WO2015098828A1 - 視野計 - Google Patents

視野計 Download PDF

Info

Publication number
WO2015098828A1
WO2015098828A1 PCT/JP2014/083898 JP2014083898W WO2015098828A1 WO 2015098828 A1 WO2015098828 A1 WO 2015098828A1 JP 2014083898 W JP2014083898 W JP 2014083898W WO 2015098828 A1 WO2015098828 A1 WO 2015098828A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
visual
retinal
examination
ganglion cell
Prior art date
Application number
PCT/JP2014/083898
Other languages
English (en)
French (fr)
Inventor
賢 島田
原 拓也
Original Assignee
興和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 興和株式会社 filed Critical 興和株式会社
Priority to JP2015554879A priority Critical patent/JP6461819B2/ja
Priority to EP14875261.1A priority patent/EP3087908B1/en
Priority to US15/107,504 priority patent/US10413170B2/en
Publication of WO2015098828A1 publication Critical patent/WO2015098828A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/024Subjective types, i.e. testing apparatus requiring the active assistance of the patient for determining the visual field, e.g. perimeter types
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0041Operational features thereof characterised by display arrangements
    • A61B3/0058Operational features thereof characterised by display arrangements for multiple images

Definitions

  • the present invention relates to a perimeter that measures a visual field by presenting a visual target in the visual field of a subject.
  • a retinal ganglion cell (retinal ganglion cell, RGC, hereinafter referred to as “ganglion cell” as appropriate) is a nerve cell on the inner surface of the retina of the eye and is viewed through an intermediate neuron (bipolar cell or amacrine cell). It receives information from cells (rods and cones). When this ganglion cell dies, it becomes glaucoma and the visual field becomes narrower or lacks. Therefore, it is important to detect a decrease in the function of the ganglion cell at an early stage and stop its progression and deterioration.
  • a visual field inspection is one method for finding a decrease in the function of the ganglion cell, and various perimeters for performing the inspection have been proposed (for example, see Patent Document 1).
  • GCC thickness Ganglion Cell Complex thickness
  • FIG. 4 is a schematic diagram (showing a coordinate system along the surface of the retina) schematically showing the positional relationship between such photoreceptor cells and ganglion cells.
  • each ganglion cell RGC is shifted in a direction away from the center of the retina with respect to each photoreceptor cell C. Further, it is known that the amount of deviation is not constant, the largest near the center of the retina, the smaller the distance from the center of the retina, and the little the position deviation is seen outside the macula.
  • the spot P1 Information about the optotype sensed by the photoreceptor cells in is sent to the ganglion cells at position P3 away from the center of the retina, and the ganglion cells (ganglion cells at position P3) are examined. Therefore, there is a problem that the ganglion cell at the designated place P1 cannot be examined.
  • the object of the present invention is to provide a perimeter that can solve the above-mentioned problems.
  • the invention according to claim 1 is illustrated in FIG. 1, and in the perimeter (1) for measuring the visual field by presenting the visual target in the visual field of the subject, A photoreceptor cell that transmits information to the retinal ganglion cell (RGC) at a position on the retinal surface where a retinal ganglion cell (see symbol RGC in FIG. 4) is arranged.
  • Position storage means (3) for storing in association with the position where (C) is disposed;
  • An inspection position input means (2) for inputting a position on the retinal surface which is desired to be inspected (see P1 in FIG.
  • the retinal ganglion cells in the examination position (P1))
  • Photoreceptor cell position acquisition means (4) for acquiring the position (P2) of photoreceptor cells (C) sending information to RGC
  • An optotype presenting means (5) for presenting an optotype at the position (P2) obtained by the photoreceptor cell position obtaining means (4)
  • Operating means (6) operated by a subject who visually recognizes the presented target
  • Visual field determination means (7) for determining the visual field of the subject based on a response from the subject by the operation means (6)
  • a determination result output means (8) for displaying the determination result by the visual field determination means (7) in association with the inspection position (P1); It is provided with.
