病態を処置または病態の進行予防、合併症の発生を予防するために哺乳動物に使用することができる。
 さらに、IL-1、TNFα活性阻害作用が有効な炎症性疾患の治療剤・予防剤として使用できる。
 本発明に係る薬剤は、上記に示した肥満等の改善又は予防にも使用できることから、メタボリックシンドロームの改善・予防剤にもなる。
 本発明に係る薬剤を含有した飲食品にすることもでき、その場合飲食品全般を意味するが、いわゆる健康食品を含む一般食品の他、厚生労働省の保健機能食品制度に規定された特定保健用食品や栄養機能食品などの保健機能食品をも含むものであり、更にサプリメント、飼料、食品添加物等も本発明の飲食品に包含される。
 本発明の有効成分を飲食品に使用するには、そのまま又は種々の栄養成分とともに加工肉、清涼飲料等の飲食品の原料に混ぜて飲食品を製造することができる。
 また、本発明の有効成分を健康食品、栄養補助食品などとして使用する場合、例えば慣用の手段を用いて、錠剤、カプセル、散剤、顆粒、懸濁剤、シロップ剤等の形態に調製することができる。
 上記の飲食品における本発明の有効成分の配合量は、添加形態及び投与形態によっても異なり広い範囲から選択できるが、通常、0.01~1重量%配合するのが望ましい。
When administering the drug of the present invention, the active ingredient may be used as it is, or it may be formulated into tablets, powders, granules, capsules and administered orally.
Furthermore, it may be formulated into a suppository, an injection, an instillation, an eye drop, an external preparation and administered parenterally, but it is desirable to administer as an oral preparation.
For oral preparations, tablets, powders, granules, and capsules are produced by conventional methods with the addition of binders, lubricants, disintegrants, coloring agents, flavoring agents, and the like as necessary.
Moreover, antiseptic | preservative, antioxidant, a stabilizer, etc. can be added as needed.
The dose of the drug of the present invention varies depending on the disease, symptom, age, therapeutic treatment used in combination, etc., but when administered to humans as an oral preparation, 0.1 to 5 mg of the alkaloid, a derivative thereof, or a salt thereof. / Kg is administered once to several times a day.
The agents of the present invention can be used alone or in combination with at least one or more active agents that work in different modes of action.
Active drugs include 1) sulfonylurea, 2) biguanide, 3) α-glucosidase inhibitor, 4) insulin sensitizer, 5) glucagon-like peptide (GLP-1), 6) DPP-4 inhibitor 7) Insulin 8) SGLT inhibitor.
In yet another embodiment, the active agent used in combination may be a hyperlipidemia therapeutic agent, a non-steroidal anti-inflammatory agent, or a steroid agent.
The method of using the drug of the present invention includes treatment of type 1 diabetes, type 2 diabetes, obesity, hyperglycemia, insulin secretion disorder, insulin resistance and disease states and conditions characterized by insulin resistance or prevention of progression of the disease state, Can be used in mammals to prevent the occurrence of complications.
Furthermore, it can be used as a therapeutic / prophylactic agent for inflammatory diseases effective in inhibiting IL-1 and TNFα activity.
Since the drug according to the present invention can be used for the improvement or prevention of obesity and the like as described above, it can also be an agent for improving / preventing metabolic syndrome.
It can also be a food or drink containing the drug according to the present invention, in which case it means all foods and drinks, but in addition to general foods including so-called health foods, for specified health use specified in the health functional food system of the Ministry of Health, Labor and Welfare It also includes health foods such as foods and functional foods, and supplements, feeds, food additives, and the like are also included in the food and drink of the present invention.
In order to use the active ingredient of the present invention in foods and drinks, the foods and drinks can be produced as they are or mixed with raw materials of foods and drinks such as processed meat and soft drinks together with various nutritional components.
Further, when the active ingredient of the present invention is used as a health food, a dietary supplement, etc., it can be prepared in the form of tablets, capsules, powders, granules, suspensions, syrups, etc., using, for example, conventional means. it can.
The compounding amount of the active ingredient of the present invention in the above-mentioned food and drink varies depending on the addition form and administration form and can be selected from a wide range, but it is usually desirable to blend 0.01 to 1% by weight.
 IL-1受容体拮抗薬(アナキンラ)は高価なタンパク質製剤で連日皮下注射することが必要であり、長期に渡る糖尿病治療薬としては適さない。
 患者は自己注射による治療システム遵守に関する問題を引き起こし、有効性の低下、安全性、簡便性などの課題がある。
 これに対して本発明に係る医薬は、非侵襲的で、安全性、簡便性、経済性などを満たした膵β細胞機能温存する糖尿病治療剤・予防剤となり、IL-1、TNFα活性阻害作用が有効な炎症性疾患の治療剤・予防剤となる。
 本発明の有効成分は、膵β細胞保護又はβ細胞機能維持、糖質代謝改善、脂質代謝改善、高脂血症改善などの効果を有する。更に、天然物に由来するため安全性に優れており、メタボリックシンドロームの予防・改善剤として飲食品の形態で日常的に使用することができる。
An IL-1 receptor antagonist (anakinra) is an expensive protein preparation that needs to be injected subcutaneously every day, and is not suitable as a long-term treatment for diabetes.
Patients cause problems with adherence to the treatment system by self-injection and have issues such as reduced efficacy, safety and simplicity.
In contrast, the medicament according to the present invention is a non-invasive, anti-diabetic agent / preventive agent for preserving pancreatic β-cell function that satisfies safety, convenience, economy, and the like, and has an inhibitory action on IL-1 and TNFα activity. Is an effective therapeutic / preventive agent for inflammatory diseases.
The active ingredient of the present invention has effects such as pancreatic β-cell protection or β-cell function maintenance, carbohydrate metabolism improvement, lipid metabolism improvement, and hyperlipidemia improvement. Furthermore, since it is derived from a natural product, it is excellent in safety, and can be routinely used in the form of a food or drink as a preventive / improving agent for metabolic syndrome.
