WO2015098130A1 - Two-dimensional scanning laser beam projection device and laser radar device - Google Patents

Two-dimensional scanning laser beam projection device and laser radar device Download PDF

Info

Publication number
WO2015098130A1
WO2015098130A1 PCT/JP2014/006517 JP2014006517W WO2015098130A1 WO 2015098130 A1 WO2015098130 A1 WO 2015098130A1 JP 2014006517 W JP2014006517 W JP 2014006517W WO 2015098130 A1 WO2015098130 A1 WO 2015098130A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
deflection angle
lens
deflection
variable magnification
Prior art date
Application number
PCT/JP2014/006517
Other languages
French (fr)
Japanese (ja)
Inventor
善幹 千葉
高橋 靖
欽一 及川
真久 川村
Original Assignee
リコーインダストリアルソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013270201A external-priority patent/JP2015125317A/en
Priority claimed from JP2014241801A external-priority patent/JP6417198B2/en
Priority claimed from JP2014246127A external-priority patent/JP2016109517A/en
Application filed by リコーインダストリアルソリューションズ株式会社 filed Critical リコーインダストリアルソリューションズ株式会社
Publication of WO2015098130A1 publication Critical patent/WO2015098130A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/113Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors

Definitions

  • the present invention relates to a two-dimensional scanning laser beam projection apparatus and a laser radar apparatus.
  • the laser radar device scans a beam of laser light two-dimensionally and irradiates the object to be detected, and the laser light reflected by the object to be detected is received by the light receiving element for detection and detected. Then, the distance to the object to be detected is measured by "the time required for the laser beam to travel the distance to the object to be detected". As described above, since the distance to the detection target is measured, the laser radar device may be called "two-dimensional distance measuring device". In the following, a beam-like laser beam which is two-dimensionally scanned and irradiated to a detection target is referred to as a “deflection laser beam”.
  • field of view means "two-dimensional deflection angle (deflection angle in each of two directions forming two dimensions and orthogonal to each other)" when a polarized laser beam applied to an object is two-dimensionally scanned. It is.
  • a deflecting device for deflecting a laser beam "polygon mirror or MEMS” is known (Patent Document 2 etc.).
  • the "deflection device” conventionally known often has a fixed deflection angle.
  • two-axis MEMS Micro Electro Mechanical Systems
  • laser beam deflection angles of the biaxial MEMS, such as 20 degrees, 30 degrees, and 40 degrees, and the deflection angles can be changed within a “certain range”.
  • the design of the best reflecting surface shape and the like for realizing the deflection angle is determined by using the deflection angle as a design condition. Therefore, it is preferable that the MEMS perform deflection at the “design deflection angle”, and the range in which the deflection angle can be changed is naturally limited, and a large change in the deflection angle is difficult.
  • the change of the deflection angle is referred to as "variation of deflection angle”.
  • the magnification change of the deflection angle is considered to be an increase or decrease of the deflection angle.
  • Patent Document 2 With regard to the expansion of the deflection angle, conventionally, it has been proposed to optically expand the deflection angle of the laser beam which is two-dimensionally deflected by the deflection device (Patent Document 2). On the other hand, reducing the deflection angle has not been known as far as the inventors know.
  • the two-dimensional scanning range of the laser beam can be narrowed, the scanning can be densified, and the shape of the object can be detected with high precision.
  • the present invention realizes a novel two-dimensional projection type laser beam projection apparatus capable of changing the deflection angle of a laser beam two-dimensionally deflected and scanned by a deflection device in at least one of two directions orthogonal to each other. As an issue.
  • the two-dimensional scanning laser beam projection apparatus is a two-dimensional scanning laser beam projection apparatus that emits a two-dimensionally deflected polarized laser beam, which comprises: a laser light source that emits a laser beam; A deflector for two-dimensionally deflecting a laser beam emitted from a light source, and changing a deflection angle of a laser beam two-dimensionally scanned by the deflector in at least one of two directions orthogonal to each other And a deflection angle variable magnification element to be a deflection laser beam.
  • FIG. 1 is a view for explaining one embodiment of a two-dimensional scanning laser beam projection apparatus.
  • the figure (a) has shown the principal part of embodiment in figure in illustration.
  • reference numeral 10 denotes a "light source”
  • reference numeral 12 denotes a “coupling lens”
  • reference numeral 14 denotes a “deflection device”
  • reference numeral 16 denotes a "reflecting surface member as a deflection angle magnifying element which is a deflection angle varying element
  • the light source 10 a "semiconductor laser” is used in this embodiment. It is abbreviated as 10.
  • the divergent laser beam emitted from the LD 10 is incident on the coupling lens 12.
  • the coupling lens 12 has positive refractive power and suppresses the divergence of the incident laser beam.
  • the coupling lens 12 has a "collimation function". Therefore, a collimated laser beam LF is emitted from the coupling lens 12.
  • the emitted laser beam LF is incident on the deflection device 14. That is, the LD 10 and the coupling lens 12 constitute a “laser light source for emitting the laser beam LF”.
  • the deflection device 14 “two-dimensionally deflects and scans” the incident laser beam LF.
  • the deflecting device 14 has reflecting surfaces which can be swung in two directions orthogonal to each other, reflects the laser beam LF by the reflecting surfaces, and performs deflection scanning by swinging the reflecting surface.
  • Such deflection devices are well known, but in the embodiment being described, one as shown in FIG. 1 (b) is used.
  • the deflecting device 14 has the reflecting mirror 140, the first frame 142 and the second frame 144.
  • the reflecting mirror 140 is a plane mirror, has a reflecting surface slightly larger than the diameter of the light beam of the laser beam LF, and can receive and reflect the entire laser beam LF.
  • the first frame 142 and the second frame 144 are both rectangular frames, and the reflecting mirror 140 is fixed to the first frame 142 by axes j1 and j2 sharing a swing axis.
  • the axes j1 and j2 have torsional elasticity, and the restoring force of the torsional deformation enables the reflecting mirror 140 to swing about the swing axis shared by the axes j1 and j2.
  • the first frame 142 is fixed to the second frame 144 by axes j3 and j4.
  • the axes J3 and j4 also share the swing axis.
  • the axes j3 and j4 also have torsional elasticity, and the first frame 142 can be swung around the swing axis shared by the axes j3 and j4 by the restoring force of the torsional deformation.
  • the second frame 144 is fixedly provided in the device space of the two-dimensional scanning laser beam emission device and immobile.
  • the swing axis shared by the axes j1 and j2 and the swing axis shared by the axes j3 and j4 are orthogonal to each other. Therefore, the reflecting mirror 140 can be "swayed independently in two directions orthogonal to each other (ie, in the horizontal direction and the vertical direction)".
  • the rocking is performed by a driving unit (not shown).
  • a "piezoelectric element” can be used as the driving means.
  • the piezoelectric element fixed to the first frame 142 can be connected to the reflecting mirror 140 to drive the reflecting mirror 140 to swing.
  • the piezoelectric element fixed to the second frame 144 can be connected to the first frame 142 to drive the first frame 142 having the reflecting mirror 140 to swing.
  • the deflection device 14 is configured as a “two-axis MEMS”.
  • the deflection device 14 may be any appropriate known device other than those configured as such “two-axis MEMS”. For example, two “one-axis MEMS in combination for deflection in the vertical and horizontal directions” and a combination of one-axis MEMS and one-axis galvano mirror or one-axis polygon mirror can be mentioned. Alternatively, it can be implemented as “combination of a uniaxial galvano mirror and a uniaxial polygon mirror”. Since these “two-dimensional deflection devices” are well known as described in Patent Document 2 and the like, the description will be omitted.
  • the laser beam LF is reflected by the reflecting mirror 140 of the deflecting device 14, and when the reflecting mirror 140 swings in a two-dimensional manner, it becomes a two-dimensionally deflected laser beam LF1.
  • the reflecting surface member 16 has a reflecting surface on which the laser beam LF ⁇ b> 1 deflected and scanned two-dimensionally by the deflecting device 14 is incident. In the embodiment of FIG. 1, the reflecting surface member 16 has a “conical convex reflecting surface”.
  • the two-dimensionally deflected and scanned laser beam LF1 is incident on the reflecting surface of the reflecting surface member 16 so as to “scan the reflecting surface two-dimensionally”.
  • FIG. 1C shows a reflective surface portion 160 of the reflective surface member 16 that is “two-dimensionally scanned with the laser beam LF1”.
  • the horizontal direction in the figure is the horizontal direction
  • the vertical direction is the vertical direction.
  • FIG. 1D shows a state in which the arc-shaped portion CD is scanned as viewed from the symmetry axis direction of the reflective surface portion 160.
  • the “horizontal deflection angle is ⁇ 1” when the laser beam LF1 scans the arc-shaped portion CD. Since the reflecting surface portion 160 is a conical “convex reflecting surface”, it is reflected by the reflecting surface portion 160 to be reflected as a polarized laser beam LF2.
  • the deflection angle in the horizontal direction of the deflected laser beam LF2 is “ ⁇ 2”.
  • FIG. 1E shows the “state in which the laser beam LF1 is reflected in the vertical direction” when the reflective surface portion 160 is viewed from the horizontal direction.
  • the portion indicated by the symbol a is the incident position on the arc portion AB of the laser beam LF1
  • the portion indicated by the symbol f is the “incident position on the arc portion EF”.
  • the reflection surface portion 160 has no curvature in the vertical direction, so the deflection angle in the vertical direction of the polarized laser beam LF2 does not enlarge the deflection angle in the vertical direction by the deflection device.
  • the “two-dimensional scanning laser beam projection apparatus” whose embodiment is shown in FIG. 1 is an apparatus that emits a two-dimensionally deflected polarized laser beam LF2.
  • the laser light source 10, 12 emits a laser beam LF, and a deflector 14 two-dimensionally deflects and scans the laser beam LF emitted from the laser light source. Further, it has a reflecting surface member (deflection angle enlarging element) 16 for reflecting the laser beam LF1 which has been two-dimensionally deflected and scanned by the deflecting device.
  • the reflecting surface member 16 has a reflecting surface portion 160 having a curved surface shape for enlarging and changing the deflection angle of the polarized laser beam LF2 in the horizontal direction. If the curvature in the horizontal cross section of the reflecting surface portion 160 of the reflecting surface member 16 is "strong (weak)", the magnification of the horizontal magnification change can be "high (low)”. Therefore, by appropriately setting the shape of the reflective surface portion 160, "the magnification change of the deflection angle of the deflection laser beam LF2 in the horizontal direction to the desired deflection angle range" can be performed.
  • the reflecting surface portion 160 of the reflecting surface member 16 is formed as a convex conical surface so as to "magnify and change the deflection angle of the deflected laser beam LF2 in the horizontal direction to a desired deflection angle range".
  • the shape of the reflecting surface of the reflecting surface member is not limited to this, and various shapes can be considered.
  • it can be a "convex cylinder surface”.
  • the curved surface shape of the reflective surface part of a reflective surface member is not restricted to a convex.
  • the cross-sectional shape in the horizontal direction of the reflective surface portion is “concave”, it is possible to scale the deflection angle in the horizontal direction at a reduction ratio to "narrow down" the horizontal field of view.
  • the shape of the reflecting surface member in the vertical direction is “concave shape (convex shape)”
  • the deflection angle in the vertical direction may be scaled with a reduction (magnification) magnification to narrow (expand) the visual field in the vertical direction. it can.
  • the reflective surface member may also have a "recessed cylindrical surface or a concave conical surface" in the shape of the reflective surface.
  • the curvature of the concave surface is increased to narrow the deflection angle in the horizontal or vertical direction, and the deflection laser beam once intersects in space and then becomes the expansion deflection angle. You can also do so.
  • magnification (magnification) of the magnification change with respect to the “at least one of horizontal direction and vertical direction” deflection angle of the laser beam LF1 deflected by the deflection apparatus can be set appropriately.
  • the reflecting surface member which is a deflection angle variable magnification element, has a curved reflecting surface portion that changes the deflection angle of the reflected laser beam into a desired deflection angle range in at least one of the horizontal direction and the vertical direction.
  • the deflecting device 14 described above is one which "swings" the reflecting mirrors 140 around one another.
  • the present invention is not limited to this, and it is also possible to combine two one-dimensional reflection / deflecting devices which vibrate or rotate the reflecting surface about an axis, with the axes orthogonal.
  • FIG. 2 is a view for explaining another embodiment of the two-dimensional scanning laser beam projection apparatus.
  • FIG. 2 (a) shows the entire apparatus in a simplified illustration.
  • reference numeral 10 denotes a semiconductor laser (LD)
  • reference numeral 12 denotes a coupling lens.
  • the LD 10 emits light
  • the emitted laser beam is collimated by the coupling lens 12 and converted into a “parallel” laser beam LF.
  • the laser beam LF is incident on the adjustment lens 13 and is converted into a laser beam LA which converges in one direction.
  • the LD 10, the coupling lens 12 and the adjusting lens 13 constitute a "laser light source”.
  • the laser beam LA which converges in one direction is incident on the mirror 40 and reflected in a predetermined direction.
  • the mirror 40 is a plane mirror and is provided to "bent the light path of the laser beam LA", but may be omitted depending on the layout of the apparatus.
  • the laser beam LA reflected by the mirror 40 enters the deflection device 14 while converging in one direction.
  • the deflection device 14 is configured as a “two-axis MEMS”, and swings the reflection surface two-dimensionally to deflect the reflected light two-dimensionally. The description of the deflecting device 14 incorporates the previous description with respect to FIG.
  • the two-dimensionally deflected laser beam is periodically scanned in two directions orthogonal to each other with a substantial center of "point of origin of deflection" by the deflection device 14 as indicated by a symbol LD in Fig. 1A. Be done.
  • the two-dimensionally deflected and scanned laser beam LD is incident on a deflection angle variable magnification element 18.
  • the deflection angle variable magnification element 18 is a “deflection angle magnification element as a deflection angle magnification element”.
  • the deflection angle variable magnification element 18 is a concave cylinder lens in the example shown in FIG. 2, the incident side surface 18A forms a "concave cylinder surface", and the emission side surface 18B is a "plane".
  • the axial direction (the direction having no power) of the concave cylinder surface 18A is referred to as "longitudinal direction” for convenience, and the direction orthogonal to the longitudinal direction in a plane perpendicular thereto is referred to as “lateral direction” for convenience.
  • the above-mentioned “horizontal direction / vertical direction” is an example of these "longitudinal direction / horizontal direction”.
  • a “concave cylinder surface” is also called “a concave cylinder surface”
  • a “convex cylinder surface” is also called a “convex cylinder surface.”
  • the deflected and scanned laser beam LD two-dimensionally scans the incident side surface 18A of the deflection angle variable magnification element 18 in the longitudinal direction and the transverse direction.
  • the laser beam LD which is two-dimensionally deflected and scanned and incident on the incident side surface 18A is given a converging tendency in one direction by the adjusting lens 13.
  • the convergence tendency of the laser beam LD is given in the "lateral direction”.
  • the laser beam LD deflects and scans the deflection angle variable magnification element 18 in the longitudinal and lateral directions, and emits from the emission side surface of the deflection angle magnification element 18 as a deflected laser beam LB whose deflection angle is expanded.
  • FIG. 2B shows the state of deflection of the laser beam LD as seen from the vertical direction. That is, the state of this figure shows the state of the lateral deflection of the laser beam LD.
  • reference numeral 10A indicates a light emitting portion of the LD 10.
  • the laser beam emitted from the LD 10 is converted by the coupling lens 12 into a parallel laser beam LF.
  • the laser beam LA is given a “trapping tendency in the lateral direction” by the adjusting lens 13, and enters the deflecting device 16A in a converged state to be two-dimensionally deflected.
  • the deflected laser beam LD is incident on the incident side surface 18A of the deflection angle variable magnification element 18 while being converged as viewed from the vertical direction.
  • the "point of origin of deflection" by the deflecting device 16A is substantially located on the cylinder axis of the "concave cylinder surface” forming the incident side surface 18A. That is, when viewed from the longitudinal direction, the incident side surface 18A has a “arc shape centered on the origin of deflection”. For this reason, the laser beam LD is incident so as to be “perpendicular to the incident side surface 18A” when viewed from the longitudinal direction, and is not refracted in the lateral direction.
  • the emission side surface 18B is a plane, and the polarized laser beam LB is refracted and emitted. That is, in the lateral direction, the deflection laser beam LB is enlarged in deflection angle by the refracting action of the emission side surface 18B.
  • the deflection angle variable magnification element 18 is connected to the cylinder lens 13 in the following positional relationship.
  • the position of the object-side focal point of the deflection angle variable magnification element 18 (“imaginary focal point” on the exit side of the deflection angle magnification element 18) substantially coincides with the “position of image side focus” of the adjustment lens 13.
  • the position of the image-side focal point of the adjusting lens 13 is such that the laser beam LD from the adjusting lens 13 travels toward the center of the deflection angle variable magnification element 18 and “does not receive the action of the deflection angle magnification element 18”.
  • FIG. 2C shows the state of deflection of the laser beam LD as viewed from the lateral direction.
  • the incident side surface 18A is "a cylinder surface whose axis is in the vertical direction", and the emission side surface 18B is a plane. Therefore, neither the incident side 18A nor the exit side 18B has refractive power in the vertical direction. That is, the deflection angle does not increase in the vertical direction.
  • the deflected and incident laser beam LD is emitted in the longitudinal direction as “a deflected laser beam LB maintaining a deflection angle”.
  • the two-dimensional scanning laser beam projection apparatus described with reference to FIG. 2 can expand and project the deflection angle of the laser beam LD in the lateral direction out of the two vertical and horizontal directions.
  • the two-dimensional scanning laser beam projection apparatus described with reference to FIG. 2 is a “laser beam projection apparatus that emits a two-dimensionally deflected laser beam LB”.
  • the apparatus comprises a laser light source 10 for emitting a laser beam LA, a coupling lens 12, a adjusting lens 13, and a deflector 14 for two-dimensionally deflecting and scanning a laser beam LA emitted from the laser light source.
  • a deflection angle expanding element is a deflection angle magnification element that expands a deflection angle of the laser beam LD two-dimensionally deflected and scanned by the deflection device 14 in at least one of two directions orthogonal to each other.
  • An angular magnification element 18 is provided.
  • the two directions orthogonal to each other are the vertical and horizontal two directions in the example of FIG. 2, and the expansion of the deflection angle is performed in the horizontal direction.
  • the deflection angle enlargement element is a deflection angle variable magnification element 18 which has a concave incident side surface 18A, transmits the two-dimensionally deflected scanning laser beam LD, and expands the deflection angle by refraction.
  • the deflection angle variable magnification element 18 is also flat on the exit side of the laser beam LD.
  • the incident side surface 18A of the laser beam LD is a "concave cylinder surface".
  • the two-dimensional scanning type laser beam projection apparatus shown in FIG. 2 has a focusing optical system 13 which causes the laser beam LD incident on the deflection angle variable magnification element 18 to be incident on the deflection angle magnification element in a converged state.
  • the incident side surface 18A of the laser beam LD is a concave cylinder surface
  • the emission side surface 18B is a flat surface. Then, the deflection center of the two-dimensionally deflected laser beam LD is located on the substantially cylinder axis of the concave cylinder surface 18A.
  • the two-dimensionally deflected laser beam LD is brought into the “one-directionally convergent state”, and enters the deflection angle variable magnification element 18.
  • the virtual condensing position at which the laser beam LD incident on the deflection angle variable magnification element 18 at a deflection angle of 0 converges in one direction is the “object-side focal position in the lateral direction” of the deflection angle magnification element. . Since the deflection angle variable magnification element 18 is a negative lens in the lateral direction, the “object side focal point in the lateral direction” exists on the exit side of the deflection angle magnification element 18 and is a “virtual focus”. Therefore, the deflected laser beam LB emitted from the deflection angle variable magnification element 18 becomes a "parallel beam”.
  • the “laser light source” includes the coupling lens 12 as a “collimator” that collimates the laser beam emitted from the LD 10.
  • the adjustment lens 13 is provided as a “condensing lens” that condenses the laser beam LF collimated by the collimating element in one direction.
  • the laser beam LA condensed in one direction by the adjusting lens 13 is two-dimensionally deflected by the deflection device 16A, and is incident on the concave cylinder surface 18A of the deflection angle variable magnification element 18.
  • the expansion of the deflection angle is performed not by the concave cylinder surface of the deflection angle variable magnification element but by refraction by the plane forming the emission surface 18B.
  • the function of “deflection angle expansion due to refraction” may be provided not only to this but also to the incident side surface of the deflection angle variable magnification element.
  • the incident side of the deflection angle variable magnification element 18 may be a "two-dimensional concave surface", and the concave surface may be provided with a "refractive function in both longitudinal and lateral directions”. In this way, the deflection angle of the deflected laser beam LD can be expanded not only in the lateral direction but also in the longitudinal direction.
  • FIG. 3 is a view for explaining an example of the entire configuration of an embodiment of a two-dimensional scanning laser beam projection apparatus.
  • the configuration of an optical system from the laser light source to the deflection angle variable magnification element is the same as that shown in FIG.
  • An optical system from the laser light source 10, the coupling lens 12, and the adjustment lens 13 to the deflection angle variable magnification element 18 is housed inside the envelope housing CS.
  • a feature of this embodiment is that the deflection angle variable magnification element 18 doubles as a beam emitting portion of the envelope housing CS of the apparatus. In this way, the deflection angle variable magnification element 18 can also function as the "dust-proof glass of the envelope housing CS", and the number of parts can be reduced to reduce the apparatus cost.
  • FIG. 4 is an explanatory view schematically showing only the main part of an embodiment of the laser radar device.
  • the "portion drawn below" in the figure is the two-dimensional scanning laser beam projection apparatus described with reference to FIG. 2, and the upper part in the figure indicates "light receiving means”.
  • the two-dimensional scanning type laser beam projection apparatus two-dimensionally deflects and scans the polarized laser beam LB and projects it onto a detection target (an object to be subjected to distance measurement).
  • the “light receiving means” is a means for receiving the reflected laser light LO diffused and reflected by the detection target onto which the two-dimensionally scanned deflected laser beam LB is projected.
  • the light receiving means has a light receiving element 20 and a focusing optical system 22 for focusing the reflected laser light LO onto the light receiving element 20.
  • the laser radar device also has control calculation means for controlling the blinking of the laser light source of the laser beam projection device and performing necessary calculations on the output of the light receiving element 20.
  • the laser light source is turned on, and the polarized laser beam LB is scanned two-dimensionally to be projected on the detection target, and the reflected laser light LO is received by the light receiving element 20.
  • the distance: DS is detected as cT / 2.
  • the distance to the detection target can be two-dimensionally measured.
  • the distance can be determined by emitting a phase-modulated laser beam from the laser light source and detecting a phase difference from the reflected laser beam LO received by the light receiving element 20. Since these ranging methods are already known, detailed description will be omitted.
  • two-dimensional distance measuring devices In the example shown in FIG. 4, it is a so-called “biaxial type” in which the reflected laser light LO is condensed on the light receiving element 20 by the condensing optical system 22 separate from the deflection angle variable magnification element 18.
  • the deflection angle variable magnification element 18 itself a "coaxial type” laser radar device that uses it as a focusing optical system.
  • the two-dimensional scanning laser beam projection apparatus of the present invention can be suitably used as a laser beam projection unit in these various laser radar apparatuses.
  • the expansion of the deflection angle by the deflection angle variable magnification element 18 is performed in the “lateral direction”.
  • the present invention is not limited to this, and the expansion of the deflection angle can be performed in "both the longitudinal and lateral directions”. That is, in the example described above, instead of the deflection angle variable magnification element 18, at least one of the incident side surface and the emission side surface is made a two-dimensional curved surface, and using two dimensional curved surface refraction, they are orthogonal to each other. It is possible to carry out "expansion of deflection angle" in two directions.
  • the surface on the incident side of the deflection angle variable magnification element 18 is a concave cylinder surface, but it may be replaced by a “two-dimensional concave surface”.
  • the two-dimensional concave surface may be a "concave spherical surface” or an "anamorphic concave surface” having different curvatures in directions orthogonal to each other. If an anamorphic concave surface is used, it is possible to set the enlargement factors of deflection angle enlargement differently in two directions orthogonal to each other.
  • the surface on the exit side of the deflection angle variable magnification element 18 is a plane, but the surface shape on the exit side is not limited to this, and may be a convex surface or a concave surface.
  • the “convex surface or concave surface” may also be a convex or concave cylinder surface, a convex spherical surface or a concave spherical surface with rotational symmetry of the optical axis, or an anamorphic convex surface or concave surface.
  • the laser light source is a laser that is collimated by the collimator element 12 as the coupling lens 12 that collimates the laser beam from the LD 10 together with the LD 10.
  • a condenser lens 13 as an adjustment lens for condensing the beam in at least one direction.
  • the laser beam LA focused by the focusing lens 13 is two-dimensionally deflected by the deflecting device 14 to be incident on the deflection angle variable magnification element 18.
  • the laser beam LD incident on the deflection angle varying element 18 at a deflection angle of 0 converges in one direction at a position where the “object side focal point in the lateral direction” of the deflection angle changing element 18 should be occupied.
  • the expansion concentric coefficient: CE is defined as follows. As shown in FIG. 5, the distance between the “point of origin of deflection” by the deflecting device 16A and the incident surface 18A of the deflection angle variable element 18 is “L”. Further, the curvature radius of the incident surface side 18A of the deflection angle variable magnification element 18 is set to "R ( ⁇ 0)”.
  • CE L / (-R).
  • the beam diameter of the laser beam whose deflection angle is expanded is likely to increase twice or more, and the resolution tends to be lowered when projected onto the detection target. Also, “angular distortion”, which indicates the degree of expansion of the laser beam whose deflection angle is expanded, tends to decrease at 0.8 or less, and the “degree of expansion” of the deflection angle decreases.
  • distance: L is “the distance between the origin of deflection by the deflection device and the incident surface of the deflection angle variable magnification element” described with reference to FIG.
  • distance: SL is the distance between the condensing lens (adjustment lens) 13 and the incident surface (the distance when the incident angle is 0).
  • Example 1 The deflection angle variable magnification element, the adjusting lens, their layout, and the enlargement concentric coefficient according to Example 1 are shown in Table 1.
  • the beam diameter of the laser beam whose deflection angle has been expanded is shown in Table 5 with respect to the ⁇ direction.
  • Example 2 The deflection angle variable magnification element, the adjusting lens, their layout, and the enlargement concentric coefficient according to Example 2 are shown in Table 6.
  • the beam diameter of the laser beam whose deflection angle has been expanded is shown in Table 10 with respect to the ⁇ direction.
  • Example 3 The deflection angle variable magnification element, the adjusting lens, their layout, and the enlargement concentric coefficient according to Example 3 are shown in Table 11.
  • the beam diameter of the laser beam whose deflection angle has been expanded is shown in Table 15 with respect to the ⁇ direction.
  • Example 4" The deflection angle variable magnification element, the adjusting lens, their layout, and the enlargement concentric coefficient according to Example 4 are shown in Table 16.
  • the beam diameter of the laser beam whose deflection angle has been expanded is shown in Table 20 with respect to the ⁇ direction.
  • Example 5 Deflection angle variable magnification elements, adjustment lenses, layouts thereof, and enlargement concentric coefficients according to Example 5 are shown in Table 21.
  • the deflection angle variable magnification element Since the deflection angle variable magnification element has no power in the ⁇ direction, the angular distortion in the ⁇ direction is zero.
  • the beam diameter of the laser beam whose deflection angle has been expanded is shown in Table 24 with respect to the ⁇ direction.
  • Example 6 Deflection angle variable magnification elements, adjustment lenses, layouts thereof, and enlargement concentric coefficients according to Example 6 are shown in Table 25.
  • the deflection angle variable magnification element Since the deflection angle variable magnification element has no power in the ⁇ direction, the angular distortion in the ⁇ direction is zero.
  • the beam diameters of the laser beams whose deflection angles are expanded are shown in Table 28 with respect to the ⁇ direction.
  • Example 7 Deflection angle variable magnification elements, adjustment lenses, layouts thereof, and enlargement concentric coefficients according to Example 7 are shown in Table 29.
  • the beam diameter of the laser beam whose deflection angle has been expanded is shown in Table 32 with respect to the ⁇ direction.
  • Example 8 Deflection angle variable magnification elements, adjustment lenses, layouts thereof, and enlargement concentric coefficients according to Example 8 are shown in Table 33.
  • the deflection angle variable magnification element Since the deflection angle variable magnification element has no power in the ⁇ direction, the angular distortion in the ⁇ direction is zero.
  • the beam diameter of the laser beam whose deflection angle has been expanded is shown in Table 36 with respect to the ⁇ direction.
  • Example 9 The deflection angle variable magnification element, the adjusting lens, their layouts, and the enlargement concentric coefficient according to Example 9 are shown in Table 37.
  • the deflection angle variable magnification element Since the deflection angle variable magnification element has no power in the ⁇ direction, the angular distortion in the ⁇ direction is zero.
  • the beam diameter of the laser beam whose deflection angle has been expanded is shown in Table 40 with respect to the ⁇ direction.
  • Example 10 The deflection angle variable magnification element, the adjusting lens, their layout, and the enlargement concentric coefficient according to Example 10 are shown in Table 41.
  • Deflection angle The data of the deflection angle in Example 10 is shown below. “Data of expansion of deflection angle of laser beam in ⁇ direction” is shown in Table 42.
  • the deflection angle variable magnification element Since the deflection angle variable magnification element has no power in the ⁇ direction, the angular distortion in the ⁇ direction is zero.
  • the beam diameter of the laser beam whose deflection angle has been expanded is shown in Table 44 with respect to the ⁇ direction.
  • the deflection angle by the deflection device ⁇ 30 degrees could be “expanded to ⁇ 60 degrees or more”. Also, the variation of the beam diameter of the laser beam whose deflection angle is expanded does not exceed twice.
  • Embodiment 5 In each of the following embodiments, since the deflection angle variable magnification element 18 has no power in the ⁇ direction, the numerator and denominator of the fraction in the right side parenthesis in the definition equation of the above angle distortion become equal. Is zero. Incidentally, the deflection angle: ⁇ 0 is as follows in Examples 1 to 10. Example 1 (1.78), Example 2 (1.71), Example 3 (1.94), Example 4 (1.82), Example 5 (1.78), Example 6 (1. 71), Example 7 (1.94), Example 8 (1.82), Example 9 (1.67), Example 10 (1.97).
  • ⁇ 1 is as follows in Examples 1 to 10.
  • the angular distortion in the ⁇ direction shown in each embodiment can be obtained according to the above definition formula.
  • FIG. 6 is a diagram for explaining another embodiment of the laser radar device, and illustrates the main parts in an explanatory manner.
  • the laser radar device of this embodiment is a "coaxial type” (hereinafter also referred to as “coaxial system”).
  • reference numeral 10 denotes the “semiconductor laser ("LD 10 ")" as before.
  • the reference numeral 12 denotes a “collimator lens”
  • the reference numeral 13B denotes a “adjustment lens”
  • the reference numeral 40 denotes a "mirror for turning back the light path for illumination”.
  • the collimator lens 12 is called “coupling lens 12” in the description of the embodiment of FIGS. 1 and 2 to 5.
  • the reference numeral 14 denotes a "deflection device”
  • the reference numeral 18 denotes a deflection angle scaling element as a “deflection angle reduction element which is a deflection angle scaling element”.
  • Reference numeral 30 is a "light receiving element”
  • reference numeral 32 is a “condenser lens”
  • reference numeral 34 is a “light receiving lens”
  • reference numeral 40A is a "mirror for returning the light path for receiving light”
  • reference numeral 400 is a "control operation unit”. Show.
  • the laser light source 10 emits light
  • the emitted laser light is collimated by the collimator lens 12 and enters the adjustment lens 13B.
  • the adjustment lens 13B has a positive refractive power and gives a “converging tendency” to the laser beam incident from the collimator lens 12 side.
  • the laser beam which is given the tendency to converge is bent in its optical path by the mirror 40 and is incident on the deflecting device 14.
  • the deflection device 14 is a known deflector configured as a two-axis MEMS, and "performs two-dimensional motion of the mirror portion" to deflect the reflected light two-dimensionally.
  • the two-dimensional peristalsis of the mirror unit is a peristalsis with a direction perpendicular to the drawing as a peristalsis axis and a peristalsis with a direction parallel to the drawing as a peristalsis axis, and these peristalsis is superimposed.
  • the deflecting device 14 is similar to the deflecting device in the embodiment described above with reference to FIG. Therefore, the description uses the previous explanation regarding FIG. 1 (b).
  • the laser beam two-dimensionally deflected by the deflecting device 14 oscillates in the “in a plane parallel to the drawing” of FIG. 6 and also oscillates in the “direction orthogonal to the drawing”.
  • the laser beam from the LD 10 is two-dimensionally deflected by the deflection device 14 and enters the deflection angle variable magnification element 18 and is emitted as the deflection laser beam SRL.
  • the deflection angle variable magnification element 18 has “positive refractive power”, and reduces the deflection angle of the deflection laser beam SRL in at least one direction with respect to the deflection angle by the deflection device 14 as described later.
  • the polarized laser beam SRL is irradiated on the object to be detected while being deflected two-dimensionally, and scans the object to be detected two-dimensionally. That is, in the embodiment shown in FIG. 6, the “two-dimensional scanning type laser beam projection apparatus” has the LD 10, the collimator lens 12, the adjusting lens 13B, the mirror 40, the deflecting device 14 and the deflection angle variable magnification element 18.
  • the laser beam reflected by the object to be detected becomes a returning laser beam BKL, and is incident on the deflection angle variable magnification element 18.
  • the distance between the object to be detected and the deflection angle varying element 18 is larger than the effective diameter of the deflection angle varying element 18. Therefore, the return laser beam BKL reflected by the object to be detected and incident on the deflection angle variable magnification element 18 is "parallel in the same direction" as the deflection laser beam SRL in a substantially parallel beam state.
  • the return laser beam BKL incident on the deflection angle variable magnification element 18 is given a convergence tendency by the positive refractive power of the deflection angle magnification element 18, and is incident on the deflection device 14 and reflected.
  • the return laser beam BKL reflected by the deflecting device 14 is bent in the optical path by the mirror 40A and is incident on the light receiving lens 34.
  • the return laser beam BKL is converged by the deflection angle variable magnification element 18, it converges in front of the light receiving lens 34 on the light path and then diverges and enters the light receiving lens 34.
  • the return laser beam BKL transmitted through the light receiving lens 34 is condensed toward the light receiving element 30 via the condensing lens 32 and received by the light receiving element 30. That is, the deflection angle variable magnification element 18, the deflecting device 14, the mirror 40A, the light receiving lens 34, the condensing lens 32, and the light receiving element 30 constitute "a detection means for detecting the return laser beam BKL reflected by the object to be detected". Do. That is, of the optical system for projecting the deflection laser beam SRL, the deflection angle variable magnification element 18 and the part of the deflecting device 14 are shared as a part of the optical system for detection.
  • the light receiving element 30 When receiving the return laser beam BKL, the light receiving element 30 sends a light reception signal (amplified by an appropriate amplification factor) to the control operation unit 400.
  • the main part of the control calculation unit 400 is constituted by a CPU, a microcomputer and the like, and controls each unit of the “laser radar device” shown in FIG. 6 to calculate the distance to the detection target. That is, the control operation unit 40 causes the LD 10 to emit light in pulses, determines the time: 2T from the moment of pulse light emission to the moment of receiving the light reception signal, and calculates the distance: cT using the light speed: c.
  • control calculation unit 40 constitutes "control calculation means”.
  • the laser radar device shown in FIG. 6 has the above-mentioned "two-dimensional scanning laser beam projection device", “detection means” and “control operation means”.
  • the light flux form of the deflection laser beam SRL emitted from the deflection angle variable magnification element 18 can be “parallel light flux”, “convergent light flux”, or “divergent light flux”. Assuming that the beam form of the polarized laser beam SRL is “parallel beam”, the beam diameter can be regarded as substantially unchanged on the way to the detection target, and the light intensity can also be regarded as substantially unchanged.
  • parallel light flux does not mean that this is “strict parallel light flux”.
  • degree of parallelism In the implementation state of the laser beam projection apparatus or the laser radar apparatus, it is sufficient to have the degree of parallelism to be recognized as substantially parallel light flux.
  • Such a luminous flux form is called “parallel luminous flux”.
  • the deflected laser beam SRL is a “converged beam”, for example, the deflected laser beam SRL can be condensed as a small diameter spot on a detection target at a specific position from the laser radar device, and the three-dimensional surface shape of the detection target Can be measured with high accuracy.
  • the deflection laser beam SRL is a "divergent beam”
  • the beam diameter of the deflection laser beam SRL irradiated to the object to be detected can be enlarged, and the measurement accuracy can be stabilized.
  • the adjusting lens 13B has a positive refractive power, and the laser beam collimated by the collimator lens 12 is given a "focusing tendency" by the adjusting lens 13B. Then, the laser beam is bent in the optical path by the irradiation optical path bending mirror 16B and is incident on the deflecting device 14, and is two-dimensionally deflected by the deflecting device 14, and the deflected laser beam is converted into a collimated beam It is converted into a beam SRL and emitted. That is, the convergence tendency given to the laser beam by the adjusting lens 13B is canceled by the deflection angle variable magnification element 18 to be collimated.
  • the X direction is "a direction orthogonal to the drawing” and corresponds to what is called “lateral direction or horizontal direction” in the above description.
  • the Y direction corresponds to the "vertical direction in the drawing", which is called the “vertical direction or the vertical direction” in the above description.
  • the Z direction is a direction parallel to the optical axis AX of the deflection angle variable magnification element 18.
  • the optical axis of the adjustment lens 13B is also parallel to the Z direction.
  • the convergence tendency given to the laser beam by the adjustment lens 13B and the recovery to a parallel beam by the deflection angle variable magnification element 18 can be various combinations.
  • the adjusting lens 13B is a positive lens rotationally symmetric (hereinafter referred to as “axially symmetric”) around the optical axis, and gives the laser beam a convergence tendency in the X direction and the Y direction.
  • the deflection angle variable magnification element 18 is also an “axisymmetric positive lens”, and the arrangement is determined such that the focal position on the object side is the point PF in FIG.
  • the adjusting lens 13B is displaced in the Z direction, the "focusing position at which the laser beam having a converging tendency is focused" moves in the optical axis direction.
  • the adjusting lens 13B is positionally adjusted in the optical axis direction so that the light collecting position "matches with the point PF".
  • the laser beam incident on the adjustment lens 13B from the side of the collimator lens 12 is a "parallel beam", so the "focus position” is the image-side focal position of the adjustment lens 13B.
  • the optical conditions for emitting “a collimated laser beam that has been converted to a collimated light beam” from the deflection angle variable magnification element 18 are the image side focal position of the adjustment lens 13 B and the deflection angle magnification element 18 in the example being described.
  • the method of realizing the collimated deflected laser beam is not limited to the method described above.
  • the adjusting lens 13B is set as "a lens having a positive refractive power only in the X (or Y) direction".
  • the collimated laser beam from the side of the collimating lens 12 is given a convergence tendency in the X (or Y) direction by the adjusting lens 13B.
  • the laser beam is not given a tendency to converge in the Y (or X) direction, and maintains a parallel light flux state.
  • the focusing position (image-side focal position) in the X (or Y) direction is made to coincide with the point PF.
  • the focal angle position in the X (or Y) direction on the object side is positioned at the point PF as "a lens having positive refractive power only in the X (or Y) direction" as well as the deflection angle variable magnification element 18.
  • the convergence tendency in the X (or Y) direction given by the adjusting lens 13B is recovered by the deflection angle variable magnification element 18, and a collimated laser beam SRL is obtained. That is, by adjusting the displacement of the adjusting lens 13B in the optical axis direction to adjust the incident state to the deflection angle variable magnification element 18, it is possible to make the deflection laser beam SRL in a parallel light flux shape.
  • both the adjusting lens 14C and the light receiving lens 34A are "negative lenses".
  • the laser beam collimated by the collimating lens 12 is given a "divergent tendency" by the adjusting lens 14C.
  • the laser beam is bent in its optical path by the mirror 40 and enters the deflecting device 14, is two-dimensionally deflected by the deflecting device 14, and is converted into “collimated laser beam SRL converted by the deflection angle variable element 18. Converted and injected. That is, the diverging tendency given to the laser beam by the adjusting lens 14C is canceled by the deflection angle varying element 18 to be collimated.
  • the adjusting lens 13 ⁇ / b> C is an “axisymmetric negative lens” and gives the laser beam “a divergence tendency” in the X direction and the Y direction.
  • the deflection angle variable magnification element 18 is an “axisymmetric positive lens”, and the arrangement is determined such that the focal position on the object side thereof is the point PF1 in FIG.
  • the adjusting lens 14C is displaced in the Z direction, the “origin of the diverging laser beam divergent” moves in the optical axis direction. Therefore, by adjusting the position of the adjusting lens 14C in the optical axis direction, the point of origin of the divergence "is made to coincide with the point PF1". That is, in the example of FIG.
  • the object-side focal position of the adjusting lens 14C and the object-side focal position of the deflection angle variable magnification element 200 are made to coincide at the point “PF1” in FIG. In this way, the deflection angle variable magnification element 18 emits the collimated laser beam SRL.
  • the light receiving lens 34A is also made axisymmetric negative lens.
  • the return laser beam BKL is incident on the deflection angle variable magnification element 18, it is given a convergence tendency by the action of the deflection angle magnification change element 18, and is incident on the deflection device 14 and reflected.
  • the return laser beam BKL reflected by the deflecting device 14 is bent in the optical path by the light receiving path bending mirror 36 and is incident on the light receiving lens 34A.
  • the return laser beam BKL given a convergence tendency by the deflection angle variable magnification element 200 is incident on the light receiving lens 34A (with the image side focal point thereof as a focusing point) in the converged state. Accordingly, the return laser beam BKL incident on the light receiving lens 34A is collimated by the negative refractive power of the light receiving lens 34A, condensed toward the light receiving element 30 by the condensing lens 32, and received by the light receiving element 30. Be done.
  • the “positive refractive power combination” of the adjusting lens 13B and the deflection angle variable magnification element 18 used in the embodiment of FIG. 6 has been described above. That is, it is only necessary to "adjust the displacement of the adjusting lens 13B in the direction of the optical axis to adjust the incident state to the deflection angle variable magnification element 18 so that the polarized laser beam SRL has a parallel beam shape".
  • the lens positive cylinder lens
  • the adjusting lens 13B can be a "positive anamorphic lens” having “positive refractive powers different from each other" in the X direction and the Y direction.
  • the deflection angle variable magnification element 18 is also a “positive anamorphic lens” having “different positive refractive powers” in the X direction and the Y direction.
  • the shape of the adjustment lens 13B is appropriately set according to the shape of the deflection angle variable magnification element 200, and the displacement of the adjustment lens 13B in the optical axis direction is adjusted to obtain a deflection angle magnification element 18, a collimated beam of deflected laser beam SRL can be emitted.
  • the adjustment lens 13C is not limited to the above-described axially symmetric negative lens, but may be a "negative cylinder lens” having negative refractive power only in the X direction or only in the Y direction. It can also be a “negative anamorphic lens” having "different negative refractive powers” in the direction and the Y direction. In any of these cases, the form of the adjusting lens 13C is set to "negative cylinder lens or negative anamorphic lens" according to the shape of the deflection angle variable magnification element 18, and the adjusting lens 13C is directed in the optical axis direction.
  • the displacement adjustment is performed so that the object-side focal position of the adjustment lens 13C and the object-side focal position of the deflection angle variable magnification element 18 coincide with each other, and the deflection angle magnification change element 20 emits the parallel laser beam SRL. It can be done.
  • the deflection laser beam emitted from the deflection angle variable magnification element 18 is not limited to the parallel light flux, and may be a convergent light flux or a diverging light flux.
  • FIG. 8 shows a portion of the laser beam projection system in FIG.
  • an optical axis ray (a ray coincident with the optical axis of the collimator lens 12) from the collimator lens 12 to the deflection angle variable magnification element 18 is shown in a linearly expanded state.
  • both the adjustment lens 13B and the deflection angle variable magnification element 18 are axially symmetric positive lenses.
  • the adjustment lens 13B is displaceable in the optical axis direction (the Z direction in the drawing).
  • the case where the position of the adjusting lens 13B is at the “position indicated by a broken line” is referred to as a “reference position” of the adjusting lens 13B.
  • the adjustment lens 13 B When the adjustment lens 13 B is at the reference position, the image-side focal position thereof coincides with the object-side focal position PF of the deflection angle variable magnification element 18. Therefore, in this case, as described above, the deflected laser beam SRL emitted from the deflection angle variable magnification element 18 is in the form of a parallel light flux as indicated by the "broken line".
  • the adjustment lens 13B When the adjustment lens 13B is shifted to the side of the collimator lens 12 with respect to the reference position as shown by the solid line in FIG. 8A, the position PFC of the image-side focal point of the adjustment lens 13B is obtained by The object side focal position PF is shifted to the object side.
  • the laser beam from the collimating lens 12 is condensed at the position PFC of the image side focal point of the adjusting lens 13 B and then diverges and enters the deflection angle variable magnification element 18.
  • the position PFC of the image side focal point is located on the object side with respect to the position PF of the object side focal point of the deflection angle variable magnification element 200, and the deflection laser beam SRLC is emitted from the deflection angle magnification element 18 as a "converging light beam".
  • the position PFD of the image side focus of the adjusting lens 13B is changed to the deflection angle changing magnification. It is shifted to the image side from the position PF of the object side focal point of the element 18. In this case, since the position PFD of the image side focal point is on the image side of the focal position PF, the deflected laser beam SRLD emitted from the deflection angle variable magnification element 18 becomes a “divergent light beam”.
  • FIG. 9 shows a portion of the laser beam projection apparatus in FIG.
  • optical axis rays from the collimator lens 12 to the deflection angle variable magnification element 18 are shown in a linearly expanded state.
  • both the adjustment lens 13C and the deflection angle variable magnification element 18 are axially symmetric lenses.
  • the adjustment lens 13C is an “axisymmetric negative lens”.
  • the adjustment lens 13C is displaceable in the optical axis direction (the Z direction in the drawing).
  • the case where the position of the adjusting lens 13C is at the “position indicated by a broken line” is referred to as a “reference position” of the adjusting lens 13C.
  • the position of the object-side focal point thereof coincides with the position PF1 of the object-side focal point of the deflection angle variable magnification element 18. Therefore, in this case, as described above, the deflected laser beam SRL emitted from the deflection angle variable magnification element 18 is in the form of a parallel luminous flux as indicated by the “broken line”.
  • the position PFC of the object-side focal point of the adjustment lens 14C is determined by The object side focal point PF1 is shifted to the object side. Therefore, in this case, the laser beam from the collimator lens 12 becomes a "divergent luminous flux" starting from the position PFC of the object-side focal point of the adjustment lens 13C and enters the deflection angle variable magnification element 18. At this time, since the diverging start point PFC is closer to the object side than the focal point position PF, the deflected laser beam SRLC emitted from the deflection angle variable magnification element 18 has “convergence”.
  • the position PFD of the object-side focal point of the adjustment lens 13C is a deflection angle magnification It is shifted to the image side of the position PF1 of the object-side focal point of the element 18.
  • the laser beam from the collimating lens 12 enters the deflection angle variable magnification element 18 as a divergent light beam originating from the position PFD of the object side focal point of the adjustment lens 13C.
  • the deflected laser beam SRLD emitted from the deflection angle variable magnification element 20 becomes “divergent”.
  • the return laser beam BKL is in the parallel beam state when it is incident on the deflection angle variable magnification element 18 as described above. Therefore, as the "detection means" also in the cases of FIG. 8 and FIG. The same ones can be used.
  • the beam form of the deflected laser beam emitted from the deflection angle variable magnification element is a collimated beam or a convergent beam depending on the situation to be used when the laser radar apparatus is implemented. It can be determined as a design condition whether it is a divergent beam. In such a case, the "optical relationship" between the adjustment lenses 13B and 13C and the deflection angle variable magnification element 18 can be set in accordance with the light beam form of the deflection laser beam. By setting and fixing the optical arrangement of the laser beam projection apparatus so as to realize the optical relationship set in this way, it is possible to realize a collimated light beam or a desired "convergent light beam or divergent light beam” polarized laser beam. .
  • the control calculation unit 400 which is a control calculation unit, performs displacement of the adjusting lenses 13B and 13C in the optical axis direction. That is, the control calculation unit 400 has a "parallel movement mechanism" for displacing the adjustment lenses 13B and 13C in the optical axis direction, and has a function to "control the direction or movement amount" of the parallel movement.
  • the control calculation unit 400 has a "parallel movement mechanism" for displacing the adjustment lenses 13B and 13C in the optical axis direction, and has a function to "control the direction or movement amount" of the parallel movement.
  • the adjustment lenses 13B and 13C are displaced in order to match the position of the side focus.
  • the displacement of the adjusting lenses 13 B and 13 C on the optical axis allows the light beam form of the deflection laser beam emitted from the deflection angle variable magnification element 18 to be It can be changed into parallel light flux (SRL), convergent light flux (SRLC), and divergent light flux (SRLD).
  • the “degree of convergence or divergence” can also be changed. That is, by adjusting the displacement of the adjustment lens in the optical axis direction, it is possible to change the form of the laser beam emitted from the deflection angle variable magnification element. Therefore, the control calculation unit 40 can have a function of adjusting the displacement of the adjustment lens so as to set the light beam form of the deflection laser beam emitted from the deflection angle variable magnification element to a desired form.
  • the adjustment may be performed by controlling the parallel movement mechanism by programming control by control means such as a CPU provided in the control calculation unit 40, or the parallel movement mechanism may be manually adjusted.
  • control means such as a CPU provided in the control calculation unit 40
  • the parallel movement mechanism may be manually adjusted.
  • the adjustment lenses 13B and 13C and the deflection angle variable magnification element 200 are all described as “axisymmetric lenses rotationally symmetric around the optical axis”. However, these lenses can also be used as "anamorphic lenses” such as cylinder lenses.
  • FIG. 10 shows, for example, a state in which the state of “change of the diameter of the luminous flux of the laser luminous flux” in the XZ plane in the above description is virtually linearly expanded in the optical path from the laser light source 10 to the deflection angle variable magnification element 18C.
  • the adjusting lens 13B and the deflection angle variable magnification element 18C are both "cylinder lenses having no refractive power in the XZ plane".
  • the beam diameter of the laser beam emitted from the laser light source 10 and collimated by the collimator lens 12 does not change in the "XZ plane" as shown in FIG.
  • the light enters the magnification changing element 18C. Since the deflection angle variable magnification element 18C also "does not have refractive power in the XZ plane", the polarized laser beam SRL emitted from the deflection angle magnification element 18C is in a parallel state in which a collimated state is maintained by the collimator lens 12 It is.
  • the sectional shape of the adjusting lens 13B in the direction (in the YZ plane) orthogonal to the drawing of FIG. 10 is also shown in FIG. 7 as being the “cross sectional shape of a positive lens” like the adjusting lens 13B of FIG. It can also be a "cross-sectional shape of a negative lens” such as the adjustment lens 13C. Therefore, in the YZ plane, the displacement start point (the above-described positions PFC and PFD) in the YZ plane of the “laser beam toward the deflection angle variable magnification element 18C” can be displaced by the displacement of the adjustment lens 13B. At this time, the beam diameter of the laser beam “in the XZ plane” does not change. Therefore, by adjusting the displacement of the adjustment lens 13B, it is possible to adjust only the "form of light in the YZ plane" of the deflected laser beam emitted from the deflection angle variable magnification element 20C.
  • the “two-dimensional scanning laser beam projection apparatus” in FIG. 6 includes the “laser light source” including the LD 10, the collimate lens 12, and the adjusting lens 13B, the irradiation path bending mirror 16B, and the deflecting device 14 And a deflection angle variable magnification element 18.
  • the mirror 40 can be omitted depending on the layout of the optical system.
  • the mirror 40A can also be omitted depending on the layout of the optical system.
  • the deflection angle variable magnification element 18 may be an axially symmetric positive lens or an anamorphic positive lens having different refractive powers in the X and Y directions.
  • the deflection angle variable magnification element 18 has a function of “reducing the deflection angle in at least one of the X direction and the Y direction”.
  • a plane including the optical axis AX of the deflection angle variable magnification element 18 and parallel to the Y direction (called the “YZ plane” in the above description) is called the “ ⁇ plane”.
  • is the maximum deflection angle (hereinafter referred to as the “maximum deflection angle” in the ⁇ plane) at which the deflecting device 14 deflects the “laser beam directed to the deflection angle variable element 18” in the ⁇ plane.
  • a light beam that coincides with the optical axis of the collimator lens 12 is called a "central light beam".
  • the "deflection angle” is the angle between the deflected central ray and the optical axis of the deflection angle variable magnification element.
  • the central ray of the deflection laser beam SRL emitted from the deflection angle magnification element 200 is the optical axis AX.
  • the angle made with respect to: ⁇ D ⁇ is called “the maximum scanning deflection angle in the Y direction”.
  • the fact that the deflection angle variable magnification element 18 has "a function to reduce the deflection angle in the Y direction” means that the maximum scanning deflection angle: ⁇ D ⁇ is smaller than the maximum deflection angle: ⁇ in the ⁇ plane ( ⁇ D ⁇ ⁇ Means that).
  • Angle: ⁇ D ⁇ When considering ⁇ ⁇ as positive or negative, it is “0 ⁇
  • the deflection angle in the positive direction of Y in the ⁇ plane” by the deflection device 14 is “ ⁇ Y (0 ⁇ ⁇ Y ⁇ ⁇ )”.
  • the scanning deflection angle with respect to the deflection angle: ⁇ Y (the positive angle that the deflection laser beam emitted from the deflection angle variable magnification element 200 makes with the optical axis AX in the ⁇ plane) is “ ⁇ y (0 ⁇ ⁇ y ⁇ ⁇ D ⁇ ) "
  • FIG. 6 shows the state of deflection in the “ ⁇ plane” as described above, but the “reduced concentric coefficient in the ⁇ plane” is defined as follows.
  • the "incident side" of the deflection angle variable magnification element 18 is referred to as an entrance surface 18A, and the exit side is referred to as an exit surface 18B.
  • the portion of the lens in the lens is called "central ray in the lens in the .alpha.
  • an extension line ETL extending toward the deflecting device 14 in the ⁇ plane is “intersecting with the optical axis AX of the deflection angle variable magnification element 18 at the intersection position Q ⁇ ”. Further, the in-lens central ray PL intersects the exit surface 18B of the deflection angle variable magnification element 18 at the intersection position q ⁇ .
  • a component in the direction of the optical axis AX of "the distance between the intersection points Q ⁇ and q ⁇ " in the ⁇ plane is "A ⁇ " as shown in the figure.
  • the exit surface 18B of the deflection angle variable magnification element 18 has a radius of curvature: R ⁇ in the ⁇ plane. According to the definition of the radius of curvature in a normal lens surface, the radius of curvature is considered to be positive or negative.
  • the laser beam transmits the deflection angle variable magnification element 18 from the left side to the right side of the figure, so the right side of the figure is taken as the “positive direction”.
  • the center of curvature of the exit surface 18B is located to the left or "negative side” of the exit surface in the figure. Therefore, the radius of curvature: R ⁇ has "negative magnitude”.
  • the reduced concentric coefficient C ⁇ in the ⁇ plane is defined as follows.
  • ⁇ plane a plane including the optical axis AX of the deflection angle variable magnification element 18 and parallel to the X direction.
  • the maximum deflection angle by the deflecting device 14: ⁇ and the maximum scanning deflection angle in the X direction: ⁇ D ⁇ can be defined for the “ ⁇ plane” just as described above.
  • the deflection angle of X in the positive direction in the ⁇ plane ⁇ X (0 ⁇ ⁇ X ⁇ ⁇ ) (0 ⁇ ⁇ X ⁇ ⁇ )
  • the deflection angle the scanning deflection angle with respect to ⁇ X (the deflection laser beam emitted from the deflection angle variable element 18 is light in the ⁇ plane
  • a positive angle with respect to the axis AX): ⁇ x (0 ⁇ ⁇ x ⁇ ⁇ D ⁇ ) can be defined.
  • ⁇ X> ⁇ x in the case where reduction of the deflection angle is performed in the ⁇ plane, that is, in the X direction.
  • the reduction ratio (%) of the deflection angle in the X direction is defined by the following equation.
  • “Reduction ratio of deflection angle in X direction (%)” “ ⁇ 1 ⁇ ( ⁇ x / ⁇ X) ⁇ ⁇ 100”
  • the deflection of the laser beam by the deflection device 14 and the deflection angle varying element 18 is symmetrical with respect to the optical axis AX also in the ⁇ plane. That is, the deflection angle: ⁇ X described above changes in the range of ⁇ ⁇ , and the scanning deflection angle: ⁇ x changes in the range of ⁇ ⁇ D ⁇ .
  • deflection angle variable magnification element 18 has the function of reducing the deflection angle in the X direction.
  • the maximum scanning deflection angle: ⁇ D ⁇ is smaller than the maximum deflection angle: ⁇ in the ⁇ plane ( ⁇ D ⁇ ⁇ ⁇ Means that).
  • the deflection device 14 deflects the light beam at a maximum deflection angle ⁇ with respect to the optical axis AX, and refracts the central ray of the laser beam refracted by the incident surface 18A of the deflection angle variable magnification element 20
  • the optical axis AX of the distance between the position where the extension line linearly extended to the 14 side intersects the optical axis AX, and the intersection position of the central ray in the lens and the exit surface 18B of the deflection angle variable magnification element 18 Let the distance component in the direction be A ⁇ .
  • the reduction concentric radius C ⁇ is given by “the radius of curvature in the ⁇ plane: R ⁇ ” of the exit surface 18 B of the deflection angle variable magnification element 18 and the above distance component: A ⁇ C ⁇
  • the two-dimensional scanning laser projector according to the present invention satisfies the following conditions with respect to the “direction in which the deflection angle is reduced” among the reduction concentric coefficients: C ⁇ and C ⁇ . (2 ⁇ ) 0.5 ⁇ C ⁇ ⁇ 1.8 (2 ⁇ ) 0.5 ⁇ C ⁇ ⁇ 1.8
  • the reduction concentric coefficient: C ⁇ is related to the reduction ratio by the deflection angle variable magnification element 20 in the ⁇ plane, and the reduction concentricity coefficient: the reduction ratio of the deflection angle in the Y direction (% ) Is large.
  • the "reduction rate of deflection angle in X direction (%)" is larger as the reduction concentric coefficient: C ⁇ is larger.
  • the “beam diameter” is the size of the irradiation portion (hereinafter also referred to as “irradiation spot”) when the deflection laser beam SRL is irradiated in a spot shape on the ranging detection target.
  • irradiation spot the irradiation portion
  • Deterioration of the beam diameter is caused by “coma aberration” which is an off-axis aberration of the deflection angle variable magnification element according to the deflection angle.
  • the “beam diameter” collapses where the deflection angle is large, and the measurement accuracy is degraded in the portion where the deflection angle is large.
  • the upper limit of the reduced concentric coefficient: C ⁇ , C ⁇ relates to the angular distortion
  • the lower limit relates to the beam diameter of the polarized laser beam, ie to the off-axis aberration. If the reduction concentric coefficients: C ⁇ and C ⁇ exceed the upper limits of the above conditions (2 ⁇ ) and (2 ⁇ ), the maximum value of the angular distortion tends to exceed “ ⁇ 20%”, and the distortion of the scanning locus becomes noticeable.
  • the above conditions (2 ⁇ ) and (2 ⁇ ) are general conditions, and the appropriate ranges of the upper and lower limit values of the conditions (2 ⁇ ) and (2 ⁇ ) are also the above depending on the “material and lens shape” of the deflection angle variable magnification element. Varies within the range.
  • the lower limit value of the reduction concentric coefficient is the condition (2 ⁇ ) It is preferable that the value is larger than the lower limit value of (2 ⁇ ) (for example, about 0.6).
  • the upper limit value of the reduction concentric coefficient is smaller than the upper limit values of the conditions (2 ⁇ ) and (2 ⁇ ) (for example, 1. 5) is good.
  • C ⁇ and C ⁇ are defined in exactly the same manner as described above in the various lens configurations permitted for the adjustment lenses 13B and 13A and the deflection angle variable magnification elements 18 and 18C described above. Also in the case of these lens forms, the above conditions (2 ⁇ ) and (2 ⁇ ) are satisfied in the direction in which the deflection angle is reduced.
  • the combination of the adjustment lens and the form (axisymmetric shape, cylinder shape, anamorphic lens, etc.) of the deflection angle variable magnification element has been described above.
  • the shape of the deflection angle variable magnification element is adjusted according to the form of the adjustment lens, the displacement of the adjustment lens is adjusted in the direction of the optical axis, and the deflection angle magnification change element A combination is allowed that allows "injection”.
  • the conditions (2 ⁇ ) and (2 ⁇ ) on the reduction concentric coefficients: C ⁇ and C ⁇ are imposed on the reduction concentric coefficients: C ⁇ and C ⁇ , off-axis aberration and angular distortion can be within the allowable range. Therefore, the beam shape of the deflected laser beam varies according to the deflection angle, but the variation of the beam diameter accompanying this variation is within the allowable range.
  • the reduced concentric coefficients described above: C ⁇ and C ⁇ are collectively referred to as a reduced concentric coefficient: CR, and C ⁇ and C ⁇ in the direction in which the deflection angle is reduced.
  • the conditions (2 ⁇ ) and (2 ⁇ ) described above are the conditions for the direction in which the deflection angle is reduced: (2) 0.5 ⁇ CR ⁇ 1.8 It can be done.
  • Examples 11 to 19 are specific examples in which both the adjusting lens and the deflection angle variable magnification element are positive lenses to obtain a parallel beam-like polarized laser beam.
  • the laser light source used as a laser light source has an operating wavelength of 870 nm.
  • data on the adjustment lens and the deflection angle variable magnification element and the reduction concentric coefficient are listed.
  • the distance L represents “the distance between the deflecting device and the incident side surface of the deflection angle variable element” along the optical axis of the deflection angle variable element
  • the distance SL represents "the emission of the adjusting lens
  • the distance from the side surface to the incident surface of the deflection angle variable magnification element when the deflection angle is 0 is represented.
  • the refractive index is for the used wavelength, and all the lenses are made (by SCHOTT).
  • the maximum deflection angle by the deflection device is ⁇ 30 degrees in the ⁇ plane and the ⁇ plane.
  • Example 11 The deflection angle variable magnification element, the adjusting lens, their layouts, and the reduction concentric coefficient according to Example 11 are shown in Table 45.
  • Example 11 the deflection angle variable magnification elements are axisymmetric, and the reduction concentric coefficients: C ⁇ and C ⁇ are equal to one another.
  • the deflection angles by the deflection apparatus in Example 11 and the scanning deflection angles by the deflection angle variable magnification element are shown in Table 46. These are in the above-mentioned ⁇ plane and ⁇ plane, and the unit is “degree”.
  • deflection angle variable magnification element Since the deflection angle variable magnification element is axisymmetric, these angles in the ⁇ plane and ⁇ plane are substantially equal, and the “reduction rate of deflection angle” is “the maximum deflection angle ⁇ 30 degrees in the ⁇ plane” 51.2% “and substantially equal in the beta plane.
  • the angular distortion (abbreviated as “ANDT” in the following table. The unit is “%") is shown in Table 47. The values in the ⁇ plane and in the ⁇ plane are equal.
  • Table 48 shows the relationship between the “deflection angle” and the beam diameter of the deflected laser beam SRL.
  • the values in the ⁇ plane and in the ⁇ plane are equal.
  • "beam diameter” is a value obtained from a spot diagram at "a position of 3 m" from the exit surface of the deflection angle variable magnification element.
  • the maximum value of the angular distortion is also as small as -11.1, the distortion of the scanning locus is small, and the distortion of the acquired three-dimensional image of the detection object is less noticeable.
  • the maximum value of the beam diameter is also as small as 8.8 mm, and the resolving power is good.
  • Example 12 The deflection angle variable magnification element, the adjusting lens, their layouts, and the reduction concentric coefficient according to Example 12 are shown in Table 49.
  • the deflection angle variable magnification elements are axisymmetric, and the reduction concentric coefficients: C ⁇ and C ⁇ are equal to one another.
  • the deflection angles by the deflection apparatus in Example 12 and the scanning deflection angles by the deflection angle variable magnification element are shown in Table 50 according to Table 46. Since the deflection angle variable magnification element is axisymmetric, these angles in the ⁇ plane and ⁇ plane are substantially equal, and the “reduction rate of deflection angle” is “the maximum deflection angle ⁇ 30 degrees in the ⁇ plane” 30.3% 'and substantially equal in the beta plane.
  • the angular distortion is shown in Table 51.
  • the values in the ⁇ plane and in the ⁇ plane are equal.
  • Table 52 shows the relationship between the “deflection angle” and the beam diameter of the deflected laser beam SRL. The values in the ⁇ plane and in the ⁇ plane are equal.
  • the maximum value of the angular distortion is also as small as -6.6%, the distortion of the scanning locus is small, and the distortion of the acquired three-dimensional image of the detection object is less noticeable. Also, the maximum value of the beam diameter is as small as 17.2 mm, and the resolving power is good.
  • Example 13 The deflection angle variable magnification element, the adjusting lens, their layouts, and the reduction concentric coefficient according to Example 13 are shown in Table 53.
  • the deflection angle variable magnification element is axisymmetric, and the reduction concentric coefficients: C ⁇ and C ⁇ are equal to one another.
  • the deflection angles by the deflection apparatus in Example 13 and the scanning deflection angles by the deflection angle variable magnification element are shown in Table 54 according to Table 46. Since the deflection angle variable magnification element is axisymmetric, these angles in the ⁇ plane and ⁇ plane are substantially equal, and the “reduction rate of deflection angle” is “the maximum deflection angle ⁇ 30 degrees in the ⁇ plane” 69.6% ”and substantially equal in the ⁇ plane.
  • the angular distortion is shown in Table 55.
  • the values in the ⁇ plane and in the ⁇ plane are equal.
  • Table 56 shows the relationship between the “deflection angle” and the beam diameter of the deflected laser beam SRL. The values in the ⁇ plane and in the ⁇ plane are equal.
  • the maximum value of the angular distortion is ⁇ 20% or less, the distortion of the scanning locus is small, and the distortion of the acquired three-dimensional image of the detection object is less noticeable.
  • the maximum value of the beam diameter is also as small as 9.7 mm, and the resolving power is good.
  • Example 14 The deflection angle variable magnification element, the adjusting lens, their layouts, and the reduction concentric coefficient according to Example 14 are shown in Table 57.
  • the incident surface of the deflection angle variable magnification element is a flat surface
  • the exit surface is a cylinder surface having an axis in the X direction. Therefore, the deflection angle is not reduced in the X direction. Therefore, among the reduced concentric coefficients, the one that should satisfy the condition is “C ⁇ ”.
  • the deflection angles by the deflection apparatus in Example 14 and the scanning deflection angles by the deflection angle variable magnification element are shown in Table 58.
  • the deflection angle variable magnification element 18 does not reduce the deflection angle in the X direction, and the reduction ratio of the deflection angle in the Y direction is 54.6% with respect to the maximum deflection angle: ⁇ 30 degrees.
  • the maximum value of the angular distortion in the Y direction is as small as ⁇ 12.2%. Therefore, the distortion of the scanning locus is small, and the distortion of the acquired three-dimensional image of the detection object is less noticeable. Also, the maximum value of the beam diameter is as small as 7.6 mm, and the resolving power is good.
  • Example 15 The deflection angle variable magnification element, the adjusting lens, their layouts, and the reduction concentric coefficient according to Example 15 are shown in Table 61.
  • the incident surface of the deflection angle variable magnification element is a flat surface
  • the exit surface is a cylinder surface having an axis in the X direction. Therefore, the deflection angle is not reduced in the X direction. Therefore, among the reduced concentric coefficients, the one that should satisfy the condition is “C ⁇ ”.
  • the incident surface of the adjustment lens 13B is also a cylinder surface having an axis in the X direction.
  • the deflection angles of the deflection apparatus in Example 15 and the scanning deflection angles of the deflection angle variable element are shown in Table 62.
  • the deflection angle variable magnification element 20 does not reduce the deflection angle in the X direction, and the reduction ratio of the deflection angle in the Y direction is 46.4% with respect to the maximum deflection angle: ⁇ 30 degrees.
  • the angular distortion in the ⁇ plane is shown in Table 63.
  • the maximum value of the angular distortion in the Y direction is as small as -9.9%. Therefore, the distortion of the scanning locus is small, and the distortion of the acquired three-dimensional image of the detection object is less noticeable.
  • the maximum value of the beam diameter is also as small as 7.9 mm, and the resolving power is good.
  • Example 16 The deflection angle variable magnification element, the adjusting lens, their layouts, and the reduction concentric coefficient according to Example 16 are shown in Table 65.
  • the incident surface of the deflection angle variable magnification element is a flat surface