  • the invention according to claim 2 is the invention according to claim 1, wherein the examination position input means (2) includes a monitor means (20) and a fundus image output means for displaying a fundus image on the monitor means (20). 21) and position specifying means (22) for specifying the examination position (P1) on the fundus image.
  • the invention according to claim 3 comprises, in the invention according to claim 2, layer thickness distribution storage means (23) for storing data indicating the distribution of the retina inner layer thickness of the subject, The data indicating the distribution of the inner layer thickness is displayed on the monitor means (20).
  • the abnormal region can be easily grasped, and the visual field inspection in the abnormal region can be designated appropriately.
  • FIG. 1 is a block diagram showing an example of the configuration of a perimeter according to the present invention.
  • FIG. 2 is a table showing the relationship between the positions of photoreceptor cells and ganglion cells.
  • FIG. 3 is a flowchart showing an example of a state of visual field inspection using the perimeter according to the present invention.
  • FIG. 4 is a schematic diagram schematically showing the positional relationship between photoreceptor cells and ganglion cells.
  • a position on the retinal surface to be examined (that is, a position designated by the examiner or the like to be examined and a function to be examined for ganglion cell function) Is referred to as an “inspection position”, and a position on the retinal surface that actually presents a visual target during visual field measurement is referred to as a “visual target presentation position”.
  • the perimeter measures a visual field by presenting a visual target at a desired position in the visual field of the subject (the visual target presentation position), and is exemplified by reference numeral 1 in FIG.
  • the inspection position input means 2 which inputs the above-mentioned inspection position is provided.
  • This inspection position input means 2 The monitoring means 20, A fundus image output unit 21 (see S1 in FIG. 3) for displaying a fundus image (that is, an image obtained by photographing the fundus surface) on the monitor unit 20; A position specifying means (for example, a mouse, a touch pen, etc.) 22 (see S2 in FIG. 3) for specifying the examination position on the fundus image may be used.
  • a layer thickness distribution storage means 23 for storing data indicating the distribution of the inner retina thickness of the subject is provided, so that the data indicating the distribution of the inner retina thickness is displayed on the monitor means 20.
  • a fundus image eg, OCT GCC thickness map
  • Both normal fundus images that is, fundus images that do not show the distribution of inner retina thickness
  • data that can understand the distribution of inner retina thickness for example, cross-sectional images of the fundus
  • the abnormal area can be easily grasped, and the visual field inspection in the abnormal area can be designated appropriately.
  • the fundus image may be an image taken immediately before the visual field inspection, or may be an image already taken and stored in a filing device (recording device).
  • the monitoring means 20 may display the examination position and the target presentation position.
  • the perimeter according to the present invention is: “A position on the retinal surface where a ganglion cell (see symbol RGC in FIG. 4) is arranged” is a “photocell that is a position on the retinal surface and sends information to the ganglion cell RGC ( Position storage means 3 for storing in association with the “position where the reference numeral C in FIG. A ganglion cell present at the examination position P1 based on the examination position (for example, reference P1 in FIG. 4) input by the examination position input means 2 and the data stored in the position storage means 3 And a photoreceptor position acquisition means 4 (see S3 in FIG. 3) for obtaining the position of the photoreceptor cell C that sends information to the RGC (that is, the target presentation position) P2.
  • the data stored in the position storage means 3 can include the table described in Non-Patent Document 1 (see the table in FIG. 2).
  • this table the eccentricity of the photoreceptor cell, the total eccentricity, the eccentricity of the ganglion cell, and the area ratio of the photoreceptor cell to the ganglion cell are described.
  • "Eccentricity” and "Eccentricity of ganglion cells” should be memorized.
  • one numerical value of the eccentricity of the photoreceptor cell is 0.25 / 0.90, but this numerical value is only 0.25 mm from the retina center (that is, 0.90 deg from the retina center). It shows that it is a distant photoreceptor.