IL-1阻害化合物の評価系を示す。An evaluation system for an IL-1 inhibitor compound is shown. ヒト株化細胞のヒトIL-1β、マウスIL-1βによる細胞死とヒトIL-1レセプターアンタゴニストの阻害作用、ヒトIL-1β中和抗体の効果を示す。The cell death by human IL-1β and mouse IL-1β of human cell lines, the inhibitory action of human IL-1 receptor antagonist, and the effect of human IL-1β neutralizing antibody are shown. ヒトIL-1βによる細胞死に対する植物由来アルカロイド化合物の阻害作用を示す。2 shows the inhibitory effect of plant-derived alkaloid compounds on cell death by human IL-1β. ヒトTNFα、ヒトIL-1αによる細胞死とMB5C(セファランチン)の阻害作用を示す。2 shows cell death by human TNFα and human IL-1α and MB5C (cephalanthin) inhibitory action. ヒトIL-1βによる細胞死に対するMBMX(タマサキツヅラフジ抽出アルカロイド製剤)の阻害作用を示す。2 shows the inhibitory action of MBMX (Takatsuki tsumugi extract alkaloid preparation) on cell death by human IL-1β. IL-1βによる膵β細胞(MIN6)死に対するMBMXの抑制作用を示す。2 shows the inhibitory action of MBMX on pancreatic β cell (MIN6) death by IL-1β. IL-1βによる膵β細胞(MIN6)死に対するビスベンジルイソキノリン化合物の抑制作用を示す。2 shows the inhibitory action of a bisbenzylisoquinoline compound on pancreatic β cell (MIN6) death caused by IL-1β. 高脂肪食給餌肥満モデルにおけるMBMXの効果(予防的投与試験)を示す。The effect (prophylactic administration test) of MBMX in a high fat diet-fed obesity model is shown. 高脂肪食給餌肥満モデルにおけるMBMXの効果(予防的投与試験)を示す。The effect (prophylactic administration test) of MBMX in a high fat diet-fed obesity model is shown. 高脂肪食給餌肥満モデルにおけるMBMXの効果(予防的投与試験)を示す。The effect (prophylactic administration test) of MBMX in a high fat diet-fed obesity model is shown. 高脂肪食給餌肥満モデルにおけるMBMXの効果(治療的投与試験)を示す。The effect (therapeutic administration test) of MBMX in a high fat diet-fed obesity model is shown. 高脂肪食給餌肥満モデルにおけるMBMXの効果(治療的投与試験)を示す。The effect (therapeutic administration test) of MBMX in a high fat diet-fed obesity model is shown. 高脂肪食給餌肥満モデルにおけるMBMXの効果(治療的投与試験)を示す。The effect (therapeutic administration test) of MBMX in a high fat diet-fed obesity model is shown. 高脂肪食給餌肥満モデルにおけるMBMXの効果(治療的投与試験)を示す。The effect (therapeutic administration test) of MBMX in a high fat diet-fed obesity model is shown. IL-1β刺激によるProstaglandinE2産生に対するMBMXの抑制作用を示す。2 shows the inhibitory action of MBMX on Prostaglandin E2 production by IL-1β stimulation. IL-1α刺激によるProstaglandinE2産生に対するMBMXの抑制作用を示す。2 shows the inhibitory action of MBMX on Prostaglandin E2 production by IL-1α stimulation. 2型肥満糖尿病マウス(db/db)におけるMBMXの効果(体重変化)を示す。The effect (weight change) of MBMX in a type 2 obese diabetic mouse (db / db) is shown. 2型肥満糖尿病マウス(db/db)におけるMBMXの糖代謝改善効果を示す。2 shows the effect of MBMX on improving glucose metabolism in type 2 obese diabetic mice (db / db). 2型肥満糖尿病マウス(db/db)におけるMBMXの効果(耐糖能試験)を示す。The effect (glucose tolerance test) of MBMX in type 2 obese diabetic mice (db / db) is shown. 2型肥満糖尿病マウス(db/db)の摂食行動に対するMBMXの効果を示す。The effect of MBMX on the feeding behavior of type 2 obese diabetic mice (db / db) is shown. 2型肥満糖尿病マウス(db/db)におけるMBMX配合食給餌の効果(体重変化)を示す。The effect (weight change) of the MBMX-containing diet feeding in type 2 obese diabetic mice (db / db) is shown. 2型肥満糖尿病マウス(db/db)におけるMBMX配合食給餌の効果(血糖値変化)を示す。The effect (blood glucose level change) of the MBMX combination diet feeding in a type 2 obese diabetic mouse (db / db) is shown. 2型肥満糖尿病マウス(db/db)におけるMBMX配合食給餌の効果(摂餌量変化)を示す。The effect (feeding amount change) of the MBMX-containing diet feeding in type 2 obese diabetic mice (db / db) is shown. 2型肥満糖尿病マウス(db/db)におけるMBMX配合食給餌の効果(耐糖能試験)を示す。The effect (a glucose tolerance test) of the MBMX-containing diet feeding in type 2 obese diabetic mice (db / db) is shown. 2型肥満糖尿病マウス(db/db)におけるMBMX配合食給餌の効果(インスリン応答能試験)を示す。The effect (insulin response ability test) of the MBMX-containing diet feeding in type 2 obese diabetic mice (db / db) is shown. MBMX配合食給餌db/dbマウスにおける膵臓中インスリン含量を示す。The insulin content in the pancreas in MBMX-containing diet fed db / db mice is shown.
 次に、本発明に係る有効成分が細胞死に対するIL-1,TNFαの活性阻害作用を有し、肥満予防効果及び肥満改善効果を有することを試験したので説明する。
 また、IL-1α及びIL-1β刺激によるプロスタングランジンE2の産生に対する抑制作用も確認した。
Next, it will be described that the active ingredient according to the present invention was tested to have an inhibitory effect on the activity of IL-1 and TNFα against cell death and to have an obesity preventing effect and an obesity improving effect.
In addition, an inhibitory effect on prostaglandin E2 production by IL-1α and IL-1β stimulation was also confirmed.
 まず初めに確認試験に用いた試薬及び試験条件を説明する。
<試薬及び医薬品>
 ヒト及びマウスのインターロイキン1α(IL-1α)、インターロイキン1β(IL-1β)、ヒトの腫瘍壊死因子(TNF-α)、インターロイキン受容体拮抗因子(IL-1Ra)は、R&D Systems Inc.(Minneapolis,MN)及び大塚製薬(株)(Tokushima,Japan)で製造されたリコンビナント製品を使用した。
 抗ヒトIL-1β中和抗体は大塚製薬(株)(Tokushima,Japan)より入手した。
 タマサキツヅラフジ植物抽出アルカロイド原末(以下MBMXという。)、セファランチン、イソテトランドリン、ベルバミン、シクレアニン、及びその誘導体であるE6-ベルバミンはWAKO Chemicals(Osaka,Japan)及びFunakoshi Co,Ltd(Tokyo,Japan)より入手した。
 血中のグルコース、トリグリセライド、コレステロール、遊離脂肪酸、GOT及びGPTなどの測定キットは、WAKO Chemicals(Osaka,Japan)及びFunakoshi Co,Ltd(Tokyo,Japan)、PGE2測定ELISAキット(R&D Systems Inc.)は平野純薬工業より入手した。
<株化細胞>
 IL-1阻害化合物の評価は、IL-1感受性株化細胞A375S2を使用した細胞培養法により行った(Nakai S,Hirai Y,et al. Biochem.Biophy.Res.Commun.154,1189,1988)。
 MIN6マウス膵β細胞は大阪大学大学院医学研究科 宮崎博士より入手した。
<MBMX配合高脂肪食給餌試験 -20週間投与試験->
 (a)動物
 マウス(C57BL/6J系、5-6週令、雄性)を三協ラボサービスより購入し、1週間の予備飼育の後に試験に供した。
 (b)マウスへの高脂肪食の給餌
 被検物配合高脂肪食は、高脂肪食(D12492、60% Kcal% Fat、Research Diets)に0.05%MBMX(化研生薬)または0.5%メトフォルミン(和光純薬)を均一に混合した後ペレット状に成型して作成し、冷蔵庫で保存した。
 給餌は、2日毎に行ない、摂餌量を計量した。
 また、対照群では、普通食(D12450B、10% Kcal% Fat、Research Diets)を給餌した。
 マウスに被検物配合食を20週間給餌した後、解剖に付した。マウスはエーテル麻酔下で開腹し、腹大静脈から採血した後、血中のグルコース、トリグリセライド、コレステロール、遊離脂肪酸、GOT及びGPTなどの測定は、市販キット(和光純薬)を用いて測定した。
 (c)インスリン応答能試験
 被検物配合高脂肪食給餌19週目のマウスを4時間絶食し,尾静脈より採血した後インスリン(0.8IU/kg、牛膵臓由来、シグマ)溶液を腹腔内投与し,30,60及び120分後に各々採血して血糖値を測定した.