  • the exit surface is a cylinder surface having an axis in the Y direction. Therefore, the deflection angle is not reduced in the Y direction. Therefore, among the reduced concentric coefficients, the one that should satisfy the condition is “C ⁇ ”.
  • the incident surface of the adjustment lens 13B is also a cylinder surface having an axis in the Y direction.
  • the deflection angles by the deflection apparatus in Example 16 and the scanning deflection angles by the deflection angle variable magnification element are shown in Table 66.
  • the deflection angle variable magnification element 20 does not reduce the deflection angle in the Y direction, and the reduction ratio of the deflection angle in the X direction is 52.9% with respect to the maximum deflection angle ⁇ 25.7 degrees.
  • Table 68 shows the relationship between the “deflection angle” in the ⁇ plane and the beam diameter of the deflected laser beam SRL.
  • the maximum value of the angular distortion in the X direction is as small as -9.9%. Therefore, the distortion of the scanning locus is small, and the distortion of the acquired three-dimensional image of the detection object is less noticeable. Also, the maximum value of the beam diameter is as small as 61.9 mm, and the resolving power is good.
  • Example 17 Deflection angle variable magnification elements, adjustment lenses, layouts thereof, and reduction concentric coefficients according to Example 17 are shown in Table 69.
  • the incident surface of the deflection angle variable magnification element is a flat surface
  • the exit surface is a cylinder surface having an axis in the Y direction. Therefore, the deflection angle is not reduced in the Y direction. Therefore, among the reduced concentric coefficients, the one that should satisfy the condition is “C ⁇ ”.
  • the incident surface of the adjustment lens 13B is also a cylinder surface having an axis in the X direction.
  • the deflection angles of the deflection apparatus in Example 17 and the scanning deflection angles of the deflection angle variable element 18 are shown in Table 70.
  • the deflection angle variable magnification element 18 does not reduce the deflection angle in the Y direction, and the reduction ratio of the deflection angle in the X direction is 37.9% with respect to the maximum deflection angle ⁇ 25.7 degrees.
  • the angular distortion in the ⁇ plane is shown in Table 71.
  • the maximum value of the angular distortion in the X direction is as small as -7.1%. Therefore, the distortion of the scanning locus is small, and the distortion of the acquired three-dimensional image of the detection object is less noticeable.
  • the maximum value of the beam diameter is as small as 35.9 mm, and the resolving power is good.
  • the "variation in beam diameter" is suppressed to be extremely small with respect to the change in deflection angle.
  • Example 18 Deflection angle variable magnification elements, adjustment lenses, layouts thereof, and reduction concentric coefficients according to Example 18 are shown in Table 73.
  • Example 18 the deflection angle variable magnification elements are axisymmetric, and the reduction concentric coefficients: C ⁇ and C ⁇ are equal to one another.
  • the adjustment lens 13B is also axially symmetric.
  • the deflection angles by the deflection apparatus in Example 18 and the scanning deflection angles by the deflection angle variable magnification element are shown in Table 74. Since the deflection angle variable magnification element is axisymmetric, these angles in the ⁇ plane and ⁇ plane are substantially equal, and the “reduction rate of deflection angle” is “the maximum deflection angle ⁇ 30 degrees in the ⁇ plane” 51.2% "and substantially equal in the beta plane.
  • the angular distortion is shown in Table 75.
  • the angular distortion has the same value in the ⁇ plane and ⁇ plane.
  • the maximum value of the angular distortion is as small as -9.6%. Therefore, the distortion of the scanning locus is small, and the distortion of the acquired three-dimensional image of the detection object is less noticeable. Further, the maximum value of the beam diameter is also as small as 9.0 mm, and the "variation of the beam diameter" is suppressed to be small with respect to the change of the deflection angle, and the resolving power is good.
  • Example 19 The deflection angle variable magnification element, the adjusting lens, their layouts, and the reduction concentric coefficient according to Example 19 are shown in Table 77.
  • the deflection angle variable magnification element is axisymmetric, and the reduction concentric coefficients: C ⁇ and C ⁇ are equal to each other.
  • the adjustment lens 13B is also axially symmetric.
  • the deflection angles of the deflection apparatus in Example 19 and the scanning deflection angles of the deflection angle variable element are shown in Table 78. Since the deflection angle variable magnification element is axisymmetric, these angles in the ⁇ plane and ⁇ plane are substantially equal, and the “reduction rate of deflection angle” is “the maximum deflection angle ⁇ 30 degrees in the ⁇ plane” 51.2% "and substantially equal in the beta plane.
  • the angular distortion is shown in Table 79.
  • the angular distortion has the same value in the ⁇ plane and ⁇ plane.
  • the maximum value of the angular distortion is extremely small at -1.9%. Therefore, distortion of the scanning locus is also extremely small, and distortion of the acquired three-dimensional image of the detection object is less noticeable. Further, the maximum value of the beam diameter is also as small as 5.1 mm, and the "variation of the beam diameter" is suppressed to be small with respect to the change of the deflection angle, and the resolving power is good. .
  • the convergence position of the laser beam converged by the adjustment lens is the position of the focal point on the object side of the deflection angle magnification element (FIG. 6). It is adjusted to coincide with the point PF), and in this state, the deflected laser beam SRL emitted from the deflection angle variable magnification element becomes a "parallel beam".
  • the positional relationship in this case is referred to as "reference positional relationship”.
  • the position of the adjusting lens in the optical axis direction is finely adjusted after “the positional relationship between the adjusting lens and the deflection angle variable magnification element” is determined so as to satisfy the reference positional relationship. That is, in this fine adjustment, the “beam diameter of the deflected laser beam” at a position 3 m from the exit surface of the deflection angle variable magnification element is made substantially equal at deflection angle: 0 degrees and the maximum deflection angle.
  • Example 11 Reduction rate in ⁇ plane: 51.2%, reduction rate in ⁇ plane: 49.6%
  • Example 12 Reduction rate in ⁇ plane: 30.3%, reduction rate in ⁇ plane: 29.0%
  • Example 13 Reduction rate in ⁇ plane: 69.6%, reduction rate in ⁇ plane: 67.5%
  • Example 18 Reduction rate in ⁇ plane: 51.2%, reduction rate in ⁇ plane: 49.8%
  • Example 19 Reduction rate in ⁇ plane: 51.2%, reduction rate in ⁇ plane: 49.8%
  • the “fine difference in the reduction ratio in the ⁇ and ⁇ planes” in these embodiments does not substantially affect the reduction concentric coefficient and the angular distortion shown above.
  • both the entrance surface and the exit surface of the deflection angle variable magnification element are spherical.
  • the incident surface is a concave spherical surface
  • the exit surface is a convex spherical surface
  • the radius of curvature is both negative.
  • RA the radius of curvature of the entrance surface
  • RB the radius of curvature of the exit surface
  • RA / RB is preferably 1.6 or more. In this case, if RA / RB is less than 1.6, the angular distortion tends to increase as the deflection angle increases.
  • the two-dimensional scanning type laser beam projectors of the above-described embodiments 11 to 19 basically obtain a collimated luminous flux polarized laser beam.
  • the light flux of the deflection laser beam emitted from the deflection angle variable magnification element can be in the form of a convergent light flux or in the form of a divergent light flux.
  • Example 1 when the data other than the adjusting lens is left as it is and only the curvature radius of the inclining surface of the adjusting lens is changed from 48.9 mm to 19.6 mm, the positive refraction of the adjusting lens Force increases.
  • the focal length of the deflection angle variable magnification element is “f”
  • the parallel light flux laser beam incident on the adjustment lens from the collimator lens is collected at a distance of 2 f on the object side of the deflection angle magnification element. Light up.
  • the two-dimensional scanning type laser beam projection apparatus can be combined with the detecting means and the control calculating means as shown in FIG. 6 to constitute a laser radar apparatus.
  • FIG. 11 illustrates the main part of still another embodiment of the present invention in an explanatory diagram.
  • reference numeral 10 denotes "LD”
  • reference numeral 12 denotes a “coupling lens”
  • reference numeral 13B denotes a “adjustment lens”
  • reference numeral 40 denotes a "mirror for returning the light path for irradiation”.
  • Reference numeral 14 is a "deflection device”
  • reference numeral 181 is a deflection angle variable magnification element as a deflection angle change element
  • reference numeral 30 is a "light receiving element”
  • reference numeral 32 is a “condenser lens”
  • reference numeral 34 is a light receiving lens.
  • reference numeral 40A on the light receiving side indicates “a mirror for turning back the light path for light reception”
  • reference numeral 400 indicates a "control operation unit as control operation means”.
  • the “light receiving element 30” is also referred to as “detection light receiving element 30”.
  • the X direction is the direction orthogonal to the drawing (corresponding to the above-mentioned "horizontal direction”"lateraldirection")
  • the Y direction is “parallel to the drawing and the vertical direction of the figure (the above” vertical direction “” horizontal direction "
  • Corresponding to The Z direction is "parallel to the drawing in the lateral direction of the drawing (direction parallel to the optical axes of the coupling lens 12 and the deflection angle variable element 181)".
  • the LD 10 emits high-power laser light.
  • the laser beam emitted from the LD 10 passes through the coupling lens 12 and the adjusting lens 13B, and is converted into a “convergent laser beam” under the optical action of these components. That is, the coupling lens 12 and the adjustment lens 13B constitute “a coupling optical system for converting the laser beam emitted from the LD 10 into a convergent laser beam”.
  • the LD 10, the coupling optical system 12, and the adjustment lens 13B constitute a "laser light source”.
  • the laser light flux which has been given a convergence tendency by the light flux conversion by the coupling optical system is incident on the mirror 40 and is reflected toward the deflecting device 14.
  • the deflection device 14 is configured as the “two-axis MEMS” described above, and two-dimensionally deflects the direction of the reflected light.
  • the deflected laser beam oscillates in the “Y direction” of FIG. 11 and also oscillates in the “X direction”. That is, two-dimensional deflection by the deflection device 14 is performed by peristalsis in the X direction and the Y direction.
  • the laser beam is incident on the deflection angle variable magnification element 201 while being two-dimensionally deflected by the deflection device 14 as described above.
  • the coupling lens 12 and the adjusting lens 13B, the deflecting device 14 and the deflection angle variable magnification element 181 shown in FIG. 11 constitute an “irradiation optical system”.
  • the laser beam two-dimensionally deflected by the deflecting device 14 is incident on the deflection angle variable magnification element 181 and becomes a deflected laser beam SRL by the optical action of the deflection angle magnification element 181.
  • the deflected laser beam SRL is a “laser beam for irradiating a detection target”.
  • the deflection laser beam SRL is also deflected in two directions of X and Y, and is irradiated on the “detection object”, and the detection object is two-dimensionally Scan to
  • the deflected laser beam SRL irradiated with the object to be detected is reflected by the object to be detected and becomes “return laser beam BKL”.
  • the laser radar device is used, for example, for “vehicle-mounted or monitoring camera”, but in a general use situation, “distance to a detection target” is larger than the size of the irradiation optical system. Therefore, the return laser beam BKL reflected by the object to be detected and incident on the deflection angle variable magnification element 201 is substantially parallel and in the same direction as the deflection laser beam SRL in the opposite direction.
  • the return laser beam BKL passes through the deflection angle variable magnification element 181, it enters the deflection device 14 and is reflected.
  • the return laser beam BKL reflected by the deflecting device 14 is then reflected by the mirror 40A and is incident on the light receiving lens 34.
  • the return laser beam BKL transmitted through the light receiving lens 34 is incident on the condensing lens 32, condensed toward the detection light receiving element 30, and received by the detection light receiving element 30.
  • the light receiving lens 34 and the condenser lens 32 constitute a "condenser lens system".
  • the detection light receiving element 30 When receiving the return laser beam BKL, the detection light receiving element 30 sends a light reception signal (amplified by an appropriate amplification factor) to the control calculation unit 40.
  • the control calculation unit 400 is configured by a CPU or a microcomputer.
  • the control calculation unit 400 causes the LD 10 to emit light in pulses, determines the time: 2T from the moment of light emission to the moment of receiving the light reception signal, and calculates the distance: cT using the speed of light c.
  • the acquisition of the time: 2T and the calculation of cT are repeated together with the deflection of the deflected laser beam SRL. In this way, the distance to the object to be detected and the three-dimensional shape of the object to be detected can be obtained.
  • the laser radar device of FIG. 11 includes the LD 10 and an “irradiation optical system” which two-dimensionally deflects the laser beam from the LD 10 to form a deflected laser beam SRL that scans a detection target.
  • the detection light receiving element 30 receives the return laser beam BKL reflected by the detection target, and the “light receiving optical system” guides the return laser light BKL to the detection light element 30.
  • a control operation means 40 is provided for determining the distance cT to the object to be detected by 2T from the time the laser beam is emitted until the light receiving element for detection 30 returns and the laser beam BKL is received.
  • the “optical system for irradiation” includes coupling optical systems 12 and 13B for converting the laser beam emitted from the LD 10 into a convergent laser beam, and a deflector 14 for two-dimensionally deflecting the laser beam subjected to the beam conversion. Have. Furthermore, it has a deflection angle variable magnification element 181 for emitting a two-dimensionally deflected laser beam as the deflected laser beam SRL.
  • the "light receiving optical system” uses the deflection angle variable magnification element 181 and the deflecting device 14 in the irradiating optical system as "shared with the irradiating optical system". Then, focusing lens systems 34 and 32 are provided which transmit the deflection angle variable magnification element 181 and condense the return laser beam BKL deflected by the deflection device 14 toward the light receiving element 30 for detection.
  • the irradiation optical system bends the light path of the convergent laser light flux which has been converted by the coupling optical system 12 and the adjusting lens 13B toward the deflecting device 14.
  • the optical path bending mirror 40 is provided.
  • the light receiving optical system also has a mirror 40A that bends the optical path of the return laser beam BKL through the deflection device 14 toward the condensing lens system 34, 32.
  • the mirror 40A is added.
  • the return laser beam BKL is incident on the deflection angle variable magnification element 181 in the “parallel beam state in the opposite direction in the same direction” as that of the deflection laser beam SRL.
  • the optical path of the return laser beam BKL reflected by the deflecting device 14 is parallel to the optical path of the laser beam directed from the mirror 40 A to the deflecting device 14.
  • the optical axis of the coupling optical system and the optical axis of the condensing lens system are laid out parallel to each other. Therefore, in this case, the mirror surface of the mirror 40A is parallel to the mirror surface of the mirror 40 as shown.
  • the “coupling optical system” includes the coupling lens 12 disposed on the LD 10 side, and the adjustment lens 13 B for imparting convergence to the laser beam transmitted through the coupling lens 12. .
  • the pulse light emission of the laser light source 10 is used to determine 2T from when the laser light is emitted from the LD 10 to when the light receiving element 30 for detection returns and receives the laser beam BKL is described.
  • a method of determining the time: 2T a method of using “frequency modulation of laser light emitted from a laser light source” and the like are known.
  • the determination of the time: 2T is not limited to the above-described method using pulsed light emission, but may be other known methods such as a method using frequency modulation.
  • the laser radar device shown in FIG. 11 will be described more specifically.
  • the laser beam emitted from the LD 10 is converted into a light flux by the coupling optical system, and the laser light flux converted into the light flux is two-dimensionally deflected by the deflection device 14. Then, the two-dimensionally deflected laser beam is converted into a deflected laser beam SRL by the deflection angle variable magnification element 181.
  • the combination of the function of “converting the laser beam emitted from the LD 10 by the coupling optical system” and the optical function of the deflection angle variable magnification element 181 enables deflection laser beams SRL of various light flux forms.
  • Various combinations of the coupling optical system and the deflection angle variable magnification element are possible.
  • the coupling lens 12 has a collimating action, and converts the laser beam from the LD 10 into a “parallel beam” parallel to the Z direction. That is, in this case, the coupling lens 12 is a "collimate lens".
  • the adjustment lens 13B is a "cylinder lens” and has "positive refractive power in the Y direction” in a plane parallel to the YZ plane, and does not have refractive power in the X direction. Therefore, the laser beam in the parallel beam state entering the adjustment lens 13B from the coupling lens 12 side converges in the Y direction, but maintains the parallel beam state in the X direction.
  • the deflection angle variable magnification element 181 is also a cylinder lens having “negative refractive power” only in the Y direction, and does not have refractive power in the X direction orthogonal to the drawing.
  • a laser beam incident on the deflection angle variable magnification element 181 “parallel to the Z direction” is considered.
  • the traveling direction of the light beam coincides with the “optical axis of the coupling optical system extended through the reflecting surface of the irradiation optical path bending mirror 16B or the deflecting device 14”.
  • Such a laser beam incident on the light source will be referred to as "optical axis beam”.
  • the optical axis luminous flux is “converging property in the Y direction and parallel luminous flux state in the X direction”.
  • the deflected laser beam When the laser beam incident on the deflection angle variable magnification element 181 is deflected by the deflecting device 14, the deflected laser beam is in a "convergent beam state" as viewed from the X direction and as a parallel beam state as viewed from the Y direction. It is. The convergence of the laser beam incident on the deflection angle variable magnification element 181 is reduced by the negative refractive power of the deflection angle magnification element 181. The deflection angle variable magnification element 181 does not have refracting power in the X direction, so the deflection laser beam SRL emitted from the deflection angle magnification element 181 is in a “parallel light flux state” when viewed from the Y direction.
  • FIG. 12 shows a state in which the laser beam LF emitted from the LD 10 enters the deflection angle variable magnification element 201 as an optical axis beam and emits from the deflection angle magnification element 181 as the polarized laser beam SRL.
  • the adjusting lens 13 B tends to converge the laser light LF collimated by the coupling lens 12 in the Y direction.
  • the convergent laser beam LF is converged in the Y direction and enters the deflection angle variable magnification element 181 through the irradiation optical path bending mirror 16 and the deflecting device 14.
  • the deflection angle variable magnification element 181 has negative refracting power in the Y direction, and a focal point (imaginary focal point) FP by the negative refracting power is on the "detection object side (right side in the figure)" of the deflection angle magnification element 181. To position. If the “optical axis light flux” incident on the deflection angle variable magnification element 181 converges on the virtual focal point FP, the deflection laser beam SRL emitted from the deflection angle magnification power element 181 becomes a parallel light flux.
  • the adjustment lens 13B is adjusted in displacement in the optical axis direction (Z direction), and "the convergence point of the optical axis luminous flux converged in the Y direction" with respect to the deflection angle variable magnification element 201.
  • the position of the convergence point may be adjusted to match the position of the virtual focal point FP of the deflection angle variable magnification element 181.
  • the optical axis light beam incident on the deflection angle variable magnification element 201 is convergent in the Y direction, is in the “parallel light flux state” in the X direction, and the deflection angle magnification element 181 is in the X direction. Have no refractive power.
  • the optical axis light flux is made to "conform to the position of the focal point FP" and is made incident on the deflection angle variable magnification element 18, the deflected laser beam emitted from the deflection angle variable magnification element 181
  • the SRL is in a parallel light flux state, that is, a "parallel light flux” in both the X direction and the Y direction.
  • Beam SRL various combinations of beam forms of deflection laser can be obtained by combining the beam conversion action of the coupling optical system and the optical action of the deflection angle variable magnification element. Beam SRL is possible.
  • a typical light flux form of a deflected laser beam consider “divergent light flux”, “convergent light flux”, and “parallel light flux”.
  • the divergent light beam-like polarized laser beam has a large irradiation area (hereinafter referred to as "irradiation spot area”) for irradiating the object to be detected.
  • the polarized laser beam becomes a divergent luminous flux after being condensed by the convergence, so that it is divergent when the distance from the laser radar device to the object to be detected is somewhat large.
  • detection is performed with a polarized laser beam of "small irradiation spot area" according to the size of the detection target By scanning the object two-dimensionally, accurate shape measurement is possible. In such a case, the use of a convergent beam-like polarized laser beam is effective.
  • the beam diameter of the deflection laser beam is in principle “constant regardless of the distance from the laser radar device”, and the “beam diameter change” is It is negligible. Therefore, if the polarized laser beam can be collimated, the irradiation spot area "does not substantially change even in consideration of the diffraction effect" regardless of the distance to the object to be detected, regardless of the distance to the object to be detected As a result, good detection is stably possible.
  • the divergence or convergence position of the divergent or convergent laser beam in at least one direction converted by the coupling optical system and the focal position of the deflection angle variable magnification element are And the positional relationship according to the form of the light beam.
  • the “beam form” is the “parallel beam shape or convergent beam shape or divergent beam shape” mentioned above.
  • a deflection laser beam is in the form of a parallel beam
  • the deflection laser beam is a parallel beam regardless of the deflection angle by the deflection device, and also includes the following cases. That is, the case where the deflected laser beam "can be convergent or divergent depending on the deflection angle by the deflector" is in a state close to a collimated beam whether it is convergent or divergent. .
  • the “maximum distance detectable by the laser radar device” is temporarily set to 100 m.
  • the beam spot diameter of the deflected laser beam emitted from the laser radar device may be a size that can realize an irradiation spot area of a size capable of effectively detecting “a detection target at a position of 100 m”.
  • a "divergent or convergent polarized laser beam” satisfying such conditions is also referred to as "parallel light flux”. That is, as described above, the luminous flux form is such that “the irradiation spot area at the maximum distance detectable by the laser radar device” can be made effective detection of the detection object in consideration of the diffraction effect. It is said that "parallel light flux".
  • the convergence position of the convergent optical axis light beam incident on the deflection angle variable magnification element 181 is made to coincide with the position of the virtual focal point FP of the deflection angle magnification element 181
  • the optical axis light beam becomes “a deflection laser beam collimated by the deflection angle variable magnification element 181”.
  • the convergence point position becomes The deflection angle changing element 181 is displaced more than the focal plane of the deflection angle changing element 181.
  • the light flux form of the polarized laser beam SRL is a parallel light flux state when viewed from the Y direction in FIG. 1A, but “convergence” is accompanied by an increase in the deflection angle when viewed from the X direction. It becomes stronger and deviates from the parallel luminous flux state.
  • the “degree of deviation from the parallel light flux” of the polarized laser beam in the state viewed from the X direction is in a range in which effective detection of the farthest object to be detected is possible. This can be realized by "design of the optical system for irradiation".
  • the deflection laser beam SRL becomes an optical axis light flux. Is somewhat divergent, but as the deflection angle increases, the divergence diminishes. Then, it becomes a parallel light flux at a certain deflection angle, and then turns into convergence.
  • the "displacement from parallel light flux" of the deflected laser beam within the deflection range is diverged. And convergence can be distributed. This also makes it possible to easily realize the above-mentioned "collimated beam-like deflection laser beam".
  • “converging position of optical axis luminous flux” is shifted to the left (deflection device 14 side) in FIG. 12 with respect to the position of the virtual focal point FP of the deflection angle variable magnification element 181.
  • a polarized laser beam SRL is obtained.
  • the adjustment lens 13B may be shifted to the coupling lens 12 side.
  • the “converging position of the optical axis light flux” in FIG. 12 is shifted to the right in the figure with respect to the position of the virtual focal point FP of the deflection angle variable magnification element 181, a deflection laser having a divergent flux shape A beam SRL is obtained.
  • the adjustment lens 13B may be shifted to the mirror 40 side.
  • the polarization laser beam SRL is adjusted by adjusting the positional relationship between the convergent position of the convergent laser beam in at least one direction, which is converted by the coupling optical system, and the focal position FP of the deflection angle variable magnification element. Can change the form of light flux. Also in the case of “convergent beam shape” or “divergent beam shape”, the convergence angle or the divergence angle may be changed along with the two-dimensional deflection of the polarized laser beam.
  • the optical axis light beam is a convergent light beam (or a divergent light beam) due to the deflection angle variable magnification element 181
  • the convergence angle (or the divergence angle) along with the deflection of the polarized laser beam ) May change to become divergent luminous flux (or condensed luminous flux).
  • divergent luminous flux or divergent luminous flux
  • the coupling optical system is configured of the coupling lens 12 and the adjusting lens 13B, and “the direction (Y direction) to which convergence is provided by the coupling optical system”
  • a deflection angle variable power element 181 having a negative refractive power is combined.
  • the combination of the coupling optical system and the deflection angle variable magnification element is not limited to the above.
  • the deflection angle variable magnification element 181 is set as “a negative lens rotationally symmetrical with respect to the optical axis”
  • the adjustment lens 13B is also set as a “positive lens rotationally symmetrical with respect to the optical axis”.
  • the positional relationship between the position of the image-side focal point of the adjustment lens 13B, which is a positive lens, and the position of the imaginary focal point of the deflection angle variable magnification element 181 with respect to the optical axis light beam is set as described above. Also in this case, it is possible to obtain a deflected laser beam SRL in the form of parallel light flux (or in the form of convergent light flux, divergent light flux). In this case, the adjusting lens 13B may be omitted, and the coupling lens 12 alone may obtain a convergent laser beam, which may be made incident on the deflection angle variable magnification element 181.
  • the laser beam SRL can be realized.
  • FIG. 13 shows another embodiment. In order to avoid complexity, those which are considered to have no risk of confusion are given the same reference numerals as in FIG.
  • the deflection angle variable power element 201 of negative refractive power in FIG. 11, “the deflection angle power element 202 having positive refractive power in one direction (Y direction)” Is used.
  • the “optical axis luminous flux convergent in the Y direction” toward the deflection angle variable magnification element 182 is made to converge at or near the “incident side focal point FPA” position of the deflection angle magnification element 182.
  • the light beam converges to the position of the focal point FPA and then diverges and enters the deflection angle variable magnification element 202, and the positive refracting power of the deflection angle magnification change element 182 reduces the divergence and parallel as shown by a broken line.
  • the light beam is emitted as a deflected laser beam SRL.
  • the laser light two-dimensionally deflected by the deflecting device 14 also converges in front of the deflection angle variable magnification element 182 and then becomes divergent and enters the deflection angle magnification element 182. Then, a “collimated beam-like polarized laser beam SRL” which is two-dimensionally deflected is obtained.
  • the deflection angle variable magnification element 182 has “positive refractive power” in one direction (Y direction) of two-dimensional deflection by the deflection device 14.
  • the coupling optical system includes the coupling lens 12 disposed on the LD 10 side, and the adjustment lens 13B that imparts “the convergence in the Y direction” to the laser beam transmitted through the coupling lens.
  • the “optical axis luminous flux convergent only in the Y direction” converted to luminous flux converges on the position of the focal point FPA or in the vicinity thereof, then changes to diverging state and enters the deflection angle variable magnification element 182 in the diverging state.
  • a two-dimensionally deflected collimated laser beam SRL is obtained.
  • the return laser beam BKL incident on the deflection angle variable magnification element 182 as “substantially parallel light flux” is diverged after being “converged in the Y direction" on the deflection device 14 side of the deflection angle magnification element 182 It enters the device 14. Also in the case shown in FIG. 13, if the optical axis luminous flux convergent in the Y direction is condensed on the near side (or the side of the deflection angle variable magnification element 20) of the focal point FPA of the deflection angle variable magnification element 182, It is possible to obtain a deflected laser beam SRL which converges (or diverges) in the Y direction.
  • the “light receiving optical system” will be described by taking the cases shown in FIGS. 11 and 13 as an example.
  • the light reception lens 34 is a "convex cylinder lens” and is in the Y direction. Only with positive refractive power.
  • the light receiving lens 34 returns the divergent return laser beam BKL to a parallel beam and makes it enter the condenser lens 32.
  • the light receiving element 30 for detection has its light receiving part positioned at the focal position of the condenser lens 32, and receives the return laser beam BKL condensed by the condenser lens 32.
  • the light receiving lens 34 may be a rotationally symmetric positive lens, and the return beam BKL may be collimated.
  • the lens diameter of the lens constituting the condensing lens system is also correspondingly You need to make it bigger. For this reason, the lens size of the light receiving lens 34 and the condenser lens 32 is increased.
  • the light reception lens 34 may be omitted, and the return light beam BKL may be condensed directly on the detection light receiving element 30 by the condenser lens 32.
  • the condenser lens 32 may be an "anamorphic positive lens".
  • the distance to the object to be detected is "sufficiently large compared to the size of the laser radar system”. Therefore, the return laser beam returning to the deflection angle variable element is parallel as described above. It is in a luminous state.
  • the composite imaging system including the condensing lens system constituting the light receiving optical system and the deflection angle variable magnification element is an infinite distance on the detection object side in the X direction and the Y direction
  • the light receiving optical system may be configured such that the light receiving surface position of the element is in a conjugate relationship.
  • the coupling optical system can be configured with a coupling lens alone, by configuring the coupling optical system with “a coupling lens having a collimating function and an adjusting lens”, the layout of the optical system can be realized. The degree of freedom is increased.
  • the "condenser lens system” can be configured by a single condenser lens, as described above, if a condenser lens system is configured by combining the condenser lens 32 and the light receiving lens 34, the optical system Freedom of layout is increased. In a specific implementation situation, of course, the positional relationship between the condensing lens systems 32 and 34 and the light receiving element 30 for detection is adjusted to realize “appropriate detection of the return laser beam BKL”.
  • the coupling optical system converts the laser beam emitted from the LD 10 into “a laser beam convergent in the Y direction”.
  • “light flux conversion” by the coupling optical system is not limited to such conversion. That is, the coupling optical system can also have a light flux conversion function of converting the laser light from the LD 10 into a diverging laser light flux.
  • FIG. 14 illustrates two embodiments of such a case.
  • the coupling optical system is constituted by the coupling lens 12 and the adjusting lens 14D.
  • the coupling lens 12 is a collimating lens, and collimates the laser light from the LD 10.
  • the adjustment lens 13D is a "negative cylinder lens” having refractive power only in the Y direction, and converts the laser beam collimated by the coupling lens 12 into "a laser beam divergent only in the Y direction". Do.
  • the deflection angle variable magnification element 183 is a “positive cylinder lens” having “refractive power only in the Y direction”, and emits a divergingly incident laser beam as a deflected laser beam bundle SRL.
  • the symbol FPB in FIG. 14A is the "focus on the incident side” of the deflection angle variable magnification element 183, and the adjustment lens 13D of the coupling optical system is the "start point of divergence" of the diverging laser beam by the beam conversion. Is positioned at or near the focal point FPB. By doing this, the deflection angle variable magnification element 183 emits the divergingly incident laser beam as a collimated luminous flux deflection laser beam SRL.
  • the light receiving lens 34A is a "cylinder lens having negative refractive power only in the Y direction".
  • the light receiving lens 34 ⁇ / b> A returns the return laser beam BKL, which is incident while converging in the Y direction, to a parallel beam and makes it enter the condensing lens 32.
  • the reference numeral Q1 in the figure is the convergence position of the return laser beam BKL incident on the light receiving lens 34A, and this point is the position of the exit-side focal point (virtual focal point) of the light receiving lens 34A.
  • the light receiving element 30 for detection has its light receiving part positioned at the focal position of the condenser lens 32, and receives the return laser beam BKL condensed by the condenser lens 32.
  • the coupling optical system is constituted by the coupling lens 12 and the adjusting lens 13E.
  • the coupling lens 12 has a collimating function, and collimates the laser beam from the LD 10.
  • the adjustment lens 13E is a cylinder lens having negative refractive power only in the Y direction, and converts the laser beam collimated by the coupling lens 12 into a divergent laser beam only in the Y direction.
  • the deflection angle variable magnification element 183 is a cylinder lens having “a positive refracting power only in the Y direction”, and emits the diverging laser beam flux incident thereon as a deflection laser beam flux SRL.
  • the laser beam diverging in the Y direction by the beam conversion has its “point of divergence” positioned at the focal point FPC on the incident side of the deflection angle variable magnification element 183 or in the vicinity thereof. By doing this, a deflection laser beam SRL in the form of a parallel luminous flux is emitted from the deflection angle variable magnification element 183.
  • the “negative refractive power” of the adjusting lens 13E is stronger than the “negative refractive power” of the adjusting lens 13D of FIG. 14 (a).
  • the divergence of the converted laser beam is stronger than that in the case of FIG. 14A, and the focal point FPC on the incident side of the deflection angle variable magnification element 183 is more than the position FPB in the case of FIG. Is also close to the deflection angle variable magnification element 183. That is, the deflection angle variable magnification elements 183 in FIGS. 14A and 14B are given the same reference numerals to avoid complexity, but the lens characteristics are different from each other.
  • the position Q2 at which the return laser beam BKL converges is located closer to the mirror 40A than the incident side lens surface of the light receiving lens 34B. . Therefore, the light receiving lens 34B is a "cylinder lens" having positive refractive power only in the Y direction, and the focal point on the incident side is made to coincide with the position Q2. By doing this, the return light beam BKL can be collimated by the light receiving lens 34B and can be made incident on the condenser lens 32. Also in the embodiment of FIG.
  • the deflection angle variable magnification element 183 is a "positive lens rotationally symmetric about the optical axis", and accordingly, the adjusting lens 13E and the light receiving lens 34B are also " It is needless to say that the lens can be made rotationally symmetric.
  • the beam diameter of the deflection laser beam SRL is drawn larger than that of the deflection angle variable magnification element 183, but this is for convenience of illustration and is different from the actual magnitude relationship. Also in the case of the embodiment described above with reference to FIG. 14, the origin of the divergence of the diverging laser light beam incident on the deflection angle variable magnification element 183 and the focal point FPB or FPC of the deflection angle magnification element 183 By adjusting the positional relationship in the above, it is possible to obtain a convergent beam-like or divergent beam-like polarized laser beam SRL.
  • FIG. 11 a modification of the embodiment shown in FIG. 11 will be described. Also in the respective drawings described below, in order to avoid complication, the same reference numerals as in FIG. 11 are used for those which are considered to have no possibility of confusion.
  • the embodiment shown in FIG. 15 is an example of a laser radar device in which the mirror 40B doubles as a "mirror for turning back the light path for light reception".
  • the mirror 40B which doubles as a mirror that folds the light path for light reception, reflects the divergent return laser beam BKL from the deflecting device 14 toward the LD 10.
  • the return laser beam BKL reflected to the laser light source 10 side is incident on the adjustment lens 13B1 to be converted into a parallel beam, and is incident on the optical path separation means 38A.
  • the optical path separation means 38A is a "semi-transparent mirror" and reflects the returning laser beam BKL downward (-Y direction) in the figure.
  • the reflected return laser beam BKL is incident on the condenser lens 32A, condensed toward the detection light receiving element 30, and received by the detection light reception element 30. That is, in this example, the adjustment lens 13B1 and the condenser lens 32A constitute a "condenser lens system".
  • the laser beam emitted from the LD 10 is collimated by the coupling lens 12, transmitted through the semitransparent mirror 38A, converted to a convergent laser beam by the adjusting lens 13B1, and converted to the deflecting device 14 by the mirror 40B. It is reflected towards.
  • the function of the adjustment lens 13B1 is the same as that of the adjustment lens 13B shown in FIG. 11 with respect to the laser beam emitted from the LD 10.
  • the adjusting lens 13B1 also performs the function of the light receiving lens 34 shown in FIG. 11 for the return laser beam BKL, in order to efficiently take in the return laser beam BKL whose beam diameter is enlarged.
  • the lens size is about the same as the "light receiving lens 34".
  • FIG. 16 is a view showing another embodiment of the laser radar device. This embodiment is a modification of the embodiment shown in FIG. 15. In order to avoid complexity, the symbols common to those in FIG. 15 are used for those considered to have no possibility of confusion.
  • the apparatus configuration shown in FIG. 16A differs from the embodiment of FIG. 15 in the optical path separation means 38B.
  • the optical path separating means 38B is an optical element having a transmitting portion for transmitting the laser light from the LD 10 side, and a "reflecting portion for reflecting the returning laser beam" around the transmitting portion.
  • FIG. 16 (b) shows an explanatory view of the optical path separating means 38 B.
  • the optical path separation means 38B is divided into two parts. That is, the “transmission part” indicated by reference numeral 38 a is a part that transmits the laser light from the LD 10 side (which is collimated by the coupling lens 12).
  • the portion indicated by reference numeral 38b is a "reflecting portion", which reflects the returning laser beam BKL.
  • the transmitting portion 38 a is formed to have a minimum size necessary to transmit the laser light from the laser light source side without excess or deficiency.
  • the reflecting portion 38 b is the “whole surface excluding the transmitting portion 38 a” of the optical path separating means 38 B. Therefore, as shown in FIG. 16B, the return laser beam BKL incident on the optical path separation means 38B reflects the luminous flux portion incident on the portion (reflection portion 38b) other than the transmission portion 38a.
  • the optical path separation means 38B has, for example, formed a “reflection film made of a metal thin film etc.” on one side of the parallel flat transparent glass (the side on which the return laser beam BKL is incident) excluding the transmission part 38a. It can be configured as a thing. Alternatively, a hole may be bored in a flat metal plate to form the transmitting portion 38a, and one side of the flat metal plate (the side on which the return laser beam BKL is incident) may be mirror-finished. In the latter case, the transmission part 38b is a "hole”, but in this case it is also referred to as a "transmission part".
  • the mirror 40B for turning back the light path for irradiation also serves as a "mirror for turning back the light path for receiving light". Then, the mirror 40 B reflects the divergent return laser beam BKL from the deflecting device 14 toward the LD 10. Furthermore, it has optical path separation means 38A, 38B for separating the return laser beam BKL reflected toward the LD 10 from the optical path of the irradiation optical system.
  • the return laser beam BKL separated by the optical path separation means 38A, 38B is condensed toward the detection light receiving element 30 via the condensing lens system 14C, 32A.
  • the “coupling optical system” includes the coupling lens 12 and the adjustment lens 13B1 disposed on the laser light source 10 side.
  • the adjustment lens 13B1 imparts “the convergence in the Y direction to the laser beam transmitted through the coupling lens 12”, and the positional relationship between the convergence position in the Y direction and the position of the virtual focal point of the deflection angle variable magnification element 181 is deflected.
  • the position in the Z direction is adjusted so that the laser beam SRL has a parallel beam shape.
  • the adjustment lens 13B1 also serves as "a part of the focusing lens system", and the optical path separation means 38A and 38B are disposed between the adjustment lens 13B1 and the coupling lens 12 and the return laser separated by the optical path separation means
  • the luminous flux is condensed toward the light receiving element 30 for detection via the condensing lens 32A which constitutes a "condensing lens system” together with the adjustment lens 13B1.
  • the "optical path separation means” may be a semitransparent mirror 38A, and an optical element having a transmitting portion 38a for transmitting laser light from the LD 10 side, and a reflecting portion 38b for returning around the transmitting portion and reflecting the laser beam BKL. It can also be 38B. It goes without saying that the modification shown in FIGS. 15 and 16 can also be applied to the embodiments shown in FIGS. 14 (a) and 14 (b).
  • the laser radar device whose embodiment is shown in FIG. 17 is another modification of the embodiment shown in FIG. 11, and the same reference numerals as in FIG. 11 are used for those which are considered to have no possibility of confusion.
  • the mirror 40B1 for turning back the light path for irradiation included in the optical system for irradiation also serves as a "mirror for turning back the light path for light reception included in the light receiving optical system".
  • the mirror 40B1 bends the optical path of the convergent laser beam in the Y direction, which has been converted by the coupling optical system (12, 13B), toward the deflecting device 14.
  • the mirror 40B1 also serves as "a light receiving path bending mirror for bending the light path of the diverging return laser beam BKL through the deflecting device 14 toward the focusing lens systems 32 and 34".
  • FIG. A portion from the LD 10 through the coupling lens 12 and the adjusting lens 13B to the mirror 40B1 and a portion from the mirror 40B1 to the light receiving lens 34 and the condensing lens 32 to the detecting light receiving element 30 are shown in FIG. Are arranged so as to "overlap in the direction orthogonal to the drawing".
  • FIG. 17B shows the state of FIG. 17A as viewed in the X direction of FIG.
  • a mirror that folds the light path for illumination and a mirror that folds the light path for light reception are made common as one mirror 40B1.
  • the adjustment lens 13B and the light reception lens 34 are assumed to be “cylindrical lenses” as in the case of FIG.
  • the mirror 40B1 can be cut with dashed lines in the figure to be separate mirrors. Note that a cylinder lens having the same function as the adjustment lens 13B and the light reception lens 34 can be used.
  • the adjusting lens 13B and the light receiving lens 34 should be configured as "one cylinder lens" and be shared by the irradiating optical system and the light receiving optical system. Can.
  • the beam diameter of the return laser beam BKL is greatly expanded. Accordingly, the beam diameter of the return laser beam BKL is larger than that of the reflection surface of the mirror 40B1 in FIG. 17 (b).
  • the beam diameter of the return laser beam BKL is larger than that of the reflection surface of the mirror 40B1 in FIG. 17 (b).
  • the embodiment of FIG. 17, of the return laser beam BKL only the “portion incident on the light receiving lens 34” indicated by the broken line is received by the light receiving element 30 for detection.
  • FIG. 17 can also be applied to the embodiments shown in FIGS. 14 (a) and 14 (b). Also in the embodiment described above and shown in FIGS. 15, 16 and 17, as the deflection angle variable power element, the deflection angle variable power elements 182 and 183 having positive refractive power shown in FIG. 13 and FIG. It will be readily understood that the laser radar apparatus can be configured using
  • the deflection angle changing function for changing the deflection angle is included in the deflection angle variable magnification element.
  • the deflection angle variable magnification element 181 used in the embodiments shown in FIG. 11, FIG. 15, FIG. 16 and FIG. 17 is a "negative cylinder lens" having refractive power in only one direction. Is a concave cylinder surface, and the surface on the injection side is a flat surface.
  • the deflection angle variable magnification element 181 has a deflection angle enlargement function.
  • the deflection angle variable magnification elements 182 and 183 used in the embodiments shown in FIGS. 13 and 14 are “cylinder lenses” having positive refractive power in the Y direction.
  • the shape of the positive cylinder lens may be, for example, "a plane of incidence surface, a convex cylinder surface”.
  • the deflection angle variable magnification element 182 has a deflection angle enlargement function. However, it is of course possible to make the deflection laser beam in the form of a parallel luminous flux other than the optical axis luminous flux.
  • the focal plane of the deflection angle variable magnification element is two-dimensionally curved, and the plane described by the convergence point of the laser beam deflected by the deflecting device is located at the focal plane. Good. This can be achieved by "free-form forming" at least one of the inclining surface and the exit surface of the deflection angle variable magnification element.
  • a deflected laser beam SRL in the form of convergent light flux or divergent light flux. That is, the divergence start point or convergence position of the divergent or convergent laser beam in at least one direction converted by the coupling optical system (12, 13B1) and the focal position of the deflection angle variable magnification element 181 By adjusting the positional relationship, it is possible to make the light flux form of the polarized laser beam SRL into a convergent light flux or a divergent light flux.
  • the composite imaging system including the condensing lens system (13B1 and 32A, or 32 and 34) constituting the light receiving optical system and the deflection angle variable magnification element 181 is
  • the light receiving optical system may be configured such that an infinite distance on the detection target side and a light receiving surface position of the light receiving element 30 for detection have a conjugate relationship.
  • Examples 20 to 26 are all examples for realizing "a collimated luminous flux deflection laser beam".
  • Example 20 is a specific example of the embodiment shown in FIG.
  • Deflection angle variable element 181 The deflection angle variable magnification element 181 is as follows.
  • shape A concave cylinder lens having no refractive power in the direction (X direction) orthogonal to the drawing in FIG.
  • Exit side plane radius of curvature ⁇ Thickness: 3 mm
  • Adjustment lens 13B The adjustment lens 13B is as follows. "shape” A convex cylinder lens having no refractive power in the direction orthogonal to the drawing of FIG. 11 Incident side convex cylinder surface radius of curvature: 47.4 mm Exit side plane radius of curvature: ⁇ Thickness: 3 mm
  • the light receiving lens 34 is as follows. "shape” A convex cylinder lens having no refractive power in the direction orthogonal to the drawing of FIG. 11 Incident side: plane Curvature radius: ⁇ Injection side: convex cylinder surface radius of curvature: 59.7 mm Thickness: 3 mm Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
  • the deflection angle variable magnification element 181 in the twentieth embodiment has a deflection angle enlargement function of enlarging the deflection angle of the deflection laser beam.
  • Example 21 is a specific example of the embodiment shown in FIG. "Deflecting angle variable element 182"
  • the deflection angle variable magnification element 182 is as follows.
  • shape A convex cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG. Incident side Plane curvature radius: ⁇ Injection side convex cylinder surface radius of curvature: -45 mm Thickness: 3 mm
  • Material SF6 (refractive index: wavelength: 1.780698 for light of 870 nm)
  • Adjustment lens 13B The adjustment lens 13B is as follows.
  • shape A convex cylinder lens having no refractive power in the direction orthogonal to the drawing of FIG. 13
  • Incident side convex cylinder surface radius of curvature 48.9 mm
  • Exit side plane radius of curvature
  • Thickness 3 mm
  • the light receiving lens 34 is as follows. "shape” A convex cylinder lens that does not have refractive power in the direction orthogonal to the drawing in FIG. 13 Incident side surface: plane curvature radius: ⁇ Injection side: convex cylinder surface radius of curvature: 74.4 mm Thickness: 3 mm Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
  • the deflection angle variable element 182 in the twenty-first embodiment has a deflection angle reduction function of reducing the deflection angle of the deflection laser beam.
  • Example 22 is a specific example of the embodiment shown in FIG. "Deflecting angle variable element 183"
  • the deflection angle variable magnification element 183 is as follows.
  • shape A convex cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG. Incident side Plane curvature radius: ⁇ Injection side convex cylinder surface radius of curvature: -300 mm Thickness: 3 mm
  • Adjustment lens 13D The adjustment lens 13D is as follows. "shape" Concave cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG. 14 (a) Incident side Concave cylinder surface Curvature radius: -117.5 mm Exit side plane radius of curvature: ⁇ Thickness: 3 mm Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
  • the light receiving lens 34A is as follows. "shape” A concave cylinder lens having no refractive power in the direction orthogonal to the drawing of FIG. 14 Incident side: plane Curvature radius: ⁇ Injection side: concave cylinder surface radius of curvature: -92.0 mm Thickness: 3 mm Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
  • the distance from the exit side of the adjustment lens 13D to the entry side of the deflection angle variable element 182 150 mm
  • the distance from the incident side of the light receiving lens 34A to the exit side of the deflection angle variable magnification element 183 200 mm
  • the deflection angle variable magnification element 183 in Embodiment 22 has a deflection angle reduction function of reducing the deflection angle of the deflection laser beam.
  • Example 23 is a specific example of the embodiment shown in FIG. "Deflecting angle variable element 183"
  • the deflection angle variable magnification element 183 is as follows.
  • shape A convex cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG. Incident side Plane curvature radius: ⁇ Injection side convex cylinder surface radius of curvature: -300 mm Thickness: 3 mm
  • Adjusting lens 13E The adjustment lens 13E is as follows. "shape" Concave cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG. 14 (b) Incident side Concave cylinder surface Curvature radius: -117.5 mm Exit side plane radius of curvature: ⁇ Thickness: 3 mm Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
  • the light receiving lens 34B is as follows. “shape” Concave cylinder lens that does not have refractive power in the direction orthogonal to the drawing in FIG. Injection side: convex cylinder surface radius of curvature: 35.4 mm Thickness: 3 mm Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
  • the deflection angle variable element 183 in the twenty-third embodiment has a deflection angle reduction function of reducing the deflection angle of the deflection laser beam.
  • Example 24 is a specific example of the embodiment shown in FIG. "Deflecting angle variable element 181"
  • the deflection angle variable magnification element 181 is as follows. "shape” In Fig. 15, a concave cylinder lens having no refractive power in the direction orthogonal to the drawing. Exit side plane radius of curvature: ⁇ Thickness: 3 mm Material: SF6 (refractive index: wavelength: 1.780698 for light of 870 nm)
  • the adjustment lens 13B1 which doubles as a light receiving lens is as follows.
  • shape A convex cylinder lens having no refractive power in the direction orthogonal to the drawing of FIG. 4
  • Incident side convex cylinder surface radius of curvature 47.4 mm
  • Exit side plane radius of curvature
  • Thickness 3 mm
  • the deflection angle variable magnification element 181 in the twenty-fourth embodiment has a deflection angle enlargement function of enlarging the deflection angle of the deflection laser beam.
  • Example 25 The twenty-fifth embodiment is a specific example of the embodiment shown in FIG. "Deflecting angle variable element 181"
  • the deflection angle variable magnification element 181 is as follows.
  • shape A concave cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG. Incident side Cylinder surface radius of curvature: -24.3 mm Exit side plane radius of curvature: ⁇ Thickness: 3 mm
  • the adjustment lens 13B1 which doubles as a light receiving lens is as follows.
  • shape A convex cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG. 16 (a) Incident side convex cylinder surface radius of curvature: 47.4 mm Exit side plane radius of curvature: ⁇ Thickness: 3 mm
  • a parallel beam-like polarized laser beam SRL is obtained, and the return laser beam BKL is collimated by the adjusting lens 13B1 which also serves as a light receiving lens.
  • the deflection angle variable magnification element 181 in the twenty-fifth embodiment has a deflection angle enlargement function of enlarging the deflection angle of the deflection laser beam.
  • Example 26 is a specific example of the embodiment shown in FIG. "Deflecting angle variable element 181"
  • the deflection angle variable magnification element 181 is as follows.
  • shape A concave cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG. Incident side Cylinder surface radius of curvature: -24.3 mm Exit side plane radius of curvature: ⁇ Thickness: 3 mm
  • Adjustment lens 13B The adjustment lens 13B is as follows.
  • shape A convex cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG. 17A. Exit side plane radius of curvature: ⁇ Thickness: 3 mm Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
  • the light receiving lens 34 is as follows. "shape” A convex cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG. Injection side: convex cylinder surface radius of curvature: 59.7 mm Thickness: 3 mm Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
  • the deflection angle variable magnification element 181 in the twenty-sixth embodiment has a deflection angle enlargement function of enlarging the deflection angle of the deflection laser beam.
  • each of the adjusting lens and the deflection angle variable magnification element is a cylinder lens having refractive power only in the Y direction, and the luminous flux is converted into convergent or divergent luminous flux by the adjusting lens.
  • the convergent point or "origin of divergence" of the light flux is matched with the focal position of the deflection angle variable magnification element. Therefore, the beam form of the deflection laser beam emitted from the deflection angle variable magnification element becomes a parallel beam with respect to the optical axis beam in the Y direction, but deviates from the parallel beam when the deflection angle is large.
  • the “divergence angle or convergence angle of the deflected laser beam” at the maximum deflection angle in the Y direction is as follows.
  • Example 20 Y direction (maximum deflection angle: 62.9 degrees) Divergence angle: 0.001 degree
  • Example 21 Y direction (maximum deflection angle: 14.6 degrees) convergence angle: 0.29 degrees
  • Example 22 Y direction ( Maximum deflection angle: 27.4 degrees Convergence angle: 0.18 degrees
  • the luminous flux form at the maximum deflection angle in the Y direction is "substantially parallel luminous flux state" in Examples 20 and 24 to 26, and "substantially parallel luminous flux state” in Examples 2 to 4.
  • Each of the deflection angle variable magnification elements of Examples 20 to 26 is a cylinder lens and has no refractive power in the X direction. Therefore, the beam form of the deflected laser beam in the X direction is "parallel beam state". Further, the deflection angle variable magnification elements of Examples 20 to 26 do not have the function of changing the deflection angle in the X direction.
  • the deflection angle in the X direction is equal to the deflection angle in the X direction of the deflection device.
  • the maximum deflection angle in the X direction is as follows for each example.
  • Example 20 Maximum deflection angle in the X direction: 25.831 degrees
  • Example 21 Maximum deflection angle in the X direction: 25.669 degrees
  • Example 22 Maximum deflection angle in the X direction: 25.698 degrees
  • Example 23 Maximum deflection angle in the X direction: 25.698 degrees
  • Example 24 Maximum deflection angle in the X direction: 25.831 degrees
  • Example 25 Maximum deflection angle in the X direction: 25.831 degrees
  • Example 26 Maximum deflection angle in the X direction: 25.831 degrees In either case, the deviation from the parallel beam with respect to the maximum deflection angle is small, and a “parallel beam-like polarized laser beam” can be realized.
  • the adjustment lenses 13B, 13B1, 13D, and 13E of the coupling optical system can be displaced in the optical axis direction, and the displacement of the adjustment lens makes the light flux form of the polarized laser beam be parallel light flux, convergent light flux, It is also clear that it can be changed in the form of a divergent beam.
  • the reflecting surface is also used for reduction and magnification of the deflection angle. It can also be done.
  • FIG. 18 is a diagram for describing an embodiment of a two-dimensional scanning laser radar projection apparatus that performs reduction magnification of deflection angle using a reflection surface.
  • FIG. 18 shows the state in the direction parallel to the YZ plane.
  • (B) shows the state in the direction parallel to the XZ plane.
  • the laser beam from the LD 10 is collimated by the coupling lens 12 and incident on the deflecting device 14 through the adjustment lens 13A to be two-dimensionally deflected in the XY2 direction.
  • a two-dimensionally deflected laser beam is made incident on a deflection angle variable magnification element CM to be a two-dimensionally deflected polarized laser beam SRL.
  • the deflection angle variation element CM reflects the laser beam by the “concave reflection surface” and reduces the variation angle of the deflection angle.
  • Example 27 "Deflecting angle scaling element CM”
  • the deflection angle variable magnification element CM is as follows.
  • shape Radius of curvature: 100 mm concave sphere
  • adjustment lens 13A The adjustment lens 13A is as follows.
  • the deflection angle variable magnification element CM has a deflection angle reduction function of reducing the deflection angle of the deflection laser beam.
  • the relationship between the deflection angle (XZ plane) of the laser beam by the deflection device 14 and the reduced deflection angle of the deflection laser beam SRL is as follows.
  • the unit of angle is "degree”.
  • Deflection angle 25.7 17.24 8.65 8.65 17.24 25.7 Reduced deflection angle 13.0 9.0 4.6 4.6 9.0 13.0
  • the relationship between deflection angle and angular distortion (ANDT) is as follows.
  • the relationship between the deflection angle and the beam diameter (the value obtained from the spot diagram at the “3 m position from the reflecting surface of the deflection angle changing element CM”) is as follows.
  • Deflection angle 25.7 17.24 8.65 0 8.65 17.24 25.7 Beam diameter (mm) 23.5 23.06 23.52 23.5 23.52 23.06 23.5
  • the angular distortion is also small and stable, and
  • the laser radar device can be configured by combining the two-dimensional scanning laser beam projection device of the twenty-seventh embodiment with the various light receiving means described above.
  • a two-dimensional scanning laser beam projector which emits two-dimensionally deflected polarized laser beams LF2 and SRL, which comprises a laser light source (10, 12, etc.) for emitting a laser beam, and the laser light source
  • a deflection device (14) for deflecting a laser beam two-dimensionally and a deflection angle of the laser beam deflected and scanned two-dimensionally by the deflection device are changed in at least one of two directions orthogonal to each other
  • a two-dimensional scanning laser beam projector comprising: deflection angle magnification elements (16, 18, 180, 181, 182, 183) which are deflection laser beams.
  • [2] [1] The two-dimensional scanning type laser beam projection device according to [1], wherein the deflection angle variable magnification element is configured to set a deflection angle of the two-dimensionally deflected scanning laser beam in at least one of two directions orthogonal to each other.
  • a two-dimensional scanning laser beam projector which is a deflection angle expanding element (16, 18, 181, etc.) which magnifies in to a deflection laser beam.
  • a two-dimensional scanning type laser beam projection device wherein the deflection angle variable magnification element is configured to set a deflection angle of the two-dimensionally deflected scanning laser beam in at least one of two directions orthogonal to each other.
  • a two-dimensional scanning laser beam projection apparatus which is a deflection angle reduction element (180, 20C, CM, etc.) for reducing in size to a deflection laser beam.
  • a laser beam emitted from a laser light source is two-dimensionally scanned as a polarized laser beam (SRL) and irradiated onto a detection target, and light reflected by the detection target is returned as a laser beam (BKL) as a light receiving element (30
  • a laser radar device for measuring the distance to the object to be detected, wherein the laser beam from the laser light source (10) is two-dimensionally scanned as a polarized laser beam (SRL) to detect the object
  • a two-dimensional scanning type laser beam projection device for irradiating the light, detection means (30, 32, 34) for detecting a return laser beam reflected by the detection object, and controlling the laser beam projection device and the detection means Control calculation means (400) for measuring the time for which the laser light reciprocates the distance to the object to be detected and calculating the distance to the object to be detected;
  • beam projection device a laser radar apparatus using a laser beam projection system of the two-dimensional scanning type according to any one of [1] to [9].
  • a laser beam projector for emitting a two-dimensionally deflected laser beam comprising: a laser light source (10, 12) for emitting a laser beam (LF); and a two-dimensionally laser beam emitted from the laser light source
  • a deflecting device (14) for deflecting and scanning and a reflecting surface member (16) for reflecting a laser beam (LF1) two-dimensionally deflected and scanned by the deflecting device (14) as a reflected laser beam (LF2)
  • the reflecting surface member (16) is a curved reflecting surface portion that changes the deflection angle of the reflected laser beam (LF2) into a desired deflection angle range in at least one of the horizontal direction and the vertical direction.
  • a two-dimensional scanning laser beam projection device comprising (160).
  • the reflecting surface member (16) desirably has a deflection angle of the reflected laser beam (LF2) at least in the horizontal direction and the vertical direction.
  • LF2 reflected laser beam
  • a two-dimensional scanning laser beam projector comprising: a curved reflective surface portion (160) that changes magnification within the deflection angle range of (1).
  • the reflecting surface member (16) changes the deflection angle of the reflected laser beam (LF2) into a desired deflection angle range in the horizontal direction and the vertical direction.
  • a two-dimensional scanning laser beam emitting device having a reflecting surface portion of a curved surface to be doubled.
  • the laser beam LF emitted from the laser light source (10, 12) is two-dimensionally deflected and scanned.
  • the deflection device (14) is a two-dimensional scanning laser beam emitting device for swinging the reflecting mirrors about mutually orthogonal axes.
  • the reflecting surface member is a cylindrical surface having a convex surface or a conical surface having a convex surface.
  • the reflective surface member has a concave surface, a concave cylinder surface or a concave conical surface (160 A two-dimensional scanning laser beam projector.
  • a two-dimensional scanning laser beam projection apparatus that emits a two-dimensionally deflected laser beam, comprising: a laser light source (10, 12, 13) that emits a laser beam; and a laser beam (a laser beam emitted from the laser light source A deflection device (14) for two-dimensionally deflecting and scanning LA), and a deflection angle of a laser beam (LD) two-dimensionally deflected and scanned by the deflection device in at least one of two directions orthogonal to each other
  • the deflection angle magnification element (18) is concave in at least one of the two directions, and the deflection angle magnification element (18) is two-dimensionally deflected
  • a two-dimensional scanning laser beam projector which is a negative power deflection angle variable magnification element that transmits a scanned laser beam (LD) and expands a deflection angle by refraction.
  • (B-2) (B-1) The two-dimensional scanning type laser beam projection apparatus according to (B-1), wherein a deflection angle of the laser beam which is two-dimensionally deflected and scanned by the deflection device (14) is determined by a deflection angle variable magnification element (18).
  • a two-dimensional scanning laser beam projection apparatus which magnifies and expands in two directions orthogonal to each other.
  • (B-3) A two-dimensional scanning laser beam projector as described in (B-1) or (B-2), wherein The deflection angle variable magnification element is a two-dimensional scanning laser beam projection apparatus in which the incident side surface is a concave cylinder surface or a two-dimensional concave surface.
  • the deflection angle variable magnification element (18) has a concave exit side (18B), A two-dimensional scanning laser beam projector which is either a convex surface or a flat surface.
  • the laser beam projector according to any one of (B-1) to (B-4), wherein the laser light source comprises an LD (10) and a laser emitted from the LD (10).
  • the laser beam (LA) collected by the laser beam is two-dimensionally deflected by the deflecting device (14) to be incident on the deflection angle variable magnification element (18), and the emission side of the deflection angle variable magnification element
  • a two-dimensional scanning laser beam projection apparatus in which the focal position of the lens and the focal position on the exit side of the condenser lens (13) are substantially matched.
  • (B-6) The laser beam projection apparatus of two-dimensional scanning type according to any one of (B-1) to (B-5), which comprises: a starting point of deflection by the deflection device (14); Magnified concentric coefficient defined as L / (-R) by the distance L to the incident surface (18A) and the radius of curvature R: ⁇ (0) of the incident surface side 18A of the deflection angle variable magnification element (18) : CE, condition: (1) 0.8 ⁇ CE ⁇ 1.5 Two-dimensional scanning laser beam projection device that satisfies
  • the deflection angle variable magnification element (18) is a beam of an envelope housing (CS) of the apparatus.
  • CS envelope housing
  • (B-8) The laser beam projection apparatus of two-dimensional scanning type according to any one of (B-1) to (B-7), wherein the deflection angle enlarged by the deflection angle variable magnification element (18) is 60 in one direction.
  • Two-dimensional scanning laser beam projection device that is more than
  • (B-9) The laser beam projection apparatus of two-dimensional scanning type according to any one of (B-1) to (B-8), wherein the deflector (14) deflects and scans the laser beam (LA) in two dimensions.
  • the deflector (14) deflects and scans the laser beam (LA) in two dimensions.
  • a combination of two-axis MEMS or one-axis MEMS, or a combination of one-axis MEMS and one-axis galvano mirror or one-axis polygon mirror, or a combination of one-axis galvano mirror and one-axis polygon mirror A two-dimensional scanning laser beam projection apparatus.
  • (B-10) Laser radar that projects a two-dimensionally scanned laser beam (LD) onto a detection target, detects laser light diffused and reflected by the detection target, and measures the distance to the detection target two-dimensionally
  • a two-dimensional scanning laser beam projection apparatus that scans a laser beam (LB) in a two-dimensional manner and projects the laser beam (LB) onto a detection target, and reflection from the detection target onto which the laser beam (LB) is projected
  • a laser radar apparatus using the two-dimensional scanning laser beam projector according to any one of (B-1) to (B-9) as the laser beam projector.
  • an optical axis (AX) of the optical axis is a Z
  • (C-2) (C-1) The laser beam projection apparatus according to (C-1), wherein the adjustment lens (13B) and the deflection lens are deflected so that the deflection laser beam (SRL) emitted from the deflection angle variable magnification element (180, 18C) becomes a parallel beam.
  • a two-dimensional scanning laser beam projection apparatus in which an optical relationship between angular magnification elements (180, 18C) is set.
  • (C-4) (C-1) The laser beam projection apparatus according to (C-1), wherein the deflection laser beam (SRL) emitted from the deflection angle variable magnification element (180, 18C) by adjusting the displacement of the adjusting lens (13B) in the optical axis direction.
  • SRL deflection laser beam
  • a two-dimensional scanning laser beam projection apparatus in which the form of light flux of the light source can be changed.
  • (C-7) The laser beam projection apparatus according to any one of (C-1) to (C-4), wherein the adjusting lens (13B) and the deflection angle variable magnification elements (180, 18C) are both in the ⁇ plane.
  • a two-dimensional scanning laser beam projection apparatus which is an anamorphic lens which has different refractive power in the ⁇ plane.
  • a laser beam emitted from a laser light source is two-dimensionally scanned as a polarized laser beam (SRL) and irradiated onto a detection target, and light reflected by the detection target is returned as a laser beam (BKL) as a light receiving element
  • a laser radar device that receives light and measures the distance to the detection target, and two-dimensionally scans a laser beam from a laser light source as a polarized laser beam (SRL) to irradiate the detection target
  • a two-dimensional laser beam projection apparatus, detection means for detecting a return laser beam (BKL) reflected by the detection object, and the laser beam projection apparatus and detection means are controlled, and the laser light reaches the detection object Control calculation means (400) for calculating the distance to the object to be detected by measuring the time for reciprocation of the distance -1) through a laser radar apparatus using a two-dimensional laser beam projection apparatus according to any one of (C-7).
  • a laser radar device for two-dimensionally scanning an object to be detected with a polarized laser beam having a parallel luminous flux shape or a convergent luminous flux shape or a divergent luminous flux shape, and a laser light source and a laser luminous flux from the laser light source
  • An illumination optical system that deflects two-dimensionally to form a deflection laser beam (SRL) that two-dimensionally scans a detection target, and detection that receives a return laser beam (BKL) reflected by the detection target
  • Control computing means for determining the distance to the object to be detected according to the time taken to receive the light flux, and the optical system for illumination is emitted from the LD (10) and the LD (10)
  • a laser light source having a coupling optical system (12, 13A) for converting the laser beam into a
  • the light receiving optical system shares at least the deflection angle variable magnification element (181) and the deflection device (14) with the irradiation optical system, and diverges according to the refractive power of the deflection angle magnification element.
  • a laser radar device having a positional relationship according to a light beam form of a laser beam (SRL).
  • (D-2) (D-1)
  • the laser radar device according to (D-1) which is a divergence origin or convergence position of a divergent or convergent laser beam in at least one direction, converted by the coupling optical system, and deflection angle magnification
  • a laser radar device having a positional relationship such that the light beam form of a polarized laser beam (SRL) is in the form of a parallel light beam with a focal position of an element (181 or the like).
  • (D-3) (D-1)
  • the laser radar device according to (D-1) which is a divergence origin or convergence position of a divergent or convergent laser beam in at least one direction, converted by the coupling optical system, and deflection angle magnification
  • a laser radar device having a positional relationship such that a light flux form of a polarized laser beam (SRL) has a convergent light flux shape with a focal position of an element.
  • (D-4) (D-1) The laser radar device according to (D-1), which is a divergence origin or convergence position of a divergent or convergent laser beam in at least one direction, converted by the coupling optical system, and deflection angle magnification A laser radar device having a positional relationship such that a light flux form of a polarized laser beam is in the form of a diverging light flux with a focal position of an element.
  • (D-5) The laser radar device according to any one of (D-1) to (D-4), wherein the coupling optical system collimates the laser beam emitted from the LD (10) into a collimated lens (12 And an adjusting lens (13B or the like) for converting a laser beam collimated by the collimating lens into a diverging or converging laser beam in at least one direction of two-dimensional deflection by the deflection device.
  • Laser radar device is any one of (D-1) to (D-4), wherein the coupling optical system collimates the laser beam emitted from the LD (10) into a collimated lens (12 And an adjusting lens (13B or the like) for converting a laser beam collimated by the collimating lens into a diverging or converging laser beam in at least one direction of two-dimensional deflection by the deflection device.
  • (D-7) The laser radar device according to any one of (D-1) to (D-6), wherein the deflection angle variable magnification element (201) is a deflection laser in at least one direction of two-dimensional deflection by the deflection device.
  • the deflection angle variable magnification element (183) deflects in at least one direction of two-dimensional deflection by the deflection device (14).
  • the coupling optical system is configured to perform one of two-dimensional deflection of the laser beam directed to the deflection device (14) by the deflection device.
  • a laser radar device having a light flux conversion function parallel to one direction and divergent or convergent in another direction, and the deflection angle variable magnification element has no refractive power in one direction.
  • LD semiconductor laser
  • Adjustment lens Deflecting device
  • Reflecting surface member (deflection angle magnification element) LF laser beam 18, 18C, 181, 182, 183 deflection angle variable magnification element 30 light receiving element 32 Focusing Lens 34, 34A, 34B Lenses for Receiving Light 40, 40A mirror