  • the eccentricity of the ganglion cell in that row is 0.56 / 2.02, but the position where the ganglion cell associated with the photoreceptor cell is arranged is 0.56 mm from the center of the retina (that is, the center of the retina). It is shown that it is separated by 2.02 deg). Therefore, based on the distance (mm or deg) from the retina center of the examination position P1, the “distance (mm or deg) from the retina center to the visual target presentation position P2” is obtained. Therefore, if the position P2 of the photoreceptor cell C is defined as being shifted in a direction approaching the center of the retina (than the position P1 of the ganglion cell RGC), the target presentation position P2 can be specified.
  • the perimeter 1 comprises: The position acquired by the photoreceptor cell position acquisition means 4 (that is, not the position P1 where the ganglion cell RGC is arranged, but the position P2 where the photoreceptor cell C linked to the ganglion cell RGC is arranged; , The target presentation unit 5 (see S4 in FIG. 3) for presenting the target at the target presentation position), An operation means 6 operated by a subject who visually recognizes the presented target; A visual field determination means 7 for determining the visual field of the subject based on a response from the subject by the operation means 6; And is configured to perform visual field inspection (see S5 in FIG. 3).
  • the perimeter 1 includes determination result output means 8 (see S6 in FIG. 3) for displaying the determination result by the visual field determination means 7 in association with the inspection position.
  • determination result output means 8 may be any display as long as the visual field determination result and the inspection position are displayed in association with each other.
  • a monitor such as a liquid crystal display (the monitor means 20 or another monitor) may be used. It may be a printer, or an output part that sends information to an external monitor or printer.
  • the determination result output means 8 when used as a monitor, not only the examination position but also the target presentation position may be displayed simultaneously. In that case, it is preferable to change the color so that the examination position and the target presentation position can be distinguished. For example, one portion may be displayed in red and the other in blue, and the overlapped portion may be displayed in green. Further, the examination position and the target presentation position may be displayed alternately (switched display by an operation of a mouse or the like) instead of being displayed simultaneously. Furthermore, the determination result by the visual field determination means 7 may be displayed not only in association with the examination position but also in association with the target presentation position.
  • the position where the visual target is presented by the visual target presenting means 5 is not “the examination position P1 designated by the examination position input means 2” but “the photoreceptor cell (that is, the examination position P1).
  • This is the position P2 ′′ where the visual cells that send information to the existing ganglion cells exist.
  • the information on the presented optotype is sensed by the photoreceptor cell C at the position P2 and sent to the ganglion cell RGC at the position P1, and the function of the ganglion cell RGC at the position P1 is determined. It becomes possible. Therefore, “the position P1 designated to be examined” and “the function of the ganglion cell RGC arranged at the position P1” can be grasped in association with each other.
  • the function of the ganglion cell RGC arranged at that location can be determined. It is possible to grasp the relationship between “the thickness of the inner retinal layer)” and “the function of the ganglion cell RGC”, and it is possible to grasp the relationship between the thickness of the inner retinal layer and the visual field.
  • the inspection position designation by the inspection position input means may be performed automatically instead of manually. That is, in the present embodiment, the examination position input means 2 has been described as a method of displaying the fundus image on the monitor means 20 and manually specifying the examination position on the monitor means 20 by the position designation means 22. It is also possible to obtain a configuration in which the coordinate information of the abnormal part is directly acquired from an inspection device such as OCT and the inspection position is automatically input (designated).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Signal Processing (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