<MBMX配合高脂肪食給餌試験 -8週間投与試験->
 (a)動物
 マウス(C57BL/6J系、5-6週令、雄性)を三協ラボサービスより購入し、1週間の予備飼育の後に試験に供した。
 (b)マウスへの高脂肪食の給餌
 被検物配合高脂肪食は、高脂肪食(D12492、60% Kcal% Fat、Research Diets)に0.05%MBMX(タマサキツヅラフジ植物抽出アルカロイドであるセファランチン原末、化研生薬)または0.02%ピオグリタゾン(フナコシ)を均一に混合した後ペレット状に成型して作成し、冷蔵庫で保存し、給餌は2日毎に行なった。
 また、普通食(D12450B、10% Kcal% Fat、Research Diets)についても同様に給餌した。
 マウスに12週間高脂肪食を給餌した後、被検物配合高脂肪食に交換し、さらに8週間給餌した後、解剖に付した。
 マウスはエーテル麻酔下で開腹し、腹大静脈から採血した後血中のグルコース、トリグリセライド、コレステロール、遊離脂肪酸、GOT及びGPTなどの測定は、市販キット(和光純薬)を用いて測定した。
 (c)インスリン応答能試験
 被検物配合高脂肪食給餌7週目のマウスを4時間絶食し,尾静脈より採血した後インスリン(0.8IU/kg、牛膵臓由来、シグマ)溶液を腹腔内投与し,30,60及び120分後に各々採血して血糖値を測定した.
<MBMX配合食給餌試験 -糖尿病発症予防試験->
 (a)動物 自然発症糖尿病マウス(db/db系、5週令、雄性)を三協ラボサービスより購入し、1週間の予備飼育の後に試験に供した。
 (b)db/dbマウスへの被検物配合食の給餌
 被検物配合食は、普通食(ラボMRストック粉末、日本農産)に0.05%MBMXまたは0.02%ピオグリタゾン(フナコシ)を均一に混合した後給餌し、2日毎に摂餌量を計量した。
 マウスに10週間配合食を給餌した後、解剖に付した。
 マウスはエーテル麻酔下で開腹し、腹大静脈から採血した後血中のグルコース、トリグリセライド、コレステロール、遊離脂肪酸、GOT及びGPTなどの測定は、市販キット(和光純薬)を用いて測定した。
 (c)耐糖能試験
 被検物配合食給餌9週目のマウスを一晩絶食し、尾静脈より採血した後グルコース溶液(2g/kg)を経口投与し、30,60及び120分後に各々採血して血糖値を測定した。
<プロスタグランジンE2産生試験>
 A375S2細胞をIL-1β(1ng/ml)或いはIL-1α(2ng/ml)存在下で18時間培養し、産生された培養液中のPGE2量はELISAキット(R&D Systems Inc.)を用いて測定した。
First, the reagents and test conditions used in the confirmation test will be described.
<Reagents and pharmaceuticals>
Human and mouse interleukin 1α (IL-1α), interleukin 1β (IL-1β), human tumor necrosis factor (TNF-α), interleukin receptor antagonist (IL-1Ra) are available from R & D Systems Inc. Recombinant products manufactured by (Minneapolis, MN) and Otsuka Pharmaceutical Co., Ltd. (Tokushima, Japan) were used.
Anti-human IL-1β neutralizing antibody was obtained from Otsuka Pharmaceutical Co., Ltd. (Tokushima, Japan).
Alkaloid bulk powder (hereinafter referred to as MBMX), cephalanthin, isotetrandrine, berbamine, cicleanine, and its derivatives E6-berbamine are WAKO Chemicals (Osaka, Japan) and Funakoshi Co, Ltd (Tokyo, Japan) )
Measurement kits for glucose, triglyceride, cholesterol, free fatty acids, GOT and GPT in blood are WAKO Chemicals (Osaka, Japan) and Funakoshi Co, Ltd (Tokyo, Japan), PGE2 measurement ELISA kit (R & D Systems Inc.) Obtained from Hirano Junyaku Kogyo.
<Cell line>
The evaluation of IL-1 inhibitory compounds was performed by a cell culture method using IL-1 sensitive cell line A375S2 (Nakai S, Hirai Y, et al. Biochem. Biophy. Res. Commun. 154, 1189, 1988). .
MIN6 mouse pancreatic β cells were obtained from Dr. Miyazaki, Graduate School of Medicine, Osaka University.
<High fat diet feeding test with MBMX-20 weeks administration test->
(A) Animal Mice (C57BL / 6J strain, 5-6 weeks old, male) were purchased from Sankyo Lab Service and subjected to the test after one week of preliminary breeding.
(B) Feeding high-fat diet to mice The high-fat diet combined with the test substance is a high-fat diet (D12492, 60% Kcal% Fat, Research Diets) or 0.05% MBMX (Kakensei) or 0.5 % Metformin (Wako Pure Chemical Industries, Ltd.) was uniformly mixed and then formed into pellets and stored in a refrigerator.
Feeding was performed every two days, and the amount of food intake was measured.
In the control group, a normal diet (D12450B, 10% Kcal% Fat, Research Diets) was fed.
Mice were fed the test compound diet for 20 weeks and then dissected. Mice were laparotomized under ether anesthesia, blood was collected from the abdominal vena cava, and blood glucose, triglyceride, cholesterol, free fatty acid, GOT, GPT and the like were measured using a commercially available kit (Wako Pure Chemical Industries).
(C) Insulin responsiveness test Feeding high fat diet with test compound 19-week-old mice were fasted for 4 hours, blood was collected from the tail vein, and insulin (0.8 IU / kg, bovine pancreas-derived, sigma) solution was intraperitoneally injected Blood was collected at 30, 60 and 120 minutes, and blood glucose level was measured.
<MBMX high fat diet feeding test-8-week administration test->
(A) Animal Mice (C57BL / 6J strain, 5-6 weeks old, male) were purchased from Sankyo Lab Service and subjected to the test after one week of preliminary breeding.
(B) Feeding high-fat diet to mice The test compound-containing high-fat diet is a high-fat diet (D12492, 60% Kcal% Fat, Research Diets) and 0.05% MBMX (Tamazakitsu Rafuji plant extract alkaloid) Cephalantin powder, Kaken Seiyaku) or 0.02% pioglitazone (Funakoshi) were uniformly mixed and then formed into pellets, stored in a refrigerator, and fed every two days.
In addition, the normal diet (D12450B, 10% Kcal% Fat, Research Diets) was fed in the same manner.
After the mice were fed a high fat diet for 12 weeks, the mice were replaced with a high fat diet containing a test substance, and further fed for 8 weeks, and then subjected to dissection.
Mice were laparotomized under ether anesthesia, blood was collected from the abdominal vena cava, and blood glucose, triglyceride, cholesterol, free fatty acid, GOT and GPT were measured using a commercially available kit (Wako Pure Chemical Industries).
(C) Insulin responsiveness test Fast-fed 7-week-fed mice with test compound-containing high-fat diet, blood was collected from the tail vein, and insulin (0.8 IU / kg, bovine pancreas-derived, sigma) solution was intraperitoneally Blood was collected at 30, 60 and 120 minutes, and blood glucose level was measured.
<MBMX combination feeding test-Diabetes onset prevention test->
(A) Animals Spontaneously diabetic mice (db / db strain, 5 weeks old, male) were purchased from Sankyo Lab Service and subjected to the test after one week of preliminary breeding.
(B) Feeding the test compound diet to db / db mice The test compound diet is 0.05% MBMX or 0.02% pioglitazone (Funakoshi) on a normal diet (Lab MR Stock Powder, Nippon Agricultural Products). After uniform mixing, the animals were fed and the food intake was weighed every two days.