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

Provided is a two-dimensional scanning type novel laser beam projection device which, in at least one of two perpendicular directions, is capable of variable magnification of the angle of deflection of a laser beam scanned by deflection in two dimensions by a deflection device. This two-dimensional scanning type laser beam projection device projects a two-dimensionally deflected laser beam (SRL), and comprises a laser source (10, 13) which emits the laser beam, a deflection device (14) which deflects in two dimensions the laser beam (LF) emitted from the laser source, and a deflection angle variable magnification element (16) which obtains the deflected laser beam by variably magnifying, in at least one of two perpendicular directions, the deflection angle of the laser beam (LF1) deflection-scanned in two dimensions by the deflection device.

Description

2次元走査型のレーザビーム投射装置およびレーザレーダ装置Two-dimensional scanning laser beam projection apparatus and laser radar apparatus
 この発明は、2次元走査型のレーザビーム投射装置およびレーザレーダ装置に関する。 The present invention relates to a two-dimensional scanning laser beam projection apparatus and a laser radar apparatus.
 レーザレーダ装置は、種々のものが提案され、知られている(特許文献1等)。 
 レーザレーダ装置は、ビーム状のレーザ光を2次元的に走査して検出対象物に照射し、検出対象物により反射されたレーザ光を検出用受光素子で受光して検出する。 
 そして「レーザ光が検出対象物までの距離を往復するのに要した時間」により検出対象物までの距離を測定する。このように、検出対象物までの距離が測定されるので、レーザレーダ装置は「2次元測距装置」と呼ばれることもある。 
 以下において、2次元的に走査されて検出対象物に照射されるビーム状のレーザ光を「偏向レーザビーム」と呼ぶ。
Various types of laser radar devices have been proposed and known (Patent Document 1 and the like).
The laser radar device scans a beam of laser light two-dimensionally and irradiates the object to be detected, and the laser light reflected by the object to be detected is received by the light receiving element for detection and detected.
Then, the distance to the object to be detected is measured by "the time required for the laser beam to travel the distance to the object to be detected". As described above, since the distance to the detection target is measured, the laser radar device may be called "two-dimensional distance measuring device".
In the following, a beam-like laser beam which is two-dimensionally scanned and irradiated to a detection target is referred to as a “deflection laser beam”.
 レーザレーダ装置は、車載用やロボット、製品検査等のものが実用化されているが、視野を適正化したいという要請がある。 
 此処に言う「視野」とは、物体に照射される偏向レーザビームが2次元的に走査されるときの「2次元の偏向角(2次元をなし互いに直交する2方向の各々における偏向角)」である。
Although laser radar apparatuses for vehicles, robots, product inspections, and the like have been put to practical use, there is a demand for optimizing the field of view.
The term "field of view" as used herein means "two-dimensional deflection angle (deflection angle in each of two directions forming two dimensions and orthogonal to each other)" when a polarized laser beam applied to an object is two-dimensionally scanned. It is.
 従来、レーザビームを偏向する偏向装置としては「ポリゴンミラーやMEMS」が知られている(特許文献2等)。 
 従来から知られた「偏向装置」は、偏向角が固定されている場合が多い。 
 例えば「2軸のMEMS(Micro Electro Mechanical Systems)」は、小型で高速偏向が可能であり、レーザビームを2次元的に偏向させる偏向装置として優れている。 
 2軸のMEMSの「レーザビームの偏向角」は、20度、30度、40度等、多様な種類のものがあり、偏向角の変更も「ある程度の範囲」では可能である。
Heretofore, as a deflecting device for deflecting a laser beam, "polygon mirror or MEMS" is known (Patent Document 2 etc.).
The "deflection device" conventionally known often has a fixed deflection angle.
For example, “two-axis MEMS (Micro Electro Mechanical Systems)” is compact and capable of high-speed deflection, and is excellent as a deflection device that deflects a laser beam two-dimensionally.
There are various types of “laser beam deflection angles” of the biaxial MEMS, such as 20 degrees, 30 degrees, and 40 degrees, and the deflection angles can be changed within a “certain range”.
 これらMEMSは、偏向角を設計条件として、この偏向角を実現するための最良の反射面形状等が設計で定められるのが一般的である。 
 従って、MEMSは「設計上の偏向角」で偏向を行うことが好ましいことは言うまでもなく、偏向角を変更できる範囲は自ずと制限され、偏向角の大きな変更は難しい。 
 以下、偏向角の変更を「偏向角の変倍」と称する。
In these MEMS, it is general that the design of the best reflecting surface shape and the like for realizing the deflection angle is determined by using the deflection angle as a design condition.
Therefore, it is preferable that the MEMS perform deflection at the “design deflection angle”, and the range in which the deflection angle can be changed is naturally limited, and a large change in the deflection angle is difficult.
Hereinafter, the change of the deflection angle is referred to as "variation of deflection angle".
 偏向角の変倍は、偏向角を拡大するものと、逆に縮小するものとが考えられる。 The magnification change of the deflection angle is considered to be an increase or decrease of the deflection angle.
 偏向角の拡大に関しては、従来、偏向装置により2次元的に偏向されるレーザビームの偏向角を、光学的に拡大することが提案されている(特許文献2)。 
 一方、偏向角を縮小することは、発明者らの知る限りにおいて従来知られていない。
With regard to the expansion of the deflection angle, conventionally, it has been proposed to optically expand the deflection angle of the laser beam which is two-dimensionally deflected by the deflection device (Patent Document 2).
On the other hand, reducing the deflection angle has not been known as far as the inventors know.
 偏向角を縮小すると、レーザビームによる2次元の走査範囲を狭めることができ、走査を高密度化することができ、物体の形状を高精細に検出できる。 By reducing the deflection angle, the two-dimensional scanning range of the laser beam can be narrowed, the scanning can be densified, and the shape of the object can be detected with high precision.
 この発明は、偏向装置により2次元的に偏向走査されたレーザビームの偏向角を、互いに直交する2方向のうちの少なくとも一方において変倍できる、2次元投射型の新規なレーザビーム投射装置の実現を課題とする。 The present invention realizes a novel two-dimensional projection type laser beam projection apparatus capable of changing the deflection angle of a laser beam two-dimensionally deflected and scanned by a deflection device in at least one of two directions orthogonal to each other. As an issue.
 この発明の2次元走査型のレーザビーム投射装置は、2次元的に偏向する偏向レーザビームを放射する2次元走査型のレーザビーム投射装置であって、レーザビームを放射するレーザ光源と、該レーザ光源から放射されたレーザビームを2次元的に偏向させる偏向装置と、該偏向装置により2次元的に偏向走査されたレーザビームの偏向角を、互いに直交する2方向のうちの少なくとも一方において変倍して偏向レーザビームとする偏向角変倍素子と、を有する。 The two-dimensional scanning laser beam projection apparatus according to the present invention is a two-dimensional scanning laser beam projection apparatus that emits a two-dimensionally deflected polarized laser beam, which comprises: a laser light source that emits a laser beam; A deflector for two-dimensionally deflecting a laser beam emitted from a light source, and changing a deflection angle of a laser beam two-dimensionally scanned by the deflector in at least one of two directions orthogonal to each other And a deflection angle variable magnification element to be a deflection laser beam.
 この発明によれば、偏向角を変倍できる新規な2次元投射型のレーザビーム投射装置を実現できる。 According to the present invention, it is possible to realize a novel two-dimensional projection type laser beam projection apparatus capable of varying the deflection angle.
偏向角を拡大変倍できる2次元走査型のレーザビーム投射装置の、実施の1形態を説明するための図である。It is a figure for demonstrating one Embodiment of the two-dimensional scanning-type laser beam projection apparatus which can carry out magnification change of deflection angle. 偏向角を拡大変倍できる2次元走査型のレーザビーム投射装置の、実施の別形態を説明するための図である。It is a figure for demonstrating another embodiment of the two-dimensional scanning-type laser beam projection apparatus which can carry out magnification change of deflection angle. 2次元走査型のレーザビーム投射装置の、1実施形態の全体構成の1例を説明するための図である。It is a figure for demonstrating one example of the whole structure of one Embodiment of a two-dimensional scanning-type laser beam projection apparatus. レーザレーダ装置の実施の1形態を要部のみ説明図的に示している。An embodiment of a laser radar device is illustrated in an explanatory view only for the main part. 拡大コンセントリック係数を説明するための図である。It is a figure for demonstrating an expansion concentric coefficient. レーザレーダ装置の実施の別形態を説明するための図である。It is a figure for demonstrating another form of implementation of a laser radar apparatus. レーザレーダ装置の実施の他の形態を説明するための図である。It is a figure for demonstrating the other form of implementation of a laser radar apparatus. 図6に示すレーザレーダ装置のレーザビーム投射装置の部分を示す図である。It is a figure which shows the part of the laser beam projection apparatus of the laser radar apparatus shown in FIG. 図7に示すレーザレーダ装置のレーザビーム投射装置の部分を示す図である。It is a figure which shows the part of the laser beam projection apparatus of the laser radar apparatus shown in FIG. 光束形態の変換を説明するための図である。It is a figure for demonstrating conversion of a light beam form. レーザレーダ装置の実施の他の形態を説明するための図である。It is a figure for demonstrating the other form of implementation of a laser radar apparatus. 図11のレーザレーダ装置のレーザビーム投射装置の部分を説明するための図である。It is a figure for demonstrating the part of the laser beam projection apparatus of the laser radar apparatus of FIG. レーザレーダ装置の実施のさらに他の形態を説明するための図である。It is a figure for demonstrating the further another form of implementation of a laser radar apparatus. レーザレーダ装置の実施の別の2形態を説明するための図である。It is a figure for demonstrating another two forms of implementation of a laser radar apparatus. レーザレーダ装置の実施の別の形態を説明するための図である。It is a figure for demonstrating another form of implementation of a laser radar apparatus. レーザレーダ装置の実施の別の形態を説明するための図である。It is a figure for demonstrating another form of implementation of a laser radar apparatus. レーザレーダ装置の実施の別の形態を説明するための図である。It is a figure for demonstrating another form of implementation of a laser radar apparatus. 偏向角を縮小変倍できる2次元走査型のレーザビーム投射装置の、実施の1形態を説明するための図である。It is a figure for demonstrating one Embodiment of the two-dimensional scanning-type laser beam projection apparatus which can carry out magnification reduction of deflection angle.
 以下、実施の形態を説明する。 Hereinafter, embodiments will be described.
 図1は、2次元走査型のレーザビーム投射装置の、実施の1形態を説明するための図である。同図(a)は、実施の形態の要部を説明図的に示している。 
 この図において、符号10は「光源」、符号12は「カップリングレンズ」、符号14は「偏向装置」、符号16は「偏向角変倍素子である偏向角拡大素子としての反射面部材」を夫々示している。 
 光源10は、この実施の形態においては「半導体レーザ」が用いられており、以下、
10と略記する。 
 LD10から放射される発散性のレーザ光束は、カップリングレンズ12に入射する。
FIG. 1 is a view for explaining one embodiment of a two-dimensional scanning laser beam projection apparatus. The figure (a) has shown the principal part of embodiment in figure in illustration.
In this figure, reference numeral 10 denotes a "light source", reference numeral 12 denotes a "coupling lens", reference numeral 14 denotes a "deflection device", and reference numeral 16 denotes a "reflecting surface member as a deflection angle magnifying element which is a deflection angle varying element Each one is shown.
As the light source 10, a "semiconductor laser" is used in this embodiment.
It is abbreviated as 10.
The divergent laser beam emitted from the LD 10 is incident on the coupling lens 12.
 カップリングレンズ12は正の屈折力を持ち、入射してくるレーザ光束の発散性を抑制する。この例では、カップリングレンズ12は「コリメート機能」を有する。 
 従って、カップリングレンズ12からは、平行光束化されたレーザビームLFが射出する。射出したレーザビームLFは、偏向装置14に入射する。 
 即ち、LD10とカップリングレンズ12とは「レーザビームLFを放射するレーザ光源」を構成する。
The coupling lens 12 has positive refractive power and suppresses the divergence of the incident laser beam. In this example, the coupling lens 12 has a "collimation function".
Therefore, a collimated laser beam LF is emitted from the coupling lens 12. The emitted laser beam LF is incident on the deflection device 14.
That is, the LD 10 and the coupling lens 12 constitute a “laser light source for emitting the laser beam LF”.
 偏向装置14は、入射してくるレーザビームLFを「2次元的に偏向走査」する。 
 この実施の形態において、偏向装置14は、直交する2方向に揺動可能な反射面を有し、該反射面によりレーザビームLFを反射し、反射面の揺動により偏向走査を行う。 
 このような偏向装置は良く知られているが、説明中の実施の形態では、図1(b)に示す如きものが用いられている。
The deflection device 14 “two-dimensionally deflects and scans” the incident laser beam LF.
In this embodiment, the deflecting device 14 has reflecting surfaces which can be swung in two directions orthogonal to each other, reflects the laser beam LF by the reflecting surfaces, and performs deflection scanning by swinging the reflecting surface.
Such deflection devices are well known, but in the embodiment being described, one as shown in FIG. 1 (b) is used.
 即ち、偏向装置14は、反射鏡140と第1枠体142と第2枠体144を有する。 
 反射鏡140は平面鏡で、レーザビームLFの光束径よりも若干大きい反射面を有し、レーザビームLFの全体を受光して反射できるようになっている。 
 第1枠体142、第2枠体144は共に長方形形状の枠体であり、反射鏡140は、第1枠体142に、揺動軸を共有する軸j1、j2により固定されている。 
 軸j1、j2は、捩れ弾性を有し、捩れ変形の復元力により、反射鏡140を軸j1、j2に共有される揺動軸の回りに揺動させることができるようになっている。
That is, the deflecting device 14 has the reflecting mirror 140, the first frame 142 and the second frame 144.
The reflecting mirror 140 is a plane mirror, has a reflecting surface slightly larger than the diameter of the light beam of the laser beam LF, and can receive and reflect the entire laser beam LF.
The first frame 142 and the second frame 144 are both rectangular frames, and the reflecting mirror 140 is fixed to the first frame 142 by axes j1 and j2 sharing a swing axis.
The axes j1 and j2 have torsional elasticity, and the restoring force of the torsional deformation enables the reflecting mirror 140 to swing about the swing axis shared by the axes j1 and j2.
 第1枠体142は、第2枠体144に、軸j3、j4により固定されている。 
 軸J3、j4も、揺動軸を共有している。 
 軸j3、j4も捩れ弾性を有し、捩れ変形の復元力により、第1枠体142を軸j3、j4に共有される揺動軸の回りに揺動させることができるようになっている。 
 第2枠体144は、2次元走査型レーザビーム放射装置の装置空間に固定的に設けられて不動である。 
 軸j1、j2に共有される揺動軸と、軸j3、j4に共有される揺動軸とは互いに直交している。 
 従って、反射鏡140を「互いに直交する2方向(即ち、水平方向と鉛直方向)において独立して揺動させる」ことができる。
The first frame 142 is fixed to the second frame 144 by axes j3 and j4.
The axes J3 and j4 also share the swing axis.
The axes j3 and j4 also have torsional elasticity, and the first frame 142 can be swung around the swing axis shared by the axes j3 and j4 by the restoring force of the torsional deformation.
The second frame 144 is fixedly provided in the device space of the two-dimensional scanning laser beam emission device and immobile.
The swing axis shared by the axes j1 and j2 and the swing axis shared by the axes j3 and j4 are orthogonal to each other.
Therefore, the reflecting mirror 140 can be "swayed independently in two directions orthogonal to each other (ie, in the horizontal direction and the vertical direction)".
 揺動は、図示されない駆動手段により行われる。 
 駆動手段は、例えば「圧電素子」を用いることができる。 
 第1枠体142に固定した圧電素子を反射鏡140に連結して、反射鏡140を揺動する駆動を行うことができる。 
 同様に、第2枠体144に固定した圧電素子を第1枠体142に連結して、反射鏡140を有する第1枠体142を揺動する駆動を行うことができる。 
 なお、偏向装置14は「2軸のMEMS」として構成されている。
The rocking is performed by a driving unit (not shown).
For example, a "piezoelectric element" can be used as the driving means.
The piezoelectric element fixed to the first frame 142 can be connected to the reflecting mirror 140 to drive the reflecting mirror 140 to swing.
Similarly, the piezoelectric element fixed to the second frame 144 can be connected to the first frame 142 to drive the first frame 142 having the reflecting mirror 140 to swing.
The deflection device 14 is configured as a “two-axis MEMS”.
 偏向装置14は、このような「2軸のMEMS」として構成されたもののほか、周知の適宜のものを用いることができる。 
 例えば、1軸のMEMSを2個「縦横方向の偏向用に組み合わせた」ものや、1軸のMEMSと1軸のガルバノミラーまたは1軸のポリゴンミラーの組み合わせたものを挙げることができる。あるいはまた「1軸のガルバノミラーと1軸のポリゴンミラーの組み合わせ」として実施することもできる。
 これらの「2次元の偏向装置」は、特許文献2等にも記載されたように周知であるので、説明は省略する。
The deflection device 14 may be any appropriate known device other than those configured as such “two-axis MEMS”.
For example, two “one-axis MEMS in combination for deflection in the vertical and horizontal directions” and a combination of one-axis MEMS and one-axis galvano mirror or one-axis polygon mirror can be mentioned. Alternatively, it can be implemented as “combination of a uniaxial galvano mirror and a uniaxial polygon mirror”.
Since these “two-dimensional deflection devices” are well known as described in Patent Document 2 and the like, the description will be omitted.
 レーザビームLFは、偏向装置14の反射鏡140で反射され、反射鏡140が2次元的に揺動すると、2次元的に偏向するレーザビームLF1となる。 
 反射面部材16は、偏向装置14により2次元的に偏向走査されたレーザビームLF1が入射する反射面を持つ。 
 図1の実施の形態においては、反射面部材16は「円錐状の凸の反射面」を有する。 
 2次元的に偏向走査されたレーザビームLF1は、反射面部材16の反射面に「該反射面を2次元的に走査する」ように入射する。 
 図1(c)は、反射面部材16の「レーザビームLF1で2次元的に走査」される反射面部分160を示している。図の左右方向が水平方向、上下方向が鉛直方向である。
The laser beam LF is reflected by the reflecting mirror 140 of the deflecting device 14, and when the reflecting mirror 140 swings in a two-dimensional manner, it becomes a two-dimensionally deflected laser beam LF1.
The reflecting surface member 16 has a reflecting surface on which the laser beam LF <b> 1 deflected and scanned two-dimensionally by the deflecting device 14 is incident.
In the embodiment of FIG. 1, the reflecting surface member 16 has a “conical convex reflecting surface”.
The two-dimensionally deflected and scanned laser beam LF1 is incident on the reflecting surface of the reflecting surface member 16 so as to “scan the reflecting surface two-dimensionally”.
FIG. 1C shows a reflective surface portion 160 of the reflective surface member 16 that is “two-dimensionally scanned with the laser beam LF1”. The horizontal direction in the figure is the horizontal direction, and the vertical direction is the vertical direction.
 レーザビームLF1が、反射面部材16の「鉛直方向の最上部」を走査するときは、レーザビームLF1は、図1(c)の弧状部分ABを走査する。
 「鉛直方向の中ほど」を走査するときは、弧状部分CDを走査する。また「鉛直方向の最下部」を走査するときは、弧状部分EFを走査する。 
 図1(d)は、弧状部分CDを走査するときの様子を、反射面部分160の対称軸方向から見た状態を示している。 
 この図に示すように、レーザビームLF1が、弧状部分CDを走査するときの「水平方向の偏向角はθ1」である。 
 反射面部分160は円錐状の「凸の反射面」であるので、反射面部分160で反射されて偏向レーザビームLF2となって反射される。
When the laser beam LF1 scans the “vertical top” of the reflecting surface member 16, the laser beam LF1 scans the arc portion AB of FIG. 1 (c).
When scanning "in the middle of the vertical direction", the arc-shaped portion CD is scanned. Further, when scanning the “lowermost part in the vertical direction”, the arc-shaped portion EF is scanned.
FIG. 1D shows a state in which the arc-shaped portion CD is scanned as viewed from the symmetry axis direction of the reflective surface portion 160. As shown in FIG.
As shown in this figure, the “horizontal deflection angle is θ1” when the laser beam LF1 scans the arc-shaped portion CD.
Since the reflecting surface portion 160 is a conical "convex reflecting surface", it is reflected by the reflecting surface portion 160 to be reflected as a polarized laser beam LF2.
 従って、偏向レーザビームLF2の水平方向の偏向角は「θ2」である。
 図1(d)から明らかに「偏向角:θ2>偏向角:θ1」である。 
 即ち、偏向レーザビームLF2の水平方向の偏向角:θ2は、偏向装置14によるレーザビームLF1の偏向角:θ1を「拡大変倍」したものとなっている。 
 即ち、前述のように、反射面部材16は「偏向角拡大素子」である。
Therefore, the deflection angle in the horizontal direction of the deflected laser beam LF2 is “θ2”.
As apparent from FIG. 1D, “deflection angle: θ2> deflection angle: θ1”.
That is, the deflection angle θ 2 in the horizontal direction of the deflection laser beam LF 2 is obtained by “magnifying and scaling” the deflection angle θ 1 of the laser beam LF 1 by the deflection device 14.
That is, as described above, the reflecting surface member 16 is a "deflection angle enlarging element".
 図1(e)は、反射面部分160を水平方向から見た状態において、レーザビームLF1が「鉛直方向において反射される状態」を示している。 
 図中に、符号aで示す部分は、レーザビームLF1の、弧状部分AB上の入射位置であり、符号fで示す部分は「弧状部分EF上の入射位置」である。 
 反射面部分160は、鉛直方向には曲率を持たないので、偏向レーザビームLF2の鉛直方向の偏向角は、偏向装置14による鉛直方向の偏向角を拡大しない。
FIG. 1E shows the “state in which the laser beam LF1 is reflected in the vertical direction” when the reflective surface portion 160 is viewed from the horizontal direction.
In the drawing, the portion indicated by the symbol a is the incident position on the arc portion AB of the laser beam LF1, and the portion indicated by the symbol f is the “incident position on the arc portion EF”.
The reflection surface portion 160 has no curvature in the vertical direction, so the deflection angle in the vertical direction of the polarized laser beam LF2 does not enlarge the deflection angle in the vertical direction by the deflection device.
 即ち、図1に実施の形態を示した「2次元走査型のレーザビーム投射装置」は、2次元的に偏向する偏向レーザビームLF2を放射する装置である。
 そして、レーザビームLFを放射するレーザ光源10、12と、該レーザ光源から放射されたレーザビームLFを2次元的に偏向走査する偏向装置14を有する。 
 さらに、偏向装置14により2次元的に偏向走査されたレーザビームLF1を反射する反射面部材(偏向角拡大素子)16を有する。
That is, the “two-dimensional scanning laser beam projection apparatus” whose embodiment is shown in FIG. 1 is an apparatus that emits a two-dimensionally deflected polarized laser beam LF2.
The laser light source 10, 12 emits a laser beam LF, and a deflector 14 two-dimensionally deflects and scans the laser beam LF emitted from the laser light source.
Further, it has a reflecting surface member (deflection angle enlarging element) 16 for reflecting the laser beam LF1 which has been two-dimensionally deflected and scanned by the deflecting device.
 反射面部材16は、偏向レーザビームLF2の偏向角を、水平方向に拡大変倍する曲面形状をもつ反射面部分160を有するものである。 
 反射面部材16の反射面部分160の水平断面内での曲率を「強く(弱く)」すれば、水平方向の拡大変倍の倍率を「高く(低く)」することができる。 
 従って、反射面部分160の形状を適宜の設定することにより「偏向レーザビームLF2の偏向角を、水平方向において所望の偏向角範囲に拡大変倍」することができる。 
 図1の例では、反射面部材16の反射面部分160を「偏向レーザビームLF2の偏向角を、水平方向において所望の偏向角範囲に拡大変倍」する形状として凸円錐面とした。
The reflecting surface member 16 has a reflecting surface portion 160 having a curved surface shape for enlarging and changing the deflection angle of the polarized laser beam LF2 in the horizontal direction.
If the curvature in the horizontal cross section of the reflecting surface portion 160 of the reflecting surface member 16 is "strong (weak)", the magnification of the horizontal magnification change can be "high (low)".
Therefore, by appropriately setting the shape of the reflective surface portion 160, "the magnification change of the deflection angle of the deflection laser beam LF2 in the horizontal direction to the desired deflection angle range" can be performed.
In the example of FIG. 1, the reflecting surface portion 160 of the reflecting surface member 16 is formed as a convex conical surface so as to "magnify and change the deflection angle of the deflected laser beam LF2 in the horizontal direction to a desired deflection angle range".
 しかし、これに限らず、反射面部材の反射面の形状は種々のものが考えられる。例えば「凸のシリンダ面」とすることができる。 
 また、反射面部材の反射面部分の曲面形状は、凸に限られない。
However, the shape of the reflecting surface of the reflecting surface member is not limited to this, and various shapes can be considered. For example, it can be a "convex cylinder surface".
Moreover, the curved surface shape of the reflective surface part of a reflective surface member is not restricted to a convex.
 例えば、反射面部分の形状を水平方向の断面形状を「凹形状」とすれば、水平方向の偏向角を縮小倍率で変倍し、水平方向の視野を「狭める」ことも可能である。 
 また、反射面部材の鉛直方向の形状を「凹形状(凸形状)」とすれば、鉛直方向の偏向角を縮小(拡大)倍率で変倍し、鉛直方向の視野を狭める(広げる)こともできる。 
 反射面部材は、反射面の形状が「凹のシリンダ面もしくは凹の円錐面」であることもできる。反射面形状を「凹面形状」とする場合、凹面の曲率を大きくすれば、水平方向や鉛直方向の偏向角を狭めて、偏向レーザビームが空間内で一度交点を結び、その後拡大偏向角となるようにすることもできる。
 反射面部分の形状如何により、偏向装置により偏向されるレーザビームLF1の「水平方向および鉛直方向の少なくとも一方」の偏向角に対する変倍の倍率(変倍率)を適宜に設定できる。
For example, if the cross-sectional shape in the horizontal direction of the reflective surface portion is "concave", it is possible to scale the deflection angle in the horizontal direction at a reduction ratio to "narrow down" the horizontal field of view.
Also, assuming that the shape of the reflecting surface member in the vertical direction is “concave shape (convex shape)”, the deflection angle in the vertical direction may be scaled with a reduction (magnification) magnification to narrow (expand) the visual field in the vertical direction. it can.
The reflective surface member may also have a "recessed cylindrical surface or a concave conical surface" in the shape of the reflective surface. When the shape of the reflecting surface is "concave", the curvature of the concave surface is increased to narrow the deflection angle in the horizontal or vertical direction, and the deflection laser beam once intersects in space and then becomes the expansion deflection angle. You can also do so.
Depending on the shape of the reflective surface portion, the magnification (magnification) of the magnification change with respect to the “at least one of horizontal direction and vertical direction” deflection angle of the laser beam LF1 deflected by the deflection apparatus can be set appropriately.
 従って、偏向レーザビームLF2の水平方向および鉛直方向の少なくとも一方の偏向角を所望の偏向角範囲に設定できる。 
 即ち、偏向角変倍素子である反射面部材は、反射レーザビームの偏向角を、水平方向および鉛直方向のうち少なくとも一方において所望の偏向角範囲に変倍する曲面の反射面部分を有するものであることが出来る。 
 上に説明した偏向装置14は、反射鏡140を互いに「直交する軸の回りに揺動」させるものである。 
 しかし、これに限らず、反射面を軸の回りに振動もしくは回転させる1次元反射偏向装置を2個、軸を直交させて組み合わせたものであることもできる。
Accordingly, at least one of the horizontal and vertical deflection angles of the deflection laser beam LF2 can be set to a desired deflection angle range.
That is, the reflecting surface member, which is a deflection angle variable magnification element, has a curved reflecting surface portion that changes the deflection angle of the reflected laser beam into a desired deflection angle range in at least one of the horizontal direction and the vertical direction. There can be.
The deflecting device 14 described above is one which "swings" the reflecting mirrors 140 around one another.
However, the present invention is not limited to this, and it is also possible to combine two one-dimensional reflection / deflecting devices which vibrate or rotate the reflecting surface about an axis, with the axes orthogonal.
 図2は、2次元走査型のレーザビーム投射装置の、実施の別形態を説明するための図である。図2(a)は装置全体を簡略化して説明図的に示している。 
 図1と同様、図2(a)において符号10は半導体レーザ(LD)、符号12はカップリングレンズを示す。 
 LD10を発光させると、放射されるレーザ光束は、カップリングレンズ12によりコリメートされて「平行」なレーザビームLFに変換される。 
 レーザビームLFは、調整用レンズ13に入射し、1方向に収束するレーザ光束LAに変換される。
FIG. 2 is a view for explaining another embodiment of the two-dimensional scanning laser beam projection apparatus. FIG. 2 (a) shows the entire apparatus in a simplified illustration.
As in FIG. 1, in FIG. 2A, reference numeral 10 denotes a semiconductor laser (LD), and reference numeral 12 denotes a coupling lens.
When the LD 10 emits light, the emitted laser beam is collimated by the coupling lens 12 and converted into a “parallel” laser beam LF.
The laser beam LF is incident on the adjustment lens 13 and is converted into a laser beam LA which converges in one direction.
 この実施の形態においては、LD10とカップリングレンズ12と調整用レンズ13とが「レーザ光源」を構成する。1方向に収束するレーザ光束LAは、ミラー40に入射して定方向へ反射される。 
 ミラー40は平面鏡で「レーザビームLAの光路を屈曲させる」ために設けられるが、装置のレイアウトによっては省略することもできる。 
 ミラー40により反射されたレーザビームLAは、1方向に収束しつつ、偏向装置14に入射する。 
 偏向装置14は「2軸のMEMS」として構成され、反射面を2次元的に揺動させて、反射光を2次元的に偏向させる。 
 偏向装置14の説明は、図1(b)に関する先の説明を援用する。
In this embodiment, the LD 10, the coupling lens 12 and the adjusting lens 13 constitute a "laser light source". The laser beam LA which converges in one direction is incident on the mirror 40 and reflected in a predetermined direction.
The mirror 40 is a plane mirror and is provided to "bent the light path of the laser beam LA", but may be omitted depending on the layout of the apparatus.
The laser beam LA reflected by the mirror 40 enters the deflection device 14 while converging in one direction.
The deflection device 14 is configured as a “two-axis MEMS”, and swings the reflection surface two-dimensionally to deflect the reflected light two-dimensionally.
The description of the deflecting device 14 incorporates the previous description with respect to FIG.
 2次元的に偏向されたレーザビームは、図1(a)に符号LDで示す如く、偏向装置14による「偏向の起点」を実質的な中心として、互いに直交する2方向へ周期的に偏向走査される。 
 2次元的に偏向走査されたレーザビームLDは、偏向角変倍素子18に入射する。偏向角変倍素子18は「偏向角変倍素子としての偏向角拡大素子」である。 
 偏向角変倍素子18は、図2に示す例では、凹シリンダレンズであり、入射側面18Aが「凹シリンダ面」をなし、射出側面18Bは「平面」となっている。 
 凹シリンダ面18Aの軸方向(パワーを持たない方向)を、便宜上「縦方向」、これに直交する面内で、縦方向に直交する方向を便宜上「横方向」と呼ぶ。 
 前述の「水平方向・鉛直方向」は、これら「縦方向・横方向」の1例である。
The two-dimensionally deflected laser beam is periodically scanned in two directions orthogonal to each other with a substantial center of "point of origin of deflection" by the deflection device 14 as indicated by a symbol LD in Fig. 1A. Be done.
The two-dimensionally deflected and scanned laser beam LD is incident on a deflection angle variable magnification element 18. The deflection angle variable magnification element 18 is a “deflection angle magnification element as a deflection angle magnification element”.
The deflection angle variable magnification element 18 is a concave cylinder lens in the example shown in FIG. 2, the incident side surface 18A forms a "concave cylinder surface", and the emission side surface 18B is a "plane".
The axial direction (the direction having no power) of the concave cylinder surface 18A is referred to as "longitudinal direction" for convenience, and the direction orthogonal to the longitudinal direction in a plane perpendicular thereto is referred to as "lateral direction" for convenience.
The above-mentioned "horizontal direction / vertical direction" is an example of these "longitudinal direction / horizontal direction".
 なお、以下において、シリンダ面の形状として「凹シリンダ面」を「凹のシリンダ面」とも言い、「凸シリンダ面」を「凸のシリンダ面」とも言う。 In addition, below, as a shape of a cylinder surface, a "concave cylinder surface" is also called "a concave cylinder surface", and a "convex cylinder surface" is also called a "convex cylinder surface."
 偏向走査されたレーザビームLDは、偏向角変倍素子18の入射側面18Aを、縦方向と横方向に2次元的に偏向走査する。 
 2次元的に偏向走査されて入射側面18Aに入射するレーザビームLDは、前述の如く、調整用レンズ13により1方向に収束傾向を与えられている。
 レーザビームLDの、この収束傾向は上記「横方向」に与えられている。
 レーザビームLDは、偏向角変倍素子18を縦横方向に偏向走査し、偏向角変倍素子18の射出側面から偏向角を拡大された偏向レーザビームLBとして射出する。
The deflected and scanned laser beam LD two-dimensionally scans the incident side surface 18A of the deflection angle variable magnification element 18 in the longitudinal direction and the transverse direction.
As described above, the laser beam LD which is two-dimensionally deflected and scanned and incident on the incident side surface 18A is given a converging tendency in one direction by the adjusting lens 13.
The convergence tendency of the laser beam LD is given in the "lateral direction".
The laser beam LD deflects and scans the deflection angle variable magnification element 18 in the longitudinal and lateral directions, and emits from the emission side surface of the deflection angle magnification element 18 as a deflected laser beam LB whose deflection angle is expanded.
 図2(b)は、レーザビームLDの偏向の様子を「縦方向から見た状態」を示す。即ち、この図の状態はレーザビームLDの横方向の偏向の様子を示している。 
 図2(b)において符号10Aは、LD10の発光部を示している。 
 前述の如く、LD10から放射されたレーザ光束はカップリングレンズ12により、平行なレーザビームLFに変換される。 
 そして、さらに調整用レンズ13により「横方向の収束傾向」を与えられたレーザビームLAとなって、収束状態で偏向装置16Aに入射して2次元的に偏向される。
FIG. 2B shows the state of deflection of the laser beam LD as seen from the vertical direction. That is, the state of this figure shows the state of the lateral deflection of the laser beam LD.
In FIG. 2B, reference numeral 10A indicates a light emitting portion of the LD 10.
As described above, the laser beam emitted from the LD 10 is converted by the coupling lens 12 into a parallel laser beam LF.
Then, the laser beam LA is given a “trapping tendency in the lateral direction” by the adjusting lens 13, and enters the deflecting device 16A in a converged state to be two-dimensionally deflected.
 偏向されたレーザビームLDは、縦方向から見ると、図2(b)に示すように、収束しつつ偏向角変倍素子18の入射側面18Aに入射する。 
 図2に示す実施の形態においては、偏向装置16Aによる「偏向の起点」は、入射側面18Aをなす「凹シリンダ面」のシリンダ軸上に実質的に位置する。 
 即ち、縦方向から見たとき、入射側面18Aは「偏向の起点を中心とする円弧形状」となっている。 
 このため、レーザビームLDは、縦方向から見ると「入射側面18Aに直交」するように入射し、横方向には屈折されない。
As shown in FIG. 2B, the deflected laser beam LD is incident on the incident side surface 18A of the deflection angle variable magnification element 18 while being converged as viewed from the vertical direction.
In the embodiment shown in FIG. 2, the "point of origin of deflection" by the deflecting device 16A is substantially located on the cylinder axis of the "concave cylinder surface" forming the incident side surface 18A.
That is, when viewed from the longitudinal direction, the incident side surface 18A has a “arc shape centered on the origin of deflection”.
For this reason, the laser beam LD is incident so as to be “perpendicular to the incident side surface 18A” when viewed from the longitudinal direction, and is not refracted in the lateral direction.
 レーザビームLDは、偏向角変倍素子18を透過すると射出側面18Bから射出する。 When the laser beam LD passes through the deflection angle variable magnification element 18, it emerges from the exit side surface 18B.
 射出側面18Bは平面であり、偏向レーザビームLBは屈折されて射出する。 
 即ち、横方向においては、偏向レーザビームLBは、射出側面18Bの屈折作用により、偏向角を拡大される。 
 偏向角変倍素子18は、シリンダレンズ13と以下のような位置関係で結ばれている。
The emission side surface 18B is a plane, and the polarized laser beam LB is refracted and emitted.
That is, in the lateral direction, the deflection laser beam LB is enlarged in deflection angle by the refracting action of the emission side surface 18B.
The deflection angle variable magnification element 18 is connected to the cylinder lens 13 in the following positional relationship.
 即ち、偏向角変倍素子18の物体側焦点(偏向角変倍素子18の射出側における「虚焦点」)の位置が、調整用レンズ13の「像側焦点の位置」と略合致する。 
 なお、調整用レンズ13の像側焦点の位置は、調整用レンズ13によるレーザビームLDが、偏向角変倍素子18の中心に向かって進行し「偏向角変倍素子18の作用を受けない」としたときの「一方向(横方向)の集光位置」である。 
 このような位置関係により、レーザビームLDが、入射側面18Aのシリンダ軸に直交する平面上で偏向走査されるとき、偏向レーザビームLBは平行光束になる。 
 そして、図2(b)に示すように偏向レーザビームLBの光束径は平行なレーザビームLFよりも細くなる。 
 従って、偏向レーザビームLBを投射する測距検出対象物を解像度良く照射できる。 
 図2(c)は、レーザビームLDの偏向の様子を、横方向から見た状態を示している。
That is, the position of the object-side focal point of the deflection angle variable magnification element 18 (“imaginary focal point” on the exit side of the deflection angle magnification element 18) substantially coincides with the “position of image side focus” of the adjustment lens 13.
The position of the image-side focal point of the adjusting lens 13 is such that the laser beam LD from the adjusting lens 13 travels toward the center of the deflection angle variable magnification element 18 and “does not receive the action of the deflection angle magnification element 18”. It is a "focusing position in one direction (lateral direction)" when
Due to such positional relationship, when the laser beam LD is deflected and scanned on a plane orthogonal to the cylinder axis of the incident side surface 18A, the deflected laser beam LB becomes a parallel luminous flux.
Then, as shown in FIG. 2B, the beam diameter of the deflected laser beam LB becomes thinner than the parallel laser beam LF.
Therefore, it is possible to illuminate the object of ranging detection which projects the polarized laser beam LB with high resolution.
FIG. 2C shows the state of deflection of the laser beam LD as viewed from the lateral direction.
 偏向角変倍素子18は入射側面18Aが「縦方向を軸とするシリンダ面」、射出側面18Bは平面である。 
 従って、縦方向には入射側面18A、射出側面18Bともに屈折力をもたない。 
 即ち、縦方向には偏向角の拡大は生じない。偏向されて入射するレーザビームLDは、縦方向には「偏向角を保った偏向レーザビームLB」として射出する。 
 このようにして、図2に即して説明した2次元走査型のレーザビーム投射装置は、縦横の2方向のうち、横方向について、レーザビームLDの偏向角を拡大して投射できる。
In the deflection angle variable magnification element 18, the incident side surface 18A is "a cylinder surface whose axis is in the vertical direction", and the emission side surface 18B is a plane.
Therefore, neither the incident side 18A nor the exit side 18B has refractive power in the vertical direction.
That is, the deflection angle does not increase in the vertical direction. The deflected and incident laser beam LD is emitted in the longitudinal direction as “a deflected laser beam LB maintaining a deflection angle”.
Thus, the two-dimensional scanning laser beam projection apparatus described with reference to FIG. 2 can expand and project the deflection angle of the laser beam LD in the lateral direction out of the two vertical and horizontal directions.
 即ち、図2に即して説明した2次元走査型のレーザビーム投射装置は「2次元的に偏向するレーザビームLBを放射するレーザビーム投射装置」である。 
 該装置は、レーザビームLAを放射するレーザ光源10、カップリングレンズ12、調整用レンズ13と、該レーザ光源から放射されたレーザビームLAを2次元的に偏向走査する偏向装置14を有する。 
 また、偏向装置14により2次元的に偏向走査されたレーザビームLDの偏向角を、互いに直交する2方向のうちの少なくとも一方において拡大する「偏向角変倍素子」として偏向角拡大素子である偏向角変倍素子18を有する。
That is, the two-dimensional scanning laser beam projection apparatus described with reference to FIG. 2 is a “laser beam projection apparatus that emits a two-dimensionally deflected laser beam LB”.
The apparatus comprises a laser light source 10 for emitting a laser beam LA, a coupling lens 12, a adjusting lens 13, and a deflector 14 for two-dimensionally deflecting and scanning a laser beam LA emitted from the laser light source.
In addition, a deflection angle expanding element is a deflection angle magnification element that expands a deflection angle of the laser beam LD two-dimensionally deflected and scanned by the deflection device 14 in at least one of two directions orthogonal to each other. An angular magnification element 18 is provided.
 互いに直交する2方向は、図2の例では縦・横2方向であり、偏向角の拡大は横方向において行われる。 
 偏向角拡大素子は入射側面18Aが凹面であり、2次元的に偏向走査されたレーザビームLDを透過させ、屈折により偏向角の拡大を行う偏向角変倍素子18である。 
 偏向角変倍素子18はまた、レーザビームLDの射出側面が平面である。
 そして、レーザビームLDの入射側面18Aは「凹シリンダ面」である。
The two directions orthogonal to each other are the vertical and horizontal two directions in the example of FIG. 2, and the expansion of the deflection angle is performed in the horizontal direction.
The deflection angle enlargement element is a deflection angle variable magnification element 18 which has a concave incident side surface 18A, transmits the two-dimensionally deflected scanning laser beam LD, and expands the deflection angle by refraction.
The deflection angle variable magnification element 18 is also flat on the exit side of the laser beam LD.
The incident side surface 18A of the laser beam LD is a "concave cylinder surface".
 図2に示す2次元走査型のレーザビーム投射装置は、偏向角変倍素子18に入射するレーザビームLDを、収束状態で偏向角変倍素子に入射させる集光光学系13を有する。 
 また、偏向角変倍素子18は、レーザビームLDの入射側面18Aが凹シリンダ面、射出側面18Bが平面である。 
 そして、2次元的に偏向されるレーザビームLDの偏向中心が、凹シリンダ面18Aの略シリンダ軸上に位置する。
The two-dimensional scanning type laser beam projection apparatus shown in FIG. 2 has a focusing optical system 13 which causes the laser beam LD incident on the deflection angle variable magnification element 18 to be incident on the deflection angle magnification element in a converged state.
Further, in the deflection angle variable magnification element 18, the incident side surface 18A of the laser beam LD is a concave cylinder surface, and the emission side surface 18B is a flat surface.
Then, the deflection center of the two-dimensionally deflected laser beam LD is located on the substantially cylinder axis of the concave cylinder surface 18A.
 さらに、2次元的に偏向されるレーザビームLDが「1方向的に収束状態」とされて、偏向角変倍素子18に入射する。 
 偏向角変倍素子18に偏向角:0で入射するレーザビームLDが1方向的に集光する仮想的な集光位置は、偏向角変倍素子の「横方向における物体側焦点位置」である。 
 偏向角変倍素子18は、横方向には負レンズであるから「横方向における物体側焦点」は、偏向角変倍素子18の射出側に存在し「虚焦点」である。
 従って、偏向角変倍素子18から射出する偏向レーザビームLBは「平行ビーム」となる。
Further, the two-dimensionally deflected laser beam LD is brought into the “one-directionally convergent state”, and enters the deflection angle variable magnification element 18.
The virtual condensing position at which the laser beam LD incident on the deflection angle variable magnification element 18 at a deflection angle of 0 converges in one direction is the “object-side focal position in the lateral direction” of the deflection angle magnification element. .
Since the deflection angle variable magnification element 18 is a negative lens in the lateral direction, the “object side focal point in the lateral direction” exists on the exit side of the deflection angle magnification element 18 and is a “virtual focus”.
Therefore, the deflected laser beam LB emitted from the deflection angle variable magnification element 18 becomes a "parallel beam".
 さらに具体的には「レーザ光源」は、LD10から放射されるレーザ光束を平行光束化する「コリメート素子」としてカップリングレンズ12を有する。 
 また、このコリメート素子により平行光束化されたレーザビームLFを一方向的に集光する「集光レンズ」として、調整用レンズ13を有する。 
 該調整用レンズ13により一方向に集光されたレーザビームLAを、偏向装置16Aにより2次元的に偏向させて、偏向角変倍素子18の凹シリンダ面18Aに入射させる。
More specifically, the “laser light source” includes the coupling lens 12 as a “collimator” that collimates the laser beam emitted from the LD 10.
In addition, the adjustment lens 13 is provided as a “condensing lens” that condenses the laser beam LF collimated by the collimating element in one direction.
The laser beam LA condensed in one direction by the adjusting lens 13 is two-dimensionally deflected by the deflection device 16A, and is incident on the concave cylinder surface 18A of the deflection angle variable magnification element 18.
 図2に即して説明した実施の形態では、偏向角の拡大は、偏向角変倍素子の凹シリンダ面ではなく、射出面18Bをなす平面による屈折で行っている。 
 しかし、これに限らず、偏向角変倍素子の入射側面にも「屈折による偏向角拡大」の機能を付与してもよいことは言うまでもない。 
 例えば、図2の実施の形態例において、偏向角変倍素子18の入射側面を「2次元的な凹面」とし、この凹面に「縦横両方向の屈折機能」を付与することもできる。 
 このようにすると、偏向されたレーザビームLDの偏向角を、横方向のみならず縦方向にも拡大できる。
In the embodiment described with reference to FIG. 2, the expansion of the deflection angle is performed not by the concave cylinder surface of the deflection angle variable magnification element but by refraction by the plane forming the emission surface 18B.
However, it is needless to say that the function of “deflection angle expansion due to refraction” may be provided not only to this but also to the incident side surface of the deflection angle variable magnification element.
For example, in the embodiment shown in FIG. 2, the incident side of the deflection angle variable magnification element 18 may be a "two-dimensional concave surface", and the concave surface may be provided with a "refractive function in both longitudinal and lateral directions".
In this way, the deflection angle of the deflected laser beam LD can be expanded not only in the lateral direction but also in the longitudinal direction.
 また、上記2次元的な凹面の持つパワーを「縦方向と横方向とで異ならせ」れば、縦方向と横方向とで偏向角拡大倍率を異ならせることができる。 
 偏向角変倍素子18のレンズ面は、少なくとも一方に「非球面もしくは自由曲面」を用いることにより、偏向レーザビームLBの偏向方向を精度良く調整できる。 
 図3は、2次元走査型のレーザビーム投射装置の、1実施形態の全体構成の1例を説明するための図である。 
 レーザ光源から偏向角変倍素子に到る光学系の構成は、図1と同様である。 
 レーザ光源10、カップリングレンズ12、調整用レンズ13から偏向角変倍素子18に至る光学系は、外囲ハウジングCSの内部に収納されている。
Further, when the power of the two-dimensional concave surface is "different in the longitudinal direction and the lateral direction", the deflection angle enlargement magnification can be made different in the longitudinal direction and the lateral direction.
By using “aspheric or free-form surface” at least one of the lens surfaces of the deflection angle variable magnification element 18, the deflection direction of the deflection laser beam LB can be adjusted with high accuracy.
FIG. 3 is a view for explaining an example of the entire configuration of an embodiment of a two-dimensional scanning laser beam projection apparatus.
The configuration of an optical system from the laser light source to the deflection angle variable magnification element is the same as that shown in FIG.
An optical system from the laser light source 10, the coupling lens 12, and the adjustment lens 13 to the deflection angle variable magnification element 18 is housed inside the envelope housing CS.
 この実施の形態の特徴とするところは、偏向角変倍素子18が装置の外囲ハウジングCSのビーム射出部を兼ねている点にある。 
 このようにすると、偏向角変倍素子18に「外囲ハウジングCSの防塵ガラス」としての機能を兼ねさせることができ、部品点数を削減して装置コストの低減を図れる。
A feature of this embodiment is that the deflection angle variable magnification element 18 doubles as a beam emitting portion of the envelope housing CS of the apparatus.
In this way, the deflection angle variable magnification element 18 can also function as the "dust-proof glass of the envelope housing CS", and the number of parts can be reduced to reduce the apparatus cost.
 図4は、レーザレーダ装置の実施の1形態を要部のみ説明図的に示している。 
 図の「下方に描かれた部分」は、図2に即して説明した2次元走査型のレーザビーム投射装置であり、図の上方の部分は「受光手段」を示している。
 2次元走査型のレーザビーム投射装置は、偏向レーザビームLBを2次元的に偏向走査して、検出対象物(測距の対象となる物体)に投射する。
FIG. 4 is an explanatory view schematically showing only the main part of an embodiment of the laser radar device.
The "portion drawn below" in the figure is the two-dimensional scanning laser beam projection apparatus described with reference to FIG. 2, and the upper part in the figure indicates "light receiving means".
The two-dimensional scanning type laser beam projection apparatus two-dimensionally deflects and scans the polarized laser beam LB and projects it onto a detection target (an object to be subjected to distance measurement).
 「受光手段」は、2次元的に走査された偏向レーザビームLBを投射された検出対象物で拡散反射された反射レーザ光LOを受光する手段である。 
 受光手段は、受光素子20と、反射レーザ光LOを受光素子20に集光する集光用光学系22とを有する。 
 レーザレーダ装置はまた、レーザビーム投射装置のレーザ光源の点滅を制御し、受光素子20の出力に対して必要な演算を行う制御演算手段を有する。
The “light receiving means” is a means for receiving the reflected laser light LO diffused and reflected by the detection target onto which the two-dimensionally scanned deflected laser beam LB is projected.
The light receiving means has a light receiving element 20 and a focusing optical system 22 for focusing the reflected laser light LO onto the light receiving element 20.
The laser radar device also has control calculation means for controlling the blinking of the laser light source of the laser beam projection device and performing necessary calculations on the output of the light receiving element 20.
 レーザ光源を点灯して、偏向レーザビームLBを2次元的に走査して、検出対象物に投射し、反射レーザ光LOを受光素子20で受光する。 
 このようにして「レーザ光が物体まで往復する時間:T」を検出して、光速:cを用いて、距離:DSをcT/2として検出する。 
 偏向レーザビームLBの2次元的な走査に応じて、測定対象である「検出対象物までの距離」を2次元的に測定できる。 
 あるいはまた、レーザ光源から位相変調したレーザ光束を放射し、受光素子20で受光した反射レーザ光LOとの位相差を検出して、距離を求めることもできる。 
 これら、の測距方式は、既に周知であるので詳細な説明は省略する。
The laser light source is turned on, and the polarized laser beam LB is scanned two-dimensionally to be projected on the detection target, and the reflected laser light LO is received by the light receiving element 20.
In this way, "time for laser light to travel to the object: T" is detected, and using the speed of light c, the distance: DS is detected as cT / 2.
According to the two-dimensional scanning of the polarized laser beam LB, the “distance to the detection target” to be measured can be two-dimensionally measured.
Alternatively, the distance can be determined by emitting a phase-modulated laser beam from the laser light source and detecting a phase difference from the reflected laser beam LO received by the light receiving element 20.
Since these ranging methods are already known, detailed description will be omitted.
 「2次元測距装置」は、各種方式のものが種々知られている。 
 図4に示した例では、反射レーザ光LOを、偏向角変倍素子18とは別体の集光用光学系22により受光素子20に集光させる所謂「2軸型」である。 
 しかし、偏向角変倍素子18自体を「集光用光学系として用いる共軸型」のレーザレーダ装置とすることも可能である。 
 この発明の2次元走査型のレーザビーム投射装置は、これら種々のレーザレーダ装置におけるレーザビーム投射部として、好適に使用可能である。
Various types of "two-dimensional distance measuring devices" are known.
In the example shown in FIG. 4, it is a so-called “biaxial type” in which the reflected laser light LO is condensed on the light receiving element 20 by the condensing optical system 22 separate from the deflection angle variable magnification element 18.
However, it is also possible to make the deflection angle variable magnification element 18 itself a "coaxial type" laser radar device that uses it as a focusing optical system.
The two-dimensional scanning laser beam projection apparatus of the present invention can be suitably used as a laser beam projection unit in these various laser radar apparatuses.
 上に、図2に即して実施の形態を説明したレーザビーム投射装置では、偏向角変倍素子18による偏向角の拡大は「横方向」において行われる。 
 しかしこれに限らず、偏向角の拡大を「縦横両方向」において行うことができる。 
 即ち、上に説明した例において、偏向角変倍素子18に変えて、入射側面および射出側面の少なくとも一方を2次元的な曲面とし、2次元的な曲面による屈折を利用して、互いに直交する2方向に「偏向角の拡大」を行うことができる。
In the laser beam projection apparatus of the embodiment described above with reference to FIG. 2, the expansion of the deflection angle by the deflection angle variable magnification element 18 is performed in the “lateral direction”.
However, the present invention is not limited to this, and the expansion of the deflection angle can be performed in "both the longitudinal and lateral directions".
That is, in the example described above, instead of the deflection angle variable magnification element 18, at least one of the incident side surface and the emission side surface is made a two-dimensional curved surface, and using two dimensional curved surface refraction, they are orthogonal to each other. It is possible to carry out "expansion of deflection angle" in two directions.
 例えば、上に説明した例において、偏向角変倍素子18は、入射側の面が凹シリンダ面であるが、これに代えて「2次元的な凹面」とすることができる。 
 2次元的な凹面は「凹球面」であることも、互いに直交する方向で曲率の異なる「アナモフィックな凹面」であることもできる。 
 アナモフィックな凹面を用いれば、互いに直交する2方向で、偏向角拡大の拡大倍率を異ならせて設定できる。
For example, in the example described above, the surface on the incident side of the deflection angle variable magnification element 18 is a concave cylinder surface, but it may be replaced by a “two-dimensional concave surface”.
The two-dimensional concave surface may be a "concave spherical surface" or an "anamorphic concave surface" having different curvatures in directions orthogonal to each other.
If an anamorphic concave surface is used, it is possible to set the enlargement factors of deflection angle enlargement differently in two directions orthogonal to each other.
 上に説明した例において、偏向角変倍素子18は、射出側の面が平面であるが、射出側の面形状は、これに限らず、凸面や凹面であることができる。
 これら「凸面や凹面」も、凸や凹のシリンダ面であることもできるし、光軸回転対称な凸球面・凹球面でも、アナモフィックな凸面・凹面でもよい。
 図2に即して説明したレーザビーム投射装置は、レーザ光源が「LD10とともに、LD10からのレーザ光束を平行光束化するカップリングレンズ12としてコリメート素子12と、コリメート素子により平行光束化されたレーザビームを、少なくとも1方向に集光させる調整用レンズとして集光レンズ13と」を有する。 
 そして、集光レンズ13により集光されたレーザビームLAを、偏向装置14により2次元的に偏向させて、偏向角変倍素子18に入射させるように構成されている。 
 偏向角変倍素子18に偏向角:0で入射するレーザビームLDは、偏向角変倍素子18の「横方向における物体側焦点」が占めるべき位置において、1方向的に集光する。
In the example described above, the surface on the exit side of the deflection angle variable magnification element 18 is a plane, but the surface shape on the exit side is not limited to this, and may be a convex surface or a concave surface.
The “convex surface or concave surface” may also be a convex or concave cylinder surface, a convex spherical surface or a concave spherical surface with rotational symmetry of the optical axis, or an anamorphic convex surface or concave surface.
In the laser beam projection apparatus described with reference to FIG. 2, “the laser light source is a laser that is collimated by the collimator element 12 as the coupling lens 12 that collimates the laser beam from the LD 10 together with the LD 10. And a condenser lens 13 as an adjustment lens for condensing the beam in at least one direction.
The laser beam LA focused by the focusing lens 13 is two-dimensionally deflected by the deflecting device 14 to be incident on the deflection angle variable magnification element 18.
The laser beam LD incident on the deflection angle varying element 18 at a deflection angle of 0 converges in one direction at a position where the “object side focal point in the lateral direction” of the deflection angle changing element 18 should be occupied.
 ここで、「拡大コンセントリック係数:CE」を以下の如く定義する。 
 図5に示す如く、偏向装置16Aによる「偏向の起点」と偏向角変倍素子18の入射面18Aとの間隔を「L」とする。 
 また、偏向角変倍素子18の入射面側18Aの曲率半径を「R(<0)」とする。
Here, "the expansion concentric coefficient: CE" is defined as follows.
As shown in FIG. 5, the distance between the “point of origin of deflection” by the deflecting device 16A and the incident surface 18A of the deflection angle variable element 18 is “L”.
Further, the curvature radius of the incident surface side 18A of the deflection angle variable magnification element 18 is set to "R (<0)".
 このとき、拡大コンセントリック係数:CEは、以下のように定義される。 
 CE=L/(-R)                  。
At this time, the expansion concentric coefficient: CE is defined as follows.
CE = L / (-R).
 偏向角変倍素子18の入射面18Aが、凹シリンダ面であるときは、曲率半径:Rは、無曲率な方向(シリンダ面の軸方向)に直交する方向の曲率半径である。 
 入射面が2次元的な凹面であれば、互いに直交する2方向(上の例で縦横2方向)の曲率半径であり、これらをRA、RBとする。凹球面の場合はRA=RB=Rである。 
 拡大コンセントリック係数:CEは、条件:
 (1) 0.8<CE<1.5 
を満足することが好ましい。 
 2次元の凹面の場合には、上記直交2方向の曲率半径:RA、RBに対して上記条件が満足されることが好ましい。
When the incident surface 18A of the deflection angle variable magnification element 18 is a concave cylinder surface, the radius of curvature R is a radius of curvature in a direction orthogonal to the direction without curvature (the axial direction of the cylinder surface).
If the incident surface is a two-dimensional concave surface, the radii of curvature are in two directions (two vertical and two directions in the above example) orthogonal to each other, and these are referred to as RA and RB. In the case of a concave spherical surface, RA = RB = R.
Expanded concentric coefficient: CE, condition:
(1) 0.8 <CE <1.5
It is preferable to satisfy
In the case of a two-dimensional concave surface, it is preferable that the above conditions are satisfied with respect to the radiuses of curvature: RA and RB in the orthogonal two directions.
 コンセントリック係数:CEが、条件(1)の範囲外では、偏向角を拡大されたレーザビームのビーム径が2倍以上に増大し易く、検出対象物に投射されるとき解像力が低下し易い。 
 また、偏向角を拡大されたレーザビームの拡大の程度を表す「角度ディストーション」は、0.8以下では減少する傾向にあり、偏向角の「拡大の程度」が小さくなる。
If the concentric coefficient: CE is outside the range of the condition (1), the beam diameter of the laser beam whose deflection angle is expanded is likely to increase twice or more, and the resolution tends to be lowered when projected onto the detection target.
Also, “angular distortion”, which indicates the degree of expansion of the laser beam whose deflection angle is expanded, tends to decrease at 0.8 or less, and the “degree of expansion” of the deflection angle decreases.
 以下、図2に即して説明した2次元走査型のレーザビーム投射装置に関連した光学系部分の具体的な数値を実施例として挙げる。 
 以下において「距離:L」は、図5に即して説明した「偏向装置による偏向の起点と偏向角変倍素子の入射面との間隔」である。 
 「距離:SL」は、集光レンズ(調整用レンズ)13と上記入射面との距離(入射角が0のときの距離)である。
Hereinafter, specific numerical values of the optical system portion related to the two-dimensional scanning laser beam projection apparatus described with reference to FIG. 2 will be described as an example.
In the following, “distance: L” is “the distance between the origin of deflection by the deflection device and the incident surface of the deflection angle variable magnification element” described with reference to FIG.
“Distance: SL” is the distance between the condensing lens (adjustment lens) 13 and the incident surface (the distance when the incident angle is 0).
 「実施例1」
実施例1に関する偏向角変倍素子、調整用レンズ、およびこれらのレイアウト、拡大コンセントリック係数を表1に示す。
"Example 1"
The deflection angle variable magnification element, the adjusting lens, their layout, and the enlargement concentric coefficient according to Example 1 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 「偏向角」
 以下に、実施例1における偏向角のデータを示す。 
 互いに直交する方向をα、βとし、αは「横方向」、βは「縦方向」である。 
 「α方向におけるレーザビームの偏向角の拡大のデータ」を表2に示す。
"Deflecting angle"
The data of the deflection angle in Example 1 is shown below.
Let α and β be directions orthogonal to each other, where α is the “horizontal direction” and β is the “vertical direction”.
“Data of expansion of deflection angle of laser beam in α direction” is shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 「α方向の角度ディストーション」
 α方向の角度ディストーションを表3に示す。
"Angular distortion in the α direction"
The angular distortion in the α direction is shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 「β方向におけるレーザビームの偏向角の拡大のデータ」
 β方向におけるレーザビームの偏向角の拡大のデータを角度ディストーションとして、表4に示す。
"Data of expansion of deflection angle of laser beam in β direction"
The data of expansion of the deflection angle of the laser beam in the β direction is shown in Table 4 as angular distortion.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 偏向角を拡大されたレーザビームのビーム径をα方向に関して表5に示す。 The beam diameter of the laser beam whose deflection angle has been expanded is shown in Table 5 with respect to the α direction.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 「実施例2」
実施例2に関する偏向角変倍素子、調整用レンズ、およびこれらのレイアウト、拡大コンセントリック係数を表6に示す。
"Example 2"
The deflection angle variable magnification element, the adjusting lens, their layout, and the enlargement concentric coefficient according to Example 2 are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 「偏向角」
 以下に、実施例2における偏向角のデータを、実施例1に倣って示す。 
 「α方向におけるレーザビームの偏向角の拡大のデータ」を表7に示す。
"Deflecting angle"
The data of the deflection angle in the second embodiment will be shown below in accordance with the first embodiment.
“Data of expansion of deflection angle of laser beam in α direction” is shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 「α方向の角度ディストーション」
 α方向の角度ディストーションを表8に示す。
"Angular distortion in the α direction"
The angular distortion in the α direction is shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 「β方向におけるレーザビームの偏向角の拡大のデータ」
 β方向におけるレーザビームの偏向角の拡大のデータを角度ディストーションとして、表9に示す。
"Data of expansion of deflection angle of laser beam in β direction"
The data of expansion of the deflection angle of the laser beam in the β direction is shown in Table 9 as angular distortion.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 偏向角を拡大されたレーザビームのビーム径をα方向に関して表10に示す。 The beam diameter of the laser beam whose deflection angle has been expanded is shown in Table 10 with respect to the α direction.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 「実施例3」
実施例3に関する偏向角変倍素子、調整用レンズ、およびこれらのレイアウト、拡大コンセントリック係数を表11に示す。
"Example 3"
The deflection angle variable magnification element, the adjusting lens, their layout, and the enlargement concentric coefficient according to Example 3 are shown in Table 11.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 「偏向角」 
 以下に、実施例3における偏向角のデータを示す。 
 「α方向におけるレーザビームの偏向角の拡大のデータ」を表12に示す。
"Deflecting angle"
The data of the deflection angle in Example 3 is shown below.
“Data of expansion of deflection angle of laser beam in α direction” is shown in Table 12.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 「α方向の角度ディストーション」
 α方向の角度ディストーションを表13に示す。
"Angular distortion in the α direction"
The angular distortion in the α direction is shown in Table 13.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 「β方向におけるレーザビームの偏向角の拡大のデータ」
 β方向におけるレーザビームの偏向角の拡大のデータを角度ディストーションとして、表14に示す。
"Data of expansion of deflection angle of laser beam in β direction"
The data of expansion of the deflection angle of the laser beam in the β direction is shown in Table 14 as angular distortion.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 偏向角を拡大されたレーザビームのビーム径をα方向に関して表15に示す。 The beam diameter of the laser beam whose deflection angle has been expanded is shown in Table 15 with respect to the α direction.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 「実施例4」 
実施例4に関する偏向角変倍素子、調整用レンズ、およびこれらのレイアウト、拡大コンセントリック係数を表16に示す。
"Example 4"
The deflection angle variable magnification element, the adjusting lens, their layout, and the enlargement concentric coefficient according to Example 4 are shown in Table 16.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 「偏向角」
 以下に、実施例4における偏向角のデータを示す。 
 「α方向におけるレーザビームの偏向角の拡大のデータ」を表17に示す。
"Deflecting angle"
The data of the deflection angle in Example 4 is shown below.
“Data of expansion of deflection angle of laser beam in α direction” is shown in Table 17.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 「α方向の角度ディストーション」
 α方向の角度ディストーションを表18に示す。
"Angular distortion in the α direction"
The angular distortion in the α direction is shown in Table 18.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 「β方向におけるレーザビームの偏向角の拡大のデータ」
 β方向におけるレーザビームの偏向角の拡大のデータを角度ディストーションとして、表19に示す。
"Data of expansion of deflection angle of laser beam in β direction"
The data of the expansion of the deflection angle of the laser beam in the β direction is shown in Table 19 as angular distortion.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 偏向角を拡大されたレーザビームのビーム径をα方向に関して表20に示す。 The beam diameter of the laser beam whose deflection angle has been expanded is shown in Table 20 with respect to the α direction.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 「実施例5」
 実施例5に関する偏向角変倍素子、調整用レンズ、およびこれらのレイアウト、拡大コンセントリック係数を表21に示す。
"Example 5"
Deflection angle variable magnification elements, adjustment lenses, layouts thereof, and enlargement concentric coefficients according to Example 5 are shown in Table 21.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 「偏向角」
 以下に、実施例5における偏向角のデータを示す。 
 「α方向におけるレーザビームの偏向角の拡大のデータ」を表22に示す。
"Deflecting angle"
The data of the deflection angle in Example 5 is shown below.