網膜面上の位置であって検査すべきと指定した位置についての視野検査結果を得られるようにする。 網膜面上(黄斑部)においては"神経節細胞RGCの位置"と"該神経節細胞RGCに情報を送る視細胞Cの位置"とは図に示すようにずれている。いま、位置P1にある神経節細胞の機能を検査しようとして該位置P1を検査位置として指定すると、視野計は、"該位置P1にある神経節細胞に情報を送る視細胞の位置P2"を求め、該位置P1にではなく該位置P2に視標を呈示して視野を検査する。その視標の情報は位置P1にある神経節細胞に送られることとなるので該神経節細胞の機能を検査することができる。また、その検査結果は前記位置P1に関連付けて表示されるので、指定した位置P1の神経節細胞を検査することが可能となる。

Description

視野計
 本発明は、被検者の視野中に視標を呈示することにより視野を測定する視野計に関する。
 網膜神経節細胞(retinal ganglion cell, RGC、以下、適宜“神経節細胞”とする)は、目の網膜の内側面にある神経細胞であり、中間ニューロン(双極細胞やアマクリン細胞)を介して視細胞(桿体および錐体)からの情報を受け取るものである。この神経節細胞が死滅すると緑内障となって視野が狭くなったり欠けたりするので、該神経節細胞の機能の低下を早期に発見し、その進行・悪化を食い止めることが重要である。そして、該神経節細胞の機能の低下を発見する一つの手法として視野検査があり、該検査を行う視野計については種々の構造のものが提案されている(例えば、特許文献1参照)。
 ところで、上述の神経節細胞の機能低下と網膜内層厚(GCC厚、Ganglion Cell Complexの厚さ)との間には密接な関連があって、神経節細胞の機能が低下している箇所では網膜内層厚が薄くなることが分かっている。したがって、視野検査に際しては、種々の眼底画像(例えば、OCT画像や、該OCT画像から作成されたGCC厚マップなど)に基づいて網膜内層厚の薄い箇所を見つけ、その箇所に視標を呈示して優先的に視野検査が行うという方法が採られている。
特許第5231085号公報
Johann Sjostrand.Quantitative estimations of foveal and extra-foveal retinal circuitry in humans, Vision Research 39(1999) 2987-2998 JohannSjostrand、外3名、「Morphometric Study of the displacement of retinal ganglion cellssubserving cones within the human fovea」、Graefe’s archive for clinical and experimentalophthalmology、Springer Berlin/Heidelberg、Vol.237、Number 12/December、1999。
 ところで、神経節細胞が配置された位置(網膜面上の位置)と、該神経節細胞に情報を送る視細胞(つまり、前記神経節細胞に連携する視細胞)が配置された位置(網膜面上の位置)との間には位置ズレが生じていることが分かっている(例えば、非特許文献1及び2参照)。図4は、そのような視細胞と神経節細胞との位置関係を模式的に示す模式図(網膜の面に沿った座標系を示すもの)である。そして、原点には網膜中心を取り、縦軸及び横軸には、網膜中心からの偏心度を取っている(縦軸の単位はdeg、横軸の単位はmm)。図に示すように、各神経節細胞RGCは各視細胞Cに対して網膜中心から遠ざかる方向にずれている。また、そのズレ量は一定ではなく、網膜中心の近くが一番大きく、該網膜中心から離れるに従って小さくなっていて、黄斑部の外側では位置ズレはほとんど見られないことが分かっている。
 したがって、網膜の黄斑部において網膜内層厚が薄い箇所(例えば、符号P1参照)を発見し、その箇所P1の神経節細胞を検査しようとして該箇所P1に視標を呈示したとしても、該箇所P1にある視細胞にて感受された視標についての情報は、網膜中心から離れた位置P3にある神経節細胞にまで送られて該神経節細胞(位置P3にある神経節細胞)を検査してしまい、指定した箇所P1の神経節細胞を検査することができないという問題があった。
 本発明は、上述の問題を解消することのできる視野計を提供することを目的とするものである。
 請求項1に係る発明は、図1に例示するものであって、被検者の視野中に視標を呈示することにより視野を測定する視野計(1)において、
 網膜面上の位置であって網膜神経節細胞(図4の符号RGC参照)が配置された位置を、該網膜面上の位置であって該網膜神経節細胞(RGC)に情報を送る視細胞(C)が配置された位置に関連付けて記憶する位置記憶手段(3)と、
 網膜面上の位置であって検査をしたい位置(図4の符号P1参照。以下、“検査位置”とする)を入力する検査位置入力手段(2)と、
 該検査位置入力手段(2)により入力された検査位置(P1)と、前記位置記憶手段(3)に記憶されているデータとに基づき、該検査位置(P1)に存在する網膜神経節細胞(RGC)に情報を送る視細胞(C)の位置(P2)を取得する視細胞位置取得手段(4)と、