Mice were fed a diet for 10 weeks and then dissected.
Mice were laparotomized under ether anesthesia, blood was collected from the abdominal vena cava, and blood glucose, triglyceride, cholesterol, free fatty acid, GOT and GPT were measured using a commercially available kit (Wako Pure Chemical Industries).
(C) Glucose Tolerance Test The 9-week-old mice fed with the test compound were fasted overnight, blood was collected from the tail vein, and then a glucose solution (2 g / kg) was orally administered, and blood was collected after 30, 60 and 120 minutes, respectively. The blood glucose level was measured.
<Prostaglandin E2 production test>
A375S2 cells were cultured for 18 hours in the presence of IL-1β (1 ng / ml) or IL-1α (2 ng / ml), and the amount of PGE2 in the produced culture medium was measured using an ELISA kit (R & D Systems Inc.). did.
 まず初めに本試験に係る評価系の確認をした。
 図1に示すグラフはヒト株化細胞の培養日数と縦軸,生細胞量の増加に対するIL-1βの作用を示す。
 具体的には、次のように試験を行った。
 組織培養プレートの各ウェルに細胞培養液又はIL-1β(2.5ng/ml)を入れる。
 2日から5日間培養後、0.05%ニュトラルレッド液を各ウェルに加え、細胞培養器内で2時間培養し、生細胞に色素を取り込ませる。
 細胞内に取り込まれなかった色素を洗浄する。
 次に、色素溶出液を各ウェルに加え、室温でプレートシェーカーで撹拌し、生細胞に取り込まれた色素を溶出する。マイクロプレート用自動吸光度計でOD540nmを測定する。測定した吸光度より生細胞量を算出する。
 この結果、IL-1βは、ヒト株化細胞に細胞死を起こし、生細胞量が増加しないことが確認できた。
 次に、ヒトIL-1β(hIL-1β),マウスIL-1β(mIL-1β)のヒト株化細胞の細胞死に対するヒトIL-1レセプタ-アンタゴニスト(hIL-1Ra)とヒトIL-1β中和抗体(hIL-1βAb)の作用を確認した結果を図2のグラフに示す。
 ヒトIL-1β(hIL-1β)はマウスIL-1β(mIL-1β)によるヒト株化細胞の細胞死評価系にヒトIL-1Ra(hIL-1Ra)を加えると、細胞死が阻害される。
 ヒトIL-1β中和抗体(hIL-1β Ab)はヒトIL-1βによる細胞死は阻害するが、マウスIL-1βによる細胞死は阻害しない。
 この評価系を用いれば、IL-1Ra類似活性を持つ化合物がスクリーニングできることが確認できた。
First, the evaluation system related to this test was confirmed.
The graph shown in FIG. 1 shows the effect of IL-1β on the number of days of culture of human cell lines, the vertical axis, and the increase in the amount of living cells.
Specifically, the test was conducted as follows.
Cell culture medium or IL-1β (2.5 ng / ml) is added to each well of the tissue culture plate.
After culturing for 2 to 5 days, 0.05% neutral red solution is added to each well, followed by culturing in a cell culture vessel for 2 hours to allow the living cells to incorporate the dye.
Wash the dye that was not taken up into the cells.
Next, the dye eluate is added to each well and stirred on a plate shaker at room temperature to elute the dye incorporated into the living cells. OD540nm is measured with an automatic absorbance meter for microplate. The amount of living cells is calculated from the measured absorbance.
As a result, it was confirmed that IL-1β caused cell death in human cell lines and the amount of living cells did not increase.
Next, human IL-1 receptor antagonist (hIL-1Ra) and human IL-1β neutralization against cell death of human cell lines of human IL-1β (hIL-1β), mouse IL-1β (mIL-1β) The results of confirming the action of the antibody (hIL-1β Ab) are shown in the graph of FIG.
Human IL-1β (hIL-1β) is inhibited when human IL-1Ra (hIL-1Ra) is added to the cell death evaluation system for human cell lines using mouse IL-1β (mIL-1β).
Human IL-1β neutralizing antibody (hIL-1β Ab) inhibits cell death by human IL-1β but not mouse IL-1β.
Using this evaluation system, it was confirmed that compounds having IL-1Ra-like activity could be screened.
 植物由来の各種アルカロイド化合物のヒトIL-1βによる細胞死に対する阻害作用を試験評価した結果を図3のグラフに示す。
 グラフ中、MB5C:セファランチン,MB1D:E6-ベルバミン,MB2D:ベルバミン,MB7R:イソテトランドリン,MB1R:シクレアニン、IL-1Ra:IL-1 receptor antagonistをそれぞれ示す。
 ビスベンジルイソキノリン化学構造を有するアルカロイド化合物が用量依存的にIL-1βによる細胞死を阻害することが確認できた。
FIG. 3 is a graph showing the results of test evaluation of the inhibitory effect of various plant-derived alkaloid compounds on cell death by human IL-1β.
In the graph, MB5C: cephalanthin, MB1D: E6-berbamine, MB2D: berbamine, MB7R: isotetrandrine, MB1R: cyclanine, IL-1Ra: IL-1 receptor antagonist are shown.
It was confirmed that the alkaloid compound having a bisbenzylisoquinoline chemical structure inhibits cell death by IL-1β in a dose-dependent manner.
 ヒトTNFα及びヒトIL-1αに対するセファランチン(MB5C)の阻害作用を試験した結果を図4のグラフに示す。
 この結果、セファランチンがヒトTNFα,ヒトIL-1αによる細胞死を阻害することが分かる。
 また、グラフは省略するが、図3に示した他のアルカロイドも同様の阻害作用が認められた。
The results of testing the inhibitory effect of cephalanthin (MB5C) on human TNFα and human IL-1α are shown in the graph of FIG.
As a result, it can be seen that cephalanthin inhibits cell death by human TNFα and human IL-1α.
Although the graph is omitted, the other alkaloids shown in FIG. 3 have the same inhibitory action.
 ヒトIL-1βによる細胞死に対するタマサキツヅラフジから抽出したアルカロイド製剤(MBMX)の阻害作用試験した結果を図5のグラフに示す。
 MBMXは、化研生薬株式会社が販売するセファランチン原末を用いた。
 MBMXの主なアルカロイド成分は、セファランチン,イソテトランドリン,ベルバミン,シクレアニンである。
 MBMXが、ヒトIL-1βによる細胞死に対して量依存的に阻用作用を示した。
FIG. 5 is a graph showing the results of an inhibitory action test of an alkaloid preparation (MBMX) extracted from Satsuma tsumugi on cell death caused by human IL-1β.
For MBMX, cephalanthin bulk powder sold by Kaken Seiyaku Co., Ltd. was used.
The main alkaloid components of MBMX are cephalanthin, isotetrandrine, berbamine and cicleanine.
MBMX showed an inhibitory effect on cell death by human IL-1β in a dose-dependent manner.
 IL-1による膵β細胞(MIN6)死に対するMBMXの抑制作用の試験結果を図6のグラフに示す。
(方法) 組織培養プレートの各ウエルに1x10個の膵β細胞(MIN6)、マウスIL-1β(5ng/ml)及びMBMXを加え培養する。48時間培養後、生存細胞量はニュートラルレッド色素の細胞内への取込みにより算出した。
 その結果、図6のグラフに示すように、IL-1βにより膵β細胞死が起こるが、MBMXはIL-1による膵β細胞死を抑制し、膵β細胞保護作用を有することが確認できた。
The test result of the inhibitory action of MBMX on pancreatic β cell (MIN6) death by IL-1 is shown in the graph of FIG.
(Method) 1 × 10 5 pancreatic β cells (MIN6), mouse IL-1β (5 ng / ml) and MBMX are added to each well of a tissue culture plate and cultured. After 48 hours of culture, the amount of viable cells was calculated by taking the neutral red dye into the cells.
As a result, as shown in the graph of FIG. 6, although IL-1β caused pancreatic β-cell death, MBMX was confirmed to suppress pancreatic β-cell death due to IL-1 and to have a pancreatic β-cell protective effect. .
MBMXの主なアルカロイド成分、セファランチン、イソテトランドリン、ベルバミン、シクレアニンの、IL-1による膵β細胞(MIN6)死に対する抑制作用の結果を図7のグラフに示す。
(方法)組織培養プレートの各ウエルに1x105個のMIN6細胞、マウスIL-1β(5ng/ml)及び各アルカロイド化合物を加え培養する。72時間培養後、生存細胞量はニュートラルレッド色素の細胞内への取込みにより算出した。
その結果、図7のグラフに示すようにIL-1βによりMIN6細胞死が起こるが、MBMXの主なアルカロイド各成分は濃度依存的にMIN6細胞死を抑制し、膵β細胞保護作用を有することが確認できた。
The results of the inhibitory action of MB-1 on the pancreatic β cell (MIN6) death of the main alkaloid components of MBMX, cephalanthin, isotetrandrine, berbamine and cyclanine are shown in the graph of FIG.
(Method) 1 × 10 5 MIN6 cells, mouse IL-1β (5 ng / ml) and each alkaloid compound are added to each well of a tissue culture plate and cultured. After culturing for 72 hours, the amount of viable cells was calculated by taking the neutral red dye into the cells.
As a result, as shown in the graph of FIG. 7, IL-1β causes MIN6 cell death, but each of the main components of MBMX suppresses MIN6 cell death in a concentration-dependent manner and has a pancreatic β-cell protective effect. It could be confirmed.
 高脂肪食給餌肥満モデルに対するアルカロイド製剤(MBMX)の効果を試験した。
 体重変化を図8のグラフに示し、インスリン応答性試験結果を図9のグラフに示す。
 また、血液生化学値を図10の表に示す。
 C57BL/6Jマウス(♂ 6週令、1群N=6)に普通食(ND,Research diet D12450B 10% Kcal fat)或いは高脂肪食(HFD, Research diet D12492 60% Kcal fat)を20週間給餌した。
 試験薬物は0.05% MBMX(500μg/g)、陽性対照薬として糖尿病薬メトホルミン(Met)0.5%(5mg/g)を高脂肪食に配合し20週間給餌した。
 体重及び4週ごとに血糖値を測定した。
 試験開始19週目にインスリン応答性試験、20週目に血液生化学検査、組織重量の測定を行った。MBMXは高脂肪食給餌による肥満を抑制する効果が得られた。
 19週間、高脂肪食を給餌されたマウスは、普通食のマウスに比べてインスリン応答能が低下していた。
 0.05% MBMX配合した高脂肪食を給餌されたマウスではインスリン応答能は、普通食給餌マウスと同等であり、インスリン応答能の低下を防止する効果が得られた。
 結果は、普通食給餌マウスに比べ、高脂肪食給餌マウスではトリグリセリド、遊離脂肪酸、コレステロールの増加、脂肪肝に起因する肝機能の異常が見られた。
 0.05% MBMX配合高脂肪食給餌マウスではトリグリセリド、遊離脂肪酸、コレステロールの増加抑制、肝機能悪化の防止の効果が得られた。
The effect of alkaloid preparation (MBMX) on high fat diet fed obesity model was tested.
The weight change is shown in the graph of FIG. 8, and the insulin responsiveness test result is shown in the graph of FIG.
The blood biochemical values are shown in the table of FIG.
Normal diet (ND, Research diet D12450B 10% Kcal fat) or high fat diet (HFD, Research diet D12492 60% Kcal fat) was fed to C57BL / 6J mice (♂ 6 weeks old, group N = 6) for 20 weeks .
The test drug was 0.05% MBMX (500 μg / g) and the diabetic drug metformin (Met) 0.5% (5 mg / g) as a positive control was mixed in a high fat diet and fed for 20 weeks.
Body weight and blood glucose level were measured every 4 weeks.
An insulin responsiveness test was performed at 19 weeks after the start of the test, and a blood biochemical test and tissue weight were measured at 20 weeks. MBMX was effective in suppressing obesity caused by feeding a high fat diet.
Mice fed a high fat diet for 19 weeks had a lower ability to respond to insulin than mice fed a normal diet.
In mice fed with a high-fat diet containing 0.05% MBMX, the insulin response ability was equivalent to that of a normal diet-fed mouse, and an effect of preventing a decrease in insulin response ability was obtained.
The results showed that mice fed with high fat diet increased triglycerides, free fatty acids, cholesterol, and abnormal liver function due to fatty liver compared to mice fed normal diet.
In mice fed with a high fat diet containing 0.05% MBMX, the effects of suppressing increases in triglycerides, free fatty acids and cholesterol and preventing deterioration of liver function were obtained.
 次に高脂肪食給餌肥満モデルにおける治療的投与試験を行った。
 図11はマウスの体重変化のグラフを示し、図12はインスリン応答性試験結果を示す。
 また、図13及び図14に血液生化学検査結果を示す。
 C57BL/6Jマウス(♂ 6週令、1群N=6)に普通食或いは高脂肪食を12週間給餌した。
 その後、高脂肪食給餌マウスは、高脂肪食あるいは試験薬物配合高脂肪食を8週間給餌した。
 試験薬物として、0.05% MBMX(500μg/g)、陽性対照薬物として、0.02%ピオグリタゾン(Pio,糖尿病薬)を給餌した。
 体重及び4週ごとに血糖値を測定した。
 試験開始19週目にインスリン応答性試験、20週目に血液生化学検査、組織重量の測定を行った。
 MBMX配合高脂肪食給餌マウスでは、肥満を改善する効果が得られた。
 高脂肪食給餌マウスではインスリン応答能の低下(インスリン抵抗性)が見られた。
 0.05% MBMX配合高脂肪食を7週間給餌したマウスでは、インスリン応答能の改善効果が得られた。
 高脂肪食給餌マウスでは、インスリン値の上昇、レプチン値の上昇が見られた。
 8週間、0.05% MBMX配合高脂肪食給餌マウスでは、インスリン値、レプチン値の改善効果が得られた。
 高脂肪食給餌マウスでは、血清脂質レベルの上昇が見られた。
 0.05% MBMX配合高脂肪食給餌マウスでは血清脂質プロファイルの改善効果が得られた。
Next, a therapeutic administration test was conducted in an obese model fed with a high fat diet.
FIG. 11 shows a graph of changes in body weight of mice, and FIG. 12 shows the results of an insulin responsiveness test.
Further, FIG. 13 and FIG. 14 show blood biochemical test results.
C57BL / 6J mice (♂ 6 weeks old, group N = 6) were fed a normal diet or a high fat diet for 12 weeks.
Thereafter, mice fed with a high fat diet were fed a high fat diet or a high fat diet containing a test drug for 8 weeks.
0.05% MBMX (500 μg / g) was fed as a test drug, and 0.02% pioglitazone (Pio, diabetes drug) was fed as a positive control drug.
Body weight and blood glucose level were measured every 4 weeks.
An insulin responsiveness test was performed at 19 weeks after the start of the test, and a blood biochemical test and tissue weight were measured at 20 weeks.
The effect of improving obesity was obtained in MBMX-containing high-fat diet-fed mice.
In mice fed with a high fat diet, decreased insulin response (insulin resistance) was observed.
In mice fed with a high fat diet containing 0.05% MBMX for 7 weeks, an effect of improving insulin responsiveness was obtained.
In mice fed with a high fat diet, an increase in insulin level and an increase in leptin level were observed.
In 8 weeks, mice with high fat diet containing 0.05% MBMX were able to improve insulin and leptin levels.
Serum lipid levels were elevated in mice fed a high fat diet.
In mice fed with a high fat diet containing 0.05% MBMX, an effect of improving the serum lipid profile was obtained.
 IL-1β及びIL-1α刺激によるプロスタグランジンE2(PGE2)産生に対するアルカロイド製剤(MBMX)の抑制作用を評価した結果を図15及び図16のグラフに示す。
 図15のグラフはIL-1β刺激、図16のグラフはIL-1α刺激に対してである。
 A375S2細胞株をIL-1β(1ng/ml),IL-1α(2ng/ml)で24時間刺激すると約50倍量のPGE2が産生される。
 IL-1Ra(100ng/ml)を共存させるとPGE2産生は10%以下に抑制された。MBMXも濃度依存的にPGE2産生を抑制した。
The results of evaluating the inhibitory action of the alkaloid preparation (MBMX) on prostaglandin E2 (PGE2) production by IL-1β and IL-1α stimulation are shown in the graphs of FIGS.
The graph in FIG. 15 is for IL-1β stimulation, and the graph in FIG. 16 is for IL-1α stimulation.
When the A375S2 cell line is stimulated with IL-1β (1 ng / ml) and IL-1α (2 ng / ml) for 24 hours, about 50 times as much PGE2 is produced.
In the presence of IL-1Ra (100 ng / ml), PGE2 production was suppressed to 10% or less. MBMX also suppressed PGE2 production in a concentration-dependent manner.
 2型肥満糖尿病マウスに対するアルカロイド製剤(MBMX)の効果を試験した結果(その1)を図17~図20に示す。
 図17は体重変化、図18は血糖値変化、図19は耐糖能試験結果、図20は摂餌変化を示す。
 db/dbマウス(♂ 6週令 1群N=6)にMBMXは0.05%(500ug/g)、ピオグリタゾンは0.02%(200ug/g)を給餌した。
 MBMX給餌群は2週目頃より体重増加が抑制された。
 ピオグリタゾン群ではPPARγアゴニスト作用の多面性の故、体重増加(脂肪蓄積、水分貯留など)がみられた。
 MBMX群では、給餌開始3週目より血糖値が低下し始め、8週目には200mg/dl以下にまで低下した。
 また、ピオグリタゾン群では、給餌開始後血糖値の上昇は見られず、150mg/dl前後の値を維持した。
 試験開始8週目の空腹時血糖値は、MBMX群、ピオグリタゾン群で対照群より有意に低値であった。
FIG. 17 to FIG. 20 show the results (part 1) of the test of the effect of the alkaloid preparation (MBMX) on type 2 obese diabetic mice.
FIG. 17 shows changes in body weight, FIG. 18 shows changes in blood glucose level, FIG. 19 shows glucose tolerance test results, and FIG. 20 shows changes in food intake.
db / db mice (6 weeks old, 1 group, N = 6) were fed with 0.05% (500 ug / g) of MBMX and 0.02% (200 ug / g) of pioglitazone.
In the MBMX feeding group, weight gain was suppressed from around the 2nd week.
In the pioglitazone group, weight gain (fat accumulation, water retention, etc.) was observed due to the versatility of the PPARγ agonist action.
In the MBMX group, the blood glucose level began to decrease from the third week of feeding, and decreased to 200 mg / dl or less by the eighth week.
In the pioglitazone group, no increase in blood glucose level was observed after the start of feeding, and the value was maintained at around 150 mg / dl.
Fasting blood glucose levels at 8 weeks after the start of the test were significantly lower in the MBMX group and the pioglitazone group than in the control group.
 2型肥満糖尿病マウスに対するアルカロイド製剤(MBMX)の効果を試験した結果(その2)を図21~図25に示す。
 図21は体重変化、図22は血糖値変化、図23は摂餌量、図24は耐糖能試験結果、図25はインスリン応答能試験を示す。
 (方法)食欲抑制ホルモンであるレプチン受容体に異常があるdb/dbマウスは、過食、肥満、インスリン抵抗性により、膵β細胞の萎縮、壊死をきたす糖尿病病態モデル動物である。
 8週令の雄性db/dbマウスに0.01%あるいは0.05%MBMX配合食を10週間給餌した。
 試験開始10週目に耐糖能試験、試験開始11週目にインスリン応答能試験、試験開始12週目に解剖し膵臓中のインスリン量の測定を行った。
 耐糖能試験、インスリン応答能試験は絶食後、常法にて行った
FIG. 21 to FIG. 25 show the results (part 2) of the test of the effect of the alkaloid preparation (MBMX) on type 2 obese diabetic mice.
21 shows changes in body weight, FIG. 22 shows changes in blood glucose level, FIG. 23 shows the amount of food intake, FIG. 24 shows the glucose tolerance test results, and FIG. 25 shows the insulin response ability test.
(Method) A db / db mouse having an abnormality in the leptin receptor, which is an appetite suppressive hormone, is a model animal for diabetic condition that causes pancreatic β-cell atrophy and necrosis due to overeating, obesity, and insulin resistance.
Eight-week-old male db / db mice were fed a diet containing 0.01% or 0.05% MBMX for 10 weeks.
A glucose tolerance test was conducted at 10 weeks after the start of the test, an insulin responsiveness test was conducted at the 11th week of the test, and an insulin amount in the pancreas was measured by dissecting at the 12th week of the test.
Glucose tolerance test and insulin response test were performed in the usual way after fasting
 0.05%MBMX給餌群では、対照群に比べで体重増加は抑制され、随時血糖値は有意に低値であった。
 0.05%MBMX配合食群では、給餌開始2週目より血糖値がコントロール群に比べ有意に低く、9週目には200mg/ml以下に低下した。
 また、0.05%MBMX給餌群では、機序は不明であるが、肥満動物の食欲を抑える作用も見られた。0.05%MBMX給餌10週目に行った耐糖能試験では、空腹時血糖値はコントロール群に比べて有意に低値であり、膵β細胞機能の有意な改善効果が認められた。
 0.05%MBMX給餌11週目に行ったインスリン応答能試験では、コントロール群に比べてインスリン感受性の有意な改善が認められた。
In the 0.05% MBMX feeding group, body weight gain was suppressed as compared to the control group, and the blood glucose level was significantly lower as needed.
In the 0.05% MBMX mixed diet group, the blood glucose level was significantly lower than that in the control group from the second week of feeding, and decreased to 200 mg / ml or less in the ninth week.
Further, in the 0.05% MBMX feeding group, although the mechanism is unknown, an effect of suppressing appetite of obese animals was also observed. In the glucose tolerance test conducted on week 10 of 0.05% MBMX feeding, the fasting blood glucose level was significantly lower than that in the control group, and a significant improvement effect on pancreatic β-cell function was observed.