“Data of expansion of deflection angle of laser beam in α direction” is shown in Table 22.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 「α方向の角度ディストーション」
 α方向の角度ディストーションを表23に示す。
"Angular distortion in the α direction"
The angular distortion in the α direction is shown in Table 23.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 偏向角変倍素子はβ方向にはパワーを持たないので、β方向における角度ディストーションは0である。 
 偏向角を拡大されたレーザビームのビーム径をα方向に関して表24に示す。
Since the deflection angle variable magnification element has no power in the β direction, the angular distortion in the β direction is zero.
The beam diameter of the laser beam whose deflection angle has been expanded is shown in Table 24 with respect to the α direction.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 「実施例6」
 実施例6に関する偏向角変倍素子、調整用レンズ、およびこれらのレイアウト、拡大コンセントリック係数を表25に示す。
"Example 6"
Deflection angle variable magnification elements, adjustment lenses, layouts thereof, and enlargement concentric coefficients according to Example 6 are shown in Table 25.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 「偏向角」
 以下に、実施例6における偏向角のデータを示す。 
 「α方向におけるレーザビームの偏向角の拡大のデータ」を表26に示す。
"Deflecting angle"
The data of the deflection angle in Example 6 is shown below.
“Data of expansion of deflection angle of laser beam in α direction” is shown in Table 26.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 「α方向の角度ディストーション」
 α方向の角度ディストーションを表27に示す。
"Angular distortion in the α direction"
The angular distortion in the α direction is shown in Table 27.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 偏向角変倍素子はβ方向にはパワーを持たないので、β方向における角度ディストーションは0である。 
 偏向角を拡大されたレーザビームのビーム径をα方向に関して表28に示す。
Since the deflection angle variable magnification element has no power in the β direction, the angular distortion in the β direction is zero.
The beam diameters of the laser beams whose deflection angles are expanded are shown in Table 28 with respect to the α direction.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 「実施例7」 
実施例7に関する偏向角変倍素子、調整用レンズ、およびこれらのレイアウト、拡大コンセントリック係数を表29に示す。
"Example 7"
Deflection angle variable magnification elements, adjustment lenses, layouts thereof, and enlargement concentric coefficients according to Example 7 are shown in Table 29.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 「偏向角」
 以下に、実施例7における偏向角のデータを示す。 
 「α方向におけるレーザビームの偏向角の拡大のデータ」を表30に示す。
"Deflecting angle"
The data of the deflection angle in Example 7 is shown below.
“Data of expansion of deflection angle of laser beam in α direction” is shown in Table 30.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 「α方向の角度ディストーション」
 α方向の角度ディストーションを表31に示す。
"Angular distortion in the α direction"
The angular distortion in the α direction is shown in Table 31.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 偏向角変倍素子はβ方向にはパワーを持たないので、β方向における角度ディストーションは0である。 
 偏向角を拡大されたレーザビームのビーム径をα方向に関して表32に示す。
Since the deflection angle variable magnification element has no power in the β direction, the angular distortion in the β direction is zero.
The beam diameter of the laser beam whose deflection angle has been expanded is shown in Table 32 with respect to the α direction.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 「実施例8」
 実施例8に関する偏向角変倍素子、調整用レンズ、およびこれらのレイアウト、拡大コンセントリック係数を表33に示す。
"Example 8"
Deflection angle variable magnification elements, adjustment lenses, layouts thereof, and enlargement concentric coefficients according to Example 8 are shown in Table 33.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 「偏向角」
 以下に、実施例8における偏向角のデータを示す。 
 「α方向におけるレーザビームの偏向角の拡大のデータ」を表34に示す。
"Deflecting angle"
The data of the deflection angle in Example 8 is shown below.
“Data of expansion of deflection angle of laser beam in α direction” is shown in Table 34.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 「α方向の角度ディストーション」
 α方向の角
度ディストーションを表35に示す。
"Angular distortion in the α direction"
The angular distortion in the α direction is shown in Table 35.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 偏向角変倍素子はβ方向にはパワーを持たないので、β方向における角度ディストーションは0である。 
 偏向角を拡大されたレーザビームのビーム径をα方向に関して表36に示す。
Since the deflection angle variable magnification element has no power in the β direction, the angular distortion in the β direction is zero.
The beam diameter of the laser beam whose deflection angle has been expanded is shown in Table 36 with respect to the α direction.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 「実施例9」
 実施例9に関する偏向角変倍素子、調整用レンズ、およびこれらのレイアウト、拡大コンセントリック係数を表37に示す。
"Example 9"
The deflection angle variable magnification element, the adjusting lens, their layouts, and the enlargement concentric coefficient according to Example 9 are shown in Table 37.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 「偏向角」
 以下に、実施例9における偏向角のデータを示す。 
 「α方向におけるレーザビームの偏向角の拡大のデータ」を表38に示す。
"Deflecting angle"
The data of the deflection angle in Example 9 is shown below.
“Data of expansion of deflection angle of laser beam in α direction” is shown in Table 38.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 「α方向の角度ディストーション」
 α方向の角度ディストーションを表39に示す。
"Angular distortion in the α direction"
The angular distortion in the α direction is shown in Table 39.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 偏向角変倍素子はβ方向にはパワーを持たないので、β方向における角度ディストーションは0である。 
 偏向角を拡大されたレーザビームのビーム径をα方向に関して表40に示す。
Since the deflection angle variable magnification element has no power in the β direction, the angular distortion in the β direction is zero.
The beam diameter of the laser beam whose deflection angle has been expanded is shown in Table 40 with respect to the α direction.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
 「実施例10」 
 実施例10に関する偏向角変倍素子、調整用レンズ、およびこれらのレイアウト、拡大コンセントリック係数を表41に示す。
"Example 10"
The deflection angle variable magnification element, the adjusting lens, their layout, and the enlargement concentric coefficient according to Example 10 are shown in Table 41.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 「偏向角」
 以下に、実施例10における偏向角のデータを示す。 
 「α方向におけるレーザビームの偏向角の拡大のデータ」を表42に示す。
"Deflecting angle"
The data of the deflection angle in Example 10 is shown below.
“Data of expansion of deflection angle of laser beam in α direction” is shown in Table 42.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 「α方向の角度ディストーション」
 α方向の角度ディストーションを表43に示す。
"Angular distortion in the α direction"
The angular distortion in the α direction is shown in Table 43.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 偏向角変倍素子はβ方向にはパワーを持たないので、β方向における角度ディストーションは0である。 
 偏向角を拡大されたレーザビームのビーム径をα方向に関して表44に示す。
Since the deflection angle variable magnification element has no power in the β direction, the angular distortion in the β direction is zero.
The beam diameter of the laser beam whose deflection angle has been expanded is shown in Table 44 with respect to the α direction.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 実施例1~10に示すように、偏向装置による偏向角:±30度を「±60度以上に拡大」することができた。 
 また、偏向角を拡大されたレーザビームのビーム径の変動も2倍を超えることがない。
As shown in Examples 1 to 10, the deflection angle by the deflection device: ± 30 degrees could be “expanded to ± 60 degrees or more”.
Also, the variation of the beam diameter of the laser beam whose deflection angle is expanded does not exceed twice.
 なお、「角度ディストーション」は、以下のように定義される。 
 偏向装置16Aの反射面を0.5度傾けたときの、偏向角変倍素子18による走査偏向角を「θ0」とし、前記反射面を角度「θ」だけ傾けたときの走査偏向角を「θ1」とする。 
 このとき「角度ディストーション」は、以下のように算出される。 
 [{θ1/(θ0×2θ)}×100]-100(%)    
 例えば、上述の実施例1の場合を例にとり、α方向における偏向装置によるθ=15度のときの角度ディストーションを算出してみる。
The “angular distortion” is defined as follows.
Assuming that the scanning deflection angle by the deflection angle variable magnification element 18 is “θ 0” when the reflecting surface of the deflecting device 16A is inclined 0.5 degrees, the scanning deflection angle when the reflecting surface is inclined by an angle “θ” is “ It is assumed that θ1.
At this time, the “angular distortion” is calculated as follows.
[{Θ1 / (θ0 × 2θ)} × 100]-100 (%)
For example, taking the case of the first embodiment described above as an example, the angular distortion at θ = 15 degrees by the deflecting device in the α direction will be calculated.
 偏向装置の反射面が0.5度傾いたときに反射されたレーザ光が、偏向角変倍素子に入射するときの偏向角をθ0は1.78度である。 
 従って、30θ0=30×1.78=53.4度である。一方、θ=15度(偏向装置の偏向角は30°)のときの拡大された偏向角:θ1は表1から62.92度である。 
 従って、α方向の角度ディストーションは、
 (62.92/53.4)×100-100=17.827 
となる。従って「拡大された偏向角が60度における角度ディストーション」は、表2に示すように17.83になる。
When the reflecting surface of the deflecting device is inclined by 0.5 degrees, the reflected laser beam enters a deflection angle variable magnification element, and the deflection angle θ0 is 1.78 degrees.
Therefore, 30θ0 = 30 × 1.78 = 53.4 degrees. On the other hand, the enlarged deflection angle when θ = 15 degrees (the deflection angle of the deflection device is 30 °): θ1 is 62.92 degrees from Table 1.
Therefore, the angular distortion in the α direction is
(62.92 / 53.4) x 100-100 = 17.827
It becomes. Therefore, the "angular distortion at an enlarged deflection angle of 60 degrees" is 17.83 as shown in Table 2.
 実施例5以下の各実施例では、偏向角変倍素子18がβ方向にパワーを持たないので、上記角度ディストーションの定義式における右辺カッコ内の分数の、分子・分母が等しくなるため、角度ディストーションは0となる。 
 因みに、偏向角:θ0は、実施例1~10において、以下の通りである。
 実施例1(1.78)、実施例2(1.71)、実施例3(1.94)、実施例4(1.82)、実施例5(1.78)、実施例6(1.71)、実施例7(1.94)、実施例8(1.82)、実施例9(1.67)、実施例10(1.97)。
Embodiment 5 In each of the following embodiments, since the deflection angle variable magnification element 18 has no power in the β direction, the numerator and denominator of the fraction in the right side parenthesis in the definition equation of the above angle distortion become equal. Is zero.
Incidentally, the deflection angle: θ 0 is as follows in Examples 1 to 10.
Example 1 (1.78), Example 2 (1.71), Example 3 (1.94), Example 4 (1.82), Example 5 (1.78), Example 6 (1. 71), Example 7 (1.94), Example 8 (1.82), Example 9 (1.67), Example 10 (1.97).
 また、拡大された偏向角:θ1は、実施例1~10において、以下の通りである。 
 実施例1(62.92)、実施例2(62.86)、実施例3(62.88)、実施例4(62.92)、実施例5(62.92)、実施例6(62.86)、実施例7(62.88)、実施例8(62.92)、実施例9(62.89)、実施例10(62.91)。 
 これらの値を用いることにより、上記定義式に従って、各実施例に示したα方向の角度ディストーションが得られる。
Further, the enlarged deflection angle: θ 1 is as follows in Examples 1 to 10.
Example 1 (62.92), Example 2 (62.86), Example 3 (62.88), Example 4 (62.92), Example 5 (62.92), Example 6 (62) 86), Example 7 (62.88), Example 8 (62.92), Example 9 (62.89), Example 10 (62.91).
By using these values, the angular distortion in the α direction shown in each embodiment can be obtained according to the above definition formula.
 この発明が、上に説明した実施の形態や実施例に限定されるものでないことは言うまでもない。上に説明した実施の形態や実施例に限らず、種々の実施形態等が可能である。 It goes without saying that the present invention is not limited to the embodiments and examples described above. The present invention is not limited to the embodiments and examples described above, and various embodiments and the like are possible.
 図6は、レーザレーダ装置の実施の別の形態を説明するための図であり、要部を説明的に示している。 
 この実施の形態のレーザレーダ装置は「共軸型(以下「共軸系」とも言う。)」である。 
 図6において、符号10は従前どおり「半導体レーザ(「LD10」)」を示す。 
 符号12は「コリメートレンズ」を示し、符号13Bは「調整用レンズ」、符号40は「照射用の光路を折り返すミラー」を示す。 
 コリメートレンズ12は、図1や図2~図5の実施の形態の説明において「カップリングレンズ12」と呼んだものである。
FIG. 6 is a diagram for explaining another embodiment of the laser radar device, and illustrates the main parts in an explanatory manner.
The laser radar device of this embodiment is a "coaxial type" (hereinafter also referred to as "coaxial system").
In FIG. 6, reference numeral 10 denotes the "semiconductor laser (" LD 10 ")" as before.
The reference numeral 12 denotes a "collimator lens", the reference numeral 13B denotes a "adjustment lens", and the reference numeral 40 denotes a "mirror for turning back the light path for illumination".
The collimator lens 12 is called “coupling lens 12” in the description of the embodiment of FIGS. 1 and 2 to 5.
 符号14は「偏向装置」、符号18は「偏向角変倍素子である偏向角縮小素子」としての偏向角変倍素子である。 The reference numeral 14 denotes a "deflection device", and the reference numeral 18 denotes a deflection angle scaling element as a "deflection angle reduction element which is a deflection angle scaling element".
 符号30は「受光素子」、符号32は「集光レンズ」、符号34は「受光用レンズ」、符号40Aは「受光用の光路を折り返すミラー」、符号400は「制御演算部」を、それぞれ示す。 
 レーザ光源10が発光すると、放射されたレーザ光は、コリメートレンズ12により平行光束化され、調整用レンズ13Bに入射する。
Reference numeral 30 is a "light receiving element", reference numeral 32 is a "condenser lens", reference numeral 34 is a "light receiving lens", reference numeral 40A is a "mirror for returning the light path for receiving light", and reference numeral 400 is a "control operation unit". Show.
When the laser light source 10 emits light, the emitted laser light is collimated by the collimator lens 12 and enters the adjustment lens 13B.
 調整用レンズ13Bは、正の屈折力を有し、コリメートレンズ12側から入射するレーザビームに「収束傾向」を与える。 
 収束傾向を与えられたレーザビームはミラー40により光路を屈曲され、偏向装置14に入射する。 
 偏向装置14は、2軸のMEMSとして構成された周知の偏向器で「ミラー部を2次元的に搖動」させて反射光の向きを2次元的に偏向させる。 
 即ち、ミラー部の2次元的な搖動は、図面に直交する方向を搖動軸とする搖動と、図面に平行な方向を搖動軸とする搖動であり、これらの搖動が重ね合わせられる。 
 偏向装置14は、先に図1を参照して説明した実施の形態における偏向装置と同様のものである。従って、その説明は、図1(b)に関する先の説明を援用する。
The adjustment lens 13B has a positive refractive power and gives a “converging tendency” to the laser beam incident from the collimator lens 12 side.
The laser beam which is given the tendency to converge is bent in its optical path by the mirror 40 and is incident on the deflecting device 14.
The deflection device 14 is a known deflector configured as a two-axis MEMS, and "performs two-dimensional motion of the mirror portion" to deflect the reflected light two-dimensionally.
That is, the two-dimensional peristalsis of the mirror unit is a peristalsis with a direction perpendicular to the drawing as a peristalsis axis and a peristalsis with a direction parallel to the drawing as a peristalsis axis, and these peristalsis is superimposed.
The deflecting device 14 is similar to the deflecting device in the embodiment described above with reference to FIG. Therefore, the description uses the previous explanation regarding FIG. 1 (b).
 偏向装置14により2次元的に偏向されたレーザビームは、図6の「図面に平行な面内」で搖動するとともに、「図面に直交する方向」においても搖動する。 
 このように、LD10からのレーザ光は、偏向装置14により2次元的に偏向されつつ偏向角変倍素子18に入射し、偏向レーザビームSRLとして射出する。 
 偏向角変倍素子18は「正の屈折力」を持ち、後述するように、偏向レーザビームSRLの偏向角を、偏向装置14による偏向角に対して少なくとも1方向について縮小する。
The laser beam two-dimensionally deflected by the deflecting device 14 oscillates in the “in a plane parallel to the drawing” of FIG. 6 and also oscillates in the “direction orthogonal to the drawing”.
As described above, the laser beam from the LD 10 is two-dimensionally deflected by the deflection device 14 and enters the deflection angle variable magnification element 18 and is emitted as the deflection laser beam SRL.
The deflection angle variable magnification element 18 has “positive refractive power”, and reduces the deflection angle of the deflection laser beam SRL in at least one direction with respect to the deflection angle by the deflection device 14 as described later.
 偏向レーザビームSRLは、2次元的に偏向しつつ検出対象物に照射され、検出対象物を2次元的に走査する。 
 即ち、図6に示す実施の形態において「2次元走査型のレーザビーム投射装置」は、LD10、コリメートレンズ12、調整用レンズ13B、ミラー40、偏向装置14および偏向角変倍素子18を有する。 
 検出対象物により反射されたレーザビームは、戻りレーザ光束BKLとなり、偏向角変倍素子18に入射する。
The polarized laser beam SRL is irradiated on the object to be detected while being deflected two-dimensionally, and scans the object to be detected two-dimensionally.
That is, in the embodiment shown in FIG. 6, the “two-dimensional scanning type laser beam projection apparatus” has the LD 10, the collimator lens 12, the adjusting lens 13B, the mirror 40, the deflecting device 14 and the deflection angle variable magnification element 18.
The laser beam reflected by the object to be detected becomes a returning laser beam BKL, and is incident on the deflection angle variable magnification element 18.
 検出対象物と偏向角変倍素子18との距離は一般に、偏向角変倍素子18の有効径に対して大きい。従って、検出対象物に反射されて偏向角変倍素子18に入射する戻りレーザ光束BKLは、実質的に平行光束状態で、偏向レーザビームSRLと「同方向で逆向き」である。 
 偏向角変倍素子18に入射した戻りレーザ光束BKLは、偏向角変倍素子18の正の屈折力により収束傾向を与えられ、偏向装置14に入射して反射される。 
 偏向装置14により反射された戻りレーザ光束BKLは、ミラー40Aにより光路を屈曲され、受光用レンズ34に入射する。 
 戻りレーザ光束BKLは、偏向角変倍素子18により収束傾向を与えられると、光路上の受光用レンズ34の手前で収束したのち発散しつつ受光用レンズ34に入射する。
Generally, the distance between the object to be detected and the deflection angle varying element 18 is larger than the effective diameter of the deflection angle varying element 18. Therefore, the return laser beam BKL reflected by the object to be detected and incident on the deflection angle variable magnification element 18 is "parallel in the same direction" as the deflection laser beam SRL in a substantially parallel beam state.
The return laser beam BKL incident on the deflection angle variable magnification element 18 is given a convergence tendency by the positive refractive power of the deflection angle magnification element 18, and is incident on the deflection device 14 and reflected.
The return laser beam BKL reflected by the deflecting device 14 is bent in the optical path by the mirror 40A and is incident on the light receiving lens 34.
When the return laser beam BKL is converged by the deflection angle variable magnification element 18, it converges in front of the light receiving lens 34 on the light path and then diverges and enters the light receiving lens 34.
 受光用レンズ34を透過した戻りレーザ光束BKLは、集光レンズ32を介して受光素子30に向かって集光され、受光素子30により受光される。
 即ち、偏向角変倍素子18、偏向装置14、ミラー40A、受光用レンズ34、集光レンズ32および受光素子30は「検出対象物により反射された戻りレーザ光束BKLを検出する検出手段」を構成する。 
 即ち、偏向レーザビームSRLを投射させる光学系のうちの、偏向角変倍素子18、偏向装置14の部分は、検出用の光学系の一部として共用されている。
The return laser beam BKL transmitted through the light receiving lens 34 is condensed toward the light receiving element 30 via the condensing lens 32 and received by the light receiving element 30.
That is, the deflection angle variable magnification element 18, the deflecting device 14, the mirror 40A, the light receiving lens 34, the condensing lens 32, and the light receiving element 30 constitute "a detection means for detecting the return laser beam BKL reflected by the object to be detected". Do.
That is, of the optical system for projecting the deflection laser beam SRL, the deflection angle variable magnification element 18 and the part of the deflecting device 14 are shared as a part of the optical system for detection.
 受光素子30は、戻りレーザ光束BKLを受光すると、受光信号(適宜の増幅率で増幅される)を制御演算部400に送る。 
 制御演算部400の要部は、CPUやマイクロコンピュータ等により構成され、図6に示す「レーザレーダ装置」の各部を制御し、検出対象物までの距離を演算する。 
 即ち、制御演算部40は、LD10をパルス発光させ、パルス発光の瞬間から上記受光信号を受けた瞬間までの時間:2Tを確定し、光速:cを用いて、距離:cTを演算する。
When receiving the return laser beam BKL, the light receiving element 30 sends a light reception signal (amplified by an appropriate amplification factor) to the control operation unit 400.
The main part of the control calculation unit 400 is constituted by a CPU, a microcomputer and the like, and controls each unit of the “laser radar device” shown in FIG. 6 to calculate the distance to the detection target.
That is, the control operation unit 40 causes the LD 10 to emit light in pulses, determines the time: 2T from the moment of pulse light emission to the moment of receiving the light reception signal, and calculates the distance: cT using the light speed: c.
 偏向レーザビームSRLの偏向に従って、時間:2Tの取得と距離:cTの演算が繰り返され、検出対象物までの2次元的な距離、即ち「検出対象物の3次元形状」が得られる。 
 即ち、制御演算部40は「制御演算手段」を構成する。
Acquisition of time: 2T and calculation of distance: cT are repeated according to the deflection of the polarized laser beam SRL to obtain a two-dimensional distance to the object to be detected, that is, a "three-dimensional shape of the object to be detected".
That is, the control calculation unit 40 constitutes "control calculation means".
 上記の如く、図6に示すレーザレーダ装置は、上記「2次元走査型のレーザビーム投射装置」と「検出手段」と「制御演算手段」とを有する。 
 偏向角変倍素子18から射出する偏向レーザビームSRLの光束形態は、「平行光束」とすることも「収束光束」とすることも、「発散光束」とすることもできる。 
 偏向レーザビームSRLの光束形態を「平行光束」とすると、検出対象物へ向かう途上で光束径を実質的に不変と見做すことができ、光強度も実質的に不変と見做しうる。
As described above, the laser radar device shown in FIG. 6 has the above-mentioned "two-dimensional scanning laser beam projection device", "detection means" and "control operation means".
The light flux form of the deflection laser beam SRL emitted from the deflection angle variable magnification element 18 can be “parallel light flux”, “convergent light flux”, or “divergent light flux”.
Assuming that the beam form of the polarized laser beam SRL is “parallel beam”, the beam diameter can be regarded as substantially unchanged on the way to the detection target, and the light intensity can also be regarded as substantially unchanged.
 従って、検出対象物までの距離に拘らず、常に「同一強度の偏向レーザビーム」で検出対象物を2次元的に走査でき、安定した距離測定を行うことができる。 
 なお、ここで「平行光束」と言っても、これは「厳密な平行光束」であることを意味しない。レーザビーム投射装置やレーザレーダ装置の実施状態において、実質的に平行光束と認められる程度の平行度を持って足りる。このような光束形態を「平行光束状」と呼ぶ。
Therefore, regardless of the distance to the object to be detected, the object to be detected can always be two-dimensionally scanned with the “polarized laser beam of the same intensity”, and stable distance measurement can be performed.
It should be noted that the term "parallel light flux" does not mean that this is "strict parallel light flux". In the implementation state of the laser beam projection apparatus or the laser radar apparatus, it is sufficient to have the degree of parallelism to be recognized as substantially parallel light flux. Such a luminous flux form is called "parallel luminous flux".
 実際、レーザビーム投射装置から投射される偏向レーザビームSRLが「完全な平行光束」であったとしても、偏向レーザビームSRLが進行する際に、大気や回折の影響により「平行光束からのずれ」は生じる。 In fact, even if the deflected laser beam SRL projected from the laser beam projection apparatus is a "perfect parallel beam", when the deflected laser beam SRL travels, "deviation from the collimated beam" due to the influence of the atmosphere and diffraction. Will occur.
 しかし、このような「ずれ」は、上記偏向レーザビームSRLの強度の同一性に影響を与えることはなく、無視できるレベルである。 
 偏向レーザビームSRLを「収束光束」とすると、例えば、レーザレーダ装置から特定の位置にある検出対象物に偏向レーザビームSRLを小径のスポットとして集光でき、検出対象物の3次元的な表面形状を高精度に測定することが可能となる。 
 逆に、偏向レーザビームSRLを「発散光束」とすると、検出対象物に照射する偏向レーザビームSRLのビーム径を大径化でき、測定精度の安定化が可能となる。
However, such "displacement" does not affect the identity of the intensity of the polarized laser beam SRL, and can be ignored.
Assuming that the deflected laser beam SRL is a “converged beam”, for example, the deflected laser beam SRL can be condensed as a small diameter spot on a detection target at a specific position from the laser radar device, and the three-dimensional surface shape of the detection target Can be measured with high accuracy.
Conversely, if the deflection laser beam SRL is a "divergent beam", the beam diameter of the deflection laser beam SRL irradiated to the object to be detected can be enlarged, and the measurement accuracy can be stabilized.
 図6を参照して上に説明した実施の形態で「平行光束状の偏向レーザビームSRLを実現する場合」を説明する。 
 上述の如く、調整用レンズ13Bは正の屈折力を持ち、コリメートレンズ12により平行光束化されたレーザビームは、調整用レンズ13Bにより「収束傾向」を与えられる。 
 そして、レーザビームは、照射用光路屈曲ミラー16Bにより光路を屈曲されて偏向装置14に入射し、偏向装置14により2次元的に偏向され、偏向角変倍素子18により「平行光束化した偏向レーザビームSRL」に変換されて射出する。 
 即ち、調整用レンズ13Bによりレーザビームに与えられた収束傾向が、偏向角変倍素子18により相殺されて平行光束化される。
In the embodiment described above with reference to FIG. 6, "a case of realizing a collimated luminous flux deflection laser beam SRL" will be described.
As described above, the adjusting lens 13B has a positive refractive power, and the laser beam collimated by the collimator lens 12 is given a "focusing tendency" by the adjusting lens 13B.
Then, the laser beam is bent in the optical path by the irradiation optical path bending mirror 16B and is incident on the deflecting device 14, and is two-dimensionally deflected by the deflecting device 14, and the deflected laser beam is converted into a collimated beam It is converted into a beam SRL and emitted.
That is, the convergence tendency given to the laser beam by the adjusting lens 13B is canceled by the deflection angle variable magnification element 18 to be collimated.
 以下の説明のため、図の如く、互いに直交するX、Y、Z方向を定める。
 X方向は「図面に直交する方向」で、先の説明で「横方向あるいは水平方向」と呼んだものに対応する。また、Y方向は「図の上下方向」で、先の説明で「縦方向あるいは鉛直方向」と呼んだものに対応する。Z方向は偏向角変倍素子18の光軸AXに平行な方向である。調整用レンズ13Bの光軸もZ方向に平行である。 
 調整用レンズ13Bによりレーザビームに与えられる収束傾向と、偏向角変倍素子18による平行光束への回復は、種々の組み合わせが可能である。
For the following description, X, Y, and Z directions orthogonal to one another are determined as shown in the figure.
The X direction is "a direction orthogonal to the drawing" and corresponds to what is called "lateral direction or horizontal direction" in the above description. The Y direction corresponds to the "vertical direction in the drawing", which is called the "vertical direction or the vertical direction" in the above description. The Z direction is a direction parallel to the optical axis AX of the deflection angle variable magnification element 18. The optical axis of the adjustment lens 13B is also parallel to the Z direction.
The convergence tendency given to the laser beam by the adjustment lens 13B and the recovery to a parallel beam by the deflection angle variable magnification element 18 can be various combinations.
 例えば、図6において、調整用レンズ13Bを光軸の周りに回転対称(以下「軸対称」と言う。)な正レンズとし、レーザビームにX方向とY方向の収束傾向を与える。 
 一方、偏向角変倍素子18も「軸対称な正レンズ」とし、その物体側の焦点位置が、図6における点PFになるように配置を定める。 
 調整用レンズ13BをZ方向へ変位させると「収束傾向を与えられたレーザビームが集光する集光位置」が光軸方向に移動する。
For example, in FIG. 6, the adjusting lens 13B is a positive lens rotationally symmetric (hereinafter referred to as “axially symmetric”) around the optical axis, and gives the laser beam a convergence tendency in the X direction and the Y direction.
On the other hand, the deflection angle variable magnification element 18 is also an “axisymmetric positive lens”, and the arrangement is determined such that the focal position on the object side is the point PF in FIG.
When the adjusting lens 13B is displaced in the Z direction, the "focusing position at which the laser beam having a converging tendency is focused" moves in the optical axis direction.
 そこで、調整用レンズ13Bを光軸方向に位置調整して、上記集光位置が「点PFに合致する」ようにする。説明中の例では、コリメートレンズ12側から調整用レンズ13Bに入射するレーザビームは「平行光束」であるから、前記「集光位置」は、調整用レンズ13Bの像側焦点位置である。 
 従って、偏向角変倍素子18から「平行光束化された偏向レーザビーム」が射出する光学上の条件は、説明中の例では、調整用レンズ13Bの像側焦点位置と偏向角変倍素子18の物体側焦点位置(上記点「PF」)が一致することである。 
 このようにすれば、偏向角変倍素子18からは平行光束化された偏向レーザビームSRLが射出することになる。 
 平行光束化された偏向レーザビームを実現する方法は、上に説明した方法に限らない。
Therefore, the adjusting lens 13B is positionally adjusted in the optical axis direction so that the light collecting position "matches with the point PF". In the example being described, the laser beam incident on the adjustment lens 13B from the side of the collimator lens 12 is a "parallel beam", so the "focus position" is the image-side focal position of the adjustment lens 13B.
Accordingly, the optical conditions for emitting “a collimated laser beam that has been converted to a collimated light beam” from the deflection angle variable magnification element 18 are the image side focal position of the adjustment lens 13 B and the deflection angle magnification element 18 in the example being described. The object-side focal position (the point "PF") of
In this way, the deflection angle variable magnification element 18 emits the collimated laser beam SRL.
The method of realizing the collimated deflected laser beam is not limited to the method described above.
 例えば、以下の如き方法も可能である。 
 調整用レンズ13Bを「X(もしくはY)方向にのみ正の屈折力を持つレンズ」とする。
For example, the following method is also possible.
The adjusting lens 13B is set as "a lens having a positive refractive power only in the X (or Y) direction".
 その場合には、コリメートレンズ12側からの平行光束状のレーザビームは、調整用レンズ13BによりX(もしくはY)方向に収束傾向を与えられる。 
 このとき、レーザビームはY(もしくはX)方向には収束傾向を与えられず、平行光束状態を保つ。
In this case, the collimated laser beam from the side of the collimating lens 12 is given a convergence tendency in the X (or Y) direction by the adjusting lens 13B.
At this time, the laser beam is not given a tendency to converge in the Y (or X) direction, and maintains a parallel light flux state.
 調整用レンズ13Bの光軸方向における位置調整により、X(もしくはY)方向の集光位置(像側焦点位置)が、点PFに合致するようにする。 
 一方、偏向角変倍素子18も「X(もしくはY)方向にのみ正の屈折力を持つレンズ」として物体側におけるX(もしくはY)方向の焦点位置を点PFに位置させる。 
 このようにすれば、調整用レンズ13Bにより与えられたX(もしくはY)方向の収束傾向が、偏向角変倍素子18により回復されて、平行光束化された偏向レーザビームSRLが得られる。
 即ち、調整用レンズ13Bを光軸方向に変位調整して偏向角変倍素子18への入射状態を調整し、偏向レーザビームSRLが平行光束状となるようにできる。
By adjusting the position of the adjusting lens 13B in the optical axis direction, the focusing position (image-side focal position) in the X (or Y) direction is made to coincide with the point PF.
On the other hand, the focal angle position in the X (or Y) direction on the object side is positioned at the point PF as "a lens having positive refractive power only in the X (or Y) direction" as well as the deflection angle variable magnification element 18.
In this way, the convergence tendency in the X (or Y) direction given by the adjusting lens 13B is recovered by the deflection angle variable magnification element 18, and a collimated laser beam SRL is obtained.
That is, by adjusting the displacement of the adjusting lens 13B in the optical axis direction to adjust the incident state to the deflection angle variable magnification element 18, it is possible to make the deflection laser beam SRL in a parallel light flux shape.
 レーザレーダ装置の実施の別形態を、図7に即して説明する。繁雑を避けるため、混同の虞が無いと思われるものについては、図6におけると同一の符号を付している。 
 図6に示した実施の形態と異なる点は、調整用レンズ14Cと受光用レンズ34Aが共に「負レンズ」である点である。 
 コリメートレンズ12により平行光束化されたレーザビームは、調整用レンズ14Cにより「発散傾向」を与えられる。 
 そして、レーザビームは、ミラー40により光路を屈曲されて偏向装置14に入射し、偏向装置14により2次元的に偏向され、偏向角変倍素子18により「平行光束化した偏向レーザビームSRL」に変換されて射出する。
 即ち、調整用レンズ14Cによりレーザビームに与えられた発散傾向が、偏向角変倍素子18により相殺されて平行光束化されるのである。
Another embodiment of the laser radar device will be described with reference to FIG. In order to avoid complexity, those which are considered to have no risk of confusion are given the same reference numerals as in FIG.
A difference from the embodiment shown in FIG. 6 is that both the adjusting lens 14C and the light receiving lens 34A are "negative lenses".
The laser beam collimated by the collimating lens 12 is given a "divergent tendency" by the adjusting lens 14C.
The laser beam is bent in its optical path by the mirror 40 and enters the deflecting device 14, is two-dimensionally deflected by the deflecting device 14, and is converted into “collimated laser beam SRL converted by the deflection angle variable element 18. Converted and injected.
That is, the diverging tendency given to the laser beam by the adjusting lens 14C is canceled by the deflection angle varying element 18 to be collimated.
 図7において、調整用レンズ13Cは「軸対称な負レンズ」で、レーザビームにX方向とY方向の「発散傾向」を与える。 
 偏向角変倍素子18は「軸対称な正レンズ」であり、その物体側の焦点位置が、図7における点PF1になるように配置を定める。 
 調整用レンズ14CをZ方向へ変位させると「発散傾向を与えられたレーザビームの発散の起点」が光軸方向へ移動する。 
 そこで、調整用レンズ14Cの光軸方向への位置調整により、上記発散の起点が「点PF1に合致する」ようにする。 
 即ち、図7の例では、調整用レンズ14Cの物体側焦点位置と、偏向角変倍素子200の物体側焦点位置を、図2の点「PF1」において合致させる。 
 このようにすれば、偏向角変倍素子18からは平行光束化された偏向レーザビームSRLが射出することになる。
In FIG. 7, the adjusting lens 13 </ b> C is an “axisymmetric negative lens” and gives the laser beam “a divergence tendency” in the X direction and the Y direction.
The deflection angle variable magnification element 18 is an “axisymmetric positive lens”, and the arrangement is determined such that the focal position on the object side thereof is the point PF1 in FIG.
When the adjusting lens 14C is displaced in the Z direction, the “origin of the diverging laser beam divergent” moves in the optical axis direction.
Therefore, by adjusting the position of the adjusting lens 14C in the optical axis direction, the point of origin of the divergence "is made to coincide with the point PF1".
That is, in the example of FIG. 7, the object-side focal position of the adjusting lens 14C and the object-side focal position of the deflection angle variable magnification element 200 are made to coincide at the point “PF1” in FIG.
In this way, the deflection angle variable magnification element 18 emits the collimated laser beam SRL.
 調整用レンズ14Cを「軸対称な負レンズ」としたことに応じて、受光用レンズ34Aも軸対称な負レンズとされる。 
 戻りレーザ光束BKLは、偏向角変倍素子18に入射すると、偏向角変倍素子18の作用により収束傾向を与えられ、偏向装置14に入射して反射される。 
 偏向装置14により反射された戻りレーザ光束BKLは、受光用光路屈曲ミラー36により光路を屈曲され、受光用レンズ34Aに入射する。
According to the fact that the adjusting lens 14C is made “axisymmetric negative lens”, the light receiving lens 34A is also made axisymmetric negative lens.
When the return laser beam BKL is incident on the deflection angle variable magnification element 18, it is given a convergence tendency by the action of the deflection angle magnification change element 18, and is incident on the deflection device 14 and reflected.
The return laser beam BKL reflected by the deflecting device 14 is bent in the optical path by the light receiving path bending mirror 36 and is incident on the light receiving lens 34A.
 偏向角変倍素子200により収束傾向を与えられた戻りレーザ光束BKLは、収束状態のまま受光用レンズ34A(の像側焦点を集光点として)に入射する。 
 従って、受光用レンズ34Aに入射した戻りレーザ光束BKLは、受光用レンズ34Aの負の屈折力により平行光束化され、集光レンズ32により受光素子30に向かって集光され、受光素子30により受光される。 
 図6の実施の形態において用いられる調整用レンズ13Bと偏向角変倍素子18との「正の屈折力の組み合わせ」については、上に述べた。 
 即ち「調整用レンズ13Bを光軸方向に変位調整して偏向角変倍素子18への入射状態を調整して、偏向レーザビームSRLが平行光束状となるようにする」ことができればよい。
The return laser beam BKL given a convergence tendency by the deflection angle variable magnification element 200 is incident on the light receiving lens 34A (with the image side focal point thereof as a focusing point) in the converged state.
Accordingly, the return laser beam BKL incident on the light receiving lens 34A is collimated by the negative refractive power of the light receiving lens 34A, condensed toward the light receiving element 30 by the condensing lens 32, and received by the light receiving element 30. Be done.
The “positive refractive power combination” of the adjusting lens 13B and the deflection angle variable magnification element 18 used in the embodiment of FIG. 6 has been described above.
That is, it is only necessary to "adjust the displacement of the adjusting lens 13B in the direction of the optical axis to adjust the incident state to the deflection angle variable magnification element 18 so that the polarized laser beam SRL has a parallel beam shape".
 上には、調整用レンズ13Bとして、X(もしくはY)方向にのみ正の屈折力を有するレンズ(正シリンダレンズ)とする場合を挙げた。 
 しかし、これに限らず、調整用レンズ13Bを、X方向とY方向に「互いに異なる正の屈折力」を持つ「正アナモルフィックレンズ」とすることができる。 
 この場合には、偏向角変倍素子18も、X方向とY方向に「互いに異なる正の屈折力」を持つ「正アナモルフィックレンズ」とする。 
 上記何れの場合にも、偏向角変倍素子200の形状に応じて、調整用レンズ13Bの形状を適切に設定し、調整用レンズ13Bを光軸方向へ変位調整して、偏向角変倍素子18から平行光束状の偏向レーザビームSRLを射出させることができる。
Above, the case where the lens (positive cylinder lens) having a positive refractive power only in the X (or Y) direction was mentioned as the adjusting lens 13B was mentioned.
However, the present invention is not limited to this, and the adjusting lens 13B can be a "positive anamorphic lens" having "positive refractive powers different from each other" in the X direction and the Y direction.
In this case, the deflection angle variable magnification element 18 is also a “positive anamorphic lens” having “different positive refractive powers” in the X direction and the Y direction.
In any of the above cases, the shape of the adjustment lens 13B is appropriately set according to the shape of the deflection angle variable magnification element 200, and the displacement of the adjustment lens 13B in the optical axis direction is adjusted to obtain a deflection angle magnification element 18, a collimated beam of deflected laser beam SRL can be emitted.
 図7に示した調整用レンズ13Cと偏向角変倍素子18の関係も同様である。 
 即ち、調整用レンズ13Cは、上に挙げた軸対称な負レンズに限らず、X方向のみ、もしくはY方向にのみ負の屈折力を持つ「負シリンダレンズ」とすることもでき、また、X方向とY方向に「互いに異なる負の屈折力」を持つ「負アナモルフィックレンズ」とすることもできる。 
 これらの何れの場合も、偏向角変倍素子18の形状に応じて、調整用レンズ13Cの形態を「負シリンダレンズや負アナモルフィックレンズ」に設定し、調整用レンズ13Cを光軸方向へ変位調整して、調整用レンズ13Cの物体側焦点位置と、偏向角変倍素子18の物体側焦点位置を合致させることにより、偏向角変倍素子20から平行光束状の偏向レーザビームSRLを射出させることができる。
The same applies to the relationship between the adjusting lens 13C and the deflection angle variable magnification element 18 shown in FIG.
That is, the adjustment lens 13C is not limited to the above-described axially symmetric negative lens, but may be a "negative cylinder lens" having negative refractive power only in the X direction or only in the Y direction. It can also be a "negative anamorphic lens" having "different negative refractive powers" in the direction and the Y direction.
In any of these cases, the form of the adjusting lens 13C is set to "negative cylinder lens or negative anamorphic lens" according to the shape of the deflection angle variable magnification element 18, and the adjusting lens 13C is directed in the optical axis direction. The displacement adjustment is performed so that the object-side focal position of the adjustment lens 13C and the object-side focal position of the deflection angle variable magnification element 18 coincide with each other, and the deflection angle magnification change element 20 emits the parallel laser beam SRL. It can be done.
 上には、図6、図7に示す実施の形態において、偏向角変倍素子18から「平行光束状」の偏向レーザビームSRLを射出させる場合を説明した。 Above, in the embodiment shown in FIG. 6 and FIG. 7, the case of emitting the “parallel beam shape” polarized laser beam SRL from the deflection angle variable magnification element 18 has been described.
 しかし、前述したように、偏向角変倍素子18から射出させる偏向レーザビームは、平行光束に限らず、収束光束とすることも、発散光束とすることもできる。 However, as described above, the deflection laser beam emitted from the deflection angle variable magnification element 18 is not limited to the parallel light flux, and may be a convergent light flux or a diverging light flux.
 これらの場合を簡単に説明する。 
 図8は、図6におけるレーザビーム投射装置の部分を示している。 
 説明の簡単のため、コリメートレンズ12から偏向角変倍素子18に至る光軸光線(コリメートレンズ12の光軸に合致する光線)を直線的に展開した状態で示している。
These cases will be briefly described.
FIG. 8 shows a portion of the laser beam projection system in FIG.
In order to simplify the description, an optical axis ray (a ray coincident with the optical axis of the collimator lens 12) from the collimator lens 12 to the deflection angle variable magnification element 18 is shown in a linearly expanded state.
 説明の具体性のため、調整用レンズ13B、偏向角変倍素子18は、共に軸対称な正レンズであるとする。 
 調整用レンズ13Bは、光軸方向(図のZ方向)に変位可能である。 
 図8(a)、(b)において、調整用レンズ13Bの位置が「破線で示す位置」にあるときを調整用レンズ13Bの「基準位置」と呼ぶことにする。
For the sake of concreteness of description, it is assumed that both the adjustment lens 13B and the deflection angle variable magnification element 18 are axially symmetric positive lenses.
The adjustment lens 13B is displaceable in the optical axis direction (the Z direction in the drawing).
In FIGS. 8A and 8B, the case where the position of the adjusting lens 13B is at the “position indicated by a broken line” is referred to as a “reference position” of the adjusting lens 13B.
 調整用レンズ13Bが、基準位置にあるとき、その像側焦点位置は、偏向角変倍素子18の物体側焦点位置PFに合致している。従ってこの場合、前述したように、偏向角変倍素子18から射出する偏向レーザビームSRLは「破線」で示すように平行光束状である。 
 調整用レンズ13Bが、図8(a)に実線で示すように、基準位置よりもコリメートレンズ12側にずれると、調整用レンズ13Bの像側焦点の位置PFCは、偏向角変倍素子18の物体側焦点位置PFよりも物体側にずれる。 
 コリメートレンズ12からのレーザビームは、調整用レンズ13Bの像側焦点の位置PFCで集光したのち発散性となって偏向角変倍素子18に入射する。 
 このとき、前記像側焦点の位置PFCは、偏向角変倍素子200の物体側焦点の位置PFより物体側に位置し、偏向レーザビームSRLCは「収束光束」として偏向角変倍素子18から射出する。
When the adjustment lens 13 B is at the reference position, the image-side focal position thereof coincides with the object-side focal position PF of the deflection angle variable magnification element 18. Therefore, in this case, as described above, the deflected laser beam SRL emitted from the deflection angle variable magnification element 18 is in the form of a parallel light flux as indicated by the "broken line".
When the adjustment lens 13B is shifted to the side of the collimator lens 12 with respect to the reference position as shown by the solid line in FIG. 8A, the position PFC of the image-side focal point of the adjustment lens 13B is obtained by The object side focal position PF is shifted to the object side.
The laser beam from the collimating lens 12 is condensed at the position PFC of the image side focal point of the adjusting lens 13 B and then diverges and enters the deflection angle variable magnification element 18.
At this time, the position PFC of the image side focal point is located on the object side with respect to the position PF of the object side focal point of the deflection angle variable magnification element 200, and the deflection laser beam SRLC is emitted from the deflection angle magnification element 18 as a "converging light beam". Do.
 調整用レンズ13Bが、図8(b)に実線で示すように、基準位置よりも偏向角変倍素子18側にずれると、調整用レンズ13Bの像側焦点の位置PFDは、偏向角変倍素子18の物体側焦点の位置PFよりも像側にずれる。
 この場合、前記像側焦点の位置PFDが焦点の位置PFよりも像側になるので、偏向角変倍素子18から射出する偏向レーザビームSRLDは「発散光束」になる。
When the adjusting lens 13B is shifted toward the deflection angle changing element 18 with respect to the reference position as shown by the solid line in FIG. 8B, the position PFD of the image side focus of the adjusting lens 13B is changed to the deflection angle changing magnification. It is shifted to the image side from the position PF of the object side focal point of the element 18.
In this case, since the position PFD of the image side focal point is on the image side of the focal position PF, the deflected laser beam SRLD emitted from the deflection angle variable magnification element 18 becomes a “divergent light beam”.
 図9は、図7におけるレーザビーム投射装置の部分を示している。 
 説明の簡単のために、コリメートレンズ12から偏向角変倍素子18に至る光軸光線を直線的に展開した状態で示している。
FIG. 9 shows a portion of the laser beam projection apparatus in FIG.
In order to simplify the description, optical axis rays from the collimator lens 12 to the deflection angle variable magnification element 18 are shown in a linearly expanded state.
 説明の具体性のため、調整用レンズ13C、偏向角変倍素子18は、共に軸対称なレンズであるとする。調整用レンズ13Cは「軸対称な負レンズ」である。 For the sake of concreteness of description, it is assumed that both the adjustment lens 13C and the deflection angle variable magnification element 18 are axially symmetric lenses. The adjustment lens 13C is an “axisymmetric negative lens”.
 調整用レンズ13Cは、光軸方向(図のZ方向)へ変位可能である。 
 図9(a)、(b)において、調整用レンズ13Cの位置が「破線で示す位置」にあるときを調整用レンズ13Cの「基準位置」と呼ぶことにする。
 調整用レンズ13Cが、基準位置にあるとき、その物体側焦点の位置は、偏向角変倍素子18の物体側焦点の位置PF1に合致している。従ってこの場合、前述したように、偏向角変倍素子18から射出する偏向レーザビームSRLは、「破線」で示すように平行光束状である。
The adjustment lens 13C is displaceable in the optical axis direction (the Z direction in the drawing).
In FIGS. 9A and 9B, the case where the position of the adjusting lens 13C is at the “position indicated by a broken line” is referred to as a “reference position” of the adjusting lens 13C.
When the adjustment lens 13C is at the reference position, the position of the object-side focal point thereof coincides with the position PF1 of the object-side focal point of the deflection angle variable magnification element 18. Therefore, in this case, as described above, the deflected laser beam SRL emitted from the deflection angle variable magnification element 18 is in the form of a parallel luminous flux as indicated by the “broken line”.
 調整用レンズ13Cが、図9(a)に実線で示すように、基準位置よりもコリメートレンズ12側にずれると、調整用レンズ14Cの物体側焦点の位置PFCは、偏向角変倍素子18の物体側焦点PF1よりも物体側にずれる。 
 従って、この場合、コリメートレンズ12からのレーザビームは調整用レンズ13Cの物体側焦点の位置PFCを起点とする「発散性の光束」となって偏向角変倍素子18に入射する。 
 このとき、発散の起点PFCが焦点の位置PFよりも物体側になるので、偏向角変倍素子18から射出する偏向レーザビームSRLCは「収束性」になる。
When the adjustment lens 13C is shifted toward the collimating lens 12 with respect to the reference position as shown by the solid line in FIG. 9A, the position PFC of the object-side focal point of the adjustment lens 14C is determined by The object side focal point PF1 is shifted to the object side.
Therefore, in this case, the laser beam from the collimator lens 12 becomes a "divergent luminous flux" starting from the position PFC of the object-side focal point of the adjustment lens 13C and enters the deflection angle variable magnification element 18.
At this time, since the diverging start point PFC is closer to the object side than the focal point position PF, the deflected laser beam SRLC emitted from the deflection angle variable magnification element 18 has “convergence”.
 調整用レンズ13Cが、図9(b)に実線で示すように、基準位置よりも偏向角変倍素子18側にずれると、調整用レンズ13Cの物体側焦点の位置PFDは、偏向角変倍素子18の物体側焦点の位置PF1よりも像側にずれる。 
 從って、コリメートレンズ12からのレーザビームは、調整用レンズ13Cの物体側焦点の位置PFDを起点とする発散性の光束として偏向角変倍素子18に入射する。 
 このとき、前記発散の起点PFDが焦点の位置PF1よりも像側になるので、偏向角変倍素子20から射出する偏向レーザビームSRLDは「発散性」になる。 
 なお、戻りレーザ光束BKLは、上述の如く、偏向角変倍素子18に入射するときには平行光束状態であるので、「検出手段」としては、図8、図9の場合も図6、図7におけると同様のものを用いることができる。
When the adjustment lens 13C is shifted toward the deflection angle variable element 18 with respect to the reference position as shown by the solid line in FIG. 9B, the position PFD of the object-side focal point of the adjustment lens 13C is a deflection angle magnification It is shifted to the image side of the position PF1 of the object-side focal point of the element 18.
Thus, the laser beam from the collimating lens 12 enters the deflection angle variable magnification element 18 as a divergent light beam originating from the position PFD of the object side focal point of the adjustment lens 13C.
At this time, since the diverging start point PFD is on the image side of the focal point position PF1, the deflected laser beam SRLD emitted from the deflection angle variable magnification element 20 becomes “divergent”.
The return laser beam BKL is in the parallel beam state when it is incident on the deflection angle variable magnification element 18 as described above. Therefore, as the "detection means" also in the cases of FIG. 8 and FIG. The same ones can be used.
 偏向角変倍素子から射出する偏向レーザビームの光束形態は、レーザレーダ装置が実施される場合に、どのような状況で使用されるかに応じて、平行光束状とするか、収束光束とするか、発散光束とするかは設計条件として定めることができる。 
 かかる場合には、調整用レンズ13B、13Cと偏向角変倍素子18との「光学的関係」を、偏向レーザビームの光束形態に応じて設定することができる。 
 このように設定された光学的関係を実現するように、レーザビーム投射装置の光学配置を設定して固定すれば、平行光束状もしくは所望の「収束光束もしくは発散光束」の偏向レーザビームを実現できる。
The beam form of the deflected laser beam emitted from the deflection angle variable magnification element is a collimated beam or a convergent beam depending on the situation to be used when the laser radar apparatus is implemented. It can be determined as a design condition whether it is a divergent beam.
In such a case, the "optical relationship" between the adjustment lenses 13B and 13C and the deflection angle variable magnification element 18 can be set in accordance with the light beam form of the deflection laser beam.
By setting and fixing the optical arrangement of the laser beam projection apparatus so as to realize the optical relationship set in this way, it is possible to realize a collimated light beam or a desired "convergent light beam or divergent light beam" polarized laser beam. .
 ここで、調整用レンズ13Bや13Cの「光軸方向における変位」について述べる。
 上に説明した実施の各形態においては、制御演算手段である制御演算部400が、調整用レンズ13Bや13Cの光軸方向への変位を行うようになっている。 
 即ち、制御演算部400は、調整用レンズ13Bや13Cを光軸方向へ変位させる「平行移動機構」を有し、平行移動の「向きや移動量を制御」する機能を有している。 
 上に図6、図7に即して説明した実施の形態においては、調整用レンズ13Bの像側焦点の位置や調整用レンズ13Cの物体側焦点の位置を、偏向角変倍素子200の物体側焦点の位置に合致させるために、調整用レンズ13B、13Cの変位を行っている。 
 上に、図8、図9に即して説明したように、調整用レンズ13B、13Cを光軸上で変位させることにより、偏向角変倍素子18から射出する偏向レーザビームの光束形態を、平行光束状(SRL)、収束光束(SRLC)、発散光束(SRLD)に変化させることができる。
Here, “displacement in the optical axis direction” of the adjustment lenses 13B and 13C will be described.
In each of the embodiments described above, the control calculation unit 400, which is a control calculation unit, performs displacement of the adjusting lenses 13B and 13C in the optical axis direction.
That is, the control calculation unit 400 has a "parallel movement mechanism" for displacing the adjustment lenses 13B and 13C in the optical axis direction, and has a function to "control the direction or movement amount" of the parallel movement.
In the embodiment described above with reference to FIGS. 6 and 7, the position of the image-side focal point of the adjustment lens 13B and the position of the object-side focal point of the adjustment lens 13C The adjustment lenses 13B and 13C are displaced in order to match the position of the side focus.
As described above with reference to FIGS. 8 and 9, the displacement of the adjusting lenses 13 B and 13 C on the optical axis allows the light beam form of the deflection laser beam emitted from the deflection angle variable magnification element 18 to be It can be changed into parallel light flux (SRL), convergent light flux (SRLC), and divergent light flux (SRLD).
 のみならず、偏向レーザビームが収束光束である場合や、発散光束である場合には「収束や発散の程度」も変化させることができる。 
 即ち、調整用レンズの光軸方向への変位調整により、偏向角変倍素子から射出するレーザ光束の光束形態を変更可能である。 
 そこで、制御演算部40に「偏向角変倍素子から射出する偏向レーザビームの光束形態を所望の形態」にするように、調整用レンズの変位を調整する機能を持たせることができる。
Not only that, in the case where the deflection laser beam is a convergent beam or in the case of a divergent beam, the “degree of convergence or divergence” can also be changed.
That is, by adjusting the displacement of the adjustment lens in the optical axis direction, it is possible to change the form of the laser beam emitted from the deflection angle variable magnification element.
Therefore, the control calculation unit 40 can have a function of adjusting the displacement of the adjustment lens so as to set the light beam form of the deflection laser beam emitted from the deflection angle variable magnification element to a desired form.
 この調整は、制御演算部40に設けたCPU等の制御手段によるプログラミング制御で前記平行移動機構を制御して行うようにしてもよいし、平行移動機構を手動で調整できるようにしてもよい。 
 上には、調整用レンズ13B、13C、偏向角変倍素子200の何れも「光軸の周りに回転対称な軸対称のレンズ」として説明した。 
 しかし、これらのレンズをシリンダレンズ等の「アナモルフィックレンズ」とすることもできる。
The adjustment may be performed by controlling the parallel movement mechanism by programming control by control means such as a CPU provided in the control calculation unit 40, or the parallel movement mechanism may be manually adjusted.
Above, the adjustment lenses 13B and 13C and the deflection angle variable magnification element 200 are all described as “axisymmetric lenses rotationally symmetric around the optical axis”.
However, these lenses can also be used as "anamorphic lenses" such as cylinder lenses.
 このような場合の1例として、調整用レンズと偏向角変倍素子が共に「シリンダレンズ」である場合を、図10に即して説明する。 
 図10は、例えば、上の説明におけるXZ面内における「レーザ光束の光束径の変化」の様子を、レーザ光源10から偏向角変倍素子18Cに至る光路を仮想的に直線的に展開した状態として示している。 
 調整用レンズ13B、偏向角変倍素子18Cは共に「XZ面内において屈折力を持たないシリンダレンズ」である。
As an example of such a case, the case where both of the adjustment lens and the deflection angle variable magnification element are “cylinder lenses” will be described with reference to FIG.
FIG. 10 shows, for example, a state in which the state of “change of the diameter of the luminous flux of the laser luminous flux” in the XZ plane in the above description is virtually linearly expanded in the optical path from the laser light source 10 to the deflection angle variable magnification element 18C. As shown.
The adjusting lens 13B and the deflection angle variable magnification element 18C are both "cylinder lenses having no refractive power in the XZ plane".
 従って、レーザ光源10から放射され、コリメートレンズ12で平行光束化されたレーザビームの光束径は、図10に示すように「XZ面内」においては変化せず、平行光束状態を保って偏向角変倍素子18Cに入射する。 
 偏向角変倍素子18Cも「XZ面内では屈折力を持たない」から、偏向角変倍素子18Cから射出する偏向レーザビームSRLは、コリメートレンズ12により平行光束化された状態を保った平行状態である。
Therefore, the beam diameter of the laser beam emitted from the laser light source 10 and collimated by the collimator lens 12 does not change in the "XZ plane" as shown in FIG. The light enters the magnification changing element 18C.
Since the deflection angle variable magnification element 18C also "does not have refractive power in the XZ plane", the polarized laser beam SRL emitted from the deflection angle magnification element 18C is in a parallel state in which a collimated state is maintained by the collimator lens 12 It is.
 調整用レンズ13Bの、図10の図面に直交する方向(YZ面内)における断面形状は、図6の調整用レンズ13Bのような「正レンズの断面形状」であることも、図7に示す調整用レンズ13Cのような「負レンズの断面形状」であることもできる。 
 従って、YZ面内では、調整用レンズ13Bの変位により「偏向角変倍素子18Cに向かうレーザビーム」のYZ面内における発散の起点(前述の位置PFC、PFD)を変位させることができるが、その際「XZ面内」におけるレーザビームの光束径は変化しない。 
 従って、調整用レンズ13Bの変位を調整することにより、偏向角変倍素子20Cから射出する偏向レーザビームの「YZ面内の光束形態」のみを調整することができる。
The sectional shape of the adjusting lens 13B in the direction (in the YZ plane) orthogonal to the drawing of FIG. 10 is also shown in FIG. 7 as being the “cross sectional shape of a positive lens” like the adjusting lens 13B of FIG. It can also be a "cross-sectional shape of a negative lens" such as the adjustment lens 13C.
Therefore, in the YZ plane, the displacement start point (the above-described positions PFC and PFD) in the YZ plane of the “laser beam toward the deflection angle variable magnification element 18C” can be displaced by the displacement of the adjustment lens 13B. At this time, the beam diameter of the laser beam “in the XZ plane” does not change.
Therefore, by adjusting the displacement of the adjustment lens 13B, it is possible to adjust only the "form of light in the YZ plane" of the deflected laser beam emitted from the deflection angle variable magnification element 20C.
 以下に、図6以下に示した「2次元走査型のレーザビーム投射装置」の特徴部分を、図6の実施の形態に即して説明する。 
 上記の如く、図6における「2次元走査型のレーザビーム投射装置」は、LD10、コリメートレンズ12、調整用レンズ13Bで構成される「レーザ光源」、照射用光路屈曲ミラー16B、偏向装置14と偏向角変倍素子18とを有している。 
 ミラー40は、光学系のレイアウト次第では省略することができる。
In the following, the characterizing portion of the “two-dimensional scanning laser beam projection apparatus” shown in FIG. 6 and the following will be described in line with the embodiment of FIG.
As described above, the “two-dimensional scanning laser beam projection apparatus” in FIG. 6 includes the “laser light source” including the LD 10, the collimate lens 12, and the adjusting lens 13B, the irradiation path bending mirror 16B, and the deflecting device 14 And a deflection angle variable magnification element 18.
The mirror 40 can be omitted depending on the layout of the optical system.
 ミラー40Aも、光学系のレイアウト次第では省略することができる。 
 偏向角変倍素子18は、軸対称な正レンズであることも、X、Y方向に屈折力の異なるアナモルフィックな正レンズであることもできる。 
 偏向角変倍素子18は「X方向及びY方向のうちの少なくとも一方における偏向角を縮小」する機能を持つ。 
 図6において、「偏向角変倍素子18の光軸AXを含み、Y方向に平行な平面(上の説明で「YZ平面」と呼んだもの)を「α平面」と呼ぶ。 
 図中の角:θαは、α平面内において偏向装置14が「偏向角変倍素子18に向かうレーザビーム」を偏向させる最大の偏向角(以下α平面内の「最大偏向角」と言う。)を表す。
The mirror 40A can also be omitted depending on the layout of the optical system.
The deflection angle variable magnification element 18 may be an axially symmetric positive lens or an anamorphic positive lens having different refractive powers in the X and Y directions.
The deflection angle variable magnification element 18 has a function of “reducing the deflection angle in at least one of the X direction and the Y direction”.
In FIG. 6, a plane including the optical axis AX of the deflection angle variable magnification element 18 and parallel to the Y direction (called the “YZ plane” in the above description) is called the “α plane”.
The angle in the figure: θα is the maximum deflection angle (hereinafter referred to as the “maximum deflection angle” in the α plane) at which the deflecting device 14 deflects the “laser beam directed to the deflection angle variable element 18” in the α plane. Represents
 LD10から放射されたレーザ光のうち、コリメートレンズ12の光軸と合致する光線を「中心光線」と呼ぶ。 
 「偏向角」は、偏向された中心光線と偏向角変倍素子の光軸とがなす角である。 
 一方、α平面内において、最大偏向角:θαを持つレーザビームが偏向角変倍素子200に入射したとき、偏向角変倍素子200から射出する偏向レーザビームSRLの中心光線が、光軸AXに対してなす角:θDαを「Y方向の最大走査偏向角」と呼ぶ。
Of the laser light emitted from the LD 10, a light beam that coincides with the optical axis of the collimator lens 12 is called a "central light beam".
The "deflection angle" is the angle between the deflected central ray and the optical axis of the deflection angle variable magnification element.
On the other hand, when the laser beam having the maximum deflection angle: θα is incident on the deflection angle variable magnification element 200 in the α plane, the central ray of the deflection laser beam SRL emitted from the deflection angle magnification element 200 is the optical axis AX. The angle made with respect to: θ is called “the maximum scanning deflection angle in the Y direction”.
 偏向角変倍素子18が「Y方向における偏向角を縮小する機能」を持つとは、α平面内において、最大走査偏向角:θDαが、最大偏向角:θαよりも小さい(θDα<θα)ことを意味する。 
 角:θDα、θαに正負を考えるときには「0≦|θDα|<|θα|」である。 
 偏向装置14による「α平面内におけるYの正方向の偏向角」を一般に「θY(0≦θY≦θα)」とする。 
 また、偏向角:θYに対する走査偏向角(偏向角変倍素子200から射出する偏向レーザビームがα平面内で光軸AXに対してなす正の角)を「θy(0≦θy≦θDα)」とする。
The fact that the deflection angle variable magnification element 18 has "a function to reduce the deflection angle in the Y direction" means that the maximum scanning deflection angle: θDα is smaller than the maximum deflection angle: θα in the α plane (θ <θα Means that).
Angle: θ When considering θ α as positive or negative, it is “0 ≦ | θ D α | <| θ α |”.
Generally, “the deflection angle in the positive direction of Y in the α plane” by the deflection device 14 is “θY (0 ≦ θY ≦ θα)”.
In addition, the scanning deflection angle with respect to the deflection angle: θY (the positive angle that the deflection laser beam emitted from the deflection angle variable magnification element 200 makes with the optical axis AX in the α plane) is “θy (0 ≦ θy ≦ θ ) "
 このとき、α平面内において、即ちY方向において「偏向角の縮小」が行われる場合であれば、一般に「θY>θy」である。 
 このようにY方向において偏向角の縮小を行う場合、「Y方向における偏向角の縮小率(%)」を次式により定義する。 
 Y方向における偏向角の縮小率=「{1-(θy/θY)}×100」 
 なお、偏向装置14および偏向角変倍素子18によるレーザビームの偏向は、α平面内において、光軸AXに対して対称的である。 
 即ち、上に説明した偏向角:θYは、±θαの範囲で変化し、走査偏向角:θyは、±θDαの範囲で変化する。
At this time, in the case where “reduction of the deflection angle” is performed in the α plane, that is, in the Y direction, “θY> θy” is generally satisfied.
As described above, when the deflection angle is reduced in the Y direction, “the reduction ratio (%) of the deflection angle in the Y direction” is defined by the following equation.
Reduction ratio of deflection angle in Y direction = "{1- (θy / θY)} × 100"
The deflection of the laser beam by the deflection device 14 and the deflection angle variable element 18 is symmetrical with respect to the optical axis AX in the α plane.
That is, the deflection angle: θY described above changes in the range of ± θα, and the scanning deflection angle: θy changes in the range of ± θDα .
 図6は、前述の如く「α平面」内における偏向の様子を示しているが「α平面内における縮小コンセントリック係数」を以下のように定義する。 
 図6に示すように、偏向角変倍素子18の「入射側面」を入射面18A、射出側面を射出面18Bとする。 
 偏向装置14により、α平面内で光軸AXに対して最大偏向角:θαで偏向され、偏向角変倍素子18の入射面18Aで屈折したレーザビームの中心光線の、偏向角変倍素子18のレンズ内における部分を「α平面内におけるレンズ内中心光線」と呼び、符号PLで示す。
FIG. 6 shows the state of deflection in the “α plane” as described above, but the “reduced concentric coefficient in the α plane” is defined as follows.
As shown in FIG. 6, the "incident side" of the deflection angle variable magnification element 18 is referred to as an entrance surface 18A, and the exit side is referred to as an exit surface 18B.
A deflection angle variation element 18 of the central ray of the laser beam deflected by the deflection device 14 at the maximum deflection angle: θα with respect to the optical axis AX in the α plane and refracted at the incident surface 18A of the deflection angle variation element 18 The portion of the lens in the lens is called "central ray in the lens in the .alpha.
 このレンズ内中心光線PLを、図の如く、α平面内において偏向装置14側へ延長した延長線ETLが、偏向角変倍素子18の光軸AXと「交点位置Qαで交わる」とする。 
 また、レンズ内中心光線PLは、偏向角変倍素子18の射出面18Bと交点位置qαで交わるものとする。 
 α平面内における「交点位置Qαとqαの間の距離」の光軸AX方向の成分を、図の如く「Aα」とする。 
 一方、偏向角変倍素子18の射出面18Bは、α平面内において、曲率半径:Rαを持つものとする。通常のレンズ面における曲率半径の定義に従い、曲率半径に正負を考える。
As shown in the figure, an extension line ETL extending toward the deflecting device 14 in the α plane is “intersecting with the optical axis AX of the deflection angle variable magnification element 18 at the intersection position Qα”.
Further, the in-lens central ray PL intersects the exit surface 18B of the deflection angle variable magnification element 18 at the intersection position qα.