 該視細胞位置取得手段(4)により取得した位置(P2)に視標を呈示する視標呈示手段(5)と、
 該呈示された視標を視認した被検者により操作される操作手段(6)と、
 該操作手段(6)による被検者からの応答に基づき該被検者の視野を判定する視野判定手段(7)と、
 該視野判定手段(7)による判定結果を前記検査位置(P1)に関連付けて表示する判定結果出力手段(8)と、
 を備えたことを特徴とする。
 請求項2に係る発明は、請求項1に係る発明において、前記検査位置入力手段(2)が、モニター手段(20)と、該モニター手段(20)に眼底画像を表示する眼底画像出力手段(21)と、該眼底画像上で検査位置(P1)を指定するための位置指定手段(22)と、を有することを特徴とする。
 請求項3に係る発明は、請求項2に係る発明において、被検者の網膜内層厚の分布を示すデータを記憶する層厚分布記憶手段(23)、を備え、
 該網膜内層厚の分布を示すデータが前記モニター手段(20)に表示されるように構成されたことを特徴とする。
 なお、括弧内の番号などは、図面における対応する要素を示す便宜的なものであり、従って、本記述は図面上の記載に限定拘束されるものではない。
 請求項1及び2に係る発明によれば、“検査すべきと指定した位置”と“該位置に配置された神経節細胞の機能”とを関連付けて把握することができる。
 請求項3に係る発明によれば、異常領域の把握が容易となり、異常領域での視野検査を適確に指定することができる。
図1は、本発明に係る視野計の構成の一例を示すブロック図である。 図2は、視細胞と神経節細胞の位置等の関係を示すテーブルである。 図3は、本発明に係る視野計を用いて視野検査をする様子の一例を示すフローチャート図である。 図4は、視細胞と神経節細胞との位置関係を模式的に示す模式図である。
 以下、図1乃至図4に沿って、本発明の実施の形態について説明する。
 本明細書においては、網膜面上の位置であって検査を行いたい位置(つまり、検者等により検査すべきとして指定される位置であって、神経節細胞の機能の検査を行いたい位置)を“検査位置”と称することとし、網膜面上の位置であって視野測定の際に実際に視標を呈示する位置を“視標呈示位置”と称することとする。
 本発明に係る視野計は、被検者の視野中の所望の位置(前記視標呈示位置)に視標を呈示することにより視野を測定するものであり、図1に符号1で例示するものであって、上述の検査位置を入力する検査位置入力手段2を備えている。この検査位置入力手段2は、
・ モニター手段20と、
・ 該モニター手段20に眼底画像(つまり、眼底表面を撮影した画像)を表示する眼底画像出力手段21(図3のS1参照)と、
・ 該眼底画像上で検査位置を指定するための位置指定手段(例えば、マウスやタッチペンなど)22(図3のS2参照)と、により構成すると良い。また、被検者の網膜内層厚の分布を示すデータを記憶する層厚分布記憶手段23、を設けておいて、該網膜内層厚の分布を示すデータが前記モニター手段20に表示されるように構成しても良い。具体的には、
・ 網膜内層厚の分布が示されるような眼底画像(例えば、OCTのGCC厚マップ)や、
・ 通常の眼底画像(つまり、網膜内層厚の分布が示されない眼底画像)と、網膜内層厚の分布が分かるようなデータ(例えば、眼底の断面画像)の両方、が表示されるようにすると良い。これにより、異常領域の把握が容易となり、異常領域での視野検査を適確に指定することができる。ここで、前記眼底画像は、視野検査直前に撮影したものであっても良いし、既に撮影してファイリング装置(記録装置)に保存してあったものであっても良い。なお、前記モニター手段20には、検査位置や視標呈示位置を表示するようにしても良い。
 また、本発明に係る視野計は、
・ “網膜面上の位置であって神経節細胞(図4の符号RGC参照)が配置された位置”を“該網膜面上の位置であって該神経節細胞RGCに情報を送る視細胞(同図の符号C参照)が配置された位置”に関連付けて記憶する位置記憶手段3と、
・ 前記検査位置入力手段2により入力された検査位置(例えば、図4の符号P1参照)と、前記位置記憶手段3に記憶されているデータとに基づき、該検査位置P1に存在する神経節細胞RGCに情報を送る視細胞Cの位置(つまり、前記視標呈示位置)P2を取得する視細胞位置取得手段4(図3のS3参照)と、を備えている。なお、前記位置記憶手段3に記憶させておくデータとしては、上述した非特許文献1に記載されているテーブル(図2のテーブル参照)を挙げることができる。このテーブルには、視細胞の偏心度、全偏心度、神経節細胞の偏心度、及び、視細胞と神経節細胞の面積比が記載されているが、前記位置記憶手段3には“視細胞の偏心度”と“神経節細胞の偏心度”とを記憶させておくと良い。このテーブルにおいて、例えば、視細胞の偏心度の1つの数値が0.25/0.90となっているが、この数値は、網膜中心から0.25mm(つまり、網膜中心から0.90deg)だけ離れている視細胞であることを示している。その行における神経節細胞の偏心度は0.56/2.02となっているが、前記視細胞に連携する神経節細胞が配置された位置が、網膜中心から0.56mm(つまり、網膜中心から2.02deg)だけ離れていることを示している。したがって、検査位置P1の網膜中心からの距離(mm又はdeg)に基づいて“網膜中心から前記視標呈示位置P2までの距離(mm又はdeg)”が求まることとなる。したがって、視細胞Cの位置P2が(神経節細胞RGCの位置P1よりも)網膜中心に近づく方向にずれると定義すると、視標呈示位置P2を特定することができる。