In the insulin response ability test conducted on the 11th week after feeding with 0.05% MBMX, a significant improvement in insulin sensitivity was observed compared to the control group.
 db/db肥満2型糖尿病モデルマウスを用いたMBMXの膵β細胞保護作用の結果を図26に示す。
 (方法)食欲抑制ホルモンであるレプチン受容体に異常があるdb/dbマウスは、過食、肥満、インスリン抵抗性により、膵β細胞の萎縮、壊死をきたす病態モデル動物である。
 MBMXの膵β細胞保護作用を明らかにするため、db/dbマウスの膵臓中のインスリン含量を試験開始12週目に測定した。
 すなわち、雄性db/dbマウスに、0.01%あるいは0.05%MBMX配合食を摂食させた。12週間後に解剖し膵臓中のインスリン量の測定を行った。
 エッペンドルフチューブの中に入れた膵臓に酸アルコール混液(75%アルコール、23.5%蒸留水、1.5%濃塩酸)1ml加えてペレットミキサーで破砕した。4℃で一晩静置しインスリンを抽出後、インスリン量を、インスリンELISA測定キットを用いて測定した。
 その結果、図26に示すように食欲抑制ホルモンであるレプチン受容体に異常があるdb/dbマウスでは、膵臓中のインスリン含量の著しい減少が認められた。
 0.05%MBMX配合食を摂食したdb/dbマウスでは、膵臓中インスリン含量は保持されていることが示された。
 これはMBMXが膵β細胞の疲弊、細胞死を保護したためと考えられる。
The result of pancreatic β-cell protective action of MBMX using db / db obese type 2 diabetes model mouse is shown in FIG.
(Method) A db / db mouse having an abnormality in the leptin receptor, which is an appetite suppressive hormone, is a disease state model animal that causes pancreatic β-cell atrophy and necrosis due to overeating, obesity, and insulin resistance.
In order to clarify the protective effect of MBMX on pancreatic β cells, the insulin content in the pancreas of db / db mice was measured at the 12th week of the start of the test.
That is, male db / db mice were fed with a diet containing 0.01% or 0.05% MBMX. After 12 weeks, it was dissected and the amount of insulin in the pancreas was measured.
1 ml of an acid alcohol mixed solution (75% alcohol, 23.5% distilled water, 1.5% concentrated hydrochloric acid) was added to the pancreas placed in an Eppendorf tube and crushed with a pellet mixer. After leaving still at 4 degreeC overnight and extracting insulin, the amount of insulin was measured using the insulin ELISA measuring kit.
As a result, as shown in FIG. 26, in the db / db mice having an abnormality in the leptin receptor, which is an appetite suppressing hormone, a marked decrease in the insulin content in the pancreas was observed.
It was shown that db / db mice fed the 0.05% MBMX diet maintained the pancreatic insulin content.
This is thought to be because MBMX protected the exhaustion and cell death of pancreatic β cells.
 本発明は、炎症性サイトカインIL-1、TNFα活性阻害作用が有効な炎症性疾患(糖尿病、肥満関連疾患、認知症、自己炎症性疾患、慢性関節リウマチ、炎症性腸疾患、敗血など)の治療剤、予防剤として広く利用できる。 The present invention relates to an inflammatory disease (diabetes, obesity-related disease, dementia, autoinflammatory disease, rheumatoid arthritis, inflammatory bowel disease, sepsis, etc.) effective in inhibiting inflammatory cytokines IL-1 and TNFα activity It can be widely used as a therapeutic agent and a preventive agent.

Claims (10)

  1.  ツヅラフジ科ステファニア属の植物を由来とするアルカロイド及びその誘導体(化学合成したものを含む)ならびにそれらの薬学的に許容される塩のうち、少なくとも1種以上を有効成分して含有する、炎症性サイトカインであるインターロイキン1(IL-1)及び腫瘍壊死因子(TNF)の活性阻害剤。 Inflammatory activity containing at least one or more of alkaloids derived from plants of the genus Stefania family and their derivatives (including those chemically synthesized) and pharmaceutically acceptable salts thereof as active ingredients Activity inhibitors of cytokines interleukin 1 (IL-1) and tumor necrosis factor (TNF).
  2.  前記アルカロイドはセファランチン,ベルバミン,イソテトランドリン,テトランドリン,シクレアニン,E6-ベルバミンのうちいずれか1種以上である請求項1記載のインターロイキン1(IL-1)及び腫瘍壊死因子(TNF)の活性阻害剤。 The activity of interleukin 1 (IL-1) and tumor necrosis factor (TNF) according to claim 1, wherein the alkaloid is at least one of cephalanthin, berbamine, isotetrandrine, tetrandrine, cyclanine, and E6-berbamine. Inhibitor.
  3.  ツヅラフジ科ステファニア属の植物を由来とするアルカロイド及びその誘導体ならびにそれらの薬学的に許容される塩のうち、少なくとも1種以上を有効成分して含有する炎症性サイトカインであるインターロイキン1(IL-1)及び腫瘍壊死因子(TNF)の活性阻害作用が有効な炎症性疾患の治療又は予防剤。 Interleukin 1 (IL-) which is an inflammatory cytokine containing as an active ingredient at least one of alkaloids derived from plants belonging to the genus Stefania and their derivatives and pharmaceutically acceptable salts thereof 1) A therapeutic or prophylactic agent for inflammatory diseases in which the activity inhibitory action of tumor necrosis factor (TNF) is effective.
  4.  前記アルカロイドはセファランチン,ベルバミン,イソテトランドリン,テトランドリン,シクレアニン,E6-ベルバミンのうちいずれか1種以上である請求項3記載の炎症性疾患の治療又は予防剤。 The therapeutic or prophylactic agent for inflammatory diseases according to claim 3, wherein the alkaloid is at least one of cephalanthin, berbamine, isotetrandrine, tetrandrine, cyclanine, and E6-berbamine.
  5.  ツヅラフジ科ステファニア属の植物を由来とするアルカロイド及びその誘導体ならびにそれらの薬学的に許容される塩のうち、少なくとも1種以上を有効成分して含有する糖尿病の治療又は予防剤。 An agent for the treatment or prevention of diabetes containing as an active ingredient at least one of alkaloids derived from plants belonging to the genus Stefania belonging to the family Rhizomaceae and their derivatives and pharmaceutically acceptable salts thereof.
  6.  前記アルカロイドはセファランチン,ベルバミン,イソテトランドリン,テトランドリン,シクレアニン,E6-ベルバミンのうちいずれか1種以上である請求項5記載の糖尿病の治療又は予防剤。 The agent for treating or preventing diabetes according to claim 5, wherein the alkaloid is at least one of cephalanthin, berbamine, isotetrandrine, tetrandrine, cyclanine, and E6-berbamine.
  7.  膵β細胞保護作用又はβ細胞機能維持作用によるものである請求項5又は6記載の糖尿病の治療又は予防剤。 The agent for treating or preventing diabetes according to claim 5 or 6, wherein the agent is based on pancreatic β-cell protective action or β-cell function maintenance action.
  8.  ツヅラフジ科ステファニア属の植物を由来とするアルカロイド及びその誘導体ならびにそれらの薬学的に許容される塩のうち、少なくとも1種以上を有効成分して含有するメタボリックシンドロームの改善・予防剤。 An agent for improving / preventing metabolic syndrome containing at least one or more of alkaloids derived from plants belonging to the genus Stefania belonging to the genus Rubiaceae and derivatives thereof and pharmaceutically acceptable salts thereof as active ingredients.
  9.  前記アルカロイドはセファランチン,ベルバミン,イソテトランドリン,テトランドリン,シクレアニン,E6-ベルバミンのうちいずれか1種以上である請求項8記載のメタボリックシンドロームの改善・予防剤。 The agent for improving / preventing metabolic syndrome according to claim 8, wherein the alkaloid is at least one of cephalanthin, berbamine, isotetrandrine, tetrandrine, cyclanine, and E6-berbamine.
  10.  請求項1~9に記載の活性阻害剤、治療又は予防剤及び改善・予防剤のうち、いずれかを含有する飲食品。 A food or drink containing any one of the activity inhibitor, therapeutic or preventive agent and ameliorating / preventing agent according to any one of claims 1 to 9.
PCT/JP2014/084076 2013-12-27 2014-12-24 Inhibitor of il-1 and tnf activities WO2015098928A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015554938A JPWO2015098928A1 (en) 2013-12-27 2014-12-24 IL-1 and TNF activity inhibitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-271897 2013-12-27
JP2013271897 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015098928A1 true WO2015098928A1 (en) 2015-07-02

Family

ID=53478780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084076 WO2015098928A1 (en) 2013-12-27 2014-12-24 Inhibitor of il-1 and tnf activities

Country Status (2)

Country Link
JP (1) JPWO2015098928A1 (en)
WO (1) WO2015098928A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109771426A (en) * 2019-02-26 2019-05-21 沈锋 Application of the cepharanthine as the inhibitors of enzymes of ASPH

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207216A (en) * 1986-03-07 1987-09-11 Tsumura Juntendo Inc Angiotensin i transferase inhibitor
JPH08301761A (en) * 1995-05-08 1996-11-19 Kaken Shiyouyaku Kk Agent for treatment and prevention of intestinal disease
WO2009062113A1 (en) * 2007-11-07 2009-05-14 Burnham Institute For Medical Research Method and compounds for modulating insulin production
US20140275138A1 (en) * 2013-03-15 2014-09-18 Cba Pharma, Inc. Method and products for treating diabetes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207216A (en) * 1986-03-07 1987-09-11 Tsumura Juntendo Inc Angiotensin i transferase inhibitor
JPH08301761A (en) * 1995-05-08 1996-11-19 Kaken Shiyouyaku Kk Agent for treatment and prevention of intestinal disease
WO2009062113A1 (en) * 2007-11-07 2009-05-14 Burnham Institute For Medical Research Method and compounds for modulating insulin production
US20140275138A1 (en) * 2013-03-15 2014-09-18 Cba Pharma, Inc. Method and products for treating diabetes

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHAN, J.Y. ET AL.: "Cross-talk between the unfolded protein response and nuclear factor-kB signalling pathways regulates cytokine-mediated beta cell death in MIN6 cells and isolated mouse islets", DIABETOLOGIA, vol. 55, no. 11, 2012, pages 2999 - 3009 *
CHAND SULTANA, M. ET AL.: "Antihyperglycemic and antihyperlipidemic effects of Stephania japonica (Thunb.) Miers. tenril in alloxan induced diabetic mice", INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH, vol. 3, no. 8, 2012, pages 2726 - 2732 *
CHEN, W.C. ET AL.: "The plasma glucose lowering action of tetrandrine in streptozotocin-induced diabetic rats", THE JOURNAL OF PHARMACY AND PHARMACOLOGY, vol. 56, no. 5, 2004, pages 643 - 648 *
HE, F.Q. ET AL.: "Tetrandrine attenuates spatial memory impairment and hippocampal neuroinflammation via inhibiting NF-kB activation in a rat model of Alzheimer's disease induced by amyloid-? (1-42", BRAIN RESEARCH, vol. 1384, 2011, pages 89 - 96 *
KYOSUKE KUDO ET AL.: "LPS Yuhatsu Zenshinsei Ensho Hanno Model ni Taisuru Cepharanthine no Yukosei no Kento", JOURNAL OF THE JAPANESE SOCIETY OF INTENSIVE CARE MEDICINE, vol. 17, 2010, pages 287 *
MESHKANI, R. ET AL.: "Hepatic insulin resistance, metabolic syndrome and cardiovascular disease", CLINICAL BIOCHEMISTRY, vol. 42, no. 13-14, 2009, pages 1331 - 1346 *
ONO, M. ET AL.: "Anti-inflammatory action of cepharanthin ointment ingredient in experimental animals: Studies for the chronic inflammation and TNF ? production", JAPANESE JOURNAL OF INFLAMMATION, vol. 14, no. 5, 1994, pages 425 - 429 *
SAKAGUCHI, S. ET AL.: "Preventive effects of a biscoclaurine alkaloid, cepharanthine, on endotoxin or tumor necrosis factor-?-induced septic shock symptoms: involvement of from cell death in L929 cells and nitric oxide production in raw 264.7 cells", INTERNATIONAL IMMUNOPHARMACOLOGY, vol. 7, no. 2, 2007, pages 91 - 197 *
WONG, C.W. ET AL.: "Comparative effects of tetrandrine and berbamine on subcutaneous air pouch inflammation induced by interleukin-1, tumour necrosis factor and platelet-activating factor", AGENTS AND ACTIONS, vol. 36, no. 1- 2, 1992, pages 112 - 118 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109771426A (en) * 2019-02-26 2019-05-21 沈锋 Application of the cepharanthine as the inhibitors of enzymes of ASPH

Also Published As

Publication number Publication date
JPWO2015098928A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
Zhang et al. Anti-diabetic effect of mulberry leaf polysaccharide by inhibiting pancreatic islet cell apoptosis and ameliorating insulin secretory capacity in diabetic rats
US11684626B2 (en) Methods and compositions comprising ursolic acid and/or resveratrol for treating obesity, diabetes, or cancer
CA2555296A1 (en) Composition of labdane diterpenes extracted from andrographis paniculata, useful for the treatment of autoimmune diseases, and alzheimer disease by activation of ppr-gamma receptors
KR102271821B1 (en) Composition Comprising Orlistat and Akkermansia muciniphila EB-AMDK19
KR101953298B1 (en) Composition for preventing or treating inflammatory diseases or spinal cord injury comprising ursodeoxycholic acid
KR101928553B1 (en) A Composition for Preventing or Treating Inflammasome Mediated Inflammatory Disease Containing Ginsenoside Compounds
WO2015098928A1 (en) Inhibitor of il-1 and tnf activities
KR102171141B1 (en) Composition for preventing, treating, or improving obesity comprising the peptides derived from LGI3 as the active ingredients
JP6861162B2 (en) Apoaequorin-containing compositions and how to use apoaequorin to treat inflammation of nerve cells
KR102174613B1 (en) Composition for Preventing or Treating Diabetes Comprising Beeswax-Coated Bee Venom Beads As Active Ingredient
WO2011038157A2 (en) Zinc-containing compositions for the treatment of diseases, illnesses and syndromes associated with exposure to pore forming toxins
CN111529689A (en) Application of transcription factor KLF16 protein in preparation of drugs for preventing and treating lipid and carbohydrate metabolism disorder related diseases
CN112933097A (en) Application of pharmaceutical composition in preparation of proinflammatory interleukin inhibitor
Matumba Adiponectin regulation of AMPK on oleanolic acid treated insulin resistance Sprague Dawley rats
beloved Teachers Dedicated to my God Almighty Parents, Wife, children’s, Friends & My beloved Teachers
Bastard et al. The Relationship Among Obesity, Inflammation, and Insulin Resistance
JP2016029024A (en) Obesity-suppressing agent
KR20130026399A (en) Composition for promoting intracellular metabolism, and pharmaceutical preparation for preventing and/or treating saccharometabolism or lipid metabolism disease, functional food, and health food containing the composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554938

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874845

Country of ref document: EP

Kind code of ref document: A1