A component in the direction of the optical axis AX of "the distance between the intersection points Qα and qα" in the α plane is "Aα" as shown in the figure.
On the other hand, it is assumed that the exit surface 18B of the deflection angle variable magnification element 18 has a radius of curvature: Rα in the α plane. According to the definition of the radius of curvature in a normal lens surface, the radius of curvature is considered to be positive or negative.
 レーザビームは、偏向角変倍素子18を図の左方から右方へ透過するので、図の右方を「正方向」とする。射出面18Bの曲率中心は、図において、射出面の左方即ち「負の側」に位置する。従って、曲率半径:Rαは「負の大きさ」をもつ。 
 このとき、α平面内における縮小コンセントリック係数:Cαは、以下のように定義される。
The laser beam transmits the deflection angle variable magnification element 18 from the left side to the right side of the figure, so the right side of the figure is taken as the “positive direction”. The center of curvature of the exit surface 18B is located to the left or "negative side" of the exit surface in the figure. Therefore, the radius of curvature: Rα has "negative magnitude".
At this time, the reduced concentric coefficient Cα in the α plane is defined as follows.
 Cα≡|Aα/Rα|                   
 次に、図6において図面に直交する方向、即ち、X方向を考え、偏向角変倍素子18の光軸AXを含み、X方向に平行な平面を「β平面」と呼ぶ。 
 この「β平面」についても、上の説明と全く同様にして、偏向装置14による最大偏向角:θβ、X方向の最大走査偏向角:θDβを定義できる。 
 また、β平面内におけるXの正方向の偏向角:θX(0≦θX≦θβ)、偏向角:θXに対する走査偏向角(偏向角変倍素子18から射出する偏向レーザビームがβ平面内で光軸AXに対してなす正の角):θx(0≦θx≦θDβ)を定義できる。 
 この場合、β平面内において、即ちX方向において偏向角の縮小が行われる場合であれば、一般に「θX>θx」である。
Cα≡ | Aα / Rα |
Next, considering the direction orthogonal to the drawing in FIG. 6, that is, the X direction, a plane including the optical axis AX of the deflection angle variable magnification element 18 and parallel to the X direction is called a “β plane”.
The maximum deflection angle by the deflecting device 14: θβ and the maximum scanning deflection angle in the X direction: θDβ can be defined for the “β plane” just as described above.
Further, the deflection angle of X in the positive direction in the β plane: θX (0 ≦ θX ≦ θβ), the deflection angle: the scanning deflection angle with respect to θX (the deflection laser beam emitted from the deflection angle variable element 18 is light in the β plane A positive angle with respect to the axis AX): θx (0 ≦ θx ≦ θ ) can be defined.
In this case, in the case where reduction of the deflection angle is performed in the β plane, that is, in the X direction, generally, “θX> θx”.
 このようにX方向において偏向角の縮小を行う場合は、次式により「X方向における偏向角の縮小率(%)」を定義する。 
 「X方向における偏向角の縮小率(%)」=「{1-(θx/θX)}×100」  
 偏向装置14および偏向角変倍素子18によるレーザビームの偏向は、β平面内においても光軸AXに対して対称的である。 
 即ち、上に説明した偏向角:θXは、±θβの範囲で変化し、走査偏向角:θxは、±θDβの範囲で変化する。
As described above, when the deflection angle is reduced in the X direction, “the reduction ratio (%) of the deflection angle in the X direction” is defined by the following equation.
“Reduction ratio of deflection angle in X direction (%)” = “{1− (θx / θX)} × 100”
The deflection of the laser beam by the deflection device 14 and the deflection angle varying element 18 is symmetrical with respect to the optical axis AX also in the β plane.
That is, the deflection angle: θX described above changes in the range of ± θβ , and the scanning deflection angle: θx changes in the range of ± θDβ .
 偏向角変倍素子18が「X方向における偏向角を縮小する機能」を持つとは、β平面内において、最大走査偏向角:θDβが、最大偏向角:θβよりも小さい(θDβ<θβ)ことを意味する。 
 偏向装置14により、β平面内で光軸AXに対して最大偏向角:θβをなして偏向され、偏向角変倍素子20の入射面18Aで屈折したレーザビームのレンズ内中心光線を、偏向装置14側に直線的に延長させた延長線が、光軸AXと交わる位置と、レンズ内中心光線と偏向角変倍素子18の射出面18Bとの交点位置との間の距離の、光軸AX方向の距離成分をAβとする。
 また、偏向角変倍素子18の射出面18Bの「β平面内における曲率半径:Rβ」と、上記距離成分:Aβと、により、縮小コンセントリック係数:Cβを、
 Cβ≡|Aβ/Rβ|
 で定義する。
The fact that the deflection angle variable magnification element 18 "has the function of reducing the deflection angle in the X direction" means that the maximum scanning deflection angle: θDβ is smaller than the maximum deflection angle: θβ in the β plane (θ < θβ Means that).
In the β plane, the deflection device 14 deflects the light beam at a maximum deflection angle θβ with respect to the optical axis AX, and refracts the central ray of the laser beam refracted by the incident surface 18A of the deflection angle variable magnification element 20 The optical axis AX of the distance between the position where the extension line linearly extended to the 14 side intersects the optical axis AX, and the intersection position of the central ray in the lens and the exit surface 18B of the deflection angle variable magnification element 18 Let the distance component in the direction be Aβ.
Further, the reduction concentric radius Cβ is given by “the radius of curvature in the β plane: Rβ” of the exit surface 18 B of the deflection angle variable magnification element 18 and the above distance component: Aβ
Cβ≡ | Aβ / Rβ |
Define by
 上に説明したところから明らかなように、偏向角変倍素子18が軸対称で、偏向装置14による2次元的な偏向の最大角がX方向Y方向で同じであれば、縮小コンセントリック係数:CαとCβとは互いに等しい(Cα=Cβ)。 
 この発明の2次元走査型のレーザ投射装置は、縮小コンセントリック係数:Cα、Cβのうち「偏向角の縮小を行う方向」について、以下の条件を満足する。 
 (2α)   0.5≦Cα≦1.8  
 (2β)   0.5≦Cβ≦1.8  
As is apparent from the above description, if the deflection angle variable magnification element 18 is axisymmetric and the maximum angle of two-dimensional deflection by the deflection device 14 is the same in the X direction and Y direction, then the reduced concentric coefficient: Cα and Cβ are equal to each other (Cα = Cβ).
The two-dimensional scanning laser projector according to the present invention satisfies the following conditions with respect to the “direction in which the deflection angle is reduced” among the reduction concentric coefficients: Cα and Cβ.
(2α) 0.5 ≦ Cα ≦ 1.8
(2β) 0.5 ≦ Cβ ≦ 1.8
 縮小コンセントリック係数の意味を、Cαを例にとって説明する。 The meaning of the reduced concentric coefficient is explained taking Cα as an example.
 縮小コンセントリック係数:Cαの定義から、明らかなように、Cαは「Aαが大きいほど」大きく、「Rαの絶対値が小さいほど」大きい。 Reduced concentric coefficient: As is apparent from the definition of Cα, Cα is larger as “Aα is larger” and is larger as “the absolute value of Rα is smaller”.
 最大偏向角:θαを持つレーザビームが、α平面内において「偏向角変倍素子18の入射面18Aで屈折される角度」が大きいほど、レンズ内中心光線PLは光軸AXに平行に近くなり、距離成分:Aαは大きくなる。 
 また、偏向角変倍素子18の射出面(凸面)18Bのα平面内での曲率半径:Rαの絶対値が小さいほど、最大走査偏向角:θDαも光軸AXに平行に近くなる。 
 これから分かるように、縮小コンセントリック係数:Cαは、α平面内における偏向角変倍素子20による縮小率に関連し、縮小コンセントリック係数:Cαが大きいほど「Y方向における偏向角の縮小率(%)」は大きい。
 全く同様に、縮小コンセントリック係数:Cβが大きいほど「X方向における偏向角の縮小率(%)」は大きい。
The larger the angle at which the laser beam having the maximum deflection angle θα is refracted by the incident surface 18A of the deflection angle variable element 18 in the α plane, the closer the central ray PL in the lens becomes to be parallel to the optical axis AX , Distance component: A α becomes large.
Also, as the absolute value of the radius of curvature Rα in the α plane of the exit surface (convex surface) 18B of the deflection angle variable magnification element 18 decreases, the maximum scanning deflection angle θDα also becomes closer to parallel to the optical axis AX.
As can be understood from this, the reduction concentric coefficient: Cα is related to the reduction ratio by the deflection angle variable magnification element 20 in the α plane, and the reduction concentricity coefficient: the reduction ratio of the deflection angle in the Y direction (% ) Is large.
Just as well, the "reduction rate of deflection angle in X direction (%)" is larger as the reduction concentric coefficient: Cβ is larger.
 偏向レーザビームSRLによる検出対象物の2次元走査を「質的な面」から見ると、以下の2つの点が重要になる。 When viewing a two-dimensional scan of an object to be detected by the deflected laser beam SRL from the “quality surface”, the following two points become important.
 即ち、2次元走査される偏向レーザビームSRLの「ビーム径」と「角度ディストーション」である。 
 「ビーム径」は、偏向レーザビームSRLが測距検出対象物にスポット状に照射されたときの照射部(以下「照射スポット」とも言う。)のサイズである。 
 良好な測距を実現できるためには、偏向レーザビームのビーム径が、偏向角によらず安定しており、角度ディストーションも小さいことが重要である。 
 ビーム径の劣化は、偏向角に応じ、偏向角変倍素子の軸外収差である「コマ収差」により発生する。 
 例えば、偏向角変倍素子のコマ収差が、偏向角に応じて増大するような場合、偏向角に大きいところでは「ビーム径」が崩れ、偏向角の大きい部分で測定の精度が劣化する。
That is, the “beam diameter” and the “angular distortion” of the two-dimensionally scanned deflected laser beam SRL.
The “beam diameter” is the size of the irradiation portion (hereinafter also referred to as “irradiation spot”) when the deflection laser beam SRL is irradiated in a spot shape on the ranging detection target.
In order to achieve good distance measurement, it is important that the beam diameter of the deflected laser beam is stable regardless of the deflection angle, and the angle distortion is also small.
Deterioration of the beam diameter is caused by “coma aberration” which is an off-axis aberration of the deflection angle variable magnification element according to the deflection angle.
For example, when the coma of the deflection angle variable magnification element increases in accordance with the deflection angle, the “beam diameter” collapses where the deflection angle is large, and the measurement accuracy is degraded in the portion where the deflection angle is large.
 角度ディストーションが大きくなると、走査軌跡が歪みやすくなり、取得する「検出対象物の3次元形状」に歪が生じやすい。  
 上記縮小コンセントリック係数:Cα、Cβの上限値は、角度ディストーションに関連し、下限値は偏向レーザビームのビーム径、即ち、軸外収差に関連する。 
 縮小コンセントリック係数:Cα、Cβが上記条件(2α)、(2β)の上限を超えると、角度ディストーションの最大値が「-20%」を超え易く、走査軌跡の歪曲が目立ち易くなる。 
 縮小コンセントリック係数:Cα、Cβが上記条件(2α)、(2β)の下限を超えると、
軸外収差が大きくなり、軸外において「ビーム径の劣化」をもたらし易くなる。
As the angular distortion increases, the scanning locus is likely to be distorted, and distortion is likely to occur in the acquired “three-dimensional shape of the detection object”.
The upper limit of the reduced concentric coefficient: Cα, Cβ relates to the angular distortion, and the lower limit relates to the beam diameter of the polarized laser beam, ie to the off-axis aberration.
If the reduction concentric coefficients: Cα and Cβ exceed the upper limits of the above conditions (2α) and (2β), the maximum value of the angular distortion tends to exceed “−20%”, and the distortion of the scanning locus becomes noticeable.
Reduced concentric coefficient: When Cα and Cβ exceed the lower limits of the above conditions (2α) and (2β),
The off-axis aberration becomes large, and it becomes easy to bring about "deterioration of the beam diameter" off-axis.
 上記条件(2α)、(2β)は一般的な条件であり、偏向角変倍素子の「材質やレンズ形状」によっても、条件(2α)、(2β)の上下限値の適正範囲は、上記範囲内で変動する。 
 例えば、偏向角変倍素子18の材質、特に屈折率でみると、屈折率が高い材料(例えばSF6)による偏向角変倍素子の場合は、縮小コンセントリック係数の下限値は、条件(2α)、(2β)の下限値よりも大きめ(例えば0.6程度)が良い。 
 逆に、屈折率の低い材料(例えばBK7)による偏向角変倍素子の場合には、縮小コンセントリック係数の上限値は、条件(2α)、(2β)の上限値よりも小さめ(例えば1.5程度)が良い。
The above conditions (2α) and (2β) are general conditions, and the appropriate ranges of the upper and lower limit values of the conditions (2α) and (2β) are also the above depending on the “material and lens shape” of the deflection angle variable magnification element. Varies within the range.
For example, in the case of a deflection angle variable magnification element made of a material of the deflection angle variable magnification element 18, particularly a material having a high refractive index (for example, SF6) in terms of refractive index, the lower limit value of the reduction concentric coefficient is the condition (2α) It is preferable that the value is larger than the lower limit value of (2β) (for example, about 0.6).
Conversely, in the case of a deflection angle variable magnification element made of a material having a low refractive index (for example, BK7), the upper limit value of the reduction concentric coefficient is smaller than the upper limit values of the conditions (2α) and (2β) (for example, 1. 5) is good.
 上に説明した縮小コンセントリック係数:Cα、Cβは、上に説明した調整用レンズ13B、13A、偏向角変倍素子18、18Cに許容される種々のレンズ形態においても、上記と全く同様に定義され、これらのレンズ形態の場合においても、偏向角の縮小を行う方向について、上記条件(2α)、(2β)を満足する。 
 調整用レンズと偏向角変倍素子の形態(軸対称形状、シリンダ形状、アナモルフィックレンズ等)の組み合わせについては、上に説明した。 
 即ち、「偏向角変倍素子の形状を調整用レンズの形態に応じて調整し、調整用レンズを光軸方向へ変位調整して、偏向角変倍素子から、所望の光束形態の偏向レーザビームを射出させる」ことができるような組み合わせが許容される。
The reduced concentric coefficients described above: Cα and Cβ are defined in exactly the same manner as described above in the various lens configurations permitted for the adjustment lenses 13B and 13A and the deflection angle variable magnification elements 18 and 18C described above. Also in the case of these lens forms, the above conditions (2α) and (2β) are satisfied in the direction in which the deflection angle is reduced.
The combination of the adjustment lens and the form (axisymmetric shape, cylinder shape, anamorphic lens, etc.) of the deflection angle variable magnification element has been described above.
That is, “the shape of the deflection angle variable magnification element is adjusted according to the form of the adjustment lens, the displacement of the adjustment lens is adjusted in the direction of the optical axis, and the deflection angle magnification change element A combination is allowed that allows "injection".
 上に説明したように、縮小コンセントリック係数:Cα、Cβに条件(2α)、(2β)を課することにより、軸外収差、角度ディストーションを許容範囲内に収めることができる。 
 従って、偏向レーザビームの光束形態は、偏向角に従って変動するが、この変動に伴うビーム径の変動は許容領域内に収められる。 
 上に説明した縮小コンセントリック係数:Cα、Cβをまとめて、縮小コンセントリック係数:CRとし、偏向角の縮小を行う方向についてCα、Cβとする。 
 縮小コンセントリック係数:CRを用いると、上に説明した条件(2α)、(2β)は、偏向角の縮小を行う方向について、条件:
 (2)   0.5≦CR≦1.8 
とすることができる。
As described above, by imposing the conditions (2α) and (2β) on the reduction concentric coefficients: Cα and Cβ, off-axis aberration and angular distortion can be within the allowable range.
Therefore, the beam shape of the deflected laser beam varies according to the deflection angle, but the variation of the beam diameter accompanying this variation is within the allowable range.
The reduced concentric coefficients described above: Cα and Cβ are collectively referred to as a reduced concentric coefficient: CR, and Cα and Cβ in the direction in which the deflection angle is reduced.
When the reduced concentric coefficient: CR is used, the conditions (2α) and (2β) described above are the conditions for the direction in which the deflection angle is reduced:
(2) 0.5 ≦ CR ≦ 1.8
It can be done.
 以下、図6以下に説明した2次元走査型のレーザビーム投射装置の具体的な実施例を9例挙げる。 
 以下の実施例11ないし19は、何れも、調整用レンズ・偏向角変倍素子とも正レンズとし、平行光束状の偏向レーザビームを得るようにした場合の具体例である。 
 レーザ光源として用いられるレーザ光源は使用波長:870nmのものである。 
 各実施例においては、調整用レンズと偏向角変倍素子に関するデータと、縮小コンセントリック係数を挙げる。 
 各実施例において、距離:Lは、偏向角変倍素子の光軸に沿った「偏向装置と偏向角変倍素子の入射側面との距離」を表し、距離:SLは「調整用レンズの射出側面から偏向角変倍素子の入射面までの、偏向角が0のときの距離」を表す。 
 なお、屈折率は使用波長に対するものであり、レンズは全て(SCHOTT製)である。
Hereinafter, nine specific examples of the two-dimensional scanning laser beam projection apparatus described in FIG.
The following Examples 11 to 19 are specific examples in which both the adjusting lens and the deflection angle variable magnification element are positive lenses to obtain a parallel beam-like polarized laser beam.
The laser light source used as a laser light source has an operating wavelength of 870 nm.
In each embodiment, data on the adjustment lens and the deflection angle variable magnification element and the reduction concentric coefficient are listed.
In each embodiment, the distance L represents "the distance between the deflecting device and the incident side surface of the deflection angle variable element" along the optical axis of the deflection angle variable element, and the distance SL represents "the emission of the adjusting lens The distance from the side surface to the incident surface of the deflection angle variable magnification element when the deflection angle is 0 is represented.
The refractive index is for the used wavelength, and all the lenses are made (by SCHOTT).
 また、偏向装置による最大偏向角は、α平面内、β平面内共に±30度である。 Further, the maximum deflection angle by the deflection device is ± 30 degrees in the α plane and the β plane.
  「実施例11」
 実施例11に関する偏向角変倍素子、調整用レンズ、およびこれらのレイアウト、縮小コンセントリック係数を表45に示す。
"Example 11"
The deflection angle variable magnification element, the adjusting lens, their layouts, and the reduction concentric coefficient according to Example 11 are shown in Table 45.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 実施例11において、偏向角変倍素子は軸対称で、縮小コンセントリック係数:Cα、Cβは互いに等しい。 
 実施例11における偏向装置による偏向角と、偏向角変倍素子による走査偏向角を表46に示す。これらは前述のα平面及びβ平面におけるものであり、単位は「度」である。
In Example 11, the deflection angle variable magnification elements are axisymmetric, and the reduction concentric coefficients: Cα and Cβ are equal to one another.
The deflection angles by the deflection apparatus in Example 11 and the scanning deflection angles by the deflection angle variable magnification element are shown in Table 46. These are in the above-mentioned α plane and β plane, and the unit is “degree”.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 偏向角変倍素子が軸対称であるので、α平面、β平面におけるこれらの角は実質的に等しく、「偏向角の縮小率」はα平面内で「最大偏向角:±30度に対して51.2%」であり、β平面内でも実質的に等しい。 
 角度ディストーション(以下の表において「ANDT」と略記する。単位は「%」である。)を表47に示す。α平面内、β平面内ともに値は等しい。
Since the deflection angle variable magnification element is axisymmetric, these angles in the α plane and β plane are substantially equal, and the “reduction rate of deflection angle” is “the maximum deflection angle ± 30 degrees in the α plane” 51.2% "and substantially equal in the beta plane.
The angular distortion (abbreviated as "ANDT" in the following table. The unit is "%") is shown in Table 47. The values in the α plane and in the β plane are equal.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 「偏向角」と偏向レーザビームSRLのビーム径との関係を表48に示す。 
 α平面内、β平面内ともに値は等しい。 
 なお、実施例11~19において「ビーム径」は偏向角変倍素子の射出面から「3mの位置」におけるスポットダイヤグラムから求めた値である。
Table 48 shows the relationship between the “deflection angle” and the beam diameter of the deflected laser beam SRL.
The values in the α plane and in the β plane are equal.
In Examples 11 to 19, "beam diameter" is a value obtained from a spot diagram at "a position of 3 m" from the exit surface of the deflection angle variable magnification element.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
 表47、表48に示されたように、角度ディストーションの最大値も-11.1%と小さく、走査軌跡の歪曲は小さく、取得された検出対象物の3次元画像の歪曲は目立ちにくい。 
 また、ビーム径の最大値も8.8mmと小さく、解像力は良好である。
As shown in Tables 47 and 48, the maximum value of the angular distortion is also as small as -11.1, the distortion of the scanning locus is small, and the distortion of the acquired three-dimensional image of the detection object is less noticeable.
In addition, the maximum value of the beam diameter is also as small as 8.8 mm, and the resolving power is good.
 「実施例12」
 実施例12に関する偏向角変倍素子、調整用レンズ、およびこれらのレイアウト、縮小コンセントリック係数を表49に示す。
"Example 12"
The deflection angle variable magnification element, the adjusting lens, their layouts, and the reduction concentric coefficient according to Example 12 are shown in Table 49.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
 実施例12においても、偏向角変倍素子は軸対称で、縮小コンセントリック係数:Cα、Cβは互いに等しい。 
 実施例12における偏向装置による偏向角と、偏向角変倍素子による走査偏向角を、表46に倣って表50に示す。 
 偏向角変倍素子が軸対称であるので、α平面、β平面におけるこれらの角は実質的に等しく、「偏向角の縮小率」はα平面内で「最大偏向角:±30度に対して30.3%」であり、β平面内でも実質的に等しい。
Also in the twelfth embodiment, the deflection angle variable magnification elements are axisymmetric, and the reduction concentric coefficients: Cα and Cβ are equal to one another.
The deflection angles by the deflection apparatus in Example 12 and the scanning deflection angles by the deflection angle variable magnification element are shown in Table 50 according to Table 46.
Since the deflection angle variable magnification element is axisymmetric, these angles in the α plane and β plane are substantially equal, and the “reduction rate of deflection angle” is “the maximum deflection angle ± 30 degrees in the α plane” 30.3% 'and substantially equal in the beta plane.
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
 角度ディストーションを表51に示す。α平面内、β平面内ともに値は等しい。 The angular distortion is shown in Table 51. The values in the α plane and in the β plane are equal.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 「偏向角」と偏向レーザビームSRLのビーム径との関係を表52に示す。α平面内、β平面内ともに値は等しい。 Table 52 shows the relationship between the “deflection angle” and the beam diameter of the deflected laser beam SRL. The values in the α plane and in the β plane are equal.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
 表51、表52に示されたように、角度ディストーションの最大値も-6.6%と小さく、走査軌跡の歪曲は小さく、取得された検出対象物の3次元画像の歪曲は目立ちにくい。 
 また、ビーム径の最大値も17.2mmと小さく、解像力は良好である。
As shown in Tables 51 and 52, the maximum value of the angular distortion is also as small as -6.6%, the distortion of the scanning locus is small, and the distortion of the acquired three-dimensional image of the detection object is less noticeable.
Also, the maximum value of the beam diameter is as small as 17.2 mm, and the resolving power is good.
 「実施例13」
 実施例13に関する偏向角変倍素子、調整用レンズ、およびこれらのレイアウト、縮小コンセントリック係数を表53に示す。
"Example 13"
The deflection angle variable magnification element, the adjusting lens, their layouts, and the reduction concentric coefficient according to Example 13 are shown in Table 53.
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
 実施例13においても、偏向角変倍素子は軸対称で、縮小コンセントリック係数:Cα、Cβは互いに等しい。 
 実施例13における偏向装置による偏向角と、偏向角変倍素子による走査偏向角を、表46に倣って表54に示す。 
 偏向角変倍素子が軸対称であるので、α平面、β平面におけるこれらの角は実質的に等しく、「偏向角の縮小率」はα平面内で「最大偏向角:±30度に対して69.6%」であり、β平面内でも実質的に等しい。
Also in the thirteenth embodiment, the deflection angle variable magnification element is axisymmetric, and the reduction concentric coefficients: Cα and Cβ are equal to one another.
The deflection angles by the deflection apparatus in Example 13 and the scanning deflection angles by the deflection angle variable magnification element are shown in Table 54 according to Table 46.
Since the deflection angle variable magnification element is axisymmetric, these angles in the α plane and β plane are substantially equal, and the “reduction rate of deflection angle” is “the maximum deflection angle ± 30 degrees in the α plane” 69.6% ”and substantially equal in the β plane.
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
 角度ディストーションを表55に示す。α平面内、β平面内ともに値は等しい。 The angular distortion is shown in Table 55. The values in the α plane and in the β plane are equal.
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
 「偏向角」と偏向レーザビームSRLのビーム径との関係を表56に示す。α平面内、β平面内ともに値は等しい。 Table 56 shows the relationship between the “deflection angle” and the beam diameter of the deflected laser beam SRL. The values in the α plane and in the β plane are equal.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
 表55、表56に示されたように、角度ディストーションの最大値は-20%以下で、走査軌跡の歪曲は小さく、取得された検出対象物の3次元画像の歪曲は目立ちにくい。 
 また、ビーム径の最大値も9.7mmと小さく、解像力は良好である。
As shown in Tables 55 and 56, the maximum value of the angular distortion is −20% or less, the distortion of the scanning locus is small, and the distortion of the acquired three-dimensional image of the detection object is less noticeable.
In addition, the maximum value of the beam diameter is also as small as 9.7 mm, and the resolving power is good.
 「実施例14」
 実施例14に関する偏向角変倍素子、調整用レンズ、およびこれらのレイアウト、縮小コンセントリック係数を表57に示す。
"Example 14"
The deflection angle variable magnification element, the adjusting lens, their layouts, and the reduction concentric coefficient according to Example 14 are shown in Table 57.
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
 実施例14においては、偏向角変倍素子の入射面は平面、射出面はX方向に軸を持つシリンダ面であり、従って、X方向には偏向角を縮小しない。 
 従って、縮小コンセントリック係数のうち、条件を満たすべきものは「Cα」である。
In the fourteenth embodiment, the incident surface of the deflection angle variable magnification element is a flat surface, and the exit surface is a cylinder surface having an axis in the X direction. Therefore, the deflection angle is not reduced in the X direction.
Therefore, among the reduced concentric coefficients, the one that should satisfy the condition is “Cα”.
 実施例14における偏向装置による偏向角と、偏向角変倍素子による走査偏向角を、表58に示す。 
 偏向角変倍素子18は、X方向には偏向角の縮小を行わず、Y方向における偏向角の縮小率は、最大偏向角:±30度に対して54.6%である。
The deflection angles by the deflection apparatus in Example 14 and the scanning deflection angles by the deflection angle variable magnification element are shown in Table 58.
The deflection angle variable magnification element 18 does not reduce the deflection angle in the X direction, and the reduction ratio of the deflection angle in the Y direction is 54.6% with respect to the maximum deflection angle: ± 30 degrees.
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
 α平面内の角度ディストーションを表59に示す。 The angular distortion in the α plane is shown in Table 59.
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
 α平面内における「偏向角」と偏向レーザビームSRLのビーム径との関係を表60に示す。 The relationship between the “deflection angle” in the α plane and the beam diameter of the deflected laser beam SRL is shown in Table 60.
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
 表59、表60に示されたように、Y方向における角度ディストーションの最大値は-12.2%と小さい。従って、走査軌跡の歪曲は小さく、取得された検出対象物の3次元画像の歪曲は目立ちにくい。 
 また、ビーム径の最大値も7.6mmと小さく、解像力は良好である。
As shown in Tables 59 and 60, the maximum value of the angular distortion in the Y direction is as small as −12.2%. Therefore, the distortion of the scanning locus is small, and the distortion of the acquired three-dimensional image of the detection object is less noticeable.
Also, the maximum value of the beam diameter is as small as 7.6 mm, and the resolving power is good.
 「実施例15」
 実施例15に関する偏向角変倍素子、調整用レンズ、およびこれらのレイアウト、縮小コンセントリック係数を表61に示す。
"Example 15"
The deflection angle variable magnification element, the adjusting lens, their layouts, and the reduction concentric coefficient according to Example 15 are shown in Table 61.
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
 実施例15においても、偏向角変倍素子の入射面は平面、射出面はX方向に軸を持つシリンダ面であり、従って、X方向には偏向角を縮小しない。 
 従って、縮小コンセントリック係数のうち、条件を満たすべきものは「Cα」である。
Also in the fifteenth embodiment, the incident surface of the deflection angle variable magnification element is a flat surface, and the exit surface is a cylinder surface having an axis in the X direction. Therefore, the deflection angle is not reduced in the X direction.
Therefore, among the reduced concentric coefficients, the one that should satisfy the condition is “Cα”.
 調整用レンズ13Bの入射面もX方向に軸を持つシリンダ面である。 
 実施例15における偏向装置による偏向角と、偏向角変倍素子による走査偏向角を、表62に示す。 
 偏向角変倍素子20は、X方向には偏向角の縮小を行わず、Y方向における偏向角の縮小率は、最大偏向角:±30度に対して46.4%である。
The incident surface of the adjustment lens 13B is also a cylinder surface having an axis in the X direction.
The deflection angles of the deflection apparatus in Example 15 and the scanning deflection angles of the deflection angle variable element are shown in Table 62.
The deflection angle variable magnification element 20 does not reduce the deflection angle in the X direction, and the reduction ratio of the deflection angle in the Y direction is 46.4% with respect to the maximum deflection angle: ± 30 degrees.
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
 α平面内の角度ディストーションを表63に示す。 The angular distortion in the α plane is shown in Table 63.
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
 α平面内における「偏向角」と偏向レーザビームSRLのビーム径との関係を表64に示す。 The relationship between the “deflection angle” and the beam diameter of the deflected laser beam SRL in the α plane is shown in Table 64.
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
 上記実施例に示されたように、Y方向における角度ディストーションの最大値は-9.9%と小さい。従って、走査軌跡の歪曲は小さく、取得された検出対象物の3次元画像の歪曲は目立ちにくい。 
 また、ビーム径の最大値も7.9mmと小さく、解像力は良好である。
As shown in the above embodiment, the maximum value of the angular distortion in the Y direction is as small as -9.9%. Therefore, the distortion of the scanning locus is small, and the distortion of the acquired three-dimensional image of the detection object is less noticeable.
In addition, the maximum value of the beam diameter is also as small as 7.9 mm, and the resolving power is good.
 「実施例16」
 実施例16に関する偏向角変倍素子、調整用レンズ、およびこれらのレイアウト、縮小コンセントリック係数を表65に示す。
"Example 16"
The deflection angle variable magnification element, the adjusting lens, their layouts, and the reduction concentric coefficient according to Example 16 are shown in Table 65.
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
 実施例16においては、偏向角変倍素子の入射面は平面、射出面はY方向に軸を持つシリンダ面であり、従って、Y方向には偏向角を縮小しない。 
 従って、縮小コンセントリック係数のうち、条件を満たすべきものは「Cβ」である。
In the sixteenth embodiment, the incident surface of the deflection angle variable magnification element is a flat surface, and the exit surface is a cylinder surface having an axis in the Y direction. Therefore, the deflection angle is not reduced in the Y direction.
Therefore, among the reduced concentric coefficients, the one that should satisfy the condition is “Cβ”.
 調整用レンズ13Bの入射面もY方向に軸を持つシリンダ面である。 
 実施例16における偏向装置による偏向角と、偏向角変倍素子による走査偏向角を、表66に示す。 
 偏向角変倍素子20は、Y方向には偏向角の縮小を行わず、X方向における偏向角の縮小率は、最大偏向角:±25.7度に対して52.9%である。
The incident surface of the adjustment lens 13B is also a cylinder surface having an axis in the Y direction.
The deflection angles by the deflection apparatus in Example 16 and the scanning deflection angles by the deflection angle variable magnification element are shown in Table 66.
The deflection angle variable magnification element 20 does not reduce the deflection angle in the Y direction, and the reduction ratio of the deflection angle in the X direction is 52.9% with respect to the maximum deflection angle ± 25.7 degrees.
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
 β平面内における角度ディストーションを表67に示す。 The angular distortion in the β plane is shown in Table 67.
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
 β平面内における「偏向角」と偏向レーザビームSRLのビーム径との関係を表68に示す。 Table 68 shows the relationship between the “deflection angle” in the β plane and the beam diameter of the deflected laser beam SRL.
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
 表67、表68に示されたように、X方向における角度ディストーションの最大値は-9.9%と小さい。従って、走査軌跡の歪曲は小さく、取得された検出対象物の3次元画像の歪曲は目立ちにくい。 
 また、ビーム径の最大値も61.9mmと小さく、解像力は良好である。
As shown in Tables 67 and 68, the maximum value of the angular distortion in the X direction is as small as -9.9%. Therefore, the distortion of the scanning locus is small, and the distortion of the acquired three-dimensional image of the detection object is less noticeable.
Also, the maximum value of the beam diameter is as small as 61.9 mm, and the resolving power is good.
 「実施例17」 
 実施例17に関する偏向角変倍素子、調整用レンズ、およびこれらのレイアウト、縮小コンセントリック係数を表69に示す。
"Example 17"
Deflection angle variable magnification elements, adjustment lenses, layouts thereof, and reduction concentric coefficients according to Example 17 are shown in Table 69.
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
 実施例17においても、偏向角変倍素子の入射面は平面、射出面はY方向に軸を持つシリンダ面であり、従って、Y方向には偏向角を縮小しない。 
 従って、縮小コンセントリック係数のうち、条件を満たすべきものは「Cβ」である。
Also in the seventeenth embodiment, the incident surface of the deflection angle variable magnification element is a flat surface, and the exit surface is a cylinder surface having an axis in the Y direction. Therefore, the deflection angle is not reduced in the Y direction.
Therefore, among the reduced concentric coefficients, the one that should satisfy the condition is “Cβ”.
 調整用レンズ13Bの入射面もX方向に軸を持つシリンダ面である。 
 実施例17における偏向装置による偏向角と、偏向角変倍素子18による走査偏向角を、表70に示す。 
 偏向角変倍素子18は、Y方向には偏向角の縮小を行わず、X方向における偏向角の縮小率は、最大偏向角:±25.7度に対して37.9%である。
The incident surface of the adjustment lens 13B is also a cylinder surface having an axis in the X direction.
The deflection angles of the deflection apparatus in Example 17 and the scanning deflection angles of the deflection angle variable element 18 are shown in Table 70.
The deflection angle variable magnification element 18 does not reduce the deflection angle in the Y direction, and the reduction ratio of the deflection angle in the X direction is 37.9% with respect to the maximum deflection angle ± 25.7 degrees.
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
 β平面内における角度ディストーションを表71に示す。 The angular distortion in the β plane is shown in Table 71.
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000071
 β平面内における「偏向角」と偏向レーザビームSRLのビーム径との関係を表72に示す。 The relationship between the “deflection angle” in the β plane and the beam diameter of the deflected laser beam SRL is shown in Table 72.
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
 表71、72に示されたように、X方向における角度ディストーションの最大値は-7.1%と小さい。従って、走査軌跡の歪曲は小さく、取得された検出対象物の3次元画像の歪曲は目立ちにくい。 
 また、ビーム径の最大値も35.9mmと小さく、解像力は良好である。
 実施例16、実施例17では、表68、表72に示すように、偏向角の変化に対して「ビーム径の変動」が極めて小さく抑えられている。
As shown in Tables 71 and 72, the maximum value of the angular distortion in the X direction is as small as -7.1%. Therefore, the distortion of the scanning locus is small, and the distortion of the acquired three-dimensional image of the detection object is less noticeable.
In addition, the maximum value of the beam diameter is as small as 35.9 mm, and the resolving power is good.
In Example 16 and Example 17, as shown in Table 68 and Table 72, the "variation in beam diameter" is suppressed to be extremely small with respect to the change in deflection angle.
 「実施例18」
 実施例18に関する偏向角変倍素子、調整用レンズ、およびこれらのレイアウト、縮小コンセントリック係数を表73に示す。
"Example 18"
Deflection angle variable magnification elements, adjustment lenses, layouts thereof, and reduction concentric coefficients according to Example 18 are shown in Table 73.
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000073
 実施例18において、偏向角変倍素子は軸対称で、縮小コンセントリック係数:Cα、Cβは互いに等しい。調整用レンズ13Bも軸対称である。 
 実施例18における偏向装置による偏向角と、偏向角変倍素子による走査偏向角を表74に示す。 
 偏向角変倍素子が軸対称であるので、α平面、β平面におけるこれらの角は実質的に等しく、「偏向角の縮小率」はα平面内で「最大偏向角:±30度に対して51.2%」であり、β平面内でも実質的に等しい。
In Example 18, the deflection angle variable magnification elements are axisymmetric, and the reduction concentric coefficients: Cα and Cβ are equal to one another. The adjustment lens 13B is also axially symmetric.
The deflection angles by the deflection apparatus in Example 18 and the scanning deflection angles by the deflection angle variable magnification element are shown in Table 74.
Since the deflection angle variable magnification element is axisymmetric, these angles in the α plane and β plane are substantially equal, and the “reduction rate of deflection angle” is “the maximum deflection angle ± 30 degrees in the α plane” 51.2% "and substantially equal in the beta plane.
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000074
 角度ディストーションを表75に示す。角度ディストーションは、α平面内・β平面内で同じ値である。 The angular distortion is shown in Table 75. The angular distortion has the same value in the α plane and β plane.
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000075
 「偏向角」と偏向レーザビームSRLのビーム径との関係を表76に示す。 The relationship between the “deflection angle” and the beam diameter of the deflected laser beam SRL is shown in Table 76.
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000076
 上記実施例18に示されたように、角度ディストーションの最大値は-9.6%と小さい。従って、走査軌跡の歪曲は小さく、取得された検出対象物の3次元画像の歪曲は目立ちにくい。 
 また、ビーム径の最大値も9.0mmと小さく、偏向角の変化に対して「ビーム径の変動」が小さく抑えられており、解像力は良好である。
As shown in Example 18 above, the maximum value of the angular distortion is as small as -9.6%. Therefore, the distortion of the scanning locus is small, and the distortion of the acquired three-dimensional image of the detection object is less noticeable.
Further, the maximum value of the beam diameter is also as small as 9.0 mm, and the "variation of the beam diameter" is suppressed to be small with respect to the change of the deflection angle, and the resolving power is good.
 「実施例19」 
 実施例19に関する偏向角変倍素子、調整用レンズ、およびこれらのレイアウト、縮小コンセントリック係数を表77に示す。
"Example 19"
The deflection angle variable magnification element, the adjusting lens, their layouts, and the reduction concentric coefficient according to Example 19 are shown in Table 77.
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000077
 実施例19においても、偏向角変倍素子は軸対称で、縮小コンセントリック係数:Cα、Cβは互いに等しい。調整用レンズ13Bも軸対称である。
 実施例19における偏向装置による偏向角と、偏向角変倍素子による走査偏向角を表78に示す。 
 偏向角変倍素子が軸対称であるので、α平面、β平面におけるこれらの角は実質的に等しく、「偏向角の縮小率」はα平面内で「最大偏向角:±30度に対して51.2%」であり、β平面内でも実質的に等しい。
Also in the nineteenth embodiment, the deflection angle variable magnification element is axisymmetric, and the reduction concentric coefficients: Cα and Cβ are equal to each other. The adjustment lens 13B is also axially symmetric.
The deflection angles of the deflection apparatus in Example 19 and the scanning deflection angles of the deflection angle variable element are shown in Table 78.
Since the deflection angle variable magnification element is axisymmetric, these angles in the α plane and β plane are substantially equal, and the “reduction rate of deflection angle” is “the maximum deflection angle ± 30 degrees in the α plane” 51.2% "and substantially equal in the beta plane.
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000078
 角度ディストーションを表79に示す。角度ディストーションは、α平面内・β平面内で同じ値である。 The angular distortion is shown in Table 79. The angular distortion has the same value in the α plane and β plane.
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000079
 「偏向角」と偏向レーザビームSRLのビーム径との関係を表80に示す。 The relationship between the “deflection angle” and the beam diameter of the deflected laser beam SRL is shown in Table 80.
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000080
 表79、表80に示されたように、角度ディストーションの最大値は-1.9%と極めて小さい。従って、走査軌跡の歪曲も極めて小さく、取得された検出対象物の3次元画像の歪曲は目立ちにくい。 
 また、ビーム径の最大値も5.1mmと小さく、偏向角の変化に対して「ビーム径の変動」が小さく抑えられており、解像力は良好である。
As shown in Tables 79 and 80, the maximum value of the angular distortion is extremely small at -1.9%. Therefore, distortion of the scanning locus is also extremely small, and distortion of the acquired three-dimensional image of the detection object is less noticeable.
Further, the maximum value of the beam diameter is also as small as 5.1 mm, and the "variation of the beam diameter" is suppressed to be small with respect to the change of the deflection angle, and the resolving power is good.
.
 若干補足する。 
 実施例11~19においては、調整用レンズと偏向角変倍素子の位置関係は、調整用レンズにより収束するレーザビームの収束位置が、偏向角変倍素子の物体側の焦点の位置(図6の点PF)に合致するように調整され、この状態で、偏向角変倍素子から放射される偏向レーザビームSRLは「平行ビーム」となる。この場合の位置関係を「基準位置関係」と呼ぶ。
Supplementary a little.
In Examples 11 to 19, as for the positional relationship between the adjustment lens and the deflection angle variable magnification element, the convergence position of the laser beam converged by the adjustment lens is the position of the focal point on the object side of the deflection angle magnification element (FIG. 6). It is adjusted to coincide with the point PF), and in this state, the deflected laser beam SRL emitted from the deflection angle variable magnification element becomes a "parallel beam". The positional relationship in this case is referred to as "reference positional relationship".
 上の各実施例では、基準位置関係を満足するように「調整用レンズと偏向角変倍素子の位置関係」を定めたのち、調整用レンズの光軸方向の位置を微調整している。 
 即ち、この微調整で、偏向角変倍素子の射出面から3mの位置における「偏向レーザビームのビーム径」が、偏向角:0度と最大偏向角とで略等しくなるようにする。 
 この微調整により、偏向角変倍素子として軸対称なレンズを用いる実施例11ないし13、実施例18及び19において、α平面内とβ平面内とで「偏向角の縮小率」に微差が生じる。
In each of the above embodiments, the position of the adjusting lens in the optical axis direction is finely adjusted after “the positional relationship between the adjusting lens and the deflection angle variable magnification element” is determined so as to satisfy the reference positional relationship.
That is, in this fine adjustment, the “beam diameter of the deflected laser beam” at a position 3 m from the exit surface of the deflection angle variable magnification element is made substantially equal at deflection angle: 0 degrees and the maximum deflection angle.
Due to this fine adjustment, in Examples 11 to 13 and Examples 18 and 19 in which axially symmetrical lenses are used as deflection angle variable magnification elements, a slight difference in “reduction rate of deflection angle” in the α plane and in the β plane is obtained. It occurs.
 この微差は以下の通りである。 
 実施例11 
 α平面内での縮小率:51.2%、β平面内での縮小率:49.6% 
 実施例12 
 α平面内での縮小率:30.3%、β平面内での縮小率:29.0% 
 実施例13 
 α平面内での縮小率:69.6%、β平面内での縮小率:67.5% 
 実施例18 
 α平面内での縮小率:51.2%、β平面内での縮小率:49.8% 
 実施例19 
 α平面内での縮小率:51.2%、β平面内での縮小率:49.8%
 これらの実施例における「α平面内とβ平面内における縮小率の微差」は、上に示した縮小コンセントリック係数や角度ディストーションには実質的な影響を与えない。
The minute difference is as follows.
Example 11
Reduction rate in α plane: 51.2%, reduction rate in β plane: 49.6%
Example 12
Reduction rate in α plane: 30.3%, reduction rate in β plane: 29.0%
Example 13
Reduction rate in α plane: 69.6%, reduction rate in β plane: 67.5%
Example 18
Reduction rate in α plane: 51.2%, reduction rate in β plane: 49.8%
Example 19
Reduction rate in α plane: 51.2%, reduction rate in β plane: 49.8%
The “fine difference in the reduction ratio in the α and β planes” in these embodiments does not substantially affect the reduction concentric coefficient and the angular distortion shown above.
 付言すると、上に挙げた実施例19では、偏向角変倍素子の入射面・射出面が共に球面となっている。入射面は凹球面、射出面は凸球面であり、曲率半径は共に負である。 
 このような場合、入射面の曲率半径をRA、射出面の曲率半径をRBとすると、これらの比:RA/RBは、ある程度大きいことが重要である。 
 例えば、実施例9のように偏向角変倍素子を屈折率の大きい硝材で形成した場合だと、RA/RBは1.6以上であることが好ましい。 
 この場合に、RA/RBが1.6より小さいと、角度ディストーションが、偏向角の増大と共に大きくなり易い。
In addition, in the nineteenth embodiment mentioned above, both the entrance surface and the exit surface of the deflection angle variable magnification element are spherical. The incident surface is a concave spherical surface, the exit surface is a convex spherical surface, and the radius of curvature is both negative.
In such a case, assuming that the radius of curvature of the entrance surface is RA and the radius of curvature of the exit surface is RB, it is important that the ratio RA / RB is large to some extent.
For example, in the case where the deflection angle variable magnification element is formed of a glass material having a large refractive index as in Example 9, RA / RB is preferably 1.6 or more.
In this case, if RA / RB is less than 1.6, the angular distortion tends to increase as the deflection angle increases.
 偏向角変倍素子を、BK7のような屈折率の低い硝材で形成した場合だと、RA/RBは1.8以上であることが好ましい。 
 この場合にRA/RBが1.8より小さいと、角度ディストーションが、偏向角の増大と共に大きくなり易い。 
 実施例19では、RA/RB=1.87で、十分に大きい値となっており、角度ディストーションも良好である。 
 なお、軸外収差の軽減と言う観点からすると、縮小コンセントリック係数:CR(Cα、Cβ)の値は「1に近い」ことが好ましい。
When the deflection angle variable magnification element is formed of a glass material having a low refractive index such as BK7, RA / RB is preferably 1.8 or more.
In this case, if RA / RB is less than 1.8, the angular distortion tends to increase as the deflection angle increases.
In Example 19, RA / RB = 1.87, which is a sufficiently large value, and the angular distortion is also good.
From the viewpoint of alleviation of the off-axis aberration, it is preferable that the value of the reduction concentric coefficient: CR (Cα, Cβ) be “close to 1”.
 上に示した実施例11~19の2次元走査型のレーザビーム投射装置では、基本的に平行光束状の偏向レーザビームを得るものである。 
 しかし前述のように、偏向角変倍素子から射出する偏向レーザビームの光束形態は、収束光束状とすることも、発散光束状とすることもできる。 
 1例として、上の実施例1において、調整用レンズ以外のデータをそのままにし、調整用レンズの入斜面の曲率半径のみを48.9mmから19.6mmに変えると、調整用レンズの正の屈折力が増大する。 
 このため、コリメートレンズから調整用レンズに入射した平行光束状のレーザビームは偏向角変倍素子の焦点距離を「f」とすると、偏向角変倍素子の物体側の距離:2fの位置に集光する。
The two-dimensional scanning type laser beam projectors of the above-described embodiments 11 to 19 basically obtain a collimated luminous flux polarized laser beam.
However, as described above, the light flux of the deflection laser beam emitted from the deflection angle variable magnification element can be in the form of a convergent light flux or in the form of a divergent light flux.
As one example, in Example 1 above, when the data other than the adjusting lens is left as it is and only the curvature radius of the inclining surface of the adjusting lens is changed from 48.9 mm to 19.6 mm, the positive refraction of the adjusting lens Force increases.
For this reason, assuming that the focal length of the deflection angle variable magnification element is “f”, the parallel light flux laser beam incident on the adjustment lens from the collimator lens is collected at a distance of 2 f on the object side of the deflection angle magnification element. Light up.
 従って、この点を物点とする偏向角変倍素子による像は、偏向角変倍素子の像側の距離:2fの位置に等倍像として結像する。従って、偏向角変倍素子から射出する偏向レーザビームは収束光束状となる。 
 実施例11~19の2次元走査型のレーザビーム投射装置は、図6に示した如き検出手段、制御演算手段と組み合わせてレーザレーダ装置を構成できる。
Therefore, an image by the deflection angle variable magnification element having this point as an object point is formed as an equal magnification image at a distance of 2 f on the image side of the deflection angle magnification element. Therefore, the deflection laser beam emitted from the deflection angle variable magnification element is in the form of a convergent beam.
The two-dimensional scanning type laser beam projection apparatus according to the eleventh to nineteenth embodiments can be combined with the detecting means and the control calculating means as shown in FIG. 6 to constitute a laser radar apparatus.
 以下、発明の実施のさらに他の形態を説明する。 
 図11は、実施のさらに他の形態の要部を説明図的に示している。 
 繁雑を避けるため、混同の恐れが無いと思われるものについては、図6と符号を共通化する。即ち、図11において、符号10は「LD」、符号12は「カップリングレンズ」、符号13Bは「調整用レンズ」、符号40は「照射用の光路を折り返すミラー」を示す。 
 符号14は「偏向装置」、符号181は「偏向角変倍素子としての偏向角変倍素子」、符号30は「受光素子」、符号32は「集光レンズ」、符号34は「受光用レンズ」を示す。 
 また受光側にある符号40Aは「受光用の光路を折り返すミラー」を示し、符号400は「制御演算手段としての制御演算部」を示す。なお、「受光素子30」は「検出用受光素子30」とも言う。
Hereinafter, still another embodiment of the present invention will be described.
FIG. 11 illustrates the main part of still another embodiment of the present invention in an explanatory diagram.
In order to avoid complexity, the symbols shown in FIG. That is, in FIG. 11, reference numeral 10 denotes "LD", reference numeral 12 denotes a "coupling lens", reference numeral 13B denotes a "adjustment lens", and reference numeral 40 denotes a "mirror for returning the light path for irradiation".
Reference numeral 14 is a "deflection device", reference numeral 181 is a deflection angle variable magnification element as a deflection angle change element, reference numeral 30 is a "light receiving element", reference numeral 32 is a "condenser lens", and reference numeral 34 is a light receiving lens. ".
Further, reference numeral 40A on the light receiving side indicates "a mirror for turning back the light path for light reception", and reference numeral 400 indicates a "control operation unit as control operation means". The “light receiving element 30” is also referred to as “detection light receiving element 30”.
 説明の簡単のため、図11においてもX、Y、Z方向を図の如く定める。
 X方向は「図面に直交する方向(前述の「水平方向」「横方向」に対応)」であり、Y方向は「図面に平行で図の上下方向(前述の「鉛直方向」「横方向」に対応)」である。Z方向は「図面に平行で図の左右方向(カップリングレンズ12、偏向角変倍素子181の光軸に平行な方向)」である。
In order to simplify the description, the X, Y, and Z directions are defined as shown in FIG.
The X direction is the direction orthogonal to the drawing (corresponding to the above-mentioned "horizontal direction""lateraldirection"), the Y direction is "parallel to the drawing and the vertical direction of the figure (the above" vertical direction "" horizontal direction " Corresponding to The Z direction is "parallel to the drawing in the lateral direction of the drawing (direction parallel to the optical axes of the coupling lens 12 and the deflection angle variable element 181)".
 LD10は、高出力のレーザ光を放射する。 
 LD10から放射されたレーザ光は、カップリングレンズ12と調整用レンズ13Bとを透過し、これらの光学作用を受けて「収束性のレーザ光束」に変換される。 
 即ち、カップリングレンズ12と調整用レンズ13Bとは「LD10から放射されたレーザ光を収束性のレーザ光束に光束変換するカップリング光学系」を構成する。 
 LD10とカップリング光学系12、調整用レンズ13Bは「レーザ光源」を構成する。
The LD 10 emits high-power laser light.
The laser beam emitted from the LD 10 passes through the coupling lens 12 and the adjusting lens 13B, and is converted into a “convergent laser beam” under the optical action of these components.
That is, the coupling lens 12 and the adjustment lens 13B constitute “a coupling optical system for converting the laser beam emitted from the LD 10 into a convergent laser beam”.
The LD 10, the coupling optical system 12, and the adjustment lens 13B constitute a "laser light source".
 カップリング光学系による光束変換で収束傾向を与えられたレーザ光束は、ミラー40に入射し、偏向装置14に向けて反射される。 The laser light flux which has been given a convergence tendency by the light flux conversion by the coupling optical system is incident on the mirror 40 and is reflected toward the deflecting device 14.
 偏向装置14は、前述の「2軸のMEMS」として構成され、反射光の向きを2次元的に偏向させる。 
 偏向されたレーザ光束は、図11の「Y方向」に搖動するとともに、「X方向」においても搖動する。即ち、偏向装置14による2次元的な偏向は、X方向とY方向における搖動により実行される。 
 レーザ光束は、偏向装置14により上記の如く2次元的に偏向されつつ偏向角変倍素子201に入射する。 
 図11に示す、カップリングレンズ12と調整用レンズ13Bと、偏向装置14と偏向角変倍素子181とは「照射用光学系」を構成する。
The deflection device 14 is configured as the “two-axis MEMS” described above, and two-dimensionally deflects the direction of the reflected light.
The deflected laser beam oscillates in the “Y direction” of FIG. 11 and also oscillates in the “X direction”. That is, two-dimensional deflection by the deflection device 14 is performed by peristalsis in the X direction and the Y direction.
The laser beam is incident on the deflection angle variable magnification element 201 while being two-dimensionally deflected by the deflection device 14 as described above.
The coupling lens 12 and the adjusting lens 13B, the deflecting device 14 and the deflection angle variable magnification element 181 shown in FIG. 11 constitute an “irradiation optical system”.
 偏向装置14より2次元的に偏向されたレーザ光束は偏向角変倍素子181に入射し、偏向角変倍素子181の光学作用により偏向レーザビームSRLとなる。 
 偏向レーザビームSRLは「検出対象物を照射するレーザビーム」である。 
 偏向装置14によりレーザ光束が2次元的に偏向されるのに応じ、偏向レーザビームSRLも、X、Yの2方向に偏向し、「検出対象物」に照射され、検出対象物を2次元的に走査する。 
 検出対象物を照射した偏向レーザビームSRLは、検出対象物により反射されて「戻りレーザ光束BKL」となる。 
 レーザレーダ装置は、例えば「車載用や監視カメラ用」に用いられるが、一般的な使用状況において「検出対象物までの距離」は、照射用光学系のサイズに比して大きい。 
 従って、検出対象物により反射されて偏向角変倍素子201に入射する戻りレーザ光束BKLは、実質的に平行光束状態で、偏向レーザビームSRLと同方向で逆向きである。
The laser beam two-dimensionally deflected by the deflecting device 14 is incident on the deflection angle variable magnification element 181 and becomes a deflected laser beam SRL by the optical action of the deflection angle magnification element 181.
The deflected laser beam SRL is a “laser beam for irradiating a detection target”.
In response to the two-dimensional deflection of the laser beam by the deflection device 14, the deflection laser beam SRL is also deflected in two directions of X and Y, and is irradiated on the “detection object”, and the detection object is two-dimensionally Scan to
The deflected laser beam SRL irradiated with the object to be detected is reflected by the object to be detected and becomes “return laser beam BKL”.
The laser radar device is used, for example, for “vehicle-mounted or monitoring camera”, but in a general use situation, “distance to a detection target” is larger than the size of the irradiation optical system.
Therefore, the return laser beam BKL reflected by the object to be detected and incident on the deflection angle variable magnification element 201 is substantially parallel and in the same direction as the deflection laser beam SRL in the opposite direction.
 戻りレーザ光束BKLは、偏向角変倍素子181を透過すると、偏向装置14に入射して反射される。 
 偏向装置14により反射された戻りレーザ光束BKLは、次いで、ミラー40Aに反射され、受光用レンズ34に入射する。 
 受光用レンズ34を透過した戻りレーザ光束BKLは集光レンズ32に入射し、検出用受光素子30に向けて集光され、検出用受光素子30により受光される。 
 受光用レンズ34と集光レンズ32とは「集光レンズ系」を構成する。
When the return laser beam BKL passes through the deflection angle variable magnification element 181, it enters the deflection device 14 and is reflected.
The return laser beam BKL reflected by the deflecting device 14 is then reflected by the mirror 40A and is incident on the light receiving lens 34.
The return laser beam BKL transmitted through the light receiving lens 34 is incident on the condensing lens 32, condensed toward the detection light receiving element 30, and received by the detection light receiving element 30.
The light receiving lens 34 and the condenser lens 32 constitute a "condenser lens system".
 検出用受光素子30は、戻りレーザ光束BKLを受光すると、受光信号(適宜の増幅率で増幅される)を制御演算部40に送る。 
 制御演算部400は、CPUやマイクロコンピュータにより構成されている。 
 制御演算部400は、LD10をパルス発光させ、この発光の瞬間から、上記受光信号を受けた瞬間までの時間:2Tを確定し、光速:cを用いて、距離:cTを演算する。 
 偏向レーザビームSRLの偏向と共に、上記時間:2Tの取得とcTの演算を繰り返す。このようにして、検出対象物までの距離と、検出対象物の3次元形状が得られる。
When receiving the return laser beam BKL, the detection light receiving element 30 sends a light reception signal (amplified by an appropriate amplification factor) to the control calculation unit 40.
The control calculation unit 400 is configured by a CPU or a microcomputer.
The control calculation unit 400 causes the LD 10 to emit light in pulses, determines the time: 2T from the moment of light emission to the moment of receiving the light reception signal, and calculates the distance: cT using the speed of light c.
The acquisition of the time: 2T and the calculation of cT are repeated together with the deflection of the deflected laser beam SRL. In this way, the distance to the object to be detected and the three-dimensional shape of the object to be detected can be obtained.
 即ち、図11のレーザレーダ装置は、LD10と、LD10からのレーザ光束を2次元的に偏向して検出対象物を走査する偏向レーザビームSRLとする「照射用光学系」を有する。 
 また、検出対象物により反射された戻りレーザ光束BKLを受光する検出用受光素子30と、戻りレーザ光束BKLを検出用受光素子30に導光する「受光用光学系」を有する。 
 そして、レーザ光が放射されてから検出用受光素子30が戻りレーザ光束BKLを受光するまでの時間:2Tにより、検出対象物までの距離:cTを求める制御演算手段40を有している。
That is, the laser radar device of FIG. 11 includes the LD 10 and an “irradiation optical system” which two-dimensionally deflects the laser beam from the LD 10 to form a deflected laser beam SRL that scans a detection target.
The detection light receiving element 30 receives the return laser beam BKL reflected by the detection target, and the “light receiving optical system” guides the return laser light BKL to the detection light element 30.
A control operation means 40 is provided for determining the distance cT to the object to be detected by 2T from the time the laser beam is emitted until the light receiving element for detection 30 returns and the laser beam BKL is received.
 「照射用光学系」は、LD10から放射されたレーザ光を収束性のレーザ光束に光束変換するカップリング光学系12、13Bと、光束変換されたレーザ光束を2次元的に偏向させる偏向装置14を有する。 
 さらに、2次元的に偏向されたレーザ光束を偏向レーザビームSRLとして射出させる偏向角変倍素子181を有する。 
 「受光用光学系」は、照射用光学系における偏向角変倍素子181と偏向装置14とを「照射用光学系と共用」している。 
 そして、偏向角変倍素子181を透過し、偏向装置14により偏向された戻りレーザ光束BKLを、検出用受光素子30に向けて集光する集光レンズ系34、32を有する。
The “optical system for irradiation” includes coupling optical systems 12 and 13B for converting the laser beam emitted from the LD 10 into a convergent laser beam, and a deflector 14 for two-dimensionally deflecting the laser beam subjected to the beam conversion. Have.
Furthermore, it has a deflection angle variable magnification element 181 for emitting a two-dimensionally deflected laser beam as the deflected laser beam SRL.
The "light receiving optical system" uses the deflection angle variable magnification element 181 and the deflecting device 14 in the irradiating optical system as "shared with the irradiating optical system".
Then, focusing lens systems 34 and 32 are provided which transmit the deflection angle variable magnification element 181 and condense the return laser beam BKL deflected by the deflection device 14 toward the light receiving element 30 for detection.
 また、図11に示す実施の形態において、照射用光学系は、カップリング光学系12、調整用レンズ13Bにより光束変換された収束性のレーザ光束の光路を、偏向装置14に向けて屈曲させる照射用光路屈曲ミラー40を有する。 
 受光用光学系はまた、偏向装置14を介した戻りレーザ光束BKLの光路を、集光レンズ系34、32に向けて屈曲させるミラー40Aを有する。 
 ミラー40Aにつき付言する。前述の如く、戻りレーザ光束BKLは、偏向レーザビームSRLと「同方向で逆向きの平行光束状態」で偏向角変倍素子181に入射する。そして、偏向角変倍素子181を透過すると、偏向装置14により反射される。 
 従って、偏向装置14で反射された戻りレーザ光束BKLの光路は、ミラー40Aから偏向装置14に向かうレーザ光束の光路と平行である。
Further, in the embodiment shown in FIG. 11, the irradiation optical system bends the light path of the convergent laser light flux which has been converted by the coupling optical system 12 and the adjusting lens 13B toward the deflecting device 14. The optical path bending mirror 40 is provided.
The light receiving optical system also has a mirror 40A that bends the optical path of the return laser beam BKL through the deflection device 14 toward the condensing lens system 34, 32.
The mirror 40A is added. As described above, the return laser beam BKL is incident on the deflection angle variable magnification element 181 in the “parallel beam state in the opposite direction in the same direction” as that of the deflection laser beam SRL. Then, when the light is transmitted through the deflection angle variable magnification element 181, the light is reflected by the deflection device.
Therefore, the optical path of the return laser beam BKL reflected by the deflecting device 14 is parallel to the optical path of the laser beam directed from the mirror 40 A to the deflecting device 14.
 図11に示す実施の形態では、カップリング光学系の光軸と、集光レンズ系の光軸を互いに平行にレイアウトしている。 
 従ってこの場合、ミラー40Aのミラー面は、図の如く、ミラー40のミラー面と平行になる。 
 図11に示す実施の形態では「カップリング光学系」が、LD10側に配されるカップリングレンズ12と、カップリングレンズ12を透過したレーザ光に収束性を付与する調整用レンズ13Bとを有する。
In the embodiment shown in FIG. 11, the optical axis of the coupling optical system and the optical axis of the condensing lens system are laid out parallel to each other.
Therefore, in this case, the mirror surface of the mirror 40A is parallel to the mirror surface of the mirror 40 as shown.
In the embodiment shown in FIG. 11, the “coupling optical system” includes the coupling lens 12 disposed on the LD 10 side, and the adjustment lens 13 B for imparting convergence to the laser beam transmitted through the coupling lens 12. .
 上には、LD10からレーザ光が放射されてから、検出用受光素子30が戻りレーザ光束BKLを受光するまでの時間:2Tを確定するのに、レーザ光源10のパルス発光を利用する場合を説明した。 
 上記時間:2Tを確定する方法は、他にも「レーザ光源から放射されるレーザ光の周波数変調」を利用する方法等が周知である。 
 この発明のレーザレーダ装置において、上記時間:2Tの確定は、上述のパルス発光を利用する方法に限らず、周波数変調を利用する方法等、従来から知られた他の方法によってもよい。
Above, the case where the pulse light emission of the laser light source 10 is used to determine 2T from when the laser light is emitted from the LD 10 to when the light receiving element 30 for detection returns and receives the laser beam BKL is described. did.
As a method of determining the time: 2T, a method of using “frequency modulation of laser light emitted from a laser light source” and the like are known.
In the laser radar device of the present invention, the determination of the time: 2T is not limited to the above-described method using pulsed light emission, but may be other known methods such as a method using frequency modulation.
 以下、図11に示すレーザレーダ装置につき、より具体的に説明する。 
 この発明では、LD10から放射されたレーザ光をカップリング光学系により光束変換し、光束変換されたレーザ光束を偏向装置14により2次元的に偏向させる。 
 そして、2次元的に偏向されたレーザ光束を、偏向角変倍素子181により偏向レーザビームSRLとする。
Hereinafter, the laser radar device shown in FIG. 11 will be described more specifically.
In the present invention, the laser beam emitted from the LD 10 is converted into a light flux by the coupling optical system, and the laser light flux converted into the light flux is two-dimensionally deflected by the deflection device 14.
Then, the two-dimensionally deflected laser beam is converted into a deflected laser beam SRL by the deflection angle variable magnification element 181.
 カップリング光学系の「LD10から放射されたレーザ光を光束変換」する作用と、偏向角変倍素子181の光学作用の組み合わせにより、種々の光束形態の偏向レーザビームSRLが可能である。 
 カップリング光学系と偏向角変倍素子との組み合わせは、種々可能である。
The combination of the function of “converting the laser beam emitted from the LD 10 by the coupling optical system” and the optical function of the deflection angle variable magnification element 181 enables deflection laser beams SRL of various light flux forms.
Various combinations of the coupling optical system and the deflection angle variable magnification element are possible.
 図11に示す実施の形態では、カップリングレンズ12はコリメート作用を有し、LD10からのレーザ光束を、Z方向に平行な「平行光束」に変換する。 
 即ち、この場合、カップリングレンズ12は「コリメートレンズ」である。 
 調整用レンズ13Bは「シリンダレンズ」で、YZ面に平行な面内で「Y方向に正の屈折力」を持ち、X方向には屈折力を持たない。 
 従って、カップリングレンズ12側から調整用レンズ13Bに入射する平行光束状態のレーザ光は、Y方向には収束性となるが、X方向には平行光束状態を保つ。 
 偏向角変倍素子181も、Y方向にのみ「負の屈折力」を持つシリンダレンズであり、図面に直交するX方向には屈折力を持たない。
In the embodiment shown in FIG. 11, the coupling lens 12 has a collimating action, and converts the laser beam from the LD 10 into a “parallel beam” parallel to the Z direction.
That is, in this case, the coupling lens 12 is a "collimate lens".
The adjustment lens 13B is a "cylinder lens" and has "positive refractive power in the Y direction" in a plane parallel to the YZ plane, and does not have refractive power in the X direction.
Therefore, the laser beam in the parallel beam state entering the adjustment lens 13B from the coupling lens 12 side converges in the Y direction, but maintains the parallel beam state in the X direction.
The deflection angle variable magnification element 181 is also a cylinder lens having “negative refractive power” only in the Y direction, and does not have refractive power in the X direction orthogonal to the drawing.
 偏向角変倍素子181に入射するレーザ光束として「Z方向に平行」なものを考える。この光束の進行方向は、カップリング光学系の光軸を「照射用光路屈曲ミラー16Bや偏向装置14の反射面を介して延長した光軸」に合致するので、以下一般に、偏向角変倍素子に入射するこのようなレーザ光束を「光軸光束」と呼ぶことにする。 
 すると、図11に即して説明中の例では、光軸光束は「Y方向には収束性、X方向には平行光束状態」である。
A laser beam incident on the deflection angle variable magnification element 181 “parallel to the Z direction” is considered. The traveling direction of the light beam coincides with the “optical axis of the coupling optical system extended through the reflecting surface of the irradiation optical path bending mirror 16B or the deflecting device 14”. Such a laser beam incident on the light source will be referred to as "optical axis beam".
Then, in the example described with reference to FIG. 11, the optical axis luminous flux is “converging property in the Y direction and parallel luminous flux state in the X direction”.
 偏向角変倍素子181に入射するレーザ光束が、偏向装置14により偏向されると、偏向されたレーザ光束は、X方向から見ると「収束光束状態」であり、Y方向から見ると平行光束状態である。 
 偏向角変倍素子181に入射するレーザ光束の上記収束性が、偏向角変倍素子181の負の屈折力により軽減される。 
 偏向角変倍素子181は、X方向には屈折力を持たないので、偏向角変倍素子181から射出する偏向レーザビームSRLをY方向から見ると「平行光束状態」である。
When the laser beam incident on the deflection angle variable magnification element 181 is deflected by the deflecting device 14, the deflected laser beam is in a "convergent beam state" as viewed from the X direction and as a parallel beam state as viewed from the Y direction. It is.
The convergence of the laser beam incident on the deflection angle variable magnification element 181 is reduced by the negative refractive power of the deflection angle magnification element 181.
The deflection angle variable magnification element 181 does not have refracting power in the X direction, so the deflection laser beam SRL emitted from the deflection angle magnification element 181 is in a “parallel light flux state” when viewed from the Y direction.
 図12は、LD10から放射されたレーザ光束LFが、光軸光束として偏向角変倍素子201に入射し、偏向角変倍素子181から偏向レーザビームSRLとして射出する状態を示している。図の簡単のため、受光用光学系に関する部分は図示を省略されている。
 上記の如く、調整用レンズ13Bは、カップリングレンズ12により平行光束化されたレーザ光LFに、Y方向に収束傾向を与える。 
 収束傾向を与えられたレーザ光束LFはY方向に収束しつつ、照射用光路屈曲ミラー16と偏向装置14を介して、偏向角変倍素子181に入射する。 
 偏向角変倍素子181はY方向に負の屈折力を有し、負の屈折力による焦点(虚焦点)FPは、偏向角変倍素子181の「検出対象物側(図で右側)」に位置する。 
 偏向角変倍素子181に入射する「光軸光束」が、虚焦点FPに収束するようにすれば、偏向角変倍素子181から射出する偏向レーザビームSRLは平行光束となる。
FIG. 12 shows a state in which the laser beam LF emitted from the LD 10 enters the deflection angle variable magnification element 201 as an optical axis beam and emits from the deflection angle magnification element 181 as the polarized laser beam SRL. In order to simplify the drawing, parts relating to the light receiving optical system are not shown.
As described above, the adjusting lens 13 B tends to converge the laser light LF collimated by the coupling lens 12 in the Y direction.
The convergent laser beam LF is converged in the Y direction and enters the deflection angle variable magnification element 181 through the irradiation optical path bending mirror 16 and the deflecting device 14.
The deflection angle variable magnification element 181 has negative refracting power in the Y direction, and a focal point (imaginary focal point) FP by the negative refracting power is on the "detection object side (right side in the figure)" of the deflection angle magnification element 181. To position.
If the “optical axis light flux” incident on the deflection angle variable magnification element 181 converges on the virtual focal point FP, the deflection laser beam SRL emitted from the deflection angle magnification power element 181 becomes a parallel light flux.
 実際にこれを実現するには、調整用レンズ13Bを光軸方向(Z方向)へ変位調整し、「Y方向に収束性の光軸光束の収束点」を偏向角変倍素子201に対して調整し、収束点の位置を偏向角変倍素子181の虚焦点FPの位置に合致させればよい。 
 説明中の例では、偏向角変倍素子201に入射する光軸光束は、Y方向には収束性で、X方向には「平行光束状態」であり、偏向角変倍素子181はX方向には屈折力を持たない。 
 従って、上記の如く、光軸光束を「収束点位置を虚焦点FPの位置に合致」させて偏向角変倍素子18に入射させたときに、偏向角変倍素子181から射出する偏向レーザビームSRLは、X方向にもY方向にも平行光束状態、即ち「平行光束」となる。
In order to actually realize this, the adjustment lens 13B is adjusted in displacement in the optical axis direction (Z direction), and "the convergence point of the optical axis luminous flux converged in the Y direction" with respect to the deflection angle variable magnification element 201. The position of the convergence point may be adjusted to match the position of the virtual focal point FP of the deflection angle variable magnification element 181.
In the example being described, the optical axis light beam incident on the deflection angle variable magnification element 201 is convergent in the Y direction, is in the “parallel light flux state” in the X direction, and the deflection angle magnification element 181 is in the X direction. Have no refractive power.
Therefore, as described above, when the optical axis light flux is made to "conform to the position of the focal point FP" and is made incident on the deflection angle variable magnification element 18, the deflected laser beam emitted from the deflection angle variable magnification element 181 The SRL is in a parallel light flux state, that is, a "parallel light flux" in both the X direction and the Y direction.
 ここで、一般的に、偏向レーザビームSRLの「光束形態」について見ると、カップリング光学系の光束変換作用と、偏向角変倍素子の光学作用との組み合わせにより、種々の光束形態の偏向レーザビームSRLが可能である。 
 偏向レーザビームの代表的な光束形態として「発散光束状」、「収束光束状」、「平行光束状」を考えてみる。 
 レーザレーダ装置から検出対象物までの距離が「ある程度大きい場合」、発散光束状の偏向レーザビームは、検出対象物を照射する照射面積(以下「照射スポット面積」と言う。)が大きくなり、検出の精度が落ちる。また、照射部における光強度が小さくなるので、出力の大きなレーザ光源や、検出能力の大きい検出用受光素子が必要となる。 
 しかし、比較的近距離の検出対象物に対して「照射スポット面積」をある程度大きくし、分解能を犠牲にしても測定計測時間を短縮したい場合には、発散光束状の偏向レーザビームの使用は有効である。
Here, in general, with regard to the “beam form” of the deflection laser beam SRL, various combinations of beam forms of deflection laser can be obtained by combining the beam conversion action of the coupling optical system and the optical action of the deflection angle variable magnification element. Beam SRL is possible.
As a typical light flux form of a deflected laser beam, consider "divergent light flux", "convergent light flux", and "parallel light flux".
When the distance from the laser radar device to the object to be detected is "large to some extent", the divergent light beam-like polarized laser beam has a large irradiation area (hereinafter referred to as "irradiation spot area") for irradiating the object to be detected. The accuracy of In addition, since the light intensity in the irradiation section is reduced, a laser light source with a large output and a detection light receiving element with a large detection capability are required.
However, if it is desired to increase the “irradiation spot area” to some extent for a relatively short detection object and shorten the measurement measurement time even at the expense of resolution, the use of a divergent luminous flux-like deflection laser beam is effective It is.
 収束光束状の偏向レーザビームの場合も、偏向レーザビームは収束性により集光したのちは発散性の光束となるので、レーザレーダ装置から検出対象物までの距離がある程度大きい場合は、発散性の偏向レーザビームの場合と同様の問題がある。 
 しかし、比較的近距離の定位置にある「大きくない検出対象物」の形状を測定するような場合に、検出対象物の大きさに応じて「小さい照射スポット面積」の偏向レーザビームで、検出対象物を2次元的に走査することにより、精度のよい形状測定が可能である。 
 このような場合に、収束光束状の偏向レーザビームの使用は有効である。
Even in the case of a convergent luminous flux-like polarized laser beam, the polarized laser beam becomes a divergent luminous flux after being condensed by the convergence, so that it is divergent when the distance from the laser radar device to the object to be detected is somewhat large. There is the same problem as in the case of a deflected laser beam.
However, when measuring the shape of a "not large detection target" at a relatively short fixed position, detection is performed with a polarized laser beam of "small irradiation spot area" according to the size of the detection target By scanning the object two-dimensionally, accurate shape measurement is possible.
In such a case, the use of a convergent beam-like polarized laser beam is effective.
 偏向レーザビームが平行光束であると、偏向レーザビームのビーム径は原理的には「レーザレーダ装置からの距離によらず一定」であり、「回折効果を考慮」してもビーム径の変化は無視できる程度である。 
 従って、偏向レーザビームを平行光束化できれば、検出対象物までの距離に拘らず、照射スポット面積は「回折効果を考慮しても実質的に変化しなくなる」ので、検出対象物までの距離に拘らず、良好な検出が安定的に可能となる。 
 説明中のレーザレーダ装置では「カップリング光学系により光束変換された、少なくとも1方向における発散性もしくは収束性のレーザ光束の、発散の起点もしくは収束位置と、偏向角変倍素子の焦点位置とが、偏向レーザビームが光束形態に応じた位置関係」を有する。
If the deflection laser beam is a parallel light beam, the beam diameter of the deflection laser beam is in principle “constant regardless of the distance from the laser radar device”, and the “beam diameter change” is It is negligible.
Therefore, if the polarized laser beam can be collimated, the irradiation spot area "does not substantially change even in consideration of the diffraction effect" regardless of the distance to the object to be detected, regardless of the distance to the object to be detected As a result, good detection is stably possible.
In the laser radar device under discussion, “the divergence or convergence position of the divergent or convergent laser beam in at least one direction converted by the coupling optical system and the focal position of the deflection angle variable magnification element are And the positional relationship according to the form of the light beam.
 「光束形態」とは、上に挙げた「平行光束状もしくは収束光束状もしくは発散光束状」である。 The “beam form” is the “parallel beam shape or convergent beam shape or divergent beam shape” mentioned above.
 「偏向レーザビームが平行光束状である」とは、文字通りに、偏向レーザビームが偏向装置による偏向角に拘らず平行光束である場合と共に、以下の場合をも含む。 
 即ち、偏向レーザビームは「偏向装置による偏向角に応じて収束性や発散性になり得る」が、収束性になっても発散性になっても「平行光束に近い状態」である場合である。 
 例えば「レーザレーダ装置により検出可能な最大距離」を仮に100mとする。 
 この場合には、レーザレーダ装置から放射された偏向レーザビームのビーム径が「100mの位置にある検出対象物」を有効に検出できる大きさの照射スポット面積を実現できる大きさであればよい。 
 このような条件を満たす「発散性や収束性の偏向レーザビーム」をも「平行光束状」と言うのである。 
 即ち、上記の如く、回折効果をも考慮して「レーザレーダ装置により検出可能な最大距離における照射スポット面積」が検出対象物の有効な検出が可能となる大きさになるような光束形態を「平行光束状」と言う。
The phrase "a deflection laser beam is in the form of a parallel beam" literally means that the deflection laser beam is a parallel beam regardless of the deflection angle by the deflection device, and also includes the following cases.
That is, the case where the deflected laser beam "can be convergent or divergent depending on the deflection angle by the deflector" is in a state close to a collimated beam whether it is convergent or divergent. .
For example, the “maximum distance detectable by the laser radar device” is temporarily set to 100 m.
In this case, the beam spot diameter of the deflected laser beam emitted from the laser radar device may be a size that can realize an irradiation spot area of a size capable of effectively detecting “a detection target at a position of 100 m”.
A "divergent or convergent polarized laser beam" satisfying such conditions is also referred to as "parallel light flux".
That is, as described above, the luminous flux form is such that “the irradiation spot area at the maximum distance detectable by the laser radar device” can be made effective detection of the detection object in consideration of the diffraction effect. It is said that "parallel light flux".
 図12に即して上に説明した場合のように、偏向角変倍素子181に入射する収束性の光軸光束の収束位置を、偏向角変倍素子181の虚焦点FPの位置に合致させた場合には、光軸光束は「偏向角変倍素子181により平行光束化された偏向レーザビーム」となる。 
 この場合、偏向装置14により2次元的に偏向されたレーザ光の収束点は、偏向装置14による偏向の起点を中心とする球面上を移動するので、偏向角の増大とともに、収束点位置は、偏向角変倍素子181の焦点面よりも偏向角変倍素子181側へずれる。
 このため、偏向レーザビームSRLの光束形態は、図1(a)のY方向から見た状態では平行光束状態であるが、X方向から見た状態では、偏向角の増大と共に「収束性」が強くなって平行光束状態からずれる。 
 この場合は、X方向から見た状態における偏向レーザビームの「平行光束からのずれの程度」が、上述の最も遠い検出対象物の有効な検出が可能である範囲となるようにする。これは「照射用光学系の設計」により実現可能である。
As in the case described above with reference to FIG. 12, the convergence position of the convergent optical axis light beam incident on the deflection angle variable magnification element 181 is made to coincide with the position of the virtual focal point FP of the deflection angle magnification element 181 In this case, the optical axis light beam becomes “a deflection laser beam collimated by the deflection angle variable magnification element 181”.
In this case, since the convergence point of the laser beam two-dimensionally deflected by the deflection device 14 moves on the spherical surface centering on the origin of deflection by the deflection device 14, the convergence point position becomes The deflection angle changing element 181 is displaced more than the focal plane of the deflection angle changing element 181.
For this reason, the light flux form of the polarized laser beam SRL is a parallel light flux state when viewed from the Y direction in FIG. 1A, but “convergence” is accompanied by an increase in the deflection angle when viewed from the X direction. It becomes stronger and deviates from the parallel luminous flux state.
In this case, the “degree of deviation from the parallel light flux” of the polarized laser beam in the state viewed from the X direction is in a range in which effective detection of the farthest object to be detected is possible. This can be realized by "design of the optical system for irradiation".
 図12において、光軸光束の収束位置を、偏向角変倍素子181の虚焦点FPの位置よりも若干、偏向角変倍素子181から離して位置させると、偏向レーザビームSRLは、光軸光束に対しては若干発散性であるが、偏向角の増大と共に、発散性が弱くなる。 
 そして、ある偏向角において平行光束となり、その後収束性に転ずる。 
 この場合に様に、光軸光束の収束位置を偏向角変倍素子181の虚焦点FPの位置からずらすことで、偏向の範囲内における偏向レーザビームの「平行光束からのずれ」を、発散性と収束性に振り分けることができる。 
 このようにしても上述の「平行光束状の偏向レーザビーム」を容易に実現できる。
In FIG. 12, when the convergence position of the optical axis light beam is positioned slightly away from the deflection angle variable magnification element 181 than the position of the virtual focal point FP of the deflection angle variable magnification element 181, the deflection laser beam SRL becomes an optical axis light flux. Is somewhat divergent, but as the deflection angle increases, the divergence diminishes.
Then, it becomes a parallel light flux at a certain deflection angle, and then turns into convergence.
In this case, by shifting the convergence position of the optical axis light flux from the position of the virtual focal point FP of the deflection angle variable magnification element 181, the "displacement from parallel light flux" of the deflected laser beam within the deflection range is diverged. And convergence can be distributed.
This also makes it possible to easily realize the above-mentioned "collimated beam-like deflection laser beam".
 図12において「光軸光束の収束位置」を、偏向角変倍素子181の虚焦点FPの位置よりも、図で左方(偏向装置14側)へずらせば、収束光束状の光束形態をもった偏向レーザビームSRLが得られる。 
 これを実現するには、調整用レンズ13Bを、カップリングレンズ12側にずらせばよい。逆に、図12において「光軸光束の収束位置」を、偏向角変倍素子181の虚焦点FPの位置よりも、図で右方へずらせば、発散光束状の光束形態をもった偏向レーザビームSRLが得られる。 
 これを実現するには、調整用レンズ13Bを、ミラー40側にずらせばよい。
In FIG. 12, “converging position of optical axis luminous flux” is shifted to the left (deflection device 14 side) in FIG. 12 with respect to the position of the virtual focal point FP of the deflection angle variable magnification element 181. A polarized laser beam SRL is obtained.
In order to realize this, the adjustment lens 13B may be shifted to the coupling lens 12 side. Conversely, if the “converging position of the optical axis light flux” in FIG. 12 is shifted to the right in the figure with respect to the position of the virtual focal point FP of the deflection angle variable magnification element 181, a deflection laser having a divergent flux shape A beam SRL is obtained.
In order to realize this, the adjustment lens 13B may be shifted to the mirror 40 side.
 このように、カップリング光学系により光束変換された、少なくとも1方向における収束性のレーザ光束の収束位置と、偏向角変倍素子の焦点位置FPの位置関係を調整することにより、偏向レーザビームSRLの光束形態を変化させることができる。 
 「収束光束状」や「発散光束状」の場合も同様に、収束角や発散角が偏向レーザビームの2次元的な偏向に伴い変動してもよい。 
 即ち、例えば、上記光軸光束が偏向角変倍素子181により偏向レーザビームSRLが収束光束(または発散光束)であるような場合にも、偏向レーザビームの偏向に伴い、収束角(または発散角)が変動し、発散光束(または集光光束)になることもあり得る。
 このような場合を含めて「収束光束状(または発散光束状)」と称するのである。
As described above, the polarization laser beam SRL is adjusted by adjusting the positional relationship between the convergent position of the convergent laser beam in at least one direction, which is converted by the coupling optical system, and the focal position FP of the deflection angle variable magnification element. Can change the form of light flux.
Also in the case of “convergent beam shape” or “divergent beam shape”, the convergence angle or the divergence angle may be changed along with the two-dimensional deflection of the polarized laser beam.
That is, for example, even when the optical axis light beam is a convergent light beam (or a divergent light beam) due to the deflection angle variable magnification element 181, the convergence angle (or the divergence angle) along with the deflection of the polarized laser beam ) May change to become divergent luminous flux (or condensed luminous flux).
Including such a case, it is called "convergent luminous flux (or divergent luminous flux)".
 図11、図12に即して説明した例では、カップリング光学系をカップリングレンズ12と調整用レンズ13Bとで構成し「カップリング光学系により収束性を付与される方向(Y方向)に関して負の屈折力」を持つ偏向角変倍素子181を組み合わせた。 
 カップリング光学系と偏向角変倍素子の組み合わせは、上記のものに限られない。 
 例えば、偏向角変倍素子181を「光軸に対して回転対称な負レンズ」とし、調整用レンズ13Bも「光軸に対して回転対称な正レンズ」とする。 
 そして、この正レンズである調整用レンズ13Bの像側焦点の位置と、光軸光束について偏向角変倍素子181の虚焦点の位置との位置関係を、上記と同様に設定する。 
 このようにしても、平行光束状(や収束光束状、発散光束状)の偏向レーザビームSRLを得ることができる。 
 この場合、調整用レンズ13Bを省略し、カップリングレンズ12単独で収束性のレーザ光束を得、これを偏向角変倍素子181に入射させてもよい。 
 このようにしても、収束性のレーザ光束の集光位置と、偏向角変倍素子201の焦点位置の位置関係を調整することにより、平行光束状(や収束光束状、発散光束状)の偏向レーザビームSRLを実現できる。
In the example described with reference to FIGS. 11 and 12, the coupling optical system is configured of the coupling lens 12 and the adjusting lens 13B, and “the direction (Y direction) to which convergence is provided by the coupling optical system” A deflection angle variable power element 181 having a negative refractive power is combined.
The combination of the coupling optical system and the deflection angle variable magnification element is not limited to the above.
For example, the deflection angle variable magnification element 181 is set as “a negative lens rotationally symmetrical with respect to the optical axis”, and the adjustment lens 13B is also set as a “positive lens rotationally symmetrical with respect to the optical axis”.
Then, the positional relationship between the position of the image-side focal point of the adjustment lens 13B, which is a positive lens, and the position of the imaginary focal point of the deflection angle variable magnification element 181 with respect to the optical axis light beam is set as described above.
Also in this case, it is possible to obtain a deflected laser beam SRL in the form of parallel light flux (or in the form of convergent light flux, divergent light flux).
In this case, the adjusting lens 13B may be omitted, and the coupling lens 12 alone may obtain a convergent laser beam, which may be made incident on the deflection angle variable magnification element 181.
Even in this case, by adjusting the positional relationship between the focusing position of the convergent laser beam and the focal position of the deflection angle variable magnification element 201, deflection of a parallel beam shape (or convergent beam shape, divergent beam shape) is performed. The laser beam SRL can be realized.
 図13に実施の別形態を示す。繁雑を避けるため、混同の虞が無いと思われるものについては、図11におけると同一の符号を付した。 
 図13に示す実施の形態例では、図11における「負の屈折力の偏向角変倍素子201」に代えて「1方向(Y方向)に正の屈折力を持つ偏向角変倍素子202」を用いている。 
 この場合は、偏向角変倍素子182に向かう「Y方向に収束性の光軸光束」が、偏向角変倍素子182の「入射側の焦点FPA」位置もしくはその近傍に収束するようにする。 
 そうすると、光軸光束は焦点FPAの位置に収束したのち発散しつつ偏向角変倍素子202に入射し、偏向角変倍素子182の正の屈折力により発散性を軽減され、破線で示す如き平行光束状の偏向レーザビームSRLとなって射出する。 
 偏向装置14により2次元的に偏向されたレーザ光も、偏向角変倍素子182の手前で一旦収束したのち、発散性となって偏向角変倍素子182に入射する。 
 そして、2次元的に偏向する「平行光束状の偏向レーザビームSRL」が得られる。
FIG. 13 shows another embodiment. In order to avoid complexity, those which are considered to have no risk of confusion are given the same reference numerals as in FIG.
In the embodiment shown in FIG. 13, instead of “the deflection angle variable power element 201 of negative refractive power” in FIG. 11, “the deflection angle power element 202 having positive refractive power in one direction (Y direction)” Is used.
In this case, the “optical axis luminous flux convergent in the Y direction” toward the deflection angle variable magnification element 182 is made to converge at or near the “incident side focal point FPA” position of the deflection angle magnification element 182.
Then, the light beam converges to the position of the focal point FPA and then diverges and enters the deflection angle variable magnification element 202, and the positive refracting power of the deflection angle magnification change element 182 reduces the divergence and parallel as shown by a broken line. The light beam is emitted as a deflected laser beam SRL.
The laser light two-dimensionally deflected by the deflecting device 14 also converges in front of the deflection angle variable magnification element 182 and then becomes divergent and enters the deflection angle magnification element 182.
Then, a “collimated beam-like polarized laser beam SRL” which is two-dimensionally deflected is obtained.
 即ち、図13に示す実施の形態では、偏向角変倍素子182は、偏向装置14による2次元的な偏向の1方向(Y方向)に「正の屈折力」を持つ。 
 そして、カップリング光学系は、LD10側に配されるカップリングレンズ12と、カップリングレンズを透過したレーザ光に「Y方向の収束性」を付与する調整用レンズ13Bとを有する。 
 光束変換された「Y方向にのみ収束性の光軸光束」は、焦点FPAの位置もしくはその近傍に収束したのち、発散性に転じ発散状態で偏向角変倍素子182に入射する。 
 そして、2次元的に偏向する平行光束状の偏向レーザビームSRLが得られる。
That is, in the embodiment shown in FIG. 13, the deflection angle variable magnification element 182 has “positive refractive power” in one direction (Y direction) of two-dimensional deflection by the deflection device 14.
The coupling optical system includes the coupling lens 12 disposed on the LD 10 side, and the adjustment lens 13B that imparts “the convergence in the Y direction” to the laser beam transmitted through the coupling lens.
The “optical axis luminous flux convergent only in the Y direction” converted to luminous flux converges on the position of the focal point FPA or in the vicinity thereof, then changes to diverging state and enters the deflection angle variable magnification element 182 in the diverging state.
As a result, a two-dimensionally deflected collimated laser beam SRL is obtained.
 「実質的な平行光束」として偏向角変倍素子182に入射した戻りレーザ光束BKLは、偏向角変倍素子182の偏向装置14側で「Y方向に収束」した後、発散性となって偏向装置14に入射する。 
 図13に示す場合においても、Y方向に収束性の光軸光束が、偏向角変倍素子182の焦点FPAの手前側(または偏向角変倍素子20側)に集光するようにしれば、Y方向に収束光束状(または発散光束状)の偏向レーザビームSRLを得ることができる。
The return laser beam BKL incident on the deflection angle variable magnification element 182 as "substantially parallel light flux" is diverged after being "converged in the Y direction" on the deflection device 14 side of the deflection angle magnification element 182 It enters the device 14.
Also in the case shown in FIG. 13, if the optical axis luminous flux convergent in the Y direction is condensed on the near side (or the side of the deflection angle variable magnification element 20) of the focal point FPA of the deflection angle variable magnification element 182, It is possible to obtain a deflected laser beam SRL which converges (or diverges) in the Y direction.
 ここで、図11、図13に示す場合を例として「受光用光学系」を説明する。 
 図11、図13の例では「受光用光学系の集光レンズ系」を構成する集光レンズ32と受光用レンズ34のうち、受光用レンズ34は「凸のシリンダレンズ」であり、Y方向にのみ正の屈折力を持つ。 
 受光用レンズ34は、発散性の戻りレーザ光束BKLを平行光束に戻して集光レンズ32に入射させる。 
 検出用受光素子30は、その受光部を集光レンズ32の焦点位置に位置させており、集光レンズ32により集光される戻りレーザ光束BKLを受光する。 
 調整用レンズ13Bを「光軸に対する回転対称な正レンズ」とする場合には、受光用レンズ34も回転対称な正レンズとし、戻り光束BKLを平行光束化すればよい。 
 なお、戻りレーザ光束BKLは、集光レンズ系に入射する段階で、調整用レンズ13Bを通るレーザ光束よりも光束径が大きいので、それに応じて、集光レンズ系を構成するレンズのレンズ径も大きくする必要がある。 
 このため、受光用レンズ34と集光レンズ32のレンズサイズを大きくしている。
Here, the “light receiving optical system” will be described by taking the cases shown in FIGS. 11 and 13 as an example.
In the example shown in FIGS. 11 and 13, of the condenser lens 32 and the light reception lens 34 that constitute the "condenser lens system of the light reception optical system", the light reception lens 34 is a "convex cylinder lens" and is in the Y direction. Only with positive refractive power.
The light receiving lens 34 returns the divergent return laser beam BKL to a parallel beam and makes it enter the condenser lens 32.
The light receiving element 30 for detection has its light receiving part positioned at the focal position of the condenser lens 32, and receives the return laser beam BKL condensed by the condenser lens 32.
When the adjusting lens 13B is a "rotationally symmetric positive lens with respect to the optical axis", the light receiving lens 34 may be a rotationally symmetric positive lens, and the return beam BKL may be collimated.
In addition, since the diameter of the return laser beam BKL is larger than the diameter of the laser beam passing through the adjustment lens 13B at the stage of entering the condensing lens system, the lens diameter of the lens constituting the condensing lens system is also correspondingly You need to make it bigger.
For this reason, the lens size of the light receiving lens 34 and the condenser lens 32 is increased.
 図11、図13に即して上に説明した例の場合、受光用レンズ34を省略し、戻り光束BKLを集光レンズ32により直接に検出用受光素子30に集光させてもよい。 
 この場合、戻りレーザ光束BKLの集光状態を、Y方向と、X方向で良好なものとするには、集光レンズ32を「アナモフィックな正レンズ」とすればよい。 
 レーザレーダ装置では、一般に、検出対象物までの距離は「レーザレーダ装置の大きさに比して十分に大き」く、従って、偏向角変倍素子に戻る戻りレーザ光束は、前述の如く、平行光束状態となっている。 
 従って、受光用光学系は、これを構成する集光レンズ系と、偏向角変倍素子とによる合成結像系が、X方向及びY方向において、検出対象物側の無限遠と、検出用受光素子の受光面位置とが共役な関係となるように、受光用光学系を構成すればよい。
In the case of the example described above with reference to FIGS. 11 and 13, the light reception lens 34 may be omitted, and the return light beam BKL may be condensed directly on the detection light receiving element 30 by the condenser lens 32.
In this case, in order to make the condensed state of the return laser beam BKL favorable in the Y direction and the X direction, the condenser lens 32 may be an "anamorphic positive lens".
In a laser radar system, in general, the distance to the object to be detected is "sufficiently large compared to the size of the laser radar system". Therefore, the return laser beam returning to the deflection angle variable element is parallel as described above. It is in a luminous state.
Therefore, in the light receiving optical system, the composite imaging system including the condensing lens system constituting the light receiving optical system and the deflection angle variable magnification element is an infinite distance on the detection object side in the X direction and the Y direction, The light receiving optical system may be configured such that the light receiving surface position of the element is in a conjugate relationship.
 上述の如く、カップリング光学系はカップリングレンズ単独で構成することもできるが、カップリング光学系を「コリメート機能を持つカップリングレンズと調整用レンズ」で構成することにより、光学系のレイアウトに対する自由度が大きくなる。 
 同様に「集光レンズ系」も単一の集光レンズで構成可能であるが、上記の如く、集光レンズ32と受光用レンズ34を組み合わせて集光レンズ系を構成すれば、光学系のレイアウトに対する自由度が大きくなる。 
 具体的な実施の状況では、勿論、集光レンズ系32、34と検出用受光素子30の位置関係を調整して「戻りレーザ光束BKLの適切な検出」を実現するようにする。
As described above, although the coupling optical system can be configured with a coupling lens alone, by configuring the coupling optical system with “a coupling lens having a collimating function and an adjusting lens”, the layout of the optical system can be realized. The degree of freedom is increased.
Similarly, although the "condenser lens system" can be configured by a single condenser lens, as described above, if a condenser lens system is configured by combining the condenser lens 32 and the light receiving lens 34, the optical system Freedom of layout is increased.
In a specific implementation situation, of course, the positional relationship between the condensing lens systems 32 and 34 and the light receiving element 30 for detection is adjusted to realize “appropriate detection of the return laser beam BKL”.
 以下に、実施の他の形態例を説明する。 
 図11ないし図13に即して説明した例においては、カップリング光学系は、LD10から放射されたレーザ光を「Y方向に収束性のレーザ光束」に光束変換する。 
 しかし、カップリング光学系による「光束変換」は、このような変換に限らない。 
 即ち、カップリング光学系は、LD10からのレーザ光を「発散性のレーザ光束に変換する光束変換機能」を有することもできる。
Hereinafter, other embodiments of the present invention will be described.
In the example described based on FIGS. 11 to 13, the coupling optical system converts the laser beam emitted from the LD 10 into “a laser beam convergent in the Y direction”.
However, “light flux conversion” by the coupling optical system is not limited to such conversion.
That is, the coupling optical system can also have a light flux conversion function of converting the laser light from the LD 10 into a diverging laser light flux.
 図14は、このような場合の実施の形態を2例示している。繁雑を避けるため、混同の虞が無いと思われるものについては、図11ないし図13と符号を共通化している。 
 図14(a)においては、カップリング光学系がカップリングレンズ12と調整用レンズ14Dにより構成されている。 
 カップリングレンズ12はコリメートレンズであって、LD10からのレーザ光を平行光束化する。
FIG. 14 illustrates two embodiments of such a case. In order to avoid complexity, the symbols shown in FIG. 11 to FIG.
In FIG. 14A, the coupling optical system is constituted by the coupling lens 12 and the adjusting lens 14D.
The coupling lens 12 is a collimating lens, and collimates the laser light from the LD 10.
 調整用レンズ13Dは、Y方向にのみ屈折力を持つ「負のシリンダレンズ」であり、カップリングレンズ12で平行光束化されたレーザ光束を「Y方向にのみ発散性のレーザ光束」に光束変換する。 The adjustment lens 13D is a "negative cylinder lens" having refractive power only in the Y direction, and converts the laser beam collimated by the coupling lens 12 into "a laser beam divergent only in the Y direction". Do.
 光束変換された「Y方向に発散性のレーザ光束」は、ミラー40、偏向装置14を介し、発散状態を保って偏向角変倍素子183に入射する。 The “laser beam diverging in the Y direction”, which has been converted, passes through the mirror 40 and the deflecting device 14 and enters the deflection angle magnification element 183 while maintaining the diverging state.
 偏向角変倍素子183は「Y方向にのみ屈折力」を有する「正のシリンダレンズ」で、発散しつつ入射するレーザ光束を偏向レーザビーム束SRLとして射出させる。 
 図14(a)における符号FPBは偏向角変倍素子183の「入射側の焦点」であり、カップリング光学系の調整用レンズ13Dは、光束変換による発散性のレーザ光束の「発散の起点」を焦点FPBもしくはその近傍に位置させる。 
 このようにすることにより、偏向角変倍素子183は、発散しつつ入射してくるレーザ光を平行光束状の偏向レーザビームSRLとして射出させる。
The deflection angle variable magnification element 183 is a “positive cylinder lens” having “refractive power only in the Y direction”, and emits a divergingly incident laser beam as a deflected laser beam bundle SRL.
The symbol FPB in FIG. 14A is the "focus on the incident side" of the deflection angle variable magnification element 183, and the adjustment lens 13D of the coupling optical system is the "start point of divergence" of the diverging laser beam by the beam conversion. Is positioned at or near the focal point FPB.
By doing this, the deflection angle variable magnification element 183 emits the divergingly incident laser beam as a collimated luminous flux deflection laser beam SRL.
 「受光用光学系の集光レンズ系」をなす集光レンズ32と受光用レンズ34Aとのうち、受光用レンズ34Aは「Y方向にのみ負の屈折力を持つシリンダレンズ」である。 
 受光用レンズ34Aは、Y方向に収束しつつ入射する戻りレーザ光束BKLを平行光束に戻して集光レンズ32に入射させる。図中の符号Q1は、受光用レンズ34Aに入射する戻りレーザ光束BKLの収束位置であり、この点が受光用レンズ34Aの射出側焦点(虚焦点)の位置である。 
 検出用受光素子30は、その受光部を集光レンズ32の焦点位置に位置させており、集光レンズ32により集光される戻りレーザ光束BKLを受光する。
Among the condenser lens 32 and the light receiving lens 34A that form the "condensing lens system of the light receiving optical system", the light receiving lens 34A is a "cylinder lens having negative refractive power only in the Y direction".
The light receiving lens 34 </ b> A returns the return laser beam BKL, which is incident while converging in the Y direction, to a parallel beam and makes it enter the condensing lens 32. The reference numeral Q1 in the figure is the convergence position of the return laser beam BKL incident on the light receiving lens 34A, and this point is the position of the exit-side focal point (virtual focal point) of the light receiving lens 34A.
The light receiving element 30 for detection has its light receiving part positioned at the focal position of the condenser lens 32, and receives the return laser beam BKL condensed by the condenser lens 32.
 図14(b)に示す実施の形態においては、カップリング光学系がカップリングレンズ12と調整用レンズ13Eにより構成されている。 
 カップリングレンズ12はコリメート機能を持ち、LD10からのレーザ光を平行光束化する。
In the embodiment shown in FIG. 14 (b), the coupling optical system is constituted by the coupling lens 12 and the adjusting lens 13E.
The coupling lens 12 has a collimating function, and collimates the laser beam from the LD 10.
 調整用レンズ13Eは、Y方向にのみ負の屈折力を持つシリンダレンズで、カップリングレンズ12で平行光束化されたレーザ光束を、Y方向にのみ発散性のレーザ光束に光束変換する。 
 光束変換された「Y方向に発散性のレーザ光束」は、発散しつつ、ミラー40、偏向装置14を介して、発散状態で偏向角変倍素子183に入射する。
The adjustment lens 13E is a cylinder lens having negative refractive power only in the Y direction, and converts the laser beam collimated by the coupling lens 12 into a divergent laser beam only in the Y direction.
The “laser beam diverging in the Y direction”, which has been converted into a beam, diverges and enters the deflection angle magnification element 183 in a diverging state via the mirror 40 and the deflecting device 14.
 偏向角変倍素子183は「Y方向にのみ正の屈折力」を有するシリンダレンズであり、入射してくる発散性のレーザ光束を偏向レーザビーム束SRLとして射出させる。 
 光束変換によるY方向に発散性のレーザ光束は、その「発散の起点」を、偏向角変倍素子183の入射側の焦点FPCもしくはその近傍に位置させる。 
 このようにすることにより、偏向角変倍素子183から平行光束状の偏向レーザビームSRLが射出される。
The deflection angle variable magnification element 183 is a cylinder lens having “a positive refracting power only in the Y direction”, and emits the diverging laser beam flux incident thereon as a deflection laser beam flux SRL.
The laser beam diverging in the Y direction by the beam conversion has its “point of divergence” positioned at the focal point FPC on the incident side of the deflection angle variable magnification element 183 or in the vicinity thereof.
By doing this, a deflection laser beam SRL in the form of a parallel luminous flux is emitted from the deflection angle variable magnification element 183.
 図14(b)の実施の形態では、調整用レンズ13Eの「負の屈折力」は、図14(a)の調整用レンズ13Dの「負の屈折力」より強い。 
 從って、光束変換されたレーザ光束の発散性は図14(a)の場合よりも強く、偏向角変倍素子183の入射側の焦点FPCは、図14(a)の場合の位置FPBよりも偏向角変倍素子183に近い。 
 即ち、図14(a)と(b)の偏向角変倍素子183は、繁雑を避けるために同一の符号を付してあるが、レンズの特性は互いに異なるものである。
In the embodiment of FIG. 14 (b), the “negative refractive power” of the adjusting lens 13E is stronger than the “negative refractive power” of the adjusting lens 13D of FIG. 14 (a).
Thus, the divergence of the converted laser beam is stronger than that in the case of FIG. 14A, and the focal point FPC on the incident side of the deflection angle variable magnification element 183 is more than the position FPB in the case of FIG. Is also close to the deflection angle variable magnification element 183.
That is, the deflection angle variable magnification elements 183 in FIGS. 14A and 14B are given the same reference numerals to avoid complexity, but the lens characteristics are different from each other.
 図14(b)の例では、調整用レンズ13Eの負のパワーが強いため、戻りレーザ光束BKLが収束する位置Q2は、受光用レンズ34Bの入射側レンズ面よりもミラー40Aの側に位置する。
 そこで、受光用レンズ34BをY方向にのみ正の屈折力を持つ「シリンダレンズ」とし、その入射側の焦点を位置Q2に合致させる。 
 このようにすることにより、戻り光束BKLを受光用レンズ34Bにより平行光束化して集光レンズ32に入射させることができる。 
 図14(b)の実施の形態においても、偏向角変倍素子183を「光軸周りに回転対称な正レンズ」とし、それに応じて、調整用レンズ13E、受光用レンズ34Bも「光軸周りに回転対称なレンズ」とすることができることは言うまでもない。
In the example of FIG. 14B, since the negative power of the adjusting lens 13E is strong, the position Q2 at which the return laser beam BKL converges is located closer to the mirror 40A than the incident side lens surface of the light receiving lens 34B. .
Therefore, the light receiving lens 34B is a "cylinder lens" having positive refractive power only in the Y direction, and the focal point on the incident side is made to coincide with the position Q2.
By doing this, the return light beam BKL can be collimated by the light receiving lens 34B and can be made incident on the condenser lens 32.
Also in the embodiment of FIG. 14 (b), the deflection angle variable magnification element 183 is a "positive lens rotationally symmetric about the optical axis", and accordingly, the adjusting lens 13E and the light receiving lens 34B are also " It is needless to say that the lens can be made rotationally symmetric.
 なお、図14においては、偏向レーザビームSRLの光束径が、偏向角変倍素子183に比して大きく描かれているが、これは図示の都合によるものであり実際の大小関係とは異なる。 
 図14に即して上に説明した実施の形態の場合においても、偏向角変倍素子183に入射する発散性のレーザ光束の発散の起点と、偏向角変倍素子183の焦点FPBあるいはFPCとの位置関係の調整によって、収束光束状や発散光束状の偏向レーザビームSRLを得ることができる。
In FIG. 14, the beam diameter of the deflection laser beam SRL is drawn larger than that of the deflection angle variable magnification element 183, but this is for convenience of illustration and is different from the actual magnitude relationship.
Also in the case of the embodiment described above with reference to FIG. 14, the origin of the divergence of the diverging laser light beam incident on the deflection angle variable magnification element 183 and the focal point FPB or FPC of the deflection angle magnification element 183 By adjusting the positional relationship in the above, it is possible to obtain a convergent beam-like or divergent beam-like polarized laser beam SRL.
 以下には、図11に示した実施の形態の変形例を説明する。 
 以下に説明する各図においても、煩雑を避けるため、混同の虞が無いと思われるものについては、図11におけると同一の符号を用いる。
Hereinafter, a modification of the embodiment shown in FIG. 11 will be described.
Also in the respective drawings described below, in order to avoid complication, the same reference numerals as in FIG. 11 are used for those which are considered to have no possibility of confusion.
 図15に示す実施の形態は、ミラー40Bが「受光用の光路を折り返すミラー」を兼ねる場合のレーザレーダ装置の例である。 
 この実施の形態では、受光用の光路を折り返すミラーを兼ねるミラー40Bが、偏向装置14を介した発散性の戻りレーザ光束BKLをLD10に向けて反射する。 
 レーザ光源10側へ反射された戻りレーザ光束BKLは、調整用レンズ13B1に入射して平行光束に変換され、光路分離手段38Aに入射する。 
 光路分離手段38Aは「半透鏡」であり、戻りレーザ光束BKLを図で下方(-Y方向)に反射する。
The embodiment shown in FIG. 15 is an example of a laser radar device in which the mirror 40B doubles as a "mirror for turning back the light path for light reception".
In this embodiment, the mirror 40B, which doubles as a mirror that folds the light path for light reception, reflects the divergent return laser beam BKL from the deflecting device 14 toward the LD 10.
The return laser beam BKL reflected to the laser light source 10 side is incident on the adjustment lens 13B1 to be converted into a parallel beam, and is incident on the optical path separation means 38A.
The optical path separation means 38A is a "semi-transparent mirror" and reflects the returning laser beam BKL downward (-Y direction) in the figure.
 反射された戻りレーザ光束BKLは集光レンズ32Aに入射し、検出用受光素子30に向けて集光され、検出用受光素子30により受光される。 
 即ち、この例では、調整用レンズ13B1と集光レンズ32Aとが「集光レンズ系」を構成している。 
 一方、LD10から放射されるレーザ光は、カップリングレンズ12により平行光束化され、半透鏡38Aを透過し、調整用レンズ13B1により収束性のレーザ光束に光束変換され、ミラー40Bにより偏向装置14に向けて反射される。 
 調整用レンズ13B1の機能は、LD10から放射されるレーザ光に対しては、図11に示す調整用レンズ13Bと同じである。 
 しかし、調整用レンズ13B1は、戻りレーザ光束BKLに対しては、図11に示す受光用レンズ34の機能も果たすものであり、光束径が拡大している戻りレーザ光束BKLを効率よく取り込むために、レンズサイズが「受光用レンズ34」と同程度になっている。
The reflected return laser beam BKL is incident on the condenser lens 32A, condensed toward the detection light receiving element 30, and received by the detection light reception element 30.
That is, in this example, the adjustment lens 13B1 and the condenser lens 32A constitute a "condenser lens system".
On the other hand, the laser beam emitted from the LD 10 is collimated by the coupling lens 12, transmitted through the semitransparent mirror 38A, converted to a convergent laser beam by the adjusting lens 13B1, and converted to the deflecting device 14 by the mirror 40B. It is reflected towards.
The function of the adjustment lens 13B1 is the same as that of the adjustment lens 13B shown in FIG. 11 with respect to the laser beam emitted from the LD 10.
However, the adjusting lens 13B1 also performs the function of the light receiving lens 34 shown in FIG. 11 for the return laser beam BKL, in order to efficiently take in the return laser beam BKL whose beam diameter is enlarged. The lens size is about the same as the "light receiving lens 34".
 図16は、レーザレーダ装置の実施の別形態を示す図である。 
 この実施の形態は、図15に示す形態例の変形例であり、繁雑を避けるため、混同の虞が無いと思われるものについては、符号を図15の符号と共通化する。 
 図16(a)に示す装置構成図において、図15の実施の形態と異なる点は、光路分離手段38Bにある。
FIG. 16 is a view showing another embodiment of the laser radar device.
This embodiment is a modification of the embodiment shown in FIG. 15. In order to avoid complexity, the symbols common to those in FIG. 15 are used for those considered to have no possibility of confusion.
The apparatus configuration shown in FIG. 16A differs from the embodiment of FIG. 15 in the optical path separation means 38B.
 この光路分離手段38Bは、LD10側からのレーザ光を透過させる透過部と、該透過部の周囲に「戻りレーザ光束を反射する反射部」を有する光学素子である。 The optical path separating means 38B is an optical element having a transmitting portion for transmitting the laser light from the LD 10 side, and a "reflecting portion for reflecting the returning laser beam" around the transmitting portion.
 図16(b)に光路分離手段38Bの説明図を示す。 
 この図において、光路分離手段38Bは2つの部分に機能を分けられている。 
 即ち、符号38aで示す「透過部」は、LD10側からのレーザ光(カップリングレンズ12により平行光束化されている。)を透過させる部分である。
FIG. 16 (b) shows an explanatory view of the optical path separating means 38 B.
In this figure, the optical path separation means 38B is divided into two parts.
That is, the “transmission part” indicated by reference numeral 38 a is a part that transmits the laser light from the LD 10 side (which is collimated by the coupling lens 12).
 符号38bで示す部分は「反射部」であって、戻りレーザ光束BKLを反射する。 
 透過部38aは、レーザ光源側からのレーザ光を過不足なく透過させるのに必要最小限の大きさに形成されている。 
 反射部38bは、光路分離手段38Bの「透過部38aを除く全面」である。 
 従って、光路分離手段38Bに入射した戻りレーザ光束BKLは、図16(b)に示すように、透過部38a以外の部分(反射部38b)に入射した光束部分が反射される。
The portion indicated by reference numeral 38b is a "reflecting portion", which reflects the returning laser beam BKL.
The transmitting portion 38 a is formed to have a minimum size necessary to transmit the laser light from the laser light source side without excess or deficiency.
The reflecting portion 38 b is the “whole surface excluding the transmitting portion 38 a” of the optical path separating means 38 B.
Therefore, as shown in FIG. 16B, the return laser beam BKL incident on the optical path separation means 38B reflects the luminous flux portion incident on the portion (reflection portion 38b) other than the transmission portion 38a.
 光路分離手段38Bは、例えば、平行平板状の透明ガラスの片面(戻りレーザ光束BKLが入射する側の面)に、透過部38aの部分を除くように「金属薄膜等による反射膜」を形成したものとして構成できる。 
 あるいはまた、金属平板に孔を穿設して透過部38aとし、該金属平板の片面(戻りレーザ光束BKLが入射する側の面)を鏡面仕上げしたものとして構成することもできる。 
 後者の場合には、透過部38bは「孔」であるが、この場合も「透過部」と称する。
The optical path separation means 38B has, for example, formed a “reflection film made of a metal thin film etc.” on one side of the parallel flat transparent glass (the side on which the return laser beam BKL is incident) excluding the transmission part 38a. It can be configured as a thing.
Alternatively, a hole may be bored in a flat metal plate to form the transmitting portion 38a, and one side of the flat metal plate (the side on which the return laser beam BKL is incident) may be mirror-finished.
In the latter case, the transmission part 38b is a "hole", but in this case it is also referred to as a "transmission part".
 即ち、図15、図16に実施の形態を示すレーザレーダ装置は、照射用の光路を折り返すミラー40Bが「受光用の光路を折り返すミラー」を兼ねている。 
 そして、ミラー40Bが、偏向装置14を介した発散性の戻りレーザ光束BKLを、LD10に向けて反射する。 
 さらに、LD10に向けて反射された戻りレーザ光束BKLを、照射用光学系の光路から分離する光路分離手段38A、38Bを有する。 
 光路分離手段38A、38Bにより分離された戻りレーザ光束BKLは、集光レンズ系14C、32Aを介して検出用受光素子30に向けて集光される。
That is, in the laser radar device of which the embodiment is shown in FIGS. 15 and 16, the mirror 40B for turning back the light path for irradiation also serves as a "mirror for turning back the light path for receiving light".
Then, the mirror 40 B reflects the divergent return laser beam BKL from the deflecting device 14 toward the LD 10.
Furthermore, it has optical path separation means 38A, 38B for separating the return laser beam BKL reflected toward the LD 10 from the optical path of the irradiation optical system.
The return laser beam BKL separated by the optical path separation means 38A, 38B is condensed toward the detection light receiving element 30 via the condensing lens system 14C, 32A.
 また、「カップリング光学系」が、レーザ光源10側に配されるカップリングレンズ12と調整用レンズ13B1を有する。 
 調整用レンズ13B1は「カップリングレンズ12を透過したレーザ光に、Y方向の収束性」を付与し、Y方向の収束位置と偏向角変倍素子181の虚焦点の位置の位置関係が、偏向レーザビームSRLが平行光束状となるように、Z方向の位置を調整されている。
In addition, the “coupling optical system” includes the coupling lens 12 and the adjustment lens 13B1 disposed on the laser light source 10 side.
The adjustment lens 13B1 imparts “the convergence in the Y direction to the laser beam transmitted through the coupling lens 12”, and the positional relationship between the convergence position in the Y direction and the position of the virtual focal point of the deflection angle variable magnification element 181 is deflected. The position in the Z direction is adjusted so that the laser beam SRL has a parallel beam shape.
 調整用レンズ13B1は「集光レンズ系の一部」を兼ね、光路分離手段38A、38Bが、調整用レンズ13B1とカップリングレンズ12との間に配置され、光路分離手段により分離された戻りレーザ光束は、調整用レンズ13B1と共に「集光レンズ系」を構成する集光レンズ32Aを介して検出用受光素子30に向けて集光される。 
 「光路分離手段」は、半透鏡38Aであることもできるし、LD10側からのレーザ光を透過させる透過部38aと、透過部の周囲に戻りレーザ光束BKLを反射する反射部38bを有する光学素子38Bであることもできる。 
 図15、図16に示した変形例は、図14(a)、(b)に示した実施の形態にも適用できることは言うまでもない。
The adjustment lens 13B1 also serves as "a part of the focusing lens system", and the optical path separation means 38A and 38B are disposed between the adjustment lens 13B1 and the coupling lens 12 and the return laser separated by the optical path separation means The luminous flux is condensed toward the light receiving element 30 for detection via the condensing lens 32A which constitutes a "condensing lens system" together with the adjustment lens 13B1.
The "optical path separation means" may be a semitransparent mirror 38A, and an optical element having a transmitting portion 38a for transmitting laser light from the LD 10 side, and a reflecting portion 38b for returning around the transmitting portion and reflecting the laser beam BKL. It can also be 38B.
It goes without saying that the modification shown in FIGS. 15 and 16 can also be applied to the embodiments shown in FIGS. 14 (a) and 14 (b).
 図17に実施の形態を示すレーザレーダ装置は、図11に示す実施の形態の別の変形例であり、混同の虞が無いと思われるものについては、図11と符号を共通化する。 
 図17に実施の形態を示すレーザレーダ装置は、照射用光学系に含まれる照射用の光路を折り返すミラー40B1が「受光用光学系に含まれる受光用の光路を折り返すミラー」を兼ねている。 
 ミラー40B1は、カップリング光学系(12、13B)により光束変換されたY方向に収束性のレーザ光束の光路を偏向装置14に向けて屈曲させる。 
 ミラー40B1はまた「偏向装置14を介した発散性の戻りレーザ光束BKLの光路を、集光レンズ系32、34に向けて屈曲させる受光用光路屈曲ミラー」を兼ねている。
The laser radar device whose embodiment is shown in FIG. 17 is another modification of the embodiment shown in FIG. 11, and the same reference numerals as in FIG. 11 are used for those which are considered to have no possibility of confusion.
In the laser radar device of the embodiment shown in FIG. 17, the mirror 40B1 for turning back the light path for irradiation included in the optical system for irradiation also serves as a "mirror for turning back the light path for light reception included in the light receiving optical system".
The mirror 40B1 bends the optical path of the convergent laser beam in the Y direction, which has been converted by the coupling optical system (12, 13B), toward the deflecting device 14.
The mirror 40B1 also serves as "a light receiving path bending mirror for bending the light path of the diverging return laser beam BKL through the deflecting device 14 toward the focusing lens systems 32 and 34".
 LD10からカップリングレンズ12、調整用レンズ13Bを経て、ミラー40B1に至る部分と、ミラー40B1から受光用レンズ34、集光レンズ32を経て検出用受光素子30に至る部分は、図17(a)においては「図面に直交する方向に重なり合う」ように配置されている。 A portion from the LD 10 through the coupling lens 12 and the adjusting lens 13B to the mirror 40B1 and a portion from the mirror 40B1 to the light receiving lens 34 and the condensing lens 32 to the detecting light receiving element 30 are shown in FIG. Are arranged so as to "overlap in the direction orthogonal to the drawing".
 図17(b)は、図17(a)の状態を、図17(a)のX方向から見た状態を示している。図17(a)、(b)に示すように、照射用の光路を折り返すミラーと受光用の光路を折り返すミラーとが1枚のミラー40B1として共通化されている。 
 なお、調整用レンズ13Bと受光用レンズ34とは、図11の場合と同様「シリンダレンズ」を想定している。 
 このように、照射用と受光用の光路を折り返すミラーを、1枚のミラー40B1として共通化することにより、部品点数を削減してレーザレーダ装置のコストを低減でき、また、レーザレーダ装置を構成する各部の配置のスペースを小さくできる。 
 勿論、必要とあれば、ミラー40B1を、図の鎖線で切断して、別個のミラーとすることができる。 
 なお、調整用レンズ13Bと受光用レンズ34とは、光学的に同じ機能のシリンダレンズを用いることができる。
FIG. 17B shows the state of FIG. 17A as viewed in the X direction of FIG. As shown in FIGS. 17 (a) and 17 (b), a mirror that folds the light path for illumination and a mirror that folds the light path for light reception are made common as one mirror 40B1.
The adjustment lens 13B and the light reception lens 34 are assumed to be “cylindrical lenses” as in the case of FIG.
As described above, by sharing the light paths for irradiation and light reception as one mirror 40 B 1, the number of parts can be reduced to reduce the cost of the laser radar device, and the laser radar device can be configured. Space of the arrangement of each part can be reduced.
Of course, if desired, the mirror 40B1 can be cut with dashed lines in the figure to be separate mirrors.
Note that a cylinder lens having the same function as the adjustment lens 13B and the light reception lens 34 can be used.
 このような場合、図17のような配置の場合には、調整用レンズ13Bと受光用レンズ34とを「1つのシリンダレンズ」として構成し、照射用光学系と受光用光学系に共用することができる。 
 図17に示す実施の形態について若干付言すると、上述のように、戻りレーザ光束BKLは、ミラー40B1に入射するときには光束径が大きく拡大されている。 
 従って、戻りレーザ光束BKLの光束径は、図17(b)において、ミラー40B1の反射面よりも大きくなっている。 
 図17の実施の形態においては、戻りレーザ光束BKLのうちで、破線で示す「受光用レンズ34に入射する部分」のみが、検出用受光素子30に受光されることになる。
In such a case, in the case of the arrangement as shown in FIG. 17, the adjusting lens 13B and the light receiving lens 34 should be configured as "one cylinder lens" and be shared by the irradiating optical system and the light receiving optical system. Can.
In addition to the embodiment shown in FIG. 17, as described above, when the return laser beam BKL is incident on the mirror 40B1, the beam diameter is greatly expanded.
Accordingly, the beam diameter of the return laser beam BKL is larger than that of the reflection surface of the mirror 40B1 in FIG. 17 (b).
In the embodiment of FIG. 17, of the return laser beam BKL, only the “portion incident on the light receiving lens 34” indicated by the broken line is received by the light receiving element 30 for detection.
 図17に示した変形例も、図14(a)、(b)に示した実施の形態にも適用できることは言うまでもない。 
 上に説明した、図15、図16、図17に示す実施の形態においても、偏向角変倍素子として図13や図14に示した「正の屈折力を持つ偏向角変倍素子182や183」を用いてレーザレーダ装置を構成することができることは容易に理解されるであろう。
It goes without saying that the modification shown in FIG. 17 can also be applied to the embodiments shown in FIGS. 14 (a) and 14 (b).
Also in the embodiment described above and shown in FIGS. 15, 16 and 17, as the deflection angle variable power element, the deflection angle variable power elements 182 and 183 having positive refractive power shown in FIG. 13 and FIG. It will be readily understood that the laser radar apparatus can be configured using
 上に説明したレーザレーダ装置は何れも、偏向レーザビームSRLの偏向角(偏向する角度)を変更するものである。 
 偏向角を変更する「偏向角変更機能」は、偏向角変倍素子が有している。
 例えば、図11、図15、図16、図17に示す実施の形態において用いられている偏向角変倍素子181は、1方向にのみ屈折力を持つ「負のシリンダレンズ」であり、入射側の面が凹シリンダ面、射出側の面が平面である。 
 偏向角変倍素子181は、偏向角拡大機能を持つ。
All of the above-described laser radar devices change the deflection angle (deflection angle) of the deflected laser beam SRL.
The "deflection angle changing function" for changing the deflection angle is included in the deflection angle variable magnification element.
For example, the deflection angle variable magnification element 181 used in the embodiments shown in FIG. 11, FIG. 15, FIG. 16 and FIG. 17 is a "negative cylinder lens" having refractive power in only one direction. Is a concave cylinder surface, and the surface on the injection side is a flat surface.
The deflection angle variable magnification element 181 has a deflection angle enlargement function.
 また、図13、図14に示す実施の形態において用いられている偏向角変倍素子182や183は、Y方向に正の屈折力を持つ「シリンダレンズ」である。 
 正のシリンダレンズは、その形状を例えば「入射面を平面、射出面を凸シリンダ面」とすることができる。偏向角変倍素子182は、偏向角拡大機能を持つ。 
 しかし、偏向レーザビームを、光軸光束以外に対しても平行光束状とすることも、勿論できる。 
 これを実現するには、偏向角変倍素子の焦点面を2次元的に曲面化し、偏向装置により偏向されるレーザ光束の収束点が描く面が、上記焦点面に該位置するようにすればよい。
 これは、偏向角変倍素子の入斜面・射出面の少なくとも一方を「自由曲面化」することにより可能である。
The deflection angle variable magnification elements 182 and 183 used in the embodiments shown in FIGS. 13 and 14 are “cylinder lenses” having positive refractive power in the Y direction.
The shape of the positive cylinder lens may be, for example, "a plane of incidence surface, a convex cylinder surface". The deflection angle variable magnification element 182 has a deflection angle enlargement function.
However, it is of course possible to make the deflection laser beam in the form of a parallel luminous flux other than the optical axis luminous flux.
In order to realize this, if the focal plane of the deflection angle variable magnification element is two-dimensionally curved, and the plane described by the convergence point of the laser beam deflected by the deflecting device is located at the focal plane. Good.
This can be achieved by "free-form forming" at least one of the inclining surface and the exit surface of the deflection angle variable magnification element.
 図15ないし図17に即して説明した実施の形態例においても、収束光束状や発散光束状の偏向レーザビームSRLを得ることができる。 
 即ち、カップリング光学系(12、13B1)により光束変換された、少なくとも1方向における発散性もしくは収束性のレーザ光束の、発散の起点もしくは収束位置と、偏向角変倍素子181の焦点位置との位置関係を調整することにより、偏向レーザビームSRLの光束形態を収束光束状や発散光束状とすることができる。 
 これらの場合には、受光用光学系を構成する集光レンズ系(13B1と32A、あるいは32と34)と、偏向角変倍素子181とによる合成結像系が、X方向及びY方向において、検出対象物側の無限遠と、検出用受光素子30の受光面位置とが共役な関係となるように、受光用光学系を構成すればよい。
Also in the embodiment described with reference to FIGS. 15 to 17, it is possible to obtain a deflected laser beam SRL in the form of convergent light flux or divergent light flux.
That is, the divergence start point or convergence position of the divergent or convergent laser beam in at least one direction converted by the coupling optical system (12, 13B1) and the focal position of the deflection angle variable magnification element 181 By adjusting the positional relationship, it is possible to make the light flux form of the polarized laser beam SRL into a convergent light flux or a divergent light flux.
In these cases, in the X direction and the Y direction, the composite imaging system including the condensing lens system (13B1 and 32A, or 32 and 34) constituting the light receiving optical system and the deflection angle variable magnification element 181 is The light receiving optical system may be configured such that an infinite distance on the detection target side and a light receiving surface position of the light receiving element 30 for detection have a conjugate relationship.
 以下に、図11以下に挙げた実施の各形態の具体的な実施例を7例挙げる。 In the following, seven specific examples of each embodiment shown in FIG.
 実施例20~26は、何れも「平行光束状の偏向レーザビーム」を実現する例である。
 「実施例20」
 実施例20は、図11に示した実施の形態の具体的な例である。 
 「偏向角変倍素子181」
 偏向角変倍素子181は、以下の如きものである。 
 「形状」
 図11において図面に直交する方向(X方向)に屈折力を持たない凹シリンダレンズ 
 入射側面 凹シリンダ面 曲率半径:-24.3mm 
 射出側面 平面 曲率半径:∞ 
 肉厚:3mm 
 材質:SF6(屈折率:波長:870nmの光に対して1.780698)
Examples 20 to 26 are all examples for realizing "a collimated luminous flux deflection laser beam".
"Example 20"
Example 20 is a specific example of the embodiment shown in FIG.
"Deflecting angle variable element 181"
The deflection angle variable magnification element 181 is as follows.
"shape"
A concave cylinder lens having no refractive power in the direction (X direction) orthogonal to the drawing in FIG.
Incident side concave cylinder surface radius of curvature: -24.3 mm
Exit side plane radius of curvature: ∞
Thickness: 3 mm
Material: SF6 (refractive index: wavelength: 1.780698 for light of 870 nm)
 「調整用レンズ13B」
 調整用レンズ13Bは、以下の如きものである。 
 「形状」
 図11の図面に直交する方向に屈折力を持たない凸シリンダレンズ 
 入射側面 凸シリンダ面 曲率半径:47.4mm 
 射出側面 平面 曲率半径:∞ 
 肉厚:3mm         
"Adjustment lens 13B"
The adjustment lens 13B is as follows.
"shape"
A convex cylinder lens having no refractive power in the direction orthogonal to the drawing of FIG. 11
Incident side convex cylinder surface radius of curvature: 47.4 mm
Exit side plane radius of curvature: ∞
Thickness: 3 mm
 「受光用レンズ34」
 受光用レンズ34は、以下の如きものである。 
 「形状」
 図11の図面に直交する方向に屈折力を持たない凸シリンダレンズ 
 入射側面:平面 曲率半径:∞ 
 射出側面:凸シリンダ面 曲率半径:59.7mm 
 肉厚:3mm 
 材質:BK7(屈折率:波長:870nmの光に対して1.509493)
"Receiver lens 34"
The light receiving lens 34 is as follows.
"shape"
A convex cylinder lens having no refractive power in the direction orthogonal to the drawing of FIG. 11
Incident side: plane Curvature radius: ∞
Injection side: convex cylinder surface radius of curvature: 59.7 mm
Thickness: 3 mm
Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
 調整用レンズ13Bの射出側面から偏向角変倍素子181の入射側面までの距離:59.9mm           
 受光用レンズ34の入射側面と偏向角変倍素子181の射出側面(戻りレーザ光束が射出する面であり、凹シリンダ面である。)までの距離:84.1mm 
Distance from the exit side of the adjustment lens 13B to the entry side of the deflection angle variable element 181: 59.9 mm
The distance from the incident side of the light receiving lens 34 to the exit side of the deflection angle variable magnification element 181 (the plane from which the return laser beam is emitted, which is a concave cylinder surface): 84.1 mm
 上記データで特定される光学系により、平行光束状の偏向レーザビームSRLが得られ、戻りレーザ光束BKLは、受光用レンズ34により平行光束化される。 
 実施例20における偏向角変倍素子181は、偏向レーザビームの偏向角を拡大する偏向角拡大機能をもつ。
By the optical system specified by the above data, a parallel beam-like polarized laser beam SRL is obtained, and the return laser beam BKL is collimated by the light receiving lens 34.
The deflection angle variable magnification element 181 in the twentieth embodiment has a deflection angle enlargement function of enlarging the deflection angle of the deflection laser beam.
 「実施例21」
 実施例21は、図13に示した実施の形態の具体的な例である。 
 「偏向角変倍素子182」
 偏向角変倍素子182は、以下の如きものである。 
 「形状」
 図13において図面に直交する方向に屈折力を持たない凸シリンダレンズ 
 入射側面 平面 曲率半径:∞ 
 射出側面 凸シリンダ面 曲率半径:-45mm 
 肉厚:3mm 
 材質:SF6(屈折率:波長:870nmの光に対して1.780698)
"Example 21"
Example 21 is a specific example of the embodiment shown in FIG.
"Deflecting angle variable element 182"
The deflection angle variable magnification element 182 is as follows.
"shape"
A convex cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG.
Incident side Plane curvature radius: ∞
Injection side convex cylinder surface radius of curvature: -45 mm
Thickness: 3 mm
Material: SF6 (refractive index: wavelength: 1.780698 for light of 870 nm)
 「調整用レンズ13B」
 調整用レンズ13Bは、以下の如きものである。 
 「形状」
 図13の図面に直交する方向に屈折力を持たない凸シリンダレンズ 
 入射側面 凸シリンダ面 曲率半径:48.9mm 
 射出側面 平面 曲率半径:∞ 
 肉厚:3mm  
 材質:BK7(屈折率:波長:870nmの光に対して1.509493)
"Adjustment lens 13B"
The adjustment lens 13B is as follows.
"shape"
A convex cylinder lens having no refractive power in the direction orthogonal to the drawing of FIG. 13
Incident side convex cylinder surface radius of curvature: 48.9 mm
Exit side plane radius of curvature: ∞
Thickness: 3 mm
Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
 「受光用レンズ34」
 受光用レンズ34は、以下の如きものである。 
 「形状」
 図13の図面に直交する方向に屈折力を持たない凸シリンダレンズ
 入射側面:平面 曲率半径:∞ 
 射出側面:凸シリンダ面 曲率半径:74.4mm 
 肉厚:3mm 
 材質:BK7(屈折率:波長:870nmの光に対して1.509493)
"Receiver lens 34"
The light receiving lens 34 is as follows.
"shape"
A convex cylinder lens that does not have refractive power in the direction orthogonal to the drawing in FIG. 13 Incident side surface: plane curvature radius: ∞
Injection side: convex cylinder surface radius of curvature: 74.4 mm
Thickness: 3 mm
Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
 調整用レンズ13Bの射出側面から偏向角変倍素子182の入射側面までの距離:150mm 
 受光用レンズ34の入射側面と偏向角変倍素子182の射出側面(戻りレーザ光束が射出する面であり、凹シリンダ面である。)までの距離:200mm 
Distance from the exit side of the adjustment lens 13B to the entrance side of the deflection angle variable element 182: 150 mm
Distance from the incident side of the light receiving lens 34 to the exit side of the deflection angle variable magnification element 182 (the plane from which the return laser beam is emitted, which is a concave cylinder plane): 200 mm
 上記データで特定される光学系により、平行光束状の偏向レーザビームSRLが得られ、戻りレーザ光束BKLは、受光用レンズ34により平行光束化される。 
 実施例21における偏向角変倍素子182は、偏向レーザビームの偏向角を縮小する偏向角縮小機能をもつ。
By the optical system specified by the above data, a parallel beam-like polarized laser beam SRL is obtained, and the return laser beam BKL is collimated by the light receiving lens 34.
The deflection angle variable element 182 in the twenty-first embodiment has a deflection angle reduction function of reducing the deflection angle of the deflection laser beam.
 「実施例22」
 実施例22は、図14(a)に示した実施の形態の具体的な例である。 
 「偏向角変倍素子183」
 偏向角変倍素子183は、以下の如きものである。 
 「形状」
 図14(a)において図面に直交する方向に屈折力を持たない凸シリンダレンズ 
 入射側面 平面 曲率半径:∞ 
 射出側面 凸シリンダ面 曲率半径:-300mm 
 肉厚:3mm 
 材質:SF6(屈折率:波長:870nmの光に対して1.780698)
"Example 22"
Example 22 is a specific example of the embodiment shown in FIG.
"Deflecting angle variable element 183"
The deflection angle variable magnification element 183 is as follows.
"shape"
A convex cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG.
Incident side Plane curvature radius: ∞
Injection side convex cylinder surface radius of curvature: -300 mm
Thickness: 3 mm
Material: SF6 (refractive index: wavelength: 1.780698 for light of 870 nm)
 「調整用レンズ13D」
 調整用レンズ13Dは、以下の如きものである。 
 「形状」
 図14(a)の図面に直交する方向に屈折力を持たない凹シリンダレンズ
 入射側面 凹シリンダ面 曲率半径:-117.5mm 
 射出側面 平面 曲率半径:∞ 
 肉厚:3mm  
 材質:BK7(屈折率:波長:870nmの光に対して1.509493)
"Adjustment lens 13D"
The adjustment lens 13D is as follows.
"shape"
Concave cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG. 14 (a) Incident side Concave cylinder surface Curvature radius: -117.5 mm
Exit side plane radius of curvature: ∞
Thickness: 3 mm
Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
 「受光用レンズ34A」
 受光用レンズ34Aは、以下の如きものである。 
 「形状」
 図14の図面に直交する方向に屈折力を持たない凹シリンダレンズ 
 入射側面:平面 曲率半径:∞ 
 射出側面:凹シリンダ面 曲率半径:-92.0mm 
 肉厚:3mm 
 材質:BK7(屈折率:波長:870nmの光に対して1.509493)
"Light receiving lens 34A"
The light receiving lens 34A is as follows.
"shape"
A concave cylinder lens having no refractive power in the direction orthogonal to the drawing of FIG. 14
Incident side: plane Curvature radius: ∞
Injection side: concave cylinder surface radius of curvature: -92.0 mm
Thickness: 3 mm
Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
 調整用レンズ13Dの射出側面から偏向角変倍素子182の入射側面までの距離:150mm 
 受光用レンズ34Aの入射側面と偏向角変倍素子183の射出側面(戻りレーザ光束が射出する面であり、凹シリンダ面である。)までの距離:200mm 
Distance from the exit side of the adjustment lens 13D to the entry side of the deflection angle variable element 182: 150 mm
The distance from the incident side of the light receiving lens 34A to the exit side of the deflection angle variable magnification element 183 (the plane from which the return laser beam is emitted, which is a concave cylinder plane): 200 mm
 上記データで特定される光学系により、平行光束状の偏向レーザビームSRLが得られ、戻りレーザ光束BKLは、受光用レンズ34により平行光束化される。 
 実施例22における偏向角変倍素子183は、偏向レーザビームの偏向角を縮小する偏向角縮小機能をもつ。
By the optical system specified by the above data, a parallel beam-like polarized laser beam SRL is obtained, and the return laser beam BKL is collimated by the light receiving lens 34.
The deflection angle variable magnification element 183 in Embodiment 22 has a deflection angle reduction function of reducing the deflection angle of the deflection laser beam.
 「実施例23」
 実施例23は、図14(b)に示した実施の形態の具体的な例である。 
 「偏向角変倍素子183」
 偏向角変倍素子183は、以下の如きものである。 
 「形状」
 図14(b)において図面に直交する方向に屈折力を持たない凸シリンダレンズ 
 入射側面 平面 曲率半径:∞ 
 射出側面 凸シリンダ面 曲率半径:-300mm 
 肉厚:3mm 
 材質:SF6(屈折率:波長:870nmの光に対して1.780698)
"Example 23"
Example 23 is a specific example of the embodiment shown in FIG.
"Deflecting angle variable element 183"
The deflection angle variable magnification element 183 is as follows.
"shape"
A convex cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG.
Incident side Plane curvature radius: ∞
Injection side convex cylinder surface radius of curvature: -300 mm
Thickness: 3 mm
Material: SF6 (refractive index: wavelength: 1.780698 for light of 870 nm)
 「調整用レンズ13E」
 調整用レンズ13Eは、以下の如きものである。 
 「形状」
 図14(b)の図面に直交する方向に屈折力を持たない凹シリンダレンズ
 入射側面 凹シリンダ面 曲率半径:-117.5mm 
 射出側面 平面 曲率半径:∞ 
 肉厚:3mm  
 材質:BK7(屈折率:波長:870nmの光に対して1.509493)
"Adjusting lens 13E"
The adjustment lens 13E is as follows.
"shape"
Concave cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG. 14 (b) Incident side Concave cylinder surface Curvature radius: -117.5 mm
Exit side plane radius of curvature: ∞
Thickness: 3 mm
Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
 「受光用レンズ34B」
 受光用レンズ34Bは、以下の如きものである。 
 「形状」
 図14(b)の図面に直交する方向に屈折力を持たない凹シリンダレンズ
 入射側面:平面 曲率半径:∞ 
 射出側面:凸シリンダ面 曲率半径:35.4mm 
 肉厚:3mm 
 材質:BK7(屈折率:波長:870nmの光に対して1.509493)
"Receiver lens 34B"
The light receiving lens 34B is as follows.
"shape"
Concave cylinder lens that does not have refractive power in the direction orthogonal to the drawing in FIG.
Injection side: convex cylinder surface radius of curvature: 35.4 mm
Thickness: 3 mm
Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
 調整用レンズ13Eの射出側面から偏向角変倍素子183の入射側面までの距離:150mm 
 受光用レンズ34Bの入射側面と偏向角変倍素子183の射出側面(戻りレーザ光束が射出する面であり、凸シリンダ面である。)までの距離:450mm 
Distance from the exit side of the adjustment lens 13E to the entrance side of the deflection angle variable element 183: 150 mm
Distance between the incident side of the light receiving lens 34B and the exit side of the deflection angle variable magnification element 183 (the plane from which the return laser beam is emitted and a convex cylinder surface): 450 mm
 上記データで特定される光学系により、平行光束状の偏向レーザビームSRLが得られ、戻りレーザ光束BKLは、受光用レンズ34Bにより平行光束化される。 
 実施例23における偏向角変倍素子183は、偏向レーザビームの偏向角を縮小する偏向角縮小機能をもつ。
By the optical system specified by the above data, a parallel beam-like polarized laser beam SRL is obtained, and the return laser beam BKL is collimated by the light receiving lens 34B.
The deflection angle variable element 183 in the twenty-third embodiment has a deflection angle reduction function of reducing the deflection angle of the deflection laser beam.
 「実施例24」
 実施例24は、図15に示した実施の形態の具体的な例である。 
 「偏向角変倍素子181」
 偏向角変倍素子181は、以下の如きものである。 
 「形状」
 図15において図面に直交する方向に屈折力を持たない凹シリンダレンズ
 入射側面 シリンダ面 曲率半径:-24.3mm 
 射出側面 平面 曲率半径:∞ 
 肉厚:3mm 
 材質:SF6(屈折率:波長:870nmの光に対して1.780698)
"Example 24"
Example 24 is a specific example of the embodiment shown in FIG.
"Deflecting angle variable element 181"
The deflection angle variable magnification element 181 is as follows.
"shape"
In Fig. 15, a concave cylinder lens having no refractive power in the direction orthogonal to the drawing.
Exit side plane radius of curvature: ∞
Thickness: 3 mm
Material: SF6 (refractive index: wavelength: 1.780698 for light of 870 nm)
 「調整用レンズ13B1(=受光用レンズ)」
 受光用レンズを兼ねた調整用レンズ13B1は、以下の如きものである。
 「形状」
 図4の図面に直交する方向に屈折力を持たない凸シリンダレンズ 
 入射側面 凸シリンダ面 曲率半径:47.4mm 
 射出側面 平面 曲率半径:∞ 
 肉厚:3mm                        
 材質:BK7(屈折率:波長:870nmの光に対して1.509493)
"Adjustment lens 13B1 (= lens for light reception)"
The adjustment lens 13B1 which doubles as a light receiving lens is as follows.
"shape"
A convex cylinder lens having no refractive power in the direction orthogonal to the drawing of FIG. 4
Incident side convex cylinder surface radius of curvature: 47.4 mm
Exit side plane radius of curvature: ∞
Thickness: 3 mm
Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
 調整用レンズ13B1の射出側面から偏向角変倍素子181の入射側面までの距離:59.9mm  Distance from the exit side of the adjustment lens 13B1 to the entry side of the deflection angle variable element 181: 59.9 mm
 上記データで特定される光学系により、平行光束状の偏向レーザビームSRLが得られ、戻りレーザ光束BKLは、受光用レンズを兼ねた調整用レンズ13B1により平行光束化される。 
 実施例24における偏向角変倍素子181は、偏向レーザビームの偏向角を拡大する偏向角拡大機能をもつ。
By the optical system specified by the above data, a parallel beam-like polarized laser beam SRL is obtained, and the return laser beam BKL is collimated by the adjusting lens 13B1 which also serves as a light receiving lens.
The deflection angle variable magnification element 181 in the twenty-fourth embodiment has a deflection angle enlargement function of enlarging the deflection angle of the deflection laser beam.
 「実施例25」
 実施例25は、図16に示した実施の形態の具体的な例である。 
 「偏向角変倍素子181」
 偏向角変倍素子181は、以下の如きものである。 
 「形状」
 図16(a)において図面に直交する方向に屈折力を持たない凹シリンダレンズ 
 入射側面 シリンダ面 曲率半径:-24.3mm 
 射出側面 平面 曲率半径:∞ 
 肉厚:3mm 
 材質:SF6(屈折率:波長:870nmの光に対して1.780698)
"Example 25"
The twenty-fifth embodiment is a specific example of the embodiment shown in FIG.
"Deflecting angle variable element 181"
The deflection angle variable magnification element 181 is as follows.
"shape"
A concave cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG.
Incident side Cylinder surface radius of curvature: -24.3 mm
Exit side plane radius of curvature: ∞
Thickness: 3 mm
Material: SF6 (refractive index: wavelength: 1.780698 for light of 870 nm)
 「調整用レンズ13B1(=受光用レンズ)」
 受光用レンズを兼ねた調整用レンズ13B1は、以下の如きものである。
 「形状」
 図16(a)の図面に直交する方向に屈折力を持たない凸シリンダレンズ
  入射側面 凸シリンダ面 曲率半径:47.4mm 
 射出側面 平面 曲率半径:∞ 
 肉厚:3mm         
"Adjustment lens 13B1 (= lens for light reception)"
The adjustment lens 13B1 which doubles as a light receiving lens is as follows.
"shape"
A convex cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG. 16 (a) Incident side convex cylinder surface radius of curvature: 47.4 mm
Exit side plane radius of curvature: ∞
Thickness: 3 mm
 材質:BK7(屈折率:波長:870nmの光に対して1.509493)
 調整用レンズ13B1の射出側面から偏向角変倍素子181の入射側面までの距離:59.9mm 
Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
Distance from the exit side of the adjustment lens 13B1 to the entry side of the deflection angle variable element 181: 59.9 mm
 上記データで特定される光学系により、平行光束状の偏向レーザビームSRLが得られ、戻りレーザ光束BKLは、受光用レンズを兼ねた調整用レンズ13B1により平行光束化される。 By the optical system specified by the above data, a parallel beam-like polarized laser beam SRL is obtained, and the return laser beam BKL is collimated by the adjusting lens 13B1 which also serves as a light receiving lens.
 実施例25における偏向角変倍素子181は、偏向レーザビームの偏向角を拡大する偏向角拡大機能をもつ。 The deflection angle variable magnification element 181 in the twenty-fifth embodiment has a deflection angle enlargement function of enlarging the deflection angle of the deflection laser beam.
 「実施例26」
 実施例26は、図17に示した実施の形態の具体的な例である。 
 「偏向角変倍素子181」
 偏向角変倍素子181は、以下の如きものである。 
 「形状」
 図17(a)において図面に直交する方向に屈折力を持たない凹シリンダレンズ 
 入射側面 シリンダ面 曲率半径:-24.3mm 
 射出側面 平面 曲率半径:∞ 
 肉厚:3mm 
 材質:SF6(屈折率:波長:870nmの光に対して1.780698) 
"Example 26"
Example 26 is a specific example of the embodiment shown in FIG.
"Deflecting angle variable element 181"
The deflection angle variable magnification element 181 is as follows.
"shape"
A concave cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG.
Incident side Cylinder surface radius of curvature: -24.3 mm
Exit side plane radius of curvature: ∞
Thickness: 3 mm
Material: SF6 (refractive index: wavelength: 1.780698 for light of 870 nm)
 「調整用レンズ13B」
 調整用レンズ13Bは、以下の如きものである。 
 「形状」
 図17(a)の図面に直交する方向に屈折力を持たない凸シリンダレンズ
 入射側面 凸シリンダ面 曲率半径:47.4mm 
 射出側面 平面 曲率半径:∞ 
 肉厚:3mm 
 材質:BK7(屈折率:波長:870nmの光に対して1.509493)
"Adjustment lens 13B"
The adjustment lens 13B is as follows.
"shape"
A convex cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG. 17A.
Exit side plane radius of curvature: ∞
Thickness: 3 mm
Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
 「受光用レンズ34」
 受光用レンズ34は、以下の如きものである。 
 「形状」
 図17(a)の図面に直交する方向に屈折力を持たない凸シリンダレンズ
 入射側面:平面 曲率半径:∞ 
 射出側面:凸シリンダ面 曲率半径:59.7mm 
 肉厚:3mm 
 材質:BK7(屈折率:波長:870nmの光に対して1.509493)
"Receiver lens 34"
The light receiving lens 34 is as follows.
"shape"
A convex cylinder lens having no refractive power in the direction orthogonal to the drawing in FIG.
Injection side: convex cylinder surface radius of curvature: 59.7 mm
Thickness: 3 mm
Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
 調整用レンズ13Bの射出側面から偏向角変倍素子181の入射側面までの距離:59.9mm 
 受光用レンズ34の入射側面と偏向角変倍素子181の射出側面(戻りレーザ光束が射出する面であり、凹シリンダ面である。)までの距離:59.9mm 
Distance from the exit side of the adjustment lens 13B to the entry side of the deflection angle variable element 181: 59.9 mm
The distance from the incident side of the light receiving lens 34 to the exit side of the deflection angle variable magnification element 181 (the plane from which the return laser beam is emitted, which is a concave cylinder surface): 59.9 mm
 上記データで特定される光学系により、平行光束状の偏向レーザビームSRLが得られ、戻りレーザ光束BKLは、受光用レンズ34により平行光束化される。 
 実施例26における偏向角変倍素子181は、偏向レーザビームの偏向角を拡大する偏向角拡大機能をもつ。
By the optical system specified by the above data, a parallel beam-like polarized laser beam SRL is obtained, and the return laser beam BKL is collimated by the light receiving lens 34.
The deflection angle variable magnification element 181 in the twenty-sixth embodiment has a deflection angle enlargement function of enlarging the deflection angle of the deflection laser beam.
 上に挙げた実施例20ないし26では、何れも、調整用レンズ、偏向角変倍素子ともにY方向にのみ屈折力を有するシリンダレンズであり、調整用レンズにより収束性もしくは発散性光束に光束変換された光束の収束点もしくは「発散の起点」を、偏向角変倍素子の焦点位置に合致されている。 
 このため、偏向角変倍素子から射出する偏向レーザビームの光束形態は、Y方向に関しては光軸光束に対しては平行光束となるが、偏向角が大きい場合には、平行光束からずれる。
In Examples 20 to 26 mentioned above, each of the adjusting lens and the deflection angle variable magnification element is a cylinder lens having refractive power only in the Y direction, and the luminous flux is converted into convergent or divergent luminous flux by the adjusting lens. The convergent point or "origin of divergence" of the light flux is matched with the focal position of the deflection angle variable magnification element.
Therefore, the beam form of the deflection laser beam emitted from the deflection angle variable magnification element becomes a parallel beam with respect to the optical axis beam in the Y direction, but deviates from the parallel beam when the deflection angle is large.
 Y方向の最大偏向角における「偏向レーザビームの発散角もしくは収束角」は、以下の通りである。 
 実施例20 Y方向(最大偏向角:62.9度) 発散角:0.001度
 実施例21 Y方向(最大偏向角:14.6度) 収束角:0.29度
 実施例22 Y方向(最大偏向角:27.4度) 収束角:0.18度
 実施例23 Y方向(最大偏向角:27.4度) 収束角:0.18度
 実施例24 Y方向(最大偏向角:62.9度) 発散角:0.001度
 実施例25 Y方向(最大偏向角:62.9度) 発散角:0.001度
 実施例26 Y方向(最大偏向角:62.9度) 発散角:0.001度
The “divergence angle or convergence angle of the deflected laser beam” at the maximum deflection angle in the Y direction is as follows.
Example 20 Y direction (maximum deflection angle: 62.9 degrees) Divergence angle: 0.001 degree Example 21 Y direction (maximum deflection angle: 14.6 degrees) convergence angle: 0.29 degrees Example 22 Y direction ( Maximum deflection angle: 27.4 degrees Convergence angle: 0.18 degrees Example 23 Y direction (maximum deflection angle: 27.4 degrees) Convergence angle: 0.18 degrees Example 24 Y direction (maximum deflection angle: 62. 9 degree) Divergence angle: 0.001 degree Example 25 Y direction (maximum deflection angle: 62.9 degrees) Divergence angle: 0.001 degree Example 26 Y direction (maximum deflection angle: 62.9 degrees) divergence angle: 0.001 degree
 Y方向における最大偏向角における光束形態は、実施例20、24~26では「実質的な平行光束状態」であり、実施例2~4では、「略平行光束状態」である。 
 実施例20~26の偏向角変倍素子は、何れもシリンダレンズでX方向においては屈折力を持たない。従って、X方向に関する偏向レーザビームの光束形態は「平行光束状態」である。 
 また、実施例20~26の偏向角変倍素子は、X方向に関しては「偏向角を変倍する機能」を持たない。X方向における偏向角は、偏向装置のX方向の偏向角に等しい。
The luminous flux form at the maximum deflection angle in the Y direction is "substantially parallel luminous flux state" in Examples 20 and 24 to 26, and "substantially parallel luminous flux state" in Examples 2 to 4.
Each of the deflection angle variable magnification elements of Examples 20 to 26 is a cylinder lens and has no refractive power in the X direction. Therefore, the beam form of the deflected laser beam in the X direction is "parallel beam state".
Further, the deflection angle variable magnification elements of Examples 20 to 26 do not have the function of changing the deflection angle in the X direction. The deflection angle in the X direction is equal to the deflection angle in the X direction of the deflection device.
 X方向における最大偏向角は、各実施例に対して、以下の如くである。 The maximum deflection angle in the X direction is as follows for each example.
 実施例20 X方向最大偏向角:25.831度 
 実施例21 X方向最大偏向角:25.669度 
 実施例22 X方向最大偏向角:25.698度 
 実施例23 X方向最大偏向角:25.698度 
 実施例24 X方向最大偏向角:25.831度 
 実施例25 X方向最大偏向角:25.831度 
 実施例26 X方向最大偏向角:25.831度 
 何れも、最大偏向角に対する平行光束からのずれは小さく「平行光束状の偏向レーザビーム」を実現できている。
Example 20 Maximum deflection angle in the X direction: 25.831 degrees
Example 21 Maximum deflection angle in the X direction: 25.669 degrees
Example 22 Maximum deflection angle in the X direction: 25.698 degrees
Example 23 Maximum deflection angle in the X direction: 25.698 degrees
Example 24 Maximum deflection angle in the X direction: 25.831 degrees
Example 25 Maximum deflection angle in the X direction: 25.831 degrees
Example 26 Maximum deflection angle in the X direction: 25.831 degrees
In either case, the deviation from the parallel beam with respect to the maximum deflection angle is small, and a “parallel beam-like polarized laser beam” can be realized.
 これらの実施の形態を、上に説明したところに従い、収束光束状や発散光束状の偏向レーザビームを得るように変更することは容易である。 It is easy to modify these embodiments to obtain a convergent beam-like or divergent beam-like deflected laser beam, as described above.
 また、カップリング光学系の調整用レンズ13B、13B1、13D、13Eを光軸方向へ変位可能とし、該調整用レンズの変位により、偏向レーザビームの光束形態を、平行光束状、収束光束状、発散光束状に変化させることができることも明らかである。 Further, the adjustment lenses 13B, 13B1, 13D, and 13E of the coupling optical system can be displaced in the optical axis direction, and the displacement of the adjustment lens makes the light flux form of the polarized laser beam be parallel light flux, convergent light flux, It is also clear that it can be changed in the form of a divergent beam.
 先に、図1に即して凸の反射面を有する偏向角変倍素子を用いて、偏向角を拡大変倍する例を説明したが、反射面はまた、偏向角の縮小変倍に用いることもできる。 Although the example of expanding and changing the deflection angle using the deflection angle variable magnification element having the convex reflecting surface according to FIG. 1 has been described above, the reflecting surface is also used for reduction and magnification of the deflection angle. It can also be done.
 図18は、反射面を用いて偏向角の縮小変倍を行う2次元走査型のレーザレーダ投射装置の実施の1形態を説明するための図である。 FIG. 18 is a diagram for describing an embodiment of a two-dimensional scanning laser radar projection apparatus that performs reduction magnification of deflection angle using a reflection surface.
 図18において、X、Y、Z方向は、先に説明した方向である。 
 図18(a)は、YZ面に平行な方向の状態を示し。(b)はXZ面に平行な方向の状態を示している。
In FIG. 18, the X, Y, and Z directions are the directions described above.
FIG. 18A shows the state in the direction parallel to the YZ plane. (B) shows the state in the direction parallel to the XZ plane.
 LD10からのレーザ光束を、カップリングレンズ12により平行光束化し、調整用レンズ13Aを介して偏向装置14に入射させ、XY2方向に2次元的に偏向させる。 The laser beam from the LD 10 is collimated by the coupling lens 12 and incident on the deflecting device 14 through the adjustment lens 13A to be two-dimensionally deflected in the XY2 direction.
 2次元的に偏向されたレーザビームを、偏向角変倍素子CMに入射させ、2次元的に偏向する偏向レーザビームSRLとする。 A two-dimensionally deflected laser beam is made incident on a deflection angle variable magnification element CM to be a two-dimensionally deflected polarized laser beam SRL.
 偏向角変倍素子CMは「凹反射面」によりレーザビームを反射させ、偏向角を縮小変倍する。 The deflection angle variation element CM reflects the laser beam by the “concave reflection surface” and reduces the variation angle of the deflection angle.
 図18に示すように、凹反射面を持つ偏向角変倍素子CMを用いる2次元走査型のレーザビーム投射装置の具体的な1例を、実施例27として、以下に挙げる。 As shown in FIG. 18, a concrete example of a two-dimensional scanning laser beam projection apparatus using a deflection angle variable magnification element CM having a concave reflection surface will be described below as a twenty-seventh embodiment.
 「実施例27」
 「偏向角変倍素子CM」
 偏向角変倍素子CMは、以下の如きものである。 
 「形状」
 曲率半径:100mmの凹球面 
 「調整用レンズ13A」
 調整用レンズ13Aは、以下の如きものである。 
 「形状」
 軸対称な凸レンズ  
 入射側面 凸レンズ面 曲率半径:39.58mm 
 射出側面 平面    曲率半径:∞ 
 肉厚:3mm 
 材質:BK7(屈折率:波長:870nmの光に対して1.509493)
 焦点距離:49.4mm 
 調整用レンズ13Aの射出側面から偏向装置14までの距離:99mm 
 偏向装置14から偏向角変倍素子CMの凹反射面までの光軸上の距離:26.7mm
 偏向角変倍素子CMは、偏向レーザビームの偏向角を縮小する偏向角縮小機能をもつ。
"Example 27"
"Deflecting angle scaling element CM"
The deflection angle variable magnification element CM is as follows.
"shape"
Radius of curvature: 100 mm concave sphere
"Adjusting lens 13A"
The adjustment lens 13A is as follows.
"shape"
Axisymmetric convex lens
Incident side convex lens surface radius of curvature: 39.58 mm
Exit side plane radius of curvature: ∞
Thickness: 3 mm
Material: BK7 (refractive index: wavelength: 1.509493 for light of 870 nm)
Focal length: 49.4 mm
Distance from the exit side of the adjustment lens 13A to the deflection device 14: 99 mm
Distance on the optical axis from the deflecting device 14 to the concave reflecting surface of the deflection angle changing element CM: 26.7 mm
The deflection angle variable magnification element CM has a deflection angle reduction function of reducing the deflection angle of the deflection laser beam.
 偏向装置14によるレーザビームの偏向角(XZ平面)と偏向レーザビームSRLの縮小偏向角との関係は、以下の通りである。角度の単位は「度」である。 
   偏向角  25.7  17.24  8.65  8.65  17.24  25.7  
 縮小偏向角  13.0   9.0  4.6   4.6   9.0  13.0   
 偏向角と角度ディストーション(ANDT)の関係は以下の通りである。
  偏向角  25.7  17.24  8.65  8.65  17.24  25.7  
  ANDT  -6.7  -2.8  -0.6   -0.6  -2.8  -6.7  
 偏向角とビーム径(偏向角変倍素子CMの反射面から「3mの位置」におけるスポットダイヤグラムから求めた値)との関係は、以下の通りである。
  偏向角  25.7  17.24   8.65   0   8.65  17.24  25.7  
  ビーム径(mm)  23.5  23.06  23.52  23.5  23.52  23.06  23.5 
 角度ディストーションも小さく、安定しており、ビーム径の変動も小さい。
The relationship between the deflection angle (XZ plane) of the laser beam by the deflection device 14 and the reduced deflection angle of the deflection laser beam SRL is as follows. The unit of angle is "degree".
Deflection angle 25.7 17.24 8.65 8.65 17.24 25.7
Reduced deflection angle 13.0 9.0 4.6 4.6 9.0 13.0
The relationship between deflection angle and angular distortion (ANDT) is as follows.
Deflection angle 25.7 17.24 8.65 8.65 17.24 25.7
ANDT -6.7 -2.8 -0.6 -0.6 -2.8 -6.7
The relationship between the deflection angle and the beam diameter (the value obtained from the spot diagram at the “3 m position from the reflecting surface of the deflection angle changing element CM”) is as follows.
Deflection angle 25.7 17.24 8.65 0 8.65 17.24 25.7
Beam diameter (mm) 23.5 23.06 23.52 23.5 23.52 23.06 23.5
The angular distortion is also small and stable, and the variation in beam diameter is also small.
 実施例27の2次元走査型のレーザビーム投射装置と、上に説明した各種の受光手段とを組み合わせてレーザレーダ装置を構成できることは言うまでもない。 It goes without saying that the laser radar device can be configured by combining the two-dimensional scanning laser beam projection device of the twenty-seventh embodiment with the various light receiving means described above.
 以上のように、この発明によれば、以下の如き2次元走査型のレーザビーム投射装置およびレーザレーダ装置を実現できる。 As described above, according to the present invention, it is possible to realize the following two-dimensional scanning laser beam projection apparatus and laser radar apparatus.
 [1]
 2次元的に偏向する偏向レーザビームLF2、SRLを放射する2次元走査型のレーザビーム投射装置であって、レーザビームを放射するレーザ光源(10、12等)と、該レーザ光源から放射されたレーザビームを2次元的に偏向させる偏向装置(14)と、該偏向装置により2次元的に偏向走査されたレーザビームの偏向角を、互いに直交する2方向のうちの少なくとも一方において変倍して偏向レーザビームとする偏向角変倍素子(16、18、180、181、182、183)と、を有する2次元走査型のレーザビーム投射装置。
[1]
A two-dimensional scanning laser beam projector which emits two-dimensionally deflected polarized laser beams LF2 and SRL, which comprises a laser light source (10, 12, etc.) for emitting a laser beam, and the laser light source A deflection device (14) for deflecting a laser beam two-dimensionally and a deflection angle of the laser beam deflected and scanned two-dimensionally by the deflection device are changed in at least one of two directions orthogonal to each other A two-dimensional scanning laser beam projector comprising: deflection angle magnification elements (16, 18, 180, 181, 182, 183) which are deflection laser beams.
 [2]
 [1]記載の2次元走査型のレーザビーム投射装置であって、偏向角変倍素子が、2次元的に偏向走査されたレーザビームの偏向角を、互いに直交する2方向のうちの少なくとも一方において拡大して偏向レーザビームとする偏向角拡大素子(16、18、181等)である2次元走査型のレーザビーム投射装置。
[2]
[1] The two-dimensional scanning type laser beam projection device according to [1], wherein the deflection angle variable magnification element is configured to set a deflection angle of the two-dimensionally deflected scanning laser beam in at least one of two directions orthogonal to each other. A two-dimensional scanning laser beam projector which is a deflection angle expanding element (16, 18, 181, etc.) which magnifies in to a deflection laser beam.
 [3]
 [1]記載の2次元走査型のレーザビーム投射装置であって、偏向角変倍素子が、2次元的に偏向走査されたレーザビームの偏向角を、互いに直交する2方向のうちの少なくとも一方において縮小して偏向レーザビームとする偏向角縮小素子(180、20C、CM等)である2次元走査型のレーザビーム投射装置。
[3]
[1] The two-dimensional scanning type laser beam projection device according to [1], wherein the deflection angle variable magnification element is configured to set a deflection angle of the two-dimensionally deflected scanning laser beam in at least one of two directions orthogonal to each other. A two-dimensional scanning laser beam projection apparatus, which is a deflection angle reduction element (180, 20C, CM, etc.) for reducing in size to a deflection laser beam.
 [4]
 [2]記載の2次元走査型のレーザビーム投射装置であって、偏向角拡大素子はレンズ(18、181等)で構成される2次元走査型のレーザビーム投射装置。
[4]
[2] The two-dimensional scanning laser beam projection apparatus according to [2], wherein the deflection angle enlarging element is composed of lenses (18, 181, etc.).
 [5]
 [4]記載の2次元走査型のレーザビーム投射装置であって、レンズにより構成される偏向角拡大素子(18)は、偏向角の拡大を行う方向について、拡大コンセントリック係数:CEが、条件:
 (1)   0.8≦CE≦1.5 
を満足する、2次元走査型のレーザビーム投射装置。
[5]
[4] The two-dimensional scanning laser beam projection apparatus according to [4], wherein the deflection angle magnifying element (18) configured by the lens has an expanding concentric coefficient: CE for the direction in which the deflection angle is magnified. :
(1) 0.8 ≦ CE ≦ 1.5
A two-dimensional scanning laser beam projector that satisfies
 [6]
 [2]記載の2次元走査型のレーザビーム投射装置であって、偏向角拡大素子(16)はミラーで構成される2次元走査型のレーザビーム投射装置。
[6]
[2] The two-dimensional scanning laser beam projector according to [2], wherein the deflection angle enlarging element (16) is a mirror.
 [7]
 [3]記載の2次元走査型のレーザビーム投射装置であって、偏向角縮小素子は、レンズ(180、18C)等で構成される2次元走査型のレーザビーム投射装置。
[7]
[3] The two-dimensional scanning laser beam projection apparatus according to [3], wherein the deflection angle reduction element is constituted by lenses (180, 18C) and the like.
 [8]
 [7]記載の2次元走査型のレーザビーム投射装置であって、レンズ(180等)により構成される偏向角縮小素子は、偏向角の縮小を行う方向について、縮小コンセントリック係数:CRが、条件:
 (2)   0.5≦CR≦1.8 
を満足する、2次元走査型のレーザビーム投射装置。
[8]
[7] The two-dimensional scanning laser beam projection apparatus according to [7], wherein the deflection angle reduction element configured by the lens (180 or the like) has a reduction concentric coefficient: CR in the direction in which the deflection angle is reduced. conditions:
(2) 0.5 ≦ CR ≦ 1.8
A two-dimensional scanning laser beam projector that satisfies
 [9]
 [3]記載の2次元走査型のレーザビーム投射装置であって、偏向角縮小素子(CM)は、ミラーで構成される2次元走査型のレーザビーム投射装置。
[9]
[3] The two-dimensional scanning laser beam projection apparatus according to [3], wherein the deflection angle reduction element (CM) is a mirror.
 [10]
 レーザ光源から放射されるレーザ光束を、偏向レーザビーム(SRL)として2次元的に走査して検出対象物に照射し、該検出対象物による反射光を戻りレーザ光束(BKL)として受光素子(30)により受光し、前記検出対象物までの距離を測定するレーザレーダ装置であって、レーザ光源(10)からのレーザ光束を、偏向レーザビーム(SRL)として2次元的に走査して検出対象物に照射する2次元走査型のレーザビーム投射装置と、前記検出対象物により反射された戻りレーザ光束を検出する検出手段(30、32、34)と、前記レーザビーム投射装置と検出手段を制御し、レーザ光が検出対象物までの距離を往復する時間を測定して、前記検出対象物までの距離を演算する制御演算手段(400)と、を有し、前記レーザビーム投射装置として、[1]ないし[9]の何れか1に記載の2次元走査型のレーザビーム投射装置を用いるレーザレーダ装置。
[10]
A laser beam emitted from a laser light source is two-dimensionally scanned as a polarized laser beam (SRL) and irradiated onto a detection target, and light reflected by the detection target is returned as a laser beam (BKL) as a light receiving element (30 A laser radar device for measuring the distance to the object to be detected, wherein the laser beam from the laser light source (10) is two-dimensionally scanned as a polarized laser beam (SRL) to detect the object A two-dimensional scanning type laser beam projection device for irradiating the light, detection means (30, 32, 34) for detecting a return laser beam reflected by the detection object, and controlling the laser beam projection device and the detection means Control calculation means (400) for measuring the time for which the laser light reciprocates the distance to the object to be detected and calculating the distance to the object to be detected; As beam projection device, a laser radar apparatus using a laser beam projection system of the two-dimensional scanning type according to any one of [1] to [9].
 [11]
 [10]記載のレーザレーダ装置であって、検出手段が、偏向角変倍素子(18、180等)と偏向装置(14)をレーザビーム投射装置と共有するレーザレーダ装置。
[11]
[10] The laser radar device according to [10], wherein the detection means shares the deflection angle magnification element (18, 180, etc.) and the deflection device (14) with the laser beam projection device.
 また、以下の如き2次元走査型のレーザビーム投射装置およびレーザレーダ装置も実現できる。 In addition, the following two-dimensional scanning laser beam projection apparatus and laser radar apparatus can be realized.
 (A-1)
 2次元的に偏向するレーザビームを放射するレーザビーム投射装置であって、レーザビーム(LF)を放射するレーザ光源(10、12)と、該レーザ光源から放射されたレーザビームを2次元的に偏向走査する偏向装置(14)と、該偏向装置(14)により2次元的に偏向走査されたレーザビーム(LF1)を反射レーザビーム(LF2)として反射する反射面部材(16)と、を有し、前記反射面部材(16)は、前記反射レーザビーム(LF2)の偏向角を、水平方向および鉛直方向のうちの少なくとも一方において、所望の偏向角範囲に変倍する曲面形状の反射面部分(160)を有するものである2次元走査型レーザビーム投射装置。
(A-1)
A laser beam projector for emitting a two-dimensionally deflected laser beam, comprising: a laser light source (10, 12) for emitting a laser beam (LF); and a two-dimensionally laser beam emitted from the laser light source A deflecting device (14) for deflecting and scanning, and a reflecting surface member (16) for reflecting a laser beam (LF1) two-dimensionally deflected and scanned by the deflecting device (14) as a reflected laser beam (LF2) The reflecting surface member (16) is a curved reflecting surface portion that changes the deflection angle of the reflected laser beam (LF2) into a desired deflection angle range in at least one of the horizontal direction and the vertical direction. A two-dimensional scanning laser beam projection device comprising (160).
 (A-2)
 (A-1)記載の2次元走査型レーザビーム投射装置において、反射面部材(16)は、反射レーザビーム(LF2)の偏向角を、水平方向および鉛直方向のうち、少なくとも水平方向において、所望の偏向角範囲に変倍する曲面形状の反射面部分(160)を有するものである2次元走査型レーザビーム投射装置。
(A-2)
In the two-dimensional scanning laser beam projection apparatus according to (A-1), the reflecting surface member (16) desirably has a deflection angle of the reflected laser beam (LF2) at least in the horizontal direction and the vertical direction. What is claimed is: 1. A two-dimensional scanning laser beam projector comprising: a curved reflective surface portion (160) that changes magnification within the deflection angle range of (1).
 (A-3)
 (A-1)記載の2次元走査型レーザビーム投射装置において、反射面部材(16)は、反射レーザビーム(LF2)の偏向角を、水平方向および鉛直方向において、所望の偏向角範囲に変倍する曲面の反射面部分を有するものである2次元走査型レーザビーム放射装置。
(A-3)
In the two-dimensional scanning laser beam projector according to (A-1), the reflecting surface member (16) changes the deflection angle of the reflected laser beam (LF2) into a desired deflection angle range in the horizontal direction and the vertical direction. A two-dimensional scanning laser beam emitting device having a reflecting surface portion of a curved surface to be doubled.
 (A-4)
 (A-1)ないし(A-3)の何れか1に記載の2次元走査型レーザビーム放射装置において、レーザ光源(10、12)から放射されたレーザビームLFを2次元的に偏向走査する偏向装置(14)は、反射鏡を互いに直交する軸の回りに揺動させるものである2次元走査型レーザビーム放射装置。
(A-4)
In the two-dimensional scanning laser beam emission device according to any one of (A-1) to (A-3), the laser beam LF emitted from the laser light source (10, 12) is two-dimensionally deflected and scanned. The deflection device (14) is a two-dimensional scanning laser beam emitting device for swinging the reflecting mirrors about mutually orthogonal axes.
 (A-5)
 (A-1)ないし(A-4)の何れか1に記載の2次元走査型レーザビーム投射装置において、反射面部材は、反射面の形状が、凸のシリンダ面もしくは凸の円錐面であることを特徴とする2次元走査型レーザビーム投射装置。
(A-5)
In the two-dimensional scanning laser beam projector according to any one of (A-1) to (A-4), the reflecting surface member is a cylindrical surface having a convex surface or a conical surface having a convex surface. A two-dimensional scanning laser beam projector characterized in that
 (A-6)
 (A-1)ないし(A-4)の何れか1に記載の2次元走査型レーザビーム投射装置において、反射面部材は、反射面の形状が、凹のシリンダ面もしくは凹の円錐面(160)である2次元走査型レーザビーム投射装置。
(A-6)
In the two-dimensional scanning laser beam projection apparatus according to any one of (A-1) to (A-4), the reflective surface member has a concave surface, a concave cylinder surface or a concave conical surface (160 A two-dimensional scanning laser beam projector.
 (B-1)
 2次元的に偏向するレーザビームを放射する2次元走査型のレーザビーム投射装置であって、レーザビームを放射するレーザ光源(10、12、13)と、該レーザ光源から放射されたレーザビーム(LA)を2次元的に偏向走査する偏向装置(14)と、該偏向装置により2次元的に偏向走査されたレーザビーム(LD)の偏向角を、互いに直交する2方向のうちの少なくとも一方において拡大する偏向角変倍素子(18)と、を有し、前記偏向角拡大素子(18)は入射側面(18A)が前記2方向のうちの少なくとも一方において凹面であり、前記2次元的に偏向走査されたレーザビーム(LD)を透過させ、屈折により偏向角の拡大を行う負のパワーの偏向角変倍素子である2次元走査型のレーザビーム投射装置。
(B-1)
A two-dimensional scanning laser beam projection apparatus that emits a two-dimensionally deflected laser beam, comprising: a laser light source (10, 12, 13) that emits a laser beam; and a laser beam (a laser beam emitted from the laser light source A deflection device (14) for two-dimensionally deflecting and scanning LA), and a deflection angle of a laser beam (LD) two-dimensionally deflected and scanned by the deflection device in at least one of two directions orthogonal to each other The deflection angle magnification element (18) is concave in at least one of the two directions, and the deflection angle magnification element (18) is two-dimensionally deflected A two-dimensional scanning laser beam projector which is a negative power deflection angle variable magnification element that transmits a scanned laser beam (LD) and expands a deflection angle by refraction.
 (B-2)
 (B-1)記載の2次元走査型のレーザビーム投射装置であって、偏向装置(14)により2次元的に偏向走査されたレーザビームの偏向角を、偏向角変倍素子(18)により、互いに直交する2方向において変倍して拡大する2次元走査型のレーザビーム投射装置。
(B-2)
(B-1) The two-dimensional scanning type laser beam projection apparatus according to (B-1), wherein a deflection angle of the laser beam which is two-dimensionally deflected and scanned by the deflection device (14) is determined by a deflection angle variable magnification element (18). A two-dimensional scanning laser beam projection apparatus which magnifies and expands in two directions orthogonal to each other.
 (B-3)
 (B-1)または(B-2)記載の2次元走査型のレーザビーム投射装置であって、
 偏向角変倍素子は、入射側面が凹のシリンダ面もしくは2次元的な凹面である2次元走査型のレーザビーム投射装置。
(B-3)
A two-dimensional scanning laser beam projector as described in (B-1) or (B-2), wherein
The deflection angle variable magnification element is a two-dimensional scanning laser beam projection apparatus in which the incident side surface is a concave cylinder surface or a two-dimensional concave surface.
 (B-4)
 (B-1)ないし(B-3)の何れか1に記載の2次元走査型のレーザビーム投射装置であって、偏向角変倍素子(18)は、射出側面(18B)が、凹面、凸面、平面の何れかである2次元走査型のレーザビーム投射装置。
(B-4)
In the two-dimensional scanning laser beam projection apparatus according to any one of (B-1) to (B-3), the deflection angle variable magnification element (18) has a concave exit side (18B), A two-dimensional scanning laser beam projector which is either a convex surface or a flat surface.
 (B-5)
 (B-1)ないし(B-4)の何れか1に記載の2次元走査型のレーザビーム投射装置であって、レーザ光源は、LD(10)と、LD(10)から放射されたレーザ光束を平行光束化するコリメート素子(12)と、該コリメート素子により平行光束化されたレーザビームを、少なくとも1方向に集光させる集光レンズ(13)と、を有し、該集光レンズ(13)により集光されたレーザビーム(LA)を偏向装置(14)により2次元的に偏向させて、偏向角変倍素子(18)に入射させるようにし、前記偏向角変倍素子の射出側の焦点位置と、前記集光レンズ(13)の射出側の焦点位置とを略合致させた2次元走査型のレーザビーム投射装置。
(B-5)
The laser beam projector according to any one of (B-1) to (B-4), wherein the laser light source comprises an LD (10) and a laser emitted from the LD (10). A condenser element (12) for collimating the luminous flux, and a condenser lens (13) for condensing the laser beam collimated by the collimator element in at least one direction; 13) The laser beam (LA) collected by the laser beam is two-dimensionally deflected by the deflecting device (14) to be incident on the deflection angle variable magnification element (18), and the emission side of the deflection angle variable magnification element A two-dimensional scanning laser beam projection apparatus in which the focal position of the lens and the focal position on the exit side of the condenser lens (13) are substantially matched.
 (B-6)
 (B-1)ないし(B-5)の何れか1に記載の2次元走査型のレーザビーム投射装置であって、偏向装置(14)による偏向の起点と偏向角変倍素子(18)の入射面(18A)との間隔:Lと偏向角変倍素子(18)の入射面側18Aの曲率半径:R(<0)とにより、L/(-R)として定義される拡大コンセントリック係数:CEが、条件:
 (1)  0.8<CE<1.5 
を満足する2次元走査型のレーザビーム投射装置。
(B-6)
The laser beam projection apparatus of two-dimensional scanning type according to any one of (B-1) to (B-5), which comprises: a starting point of deflection by the deflection device (14); Magnified concentric coefficient defined as L / (-R) by the distance L to the incident surface (18A) and the radius of curvature R: <(0) of the incident surface side 18A of the deflection angle variable magnification element (18) : CE, condition:
(1) 0.8 <CE <1.5
Two-dimensional scanning laser beam projection device that satisfies
 (B-7)
 (B-1)ないし(B-6)の何れか1に記載の2次元走査型のレーザビーム投射装置であって、偏向角変倍素子(18)が装置の外囲ハウジング(CS)のビーム射出部を兼ねている2次元走査型のレーザビーム投射装置。
(B-7)
In the two-dimensional scanning laser beam projection apparatus according to any one of (B-1) to (B-6), the deflection angle variable magnification element (18) is a beam of an envelope housing (CS) of the apparatus. A two-dimensional scanning laser beam projector that doubles as an emitting part.
 (B-8)
 (B-1)ないし(B-7)の何れか1に記載の2次元走査型のレーザビーム投射装置であって、偏向角変倍素子(18)により拡大される偏向角が1方向において60度以上である2次元走査型のレーザビーム投射装置。
(B-8)
The laser beam projection apparatus of two-dimensional scanning type according to any one of (B-1) to (B-7), wherein the deflection angle enlarged by the deflection angle variable magnification element (18) is 60 in one direction. Two-dimensional scanning laser beam projection device that is more than
 (B-9)
 (B-1)ないし(B-8)の何れか1に記載の2次元走査型のレーザビーム投射装置であって、レーザビーム(LA)を2次元的に偏向走査する偏向装置(14)が、2軸のMEMS、または、1軸のMEMSの組み合わせ、または、1軸のMEMSと1軸のガルバノミラーもしくは1軸のポリゴンミラーの組み合わせ、または1軸のガルバノミラーと1軸のポリゴンミラーの組み合わせである2次元走査型のレーザビーム投射装置。
(B-9)
The laser beam projection apparatus of two-dimensional scanning type according to any one of (B-1) to (B-8), wherein the deflector (14) deflects and scans the laser beam (LA) in two dimensions. , A combination of two-axis MEMS or one-axis MEMS, or a combination of one-axis MEMS and one-axis galvano mirror or one-axis polygon mirror, or a combination of one-axis galvano mirror and one-axis polygon mirror A two-dimensional scanning laser beam projection apparatus.
 (B-10)
 2次元的に走査されるレーザビーム(LD)を検出対象物に投射し、該検出対象物で拡散反射されたレーザ光を検出し、検出対象物までの距離を2次元的に測定するレーザレーダ装置であって、レーザビーム(LB)を2次元的に走査して検出対象物に投射する2次元走査型のレーザビーム投射装置と、レーザビーム(LB)を投射された検出対象物からの反射レーザ光束(LO)を受光する受光手段と、を有し、該受光手段は、受光素子(20)と、前記反射レーザ光束(LO)を前記受光素子に集光する受光用集光レンズ(22)とを有し、レーザビーム投射装置として、(B-1)ないし(B-9)の何れか1に記載の2次元走査型のレーザビーム投射装置を用いたレーザレーダ装置。
(B-10)
Laser radar that projects a two-dimensionally scanned laser beam (LD) onto a detection target, detects laser light diffused and reflected by the detection target, and measures the distance to the detection target two-dimensionally A two-dimensional scanning laser beam projection apparatus that scans a laser beam (LB) in a two-dimensional manner and projects the laser beam (LB) onto a detection target, and reflection from the detection target onto which the laser beam (LB) is projected A light receiving means for receiving a laser beam (LO), the light receiving means comprising a light receiving element (20), and a light receiving condenser lens (22) for collecting the reflected laser beam (LO) on the light receiving element And a laser radar apparatus using the two-dimensional scanning laser beam projector according to any one of (B-1) to (B-9) as the laser beam projector.
 (C-1)
 LD(10)と、該LD(10)から放射されるレーザ光束を平行光束化するコリメートレンズ(12)と、該コリメートレンズにより平行光束化されたレーザビームに、互いに直交するX方向及びY方向の2方向のうちの少なくとも1方向に収束傾向もしくは発散傾向を与える調整用レンズ(13B、13C)と、を有するレーザ光源と、前記調整用レンズ(13B等)を透過したレーザビームを、前記X方向及びY方向に2次元的に偏向させる偏向装置(14)と、正の屈折力を有し、前記偏向装置により2次元的に偏向されたレーザビームを入射され、前記X方向及びY方向のうちの少なくとも一方における偏向角を縮小した偏向レーザビーム(SRL)を射出させる偏向角変倍素子(180、18C)と、を有し、前記偏向角変倍素子の光軸(AX)を、前記X、Y方向に直交するZ方向とし、該光軸含み、前記Y方向に平行な平面をα平面、前記X方向に平行な平面をβ平面とするとき、前記偏向装置(14)により、前記α平面内で前記光軸(AX)に対して最大偏向角:θαをなして偏向され、前記偏向角変倍素子の入射面(180A)で屈折したレーザビームのレンズ内中心光線(PL)を、前記偏向装置側に直線的に延長させた延長線(ETL)が、前記光軸(AX)と交わる位置Qαと、前記レンズ内中心光線と前記偏向角変倍素子の射出面(180B)との交点位置qαとの間の距離の、前記光軸方向の距離成分をAα、前記偏向角変倍素子(180)の射出面(180B)の前記α平面内における曲率半径:Rαによる縮小コンセントリック係数:Cα(≡|Aα/Rα|)および、前記偏向装置(14)により、前記β平面内で前記光軸に対して最大偏向角:θβをなして偏向され、前記偏向角変倍素子の入射面で屈折したレーザビームのレンズ内中心光線を、前記偏向装置側に直線的に延長させた延長線が、前記光軸と交わる位置と、前記レンズ内中心光線と前記偏向角変倍素子の射出面との交点位置との間の距離の、前記光軸方向の距離成分をAβ、前記偏向角変倍素子の射出面の前記β平面内における曲率半径:Rβによる縮小コンセントリック係数:Cβ(≡|Aβ/Rβ|)のうち、偏向角の縮小を行う方向について、条件: 
 (2α)   0.5≦Cα≦1.8 
 (2β)   0.5≦Cβ≦1.8 
を満足する、2次元走査型のレーザビーム投射装置。
(C-1)
The LD (10), a collimating lens (12) for collimating a laser beam emitted from the LD (10), and a laser beam collimated by the collimating lens in X and Y directions orthogonal to each other A laser light source having an adjusting lens (13B, 13C) for giving a converging tendency or a diverging tendency in at least one of the two directions, and a laser beam transmitted through the adjusting lens (13B etc.); And a deflecting device (14) for deflecting two-dimensionally in the direction and the Y direction, a laser beam having positive refractive power and being deflected two-dimensionally by the deflecting device is incident, and the X direction and the Y direction A deflection angle variable magnification element (180, 18C) for emitting a deflection laser beam (SRL) with a reduced deflection angle at at least one of the deflection angle magnification element; When an optical axis (AX) of the optical axis is a Z direction orthogonal to the X and Y directions, and a plane parallel to the Y direction is an α plane and a plane parallel to the X direction is a β plane, A laser beam deflected by the deflection device (14) at a maximum deflection angle: θα with respect to the optical axis (AX) in the α plane and refracted at the incident surface (180A) of the deflection angle variable magnification element A position Qα where an extension line (ETL) obtained by linearly extending the in-lens central ray (PL) toward the deflecting device intersects the optical axis (AX), the in-lens central ray, and the deflection angle variation The distance component in the optical axis direction of the distance between the doublet element with the exit surface (180B) and the intersection position qα is Aα, and the inside of the α plane of the exit surface (180B) of the deflection angle variable element (180) Radius of curvature at the center of the circle: reduced concentric coefficient by Rα: Cα (≡ | Aα Of the laser beam which is deflected at the maximum deflection angle: θβ with respect to the optical axis in the β plane by the deflection device (14) and refracted at the incident surface of the deflection angle variable magnification element An extension line obtained by linearly extending an in-lens central ray toward the deflecting device intersects the optical axis, and a position of an intersection between the in-lens central ray and the exit surface of the deflection angle variable magnification element The radius component of the exit surface of the deflection angle variable magnification element in the β plane: the reduction concentric radius by Rβ: Cβ (≡ | Aβ / Rβ |) Among them, conditions for the reduction of the deflection angle:
(2α) 0.5 ≦ Cα ≦ 1.8
(2β) 0.5 ≦ Cβ ≦ 1.8
A two-dimensional scanning laser beam projector that satisfies
 (C-2)
 (C-1)記載のレーザビーム投射装置であって、偏向角変倍素子(180、18C)から射出する偏向レーザビーム(SRL)が平行光束となるように、調整用レンズ(13B)と偏向角変倍素子(180、18C)の光学的関係が設定されている2次元走査型のレーザビーム投射装置。
(C-2)
(C-1) The laser beam projection apparatus according to (C-1), wherein the adjustment lens (13B) and the deflection lens are deflected so that the deflection laser beam (SRL) emitted from the deflection angle variable magnification element (180, 18C) becomes a parallel beam. A two-dimensional scanning laser beam projection apparatus in which an optical relationship between angular magnification elements (180, 18C) is set.
 (C-3)
 (C-1)記載のレーザビーム投射装置であって、偏向角変倍素子(180、18C)から射出する偏向レーザビーム(SRL)が収束性もしくは発散性の光束となるように、調整用レンズ(13B)と偏向角変倍素子(180、18C)の光学的関係が設定されている2次元走査型のレーザビーム投射装置。
(C-3)
(C-1) The laser beam projection apparatus according to (C-1), wherein the adjusting lens is configured such that the deflected laser beam (SRL) emitted from the deflection angle variable magnification element (180, 18C) becomes a convergent or divergent beam. A two-dimensional scanning laser beam projection apparatus in which an optical relationship between (13B) and a deflection angle variable magnification element (180, 18C) is set.
 (C-4)
 (C-1)記載のレーザビーム投射装置であって、調整用レンズ(13B)の光軸方向への変位調整により、偏向角変倍素子(180、18C)から射出する偏向レーザビーム(SRL)の光束形態が変更可能である2次元走査型のレーザビーム投射装置。
(C-4)
(C-1) The laser beam projection apparatus according to (C-1), wherein the deflection laser beam (SRL) emitted from the deflection angle variable magnification element (180, 18C) by adjusting the displacement of the adjusting lens (13B) in the optical axis direction. A two-dimensional scanning laser beam projection apparatus in which the form of light flux of the light source can be changed.
 (C-5)
 (C-1)ないし(C-4)の何れか1に記載のレーザビーム投射装置であって、調整用レンズおよび偏向角変倍素子がともに、光軸の周りに回転対称な軸対称のレンズである2次元走査型のレーザビーム投射装置。
(C-5)
The laser beam projection apparatus according to any one of (C-1) to (C-4), wherein both of the adjustment lens and the deflection angle variable magnification element are axially symmetric lenses that are rotationally symmetric around the optical axis. A two-dimensional scanning laser beam projection apparatus.
 (C-6)
 (C-1)ないし(C-4)の何れか1に記載のレーザビーム投射装置であって、調整用レンズ(13B)および偏向角変倍素子(180)が共に、α平面内もしくはβ平面内において屈折力をもたないシリンダレンズである2次元走査型のレーザビーム投射装置。
(C-6)
The laser beam projection apparatus according to any one of (C-1) to (C-4), wherein both of the adjustment lens (13B) and the deflection angle variable magnification element (180) are in the α plane or β plane A two-dimensional scanning laser beam projector which is a cylindrical lens having no refractive power inside.
 (C-7)
 (C-1)ないし(C-4)の何れか1に記載のレーザビーム投射装置であって、調整用レンズ(13B)および偏向角変倍素子(180、18C)が共に、α平面内とβ平面内とで屈折力のことなるアナモルフィックなレンズである2次元走査型のレーザビーム投射装置。
(C-7)
The laser beam projection apparatus according to any one of (C-1) to (C-4), wherein the adjusting lens (13B) and the deflection angle variable magnification elements (180, 18C) are both in the α plane. A two-dimensional scanning laser beam projection apparatus which is an anamorphic lens which has different refractive power in the β plane.
 (C-8)
 レーザ光源から放射されるレーザ光束を、偏向レーザビーム(SRL)として2次元的に走査して検出対象物に照射し、該検出対象物による反射光を戻りレーザ光束(BKL)として受光素子(30)により受光し、前記検出対象物までの距離を測定するレーザレーダ装置であって、レーザ光源からのレーザ光束を、偏向レーザビーム(SRL)として2次元的に走査して検出対象物に照射する2次元型のレーザビーム投射装置と、前記検出対象物により反射された戻りレーザ光束(BKL)を検出する検出手段と、前記レーザビーム投射装置と検出手段を制御し、レーザ光が検出対象物までの距離を往復する時間を測定して、前記検出対象物までの距離を演算する制御演算手段(400)と、を有し、前記レーザビーム投射装置として、(C-1)ないし(C-7)の何れか1に記載の2次元型のレーザビーム投射装置を用いるレーザレーダ装置。
(C-8)
A laser beam emitted from a laser light source is two-dimensionally scanned as a polarized laser beam (SRL) and irradiated onto a detection target, and light reflected by the detection target is returned as a laser beam (BKL) as a light receiving element (30 A laser radar device that receives light and measures the distance to the detection target, and two-dimensionally scans a laser beam from a laser light source as a polarized laser beam (SRL) to irradiate the detection target A two-dimensional laser beam projection apparatus, detection means for detecting a return laser beam (BKL) reflected by the detection object, and the laser beam projection apparatus and detection means are controlled, and the laser light reaches the detection object Control calculation means (400) for calculating the distance to the object to be detected by measuring the time for reciprocation of the distance -1) through a laser radar apparatus using a two-dimensional laser beam projection apparatus according to any one of (C-7).
 (C-9)
 (C-8)記載のレーザレーダ装置において、2次元型のレーザビーム投射装置における制御演算手段(400)が、調整用レンズ(13B)を光軸方向へ位置調整可能であるレーザレーダ装置。
(C-9)
(C-8) The laser radar device according to (C-8), wherein the control calculation means (400) in the two-dimensional laser beam projection device can adjust the position of the adjusting lens (13B) in the optical axis direction.
 (D-1)
 検出対象物を、平行光束状もしくは収束光束状もしくは発散光束状の光束形態を持つ偏向レーザビームで2次元的に走査するレーザレーダ装置であって、レーザ光源と、該レーザ光源からのレーザ光束を2次元的に偏向して、検出対象物を2次元的に走査する偏向レーザビーム(SRL)とする照射用光学系と、前記検出対象物により反射された戻りレーザ光束(BKL)を受光する検出用受光素子(30)と、前記戻りレーザ光束を前記検出用受光素子に導光する受光用光学系(32、34)と、前記レーザ光が放射されてから前記検出用受光素子が前記戻りレーザ光束を受光するまでの時間により、前記検出対象物までの距離を求める制御演算手段(400)と、を有し、前記照射用光学系は、LD(10)と該LD(10)から放射されたレーザ光を光束変換するカップリング光学系(12、13A)とを有するレーザ光源と、前記カップリング光学系により光束変換されたレーザ光束を2次元的に偏向させる偏向装置(14)と、2次元的に偏向されたレーザ光束の入射を受け、偏向レーザビームとして射出させる偏向角変倍素子(181等)と、を有し、前記カップリング光学系の光束変換は、前記LD(10)から照射されたレーザ光を、前記偏向装置(14)による2次元的な偏向の少なくとも1方向において、発散性もしくは収束性のレーザ光束に変換するものであり、前記偏向角変倍素子(181等)は、前記偏向装置による2次元的な偏向の少なくとも1方向において、前記偏向レーザビーム(SRL)の走査角を拡大もしくは縮小する走査角変更機能を有し、前記受光用光学系は、少なくとも前記偏向角変倍素子(181)と前記偏向装置(14)とを、前記照射用光学系と共用すると共に、前記偏向角変倍素子の屈折力に応じて発散性もしくは収束性の光束となって前記偏向装置により偏向された前記戻りレーザ光束を、前記検出用受光素子(30)に向けて集光する集光レンズ系(32、34)を有し、前記カップリング光学系により光束変換された、前記少なくとも1方向における発散性もしくは収束性のレーザ光束の、発散の起点もしくは収束位置と、前記偏向角変倍素子(181)の焦点位置とが、前記偏向レーザビーム(SRL)の光束形態に応じた位置関係を有するレーザレーダ装置。
(D-1)
A laser radar device for two-dimensionally scanning an object to be detected with a polarized laser beam having a parallel luminous flux shape or a convergent luminous flux shape or a divergent luminous flux shape, and a laser light source and a laser luminous flux from the laser light source An illumination optical system that deflects two-dimensionally to form a deflection laser beam (SRL) that two-dimensionally scans a detection target, and detection that receives a return laser beam (BKL) reflected by the detection target Light receiving element (30), a light receiving optical system (32, 34) for guiding the return laser beam to the light receiving element for detection, and the light receiving element for detection after the laser light is emitted Control computing means (400) for determining the distance to the object to be detected according to the time taken to receive the light flux, and the optical system for illumination is emitted from the LD (10) and the LD (10) A laser light source having a coupling optical system (12, 13A) for converting the laser beam into a luminous flux, and a deflection device (14) for two-dimensionally deflecting the laser luminous flux converted by the coupling optical system And a deflection angle variable magnification element (181 or the like) for receiving a two-dimensionally deflected laser beam and emitting it as a deflected laser beam, and the beam conversion of the coupling optical system is performed from the LD (10) Irradiated laser light is converted into a divergent or convergent laser beam in at least one direction of two-dimensional deflection by the deflection device (14), and the deflection angle variable magnification element (181, etc.) Has a scanning angle changing function of enlarging or reducing a scanning angle of the deflection laser beam (SRL) in at least one direction of two-dimensional deflection by the deflection device. The light receiving optical system shares at least the deflection angle variable magnification element (181) and the deflection device (14) with the irradiation optical system, and diverges according to the refractive power of the deflection angle magnification element. A condensing lens system (32, 34) for condensing the return laser beam which has been deflected by the deflecting device into a flexible or convergent beam toward the detection light receiving element (30); A divergence start point or a convergence position of the divergent or convergent laser beam in the at least one direction, which is converted by the coupling optical system, and a focal position of the deflection angle variable magnification element (181) A laser radar device having a positional relationship according to a light beam form of a laser beam (SRL).
 (D-2)
 (D-1)記載のレーザレーダ装置であって、カップリング光学系により光束変換された、少なくとも1方向における発散性もしくは収束性のレーザ光束の、発散の起点もしくは収束位置と、偏向角変倍素子(181等)の焦点位置とが、偏向レーザビーム(SRL)の光束形態が平行光束状となるような位置関係を有するレーザレーダ装置。
(D-2)
(D-1) The laser radar device according to (D-1), which is a divergence origin or convergence position of a divergent or convergent laser beam in at least one direction, converted by the coupling optical system, and deflection angle magnification A laser radar device having a positional relationship such that the light beam form of a polarized laser beam (SRL) is in the form of a parallel light beam with a focal position of an element (181 or the like).
 (D-3)
 (D-1)記載のレーザレーダ装置であって、カップリング光学系により光束変換された、少なくとも1方向における発散性もしくは収束性のレーザ光束の、発散の起点もしくは収束位置と、偏向角変倍素子の焦点位置とが、偏向レーザビーム(SRL)の光束形態が収束光束状となるような位置関係を有するレーザレーダ装置。
(D-3)
(D-1) The laser radar device according to (D-1), which is a divergence origin or convergence position of a divergent or convergent laser beam in at least one direction, converted by the coupling optical system, and deflection angle magnification A laser radar device having a positional relationship such that a light flux form of a polarized laser beam (SRL) has a convergent light flux shape with a focal position of an element.
 (D-4)
 (D-1)記載のレーザレーダ装置であって、カップリング光学系により光束変換された、少なくとも1方向における発散性もしくは収束性のレーザ光束の、発散の起点もしくは収束位置と、偏向角変倍素子の焦点位置とが、偏向レーザビームの光束形態が発散光束状となるような位置関係を有するレーザレーダ装置。
(D-4)
(D-1) The laser radar device according to (D-1), which is a divergence origin or convergence position of a divergent or convergent laser beam in at least one direction, converted by the coupling optical system, and deflection angle magnification A laser radar device having a positional relationship such that a light flux form of a polarized laser beam is in the form of a diverging light flux with a focal position of an element.
 (D-5)
 (D-1)ないし(D-4)の何れか1に記載のレーザレーダ装置であって、カップリング光学系が、LD(10)から放射されたレーザ光を平行光束化するコリメートレンズ(12)と、該コリメートレンズにより平行光束化されたレーザ光束を、偏向装置による2次元的な偏向の少なくとも1方向において発散性もしくは収束性のレーザ光束とする調整用レンズ(13B等)と、を有するレーザレーダ装置。
(D-5)
The laser radar device according to any one of (D-1) to (D-4), wherein the coupling optical system collimates the laser beam emitted from the LD (10) into a collimated lens (12 And an adjusting lens (13B or the like) for converting a laser beam collimated by the collimating lens into a diverging or converging laser beam in at least one direction of two-dimensional deflection by the deflection device. Laser radar device.
 (D-6)
 (D-5)記載のレーザレーダ装置であって、カップリング光学系の調整用レンズ(13B等)が光軸方向へ変位可能で、該調整用レンズの変位により、偏向レーザビーム(SRL)の光束形態を変化させるレーザレーダ装置。
(D-6)
(D-5) The laser radar device according to (D-5), wherein the adjustment lens (13B etc.) of the coupling optical system is displaceable in the optical axis direction, and the displacement of the adjustment lens causes the deflection laser beam (SRL) to Laser radar device that changes luminous flux form.
 (D-7)
 (D-1)ないし(D-6)の何れか1に記載のレーザレーダ装置であって、偏向角変倍素子(201)が、偏向装置による2次元的な偏向の少なくとも1方向において偏向レーザビームの走査角を拡大する走査角拡大機能をもつレーザレーダ装置。
(D-7)
The laser radar device according to any one of (D-1) to (D-6), wherein the deflection angle variable magnification element (201) is a deflection laser in at least one direction of two-dimensional deflection by the deflection device. Laser radar system with scan angle enlargement function to expand the beam scan angle.
 (D-8)
 (D-1)ないし(D-6)の何れか1に記載のレーザレーダ装置において、偏向角変倍素子(183)が、偏向装置(14)による2次元的な偏向の少なくとも1方向において偏向レーザビーム(SRL)の走査角を縮小する走査角縮小機能をもつレーザレーダ装置。
(D-8)
In the laser radar device according to any one of (D-1) to (D-6), the deflection angle variable magnification element (183) deflects in at least one direction of two-dimensional deflection by the deflection device (14). A laser radar device having a scan angle reduction function for reducing the scan angle of a laser beam (SRL).
 (D-9)
 (D-1)ないし(D-8)の何れか1に記載のレーザレーダ装置において、カップリング光学系が、偏向装置(14)に向かうレーザ光束を、偏向装置による2次元的な偏向の1方向には平行で、他の方向には発散性もしくは収束性とする光束変換機能を有し、偏向角変倍素子は、前記1方向には屈折力を持たないレーザレーダ装置。
(D-9)
In the laser radar device according to any one of (D-1) to (D-8), the coupling optical system is configured to perform one of two-dimensional deflection of the laser beam directed to the deflection device (14) by the deflection device. A laser radar device having a light flux conversion function parallel to one direction and divergent or convergent in another direction, and the deflection angle variable magnification element has no refractive power in one direction.
 以上、発明の好ましい実施の形態について説明したが、この発明は上述した特定の実施形態に限定されるものではなく、上述の説明で特に限定していない限り、特許請求の範囲に記載された発明の趣旨の範囲内において、種々の変形・変更が可能である。 
 この発明の実施の形態に記載された効果は、発明から生じる好適な効果を列挙したに過ぎず、発明による効果は「実施の形態に記載されたもの」に限定されるものではない。
Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the specific embodiments described above, and the invention described in the appended claims unless otherwise limited in the above description. Various modifications and changes are possible within the scope of the present invention.
The effects described in the embodiments of the present invention merely list the preferable effects resulting from the invention, and the effects of the invention are not limited to those described in the embodiments.
 10    LD(半導体レーザ) 
 12    カップリングレンズ 
 13、13A、13B、13C、13D、13E   調整用レンズ
 14    偏向装置 
 16    反射面部材(偏向角変倍素子) 
 LF    レーザビーム 
 18、18C、181、182、183 偏向角変倍素子 
 30    受光素子 
 32    集光レンズ 
 34、34A、34B   受光用レンズ 
 40、40A ミラー
10 LD (semiconductor laser)
12 coupling lens
13, 13A, 13B, 13C, 13D, 13E Adjustment lens 14 Deflecting device
16 Reflecting surface member (deflection angle magnification element)
LF laser beam
18, 18C, 181, 182, 183 deflection angle variable magnification element
30 light receiving element
32 Focusing Lens
34, 34A, 34B Lenses for Receiving Light
40, 40A mirror
特開2013-113684号公報JP, 2013-113684, A 特開2012-58178号公報JP 2012-58178 A

Claims (10)

  1.  2次元的に偏向する偏向レーザビームを放射する2次元走査型のレーザビーム投射装置であって、 
     レーザビームを放射するレーザ光源と、
     該レーザ光源から放射されたレーザビームを2次元的に偏向させる偏向装置と、
     該偏向装置により2次元的に偏向走査されたレーザビームの偏向角を、互いに直交する2方向のうちの少なくとも一方において変倍して偏向レーザビームとする偏向角変倍素子と、を有する2次元走査型のレーザビーム投射装置。
    What is claimed is: 1. A two-dimensional scanning laser beam projection apparatus that emits a two-dimensionally deflected polarized laser beam, comprising:
    A laser light source emitting a laser beam;
    A deflector for two-dimensionally deflecting a laser beam emitted from the laser light source;
    A deflection angle variable magnification element for changing a deflection angle of a laser beam which is two-dimensionally deflected and scanned by the deflection apparatus in at least one of two directions orthogonal to each other to form a deflection laser beam; Scanning laser beam projector.
  2.  請求項1記載の2次元走査型のレーザビーム投射装置であって、
     偏向角変倍素子が、2次元的に偏向走査されたレーザビームの偏向角を、互いに直交する2方向のうちの少なくとも一方において拡大して偏向レーザビームとする偏向角拡大素子である2次元走査型のレーザビーム投射装置。
    The two-dimensional scanning laser beam projection apparatus according to claim 1, wherein
    Two-dimensional scanning in which a deflection angle variable magnification element is a deflection angle expanding element which expands a deflection angle of a two-dimensionally deflected and scanned laser beam in at least one of two directions orthogonal to each other to form a deflected laser beam. Type laser beam projector.
  3.  請求項1記載の2次元走査型のレーザビーム投射装置であって、
     偏向角変倍素子が、2次元的に偏向走査されたレーザビームの偏向角を、互いに直交する2方向のうちの少なくとも一方において縮小して偏向レーザビームとする偏向角縮小素子である2次元走査型のレーザビーム投射装置。
    The two-dimensional scanning laser beam projection apparatus according to claim 1, wherein
    Two-dimensional scanning which is a deflection angle reducing element which reduces a deflection angle of a two-dimensionally deflected scanning laser beam in at least one of two directions orthogonal to each other to form a deflected laser beam. Type laser beam projector.
  4.  請求項2記載の2次元走査型のレーザビーム投射装置であって、
     偏向角拡大素子はレンズで構成される2次元走査型のレーザビーム投射装置。
    The two-dimensional scanning laser beam projection apparatus according to claim 2, wherein
    The deflection angle expansion element is a two-dimensional scanning laser beam projection apparatus composed of a lens.
  5.  請求項4記載の2次元走査型のレーザビーム投射装置であって、
     レンズにより構成される偏向角拡大素子は、偏向角の拡大を行う方向について、拡大コンセントリック係数:CEが、条件:
     (1)   0.8≦CE≦1.5 
    を満足する、2次元走査型のレーザビーム投射装置。
    5. The two-dimensional scanning laser beam projection apparatus according to claim 4, wherein
    The deflection angle magnifying element constituted by the lens has a magnifying concentric coefficient: CE in the direction in which the deflection angle is broadened:
    (1) 0.8 ≦ CE ≦ 1.5
    A two-dimensional scanning laser beam projector that satisfies
  6.  請求項2記載の2次元走査型のレーザビーム投射装置であって、
     偏向角拡大素子はミラーで構成される2次元走査型のレーザビーム投射装置。
    The two-dimensional scanning laser beam projection apparatus according to claim 2, wherein
    A two-dimensional scanning laser beam projection apparatus in which the deflection angle expanding element is composed of a mirror.
  7.  請求項3記載の2次元走査型のレーザビーム投射装置であって、
     偏向角縮小素子は、レンズで構成される2次元走査型のレーザビーム投射装置。
    4. The two-dimensional scanning laser beam projection apparatus according to claim 3, wherein
    The deflection angle reduction element is a two-dimensional scanning laser beam projection apparatus composed of a lens.
  8.  請求項7記載の2次元走査型のレーザビーム投射装置であって、
     レンズにより構成される偏向角縮小素子は、偏向角の縮小を行う方向について、縮小コンセントリック係数:CRが、条件:
     (1)   0.5≦CR≦1.8 
    を満足する、2次元走査型のレーザビーム投射装置。
    8. The two-dimensional scanning laser beam projection apparatus according to claim 7, wherein
    The deflection angle reduction element configured by the lens has a reduction concentricity coefficient: CR in the direction in which the reduction of the deflection angle is performed.
    (1) 0.5 ≦ CR ≦ 1.8
    A two-dimensional scanning laser beam projector that satisfies
  9.  請求項3記載の2次元走査型のレーザビーム投射装置であって、
     偏向角縮小素子は、ミラーで構成される2次元走査型のレーザビーム投射装置。
    4. The two-dimensional scanning laser beam projection apparatus according to claim 3, wherein
    The deflection angle reduction element is a two-dimensional scanning laser beam projection apparatus composed of a mirror.
  10.  レーザ光源から放射されるレーザ光束を、偏向レーザビームとして2次元的に走査して検出対象物に照射し、該検出対象物による反射光を戻りレーザ光束として受光素子により受光し、前記検出対象物までの距離を測定するレーザレーダ装置であって、
     レーザ光源からのレーザ光束を、偏向レーザビームとして2次元的に走査して検出対象物に照射する2次元走査型のレーザビーム投射装置と、
     前記検出対象物により反射された戻りレーザ光束を検出する検出手段と、
     前記レーザビーム投射装置と検出手段を制御し、レーザ光が検出対象物までの距離を往復する時間を測定して、前記検出対象物までの距離を演算する制御演算手段と、を有し、
     前記レーザビーム投射装置として、請求項1ないし9の何れか1項に記載の2次元走査型のレーザビーム投射装置を用いるレーザレーダ装置。
    A laser beam emitted from a laser light source is two-dimensionally scanned as a deflection laser beam to irradiate an object to be detected, light reflected by the object to be detected is received by a light receiving element as a laser beam, and the object to be detected is A laser radar device for measuring the distance to
    A two-dimensional scanning laser beam projection apparatus for two-dimensionally scanning a laser beam from a laser light source as a deflection laser beam to irradiate the object to be detected;
    Detection means for detecting a return laser beam reflected by the detection object;
    Control computing means for controlling the laser beam projection device and the detection means, measuring the time for which the laser light reciprocates the distance to the detection object, and calculating the distance to the detection object;
    A laser radar device using the two-dimensional scanning laser beam projection device according to any one of claims 1 to 9 as the laser beam projection device.
PCT/JP2014/006517 2013-12-26 2014-12-26 Two-dimensional scanning laser beam projection device and laser radar device WO2015098130A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013270201A JP2015125317A (en) 2013-12-26 2013-12-26 Two-dimensional scanning laser beam projection device and two-dimensional distance-measuring equipment
JP2013-270201 2013-12-26
JP2014-241801 2014-11-28
JP2014241801A JP6417198B2 (en) 2014-11-28 2014-11-28 Two-dimensional scanning type laser beam projection apparatus and laser radar apparatus
JP2014246127A JP2016109517A (en) 2014-12-04 2014-12-04 Laser radar device
JP2014-246127 2014-12-04

Publications (1)

Publication Number Publication Date
WO2015098130A1 true WO2015098130A1 (en) 2015-07-02

Family

ID=53478024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006517 WO2015098130A1 (en) 2013-12-26 2014-12-26 Two-dimensional scanning laser beam projection device and laser radar device

Country Status (1)

Country Link
WO (1) WO2015098130A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161500A (en) * 2015-12-29 2017-09-14 ザ・ボーイング・カンパニーThe Boeing Company Variable resolution light radar system
EP3228926A1 (en) * 2016-03-29 2017-10-11 LG Electronics Inc. Lighting device for vehicle
CN109061607A (en) * 2018-09-21 2018-12-21 深圳市速腾聚创科技有限公司 The amplifying device and laser radar system of laser radar scanning angle
US11841516B2 (en) 2020-11-13 2023-12-12 Lg Innotek Co., Ltd. Anamorphic receiver optical design for LIDAR line sensors
WO2024061717A3 (en) * 2022-09-23 2024-05-16 Ams-Osram International Gmbh Optoelectronic arrangement and method for producing an optoelectronic arrangement

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111829A (en) * 1998-10-08 2000-04-21 Olympus Optical Co Ltd Video display device
JP2004229963A (en) * 2003-01-31 2004-08-19 Olympus Corp Scanning optical system
JP2004358474A (en) * 2003-05-30 2004-12-24 Sunx Ltd Laser marking device and printing control method thereof
JP2008262186A (en) * 2007-03-19 2008-10-30 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2010049232A (en) * 2008-07-23 2010-03-04 Ricoh Co Ltd Optical scan unit, image projector including the same, head-up display, and mobile phone
JP2012058178A (en) * 2010-09-13 2012-03-22 Ricoh Co Ltd Laser radar device
JP2013025205A (en) * 2011-07-24 2013-02-04 Denso Corp Head-up display device
JP2013072991A (en) * 2011-09-27 2013-04-22 Nec Corp Scanning image display device, and image display method
WO2013072956A1 (en) * 2011-11-15 2013-05-23 三菱電機株式会社 Laser radar device, safe landing sensor for planetfall, docking sensor for space apparatus, space debris collection sensor, and vehicle-mounted collision avoidance sensor
JP2013113684A (en) * 2011-11-28 2013-06-10 Fujitsu Ltd Distance measuring apparatus
JP2013190594A (en) * 2012-03-14 2013-09-26 Hitachi Media Electoronics Co Ltd Optical module and scan-type image display device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111829A (en) * 1998-10-08 2000-04-21 Olympus Optical Co Ltd Video display device
JP2004229963A (en) * 2003-01-31 2004-08-19 Olympus Corp Scanning optical system
JP2004358474A (en) * 2003-05-30 2004-12-24 Sunx Ltd Laser marking device and printing control method thereof
JP2008262186A (en) * 2007-03-19 2008-10-30 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2010049232A (en) * 2008-07-23 2010-03-04 Ricoh Co Ltd Optical scan unit, image projector including the same, head-up display, and mobile phone
JP2012058178A (en) * 2010-09-13 2012-03-22 Ricoh Co Ltd Laser radar device
JP2013025205A (en) * 2011-07-24 2013-02-04 Denso Corp Head-up display device
JP2013072991A (en) * 2011-09-27 2013-04-22 Nec Corp Scanning image display device, and image display method
WO2013072956A1 (en) * 2011-11-15 2013-05-23 三菱電機株式会社 Laser radar device, safe landing sensor for planetfall, docking sensor for space apparatus, space debris collection sensor, and vehicle-mounted collision avoidance sensor
JP2013113684A (en) * 2011-11-28 2013-06-10 Fujitsu Ltd Distance measuring apparatus
JP2013190594A (en) * 2012-03-14 2013-09-26 Hitachi Media Electoronics Co Ltd Optical module and scan-type image display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161500A (en) * 2015-12-29 2017-09-14 ザ・ボーイング・カンパニーThe Boeing Company Variable resolution light radar system
EP3228926A1 (en) * 2016-03-29 2017-10-11 LG Electronics Inc. Lighting device for vehicle
US10071677B2 (en) 2016-03-29 2018-09-11 Lg Electronics Inc. Lighting device for vehicle
CN109061607A (en) * 2018-09-21 2018-12-21 深圳市速腾聚创科技有限公司 The amplifying device and laser radar system of laser radar scanning angle
CN109061607B (en) * 2018-09-21 2024-05-14 深圳市速腾聚创科技有限公司 Laser radar scanning angle amplifying device and laser radar system
US11841516B2 (en) 2020-11-13 2023-12-12 Lg Innotek Co., Ltd. Anamorphic receiver optical design for LIDAR line sensors
WO2024061717A3 (en) * 2022-09-23 2024-05-16 Ams-Osram International Gmbh Optoelectronic arrangement and method for producing an optoelectronic arrangement

Similar Documents

Publication Publication Date Title
WO2015098130A1 (en) Two-dimensional scanning laser beam projection device and laser radar device
US8022332B2 (en) Laser processing device
US6069748A (en) Laser line generator system
JP4762593B2 (en) External laser introduction device
JP4637532B2 (en) Decentered optical system and optical system using it
US7439477B2 (en) Laser condensing optical system
US20050013021A1 (en) Decentered optical system, light transmitting device, light receiving device, and optical system
JP2016109517A (en) Laser radar device
US11531089B2 (en) Coaxial setup for light detection and ranging, lidar, measurements
JP6341500B2 (en) Laser radar equipment
JP6417198B2 (en) Two-dimensional scanning type laser beam projection apparatus and laser radar apparatus
JPH077151B2 (en) Scanning device
US7463394B2 (en) Linear optical scanner
US20090051995A1 (en) Linear Optical Scanner
JP4171787B2 (en) Optical device for acquiring information about a sample or observation object
JP2015125317A (en) Two-dimensional scanning laser beam projection device and two-dimensional distance-measuring equipment
WO2022209137A1 (en) Optical system and light scanning device
JP2012145687A (en) Scanner type microscope
JP2006173688A (en) Spatial light transmission apparatus
JP2007052366A (en) Catoptric system and optical system using the same
JP2006113248A (en) Eccentric reflection optical system and optical system using the same
WO2023238175A1 (en) LIGHT CONDENSING OPTICAL SYSTEM, Fθ OPTICAL SYSTEM, OPTICAL MACHINING DEVICE, AND OPTICAL MEASUREMENT DEVICE
JP2005249859A (en) Eccentric optical system, light transmitting device, light receiving device, and optical system
KR20240037266A (en) A focusing device with an image plane parallel or congruent with the target plane.
JP2005031449A (en) Eccentric optical system, light transmitting device, light receiving device and optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873738

Country of ref document: EP

Kind code of ref document: A1