 また、網膜中心に対する視細胞の偏心度と神経節細胞の偏心度との関係については上述した非特許文献2の論文にも記載されている
 この論文には、視細胞の偏心度をAとし、神経節細胞の偏心度をBとした場合に、両者は下式のような関係を有することが記載されている。
Figure JPOXMLDOC01-appb-M000001
 したがって、前記検査位置入力手段2により入力された検査位置P1(網膜中心からの偏心度)を上式のBに代入してAを求めれば、視標を呈示すべき位置が求まることとなる。なお、視細胞と神経節細胞との位置関係を示すデータであれば良く、上記以外のデータを用いるようにしても良い。
 またさらに、本発明に係る視野計1は、
・ 該視細胞位置取得手段4により取得した位置(つまり、神経節細胞RGCが配置されている位置P1ではなく、該神経節細胞RGCに連携する視細胞Cが配置されている位置P2であって、前記視標呈示位置)に視標を呈示する視標呈示手段5(図3のS4参照)と、
・ 該呈示された視標を視認した被検者により操作される操作手段6と、
・ 該操作手段6による被検者からの応答に基づき該被検者の視野を判定する視野判定手段7と、
を備えており、視野検査を行うように構成されている(図3のS5参照)。
 また、本発明に係る視野計1は、前記視野判定手段7による判定結果を前記検査位置に関連付けて表示する判定結果出力手段8(図3のS6参照)、を備えている。ここで、関連付けた表示を行うには、
・ 前記検査位置P1についての情報と、
・ 視野検査の結果と、
・ その検査結果がどの検査位置のものであるかの情報と、
が分かるようにすると良い。また、前記判定結果出力手段8は、視野の判定結果と検査位置とを関連付けて表示するものであれば良く、例えば、液晶ディスプレイ等のモニター(前記モニター手段20か、又は別のモニター)でも良いし、プリンターでも良いし、或いは、外付けのモニターやプリンターに情報を送る出力部分であっても良い。さらに、該判定結果出力手段8をモニターにする場合には、検査位置だけでなく視標呈示位置も同時に表示しても良い。その場合、検査位置と視標呈示位置とが区別できるように色を変えたりしておくと良い。例えば、一方を赤色で示し他方を青色に示して重なった部分が緑色で表示されるようにすると良い。また、検査位置と視標呈示位置とを同時に表示するのではなく交互に表示(マウス等の操作で切換表示)するようにしても良い。またさらに、前記視野判定手段7による判定結果を前記検査位置に関連付けて表示するだけでなく、前記視標呈示位置に関連付けて表示するようにしても良い。
 本発明によれば、前記視標呈示手段5によって視標が呈示される位置は、“前記検査位置入力手段2によって指定された検査位置P1”ではなく“視細胞(つまり、該検査位置P1に存在する神経節細胞に情報を送っている視細胞)が存在する位置P2”である。そして、呈示された視標の情報は、位置P2にある視細胞Cにより感受され、位置P1にある神経節細胞RGCに送られることとなり、該位置P1にある神経節細胞RGCの機能を判定することが可能となる。したがって、“検査すべきと指定した位置P1”と“該位置P1に配置された神経節細胞RGCの機能”とを関連付けて把握することができる。例えば、網膜内層厚が薄い箇所を検査位置として指定した場合には、その箇所(網膜内層厚が薄い箇所)に配置された神経節細胞RGCの機能を判定することができ、“網膜の構造(網膜内層厚の厚さ)”と“神経節細胞RGCの機能”とを関連付けて把握することが可能となり、網膜内層厚の厚みと視野との関係を把握することが可能となる。
 なお、検査位置入力手段による検査位置の指定を手動で行うのではなく自動で行うようにしても良い。つまり、本実施例では検査位置入力手段2を、モニター手段20に眼底画像を表示させ、該モニター手段20上で前記位置指定手段22によって手動で検査位置を指定する方法で説明したが、他の検査機器、例えばOCTなどから直接異常部位の座標情報を取得して自動的に検査位置が入力(指定)されるような構成にすることも可能である。
  1        視野計
  2        検査位置入力手段
  3        位置記憶手段
  4        視細胞位置取得手段
  5        視標呈示手段
  6        操作手段
  7        視野判定手段
  8        判定結果出力手段
  20       モニター手段
  21       眼底画像出力手段
  22       位置指定手段
  23       層厚分布記憶手段
  C        視細胞
  P1       検査位置
  P2       視細胞の位置
  RGC      網膜神経節細胞

Claims (3)

  1.  被検者の視野中に視標を呈示することにより視野を測定する視野計において、
     網膜面上の位置であって網膜神経節細胞が配置された位置を、該網膜面上の位置であって該網膜神経節細胞に情報を送る視細胞が配置された位置に関連付けて記憶する位置記憶手段と、
     網膜面上の位置であって検査をしたい位置(以下、“検査位置”とする)を入力する検査位置入力手段と、
     該検査位置入力手段により入力された検査位置と、前記位置記憶手段に記憶されているデータとに基づき、該検査位置にちょう存在する網膜神経節細胞に情報を送る視細胞の位置を取得する視細胞位置取得手段と、
     該視細胞位置取得手段により取得した位置に視標を呈示する視標呈示手段と、
     該呈示された視標を視認した被検者により操作される操作手段と、
     該操作手段による被検者からの応答に基づき該被検者の視野を判定する視野判定手段と、
     該視野判定手段による判定結果を前記検査位置に関連付けて表示する判定結果出力手段と、
     を備えたことを特徴とする視野計。
  2.  前記検査位置入力手段は、モニター手段と、該モニター手段に眼底画像を表示する眼底画像出力手段と、該眼底画像上で検査位置を指定するための位置指定手段と、を有する、
     ことを特徴とする請求項1に記載の視野計。
  3.  被検者の網膜内層厚の分布を示すデータを記憶する層厚分布記憶手段、を備え、
     該網膜内層厚の分布を示すデータが前記モニター手段に表示されるように構成された、
     ことを特徴とする請求項2に記載の視野計。
PCT/JP2014/083898 2013-12-24 2014-12-22 視野計 WO2015098828A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015554879A JP6461819B2 (ja) 2013-12-24 2014-12-22 視野計
EP14875261.1A EP3087908B1 (en) 2013-12-24 2014-12-22 Perimeter
US15/107,504 US10413170B2 (en) 2013-12-24 2014-12-22 Perimeter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-265028 2013-12-24
JP2013265028 2013-12-24

Publications (1)

Publication Number Publication Date
WO2015098828A1 true WO2015098828A1 (ja) 2015-07-02

Family

ID=53478682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083898 WO2015098828A1 (ja) 2013-12-24 2014-12-22 視野計

Country Status (4)

Country Link
US (1) US10413170B2 (ja)
EP (1) EP3087908B1 (ja)
JP (1) JP6461819B2 (ja)
WO (1) WO2015098828A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017150583A1 (ja) * 2016-03-04 2018-12-27 株式会社ニデック 眼科情報処理装置および眼科情報処理プログラム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034480A (ja) * 2007-07-31 2009-02-19 Topcon Corp 眼科情報処理装置及び眼科検査装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634243A (en) * 1984-12-26 1987-01-06 Lkc Systems, Inc. Glaucoma detection utilizing pattern discrimination test
KR20140111298A (ko) * 2011-12-20 2014-09-18 아이체크 헬스 커넥션, 인크. 녹내장에서의 시야 손실을 모니터링하기 위한 비디오 게임

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034480A (ja) * 2007-07-31 2009-02-19 Topcon Corp 眼科情報処理装置及び眼科検査装置
JP5231085B2 (ja) 2007-07-31 2013-07-10 株式会社トプコン 眼科情報処理装置及び眼科検査装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J . SJOSTRAND ET AL.: "Quantitative estimations of foveal and extra-foveal retinal circuitry in humans", VISION RESEARCH, vol. 39, no. 18, 1 September 1999 (1999-09-01), pages 2987 - 2998, XP055355149 *
JOHANN SJOSTRAND: "Quantitative estimations of foveal and extrafoveal retinal circuitry in humans", VISION RESEARCH, vol. 39, 1999, pages 2987 - 2998, XP055355149
JOHANNSJOSTRAND: "Graefe's archive for clinical and experimentalophthalmology", vol. 237, December 1999, SPRINGER BERLIN, article "Morphometric Study of the displacement of retinal ganglion cellssubserving cones within the human fovea"
SHINJI OKUBO: "Gantei Taio Shiyakei", JOURNAL OF THE EYE, vol. 27, 2010, pages 11, XP008184636 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017150583A1 (ja) * 2016-03-04 2018-12-27 株式会社ニデック 眼科情報処理装置および眼科情報処理プログラム
JP7196606B2 (ja) 2016-03-04 2022-12-27 株式会社ニデック 眼科情報処理装置および眼科情報処理プログラム

Also Published As

Publication number Publication date
JPWO2015098828A1 (ja) 2017-03-23
EP3087908A4 (en) 2017-08-16
US10413170B2 (en) 2019-09-17
EP3087908A1 (en) 2016-11-02
US20160317024A1 (en) 2016-11-03
JP6461819B2 (ja) 2019-01-30
EP3087908B1 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
Chen et al. Avoiding clinical misinterpretation and artifacts of optical coherence tomography analysis of the optic nerve, retinal nerve fiber layer, and ganglion cell layer
Bowd et al. Estimating optical coherence tomography structural measurement floors to improve detection of progression in advanced glaucoma
Reus et al. Clinical assessment of stereoscopic optic disc photographs for glaucoma: the European Optic Disc Assessment Trial
Vizzeri et al. Effect of signal strength and improper alignment on the variability of stratus optical coherence tomography retinal nerve fiber layer thickness measurements
Aaker et al. Detection of retinal changes in Parkinson’s disease with spectral-domain optical coherence tomography
Lee et al. Ganglion cell–inner plexiform layer thickness in retinal diseases: repeatability study of spectral-domain optical coherence tomography
Seo et al. Detection of localized retinal nerve fiber layer defects with posterior pole asymmetry analysis of spectral domain optical coherence tomography
JP5568725B2 (ja) 大容量の網膜像及び良く記録された眼底像に基づいてマイクロ視野測定試験を行うための方法
US7942528B2 (en) Perimeter
Vizzeri et al. Effect of improper scan alignment on retinal nerve fiber layer thickness measurements using Stratus optical coherence tomograph
Ahn et al. Optical coherence tomography protocols for screening of hydroxychloroquine retinopathy in Asian patients
JP6212034B2 (ja) 色視機能測定手段及び色視機能測定システム
EP2482711B1 (en) Diagnostic method and apparatus for predicting potential preserved visual acuity
Yoon et al. The structure‐function relationship between macular morphology and visual function analyzed by optical coherence tomography in retinitis pigmentosa
Hwang et al. Optic nerve head, retinal nerve fiber layer, and macular thickness measurements in young patients with retinitis pigmentosa
de Sisternes et al. Visual prognosis of eyes recovering from macular hole surgery through automated quantitative analysis of spectral-domain optical coherence tomography (SD-OCT) scans
JP2018020155A (ja) 視野計
Nakatani et al. Influences of the inner retinal sublayers and analytical areas in macular scans by spectral-domain OCT on the diagnostic ability of early glaucoma
Asakawa et al. Evaluation of optic nerve head using a newly developed stereo retinal imaging technique by glaucoma specialist and non–expert-certified orthoptist
Roshandel et al. Impact of reference center choice on adaptive optics imaging cone mosaic analysis
JP6461819B2 (ja) 視野計
Melamud et al. Introducing a new computer-based test for the clinical evaluation of color discrimination
Kochendörfer et al. Posterior pole asymmetry analysis with optical coherence tomography
Sharma et al. Macular Thickness Variability in Primary Open Angle Glaucoma Patients using Optical Coherence Tomography
JP5955349B2 (ja) 分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875261

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554879

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014875261

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014875261

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15107504

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE