WO2015097965A1 - Planar light-emitting body, and lighting device and building material using said planar light-emitting body - Google Patents

Planar light-emitting body, and lighting device and building material using said planar light-emitting body Download PDF

Info

Publication number
WO2015097965A1
WO2015097965A1 PCT/JP2014/005599 JP2014005599W WO2015097965A1 WO 2015097965 A1 WO2015097965 A1 WO 2015097965A1 JP 2014005599 W JP2014005599 W JP 2014005599W WO 2015097965 A1 WO2015097965 A1 WO 2015097965A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
variable
planar
scattering
state
Prior art date
Application number
PCT/JP2014/005599
Other languages
French (fr)
Japanese (ja)
Inventor
裕子 鈴鹿
太田 益幸
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015097965A1 publication Critical patent/WO2015097965A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission

Definitions

  • a planar light emitter, a lighting device using the same, and a building material are disclosed. More specifically, a planar light emitter, an illuminating device, and a building material using an organic electroluminescence element are disclosed.
  • organic electroluminescence elements (hereinafter also referred to as “organic EL elements”) have been applied to applications such as lighting panels.
  • organic EL elements an element having two electrodes as a pair and an organic light emitting layer constituted by one or a plurality of layers disposed between these electrodes and including a light emitting layer is known.
  • One of the pair of electrodes functions as an anode, and the other functions as a cathode.
  • the organic EL element by applying a voltage between the anode and the cathode, light emitted from the light emitting layer is extracted to the outside through the light transmissive electrode.
  • the organic EL element has a small thickness and emits light in a planar shape, and thus is used as a planar light emitter.
  • Planar light emitters equipped with organic EL elements are expected as next-generation illumination. Therefore, various proposals for improving the light emission characteristics have been made.
  • Japanese Patent Publication No. 2013-201209 discloses an organic EL element having an optical layer that changes the traveling direction of light. By providing an optical layer, an organic EL element capable of changing optical characteristics is obtained. When the optical characteristics change, it is possible to construct an unprecedented lighting device. However, in next-generation illumination, development of further organic EL elements having excellent optical characteristics is desired.
  • An object of the present disclosure is to provide a planar light emitter excellent in optical characteristics.
  • a planar light emitter is disclosed.
  • the planar light emitter is composed of a planar light-emitting unit composed of an organic electroluminescent element having light transparency, a light scattering variable unit that can change the degree of light scattering, and light that can change the degree of light reflection. And a reflection variable section.
  • the planar light emitter has a first surface configured to extract light from the planar light emitting unit, and a second surface disposed on the opposite side of the first surface.
  • the light scattering variable portion, the planar light emitting portion, and the light reflection variable portion are disposed in the thickness direction between the first surface and the second surface.
  • the light reflection variable part is disposed closer to the second surface than the planar light emitting part and the light scattering variable part.
  • the lighting device includes the planar light emitter and a power feeding unit.
  • a building material includes the planar light emitter and a power feeding unit.
  • the planar light-emitting body of the present disclosure can create an optically different state by having a planar light-emitting part, a light scattering variable part, and a light reflection variable part. Further, since the light reflection variable portion is arranged on the second surface side of the planar light emitting portion and the light scattering variable portion, it is possible to obtain highly efficient light emission. As a result, a planar light emitter excellent in optical characteristics can be obtained.
  • FIG. 6 is a schematic cross-sectional view showing a planar light emitter according to Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view showing a planar light emitter according to Embodiment 3.
  • FIG. 6 is a schematic cross-sectional view showing a planar light emitter according to Embodiment 4.
  • FIG. 6 is a schematic cross-sectional view showing a planar light emitter according to a fifth embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a planar light emitter according to a sixth embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a planar light emitter according to a seventh embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a planar light emitter according to a seventh embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a planar light emitter according to an eighth embodiment.
  • 10 is a schematic cross-sectional view showing a planar light emitter of Embodiment 9.
  • FIG. 10 is a schematic cross-sectional view showing a planar light emitter according to a tenth embodiment.
  • FIG. 12 is a schematic cross-sectional view showing a planar light emitter according to an eleventh embodiment.
  • 14 is a schematic cross-sectional view showing a part of a planar light emitter of Embodiment 12.
  • FIG. FIG. 16 is a schematic cross-sectional view showing a planar light emitter according to a thirteenth embodiment.
  • FIG. 16 is a schematic cross-sectional view showing a planar light emitter according to a fourteenth embodiment.
  • FIG. 17 is a schematic cross-sectional view showing a planar light emitter according to a fifteenth embodiment.
  • FIG. 18 is a schematic cross-sectional view showing a planar light emitter according to a sixteenth embodiment.
  • FIG. 20 is a schematic cross-sectional view showing a planar light emitter according to a seventeenth embodiment.
  • FIG. 22 is a schematic cross-sectional view showing a planar light emitter according to an eighteenth embodiment.
  • FIG. 20 is a schematic cross-sectional view showing a planar light emitter according to a nineteenth embodiment.
  • FIG. 22 is a schematic cross-sectional view showing a planar light emitter according to a twentieth embodiment.
  • FIG. 22 is a schematic cross-sectional view showing a planar light emitter according to a twenty-first embodiment.
  • FIG. 22 is a schematic cross-sectional view showing a planar light emitter according to a twenty-second embodiment.
  • FIG. 25 is a schematic cross-sectional view showing a planar light emitter according to a twenty-third embodiment.
  • FIG. 24 is configured by FIG. 24A and FIG. 24B.
  • FIG. 24A is a schematic cross-sectional view showing an example of a light-transmitting electrode.
  • FIG. 24B is a schematic plan view illustrating an example of auxiliary wiring.
  • FIG. 25 is configured by FIGS. 25A to 25E.
  • FIG. 25 is a schematic perspective view showing an example of a method for manufacturing a planar light emitter.
  • FIG. 26 is configured by FIGS. 26A to 26G.
  • 26A to 26G are explanatory views showing the states of the planar light emitter.
  • FIG. 27 is configured by FIGS. 27A to 27C.
  • 27A to 27C are schematic perspective views showing an example of the illumination device. It is a schematic perspective view which shows an example of the window using a planar light-emitting body.
  • the planar light emitter 100 includes a planar light emitting unit 10 composed of a light-transmitting organic electroluminescence element (organic EL element), a light scattering variable unit 20 that can change the degree of light scattering, and light reflection. And a light reflection variable unit 30 capable of changing the degree of the property.
  • the planar light emitter 100 has a first surface F1 configured to extract light from the planar light emitting unit 10 and a second surface F2 disposed on the opposite side of the first surface F1. .
  • the light scattering variable unit 20, the planar light emitting unit 10, and the light reflection variable unit 30 are arranged in the thickness direction between the first surface F1 and the second surface F2.
  • the light reflection variable unit 30 is disposed on the second surface F2 side with respect to the planar light emitting unit 10 and the light scattering variable unit 20.
  • planar light emitter 100 by having the planar light emitting unit 10, the light scattering variable unit 20, and the light reflection variable unit 30, an optically different state can be created.
  • the light reflection variable portion 30 is arranged on the second surface F2 side with respect to the planar light emitting portion 10 and the light scattering variable portion 20, highly efficient light emission can be obtained. As a result, it is possible to obtain the planar light emitter 100 having excellent optical characteristics.
  • Embodiments 1 to 23 show Embodiments 1 to 23, respectively.
  • Embodiments 1 to 23 all have the above-described configuration. Therefore, optically different states can be created, and light can be emitted with high efficiency, so that excellent optical characteristics can be obtained.
  • Embodiments 1 to 23 will be described.
  • FIG. Each embodiment shows a representative example, and the present invention is not limited to the embodiment shown in FIGS.
  • FIGS. Each drawing schematically shows the planar light emitter so that it can be easily understood, and the actual dimensional relationship and the like of the planar light emitter may be different from the drawings.
  • the same reference numerals denote the same components, and the description given regarding the configuration of the reference symbols can be applied to other embodiments.
  • the planar light emitter 100 has a plurality of electrodes 5.
  • the plurality of electrodes 5 are light transmissive. Thereby, the planar light-emitting body 100 with a high optical characteristic can be obtained.
  • the electrode 5 functions as an electrode for driving the planar light emitter 100.
  • the planar light emitter 100 can exhibit a state of being transparent as a whole.
  • the electrode 5 can be composed of a transparent conductive layer.
  • a transparent metal oxide, a conductive particle-containing resin, a metal thin film, or the like can be used.
  • the electrode 5 may be made of a conductive material optimized in each part.
  • transparent metal oxides such as ITO and IZO are exemplified.
  • the electrode 5 made of a transparent metal oxide is preferably used for the electrode 5 of the planar light emitting unit 10.
  • the electrode 5 may be a layer containing silver nanowires or a transparent metal layer such as thin film silver. Alternatively, a transparent metal oxide layer and a metal layer may be laminated. Further, as will be described later, the electrode 5 may be one in which the auxiliary wiring 5f is provided in the transparent conductive layer 5e (see FIG. 24).
  • the electrode 5 preferably has a heat shielding effect. Thereby, since heat transfer can be suppressed, heat insulation can be enhanced. High heat insulation is advantageous for building materials. Since the transparent metal oxide can have a heat shielding effect, it is useful as a material for the electrode 5. In particular, ITO has a high heat shielding effect.
  • the electrode 5 may be configured to be electrically connected to an external power source.
  • the planar light-emitting body 100 may have an electrode pad, an electrical connection part that electrically collects the electrode pad, and the like in order to connect to the power supply 50.
  • the electrical connection part may be constituted by a plug or the like.
  • the electrode 5 is connected to the power source 50 by the wiring 53.
  • the planar light emitter 100 may be configured by a part up to the middle of the wiring 53 (part up to a plug or the like).
  • the planar light emitter 100 may include the power source 50.
  • the planar light emitter 100 preferably has a plurality of substrates 6.
  • the plurality of substrates 6 are light transmissive. Thereby, the planar light-emitting body 100 with a high optical characteristic can be obtained.
  • the substrate 6 can function as a substrate for supporting each layer of the planar light emitter 100.
  • the substrate 6 can function as a substrate for sealing each layer of the planar light emitter 100.
  • the plurality of substrates 6 are arranged in the thickness direction.
  • the planar light-emitting body 100 is preferably one in which the planar light-emitting unit 10, the light scattering variable unit 20, and the light reflection variable unit 30 are disposed between two opposing substrates 6. Thereby, each part can be protected by the substrate 6. It is preferable that the substrate 6 is disposed on the surfaces on both sides of the planar light emitter 100. The two opposing substrates 6 become the substrates 6 at the end in the thickness direction.
  • the planar light emitter 100 may have one or a plurality of other substrates 6 between two opposing substrates 6 arranged at the end in the thickness direction.
  • the plurality of substrates 6 are bonded at the ends. Adhesion is performed by an adhesive. An adhesive portion 7 is formed from an adhesive. A gap is provided between adjacent substrates 6 in the thickness direction. The layers constituting each part of the planar light emitter 100 are disposed in the gaps between the substrates 6. The gap between the adjacent substrates 6 is provided with the bonding portion 7 as a spacer. It is preferable that the adhesion part 7 has moisture resistance. Thereby, deterioration of the planar light emitter 100 can be suppressed.
  • Resin can be used as the material of the bonding part 7.
  • the resin it is preferable to use a thermosetting resin, an ultraviolet curable resin, or the like.
  • the bonding portion 7 may include a spacer material such as particles. Thereby, the thickness of the gap between the substrates 6 can be ensured.
  • the thickness direction is the vertical direction in each of FIGS.
  • the thickness direction may be the same as the direction in which the layers are stacked.
  • the thickness direction may be a direction perpendicular to the surface of the substrate 6.
  • each layer can be considered to spread in the horizontal direction and the direction perpendicular to the paper surface.
  • the surface direction may be referred to as a horizontal direction and a direction perpendicular to the paper surface.
  • the substrate 6 a glass substrate, a resin substrate, or the like can be used.
  • the substrate 6 is composed of a glass substrate, since the glass is highly transparent, it is possible to obtain the planar light emitter 100 having excellent optical characteristics. Further, since glass has low moisture permeability, moisture can be prevented from entering the sealed region. Further, when a resin substrate is used as the substrate 6, since the resin is not easily broken, a safe planar light emitter 100 in which scattering at the time of breakage is suppressed can be obtained. Further, when a resin substrate is used, it is possible to obtain a flexible planar light emitter 100.
  • the two substrates 6 arranged on the outside are preferably glass substrates.
  • the planar light-emitting body 100 with excellent optical characteristics can be obtained.
  • All of the plurality of substrates 6 may be glass substrates. In that case, optical conditions can be easily controlled, and optical characteristics can be enhanced.
  • Any one or more of the inner substrates 6 may be a resin substrate. In that case, the scattering at the time of destruction can be suppressed and the safe planar light-emitting body 100 can be obtained.
  • the surface of the substrate 6 may be covered with an antifouling material. In that case, contamination on the surface of the substrate 6 can be reduced.
  • the antifouling material is preferably coated on the outer surface of the substrate 6 disposed outside.
  • the surface may be coat
  • the plurality of substrates 6 are numbered as the substrate 6a, the substrate 6b, the substrate 6c, the substrate 6d,... From the first surface F1 side. Of course, this numbering is for convenience of explanation.
  • the planar light emitting unit 10 is composed of a light-transmitting organic EL element.
  • the organic EL element may be transparent.
  • the organic EL element may be translucent.
  • the organic EL element is preferably transparent.
  • a moisture-proof material may be coated on the organic EL element. In this case, the sealing performance can be improved. It is preferable that the moisture-proof material is transparent.
  • the planar light emitting unit 10 includes a pair of electrodes 5a and 5b and an organic light emitting layer 1 disposed between the pair of electrodes 5a and 5b.
  • An organic EL element is an element which has the structure by which the organic light emitting layer 1 is arrange
  • the organic light emitting layer 1 has light transmittance.
  • the electrodes 5a and 5b are light transmissive. Therefore, at the time of light emission, the light emitted from the organic light emitting layer 1 can be emitted to both sides in the thickness direction. Further, when no light is emitted, light can be transmitted from one side to the other side.
  • the electrode 5a and the electrode 5b are a pair of electrodes.
  • One of the electrode 5a and the electrode 5b constitutes an anode, and the other constitutes a cathode.
  • the electrode 5a is disposed on the first surface F1 side, and the electrode 5b is disposed on the second surface F2 side.
  • the electrode 5a is an electrode on the light extraction side.
  • an example is shown in which the electrode 5a is constituted by a cathode and the electrode 5b is constituted by an anode.
  • the electrode 5a may be constituted by an anode and the electrode 5b may be constituted by a cathode. .
  • the organic light emitting layer 1 is a layer having a function of causing light emission, and is appropriately selected from a hole injection layer, a hole transport layer, a light emitting layer (a layer containing a light emitting material), an electron transport layer, an electron injection layer, an intermediate layer, and the like. It can be constituted by a plurality of functional layers. Of course, the organic light emitting layer 1 may be composed of a single light emitting layer. In the organic EL element, a voltage is applied to the electrode 5a and the electrode 5b, and electricity is caused to flow between them, whereby light is emitted by combining holes and electrons in the organic light emitting layer 1 (particularly the light emitting material-containing layer). Let
  • the planar light emitting unit 10 is disposed between adjacent substrates 6.
  • the planar light emitting unit 10 is sealed by being disposed between the two substrates 6. By the sealing, the deterioration of the organic light emitting layer 1 is suppressed.
  • the two substrates 6 are a pair.
  • an organic EL element is formed by lamination.
  • a formation substrate for stacking is required.
  • the formation substrate is formed of at least one of the pair of substrates 6.
  • the substrate 6 facing the formation substrate is a sealing substrate.
  • the sealing substrate is formed of the pair of substrates 6 that is not the formation substrate.
  • the organic EL element emits light in the organic light emitting layer 1 by passing electricity between the electrode 5a and the electrode 5b.
  • the electrode 5 a and the electrode 5 b are electrically connected to the power source 50 through a wiring 53.
  • the organic EL element power supply 50 is constituted by a DC power supply 51.
  • the direction of current is generally one direction. Stable light emission can be obtained by the DC power source 51.
  • the electrode 5a serves as a cathode and is electrically connected to the cathode of the DC power supply 51
  • the electrode 5b serves as an anode and is electrically connected to the anode of the DC power supply 51.
  • the light emission color of the organic EL element may be white, blue, green, or red. Of course, it may be an intermediate color between blue and green or green and red. Further, the color may be adjusted by the applied current.
  • the light scattering variable portion 20 is a portion where the light scattering property changes.
  • the light scattering variable unit 20 is configured to be capable of changing the degree of light scattering.
  • the fact that the degree of light scattering can be changed may mean that the high scattering state and the low scattering state can be changed.
  • the fact that the degree of light scattering property can be changed may mean that the state having light scattering property and the state having no light scattering property can be changed. If the degree of light scattering can be changed, the optical state can be changed, and the planar light-emitting body 100 having excellent optical characteristics can be obtained.
  • the light scattering variable portion 20 may be formed in a layer shape.
  • the high scattering state is a state where the light scattering property is high.
  • the high scattering state is, for example, a state in which light incident from one surface changes its traveling direction into various directions due to scattering and is dispersed and emitted to the other surface.
  • the high scattering state may be a state in which an object appears blurry when an object existing from one surface side to the other surface side is viewed.
  • the highly scattering state can be a translucent state.
  • the light scattering variable unit 20 When the light scattering variable unit 20 exhibits light scattering properties, the light scattering variable unit 20 functions as a scattering layer that scatters light.
  • the low scattering state is a state where light scattering property is low or light scattering property is not present.
  • the low scattering state is, for example, a state in which light incident from one surface is emitted to the other surface while maintaining the traveling direction as it is.
  • the low scattering state may be a state where an object can be clearly visually recognized when an object existing on the other surface side is viewed from one surface side.
  • the low scattering state can be a transparent state.
  • the light scattering variable unit 20 exhibits a light scattering property between a high scattering state having a high light scattering property, a low scattering state having a low light scattering property or no light scattering property, and a high scattering state and a low scattering state. It is preferable that it is comprised so that it can have a state.
  • the ability to exhibit light scattering properties between the high scattering state and the low scattering state can impart moderate light scattering properties, so that the optical state can be varied highly and optically. The characteristics can be further improved.
  • a state that exhibits light scattering between the high scattering state and the low scattering state is referred to as a medium scattering state.
  • the medium scattering state may have at least one scattering state between the high scattering state and the low scattering state. For example, if the light scattering property can be changed by switching between three states of a high scattering state, a medium scattering state, and a low scattering state, the optical characteristics are improved. It is a preferable aspect that the medium scattering state has a plurality of states in which the degree of scattering is in a plurality of stages between the high scattering state and the low scattering state. Thereby, since the degree of scattering is in a plurality of stages, the optical characteristics can be further improved.
  • the light scattering property can be changed in a stepwise manner by switching a plurality of states of a high scattering state, a plurality of medium scattering states, and a low scattering state
  • the medium scattering state is configured to continuously change from the high scattering state to the low scattering state between the high scattering state and the low scattering state.
  • the optical state can be changed with high variation, and the optical characteristics can be further improved.
  • the light scattering property can be changed between a high scattering state and a low scattering state so as to exhibit the desired light scattering property, an intermediate state can be created, so that the optical characteristics are improved.
  • the light scattering variable unit 20 has a medium scattering state
  • the light scattering variable unit 20 is preferably configured to maintain the medium scattering state.
  • the light scattering variable unit 20 may scatter at least a part of visible light.
  • the light scattering variable unit 20 is preferably one that scatters all visible light.
  • the light scattering variable unit 20 may scatter infrared rays or scatter ultraviolet rays.
  • the light scattering variable unit 20 is preferably configured so as to be able to change at least one of the scattering amount and the scattering direction.
  • the change in the scattering amount and the scattering direction may be performed in a medium scattering state.
  • Changing the amount of scattering means changing the intensity of scattering.
  • Changing the scattering direction means changing the directionality of scattering.
  • the light scattering variable portion 20 In a state where the light scattering variable portion 20 exhibits light scattering properties, the light scattering variable portion 20 has a scattering property for light in a direction from the second surface F2 to the first surface F1 rather than light in a direction from the first surface F1 to the second surface F2. Is preferably high. Thereby, since the light from the planar light emission part 10 can be scattered more, an optical characteristic can be improved.
  • the light scattering variable portion 20 is in a state of exhibiting light scattering properties, and includes light in a direction from the first surface F1 toward the second surface F2 and light in a direction from the second surface F2 toward the first surface F1.
  • the light scattering properties may be the same.
  • the light scattering variable unit 20 exhibits light scattering properties, and light in a direction from the first surface F1 toward the second surface F2 is light in a direction from the second surface F2 toward the first surface F1.
  • the light scattering property may be higher than that.
  • the light scattering variable portion 20 can be formed with an appropriate structure capable of changing the degree of light scattering.
  • the light scattering variable unit 20 may be an electric field modulation, a temperature modulation, or the like.
  • Electric field modulation is a method in which the light scattering property is changed by applying an electric field.
  • Temperature modulation is a method in which the light scattering property changes with temperature.
  • the planar light emitter 100 is preferably configured so that the light scattering property of the light scattering variable portion 20 can be controlled.
  • the light scattering property may change due to a change in the external temperature, but if the light scattering property depends on the external temperature, there is a possibility that desired optical characteristics cannot be obtained. Therefore, it is preferable that the light scattering property is controlled.
  • the temperature modulation the temperature can be controlled by a heater or a cooler.
  • temperature control is not easier than electric field control. Therefore, the light scattering variable unit 20 is preferably electric field modulation. Since the light scattering property can be easily changed by the electric field, the optical characteristics can be improved. In each embodiment, the electric field modulation light scattering variable unit 20 is used. The electric field modulation light scattering variable unit 20 will be described below.
  • the light scattering variable unit 20 is configured to be capable of transmitting light. In the high scattering state, the light scattering variable unit 20 may be translucent. In the low scattering state, the light scattering variable unit 20 may be transparent. In the medium scattering state, the light scattering variable unit 20 may be translucent with higher transparency than in the high scattering state.
  • the light scattering variable section 20 includes a pair of electrodes 5x and 5y and a light scattering variable layer 2 disposed between the pair of electrodes 5x and 5y.
  • the electrode 5x is disposed on the first surface F1 side
  • the electrode 5y is disposed on the second surface F2 side.
  • the light scattering variable unit 20 has a configuration in which the light scattering variable layer 2 is disposed between the electrode 5x and the electrode 5y.
  • the light scattering variable layer 2 has at least a high scattering state and a low scattering state.
  • the light scattering variable layer 2 preferably has a medium scattering state.
  • the electrode 5x and the electrode 5y have optical transparency. Therefore, when the light scattering variable layer 2 has a light scattering property, the light incident on the light scattering variable portion 20 can be scattered. In addition, when the light scattering variable layer 2 is not in a light scattering state, the light incident on the light scattering variable portion 20 can be emitted as it is.
  • the light scattering variable portion 20 is disposed between the adjacent substrates 6.
  • the light scattering variable portion 20 is sealed between the two substrates 6 by being disposed. By sealing, the light-scattering variable layer 2 is hold
  • the two substrates 6 are a pair.
  • the light scattering variable portion 20 is formed by stacking. At that time, a formation substrate for stacking is required.
  • the formation substrate is formed of at least one of the pair of substrates 6.
  • the substrate 6 facing the formation substrate is a sealing substrate.
  • the sealing substrate is formed of the pair of substrates 6 that is not the formation substrate.
  • the light scattering variable unit 20 changes the degree of light scattering in the light scattering variable layer 2 by applying a voltage between the electrode 5x and the electrode 5y.
  • the electrode 5x and the electrode 5y are electrically connected to the power source 50 through a wiring 53.
  • a voltage is applied to the light scattering variable unit 20.
  • the power supply 50 of the light scattering variable unit 20 is constituted by an AC power supply 52.
  • AC power supply 52 There are many materials whose light scattering property changes due to an electric field, and it becomes impossible to maintain the light scattering state at the time of voltage application as time passes from the start of voltage application.
  • a voltage can be alternately applied in both directions, and a voltage can be applied substantially continuously by changing the direction of the voltage.
  • the AC waveform is preferably a rectangular wave.
  • the amount of voltage to be applied is likely to be constant, so that it becomes possible to stabilize the light scattering property.
  • the alternating current may be a pulse.
  • the intermediate scattering state can be formed by controlling the amount of voltage applied.
  • the material of the light scattering variable layer 2 a material whose molecular orientation is changed by electric field modulation can be used.
  • a liquid crystal material etc. are mentioned.
  • a polymer dispersed liquid crystal As a material of the light scattering variable layer 2, it is preferable to use a polymer dispersed liquid crystal. In the polymer-dispersed liquid crystal, since the liquid crystal is held by the polymer, the stable light scattering variable layer 2 can be formed.
  • the polymer dispersed liquid crystal is called PDLC.
  • a solid substance whose scattering property is changed by an electric field is also preferably used.
  • the polymer dispersed liquid crystal may be composed of a resin portion and a liquid crystal portion.
  • the resin part is formed of a polymer. It is preferable that the resin part has optical transparency. Thereby, the light scattering variable portion 20 can be made light transmissive.
  • the resin portion can be formed of a thermosetting resin, an ultraviolet curable resin, or the like.
  • the liquid crystal part is a part where the liquid crystal structure is changed by an electric field. A nematic liquid crystal or the like is used for the liquid crystal part.
  • the polymer-dispersed liquid crystal is a preferred embodiment having a structure in which the liquid crystal portion is present in a dot shape in the resin portion.
  • the polymer dispersed liquid crystal may have a sea-island structure in which the resin portion forms the sea and the liquid crystal portion forms the island.
  • the polymer-dispersed liquid crystal is a preferable embodiment in which the liquid crystal part is irregularly connected in a mesh shape in the resin part.
  • the polymer-dispersed liquid crystal may have a structure in which the resin part is present in a dot shape in the liquid crystal part, or in which the resin part is irregularly connected in a mesh shape in the liquid crystal part.
  • the light scattering variable unit 20 is preferably in a light scattering state when no voltage is applied and in a light transmission state when a voltage is applied. Such control can be performed in the polymer dispersed liquid crystal. This is because the alignment of liquid crystals can be made uniform by applying a voltage. In the polymer-dispersed liquid crystal, the light scattering variable portion 20 that is thin and has high scattering properties can be formed. Of course, the light scattering variable unit 20 may be in a light transmission state when no voltage is applied and in a light scattering state when a voltage is applied.
  • the light scattering variable layer 2 is a preferred embodiment in which the light scattering state is maintained when a voltage is applied. Thereby, a voltage is applied when it is desired to change the light scattering state, and it is not necessary to apply a voltage when it is not, so that the power efficiency is increased.
  • the property of maintaining the light scattering state is called hysteresis. This property may be called memory property (memory property).
  • Hysteresis can be exerted by applying a voltage higher than a predetermined voltage. The longer the time during which the light scattering state is maintained, the better. For example, it is preferably 1 hour or longer, more preferably 3 hours or longer, further preferably 6 hours or longer, more preferably 12 hours or longer, more preferably 24 hours or longer. More preferable.
  • the light reflection variable portion 30 is a portion where the light reflectivity changes.
  • the light reflection variable unit 30 is configured so that the degree of light reflectivity can be changed.
  • the fact that the degree of light reflectivity can be changed may mean that the high reflection state and the low reflection state can be changed. Alternatively, the fact that the degree of light reflectivity can be changed may mean that the state having light reflectivity and the state having no light reflectivity can be changed. If the degree of light reflectivity can be changed, the optical state can be changed, and the planar light-emitting body 100 having excellent optical characteristics can be obtained.
  • the light reflection variable portion 30 may be formed in a layer shape.
  • the high reflection state is a state with high light reflectivity.
  • the high reflection state is, for example, a state in which light incident on one surface is changed to the opposite direction due to reflection and is emitted to the incident side.
  • the highly reflective state may be a state in which an object existing on one surface side from the other surface side cannot be visually recognized.
  • the high reflection state may be a state in which an object existing on the same surface side is visually recognized when the light reflection variable unit 30 is viewed from one surface side.
  • the highly reflective state can be a mirror state. When the light reflection variable unit 30 exhibits light reflectivity, the light reflection variable unit 30 functions as a reflection layer that reflects light.
  • the low reflection state is a state where light reflectivity is low or no light reflectivity.
  • the low reflection state is, for example, a state in which light incident from one surface is emitted to the other surface while maintaining the traveling direction as it is.
  • the low reflection state may be a state in which an object can be clearly visually recognized when an object existing on the other surface side is viewed from one surface side.
  • the low reflection state can be a transparent state.
  • the light reflection variable unit 30 exhibits a light reflection property between a high reflection state with high light reflection property, a low reflection state with low light reflection property or no light reflection property, and a high reflection state and a low reflection state. It is preferable that it is comprised so that it can have a state.
  • the ability to exhibit light reflectivity between the high reflection state and the low reflection state can provide moderate light reflectivity, so that the optical state can be varied highly and optically. The characteristics can be further improved.
  • a state that exhibits light reflectivity between the high reflection state and the low reflection state is referred to as a medium reflection state.
  • the intermediate reflection state may have at least one reflection state between the high reflection state and the low reflection state.
  • the optical characteristics are improved.
  • the intermediate reflection state has a plurality of states in which the degree of reflectivity is in a plurality of stages between the high reflection state and the low reflection state. Thereby, since the degree of reflectivity is in a plurality of stages, the optical characteristics can be further improved. For example, if the light reflectivity can be changed stepwise by switching between a plurality of states of a high reflection state, a plurality of medium reflection states, and a low reflection state, the optical characteristics are improved.
  • the intermediate reflection state is configured to continuously change from the high reflection state to the low reflection state between the high reflection state and the low reflection state.
  • the optical state can be changed with high variations, and the optical characteristics can be further improved.
  • the light reflection variable unit 30 has the intermediate reflection state
  • the light reflection variable unit 30 is preferably configured to maintain the intermediate reflection state.
  • the light reflection variable unit 30 may reflect at least a part of visible light. It is preferable that the light reflection variable unit 30 reflects all visible light.
  • the light reflection variable unit 30 may reflect infrared rays.
  • the light reflection variable unit 30 may reflect ultraviolet rays. When the light reflection variable portion 30 reflects all visible light, ultraviolet light, and infrared light, a stable planar light emitting body 100 having excellent optical characteristics can be obtained.
  • the light reflection variable unit 30 is preferably configured so as to be able to change the shape of the reflection spectrum.
  • the change in the reflection spectrum may be performed in the middle reflection state.
  • the change in the shape of the reflection spectrum means that the spectrum shape of the light incident on the light reflection variable unit 30 and the light reflected by the light reflection variable unit 30 are different.
  • the reflection spectrum is changed by changing the reflection wavelength.
  • the shape of the reflection spectrum changes by strongly reflecting only blue light, strongly reflecting only green light, or strongly reflecting only red light.
  • the reflection spectrum changes the color of light extracted from the planar light emitting unit 10 changes. Therefore, toning (color adjustment) can be performed, and optical characteristics can be improved.
  • the light reflection variable unit 30 is preferably configured so as to be able to reflect light without changing the shape of the reflection spectrum. In that case, since there is no change in the spectrum between the incident light and the reflected light, the degree of reflection can be simply weakened. When it becomes possible to control the intensity of the reflectivity, light control (brightness adjustment) can be performed, and optical characteristics can be improved.
  • the light reflection variable unit 30 In a state where the light reflection variable unit 30 exhibits light reflectivity, the light reflection variable unit 30 is more reflective to light in the direction from the first surface F1 to the second surface F2 than in the direction from the second surface F2 to the first surface F1. Is preferably high. Thereby, since the light from the planar light emission part 10 can be reflected more, an optical characteristic can be improved.
  • the light reflection variable unit 30 exhibits light reflectivity between the light in the direction from the first surface F1 toward the second surface F2 and the light in the direction from the second surface F2 toward the first surface F1.
  • the light reflectivity may be the same.
  • the light reflection variable unit 30 exhibits light reflectivity, and light in the direction from the second surface F2 toward the first surface F1 is light in the direction from the first surface F1 toward the second surface F2.
  • the light reflectivity may be higher than that.
  • the light reflection variable portion 30 can be formed with an appropriate structure that can change the degree of light reflectivity.
  • the light reflection variable unit 30 may be an electric field modulation, a temperature modulation, a gas modulation, or the like.
  • Electric field modulation is a method in which light reflectivity changes by applying an electric field.
  • Temperature modulation is a method in which light reflectivity changes with temperature.
  • Gas modulation is a method in which the light reflectivity is changed by supplying a gas.
  • the planar light emitter 100 is preferably configured so that the light reflectivity of the light reflection variable portion 30 can be controlled.
  • the light reflectivity may change due to a change in the external temperature, but if the light reflectivity depends on the external temperature, there is a possibility that desired optical characteristics cannot be obtained. Therefore, it is preferable that the light reflectivity is controlled.
  • the temperature modulation the temperature can be controlled by a heater or a cooler.
  • temperature control is not easier than electric field control.
  • Gas modulation can be controlled by the presence or absence of gas supply. However, since gas supply requires gas piping and the like, the structure is likely to be complicated, and it is not easier than controlling the electric field.
  • the light reflection variable unit 30 is electric field modulation. Since the light reflectivity can be easily changed by the electric field, the optical characteristics can be improved. In each embodiment, an electric field modulation light reflection variable unit 30 is used. The electric field modulation light reflection variable unit 30 will be described below.
  • the light reflection variable unit 30 is configured to be capable of transmitting light.
  • the light reflection variable unit 30 may be opaque.
  • the light reflection variable portion 30 is preferably in a mirror shape.
  • the light reflection variable unit 30 may be transparent.
  • the light reflection variable unit 30 may be translucent. At this time, a part of the light may be reflected and a part of the light may be transmitted.
  • the light reflection variable section 30 includes a pair of electrodes 5p and 5q, and a light reflection variable layer 3 disposed between the pair of electrodes 5p and 5q.
  • the electrode 5p is disposed on the first surface F1 side
  • the electrode 5q is disposed on the second surface F2 side.
  • the light reflection variable section 30 has a configuration in which the light reflection variable layer 3 is disposed between the electrode 5p and the electrode 5q.
  • the light reflection variable layer 3 is a layer whose light reflectivity changes.
  • the light reflection variable layer 3 has at least a high reflection state and a low reflection state.
  • the light reflection variable layer 3 preferably has a middle reflection state.
  • the electrode 5p and the electrode 5q are light transmissive. Therefore, when the light reflection variable layer 3 has a light reflectivity, the light incident on the light reflection variable portion 30 can be reflected. Further, when the light reflection variable layer 3 is not in a light reflective state, the light incident on the light reflection variable portion 30 can be emitted as it is.
  • the light reflection variable portion 30 is disposed between the adjacent substrates 6.
  • the light reflection variable portion 30 is disposed between the two substrates 6 to be sealed. By sealing, the light reflection variable layer 3 is held, and its deterioration is further suppressed.
  • the two substrates 6 are a pair.
  • the light reflection variable portion 30 is formed by lamination. At that time, a formation substrate for stacking is required.
  • the formation substrate is formed of at least one of the pair of substrates 6.
  • the substrate 6 facing the formation substrate is a sealing substrate.
  • the sealing substrate is formed of the pair of substrates 6 that is not the formation substrate.
  • the light reflection variable portion 30 changes the degree of light reflectivity in the light reflection variable layer 3 by applying a voltage between the electrode 5p and the electrode 5q.
  • the electrode 5p and the electrode 5q are electrically connected to the power source 50 through a wiring 53.
  • a voltage is applied to the light reflection variable unit 30.
  • the power supply 50 of the light reflection variable unit 30 is constituted by an AC power supply 52.
  • AC power supply 52 There are many materials whose light reflectivity changes due to an electric field, and the light reflectivity state at the time of voltage application cannot be maintained over time from the start of voltage application.
  • a voltage can be alternately applied in both directions, and a voltage can be applied substantially continuously by changing the direction of the voltage.
  • the AC waveform is preferably a rectangular wave.
  • the amount of voltage to be applied is likely to be constant, so that the light reflectivity can be more stabilized.
  • the alternating current may be a pulse.
  • the intermediate reflection state can be formed by controlling the voltage application amount.
  • a material whose molecular orientation is changed by electric field modulation can be used.
  • Examples thereof include nematic liquid crystal, cholesteric liquid crystal, ferroelectric liquid crystal, and electrochromic.
  • the cholesteric liquid crystal may be a nematic liquid crystal having a spiral structure.
  • the cholesteric liquid crystal may be a chiral nematic liquid crystal.
  • Cholesteric liquid crystals are called CLC. In cholesteric liquid crystals, the orientation direction of the molecular axes changes continuously in space, resulting in a macroscopic spiral structure. For this reason, it is possible to reflect light corresponding to the period of the spiral.
  • liquid crystal state By changing the liquid crystal state by an electric field, it is possible to control between light reflectivity and light transmissivity.
  • electrochromic a color change phenomenon of a substance due to an electrochemical reversible reaction (electrolytic oxidation-reduction reaction) by applying a voltage can be used, and it is possible to control between light reflectivity and light transmissivity.
  • cholesteric liquid crystal As a material for the light reflection variable layer 3, cholesteric liquid crystal can be preferably used.
  • a pattern imitating a spiral structure formed by liquid crystal is provided in the light reflection variable layer 3 so that the light reflection variable layer 3 can be easily understood.
  • the light reflection variable section 30 is preferably in a light reflecting state when no voltage is applied and in a light transmitting state when a voltage is applied.
  • cholesteric liquid crystal such control can be performed. This is because the alignment of liquid crystals can be made uniform by applying a voltage.
  • the light reflection variable portion 30 which is thin and highly reflective can be formed. A state in which only specific light is reflected without applying a voltage is referred to as planar alignment, and a state in which light is applied by applying a voltage is sometimes referred to as focal conic alignment.
  • the light reflection variable unit 30 may be in a light transmission state when no voltage is applied and in a light reflection state when a voltage is applied.
  • the light reflection variable layer 3 is preferably one in which the light reflection state is maintained when a voltage is applied. Thereby, a voltage is applied when it is desired to change the light reflection state, and when it is not, it is not necessary to apply a voltage, which increases power efficiency.
  • the property that the light reflection state is maintained is called hysteresis. This property may be called memory property (memory property). Since the ferroelectric liquid crystal has a large hysteresis effect, it can exhibit a memory effect.
  • Hysteresis can be exerted by applying a voltage higher than a predetermined voltage. The longer the time during which the light reflection state is maintained, the better. For example, it is preferably 1 hour or longer, more preferably 3 hours or longer, further preferably 6 hours or longer, more preferably 12 hours or longer, more preferably 24 hours or longer. More preferable.
  • the light reflection variable unit 30 includes the first light reflection variable unit 31 and the second light reflection variable unit 32.
  • the configuration of the light reflection variable unit 30 is the first configuration.
  • the present invention can be applied to both the light reflection variable unit 31 and the second light reflection variable unit 32.
  • the first light reflection variable section 31 includes the electrodes 5p and 5q, and the first light reflection variable layer 3a.
  • the second light reflection variable unit 32 includes an electrode 5r and an electrode 5s, and a second light reflection variable layer 3b.
  • the first light reflection variable layer 3 a and the second light reflection variable layer 3 b correspond to the light reflection variable layer 3.
  • the electrode 5r and the electrode 5s correspond to the electrode 5p and the electrode 5q, respectively.
  • the planar light emitter 100 has a first surface F1 and a second surface F2.
  • the first surface F ⁇ b> 1 is a surface on one side of the planar light emitter 100.
  • the second surface F2 is the surface of the planar light emitter 100 that is opposite to the first surface F1. It can be said that one of the first surface F1 and the second surface F2 is the front surface and the other is the back surface.
  • the second surface F2 is disposed on the side opposite to the first surface F1.
  • the 1st surface F1 is comprised so that the light from the planar light emission part 10 may be taken out.
  • the first surface F1 may be called a main light emitting surface. It can be said that the 1st surface F1 is a surface of the direction which wants to obtain illumination.
  • the planar light-emitting body 100 is formed so that light emission can be taken out to one of the front and back surfaces.
  • the surface of the planar light emitting unit 10 on which light is to be extracted is the first surface F1.
  • the first surface F1 may be called a main light extraction surface.
  • the reason why the first surface F1 is mainly used is that the second surface F2 may serve as a subsidiary and the light from the planar light emitting unit 10 may be extracted from the second surface F2.
  • planar light emitter 100 a structure is formed in which light from the planar light emitting unit 10 is more likely to be emitted to the first surface F1 side than the second surface F2.
  • the planar light emitting unit 10 has a structure that easily emits light to the first surface F1 side rather than the second surface F2.
  • the light scattering variable portion 20, the planar light emitting portion 10, and the light reflection variable portion 30 are arranged in the thickness direction between the first surface F1 and the second surface F2.
  • the light reflection variable unit 30 is disposed on the second surface F2 side with respect to the planar light emitting unit 10 and the light scattering variable unit 20.
  • the planar light emitting unit 10, and the light scattering variable unit. 20 and the light reflection variable unit 30 are arranged in this order.
  • the light scattering variable portion 20 is disposed on the second surface F2 side. Therefore, it is possible to emit light with high efficiency, and it is possible to obtain the planar light emitter 100 having excellent optical characteristics.
  • FIG. 1 shows the first embodiment.
  • the light scattering variable portion 20, the planar light emitting portion 10, and the light reflection variable portion 30 are arranged in this order from the first surface F1 side.
  • the light scattering variable unit 20 is disposed between the substrate 6a and the substrate 6b.
  • the planar light emitting unit 10 is disposed between the substrate 6b and the substrate 6c.
  • the light reflection variable unit 30 is disposed between the substrate 6c and the substrate 6d.
  • the substrate 6 b serves as the substrate 6 that supports or seals the light scattering variable portion 20 and the substrate 6 that supports or seals the planar light emitting portion 10.
  • a substrate 6 b is disposed between the light scattering variable unit 20 and the planar light emitting unit 10.
  • the substrate 6 c serves as the substrate 6 that supports or seals the planar light emitting unit 10 and the substrate 6 that supports or seals the light reflection variable unit 30.
  • a substrate 6 c is disposed between the planar light emitting unit 10 and the light reflection variable unit 30.
  • the void is a laminar gap. If there is no gap, the number of interfaces where light can be reflected or refracted can be reduced, so that more light from the planar light emitting unit 10 can be extracted. In addition, when there is a gap, the light extraction property may be deteriorated due to light interference. However, when there is no void, the light interference can be suppressed and the light extraction property can be improved.
  • FIG. 2 shows the second embodiment.
  • the light scattering variable unit 20, the planar light emitting unit 10, and the light reflection variable unit 30 are arranged in this order from the first surface F1 side.
  • the second embodiment has the same configuration as that of the first embodiment except that the configuration of the substrate 6 is different.
  • the light scattering variable unit 20 is disposed between the substrate 6a and the substrate 6b.
  • the planar light emitting unit 10 is disposed between the substrate 6c and the substrate 6d.
  • the light reflection variable unit 30 is disposed between the substrate 6e and the substrate 6f.
  • a gap is formed between the substrate 6b and the substrate 6c.
  • a gap is formed between the substrate 6d and the substrate 6e.
  • the void is a laminar gap.
  • the gap may be filled with a gas or may be a vacuum. However, when a gas is disposed in the gap, an inert gas such as nitrogen is preferable.
  • the air gap becomes the air layer 8.
  • the air layer 8 is referred to, but the air layer 8 may be a vacuum.
  • each of the light scattering variable portion 20, the planar light emitting portion 10, and the light reflection variable portion 30 can be individually formed as an element having a structure sandwiched between the substrates 6, so that there are cases where it is advantageous for manufacturing. obtain.
  • FIG. 3 shows the third embodiment.
  • the planar light emitting unit 10, the light scattering variable unit 20, and the light reflection variable unit 30 are arranged in this order from the first surface F1 side.
  • the third embodiment has the same configuration as that of the first embodiment except that the order of the planar light emitting unit 10 and the light scattering variable unit 20 is different.
  • the planar light emitting unit 10 is disposed between the substrate 6a and the substrate 6b.
  • the light scattering variable unit 20 is disposed between the substrate 6b and the substrate 6c.
  • the light reflection variable unit 30 is disposed between the substrate 6c and the substrate 6d.
  • the substrate 6 b serves as the substrate 6 that supports or seals the planar light emitting unit 10 and the substrate 6 that supports or seals the light scattering variable unit 20.
  • a substrate 6 b is disposed between the planar light emitting unit 10 and the light scattering variable unit 20.
  • the substrate 6 c serves as the substrate 6 that supports or seals the light scattering variable portion 20 and the substrate 6 that supports or seals the light reflection variable portion 30.
  • a substrate 6 c is disposed between the light scattering variable unit 20 and the light reflection variable unit 30.
  • the void is a laminar gap. If there is no gap, the number of interfaces where light can be reflected or refracted can be reduced, so that more light from the planar light emitting unit 10 can be extracted. In addition, when there is a gap, the light extraction property may be deteriorated due to light interference. However, when there is no void, the light interference can be suppressed and the light extraction property can be improved.
  • FIG. 4 shows the fourth embodiment.
  • the planar light emission part 10 from the 1st surface F1 side, the planar light emission part 10, the light-scattering variable part 20, and the light reflection variable part 30 are arrange
  • the fourth embodiment has the same configuration as that of the second embodiment except that the order of the planar light emitting unit 10 and the light scattering variable unit 20 is different.
  • the planar light emitting unit 10 is disposed between the substrate 6a and the substrate 6b.
  • the light scattering variable unit 20 is disposed between the substrate 6c and the substrate 6d.
  • the light reflection variable unit 30 is disposed between the substrate 6e and the substrate 6f.
  • a gap is formed between the substrate 6b and the substrate 6c.
  • a gap is formed between the substrate 6d and the substrate 6e.
  • the void is a laminar gap.
  • the gap may be filled with a gas or may be a vacuum. However, when a gas is disposed in the gap, an inert gas such as nitrogen is preferable.
  • the air gap becomes the air layer 8.
  • the air layer 8 is referred to, but the air layer 8 may be a vacuum.
  • each of the planar light emitting unit 10, the light scattering variable unit 20, and the light reflection variable unit 30 can be individually formed as an element having a structure sandwiched between the substrates 6. obtain.
  • Embodiments 1 and 3 can be optically more advantageous than Embodiments 2 and 4 because there are no gaps.
  • Embodiment 2 and 4 have the air layer 8, it can obtain a heat insulation effect and can be advantageous as a material such as building materials.
  • substrate 6 may be divided
  • the light scattering variable portion 20 is disposed on the first surface F1 side with respect to the planar light emitting portion 10.
  • the planar light emitting unit 10 is disposed on the first surface F1 side of the light scattering variable unit 20.
  • the light scattering variable unit 20 is more advantageous to arrange the light scattering variable unit 20 on the first surface F1 side, which is a surface from which light is mainly extracted.
  • the light scattering property is increased, so that the viewing angle dependency can be reduced, and light emission with less color change can be obtained depending on the viewing angle.
  • light extraction efficiency can be improved because more light can be extracted by the light scattering property.
  • the optically advantageous internal substrate 6 that also serves as the adjacent substrate 6 and that does not have the air layer 8 between the components.
  • substrate 6 inside is mentioned as a modification.
  • description will be made centering on the optically advantageous light scattering variable portion 20 disposed on the first surface F1 side with respect to the planar light emitting portion 10.
  • the positions of the light scattering variable unit 20 and the planar light emitting unit 10 may be interchanged, and those in which these are interchanged are listed as modified examples.
  • FIG. 5 shows the fifth embodiment.
  • the planar light emitting unit 10 and the light reflection variable unit 30 are disposed between adjacent substrates 6 (substrate 6b and substrate 6c).
  • the planar light emitting unit 10 and the light reflection variable unit 30 are arranged in the thickness direction without the substrate 6 interposed therebetween.
  • the planar light emitting unit 10 and the light reflection variable unit 30 are in contact with each other.
  • the planar light emitting unit 10 and the light reflection variable unit 30 preferably have at least one shared electrode 5.
  • the number of layers can be reduced, and the layer interface that causes absorption, refraction, and reflection can be reduced. Therefore, light extraction can be improved.
  • the electrode 5 is shared, the connection with the power source 50 is likely to be electrically advantageous.
  • the electrode 5 serving as both the electrode 5b of the planar light emitting unit 10 and the electrode 5p of the light reflection variable unit 30 is provided.
  • This electrode 5 is an electrode 5 shared by the planar light emitting unit 10 and the light reflection variable unit 30. Therefore, the light extraction property can be improved.
  • the light reflection variable layer 3 preferably covers the organic light emitting layer 1. Thereby, the protective property of the organic light emitting layer 1 can be improved.
  • the light reflection variable layer 3 may cover the organic light emitting layer 1 together with the electrode 5b (electrode 5p).
  • the light reflection variable layer 3 preferably has moisture resistance. Since the light reflection variable layer 3 has moisture resistance, it is possible to suppress the intrusion of moisture and to suppress the deterioration of the organic light emitting layer 1 due to moisture.
  • the material used for the light reflection variable layer 3, for example, a liquid crystal has a moistureproof property. Therefore, moisture resistance can be easily increased by the liquid crystal material.
  • the light reflection variable layer 3 may contain a hygroscopic material. Thereby, moisture-proof property can further be improved.
  • FIG. 6 shows the sixth embodiment.
  • the light scattering variable unit 20 and the planar light emitting unit 10 are disposed between adjacent substrates 6 (substrate 6a and substrate 6b).
  • the light scattering variable portion 20 and the planar light emitting portion 10 are arranged in the thickness direction without the substrate 6 interposed therebetween.
  • the light scattering variable portion 20 and the planar light emitting portion 10 are in contact with each other.
  • the planar light emitting unit 10 and the light scattering variable unit 20 preferably have at least one shared electrode 5.
  • the number of layers can be reduced, and the layer interface that causes absorption, refraction, and reflection can be reduced. Therefore, light extraction can be improved.
  • the electrode 5 is shared, the connection with the power source 50 is likely to be electrically advantageous.
  • the electrode 5 serving as both the electrode 5y of the light scattering variable portion 20 and the electrode 5a of the planar light emitting portion 10 is provided.
  • This electrode 5 is an electrode 5 shared by the light scattering variable portion 20 and the planar light emitting portion 10. Therefore, the light extraction property can be improved.
  • the substrate 6 (substrate 6b) is disposed between the planar light emitting unit 10 and the light reflection variable unit 30, and the distance between the organic EL element and the light reflection variable unit 30 becomes long.
  • the light traveling toward the second surface F2 side can be reflected by the reflective layer formed by the light reflection variable unit 30 and converted into the light traveling toward the first surface F1 side.
  • interference may occur between the light directly traveling from the organic EL element toward the first surface F1 and the light reflected by the light reflection layer and traveling toward the first surface F1.
  • the degree of interference increases , It may be difficult to extract light. This is a phenomenon called a cavity.
  • the degree of interference can be reduced, and light can no longer be extracted. Therefore, it is possible to obtain a planar light emitting body 100 having excellent light extraction properties.
  • FIG. 7 shows the seventh embodiment.
  • the light scattering variable unit 20, the planar light emitting unit 10, and the light reflection variable unit 30 are disposed between adjacent substrates 6 (substrate 6a and substrate 6b).
  • the light scattering variable unit 20, the planar light emitting unit 10, and the light reflection variable unit 30 are arranged in the thickness direction without the substrate 6.
  • the light scattering variable portion 20 and the planar light emitting portion 10 are in contact with each other.
  • the planar light emitting unit 10 and the light reflection variable unit 30 are in contact with each other.
  • the planar light emitting unit 10 and the light scattering variable unit 20 have at least one shared electrode 5
  • the planar light emitting unit 10 and the light reflection variable unit 30 have at least one shared electrode. 5
  • the electrode 5 by sharing the electrode 5 at a plurality of locations, the number of layers can be further reduced, and the layer interface that causes absorption, refraction, and reflection can be reduced. it can.
  • the electrode 5 is shared, the connection with the power source 50 is likely to be electrically advantageous.
  • the electrode 5 serving as both the electrode 5y of the light scattering variable portion 20 and the electrode 5a of the planar light emitting portion 10 is provided.
  • This electrode 5 is an electrode 5 shared by the light scattering variable portion 20 and the planar light emitting portion 10.
  • an electrode 5 serving as both the electrode 5 b of the planar light emitting unit 10 and the electrode 5 p of the light reflection variable unit 30 is provided.
  • This electrode 5 is an electrode 5 shared by the planar light emitting unit 10 and the light reflection variable unit 30. Therefore, the light extraction property can be improved.
  • the light reflection variable layer 3 covers the organic light emitting layer 1.
  • the light reflection variable layer 3 may cover the organic light emitting layer 1 together with the electrode 5b (electrode 5p). Thereby, moisture resistance can be improved. The reason is the same as described in the fifth embodiment.
  • FIG. 8 shows an eighth embodiment.
  • FIG. 9 shows a ninth embodiment.
  • the planar light emitter 100 includes the light absorption variable unit 40.
  • the planar light emitter 100 is preferably provided with a light absorption variable portion 40 that can change the degree of light absorption.
  • the light absorption variable portion 40 is preferably arranged on the second surface F2 side with respect to the planar light emitting portion 10.
  • the planar light emitting unit 10 By having the light absorption variable portion 40, it is possible to absorb extra light, so that the contrast between the light emitting area and the non-light emitting area can be increased, and clearer light emission can be generated.
  • the planar light emitting unit 10, the light scattering variable unit 20, and in some cases the light reflection variable unit 30 may not be irradiated with light from the outside. And deterioration of these portions can be suppressed.
  • the second surface F2 is disposed outside the building, external light including ultraviolet light may enter the planar light emitter 100, but the light absorption variable portion 40 capable of absorbing ultraviolet light is provided. Intrusion of ultraviolet rays can be suppressed.
  • the light absorption variable part 40 is a part where the light absorption changes.
  • the light absorption variable unit 40 is configured such that the degree of light absorption can be changed.
  • the fact that the degree of light absorption can be changed may mean that the high absorption state and the low absorption state can be changed.
  • the fact that the degree of light absorption can be changed may mean that the state having light absorption and the state having no light absorption can be changed. If the degree of light absorptivity can be changed, the optical state can be changed, and the planar light-emitting body 100 having excellent optical characteristics can be obtained.
  • the light absorption variable portion 40 may be formed in a layer shape.
  • High absorption state is a state with high light absorption.
  • the high absorption state is, for example, a state in which light incident from one surface does not exit to the other surface due to absorption.
  • the high absorption state may be a state in which an object existing on one surface side from the other surface side cannot be visually recognized.
  • the high absorption state may be a state where an object existing on the other surface side from both sides cannot be visually recognized.
  • the superabsorbent state can be an opaque state.
  • the light absorption variable portion 40 can be black. When the light absorption variable part 40 exhibits light absorptivity, the light absorption variable part 40 functions as an absorption layer that absorbs light.
  • the low absorption state is a state where the light absorption is low or there is no light absorption.
  • the low absorption state is, for example, a state in which light incident from one surface is not absorbed and is emitted to the other surface while maintaining the traveling direction as it is.
  • the low absorption state may be a state where an object can be clearly visually recognized when an object existing on the other surface side is viewed from one surface side.
  • the low absorption state can be a transparent state.
  • the light absorption variable unit 40 exhibits light absorption between a high absorption state with high light absorption, a low absorption state with low or no light absorption, and a high absorption state and a low absorption state. It may be configured to have a state. The ability to exhibit light absorption between the high absorption state and the low absorption state can provide moderate light absorption, so that the optical state can be changed with high variations, and optical The characteristics can be further improved.
  • a state that exhibits light absorption between the high absorption state and the low absorption state is referred to as a medium absorption state.
  • the medium absorption state may have at least one absorption state between the high absorption state and the low absorption state. For example, if the light absorption can be changed by switching between three states of a high absorption state, a medium absorption state, and a low absorption state, the optical characteristics are improved. It is a preferable aspect that the intermediate absorption state has a plurality of states in which the degree of absorbency is in a plurality of stages between the high absorption state and the low absorption state. Thereby, since the degree of absorbency becomes a plurality of stages, the optical characteristics can be further improved.
  • the optical characteristics are improved.
  • the intermediate absorption state is configured to continuously change from the high absorption state to the low absorption state between the high absorption state and the low absorption state.
  • the optical state can be changed with high variations, and the optical characteristics can be further improved.
  • the light absorptivity can be changed between a high absorption state and a low absorption state so as to exhibit the desired light absorption, an intermediate state can be created, so that the optical characteristics are improved.
  • the light absorption variable part 40 has a medium absorption state, it is preferable that the light absorption variable part 40 is configured to maintain the medium absorption state.
  • the light absorption variable part 40 preferably absorbs at least part of visible light. Thereby, light emission can be made clear.
  • the light absorption variable unit 40 preferably absorbs all visible light. Thereby, the emission can be further clarified.
  • the light absorption variable unit 40 absorbs visible light
  • the light absorption variable unit 40 is preferably disposed between the light reflection variable unit 30 and the planar light emitting unit 10. Thereby, light emission can be made clearer.
  • the light absorption variable unit 40 may absorb infrared rays. When absorbing infrared rays, a heat shielding effect can be obtained.
  • the light absorption variable part 40 may absorb ultraviolet rays. Thereby, deterioration of the planar light emitter 100 can be suppressed.
  • the light absorption variable part 40 absorbs infrared rays or ultraviolet rays
  • the light absorption variable part 40 is preferably arranged on the second surface F2 side from the light reflection variable part 30. Thereby, it can suppress that infrared rays and an ultraviolet-ray deteriorate the planar light emission part 10, the light reflection variable part 30, and the light-scattering variable part 20.
  • the light absorption variable unit 40 preferably absorbs any one of visible light, ultraviolet light, and infrared light, more preferably absorbs two of these, and more preferably absorbs all of them.
  • the light absorption variable unit 40 may be configured to be able to change the shape of the absorption spectrum.
  • the change in the absorption spectrum may be performed in the medium absorption state.
  • the change in the shape of the absorption spectrum means that the spectrum shape of the light incident on the light absorption variable unit 40 and the light that has passed through the light absorption variable unit 40 are different.
  • the absorption spectrum is changed by changing the absorption wavelength. For example, the shape of the spectrum changes by strongly absorbing only blue light, strongly absorbing only green light, or strongly absorbing only red light.
  • the absorption spectrum changes the color of light passing through the planar light emitter 100 changes. Therefore, the toning (color adjustment) of the transmitted light can be performed, and the optical characteristics can be improved.
  • the light absorption variable portion 40 absorbs light in a direction from the second surface F2 toward the first surface F1 rather than light in a direction from the first surface F1 toward the second surface F2. Is preferably high. Thereby, deterioration of the planar light-emitting part 10 can be suppressed, or ultraviolet rays can be prevented from entering the first surface F1 side.
  • the light absorption variable part 40 is in a state of exhibiting light absorptivity, and includes light in a direction from the first surface F1 toward the second surface F2 and light in a direction from the second surface F2 toward the first surface F1.
  • the light absorption may be the same.
  • the light absorption variable unit 40 exhibits light absorption, and light in a direction from the first surface F1 toward the second surface F2 is light in a direction from the second surface F2 toward the first surface F1.
  • the light absorption may be higher than that.
  • the light absorption variable portion 40 can be formed with an appropriate structure that can change the degree of light absorption.
  • the light absorption variable unit 40 may be an electric field modulation, temperature modulation, light modulation, gas modulation, or the like.
  • Electric field modulation is a method in which light absorbency changes by applying an electric field.
  • Temperature modulation is a method in which the light absorption changes with temperature.
  • the planar light emitter 100 is preferably configured so that the light absorption of the light absorption variable portion 40 can be controlled.
  • the light absorption can be changed by a change in the external temperature, but if the light absorption depends on the external temperature, there is a possibility that desired optical characteristics cannot be obtained. Therefore, it is preferable that the light absorption is controlled.
  • the temperature modulation the temperature can be controlled by a heater or a cooler.
  • temperature control is not easier than electric field control. Therefore, it is preferable that the light absorption variable unit 40 is electric field modulation. Accordingly, the light absorption can be easily changed by an electric field, so that the optical characteristics can be improved.
  • the electric field modulation light absorption variable section 40 is used. In the following, the electric field modulation light absorption variable unit 40 will be described.
  • the light absorption variable portion 40 is configured to be capable of transmitting light. In the high absorption state, the light absorption variable portion 40 may be opaque. In the low absorption state, the light absorption variable portion 40 may be transparent. In the middle absorption state, the light absorption variable portion 40 may be translucent.
  • the light absorption variable section 40 includes a pair of electrodes 5m and 5n, and a light absorption variable layer 4 disposed between the pair of electrodes 5m and 5n.
  • the electrode 5m is disposed on the first surface F1 side
  • the electrode 5n is disposed on the second surface F2 side.
  • the light absorption variable section 40 has a configuration in which the light absorption variable layer 4 is disposed between the electrode 5m and the electrode 5n.
  • the light absorption variable layer 4 has at least a high absorption state and a low absorption state.
  • the light absorption variable layer 4 preferably has a medium absorption state.
  • the electrode 5m and the electrode 5n are light transmissive. Therefore, when the light absorption variable layer 4 has a light absorption property, the light incident on the light absorption variable portion 40 can be absorbed. Further, when the light absorption variable layer 4 is not in a state of light absorption, the light incident on the light absorption variable portion 40 can be emitted as it is.
  • the light absorption variable part 40 is disposed between the adjacent substrates 6.
  • the light absorption variable part 40 is sealed by being disposed between the two substrates 6. By sealing, the light absorption variable layer 4 is held, and further its deterioration is suppressed.
  • the two substrates 6 are a pair.
  • the light absorption variable part 40 is formed by lamination. At that time, a formation substrate for stacking is required.
  • the formation substrate is formed of at least one of the pair of substrates 6.
  • the substrate 6 facing the formation substrate is a sealing substrate.
  • the sealing substrate is formed of the pair of substrates 6 that is not the formation substrate.
  • the light absorption variable portion 40 changes the degree of light absorption in the light absorption variable layer 4 by applying a voltage between the electrode 5m and the electrode 5n.
  • the electrode 5m and the electrode 5n are electrically connected to the power source 50 through a wiring 53.
  • a voltage is applied to the light absorption variable unit 40.
  • the power supply 50 of the light absorption variable unit 40 may be constituted by a DC power supply or an AC power supply.
  • the power supply 50 of the light absorption variable unit 40 is constituted by an AC power supply 52.
  • the light absorptive state at the time of voltage application may not be maintained over time from the start of voltage application.
  • a voltage can be alternately applied in both directions, and a voltage can be applied substantially continuously by changing the direction of the voltage. Therefore, stable light absorption can be obtained by the AC power supply 52.
  • the AC waveform is preferably a rectangular wave. As a result, the amount of voltage to be applied is likely to be constant, so that the light absorption can be more stabilized.
  • the alternating current may be a pulse.
  • the power supply 50 is preferably constituted by a DC power supply.
  • the light absorptivity may change depending on the flow of electricity in one direction. Therefore, stable light absorption can be obtained by a DC power source.
  • the intermediate absorption state can be formed by controlling the voltage application amount.
  • the material for the light absorption variable layer 4 a material whose light absorption changes by electric field modulation can be preferably used.
  • the electric field modulation material include tungsten oxide.
  • the temperature modulation material include vanadium oxide.
  • the light modulation material include an Ag / Ti laminated structure.
  • the light absorption variable unit 40 is preferably in a light absorption state when no voltage is applied and in a light transmission state when a voltage is applied.
  • the absorptivity can be changed by applying a voltage.
  • the alignment can be made uniform by applying a voltage.
  • the light absorption variable section 40 which is thin and has high absorbability can be formed.
  • the light absorption variable unit 40 may be in a light transmission state when no voltage is applied and in a light absorption state when a voltage is applied.
  • the light absorption variable layer 4 is preferably one in which the light absorption state when a voltage is applied is maintained. Thereby, a voltage is applied when it is desired to change the light absorption state, and it is not necessary to apply a voltage when it is not, so that the power efficiency is improved.
  • the property that the light absorption state is maintained is called hysteresis. This property may be called memory property (memory property).
  • Hysteresis can be exerted by applying a voltage higher than a predetermined voltage. The longer the time during which the light absorption state is maintained, the better. For example, it is preferably 1 hour or longer, more preferably 3 hours or longer, further preferably 6 hours or longer, more preferably 12 hours or longer, more preferably 24 hours or longer. More preferable.
  • Embodiment 8 has a structure in which the light absorption variable portion 40 is arranged on the second surface F2 side of the planar light emitter 100 of Embodiment 5.
  • the light absorption variable unit 40 is disposed between the substrate 6c and the substrate 6d.
  • the substrate 6 c serves as the substrate 6 that supports or seals the planar light emitting unit 10 and the light reflection variable unit 30 and the substrate 6 that supports or seals the light absorption variable unit 40.
  • a substrate 6 c is disposed between the light reflection variable unit 30 and the light absorption variable unit 40.
  • the light absorption variable portion 40 can be configured independently from other portions, and therefore, manufacturing may be facilitated. Moreover, there is a possibility that light absorption can be improved.
  • Embodiment 9 is an example in which Embodiment 8 is modified, and is an example in which the substrate 6c in Embodiment 8 is excluded.
  • the light absorption variable part 40 is disposed between the substrate 6b and the substrate 6c. Between the substrate 6b and the substrate 6c, the planar light emitting unit 10, the light reflection variable unit 30, and the light absorption variable unit 40 are provided. The light reflection variable unit 30 and the light absorption variable unit 40 are in contact with each other.
  • the planar light emitter 100 includes the light absorption variable unit 40
  • the light reflection variable unit 30 and the light absorption variable unit 40 have at least one shared electrode 5.
  • the electrode 5 serving as both the electrode 5q of the light reflection variable unit 30 and the electrode 5m of the light absorption variable unit 40 is provided.
  • This electrode 5 is an electrode 5 shared by the light reflection variable unit 30 and the light absorption variable unit 40. Therefore, light absorption can be improved efficiently.
  • the light absorption variable unit 40 is disposed on the second surface F2 side with respect to the light reflection variable unit 30.
  • the light absorption variable unit 40 and the surface light emitter 10 and light reflection are illustrated. You may arrange
  • a configuration in which the arrangement of the light absorption variable unit 40 and the light reflection variable unit 30 is exchanged can be given.
  • FIG. 10 shows the tenth embodiment.
  • FIG. 11 shows an eleventh embodiment.
  • FIG. 12 shows a twelfth embodiment. However, in FIG. 12, a part of the planar light emitter 100 is shown.
  • FIG. 13 shows a thirteenth embodiment.
  • FIG. 14 shows a fourteenth embodiment.
  • FIG. 15 shows a fifteenth embodiment.
  • FIG. 16 shows a sixteenth embodiment.
  • FIG. 17 shows the seventeenth embodiment.
  • FIG. 18 shows an eighteenth embodiment.
  • the light reflection variable unit 30 includes a first light reflection variable unit 31 and a second light reflection variable unit 32.
  • the planar light emitting unit 10 and the first light reflection variable unit 31 are disposed between the adjacent substrates 6 (substrates 6b and 6c).
  • the planar light emitting unit 10 and the first light reflection variable unit 31 are arranged in contact with each other in the thickness direction.
  • the planar light emitting unit 10, the first light reflection variable unit 31, and the second light reflection variable unit 32 are disposed between the adjacent substrates 6 (substrates 6b and 6c).
  • the planar light emitting unit 10 and the first light reflection variable unit 31 are arranged in contact with each other in the thickness direction, and the first light reflection variable unit 31 and the second light reflection variable unit 32 are arranged in contact with each other in the thickness direction. Yes.
  • the light scattering variable portion 20 and the planar light emitting portion 10 are disposed between adjacent substrates 6 (substrates 6a and 6b).
  • the light scattering variable portion 20 and the planar light emitting portion 10 are arranged in contact with each other in the thickness direction.
  • the first light reflection variable portion 31 and the second light reflection variable portion 32 are disposed between the adjacent substrates 6 (substrates 6b and 6c).
  • the first light reflection variable part 31 and the second light reflection variable part 32 are arranged in contact with each other in the thickness direction.
  • the light scattering variable unit 20, the planar light emitting unit 10, and the first light reflection variable unit 31 are disposed between adjacent substrates 6 (substrates 6a and 6b).
  • the light scattering variable portion 20 and the planar light emitting portion 10 are arranged in contact with each other in the thickness direction, and the planar light emitting portion 10 and the first light reflection variable portion 31 are arranged in contact with each other in the thickness direction.
  • the light scattering variable unit 20, the planar light emitting unit 10, the first light reflection variable unit 31, and the second light reflection variable unit 32 are arranged between adjacent substrates 6 (substrates 6a and 6b). Yes.
  • the light scattering variable portion 20 and the planar light emitting portion 10 are disposed in contact with each other in the thickness direction, and the planar light emitting portion 10 and the first light reflection variable portion 31 are disposed in contact with each other in the thickness direction.
  • the light reflection variable part 31 and the second light reflection variable part 32 are arranged in contact with each other in the thickness direction.
  • the light reflection variable unit 30 includes a first light reflection variable unit 31 capable of reflecting the first polarized light and a second light reflection variable unit 32 capable of reflecting the second polarized light. It is preferable. It is preferable that the first light reflection variable part 31 and the second light reflection variable part 32 are arranged so that the parts having variable light reflectivity are separated from each other. By having the first light reflection variable section 31 and the second light reflection variable section 32, more light can be reflected, so that the reflectivity can be improved and the optical characteristics can be improved.
  • the first light reflection variable unit 31 is configured to reflect the first polarized light.
  • the second light reflection variable unit 32 is configured to reflect the second polarized light.
  • the first polarized light and the second polarized light are in a complementary relationship. When the light component is decomposed by the polarized light and the first polarized light is taken out as a specific polarized light, the light other than the first polarized light becomes the second polarized light.
  • the relationship between the first polarization and the second polarization may be a relationship between left circular polarization and right circular polarization. When the first polarization is left circular polarization, the second polarization is right circular polarization.
  • the first polarized light is right circular polarized light
  • the second polarized light is left circular polarized light.
  • Left circularly polarized light and right circularly polarized light are called circularly polarized light.
  • the reflection of circularly polarized light can be caused by the molecular orientation of the helical structure.
  • the spiral structure can be formed by liquid crystal as described above.
  • the right and left of circularly polarized light are determined depending on whether the spiral structure is clockwise or counterclockwise. 10 to 18, the first light reflection variable portion 31 and the second light reflection variable portion 32 are provided with patterns simulating reverse spiral structures so that they can be easily understood.
  • the relationship between the first polarized light and the second polarized light may be a linearly polarized light relationship. In linearly polarized light, the first polarized light can be changed vertically, and the second polarized light can be converted into horizontally polarized light.
  • the light is decomposed into the first polarized light and the second polarized light.
  • a combination of the first polarized light and the second polarized light becomes light before decomposition. For this reason, if both the first polarized light and the second polarized light can be reflected, all light can be reflected theoretically, so that high light reflectivity can be exhibited.
  • first light reflection variable unit 31 and the second light reflection variable unit 32 may be the same as those described in the light reflection variable unit 30 as a common matter.
  • the first light reflection variable unit 31 and the second light reflection variable unit 32 may have the same configuration except that the polarized light is different.
  • the difference between the first polarized light and the second polarized light can be caused by, for example, a difference in chirality of materials whose light reflectivity changes.
  • the first light reflection variable section 31 includes a pair of electrodes 5p and 5q, and a first light reflection variable layer 3a disposed between the pair of electrodes 5p and 5q.
  • the electrode 5p is disposed on the first surface F1 side
  • the electrode 5q is disposed on the second surface F2 side.
  • the first light reflection variable section 31 has a configuration in which the first light reflection variable layer 3a is disposed between the electrode 5p and the electrode 5q.
  • the first light reflection variable layer 3a is a layer whose light reflectivity changes.
  • the first light reflection variable layer 3a has at least a high reflection state and a low reflection state.
  • the first light reflection variable layer 3a preferably has a middle reflection state.
  • the electrode 5p and the electrode 5q are light transmissive. Therefore, in the case where the first light reflection variable layer 3 a has a light reflectivity, it is possible to efficiently reflect the first polarized light in the light incident on the first light reflection variable portion 31. In addition, when the first light reflection variable layer 3a is not light-reflective, the light incident on the first light reflection variable portion 31 can be emitted as it is.
  • the first light reflection variable portion 31 is disposed between the adjacent substrates 6.
  • the first light reflection variable portion 31 is disposed between the two substrates 6 to be sealed.
  • the first light reflection variable unit 31 changes the degree of light reflectivity in the first light reflection variable layer 3a by applying a voltage between the electrode 5p and the electrode 5q.
  • the electrode 5p and the electrode 5q are electrically connected to the power source 50 through a wiring 53. By supplying power from the power supply 50, a voltage is applied to the first light reflection variable unit 31.
  • the power source 50 of the first light reflection variable unit 31 is constituted by an AC power source 52.
  • the second light reflection variable section 32 has a pair of electrodes 5r and 5s and a second light reflection variable layer 3b disposed between the pair of electrodes 5r and 5s.
  • the electrode 5r is disposed on the first surface F1 side
  • the electrode 5s is disposed on the second surface F2 side.
  • the second light reflection variable section 32 has a configuration in which the second light reflection variable layer 3b is disposed between the electrode 5r and the electrode 5s.
  • the second light reflection variable layer 3b is a layer whose light reflectivity changes.
  • the second light reflection variable layer 3b has at least a high reflection state and a low reflection state.
  • the second light reflection variable layer 3b preferably has a middle reflection state.
  • the electrode 5r and the electrode 5s are light transmissive. Therefore, when the second light reflection variable layer 3b has a light reflectivity, the second polarized light out of the light incident on the second light reflection variable portion 32 can be efficiently reflected. Further, when the second light reflection variable layer 3b is not light-reflective, the light incident on the second light reflection variable portion 32 can be emitted as it is.
  • the second light reflection variable portion 32 is disposed between the adjacent substrates 6.
  • the second light reflection variable portion 32 is disposed between the two substrates 6 to be sealed.
  • the second light reflection variable unit 32 changes the degree of light reflectivity in the second light reflection variable layer 3b by applying a voltage between the electrode 5r and the electrode 5s.
  • the electrode 5 r and the electrode 5 s are electrically connected to the power source 50 through a wiring 53. By supplying power from the power supply 50, a voltage is applied to the second light reflection variable unit 32.
  • the power source 50 of the second light reflection variable unit 32 is constituted by an AC power source 52.
  • the first light reflection variable unit 31 and the second light reflection variable unit 32 may be configured to be driven independently, or may be configured to be driven in conjunction with each other.
  • independent driving is possible, specific polarized light can be reflected, a complicated optical state can be obtained, and optical characteristics can be improved.
  • the degree of light reflectivity can be easily controlled.
  • the light reflection variable unit 30 is preferably in the high reflection state at the same time. Thereby, high reflectivity can be obtained.
  • the first light reflection variable unit 31 and the second light reflection variable unit 32 are in the low reflection state as a whole of the light reflection variable unit 30, it is preferable that both are in the low reflection state at the same time. Thereby, a less reflective state can be obtained.
  • the first light reflection variable layer 3a which is a variable light reflection portion in the first light reflection variable section 31 and the second light reflection variable section in the second light reflection variable section 32 are variable.
  • the light reflection variable layer 3b is separated.
  • Each of the first light reflection variable layer 3a and the second light reflection variable layer 3b may be formed of a liquid crystal or the like.
  • first light reflection variable layer 3a and the second light reflection variable layer 3b materials having different chirality of liquid crystal molecules can be used for the first light reflection variable layer 3a and the second light reflection variable layer 3b, but when liquid crystal molecules are mixed, the chirality is lost and the reflectivity is lowered. . Therefore, it is preferable that the first light reflection variable layer 3a and the second light reflection variable layer 3b are separated from each other.
  • a mode in which the first light reflection variable layer 3a and the second light reflection variable layer 3b are separated will be described.
  • a portion that separates the first light reflection variable layer 3a and the second light reflection variable layer 3b is defined as a separation portion.
  • the separation portion is constituted by the substrate 6.
  • the spacing portion is constituted by the electrode 5.
  • the planar light emitter 100 includes a substrate 6 (substrate 6a) having a first surface F1, and the substrate 6 (substrate 6a) and the second light reflection variable unit 32 are disposed between the first light reflection variable unit 31 and the second light reflection variable unit 32. It is a preferable embodiment of the separation that the plates formed of the same kind of material are arranged.
  • the first light reflection variable layer 3a and the second light reflection variable layer 3b are separated by a plate made of the same material as that of the substrate 6, so that the optical conditions of the substrate 6 and the plate become more the same. Therefore, the optical characteristics can be improved.
  • the plate body constitutes a separation portion.
  • substrate 6 which has the 1st surface F1 is glass
  • the plate body which spaces apart a layer is glass.
  • the substrate 6 and the plate have the same kind of glass (for example, non-alkali glass) because the cost is low. More preferably, the refractive indexes are the same.
  • substrate 6c is the same kind of material as the board
  • substrate 6c becomes a plate body and becomes this aspect.
  • the substrate 6b is made of the same kind of material as the substrate 6a
  • the substrate 6b is a plate body, which is this mode.
  • a flexible sheet is disposed between the first light reflection variable portion 31 and the second light reflection variable portion 32. Since the first light reflection variable layer 3a and the second light reflection variable layer 3b are separated by the sheet, the first light reflection variable layer 3a and the second light reflection variable layer 3b are not mixed, and depending on the sheet Scattering at the time of breakage can be suppressed.
  • the sheet constitutes a separation portion.
  • the sheet is preferably made of resin. Thereby, the scattering at the time of a fracture
  • this mode is used when the substrate 6b is a sheet.
  • the first light reflection variable unit 31 and the second light reflection variable unit 32 have at least one shared electrode 5.
  • the sharing of the electrode 5 may be an electrical sharing. By sharing the electrode 5, electrical characteristics and optical characteristics can be improved. Moreover, the sharing of the electrode 5 can facilitate the interlocking of the two light reflection variable layers 3.
  • Embodiment 11 in FIG. 11 is an example in which the electrode 5 is shared.
  • the electrode 5q of the first light reflection variable unit 31 and the electrode 5r of the second light reflection variable unit 32 are electrically the same electrode 5 and are shared.
  • Such sharing of the electrode 5 can be formed by a wiring structure.
  • the electrode 5 is shared by the wiring 53.
  • the twelfth embodiment of FIG. 12 shows an example of sharing when the substrate 6 (plate body, sheet, etc.) is disposed between the first light reflection variable unit 31 and the second light reflection variable unit 32. .
  • the electrode connection portion 5t is provided.
  • the electrode 5q and the electrode 5r are connected to an electrode connection portion 5t formed of a conductive material.
  • the electrode connection portion 5 t is formed on the side of the substrate 6.
  • the electrode connecting portion 5t is not limited to the illustrated mode.
  • the electrode connection portion 5t may be provided so as to penetrate the substrate 6.
  • the electrode sharing structure of FIG. 12 can also be applied to the embodiment 15 of FIG.
  • a preferred aspect of the separation is that the shared electrode 5 is disposed between the first light reflection variable layer 3a and the second light reflection variable layer 3b so that the portions where the light reflection is variable are separated. It is.
  • the separation portion is constituted by the electrode 5.
  • the electrode 5 By separating the first light reflection variable layer 3a and the second light reflection variable layer 3b by the electrode 5, the number of layers can be reduced, and the disappearance of light due to absorption or reflection can be suppressed. .
  • the voltage can be applied efficiently by sharing the electrode 5.
  • Embodiments 13, 16, and 18 are this mode.
  • the first light reflection variable unit 31 and the second light reflection variable unit 32 are in contact with each other.
  • FIG. 19 shows the nineteenth embodiment.
  • FIG. 20 shows a twentieth embodiment.
  • FIG. 21 shows a twenty-first embodiment.
  • FIG. 22 shows a twenty-second embodiment.
  • FIG. 23 shows a twenty-third embodiment.
  • Embodiments 19 to 23 are examples in which the light absorption variable unit 40 is provided in the case where the light reflection variable unit 30 includes the first light reflection variable unit 31 and the second light reflection variable unit 32.
  • the nineteenth embodiment has a structure in which the light absorption variable portion 40 is disposed on the second surface F2 side of the planar light emitter 100 of the thirteenth embodiment.
  • the light absorption variable unit 40 is disposed between the substrate 6c and the substrate 6d.
  • the substrate 6 c serves as the substrate 6 that supports or seals the planar light emitting unit 10 and the light reflection variable unit 30 and the substrate 6 that supports or seals the light absorption variable unit 40.
  • a substrate 6 c is disposed between the light reflection variable section 30 (particularly the second light reflection variable section 32) and the light absorption variable section 40.
  • the light absorption variable portion 40 can be configured independently from other portions, and therefore, manufacturing may be facilitated. Moreover, there is a possibility that light absorption can be improved.
  • the 20 is a modification of the thirteenth embodiment.
  • the twentieth embodiment is an example in which the light absorption variable portion 40 is provided between the substrate 6b and the substrate 6c in the thirteenth embodiment.
  • the light absorption variable part 40 is in contact with the second light reflection variable part 32.
  • the electrode 5 serving as both the electrode 5s of the second light reflection variable portion 32 and the electrode 5m of the light absorption variable portion 40 is provided.
  • the electrode 5 is an electrode 5 shared by the second light reflection variable unit 32 and the light absorption variable unit 40. Since the second light reflection variable unit 32 and the light absorption variable unit 40 share the electrode 5, the number of layers can be reduced and the layer interface that causes absorption, refraction, and reflection can be reduced. Moreover, if the electrode 5 is shared, the connection with the power source 50 is likely to be electrically advantageous.
  • the twenty-first embodiment has a structure in which the light absorption variable portion 40 is disposed on the second surface F2 side of the planar light emitter 100 of the sixteenth embodiment.
  • the light absorption variable unit 40 is disposed between the substrate 6c and the substrate 6d.
  • the substrate 6 c serves as the substrate 6 that supports or seals the planar light emitting unit 10 and the light reflection variable unit 30 and the substrate 6 that supports or seals the light absorption variable unit 40.
  • a substrate 6 c is disposed between the light reflection variable section 30 (particularly the second light reflection variable section 32) and the light absorption variable section 40.
  • the light absorption variable portion 40 can be configured independently from other portions, and therefore, manufacturing may be facilitated. Moreover, there is a possibility that light absorption can be improved.
  • the 22 is a modification of the sixteenth embodiment.
  • the twenty-second embodiment is an example in which the light absorption variable unit 40 is provided between the substrate 6b and the substrate 6c in the sixteenth embodiment.
  • the light absorption variable part 40 is in contact with the second light reflection variable part 32.
  • the electrode 5 serving as both the electrode 5s of the second light reflection variable unit 32 and the electrode 5m of the light absorption variable unit 40 is provided.
  • the electrode 5 is an electrode 5 shared by the second light reflection variable unit 32 and the light absorption variable unit 40. Since the second light reflection variable unit 32 and the light absorption variable unit 40 share the electrode 5, the number of layers can be reduced and the layer interface that causes absorption, refraction, and reflection can be reduced. Moreover, if the electrode 5 is shared, the connection with the power source 50 is likely to be electrically advantageous.
  • the twenty-third embodiment is an example in which the light absorption variable portion 40 is provided between the substrate 6a and the substrate 6b in the eighteenth embodiment.
  • the light absorption variable part 40 is in contact with the second light reflection variable part 32.
  • the electrode 5 serving as both the electrode 5s of the second light reflection variable unit 32 and the electrode 5m of the light absorption variable unit 40 is provided.
  • the electrode 5 is an electrode 5 shared by the second light reflection variable unit 32 and the light absorption variable unit 40. Since the second light reflection variable unit 32 and the light absorption variable unit 40 share the electrode 5, the number of layers can be reduced and the layer interface that causes absorption, refraction, and reflection can be reduced. Moreover, if the electrode 5 is shared, the connection with the power source 50 is likely to be electrically advantageous.
  • the light reflection variable section 30 includes the first light reflection variable section 31 and the second light reflection variable section 32, so that the light reflectivity can be improved. Moreover, by having the light absorption variable part 40, light emission can be made clearer by light absorption. Moreover, deterioration of each part of the planar light emitter 100 can be suppressed by light absorption.
  • the light absorption variable unit 40 is disposed on the second surface F2 side with respect to the light reflection variable unit 30 .
  • the light absorption variable unit 40 may be disposed between the first light reflection variable unit 31 and the second light reflection variable unit 32.
  • the light absorption variable section 40 is disposed between the planar light emitter 10 and the first light reflection variable section 31, or the light absorption variable section 40 is the first light reflection variable. The thing arrange
  • FIG. 24 shows an example of the light-transmitting electrode 5.
  • the electrode 5 is composed of a transparent conductive layer 5e and an auxiliary wiring 5f.
  • FIG. 24B shows a state in which the auxiliary wiring 5f is viewed in the thickness direction, that is, in a direction perpendicular to the surface of the substrate 6. The state seen in the direction perpendicular to the surface of the substrate 6 is a plan view.
  • the light-transmitting electrode 5 can be formed using a transparent material in order to exhibit the property of transmitting light. However, it is not easy to achieve both transparency and conductivity. If the transparency of the electrode 5 is to be increased, the specific resistance tends to increase and the conductivity is likely to decrease. If the conductivity is reduced, it becomes difficult for electricity to flow, and the in-plane electrical characteristics become non-uniform. For example, in the vicinity of the center of the surface, since it is far from the feeding position arranged at the end, electricity is less likely to flow than the end, and current and voltage are likely to decrease. On the other hand, when an attempt is made to lower the electrical resistance, the transparency is lowered and the optical properties tend to be lowered.
  • the auxiliary wiring 5f is made of a material having higher electrical conductivity than the transparent conductive layer 5e.
  • the conductivity of the transparent conductive layer 5e can be supplemented and the conductivity of the electrode 5 as a whole can be improved. Therefore, the current and voltage can be made more uniform in the plane, so that the optical characteristics can be improved.
  • the auxiliary wiring 5f is provided on the surface of the transparent conductive layer 5e.
  • the transparent conductive layer 5e and the auxiliary wiring 5f are in contact with each other.
  • the transparent conductive layer 5e may have a structure in which part or all of the auxiliary wiring 5f is buried.
  • 24A shows an example in which the auxiliary wiring 5f is provided on the upper side of the transparent conductive layer 5e.
  • the auxiliary wiring 5f may be provided on the lower side of the transparent conductive layer 5e, or on both upper and lower sides of the transparent conductive layer 5e.
  • An auxiliary wiring 5f may be provided. In which surface of the transparent conductive layer 5e the auxiliary wiring 5f is provided depends on the stacking order in the stacking process.
  • the transparent conductive layer 5e and the auxiliary wiring 5f are arranged so that the transparent conductive layer 5e and the auxiliary wiring 5f are laminated in this order.
  • the transparent conductive layer 5e and the auxiliary wiring 5f may be arranged so that the auxiliary wiring 5f and the transparent conductive layer 5e are laminated in this order.
  • the auxiliary wiring 5f does not have to be transparent.
  • the auxiliary wiring 5f may be opaque or translucent.
  • the auxiliary wiring 5f can be made of a material such as metal.
  • the auxiliary wiring 5f may be formed of a metal laminate or an alloy.
  • the auxiliary wiring 5f is preferably formed in a mesh shape. Since the auxiliary wiring 5f has a mesh shape, light can be transmitted from between the meshes, so that light transmittance as the electrode 5 can be ensured.
  • the auxiliary wiring 5f is more preferably formed in a lattice shape. Thereby, conductivity can be assisted more uniformly.
  • the lattice shape may be a square lattice or a hexagonal lattice.
  • the auxiliary wiring 5f is a quadrangular lattice.
  • the rectangular lattice shape is easy to pattern.
  • a square lattice shape is called a grid shape.
  • the auxiliary wiring 5f is composed of a plurality of lines.
  • This line is a straight line.
  • the lines constituting the auxiliary wiring 5f can be composed of a vertical line and a horizontal line.
  • the vertical lines may be arranged at equal intervals.
  • the horizontal lines may be arranged at equal intervals.
  • the width of the lines constituting the auxiliary wiring 5f may be 1000 ⁇ m or less, 500 ⁇ m or less, or 100 ⁇ m or less.
  • the portion of the auxiliary wiring 5f may be impermeable to light, since the width of the auxiliary wiring 5f is small, the electrode 5 as a whole can transmit light, and the auxiliary wiring 5f is conspicuous when visually recognized. Transparency without any discomfort can be obtained.
  • the line width of the auxiliary wiring 5f becomes too large, a pattern formed in the auxiliary wiring 5f part such as a lattice shape may be conspicuous. Therefore, it is advantageous that the line width of the auxiliary wiring 5f is small. However, a larger line width is advantageous in order to enhance the current-carrying assistability by the auxiliary wiring 5f. Therefore, the width of the auxiliary wiring 5f can be set to 1 ⁇ m or more, for example.
  • the electrode 5 having the auxiliary wiring 5f can be used at one or a plurality of appropriate locations in the electrode 5 of the planar light emitter 100.
  • You may use as the electrode 5 of the light-scattering variable part 20.
  • FIG. You may use as the electrode 5 of the planar light emission part 10.
  • You may use as the electrode 5 of the light reflection variable part 30.
  • You may use as the electrode 5 of the light absorption variable part 40.
  • FIG. In each part, one of the pair of two electrodes 5 may have the auxiliary wiring 5f, or both may have the auxiliary wiring 5f.
  • one or both of the pair of electrodes 5 (electrode 5a and electrode 5b) included in the planar light emitting unit 10 have the auxiliary wiring 5f.
  • the planar light emitting unit 10 composed of an organic EL element, in order to obtain more uniform light emission in the surface, it is required to improve the conductivity in the surface.
  • the electrode 5 included in the planar light emitting unit 10 includes the auxiliary electrode 5f, the in-plane conductivity is improved and the light emission characteristics can be improved.
  • the auxiliary wiring 5 f is preferably provided on the organic light emitting layer 1 side of the electrode 5.
  • the auxiliary wiring 5f may be provided on the side of the electrode 5 opposite to the organic light emitting layer 1 side.
  • the arrangement of the auxiliary wiring 5f depends on the lamination process, in short, if the auxiliary wiring 5f is in contact with the transparent conductive layer 5e, the electrode 5 having high conductivity can be obtained.
  • the auxiliary wiring 5f may be covered with an insulator at a portion not in contact with the transparent conductive layer 5e.
  • the covering of the auxiliary wiring 5f is particularly preferably performed on the electrode 5 of the planar light emitting unit 10. Since the portion of the auxiliary wiring 5f has high conductivity, if electricity flows through the auxiliary wiring 5f as it is, electricity tends to flow through the portion of the auxiliary wiring 5f, and excessive light emission may occur at the portion of the auxiliary wiring 5f. Further, the auxiliary wiring 5f can be a portion that does not allow light to pass through. However, even if light is emitted from the portion of the auxiliary wiring 5f, the light cannot be extracted in the thickness direction. There is a risk that.
  • the auxiliary wiring 5f by covering the auxiliary wiring 5f with an insulator, excessive light emission can be suppressed, and more light can be extracted while suppressing waste of light, so that the light extraction performance can be improved. it can.
  • the covering of the insulator of the auxiliary wiring 5f may be performed on any one or more of the electrodes 5 used in the light scattering variable unit 20, the light reflection variable unit 30, and the light absorption variable unit 40. .
  • the planar light-emitting body 100 includes a plurality of electrodes 5 having the auxiliary wiring 5f
  • the auxiliary wirings 5f in the different electrodes 5 have a pattern overlapping in plan view.
  • the portion of the auxiliary wiring 5f can be a portion that does not allow light to pass through, by providing the auxiliary wiring 5f so as to overlap in plan view, the portion that does not allow light to pass can be reduced, so that the optical characteristics are improved. Can do.
  • the auxiliary wiring 5f in one electrode 5 has a grid shape
  • the auxiliary electrode 5f in the other electrode 5 has a grid shape with the same shape, an overlapping pattern is formed and light can be easily transmitted.
  • the auxiliary wirings 5f of the plurality of electrodes 5 may be shifted from each other in plan view.
  • each part is preferably configured to be driven independently. Thereby, since each part can be controlled independently, an optical characteristic can be improved. It is preferable that the light scattering variable unit 20, the planar light emitting unit 10, and the light reflection variable unit 30 are configured to be driven independently. As a result, states having different optical properties can be easily created, and thus excellent optical properties can be obtained.
  • the light absorption variable part 40 is provided, it is preferable that the light absorption variable part 40 is configured to be driven independently. Thereby, the optical characteristics are further enhanced.
  • the first light reflection variable unit 31 and the second light reflection variable unit 32 may be driven independently of each other or may be driven in conjunction with each other.
  • “Driving independently” may mean that voltage can be applied to each part independently. The application of voltage to each part is possible not only when the electrode 5 is independent in each part but also when the electrode 5 is shared with the electrode 5 of another part in a certain part.
  • the electrode 5 may be shared, and different power sources 50 may be connected to the shared electrode 5, but can be driven independently by controlling the voltage level.
  • the DC power source 51 and the AC power source 52 are connected to the common electrode 5, if one of the two electrodes 5 of the DC power source 51 functions as a ground electrode, AC can be controlled. is there.
  • the electrode 5 b and the electrode 5 p are composed of the same electrode 5 and are shared electrodes 5.
  • the DC power source 51 and the AC power source 52 can be controlled separately.
  • the planar light emitting unit 10 and the light reflection variable unit 30 can be driven independently.
  • one AC power supply 52 and another AC power supply 52 are connected to the electrode 5 shared, one of these two AC power supplies 52 can be made to function by adjusting the voltage level, It is possible to perform control such that the other is functioning or both are not functioning.
  • the seventeenth embodiment shown in FIG. 17 has a structure in which a DC power source 51 is disposed between two AC power sources 52.
  • one of the two electrodes 5 of the DC power supply 51 can function as a ground electrode, and the other can function as an electrode 5 having a predetermined voltage difference from the ground electrode. If the ground electrode is the first reference electrode 5 at the voltage level, the electrode 5 having a predetermined voltage becomes the second reference electrode 5. Then, each part can be driven by generating alternating currents by the two AC power sources 52 at voltage levels based on the voltages of the first reference electrode 5 and the second reference electrode 5.
  • FIG. 25 is an example of a method for manufacturing the planar light emitter 100.
  • the planar light emitter 100 of each embodiment can be formed using a lamination process.
  • FIG. 25 the manufacture example of the planar light-emitting body 100 of Embodiment 17 is shown.
  • FIG. 25 is merely an example of a method of manufacturing the planar light emitter 100, and the planar light emitter 100 can be formed by an appropriate method. With reference to FIG. 25, the manufacture of other embodiments will be understood.
  • a substrate 6 is prepared.
  • the substrate 6 functions as a formation substrate and becomes the first substrate 6x.
  • the light scattering variable portion 20 is formed on the substrate 6.
  • the material of the light scattering variable layer 2 is a polymer-dispersed liquid crystal
  • stacking is facilitated. This is because polymer-dispersed liquid crystals often have shape retention and can be stacked without using a liquid phase injection method.
  • the planar light emitting unit 10 is formed on the light scattering variable unit 20.
  • the planar light emitting unit 10 can be formed by laminating the layers of the organic EL elements constituting the planar light emitting unit 10. Lamination can be performed by any method such as sputtering, vapor deposition, coating, or a combination thereof.
  • the electrode 5 of the light scattering variable unit 20 and the electrode 5 of the planar light emitting unit 10 may be shared.
  • a second substrate 6y that functions as a sealing substrate is disposed as a substrate 6 on the side where the stacked body is provided, facing the first substrate 6x, A material constituting the first light reflection variable unit 31 is injected between the second substrate 6 y and the planar light emitting unit 10. Since the material which comprises the 1st light reflection variable part 31 may be a liquid crystal, the 1st light reflection variable part 31 can be formed easily by the injection method.
  • the outer peripheral portion of the first substrate 6x and the second substrate 6y may be bonded with an adhesive. The adhesive may function as a spacer.
  • the third substrate 6z is disposed as the substrate 6 so as to face the second substrate 6y, and the second substrate 6y and the third substrate 6z are arranged.
  • a material constituting the second light reflection variable portion 32 is injected. Since the material constituting the second light reflection variable portion 32 can be liquid crystal, the second light reflection variable portion 32 can be easily formed by an injection method.
  • the outer periphery of the second substrate 6y and the third substrate 6z may be bonded with an adhesive.
  • the adhesive may function as a spacer.
  • lamination is performed from the first surface F1 side.
  • the outer surface of the first substrate 6x is the first surface F1
  • the outer surface of the third substrate 6z is the second surface F2.
  • the lamination may be performed from the second surface F2 side.
  • the planar light emitter 100 can be obtained.
  • FIG. 26 shows an example of the function of the planar light emitter 100.
  • each part is schematically illustrated. Arrows indicate the progress of light.
  • the functioning part is indicated by hatching. “Functional” means that the light scattering property is exhibited in the light scattering variable portion 20, the light is emitted in the planar light emitting portion 10, and the light reflection is reflected in the light reflection variable portion 30. It is in a state where sex is being demonstrated. If each part is not functioning, it can be transparent. In order to simplify the description, an intermediate state of light scattering and light reflectivity is not shown, but an intermediate state may be present. Moreover, although the light absorption variable part 40 is not shown, it will be understood that the light absorption variable part 40 is provided. In FIG. 26, FIGS. 26A to 26G are different in the function state of each part, and are in different states as the planar light emitter 100. FIG.
  • Table 1 is a table corresponding to the state of the planar light emitter 100 shown in FIG.
  • the functioning part is displayed as ON, and the functioning part is displayed as OFF.
  • ON may be considered “ON” and OFF may be considered “OFF”.
  • Each part may be controlled to be ON and OFF by switching.
  • the ON and OFF may be different from the presence or absence of voltage application.
  • the light scattering variable unit 20 may exhibit light scattering properties when no voltage is applied, and may not exhibit light scattering properties when a voltage is applied. Turns on when no voltage is applied.
  • the light reflection variable unit 30 may exhibit light reflectivity when no voltage is applied and may not exhibit light reflectivity when a voltage is applied. In this case, the voltage application is OFF. Thus, it is turned on when no voltage is applied.
  • Such control is easily performed when the liquid crystal is used as a light scattering variable or light reflection variable material.
  • planar light emitting body 100 can be arranged with the first surface F1 on the indoor side and the second surface F2 on the outdoor side.
  • the planar light-emitting body 100 has high utility value because it can change optical characteristics.
  • FIG. 26A shows the state A, where the light reflection variable unit 30 is ON, and the planar light emitting unit 10 and the light scattering variable unit 20 are OFF.
  • the light reflection variable unit 30 exhibits light reflectivity.
  • the planar light emitting unit 10 does not emit light, and the light scattering variable unit 20 is transparent without having light scattering properties.
  • the light from the outside (the second surface F2 side) is reflected by the light reflection variable unit 30 and does not enter the inside (the first surface F1 side). Therefore, it can have a light shielding effect.
  • light from the inside (first surface F1 side) is reflected by the light reflection variable unit 30 and returns to the inside (first surface F1 side). Therefore, it can function as a mirror.
  • it may not function as a mirror depending on the degree of reflectivity.
  • FIG. 26B shows a state B, where the light reflection variable unit 30 and the light scattering variable unit 20 are OFF, and the planar light emitting unit 10 is ON.
  • the planar light emitting unit 10 emits light.
  • the light reflection variable unit 30 is transparent without having light reflectivity.
  • the light scattering variable unit 20 is transparent without having light scattering properties.
  • the light generated in the planar light emitting unit 10 is emitted inside (the first surface F1 side). Therefore, it can have a lighting effect. Further, the light from the outside (second surface F2 side) reaches the inside (first surface F1 side) through the light reflection variable portion 30, the planar light emitting portion 10, and the light scattering variable portion 20. During the day, outside light can be used.
  • the light to the inside can be used for illumination
  • the light to the outside can be used for illumination.
  • FIG. 26C shows a state C, in which the light reflection variable unit 30 and the planar light emitting unit 10 are OFF, and the light scattering variable unit 20 is ON.
  • the state B the light scattering variable unit 20 exhibits light scattering properties.
  • the planar light emitting unit 10 does not emit light, and the light reflection variable unit 30 is transparent without having light reflectivity.
  • the state C the light from the outside (the second surface F2 side) is scattered by the light scattering variable unit 20, and the scattered light is emitted inside (the first surface F1 side). Light from the inside (first surface F1 side) is scattered by the light scattering variable unit 20, and scattered light is emitted to the outside (second surface F2 side).
  • the planar light-emitting body 100 is in a semitransparent state. Thereby, since it can be made to look blurry through light, the function of privacy protection can be provided. In the daytime, it is possible to obtain daylighting from the outside while protecting the privacy. In the state C, the planar light-emitting body 100 can be ground glass or cloudy glass.
  • FIG. 26D shows a state D, where the light reflection variable section 30 and the planar light emitting section 10 are ON, and the light scattering variable section 20 is OFF.
  • the planar light emitting unit 10 emits light.
  • the light reflection variable unit 30 exhibits light reflectivity.
  • the light scattering variable unit 20 is transparent without having light scattering properties.
  • the light generated by the planar light emitting unit 10 is emitted inside (the first surface F1 side). At this time, not only the light directly directed from the light emitting source of the planar light emitting unit 10 toward the first surface F1 but also the light directed from the light emitting source toward the second surface F2 is reflected by the light reflection variable unit 30 to be reflected on the first surface.
  • the light can be emitted from the first surface F ⁇ b> 1 by converting the light toward the F ⁇ b> 1 side. Therefore, the luminous efficiency can be increased, and the illumination effect can be increased. Moreover, similarly to the state A, the light from the outside can be blocked and the light shielding effect can be exhibited. In the state D, since light is not scattered by the light scattering variable unit 20, light with high orientation can be obtained, and light can be emitted with high efficiency in a specific direction.
  • FIG. 26E shows a state E, in which the planar light emitting unit 10 and the light scattering variable unit 20 are ON, and the light reflection variable unit 30 is OFF.
  • the planar light emitting unit 10 emits light.
  • the light scattering variable unit 20 exhibits light scattering properties.
  • the light reflection variable unit 30 is transparent without having light reflectivity.
  • the light generated in the planar light emitting unit 10 is emitted inside (the first surface F1 side).
  • the light traveling from the planar light emitting unit 10 toward the inside (the first surface F1 side) can be scattered by the light scattering variable unit 20, and the scattered light can be emitted to the inside. Therefore, angle dependency can be reduced and light can be obtained, and a high illumination effect can be obtained.
  • the light reflection variable part 30 since the light reflection variable part 30 is not functioning, the light generated in the planar light emitting part 10 is directed to the outside (the second face F2 side). Therefore, double-sided light emission is also possible.
  • FIG. 26F shows the state F, and the light reflection variable section 30, the planar light emitting section 10, and the light scattering variable section 20 are ON.
  • the planar light emitting unit 10 emits light.
  • the light scattering variable unit 20 exhibits light scattering properties.
  • the light reflection variable unit 30 exhibits light reflectivity.
  • the light generated in the planar light emitting unit 10 is emitted inside (the first surface F1 side). At this time, not only the light directly directed from the light emitting source of the planar light emitting unit 10 toward the first surface F1 but also the light directed from the light emitting source toward the second surface F2 is reflected by the light reflection variable unit 30 to be reflected on the first surface.
  • the light can be emitted from the first surface F ⁇ b> 1 by converting the light toward the F ⁇ b> 1 side. Moreover, the light which goes to the inside (1st surface F1 side) from the planar light emission part 10 is scattered by the light-scattering variable part 20, and the scattered light can be radiate
  • FIG. 26G shows the state G, and the light reflection variable portion 30, the planar light emitting portion 10, and the light scattering variable portion 20 are OFF.
  • the planar light emitting unit 10 does not emit light.
  • the light scattering variable unit 20 is transparent without having light scattering properties.
  • the light reflection variable unit 30 is transparent without having light reflectivity.
  • light from one of the inside (the first surface F1 side) and the outside (the second surface F2 side) can pass through the other. Therefore, it can be used as a transparent member. For example, it can be used as a transparent window.
  • lighting from the outside to the inside is possible.
  • the function when the planar light emitter 100 has the light absorption variable portion 40 can be understood based on FIG.
  • the light absorption variable part 40 When the light absorption variable part 40 is turned on, the light absorption variable part 40 exhibits light absorption. When the light absorption variable part 40 is turned off, the light absorption variable part 40 does not have light absorption and becomes transparent.
  • the light absorption variable unit 40 When the light absorption variable unit 40 is OFF, the function is the same as described with reference to FIG.
  • the light absorption variable unit 40 When the light absorption variable unit 40 is turned on, it is possible to suppress or eliminate the passage of light from the outside (second surface F2 side) to the inside (first surface F1 side). Therefore, it is possible to suppress deterioration of the planar light emitter 100 due to light.
  • it is possible to enhance the ultraviolet blocking effect by suppressing the penetration of ultraviolet rays into the indoor space, or to enhance the heat shielding effect by suppressing the penetration of infrared rays into the indoor space.
  • the light absorption variable portion 40 When the light absorption variable portion 40 is provided, the following functions are exhibited in each state.
  • the state A of FIG. 26A when the light absorption variable unit 40 is turned on, light reflection on the outside (the second surface F2 side) can be eliminated.
  • the states B, D, E, and F of FIGS. 26B, 26D, 26E, and 26F when the light absorption variable unit 40 is turned on, light is emitted on the second surface F2 side behind the planar light emitting unit 10. By exhibiting the absorptivity, the contrast of light can be increased and clearer light emission can be obtained.
  • states B and E in FIGS. 26B and 26E light can be prevented from being emitted to the outside (the second surface F2 side).
  • the light absorption variable unit 40 when the light absorption variable unit 40 is turned on, light shielding can be performed.
  • the light absorption variable unit 40 when the light from the planar light emitting unit 10 is extracted and used for illumination or the like, it is more preferable that the light absorption variable unit 40 is further ON in the state F.
  • the light absorption variable section 40 is preferably black.
  • planar light emitter 100 may have functions other than those described above.
  • the planar light emitter 100 can suppress glare.
  • the planar light emitter 100 can be used as a curtain that blocks light.
  • the brightness and the color can be adjusted.
  • the planar light emitter 100 can change its optical state by switching.
  • the planar light emitter 100 can be applied to various uses that can utilize the optical characteristics described above.
  • the planar light emitter 100 can be used as a lighting device.
  • the illuminating device constituted by the planar light emitter 100 it is possible to obtain excellent light emission characteristics at the time of lighting.
  • light when not lit, light can be reflected to block or mirror, or transmitted to make the opposite side visible, or to be translucent to protect privacy.
  • FIG. 27 is an example of the planar light emitter 100, which is an example used for a lighting device.
  • the planar light emitting body 100 preferably includes a frame body 60 that surrounds the light scattering variable section 20, the planar light emitting section 10, and the light reflection variable section 30 on the outer periphery. Thereby, the intensity
  • the frame 60 surrounds the light absorption variable part 40 by outer periphery.
  • the frame body 60 preferably has a power feeding unit 61. Thereby, since electricity can be supplied to the planar light-emitting body 100, said function can be exhibited effectively.
  • the power feeding unit 61 is electrically connected to the electrode 5. Thereby, electricity can be supplied to the planar light emitter 100.
  • the power feeding unit 61 is preferably connected to the electrode 5 so as not to be electrically short-circuited.
  • the power feeding unit 61 corresponding to each of the electrode 5a and the electrode 5b of the planar light emitting unit 10 is provided in an insulated manner. The same applies to the light scattering variable unit 20, the light reflection variable unit 30, and the light absorption variable unit 40.
  • the power feeding unit 61 can be composed of an electrode pad, a metal member, or the like.
  • the power feeding unit 61 is preferably configured to be connected to an external power source. Thereby, electricity can be easily supplied.
  • the planar light emitter 100 may be capable of having an internal power source such as a battery in the frame body 60. By using an internal power supply, it is possible to drive without requiring an external power supply.
  • the power feeding unit 61 and the electrode 5 may be electrically connected in a contact manner or may be electrically connected in a non-contact manner.
  • the power supply unit 61 and the electrode 5 are preferably configured to be capable of supplying power in a non-contact manner.
  • the non-contact type it is easy to form a power feeding structure.
  • the non-contact type power feeding is a method in which electricity can be conducted when the portion of the electrode 5 that receives electricity and the power feeding portion 61 are not in direct contact with each other because they are close to each other.
  • an openable / closable window having the planar light emitter 100 can be easily formed.
  • power may be supplied in a contact manner, in which case electricity can be easily passed.
  • the frame 60 preferably has a power storage unit 62.
  • the power storage unit 62 can be configured by a battery such as a secondary battery. For example, a lithium battery may be used.
  • the power storage unit 62 is preferably electrically connected to the power supply unit 61. Thereby, electricity can be supplied to the power feeding unit 61.
  • the power storage unit 62 may be electrically connected to an external power source. In that case, the power storage unit 62 can be charged. Note that in the planar light emitter 100 that is not connected to an external power source, the power storage unit 62 can be an internal power source.
  • FIG. 27A is an example in which a frame body 60 is provided on the outer peripheral portion of one planar light-emitting body 100.
  • the frame body 60 includes a power feeding unit 61 and a power storage unit 62.
  • the planar light emitter 100 may have a shape such as a rectangle or a square. Thereby, it becomes easy to arrange in a planar shape. Moreover, handleability can be improved.
  • the shape of the planar light emitter 100 is not limited to this, and may be a polygonal shape or a circular shape.
  • 27B and 27C are examples in which a plurality of planar light emitters 100 are arranged in a planar shape.
  • a plurality of planar light emitters 100 may be arranged in a planar shape.
  • four planar light emitters 100 are used.
  • the number of planar light emitters 100 is not limited to four, and may be 9, 16, 25, and the like.
  • the shape of the planar light emitters 100 (illumination device) arranged in a planar shape may be a rectangle, a square, or the like.
  • the plurality of planar light emitters 100 are arranged in contact with each other without the frame body 60 interposed therebetween. Thereby, the shadow of the frame 60 is suppressed, and the optical characteristics can be improved.
  • each of the plurality of planar light emitting bodies 100 is surrounded by the frame body 60 and arranged in a planar shape via the frame body 60.
  • power supply is facilitated, and electricity can be supplied more uniformly to the individual planar light emitters 100.
  • the part of the frame 60 can be used as a frame pattern, and the design property can be improved.
  • a frame 60 is disposed between the adjacent planar light emitters 100.
  • the states of the individual planar light emitters 100 are individually controlled.
  • the planar light emitter 100 can be divided into segments.
  • a desired function can be provided for each desired portion, so that optical characteristics can be improved. For example, it is possible to perform control such that part of the light is emitted and used as illumination, and the other part is scattered to form a frosted glass.
  • FIG. 27C is more advantageous for performing individual control.
  • 27A to 27C can be used as a lighting device.
  • 27A to 27C can be used as a building material.
  • 27A to 27C can be used as a window.
  • a window that creates different states of optical properties can be defined as an active window.
  • the planar light-emitting body 100 is an aspect that is preferably used as a building material.
  • the building material excellent in the optical characteristic can be obtained.
  • a window is more preferable.
  • the window can be used for either the inner window or the outer window.
  • an in-vehicle window can be used as the window.
  • the in-vehicle window may be a window for vehicles such as an automatic vehicle, a train, a locomotive, and a train, an airplane, and a ship.
  • building materials it can also be used for wall materials, partitions, signage and the like.
  • the signage may be a so-called lighting advertisement.
  • the wall material may be for the outer wall or for the inner wall.
  • the planar light emitter 100 may be a display device.
  • the display device may include a display structure such as a TFT.
  • the display structure may be formed in a planar shape and overlapped with the planar light emitter 100 in the thickness direction.
  • the display structure may be incorporated in the planar light emitter 100 or may be superimposed on the surface of the planar light emitter 100.
  • the display device can be used as a signage. For example, a signage that displays an image can be obtained.
  • the planar light emitter 100 may include one or more of a heat insulating layer, an ultraviolet cut layer, and an infrared cut layer.
  • a heat insulating layer When the heat insulating layer is provided, the heat insulating effect can be enhanced.
  • the ultraviolet cut layer When the ultraviolet cut layer is provided, the transmission of ultraviolet rays can be suppressed.
  • the infrared cut layer When the infrared cut layer is provided, the heat shielding effect can be enhanced.
  • the ultraviolet cut layer is preferably provided on the second surface F2 side with respect to the planar light emitting unit 10, and more preferably provided on the second surface F2 side with respect to the light reflection variable unit 30.
  • the ultraviolet cut layer may be provided on both sides.
  • the heat insulation layer, the ultraviolet ray cut layer, and the infrared ray cut layer are transparent. Thereby, each function can be provided while maintaining the optical characteristics of the planar light emitter 100.
  • the planar light emitter 100 may include all of a heat insulating layer, an ultraviolet cut layer, and an infrared cut layer.
  • FIG. 28 is a schematic perspective view showing an example of a window provided with the planar light emitter 100.
  • the hidden part is illustrated as appropriate, and the front part is disassembled so that the layer structure can be understood.
  • This window can be a building material.
  • This window can be a lighting device.
  • the window may be a built-in window or a window that can be opened and closed.
  • the window includes a planar light emitter 100 having a light scattering variable portion 20, a planar light emitting portion 10, and a light reflection variable portion 30. Therefore, the function described above can be exhibited, and a window having excellent optical characteristics can be obtained.
  • the pattern 63 is embedded in the planar light emitter 100.
  • the design can be enhanced by the pattern 63.
  • the pattern 63 may be a fibrous pattern.
  • the pattern 63 may be configured by a pattern.
  • the pattern 63 is preferably made of a conductive material and is in contact with the electrode 5. Thereby, the electrical conductivity of the electrode 5 can be assisted, and the electrical efficiency can be enhanced while improving the design.
  • the planar light emitter 100 may not have the pattern 63.
  • the frame 60 can be a sash.
  • the frame body 60 has a power feeding unit 61. Therefore, electricity can be supplied to the planar light emitter 100.
  • the frame 60 has a power storage unit 62. Therefore, the driving of the planar light emitter 100 can be stabilized.
  • the frame body 60 may have a ventilation port 64. Thereby, arousal can be performed.
  • the ventilation port 64 is preferably configured to be openable and closable.
  • the ventilation port 64 can be comprised with a louver etc., for example.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This planar light-emitting body (100) contains a planar light-emitting section (10), a variable light-scattering section (20), and a variable light-reflecting section (30). The planar light-emitting section (10) comprises a light-transmitting organic electroluminescent element. The degree to which the variable light-scattering section (20) scatters light can be changed, as can the degree to which the variable light-reflecting section (30) reflects light. The planar light-emitting body (100) has a first surface (F1), which is designed so as to extract light from the planar light-emitting section (10), and a second surface (F2) on the opposite side from said first surface (F1). The variable light-scattering section (20), the planar light-emitting section (10), and the variable light-reflecting section (30) are laid out between the first surface (F1) and the second surface (F2) in the thickness direction. The variable light-reflecting section (30) is closer to the second surface (F2) than either the planar light-emitting section (10) or the variable light-scattering section (20) is.

Description

面状発光体、それを用いた照明装置及び建材Planar light emitter, lighting device and building material using the same
 面状発光体、それを用いた照明装置及び建材が開示される。より詳しくは、有機エレクトロルミネッセンス素子を利用した面状発光体、照明装置及び建材が開示される。 A planar light emitter, a lighting device using the same, and a building material are disclosed. More specifically, a planar light emitter, an illuminating device, and a building material using an organic electroluminescence element are disclosed.
 近年、有機エレクトロルミネッセンス素子(以下「有機EL素子」ともいう)が照明パネルなどの用途に応用されている。有機EL素子としては、対となる二つの電極と、これらの電極の間に配置され発光層を含む一又は複数の層により構成される有機発光層とを有するものが知られている。対となる電極のうちの一方が陽極として機能し、他方が陰極として機能する。有機EL素子では、陽極と陰極の間に電圧を印加することによって、発光層で発した光が光透過性の電極を通して外部に取り出される。 In recent years, organic electroluminescence elements (hereinafter also referred to as “organic EL elements”) have been applied to applications such as lighting panels. As an organic EL element, an element having two electrodes as a pair and an organic light emitting layer constituted by one or a plurality of layers disposed between these electrodes and including a light emitting layer is known. One of the pair of electrodes functions as an anode, and the other functions as a cathode. In the organic EL element, by applying a voltage between the anode and the cathode, light emitted from the light emitting layer is extracted to the outside through the light transmissive electrode.
 有機EL素子は、厚みが薄く、面状に発光するため、面状発光体として利用される。有機EL素子を備えた面状発光体は、次世代照明として期待されている。そのため、発光特性を向上する種々の提案がなされている。 The organic EL element has a small thickness and emits light in a planar shape, and thus is used as a planar light emitter. Planar light emitters equipped with organic EL elements are expected as next-generation illumination. Therefore, various proposals for improving the light emission characteristics have been made.
 日本国特許公開2013-201009号には、光の進行方向を変化させる光学層を有する有機EL素子が開示されている。光学層を設けることで、光学的な特性を変化することのできる有機EL素子を得ている。光学的な特性が変化すると、これまでにない照明装置を構築することも可能である。しかしながら、次世代照明においては、光学特性の優れたさらなる有機EL素子の開発が望まれている。 Japanese Patent Publication No. 2013-201209 discloses an organic EL element having an optical layer that changes the traveling direction of light. By providing an optical layer, an organic EL element capable of changing optical characteristics is obtained. When the optical characteristics change, it is possible to construct an unprecedented lighting device. However, in next-generation illumination, development of further organic EL elements having excellent optical characteristics is desired.
 本開示の目的は、光学特性に優れた面状発光体を提供することである。 An object of the present disclosure is to provide a planar light emitter excellent in optical characteristics.
 面状発光体が開示される。面状発光体は、光透過性を有する有機エレクトロルミネッセンス素子で構成される面状発光部と、光散乱性の程度が変化可能な光散乱可変部と、光反射性の程度が変化可能な光反射可変部と、を備えている。面状発光体は、前記面状発光部からの光を取り出すように構成された第1面と、前記第1面とは反対側に配置された第2面とを有している。前記光散乱可変部と前記面状発光部と前記光反射可変部とは、前記第1面と前記第2面との間において厚み方向に配置されている。前記光反射可変部は、前記面状発光部及び前記光散乱可変部よりも前記第2面側に配置されている。 A planar light emitter is disclosed. The planar light emitter is composed of a planar light-emitting unit composed of an organic electroluminescent element having light transparency, a light scattering variable unit that can change the degree of light scattering, and light that can change the degree of light reflection. And a reflection variable section. The planar light emitter has a first surface configured to extract light from the planar light emitting unit, and a second surface disposed on the opposite side of the first surface. The light scattering variable portion, the planar light emitting portion, and the light reflection variable portion are disposed in the thickness direction between the first surface and the second surface. The light reflection variable part is disposed closer to the second surface than the planar light emitting part and the light scattering variable part.
 照明装置が開示される。照明装置は、前記面状発光体と、給電部とを備える。 A lighting device is disclosed. The lighting device includes the planar light emitter and a power feeding unit.
 建材が開示される。建材は、前記面状発光体と、給電部とを備える。 Construction materials will be disclosed. A building material includes the planar light emitter and a power feeding unit.
 本開示の面状発光体は、面状発光部、光散乱可変部及び光反射可変部を有することにより、光学的に異なる状態を作り出すことができる。また、光反射可変部が面状発光部及び光散乱可変部よりも第2面側に配置されていることにより、高効率の発光を得ることができる。その結果、光学特性に優れた面状発光体を得ることができる。 The planar light-emitting body of the present disclosure can create an optically different state by having a planar light-emitting part, a light scattering variable part, and a light reflection variable part. Further, since the light reflection variable portion is arranged on the second surface side of the planar light emitting portion and the light scattering variable portion, it is possible to obtain highly efficient light emission. As a result, a planar light emitter excellent in optical characteristics can be obtained.
実施形態1の面状発光体を示す模式的な断面図である。3 is a schematic cross-sectional view showing the planar light emitter of Embodiment 1. FIG. 実施形態2の面状発光体を示す模式的な断面図である。6 is a schematic cross-sectional view showing a planar light emitter according to Embodiment 2. FIG. 実施形態3の面状発光体を示す模式的な断面図である。6 is a schematic cross-sectional view showing a planar light emitter according to Embodiment 3. FIG. 実施形態4の面状発光体を示す模式的な断面図である。6 is a schematic cross-sectional view showing a planar light emitter according to Embodiment 4. FIG. 実施形態5の面状発光体を示す模式的な断面図である。FIG. 6 is a schematic cross-sectional view showing a planar light emitter according to a fifth embodiment. 実施形態6の面状発光体を示す模式的な断面図である。FIG. 10 is a schematic cross-sectional view showing a planar light emitter according to a sixth embodiment. 実施形態7の面状発光体を示す模式的な断面図である。FIG. 10 is a schematic cross-sectional view showing a planar light emitter according to a seventh embodiment. 実施形態8の面状発光体を示す模式的な断面図である。FIG. 10 is a schematic cross-sectional view showing a planar light emitter according to an eighth embodiment. 実施形態9の面状発光体を示す模式的な断面図である。10 is a schematic cross-sectional view showing a planar light emitter of Embodiment 9. FIG. 実施形態10の面状発光体を示す模式的な断面図である。FIG. 10 is a schematic cross-sectional view showing a planar light emitter according to a tenth embodiment. 実施形態11の面状発光体を示す模式的な断面図である。FIG. 12 is a schematic cross-sectional view showing a planar light emitter according to an eleventh embodiment. 実施形態12の面状発光体の一部を示す模式的な断面図である。14 is a schematic cross-sectional view showing a part of a planar light emitter of Embodiment 12. FIG. 実施形態13の面状発光体を示す模式的な断面図である。FIG. 16 is a schematic cross-sectional view showing a planar light emitter according to a thirteenth embodiment. 実施形態14の面状発光体を示す模式的な断面図である。FIG. 16 is a schematic cross-sectional view showing a planar light emitter according to a fourteenth embodiment. 実施形態15の面状発光体を示す模式的な断面図である。FIG. 17 is a schematic cross-sectional view showing a planar light emitter according to a fifteenth embodiment. 実施形態16の面状発光体を示す模式的な断面図である。FIG. 18 is a schematic cross-sectional view showing a planar light emitter according to a sixteenth embodiment. 実施形態17の面状発光体を示す模式的な断面図である。FIG. 20 is a schematic cross-sectional view showing a planar light emitter according to a seventeenth embodiment. 実施形態18の面状発光体を示す模式的な断面図である。FIG. 22 is a schematic cross-sectional view showing a planar light emitter according to an eighteenth embodiment. 実施形態19の面状発光体を示す模式的な断面図である。FIG. 20 is a schematic cross-sectional view showing a planar light emitter according to a nineteenth embodiment. 実施形態20の面状発光体を示す模式的な断面図である。FIG. 22 is a schematic cross-sectional view showing a planar light emitter according to a twentieth embodiment. 実施形態21の面状発光体を示す模式的な断面図である。FIG. 22 is a schematic cross-sectional view showing a planar light emitter according to a twenty-first embodiment. 実施形態22の面状発光体を示す模式的な断面図である。FIG. 22 is a schematic cross-sectional view showing a planar light emitter according to a twenty-second embodiment. 実施形態23の面状発光体を示す模式的な断面図である。FIG. 25 is a schematic cross-sectional view showing a planar light emitter according to a twenty-third embodiment. 図24は、図24A及び図24Bにより構成される。図24Aは、光透過性を有する電極の一例を示す模式的な断面図である。図24Bは、補助配線の一例を示す模式的な平面図である。FIG. 24 is configured by FIG. 24A and FIG. 24B. FIG. 24A is a schematic cross-sectional view showing an example of a light-transmitting electrode. FIG. 24B is a schematic plan view illustrating an example of auxiliary wiring. 図25は、図25A~図25Eにより構成される。図25は、面状発光体の製造方法の一例を示す概略的な斜視図である。図25A~図25Eは各工程を示す。FIG. 25 is configured by FIGS. 25A to 25E. FIG. 25 is a schematic perspective view showing an example of a method for manufacturing a planar light emitter. 25A to 25E show the respective steps. 図26は、図26A~図26Gにより構成される。図26A~図26Gは、面状発光体の各状態を示す説明図である。FIG. 26 is configured by FIGS. 26A to 26G. 26A to 26G are explanatory views showing the states of the planar light emitter. 図27は、図27A~図27Cにより構成される。図27A~図27Cは、照明装置の一例を示す概略斜視図である。FIG. 27 is configured by FIGS. 27A to 27C. 27A to 27C are schematic perspective views showing an example of the illumination device. 面状発光体を用いた窓の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the window using a planar light-emitting body.
 面状発光体100が開示される。面状発光体100は、光透過性を有する有機エレクトロルミネッセンス素子(有機EL素子)で構成される面状発光部10と、光散乱性の程度が変化可能な光散乱可変部20と、光反射性の程度が変化可能な光反射可変部30とを備えている。面状発光体100は、面状発光部10からの光を取り出すように構成された第1面F1と、第1面F1とは反対側に配置された第2面F2とを有している。光散乱可変部20と面状発光部10と光反射可変部30とは、第1面F1と第2面F2との間において厚み方向に配置されている。光反射可変部30は、面状発光部10及び光散乱可変部20よりも第2面F2側に配置されている。 A planar light emitter 100 is disclosed. The planar light emitter 100 includes a planar light emitting unit 10 composed of a light-transmitting organic electroluminescence element (organic EL element), a light scattering variable unit 20 that can change the degree of light scattering, and light reflection. And a light reflection variable unit 30 capable of changing the degree of the property. The planar light emitter 100 has a first surface F1 configured to extract light from the planar light emitting unit 10 and a second surface F2 disposed on the opposite side of the first surface F1. . The light scattering variable unit 20, the planar light emitting unit 10, and the light reflection variable unit 30 are arranged in the thickness direction between the first surface F1 and the second surface F2. The light reflection variable unit 30 is disposed on the second surface F2 side with respect to the planar light emitting unit 10 and the light scattering variable unit 20.
 面状発光体100においては、面状発光部10、光散乱可変部20及び光反射可変部30を有することにより、光学的に異なる状態を作り出すことができる。また、光反射可変部30が面状発光部10及び光散乱可変部20よりも第2面F2側に配置されていることにより、高効率の発光を得ることができる。その結果、光学特性に優れた面状発光体100を得ることができる。 In the planar light emitter 100, by having the planar light emitting unit 10, the light scattering variable unit 20, and the light reflection variable unit 30, an optically different state can be created. In addition, since the light reflection variable portion 30 is arranged on the second surface F2 side with respect to the planar light emitting portion 10 and the light scattering variable portion 20, highly efficient light emission can be obtained. As a result, it is possible to obtain the planar light emitter 100 having excellent optical characteristics.
 図1~図23は、それぞれ実施形態1~23を示している。実施形態1~23は、いずれも上記の構成を備えている。そのため、光学的に異なる状態を作り出すことができ、また、高効率で発光することができるため、優れた光学特性を得ることができる。 1 to 23 show Embodiments 1 to 23, respectively. Embodiments 1 to 23 all have the above-described configuration. Therefore, optically different states can be created, and light can be emitted with high efficiency, so that excellent optical characteristics can be obtained.
 まず、実施形態1~23の共通部分について説明する。なお、共通部分については、理解しやすいよう、各図を参照してよく、例えば、図1を参照してよい。なお、各実施形態は、代表例を示しているものであり、本発明は図1~23に示される実施形態に限定されるものではない。また、各図は面状発光体を理解しやすいように模式的に図示しているものであり、面状発光体の実際の寸法関係等は図面と異なるものであってよい。また、特に断りのない限り、各図において、同じ符号番号を付した構成は同じものを指し、その符号番号の構成に関して行った説明は、他の実施形態においても適用可能である。 First, common parts of Embodiments 1 to 23 will be described. In addition, about a common part, you may refer each figure so that it may be easy to understand, for example, you may refer FIG. Each embodiment shows a representative example, and the present invention is not limited to the embodiment shown in FIGS. Each drawing schematically shows the planar light emitter so that it can be easily understood, and the actual dimensional relationship and the like of the planar light emitter may be different from the drawings. Further, unless otherwise noted, in each drawing, the same reference numerals denote the same components, and the description given regarding the configuration of the reference symbols can be applied to other embodiments.
 面状発光体100は、電極5を複数有している。複数の電極5は光透過性を有する。それにより、光学特性の高い面状発光体100を得ることができる。電極5は、面状発光体100を駆動させるための電極として機能する。面状発光体100は、全体として透明である状態を発揮し得る。 The planar light emitter 100 has a plurality of electrodes 5. The plurality of electrodes 5 are light transmissive. Thereby, the planar light-emitting body 100 with a high optical characteristic can be obtained. The electrode 5 functions as an electrode for driving the planar light emitter 100. The planar light emitter 100 can exhibit a state of being transparent as a whole.
 電極5は、透明な導電層によって構成することができる。透明導電層の材料としては、透明金属酸化物、導電性粒子含有樹脂、金属薄膜などを用いることができる。電極5は、各部において好適化された導電性材料が用いられ得る。光透過性を有する電極5の材料の好ましいものとして、ITO、IZOなどの透明金属酸化物が例示される。透明金属酸化物によって構成される電極5は、面状発光部10の電極5に用いることが好適である。また、電極5は、銀ナノワイヤを含有する層や薄膜銀などの透明金属層であってもよい。また、透明金属酸化物の層と金属層とが積層されたものであってもよい。また、電極5は、後述するように、透明導電層5eに補助配線5fが設けられたものであってもよい(図24参照)。 The electrode 5 can be composed of a transparent conductive layer. As a material for the transparent conductive layer, a transparent metal oxide, a conductive particle-containing resin, a metal thin film, or the like can be used. The electrode 5 may be made of a conductive material optimized in each part. As a preferable material for the electrode 5 having optical transparency, transparent metal oxides such as ITO and IZO are exemplified. The electrode 5 made of a transparent metal oxide is preferably used for the electrode 5 of the planar light emitting unit 10. The electrode 5 may be a layer containing silver nanowires or a transparent metal layer such as thin film silver. Alternatively, a transparent metal oxide layer and a metal layer may be laminated. Further, as will be described later, the electrode 5 may be one in which the auxiliary wiring 5f is provided in the transparent conductive layer 5e (see FIG. 24).
 電極5は遮熱効果を有することが好ましい。それにより、熱の伝達を抑えることができるため、断熱性を高めることができる。断熱性が高いと、建材などに有利である。透明金属酸化物は遮熱効果を有し得るため、電極5の材料として有用である。特にITOは遮熱効果が高い。 The electrode 5 preferably has a heat shielding effect. Thereby, since heat transfer can be suppressed, heat insulation can be enhanced. High heat insulation is advantageous for building materials. Since the transparent metal oxide can have a heat shielding effect, it is useful as a material for the electrode 5. In particular, ITO has a high heat shielding effect.
 電極5は、外部電源との電気接続が可能なように構成されていてよい。面状発光体100は、電源50に接続するために、電極パッドや、電極パッドを電気的に集約した電気接続部などを有していてよい。電気接続部はプラグなどにより構成されていてもよい。 The electrode 5 may be configured to be electrically connected to an external power source. The planar light-emitting body 100 may have an electrode pad, an electrical connection part that electrically collects the electrode pad, and the like in order to connect to the power supply 50. The electrical connection part may be constituted by a plug or the like.
 電極5は、配線53により電源50に接続される。電源50として外部電源が用いられる場合には、面状発光体100は、配線53の途中までの部分(プラグ等までの部分)により構成されるものであってよい。電源50が内部電源である場合には、面状発光体100は電源50を含んだものであってもよい。 The electrode 5 is connected to the power source 50 by the wiring 53. When an external power source is used as the power source 50, the planar light emitter 100 may be configured by a part up to the middle of the wiring 53 (part up to a plug or the like). When the power source 50 is an internal power source, the planar light emitter 100 may include the power source 50.
 面状発光体100は、基板6を複数有していることが好ましい。複数の基板6は光透過性を有する。それにより、光学特性の高い面状発光体100を得ることができる。基板6は、面状発光体100の各層を支持するための基板として機能し得る。基板6は、面状発光体100の各層を封止するための基板として機能し得る。複数の基板6は厚み方向に配置されている。 The planar light emitter 100 preferably has a plurality of substrates 6. The plurality of substrates 6 are light transmissive. Thereby, the planar light-emitting body 100 with a high optical characteristic can be obtained. The substrate 6 can function as a substrate for supporting each layer of the planar light emitter 100. The substrate 6 can function as a substrate for sealing each layer of the planar light emitter 100. The plurality of substrates 6 are arranged in the thickness direction.
 面状発光体100は、対向する二つの基板6の間に、面状発光部10と光散乱可変部20と光反射可変部30とが配置されたものであることが好ましい。それにより、各部を基板6で保護することができる。面状発光体100の両側の表面には、基板6が配置されることが好ましい。対向する二つの基板6は、厚み方向の端部の基板6となる。面状発光体100は、厚み方向の端部に配置された対向する二つの基板6間に、他の基板6を一又は複数有していてもよい。 The planar light-emitting body 100 is preferably one in which the planar light-emitting unit 10, the light scattering variable unit 20, and the light reflection variable unit 30 are disposed between two opposing substrates 6. Thereby, each part can be protected by the substrate 6. It is preferable that the substrate 6 is disposed on the surfaces on both sides of the planar light emitter 100. The two opposing substrates 6 become the substrates 6 at the end in the thickness direction. The planar light emitter 100 may have one or a plurality of other substrates 6 between two opposing substrates 6 arranged at the end in the thickness direction.
 複数の基板6は、端部において接着されている。接着は接着剤によって行われている。接着剤から接着部7が形成されている。隣り合う基板6の間には厚み方向に隙間が設けられている。面状発光体100の各部を構成する層は、それらの基板6の隙間に配置されている。隣り合う基板6の間の隙間は接着部7がスペーサとなって設けられている。接着部7は、防湿性を有することが好ましい。それにより、面状発光体100の劣化を抑制することができる。 The plurality of substrates 6 are bonded at the ends. Adhesion is performed by an adhesive. An adhesive portion 7 is formed from an adhesive. A gap is provided between adjacent substrates 6 in the thickness direction. The layers constituting each part of the planar light emitter 100 are disposed in the gaps between the substrates 6. The gap between the adjacent substrates 6 is provided with the bonding portion 7 as a spacer. It is preferable that the adhesion part 7 has moisture resistance. Thereby, deterioration of the planar light emitter 100 can be suppressed.
 接着部7の材料としては、樹脂を用いることができる。樹脂としては、熱硬化性樹脂、紫外線硬化性樹脂などを用いることが好ましい。接着部7には、粒子などのスペーサ材が含まれていてもよい。それにより、基板6間の隙間の厚みを確保することができる。 Resin can be used as the material of the bonding part 7. As the resin, it is preferable to use a thermosetting resin, an ultraviolet curable resin, or the like. The bonding portion 7 may include a spacer material such as particles. Thereby, the thickness of the gap between the substrates 6 can be ensured.
 ここで、厚み方向とは、図1~23の各図において、縦の方向である。厚み方向とは、層が積層された方向と同じであってよい。厚み方向とは、基板6の表面に垂直な方向であってよい。面状発光体100においては、図1~23の各図において、各層は横方向及び紙面に垂直な方向に広がっていると考えることができる。各図においては、面方向は、横方向及び紙面に垂直な方向といってよい。 Here, the thickness direction is the vertical direction in each of FIGS. The thickness direction may be the same as the direction in which the layers are stacked. The thickness direction may be a direction perpendicular to the surface of the substrate 6. In the planar light emitting body 100, in each of FIGS. 1 to 23, each layer can be considered to spread in the horizontal direction and the direction perpendicular to the paper surface. In each figure, the surface direction may be referred to as a horizontal direction and a direction perpendicular to the paper surface.
 基板6として、ガラス基板、樹脂基板などを用いることができる。基板6をガラス基板で構成した場合、ガラスは透明性が高いため、光学特性の優れた面状発光体100を得ることができる。また、ガラスは水分の透過性が低いので、封止領域の内部に水分が浸入することを抑制することができる。また、基板6として樹脂基板を用いた場合、樹脂は破断しにくいために、破壊時の飛散が抑制された安全な面状発光体100を得ることができる。また、樹脂基板を用いた場合、フレキシブルな面状発光体100を得ることが可能である。 As the substrate 6, a glass substrate, a resin substrate, or the like can be used. When the substrate 6 is composed of a glass substrate, since the glass is highly transparent, it is possible to obtain the planar light emitter 100 having excellent optical characteristics. Further, since glass has low moisture permeability, moisture can be prevented from entering the sealed region. Further, when a resin substrate is used as the substrate 6, since the resin is not easily broken, a safe planar light emitter 100 in which scattering at the time of breakage is suppressed can be obtained. Further, when a resin substrate is used, it is possible to obtain a flexible planar light emitter 100.
 複数の基板6のうち、外側に配置される二つの基板6はガラス基板であることが好ましい。それにより、光学特性の優れた面状発光体100を得ることができる。複数の基板6の全てが、ガラス基板であってもよい。その場合、光学的な条件を制御しやすくなり、光学特性を高めることができる。内側の基板6のいずれか一つ以上が、樹脂基板であってもよい。その場合、破壊時の飛散を抑制することができ、安全な面状発光体100を得ることができる。基板6の表面は防汚材料によって被覆されていてもよい。その場合、基板6表面の汚染を低減することができる。防汚材料の被覆は、外側に配置される基板6の外部側表面に行われていることが好ましい。また、基板6が樹脂基板である場合、その表面が防湿材料によって被覆されていてもよい。その場合、封止性能を高めることができる。 Among the plurality of substrates 6, the two substrates 6 arranged on the outside are preferably glass substrates. Thereby, the planar light-emitting body 100 with excellent optical characteristics can be obtained. All of the plurality of substrates 6 may be glass substrates. In that case, optical conditions can be easily controlled, and optical characteristics can be enhanced. Any one or more of the inner substrates 6 may be a resin substrate. In that case, the scattering at the time of destruction can be suppressed and the safe planar light-emitting body 100 can be obtained. The surface of the substrate 6 may be covered with an antifouling material. In that case, contamination on the surface of the substrate 6 can be reduced. The antifouling material is preferably coated on the outer surface of the substrate 6 disposed outside. Moreover, when the board | substrate 6 is a resin substrate, the surface may be coat | covered with the moisture proof material. In that case, sealing performance can be improved.
 複数の基板6は、各実施形態においては、第1面F1側から、基板6a、基板6b、基板6c、基板6d、・・・と番号付けされる。もちろん、この番号付けは、説明のための便宜的なものである。 In each embodiment, the plurality of substrates 6 are numbered as the substrate 6a, the substrate 6b, the substrate 6c, the substrate 6d,... From the first surface F1 side. Of course, this numbering is for convenience of explanation.
 面状発光部10は、光透過性を有する有機EL素子で構成されている。有機EL素子は透明であってよい。有機EL素子は半透明であってもよい。光学特性を高めるためには、有機EL素子は透明であることが好ましい。有機EL素子の上に防湿材料が被覆されていてもよい。この場合、封止性能を向上させることができる。防湿材料は透明であることが好ましい。 The planar light emitting unit 10 is composed of a light-transmitting organic EL element. The organic EL element may be transparent. The organic EL element may be translucent. In order to enhance optical characteristics, the organic EL element is preferably transparent. A moisture-proof material may be coated on the organic EL element. In this case, the sealing performance can be improved. It is preferable that the moisture-proof material is transparent.
 面状発光部10は、対となる電極5a、5bと、この対となる電極5a、5bの間に配置された有機発光層1とを有している。有機EL素子は、電極5a及び電極5bの間に有機発光層1が配置された構成を有する素子である。面状発光部10が有機EL素子で構成されることにより、光学特性の優れた薄型で透明の発光体を形成することができる。有機発光層1は光透過性を有する。電極5a及び電極5bは光透過性を有する。そのため、発光時には、有機発光層1で発した光を厚み方向の両側に出射することができる。また、非発光時には、光を一方の側から他方の側に透過させることができる。 The planar light emitting unit 10 includes a pair of electrodes 5a and 5b and an organic light emitting layer 1 disposed between the pair of electrodes 5a and 5b. An organic EL element is an element which has the structure by which the organic light emitting layer 1 is arrange | positioned between the electrode 5a and the electrode 5b. By forming the planar light emitting unit 10 with an organic EL element, it is possible to form a thin and transparent light emitter with excellent optical characteristics. The organic light emitting layer 1 has light transmittance. The electrodes 5a and 5b are light transmissive. Therefore, at the time of light emission, the light emitted from the organic light emitting layer 1 can be emitted to both sides in the thickness direction. Further, when no light is emitted, light can be transmitted from one side to the other side.
 電極5a及び電極5bは、対となる電極である。電極5a及び電極5bは、一方が陽極を構成し、他方が陰極を構成する。電極5aは第1面F1側に配置され、電極5bは第2面F2側に配置されている。電極5aは光取り出し側の電極となる。各図では、電極5aが陰極で構成され、電極5bが陽極で構成された例が示されているが、電極5aが陽極で構成され、電極5bが陰極で構成されたものであってもよい。 The electrode 5a and the electrode 5b are a pair of electrodes. One of the electrode 5a and the electrode 5b constitutes an anode, and the other constitutes a cathode. The electrode 5a is disposed on the first surface F1 side, and the electrode 5b is disposed on the second surface F2 side. The electrode 5a is an electrode on the light extraction side. In each figure, an example is shown in which the electrode 5a is constituted by a cathode and the electrode 5b is constituted by an anode. However, the electrode 5a may be constituted by an anode and the electrode 5b may be constituted by a cathode. .
 有機発光層1は、発光を生じさせる機能を有する層であり、ホール注入層、ホール輸送層、発光層(発光材料を含有する層)、電子輸送層、電子注入層、中間層などから適宜選ばれる複数の機能層によって構成され得るものである。もちろん、有機発光層1は発光層の単層で構成されてもよい。有機EL素子では、電極5aと電極5bとに電圧を印加し、これらの間で電気を流すことにより、有機発光層1(特に発光材料含有層)において正孔と電子を結合させて発光を生じさせる。 The organic light emitting layer 1 is a layer having a function of causing light emission, and is appropriately selected from a hole injection layer, a hole transport layer, a light emitting layer (a layer containing a light emitting material), an electron transport layer, an electron injection layer, an intermediate layer, and the like. It can be constituted by a plurality of functional layers. Of course, the organic light emitting layer 1 may be composed of a single light emitting layer. In the organic EL element, a voltage is applied to the electrode 5a and the electrode 5b, and electricity is caused to flow between them, whereby light is emitted by combining holes and electrons in the organic light emitting layer 1 (particularly the light emitting material-containing layer). Let
 面状発光部10は、隣り合う基板6の間に配置されている。面状発光部10が二つの基板6の間に配置されることで、封止されている。封止により、有機発光層1の劣化が抑制される。二つの基板6は一対となっている。通常、有機EL素子は積層により形成される。その際、積層を行うための形成基板を要する。形成基板は、一対となった基板6の少なくともいずれかにより形成される。形成基板と対向する基板6は封止基板となる。封止基板は、一対となった基板6のうちの形成基板でない方により形成される。 The planar light emitting unit 10 is disposed between adjacent substrates 6. The planar light emitting unit 10 is sealed by being disposed between the two substrates 6. By the sealing, the deterioration of the organic light emitting layer 1 is suppressed. The two substrates 6 are a pair. Usually, an organic EL element is formed by lamination. At that time, a formation substrate for stacking is required. The formation substrate is formed of at least one of the pair of substrates 6. The substrate 6 facing the formation substrate is a sealing substrate. The sealing substrate is formed of the pair of substrates 6 that is not the formation substrate.
 有機EL素子は、電極5aと電極5bとの間に電気を流すことにより、有機発光層1において発光が生じる。電極5aと電極5bとは、配線53により、電源50に電気的に接続されている。電源50から給電を行うことにより、有機EL素子に電流が流れる。有機EL素子の電源50は直流電源51により構成されている。有機EL素子では一般的には電流の方向は一方向である。直流電源51により、安定した発光を得ることができる。なお、実施形態の各図では、電極5aが陰極となって直流電源51の陰極に電気的に接続され、電極5bが陽極となって直流電源51の陽極に電気的に接続された様子が示されているが、電流の向きはこの逆であってももちろんよい。有機EL素子の発光色は白色でもよいし、青色、緑色、又は赤色でもよい。もちろん、青から緑又は緑から赤までの間の中間色であってもよい。また、印加電流により調色可能であってもよい。 The organic EL element emits light in the organic light emitting layer 1 by passing electricity between the electrode 5a and the electrode 5b. The electrode 5 a and the electrode 5 b are electrically connected to the power source 50 through a wiring 53. By supplying power from the power supply 50, a current flows through the organic EL element. The organic EL element power supply 50 is constituted by a DC power supply 51. In the organic EL element, the direction of current is generally one direction. Stable light emission can be obtained by the DC power source 51. In each drawing of the embodiment, the electrode 5a serves as a cathode and is electrically connected to the cathode of the DC power supply 51, and the electrode 5b serves as an anode and is electrically connected to the anode of the DC power supply 51. Of course, the direction of the current may be reversed. The light emission color of the organic EL element may be white, blue, green, or red. Of course, it may be an intermediate color between blue and green or green and red. Further, the color may be adjusted by the applied current.
 光散乱可変部20は、光散乱性が変化する部分である。光散乱可変部20は、光散乱性の程度が変化可能に構成されている。光散乱性の程度が変化可能とは、高散乱状態と低散乱状態とを変化可能なことであってよい。あるいは、光散乱性の程度が変化可能とは、光散乱性を有する状態と、光散乱性を有さない状態とを変化可能なことであってもよい。光散乱性の程度が変化可能であると、光学的な状態を変化させることができ、光学特性の優れた面状発光体100を得ることができる。光散乱可変部20は層状に形成されていてよい。 The light scattering variable portion 20 is a portion where the light scattering property changes. The light scattering variable unit 20 is configured to be capable of changing the degree of light scattering. The fact that the degree of light scattering can be changed may mean that the high scattering state and the low scattering state can be changed. Alternatively, the fact that the degree of light scattering property can be changed may mean that the state having light scattering property and the state having no light scattering property can be changed. If the degree of light scattering can be changed, the optical state can be changed, and the planar light-emitting body 100 having excellent optical characteristics can be obtained. The light scattering variable portion 20 may be formed in a layer shape.
 高散乱状態とは、光散乱性が高い状態である。高散乱状態は、例えば、一方の面から入射した光が、散乱によって進行方向がいろいろな方向に変わって、他方の面に分散して出射する状態である。高散乱状態は、一方の面側から他方の面側に存在する物体を見たときに、物体がぼやけて見える状態であり得る。高散乱状態は、半透明な状態であり得る。光散乱可変部20が光散乱性を発揮する場合、光散乱可変部20は、光を散乱する散乱層として機能する。 The high scattering state is a state where the light scattering property is high. The high scattering state is, for example, a state in which light incident from one surface changes its traveling direction into various directions due to scattering and is dispersed and emitted to the other surface. The high scattering state may be a state in which an object appears blurry when an object existing from one surface side to the other surface side is viewed. The highly scattering state can be a translucent state. When the light scattering variable unit 20 exhibits light scattering properties, the light scattering variable unit 20 functions as a scattering layer that scatters light.
 低散乱状態とは、光散乱性が低い又は光散乱性がない状態である。低散乱状態は、例えば、一方の面から入射した光が、進行方向をそのまま維持して、他方の面に出射する状態である。低散乱状態は、一方の面側から他方の面側に存在する物体を見たときに、物体を明瞭に視認できる状態であり得る。低散乱状態は、透明な状態であり得る。 The low scattering state is a state where light scattering property is low or light scattering property is not present. The low scattering state is, for example, a state in which light incident from one surface is emitted to the other surface while maintaining the traveling direction as it is. The low scattering state may be a state where an object can be clearly visually recognized when an object existing on the other surface side is viewed from one surface side. The low scattering state can be a transparent state.
 光散乱可変部20は、光散乱性が高い高散乱状態と、光散乱性が低い又は光散乱性がない低散乱状態と、高散乱状態と低散乱状態との間の光散乱性を発揮する状態と、を有することが可能なように構成されていることが好ましい。高散乱状態と低散乱状態との間の光散乱性を発揮することができることで、中程度の光散乱性を付与することができるため、光学的な状態をバリエーション高く変化させることができ、光学特性をより向上することができる。ここでは、高散乱状態と低散乱状態との間の光散乱性を発揮する状態を、中散乱状態と呼ぶ。 The light scattering variable unit 20 exhibits a light scattering property between a high scattering state having a high light scattering property, a low scattering state having a low light scattering property or no light scattering property, and a high scattering state and a low scattering state. It is preferable that it is comprised so that it can have a state. The ability to exhibit light scattering properties between the high scattering state and the low scattering state can impart moderate light scattering properties, so that the optical state can be varied highly and optically. The characteristics can be further improved. Here, a state that exhibits light scattering between the high scattering state and the low scattering state is referred to as a medium scattering state.
 中散乱状態は、高散乱状態と低散乱状態との間において、少なくとも一つの散乱状態を有するものであってよい。例えば、高散乱状態と中散乱状態と低散乱状態との三つの状態を切り替えることにより、光散乱性を変化させることができると、光学特性が向上する。中散乱状態は、高散乱状態と低散乱状態との間において、散乱性の程度が複数の段階となった複数の状態を有するものであることが好ましい一態様である。それにより、散乱性の程度が複数の段階になるため、光学特性をより高めることができる。例えば、高散乱状態と複数の中散乱状態と低散乱状態との複数の状態を切り替えることにより、光散乱性を段階的に変化させることができると、光学特性が向上する。中散乱状態は、高散乱状態と低散乱状態との間において、高散乱状態から低散乱状態まで、連続的に変化するように構成されていることが好ましい一態様である。それにより、散乱性の程度が連続的に変化するものになるため、光学的な状態をバリエーション高く変化させることができ、光学特性をより高めることができる。例えば、高散乱状態と低散乱状態との間で目的とする光散乱性を発揮させる状態にして光散乱性を変化させることができると、中間状態を作り出すことができるため、光学特性が向上する。光散乱可変部20が、中散乱状態を有する場合、光散乱可変部20は、中散乱状態を維持できるように構成されていることが好ましい。 The medium scattering state may have at least one scattering state between the high scattering state and the low scattering state. For example, if the light scattering property can be changed by switching between three states of a high scattering state, a medium scattering state, and a low scattering state, the optical characteristics are improved. It is a preferable aspect that the medium scattering state has a plurality of states in which the degree of scattering is in a plurality of stages between the high scattering state and the low scattering state. Thereby, since the degree of scattering is in a plurality of stages, the optical characteristics can be further improved. For example, if the light scattering property can be changed in a stepwise manner by switching a plurality of states of a high scattering state, a plurality of medium scattering states, and a low scattering state, the optical characteristics are improved. It is a preferable aspect that the medium scattering state is configured to continuously change from the high scattering state to the low scattering state between the high scattering state and the low scattering state. Thereby, since the degree of scattering changes continuously, the optical state can be changed with high variation, and the optical characteristics can be further improved. For example, if the light scattering property can be changed between a high scattering state and a low scattering state so as to exhibit the desired light scattering property, an intermediate state can be created, so that the optical characteristics are improved. . When the light scattering variable unit 20 has a medium scattering state, the light scattering variable unit 20 is preferably configured to maintain the medium scattering state.
 光散乱可変部20は、少なくとも可視光の一部を散乱させるものであってよい。光散乱可変部20は可視光の全部を散乱させるものであることが好ましい。もちろん、光散乱可変部20は、赤外線を散乱させたり、紫外線を散乱させたりするものであってもよい。 The light scattering variable unit 20 may scatter at least a part of visible light. The light scattering variable unit 20 is preferably one that scatters all visible light. Of course, the light scattering variable unit 20 may scatter infrared rays or scatter ultraviolet rays.
 光散乱可変部20は、散乱量と散乱方向の少なくともいずれか一方を変化させることが可能なように構成されることが好ましい一態様である。散乱量及び散乱方向の変化は、中散乱状態において行われるものであってよい。散乱量が変化するとは、散乱の強さが変化することである。散乱方向が変化するとは、散乱する方向性が変化することである。散乱量及び散乱方向が変化すると、例えば、面状発光体100の反対側にある物体を視認したときに、物体の不明瞭性(ぼやけ方)の強さが変化する。そのため、非発光時において面状発光体100を通した物体の見え方を異ならせるようにしたり、発光時において面状発光部10で生じた光の配光性の制御を行ったりすることができ、光学特性を向上することができる。 The light scattering variable unit 20 is preferably configured so as to be able to change at least one of the scattering amount and the scattering direction. The change in the scattering amount and the scattering direction may be performed in a medium scattering state. Changing the amount of scattering means changing the intensity of scattering. Changing the scattering direction means changing the directionality of scattering. When the amount of scattering and the direction of scattering change, for example, when an object on the opposite side of the planar light emitter 100 is visually recognized, the intensity of ambiguity (blurring) of the object changes. Therefore, it is possible to change the appearance of an object through the planar light emitter 100 when no light is emitted, or to control the light distribution of the light generated by the planar light emitting unit 10 during light emission. The optical characteristics can be improved.
 光散乱可変部20は、光散乱性を発揮する状態では、第1面F1から第2面F2に向かう方向の光よりも、第2面F2から第1面F1に向かう方向の光に対する散乱性が高いことが好ましい。それにより、面状発光部10からの光をより散乱させることができるため、光学特性を向上することができる。もちろん、光散乱可変部20は、光散乱性を発揮する状態で、第1面F1から第2面F2に向かう方向の光と、第2面F2から第1面F1に向かう方向の光との光散乱性が同じであってもよい。あるいは、光散乱可変部20は、光散乱性を発揮する状態で、第1面F1から第2面F2に向かう方向の光の方が、第2面F2から第1面F1に向かう方向の光よりも光散乱性が高くてもよい。 In a state where the light scattering variable portion 20 exhibits light scattering properties, the light scattering variable portion 20 has a scattering property for light in a direction from the second surface F2 to the first surface F1 rather than light in a direction from the first surface F1 to the second surface F2. Is preferably high. Thereby, since the light from the planar light emission part 10 can be scattered more, an optical characteristic can be improved. Of course, the light scattering variable portion 20 is in a state of exhibiting light scattering properties, and includes light in a direction from the first surface F1 toward the second surface F2 and light in a direction from the second surface F2 toward the first surface F1. The light scattering properties may be the same. Alternatively, the light scattering variable unit 20 exhibits light scattering properties, and light in a direction from the first surface F1 toward the second surface F2 is light in a direction from the second surface F2 toward the first surface F1. The light scattering property may be higher than that.
 光散乱可変部20は、光散乱性の程度が変化可能な適宜の構造で形成され得る。光散乱可変部20は、電界変調、温度変調などのものであってよい。電界変調は、電界をかけることによって光散乱性が変化する方式である。温度変調は、温度によって光散乱性が変化する方式である。 The light scattering variable portion 20 can be formed with an appropriate structure capable of changing the degree of light scattering. The light scattering variable unit 20 may be an electric field modulation, a temperature modulation, or the like. Electric field modulation is a method in which the light scattering property is changed by applying an electric field. Temperature modulation is a method in which the light scattering property changes with temperature.
 面状発光体100においては、光散乱可変部20の光散乱性を制御可能なように構成されていることが好ましい。例えば、温度変調の方式においては、外部温度の変化によって光散乱性が変化し得るが、光散乱性が外部温度に左右されることになると、所望の光学特性を得られなくなるおそれがある。そのため、光散乱性が制御されることが好ましい。温度変調では、加温器や冷却器などによって温度制御が可能である。ただし、温度の制御は電界の制御よりも容易ではない。そのため、光散乱可変部20は、電界変調であることが好ましい。それより、電界によって容易に光散乱性を変化させることができるため、光学特性を向上することができる。各実施形態では、電界変調の光散乱可変部20が用いられている。以下では、電界変調の光散乱可変部20を説明する。 The planar light emitter 100 is preferably configured so that the light scattering property of the light scattering variable portion 20 can be controlled. For example, in the temperature modulation method, the light scattering property may change due to a change in the external temperature, but if the light scattering property depends on the external temperature, there is a possibility that desired optical characteristics cannot be obtained. Therefore, it is preferable that the light scattering property is controlled. In the temperature modulation, the temperature can be controlled by a heater or a cooler. However, temperature control is not easier than electric field control. Therefore, the light scattering variable unit 20 is preferably electric field modulation. Since the light scattering property can be easily changed by the electric field, the optical characteristics can be improved. In each embodiment, the electric field modulation light scattering variable unit 20 is used. The electric field modulation light scattering variable unit 20 will be described below.
 光散乱可変部20は、光透過性を有することが可能なように構成されている。高散乱状態では、光散乱可変部20は、半透明であってよい。低散乱状態では、光散乱可変部20は、透明であってよい。中散乱状態では、光散乱可変部20は、高散乱状態よりも透明性の高い半透明であってよい。 The light scattering variable unit 20 is configured to be capable of transmitting light. In the high scattering state, the light scattering variable unit 20 may be translucent. In the low scattering state, the light scattering variable unit 20 may be transparent. In the medium scattering state, the light scattering variable unit 20 may be translucent with higher transparency than in the high scattering state.
 光散乱可変部20は、対となる電極5x、5yと、この対となる電極5x、5yの間に配置された光散乱可変層2とを有している。対となる電極5x、5yでは、電極5xが第1面F1側に配置され、電極5yが第2面F2側に配置されている。光散乱可変部20は、電極5x及び電極5yの間に光散乱可変層2が配置された構成を有する。光散乱可変部20が光散乱可変層2で構成されることにより、光学特性の優れた薄型の光散乱構造を形成することができる。光散乱可変層2は、光散乱性が変化する層である。光散乱可変層2は、少なくとも高散乱状態と低散乱状態とを有する。光散乱可変層2は、好ましくは中散乱状態を有する。電極5x及び電極5yは光透過性を有する。そのため、光散乱可変層2が光散乱性を有する状態の場合、光散乱可変部20に入射した光を散乱させることができる。また、光散乱可変層2が光散乱性を有さない状態の場合、光散乱可変部20に入射した光をそのまま出射することができる。 The light scattering variable section 20 includes a pair of electrodes 5x and 5y and a light scattering variable layer 2 disposed between the pair of electrodes 5x and 5y. In the pair of electrodes 5x and 5y, the electrode 5x is disposed on the first surface F1 side, and the electrode 5y is disposed on the second surface F2 side. The light scattering variable unit 20 has a configuration in which the light scattering variable layer 2 is disposed between the electrode 5x and the electrode 5y. By configuring the light scattering variable portion 20 with the light scattering variable layer 2, a thin light scattering structure with excellent optical characteristics can be formed. The light scattering variable layer 2 is a layer whose light scattering property changes. The light scattering variable layer 2 has at least a high scattering state and a low scattering state. The light scattering variable layer 2 preferably has a medium scattering state. The electrode 5x and the electrode 5y have optical transparency. Therefore, when the light scattering variable layer 2 has a light scattering property, the light incident on the light scattering variable portion 20 can be scattered. In addition, when the light scattering variable layer 2 is not in a light scattering state, the light incident on the light scattering variable portion 20 can be emitted as it is.
 光散乱可変部20は、隣り合う基板6の間に配置されている。光散乱可変部20が二つの基板6の間に配置されることで、封止されている。封止により、光散乱可変層2が保持され、さらにその劣化が抑制される。二つの基板6は一対となっている。通常、光散乱可変部20は積層により形成される。その際、積層を行うための形成基板を要する。形成基板は、一対となった基板6の少なくともいずれかにより形成される。形成基板と対向する基板6は封止基板となる。封止基板は、一対となった基板6のうちの形成基板でない方により形成される。 The light scattering variable portion 20 is disposed between the adjacent substrates 6. The light scattering variable portion 20 is sealed between the two substrates 6 by being disposed. By sealing, the light-scattering variable layer 2 is hold | maintained and the deterioration is further suppressed. The two substrates 6 are a pair. Usually, the light scattering variable portion 20 is formed by stacking. At that time, a formation substrate for stacking is required. The formation substrate is formed of at least one of the pair of substrates 6. The substrate 6 facing the formation substrate is a sealing substrate. The sealing substrate is formed of the pair of substrates 6 that is not the formation substrate.
 光散乱可変部20は、電極5xと電極5yとの間に電圧を印加することにより、光散乱可変層2における光散乱性の程度が変化する。電極5xと電極5yとは、配線53により、電源50に電気的に接続されている。電源50から給電を行うことにより、光散乱可変部20に電圧が印加される。光散乱可変部20の電源50は交流電源52により構成されている。電界により光散乱性が変化する材料では、電圧印加の開始から時間がたつと、電圧印加時の光散乱性の状態が維持できなくなるものが多く存在する。交流電源52では、電圧を双方向に交互に印加することができ、電圧の方向を変えることで実質的に継続して電圧を印加することが可能である。そのため、交流電源52により、安定した光散乱性を得ることができる。交流の波形は矩形波であることが好ましい。それにより、印加する電圧量が一定になりやすくなるため、光散乱性を安定化させることがより可能になる。もちろん、交流はパルスであってよい。なお、中散乱状態は、電圧の印加量が制御されることによって形成され得る。 The light scattering variable unit 20 changes the degree of light scattering in the light scattering variable layer 2 by applying a voltage between the electrode 5x and the electrode 5y. The electrode 5x and the electrode 5y are electrically connected to the power source 50 through a wiring 53. By supplying power from the power supply 50, a voltage is applied to the light scattering variable unit 20. The power supply 50 of the light scattering variable unit 20 is constituted by an AC power supply 52. There are many materials whose light scattering property changes due to an electric field, and it becomes impossible to maintain the light scattering state at the time of voltage application as time passes from the start of voltage application. In the AC power supply 52, a voltage can be alternately applied in both directions, and a voltage can be applied substantially continuously by changing the direction of the voltage. Therefore, stable light scattering can be obtained by the AC power supply 52. The AC waveform is preferably a rectangular wave. Thereby, the amount of voltage to be applied is likely to be constant, so that it becomes possible to stabilize the light scattering property. Of course, the alternating current may be a pulse. Note that the intermediate scattering state can be formed by controlling the amount of voltage applied.
 光散乱可変層2の材料としては、電界変調によって分子配向が変わる材料を用いることができる。例えば、液晶材料などが挙げられる。光散乱可変層2の材料としては、高分子分散型液晶を用いることが好ましい。高分子分散型液晶では、液晶が高分子によって保持されているため、安定な光散乱可変層2を形成することができる。高分子分散型液晶は、PDLCと呼ばれる。なお、光散乱可変層2の材料としては、電界により散乱性が変化する固体物質も好ましく用いられる。 As the material of the light scattering variable layer 2, a material whose molecular orientation is changed by electric field modulation can be used. For example, a liquid crystal material etc. are mentioned. As a material of the light scattering variable layer 2, it is preferable to use a polymer dispersed liquid crystal. In the polymer-dispersed liquid crystal, since the liquid crystal is held by the polymer, the stable light scattering variable layer 2 can be formed. The polymer dispersed liquid crystal is called PDLC. In addition, as a material of the light-scattering variable layer 2, a solid substance whose scattering property is changed by an electric field is also preferably used.
 高分子分散型液晶は、樹脂部と液晶部とから構成されるものであってよい。樹脂部は高分子により形成される。樹脂部は光透過性を有することが好ましい。それにより、光散乱可変部20が光透過性を有するようにすることができる。樹脂部は、熱硬化性樹脂、紫外線硬化性樹脂などにより形成され得る。液晶部は、電界によって液晶構造が変化する部分である。液晶部は、ネマチック液晶などが用いられる。高分子分散型液晶は、樹脂部の中に液晶部が点状に存在する構造であることが好ましい一態様である。この高分子分散型液晶においては、樹脂部が海、液晶部が島を構成する海島構造となっていてよい。高分子分散型液晶は、樹脂部の中において液晶部が網目状に不規則につながる形状であることが好ましい一態様である。もちろん、高分子分散型液晶は、液晶部の中に樹脂部が点状に存在したり、液晶部の中で樹脂部が網目状に不規則につながったりした構造であってもよい。 The polymer dispersed liquid crystal may be composed of a resin portion and a liquid crystal portion. The resin part is formed of a polymer. It is preferable that the resin part has optical transparency. Thereby, the light scattering variable portion 20 can be made light transmissive. The resin portion can be formed of a thermosetting resin, an ultraviolet curable resin, or the like. The liquid crystal part is a part where the liquid crystal structure is changed by an electric field. A nematic liquid crystal or the like is used for the liquid crystal part. The polymer-dispersed liquid crystal is a preferred embodiment having a structure in which the liquid crystal portion is present in a dot shape in the resin portion. The polymer dispersed liquid crystal may have a sea-island structure in which the resin portion forms the sea and the liquid crystal portion forms the island. The polymer-dispersed liquid crystal is a preferable embodiment in which the liquid crystal part is irregularly connected in a mesh shape in the resin part. Of course, the polymer-dispersed liquid crystal may have a structure in which the resin part is present in a dot shape in the liquid crystal part, or in which the resin part is irregularly connected in a mesh shape in the liquid crystal part.
 光散乱可変部20は、電圧無印加時に光散乱状態となり、電圧印加時に光透過状態となることが好ましい一態様である。高分子分散型液晶では、そのような制御になり得る。液晶では、電圧の印加で配向を揃えることが可能だからである。高分子分散型液晶では、薄型で散乱性の高い光散乱可変部20を形成することができる。もちろん、光散乱可変部20は、電圧無印加時に光透過状態となり、電圧印加時に光散乱状態となるものであってもよい。 The light scattering variable unit 20 is preferably in a light scattering state when no voltage is applied and in a light transmission state when a voltage is applied. Such control can be performed in the polymer dispersed liquid crystal. This is because the alignment of liquid crystals can be made uniform by applying a voltage. In the polymer-dispersed liquid crystal, the light scattering variable portion 20 that is thin and has high scattering properties can be formed. Of course, the light scattering variable unit 20 may be in a light transmission state when no voltage is applied and in a light scattering state when a voltage is applied.
 光散乱可変層2は、電圧を印加したときの光散乱状態が維持されるものであることが好ましい一態様である。それにより、光散乱状態を変化させたいときに電圧を印加し、そうでないときには電圧を印加させなくてもよいので、電力効率が高まる。光散乱状態が維持される性質はヒステリシスと呼ばれる。この性質は記憶性(メモリ性)といってもよい。所定電圧以上の電圧を付加することにより、ヒステリシスは発揮され得る。光散乱状態の維持される時間は、長いほどよいが、例えば、1時間以上が好ましく、3時間以上がより好ましく、6時間以上がさらに好ましく、12時間以上がよりさらに好ましく、24時間以上がよりもっと好ましい。 The light scattering variable layer 2 is a preferred embodiment in which the light scattering state is maintained when a voltage is applied. Thereby, a voltage is applied when it is desired to change the light scattering state, and it is not necessary to apply a voltage when it is not, so that the power efficiency is increased. The property of maintaining the light scattering state is called hysteresis. This property may be called memory property (memory property). Hysteresis can be exerted by applying a voltage higher than a predetermined voltage. The longer the time during which the light scattering state is maintained, the better. For example, it is preferably 1 hour or longer, more preferably 3 hours or longer, further preferably 6 hours or longer, more preferably 12 hours or longer, more preferably 24 hours or longer. More preferable.
 光反射可変部30は、光反射性が変化する部分である。光反射可変部30は、光反射性の程度が変化可能に構成されている。光反射性の程度が変化可能とは、高反射状態と低反射状態とを変化可能なことであってよい。あるいは、光反射性の程度が変化可能とは、光反射性を有する状態と、光反射性を有さない状態とを変化可能なことであってもよい。光反射性の程度が変化可能であると、光学的な状態を変化させることができ、光学特性の優れた面状発光体100を得ることができる。光反射可変部30は層状に形成されていてよい。 The light reflection variable portion 30 is a portion where the light reflectivity changes. The light reflection variable unit 30 is configured so that the degree of light reflectivity can be changed. The fact that the degree of light reflectivity can be changed may mean that the high reflection state and the low reflection state can be changed. Alternatively, the fact that the degree of light reflectivity can be changed may mean that the state having light reflectivity and the state having no light reflectivity can be changed. If the degree of light reflectivity can be changed, the optical state can be changed, and the planar light-emitting body 100 having excellent optical characteristics can be obtained. The light reflection variable portion 30 may be formed in a layer shape.
 高反射状態とは、光反射性が高い状態である。高反射状態は、例えば、一方の面に入射した光が、反射によって進行方向が反対方向に変わって、入射した側に出射する状態である。高反射状態は、一方の面側から他方の面側に存在する物体を視認することができない状態であり得る。高反射状態は、一方の面側から光反射可変部30を見たときに、同じ面側に存在する物体が視認される状態であり得る。高反射状態は、鏡状態であり得る。光反射可変部30が光反射性を発揮する場合、光反射可変部30は、光を反射する反射層として機能する。 The high reflection state is a state with high light reflectivity. The high reflection state is, for example, a state in which light incident on one surface is changed to the opposite direction due to reflection and is emitted to the incident side. The highly reflective state may be a state in which an object existing on one surface side from the other surface side cannot be visually recognized. The high reflection state may be a state in which an object existing on the same surface side is visually recognized when the light reflection variable unit 30 is viewed from one surface side. The highly reflective state can be a mirror state. When the light reflection variable unit 30 exhibits light reflectivity, the light reflection variable unit 30 functions as a reflection layer that reflects light.
 低反射状態とは、光反射性が低い又は光反射性がない状態である。低反射状態は、例えば、一方の面から入射した光が、進行方向をそのまま維持して、他方の面に出射する状態である。低反射状態は、一方の面側から他方の面側に存在する物体を見たときに、物体を明瞭に視認できる状態であり得る。低反射状態は、透明な状態であり得る。 The low reflection state is a state where light reflectivity is low or no light reflectivity. The low reflection state is, for example, a state in which light incident from one surface is emitted to the other surface while maintaining the traveling direction as it is. The low reflection state may be a state in which an object can be clearly visually recognized when an object existing on the other surface side is viewed from one surface side. The low reflection state can be a transparent state.
 光反射可変部30は、光反射性が高い高反射状態と、光反射性が低い又は光反射性がない低反射状態と、高反射状態と低反射状態との間の光反射性を発揮する状態と、を有することが可能なように構成されていることが好ましい。高反射状態と低反射状態との間の光反射性を発揮することができることで、中程度の光反射性を付与することができるため、光学的な状態をバリエーション高く変化させることができ、光学特性をより向上することができる。ここでは、高反射状態と低反射状態との間の光反射性を発揮する状態を、中反射状態と呼ぶ。 The light reflection variable unit 30 exhibits a light reflection property between a high reflection state with high light reflection property, a low reflection state with low light reflection property or no light reflection property, and a high reflection state and a low reflection state. It is preferable that it is comprised so that it can have a state. The ability to exhibit light reflectivity between the high reflection state and the low reflection state can provide moderate light reflectivity, so that the optical state can be varied highly and optically. The characteristics can be further improved. Here, a state that exhibits light reflectivity between the high reflection state and the low reflection state is referred to as a medium reflection state.
 中反射状態は、高反射状態と低反射状態との間において、少なくとも一つの反射状態を有するものであってよい。例えば、高反射状態と中反射状態と低反射状態との三つの状態を切り替えることにより、光反射性を変化させることができると、光学特性が向上する。中反射状態は、高反射状態と低反射状態との間において、反射性の程度が複数の段階となった複数の状態を有するものであることが好ましい一態様である。それにより、反射性の程度が複数の段階になるため、光学特性をより高めることができる。例えば、高反射状態と複数の中反射状態と低反射状態との複数の状態を切り替えることにより、光反射性を段階的に変化させることができると、光学特性が向上する。中反射状態は、高反射状態と低反射状態との間において、高反射状態から低反射状態まで、連続的に変化するように構成されていることが好ましい一態様である。それにより、反射性の程度が連続的に変化するものになるため、光学的な状態をバリエーション高く変化させることができ、光学特性をより高めることができる。例えば、高反射状態と低反射状態との間で目的とする光反射性を発揮させる状態にして光反射性を変化させることができると、中間状態を作り出すことができるため、光学特性が向上する。光反射可変部30が、中反射状態を有する場合、光反射可変部30は、中反射状態を維持できるように構成されていることが好ましい。 The intermediate reflection state may have at least one reflection state between the high reflection state and the low reflection state. For example, if the light reflectivity can be changed by switching between three states of a high reflection state, a medium reflection state, and a low reflection state, the optical characteristics are improved. It is preferable that the intermediate reflection state has a plurality of states in which the degree of reflectivity is in a plurality of stages between the high reflection state and the low reflection state. Thereby, since the degree of reflectivity is in a plurality of stages, the optical characteristics can be further improved. For example, if the light reflectivity can be changed stepwise by switching between a plurality of states of a high reflection state, a plurality of medium reflection states, and a low reflection state, the optical characteristics are improved. It is a preferable aspect that the intermediate reflection state is configured to continuously change from the high reflection state to the low reflection state between the high reflection state and the low reflection state. Thereby, since the degree of reflectivity changes continuously, the optical state can be changed with high variations, and the optical characteristics can be further improved. For example, if the light reflectivity can be changed between a high reflection state and a low reflection state so as to exhibit the desired light reflectivity, an intermediate state can be created, so that the optical characteristics are improved. . When the light reflection variable unit 30 has the intermediate reflection state, the light reflection variable unit 30 is preferably configured to maintain the intermediate reflection state.
 光反射可変部30は、少なくとも可視光の一部を反射させるものであってよい。光反射可変部30は可視光の全部を反射させるものであることが好ましい。光反射可変部30は、赤外線を反射させるものであってもよい。光反射可変部30は紫外線を反射させるものであってもよい。光反射可変部30が、可視光、紫外線及び赤外線の全てを反射する場合、光学的特性に優れ、安定した面状発光体100を得ることができる。 The light reflection variable unit 30 may reflect at least a part of visible light. It is preferable that the light reflection variable unit 30 reflects all visible light. The light reflection variable unit 30 may reflect infrared rays. The light reflection variable unit 30 may reflect ultraviolet rays. When the light reflection variable portion 30 reflects all visible light, ultraviolet light, and infrared light, a stable planar light emitting body 100 having excellent optical characteristics can be obtained.
 光反射可変部30は、反射スペクトルの形状を変化させることが可能なように構成されることが好ましい一態様である。反射スペクトルの変化は、中反射状態において行われるものであってよい。反射スペクトルの形状が変化するとは、光反射可変部30に入射する光と、光反射可変部30で反射した光とのスペクトル形状が異なることである。反射スペクトルの変化は反射波長の変化により行われる。例えば、青色光のみを強く反射させたり、緑色光のみを強く反射させたり、赤色光のみを強く反射させたりすることによって、反射スペクトルの形状は変化する。反射スペクトルが変化すると、面状発光部10から取り出される光の色が変化する。そのため、調色(色の調整)を行うことができ、光学特性を向上することができる。 The light reflection variable unit 30 is preferably configured so as to be able to change the shape of the reflection spectrum. The change in the reflection spectrum may be performed in the middle reflection state. The change in the shape of the reflection spectrum means that the spectrum shape of the light incident on the light reflection variable unit 30 and the light reflected by the light reflection variable unit 30 are different. The reflection spectrum is changed by changing the reflection wavelength. For example, the shape of the reflection spectrum changes by strongly reflecting only blue light, strongly reflecting only green light, or strongly reflecting only red light. When the reflection spectrum changes, the color of light extracted from the planar light emitting unit 10 changes. Therefore, toning (color adjustment) can be performed, and optical characteristics can be improved.
 光反射可変部30は、反射スペクトルの形状を変化させずに、光を反射させることが可能なように構成されることが好ましい一態様である。その場合、入射光と反射光とでスペクトルの変化がないため、反射の程度を単に弱くすることができる。反射性の強弱を制御することが可能になると、調光(明るさの調整)を行うことができ、光学特性を向上することができる。 The light reflection variable unit 30 is preferably configured so as to be able to reflect light without changing the shape of the reflection spectrum. In that case, since there is no change in the spectrum between the incident light and the reflected light, the degree of reflection can be simply weakened. When it becomes possible to control the intensity of the reflectivity, light control (brightness adjustment) can be performed, and optical characteristics can be improved.
 光反射可変部30は、光反射性を発揮する状態では、第2面F2から第1面F1に向かう方向の光よりも、第1面F1から第2面F2に向かう方向の光に対する反射性が高いことが好ましい。それにより、面状発光部10からの光をより反射させることができるため、光学特性を向上することができる。もちろん、光反射可変部30は、光反射性を発揮する状態で、第1面F1から第2面F2に向かう方向の光と、第2面F2から第1面F1に向かう方向の光との光反射性が同じであってもよい。あるいは、光反射可変部30は、光反射性を発揮する状態で、第2面F2から第1面F1に向かう方向の光の方が、第1面F1から第2面F2に向かう方向の光よりも光反射性が高くてもよい。 In a state where the light reflection variable unit 30 exhibits light reflectivity, the light reflection variable unit 30 is more reflective to light in the direction from the first surface F1 to the second surface F2 than in the direction from the second surface F2 to the first surface F1. Is preferably high. Thereby, since the light from the planar light emission part 10 can be reflected more, an optical characteristic can be improved. Of course, the light reflection variable unit 30 exhibits light reflectivity between the light in the direction from the first surface F1 toward the second surface F2 and the light in the direction from the second surface F2 toward the first surface F1. The light reflectivity may be the same. Alternatively, the light reflection variable unit 30 exhibits light reflectivity, and light in the direction from the second surface F2 toward the first surface F1 is light in the direction from the first surface F1 toward the second surface F2. The light reflectivity may be higher than that.
 光反射可変部30は、光反射性の程度が変化可能な適宜の構造で形成され得る。光反射可変部30は、電界変調、温度変調、ガス変調などのものであってよい。電界変調は、電界をかけることによって光反射性が変化する方式である。温度変調は、温度によって光反射性が変化する方式である。ガス変調は、ガスを供給することによって光反射性が変化する方式である。 The light reflection variable portion 30 can be formed with an appropriate structure that can change the degree of light reflectivity. The light reflection variable unit 30 may be an electric field modulation, a temperature modulation, a gas modulation, or the like. Electric field modulation is a method in which light reflectivity changes by applying an electric field. Temperature modulation is a method in which light reflectivity changes with temperature. Gas modulation is a method in which the light reflectivity is changed by supplying a gas.
 面状発光体100においては、光反射可変部30の光反射性を制御可能なように構成されていることが好ましい。例えば、温度変調の方式においては、外部温度の変化によって光反射性が変化し得るが、光反射性が外部温度に左右されることになると、所望の光学特性を得られなくなるおそれがある。そのため、光反射性が制御されることが好ましい。温度変調では、加温器や冷却器などによって温度制御が可能である。ただし、温度の制御は電界の制御よりも容易ではない。ガス変調は、ガスの供給の有無によって制御が可能である。ただし、ガスの供給にはガス配管などを要するため、構造が複雑になりやすく、電界の制御よりも容易ではない。また、ガス変調に用いるガスとして水素ガスなどの引火性や爆発性のあるものを用いた場合、安全性の問題も生じる。そのため、光反射可変部30は、電界変調であることが好ましい。それより、電界によって容易に光反射性を変化させることができるため、光学特性を向上することができる。各実施形態では、電界変調の光反射可変部30が用いられている。以下では、電界変調の光反射可変部30を説明する。 The planar light emitter 100 is preferably configured so that the light reflectivity of the light reflection variable portion 30 can be controlled. For example, in the temperature modulation method, the light reflectivity may change due to a change in the external temperature, but if the light reflectivity depends on the external temperature, there is a possibility that desired optical characteristics cannot be obtained. Therefore, it is preferable that the light reflectivity is controlled. In the temperature modulation, the temperature can be controlled by a heater or a cooler. However, temperature control is not easier than electric field control. Gas modulation can be controlled by the presence or absence of gas supply. However, since gas supply requires gas piping and the like, the structure is likely to be complicated, and it is not easier than controlling the electric field. In addition, when a gas that is flammable or explosive, such as hydrogen gas, is used as a gas for gas modulation, a safety problem also occurs. Therefore, it is preferable that the light reflection variable unit 30 is electric field modulation. Since the light reflectivity can be easily changed by the electric field, the optical characteristics can be improved. In each embodiment, an electric field modulation light reflection variable unit 30 is used. The electric field modulation light reflection variable unit 30 will be described below.
 光反射可変部30は、光透過性を有することが可能なように構成されている。高反射状態では、光反射可変部30は、不透明であってよい。高反射状態では、光反射可変部30は、鏡状であることが好ましい。低反射状態では、光反射可変部30は、透明であってよい。中反射状態では、光反射可変部30は、半透明であってよい。このとき、一部の光が反射されるとともに、一部の光が透過されるものであってよい。 The light reflection variable unit 30 is configured to be capable of transmitting light. In the high reflection state, the light reflection variable unit 30 may be opaque. In the high reflection state, the light reflection variable portion 30 is preferably in a mirror shape. In the low reflection state, the light reflection variable unit 30 may be transparent. In the intermediate reflection state, the light reflection variable unit 30 may be translucent. At this time, a part of the light may be reflected and a part of the light may be transmitted.
 光反射可変部30は、対となる電極5p、5qと、この対となる電極5p、5qの間に配置された光反射可変層3とを有している。対となる電極5p、5qでは、電極5pが第1面F1側に配置され、電極5qが第2面F2側に配置されている。光反射可変部30は、電極5p及び電極5qの間に光反射可変層3が配置された構成を有する。光反射可変部30が光反射可変層3で構成されることにより、光学特性の優れた薄型の光反射構造を形成することができる。光反射可変層3は、光反射性が変化する層である。光反射可変層3は、少なくとも高反射状態と低反射状態とを有する。光反射可変層3は、好ましくは中反射状態を有する。電極5p及び電極5qは光透過性を有する。そのため、光反射可変層3が光反射性を有する状態の場合、光反射可変部30に入射した光を反射させることができる。また、光反射可変層3が光反射性を有さない状態の場合、光反射可変部30に入射した光をそのまま出射することができる。 The light reflection variable section 30 includes a pair of electrodes 5p and 5q, and a light reflection variable layer 3 disposed between the pair of electrodes 5p and 5q. In the pair of electrodes 5p and 5q, the electrode 5p is disposed on the first surface F1 side, and the electrode 5q is disposed on the second surface F2 side. The light reflection variable section 30 has a configuration in which the light reflection variable layer 3 is disposed between the electrode 5p and the electrode 5q. By configuring the light reflection variable portion 30 with the light reflection variable layer 3, it is possible to form a thin light reflection structure with excellent optical characteristics. The light reflection variable layer 3 is a layer whose light reflectivity changes. The light reflection variable layer 3 has at least a high reflection state and a low reflection state. The light reflection variable layer 3 preferably has a middle reflection state. The electrode 5p and the electrode 5q are light transmissive. Therefore, when the light reflection variable layer 3 has a light reflectivity, the light incident on the light reflection variable portion 30 can be reflected. Further, when the light reflection variable layer 3 is not in a light reflective state, the light incident on the light reflection variable portion 30 can be emitted as it is.
 光反射可変部30は、隣り合う基板6の間に配置されている。光反射可変部30が二つの基板6の間に配置されることで、封止されている。封止により、光反射可変層3が保持され、さらにその劣化が抑制される。二つの基板6は一対となっている。通常、光反射可変部30は積層により形成される。その際、積層を行うための形成基板を要する。形成基板は、一対となった基板6の少なくともいずれかにより形成される。形成基板と対向する基板6は封止基板となる。封止基板は、一対となった基板6のうちの形成基板でない方により形成される。 The light reflection variable portion 30 is disposed between the adjacent substrates 6. The light reflection variable portion 30 is disposed between the two substrates 6 to be sealed. By sealing, the light reflection variable layer 3 is held, and its deterioration is further suppressed. The two substrates 6 are a pair. Usually, the light reflection variable portion 30 is formed by lamination. At that time, a formation substrate for stacking is required. The formation substrate is formed of at least one of the pair of substrates 6. The substrate 6 facing the formation substrate is a sealing substrate. The sealing substrate is formed of the pair of substrates 6 that is not the formation substrate.
 光反射可変部30は、電極5pと電極5qとの間に電圧を印加することにより、光反射可変層3における光反射性の程度が変化する。電極5pと電極5qとは、配線53により、電源50に電気的に接続されている。電源50から給電を行うことにより、光反射可変部30に電圧が印加される。光反射可変部30の電源50は交流電源52により構成されている。電界により光反射性が変化する材料では、電圧印加の開始から時間がたつと、電圧印加時の光反射性の状態が維持できなくなるものが多く存在する。交流電源52では、電圧を双方向に交互に印加することができ、電圧の方向を変えることで実質的に継続して電圧を印加することが可能である。そのため、交流電源52により、安定した光反射性を得ることができる。交流の波形は矩形波であることが好ましい。それにより、印加する電圧量が一定になりやすくなるため、光反射性を安定化させることがより可能になる。もちろん、交流はパルスであってよい。なお、中反射状態は、電圧の印加量が制御されることによって形成され得る。 The light reflection variable portion 30 changes the degree of light reflectivity in the light reflection variable layer 3 by applying a voltage between the electrode 5p and the electrode 5q. The electrode 5p and the electrode 5q are electrically connected to the power source 50 through a wiring 53. By supplying power from the power supply 50, a voltage is applied to the light reflection variable unit 30. The power supply 50 of the light reflection variable unit 30 is constituted by an AC power supply 52. There are many materials whose light reflectivity changes due to an electric field, and the light reflectivity state at the time of voltage application cannot be maintained over time from the start of voltage application. In the AC power supply 52, a voltage can be alternately applied in both directions, and a voltage can be applied substantially continuously by changing the direction of the voltage. Therefore, stable light reflectivity can be obtained by the AC power supply 52. The AC waveform is preferably a rectangular wave. As a result, the amount of voltage to be applied is likely to be constant, so that the light reflectivity can be more stabilized. Of course, the alternating current may be a pulse. The intermediate reflection state can be formed by controlling the voltage application amount.
 光反射可変層3の材料としては、電界変調によって分子配向が変わる材料を用いることができる。例えば、ネマチック液晶、コレステリック液晶、強誘電性液晶、エレクトロクロミックなどが挙げられる。コレステリック液晶は、螺旋構造を持つネマチック液晶であってよい。コレステリック液晶は、キラルネマチック液晶であってよい。コレステリック液晶は、CLCと呼ばれる。コレステリック液晶では、分子軸の配向方向が空間で連続的に変化し、巨視的な螺旋構造が生まれる。このため、螺旋の周期に対応した光の反射が可能となる。液晶状態を電界によって変化させることにより、光反射性と光透過性との間を制御することが可能である。エレクトロクロミックでは、電圧印加による電気化学的可逆反応(電解酸化還元反応)による物質の色変化現象を利用することができ、光反射性と光透過性との間を制御することが可能である。光反射可変層3の材料として、コレステリック液晶を好ましく用いることができる。各図においては、光反射可変層3を理解しやすいよう、光反射可変層3に液晶が形成する螺旋構造を模した模様を入れている。 As the material of the light reflection variable layer 3, a material whose molecular orientation is changed by electric field modulation can be used. Examples thereof include nematic liquid crystal, cholesteric liquid crystal, ferroelectric liquid crystal, and electrochromic. The cholesteric liquid crystal may be a nematic liquid crystal having a spiral structure. The cholesteric liquid crystal may be a chiral nematic liquid crystal. Cholesteric liquid crystals are called CLC. In cholesteric liquid crystals, the orientation direction of the molecular axes changes continuously in space, resulting in a macroscopic spiral structure. For this reason, it is possible to reflect light corresponding to the period of the spiral. By changing the liquid crystal state by an electric field, it is possible to control between light reflectivity and light transmissivity. In electrochromic, a color change phenomenon of a substance due to an electrochemical reversible reaction (electrolytic oxidation-reduction reaction) by applying a voltage can be used, and it is possible to control between light reflectivity and light transmissivity. As a material for the light reflection variable layer 3, cholesteric liquid crystal can be preferably used. In each drawing, a pattern imitating a spiral structure formed by liquid crystal is provided in the light reflection variable layer 3 so that the light reflection variable layer 3 can be easily understood.
 光反射可変部30は、電圧無印加時に光反射状態となり、電圧印加時に光透過状態となることが好ましい一態様である。コレステリック液晶では、そのような制御になり得る。液晶では、電圧の印加で配向を揃えることが可能だからである。コレステリック液晶では、薄型で反射性の高い光反射可変部30を形成することができる。電圧を印加せずに特定の光だけを反射する状態をプレーナ配向といい、電圧を印加して光を通す状態をフォーカルコニック配向ということがある。もちろん、光反射可変部30は、電圧無印加時に光透過状態となり、電圧印加時に光反射状態となるものであってもよい。 The light reflection variable section 30 is preferably in a light reflecting state when no voltage is applied and in a light transmitting state when a voltage is applied. In cholesteric liquid crystal, such control can be performed. This is because the alignment of liquid crystals can be made uniform by applying a voltage. In the cholesteric liquid crystal, the light reflection variable portion 30 which is thin and highly reflective can be formed. A state in which only specific light is reflected without applying a voltage is referred to as planar alignment, and a state in which light is applied by applying a voltage is sometimes referred to as focal conic alignment. Of course, the light reflection variable unit 30 may be in a light transmission state when no voltage is applied and in a light reflection state when a voltage is applied.
 光反射可変層3は、電圧を印加したときの光反射状態が維持されるものであることが好ましい一態様である。それにより、光反射状態を変化させたいときに電圧を印加し、そうでないときには電圧を印加させなくてもよいので、電力効率が高まる。光反射状態が維持される性質はヒステリシスと呼ばれる。この性質は記憶性(メモリ性)といってもよい。強誘電性液晶はヒステリシス効果が大きいため、メモリ効果を発揮可能である。所定電圧以上の電圧を付加することにより、ヒステリシスは発揮され得る。光反射状態の維持される時間は、長いほどよいが、例えば、1時間以上が好ましく、3時間以上がより好ましく、6時間以上がさらに好ましく、12時間以上がよりさらに好ましく、24時間以上がよりもっと好ましい。 The light reflection variable layer 3 is preferably one in which the light reflection state is maintained when a voltage is applied. Thereby, a voltage is applied when it is desired to change the light reflection state, and when it is not, it is not necessary to apply a voltage, which increases power efficiency. The property that the light reflection state is maintained is called hysteresis. This property may be called memory property (memory property). Since the ferroelectric liquid crystal has a large hysteresis effect, it can exhibit a memory effect. Hysteresis can be exerted by applying a voltage higher than a predetermined voltage. The longer the time during which the light reflection state is maintained, the better. For example, it is preferably 1 hour or longer, more preferably 3 hours or longer, further preferably 6 hours or longer, more preferably 12 hours or longer, more preferably 24 hours or longer. More preferable.
 なお、実施形態の中には、光反射可変部30が第1光反射可変部31及び第2光反射可変部32を有するものがあるが、上記の光反射可変部30の構成は、第1光反射可変部31と第2光反射可変部32との両方に適用できる。第1光反射可変部31は、電極5p及び電極5qと、第1光反射可変層3aとを有する。第2光反射可変部32は、電極5r及び電極5sと、第2光反射可変層3bとを有する。第1光反射可変層3a及び第2光反射可変層3bは、光反射可変層3に対応する。電極5r及び電極5sは、上記の電極5p及び電極5qにそれぞれ対応する。 In some embodiments, the light reflection variable unit 30 includes the first light reflection variable unit 31 and the second light reflection variable unit 32. The configuration of the light reflection variable unit 30 is the first configuration. The present invention can be applied to both the light reflection variable unit 31 and the second light reflection variable unit 32. The first light reflection variable section 31 includes the electrodes 5p and 5q, and the first light reflection variable layer 3a. The second light reflection variable unit 32 includes an electrode 5r and an electrode 5s, and a second light reflection variable layer 3b. The first light reflection variable layer 3 a and the second light reflection variable layer 3 b correspond to the light reflection variable layer 3. The electrode 5r and the electrode 5s correspond to the electrode 5p and the electrode 5q, respectively.
 面状発光体100は、第1面F1と第2面F2とを有する。第1面F1は、面状発光体100における一方の側の表面である。第2面F2は、面状発光体100における第1面F1とは反対側の表面である。第1面F1及び第2面F2は、一方が表面で他方が裏面であると言える。第2面F2は、第1面F1とは反対側に配置されている。 The planar light emitter 100 has a first surface F1 and a second surface F2. The first surface F <b> 1 is a surface on one side of the planar light emitter 100. The second surface F2 is the surface of the planar light emitter 100 that is opposite to the first surface F1. It can be said that one of the first surface F1 and the second surface F2 is the front surface and the other is the back surface. The second surface F2 is disposed on the side opposite to the first surface F1.
 第1面F1は、面状発光部10からの光を取り出すように構成されている。第1面F1は主発光面といってもよい。第1面F1は照明を得たい方の面であるといえる。面状発光体100においては、発光が表裏の面のいずれかに適して取り出されるように形成される。面状発光部10の光を取り出したい側の面が、第1面F1となる。第1面F1は主となる光取り出し面といってもよい。なお、第1面F1を主としたのは、第2面F2が副となり、第2面F2から面状発光部10の光が取り出される場合があってもよいからである。ただし、両面から光が取り出される場合でも、第1面F1の方が、第2面F2よりも多く光が取り出されることが好ましい。面状発光体100では、面状発光部10からの光が第2面F2よりも第1面F1側に出射しやすい構造が形成されている。面状発光部10は、第2面F2よりも第1面F1側に光を出射しやすい構造を有している。 1st surface F1 is comprised so that the light from the planar light emission part 10 may be taken out. The first surface F1 may be called a main light emitting surface. It can be said that the 1st surface F1 is a surface of the direction which wants to obtain illumination. The planar light-emitting body 100 is formed so that light emission can be taken out to one of the front and back surfaces. The surface of the planar light emitting unit 10 on which light is to be extracted is the first surface F1. The first surface F1 may be called a main light extraction surface. The reason why the first surface F1 is mainly used is that the second surface F2 may serve as a subsidiary and the light from the planar light emitting unit 10 may be extracted from the second surface F2. However, even when light is extracted from both surfaces, it is preferable that more light is extracted from the first surface F1 than from the second surface F2. In the planar light emitter 100, a structure is formed in which light from the planar light emitting unit 10 is more likely to be emitted to the first surface F1 side than the second surface F2. The planar light emitting unit 10 has a structure that easily emits light to the first surface F1 side rather than the second surface F2.
 光散乱可変部20と面状発光部10と光反射可変部30とは、第1面F1と第2面F2との間において厚み方向に配置されている。そして、光反射可変部30は、面状発光部10及び光散乱可変部20よりも第2面F2側に配置されている。実施形態の中には、第1面F1側から、光散乱可変部20、面状発光部10及び光反射可変部30の順で配置されたものと、面状発光部10、光散乱可変部20及び光反射可変部30の順で配置されたものとが存在する。実施形態では、いずれも、光散乱可変部20は、第2面F2側に配置されている。そのため、高効率で発光させることが可能となり、光学特性に優れた面状発光体100を得ることができる。 The light scattering variable portion 20, the planar light emitting portion 10, and the light reflection variable portion 30 are arranged in the thickness direction between the first surface F1 and the second surface F2. The light reflection variable unit 30 is disposed on the second surface F2 side with respect to the planar light emitting unit 10 and the light scattering variable unit 20. In the embodiment, from the first surface F1 side, the light scattering variable unit 20, the planar light emitting unit 10, and the light reflection variable unit 30 are arranged in this order, the planar light emitting unit 10, and the light scattering variable unit. 20 and the light reflection variable unit 30 are arranged in this order. In any of the embodiments, the light scattering variable portion 20 is disposed on the second surface F2 side. Therefore, it is possible to emit light with high efficiency, and it is possible to obtain the planar light emitter 100 having excellent optical characteristics.
 以下、実施形態ごとにより詳細に説明する。 Hereinafter, each embodiment will be described in detail.
 図1は実施形態1を示している。実施形態1では、第1面F1側から、光散乱可変部20、面状発光部10及び光反射可変部30の順で配置されている。 FIG. 1 shows the first embodiment. In the first embodiment, the light scattering variable portion 20, the planar light emitting portion 10, and the light reflection variable portion 30 are arranged in this order from the first surface F1 side.
 光散乱可変部20は、基板6aと基板6bとの間に配置されている。面状発光部10は、基板6bと基板6cとの間に配置されている。光反射可変部30は、基板6cと基板6dとの間に配置されている。基板6bは、光散乱可変部20を支持又は封止する基板6と、面状発光部10を支持又は封止する基板6とを兼ねている。光散乱可変部20と面状発光部10との間には基板6bが配置されている。基板6cは、面状発光部10を支持又は封止する基板6と、光反射可変部30を支持又は封止する基板6とを兼ねている。面状発光部10と光反射可変部30との間には基板6cが配置されている。光散乱可変部20と面状発光部10との間には空隙が設けられていない。面状発光部10と光反射可変部30との間には空隙が設けられていない。空隙は層状の隙間である。空隙がないと、光が反射されたり屈折されたりし得る界面の数を減らすことができるため、面状発光部10からの光をより多く取り出すことができる。また、空隙が存在すると、光の干渉によって光取り出し性が低下する場合があるが、空隙がないと、光の干渉を抑制して、光取り出し性を向上することができる。 The light scattering variable unit 20 is disposed between the substrate 6a and the substrate 6b. The planar light emitting unit 10 is disposed between the substrate 6b and the substrate 6c. The light reflection variable unit 30 is disposed between the substrate 6c and the substrate 6d. The substrate 6 b serves as the substrate 6 that supports or seals the light scattering variable portion 20 and the substrate 6 that supports or seals the planar light emitting portion 10. A substrate 6 b is disposed between the light scattering variable unit 20 and the planar light emitting unit 10. The substrate 6 c serves as the substrate 6 that supports or seals the planar light emitting unit 10 and the substrate 6 that supports or seals the light reflection variable unit 30. A substrate 6 c is disposed between the planar light emitting unit 10 and the light reflection variable unit 30. No gap is provided between the light scattering variable portion 20 and the planar light emitting portion 10. No gap is provided between the planar light emitting unit 10 and the light reflection variable unit 30. The void is a laminar gap. If there is no gap, the number of interfaces where light can be reflected or refracted can be reduced, so that more light from the planar light emitting unit 10 can be extracted. In addition, when there is a gap, the light extraction property may be deteriorated due to light interference. However, when there is no void, the light interference can be suppressed and the light extraction property can be improved.
 図2は実施形態2を示している。実施形態2では、第1面F1側から、光散乱可変部20、面状発光部10及び光反射可変部30の順で配置されている。実施形態2は、基板6の構成が異なる以外は、実施形態1と同様の構成を有する。 FIG. 2 shows the second embodiment. In the second embodiment, the light scattering variable unit 20, the planar light emitting unit 10, and the light reflection variable unit 30 are arranged in this order from the first surface F1 side. The second embodiment has the same configuration as that of the first embodiment except that the configuration of the substrate 6 is different.
 光散乱可変部20は、基板6aと基板6bとの間に配置されている。面状発光部10は、基板6cと基板6dとの間に配置されている。光反射可変部30は、基板6eと基板6fとの間に配置されている。基板6bと基板6cとの間には空隙が形成されている。基板6dと基板6eの間には空隙が形成されている。空隙は層状の隙間である。空隙は気体で満たされていてもよいし、真空であってもよい。ただし、空隙に気体が配置される場合、窒素など不活性な気体であることが好ましい。空隙は空気層8となる。便宜上、空気層8というが、空気層8は真空であってもよい。空気層8が設けられていると、断熱効果を付与することができる。そのため、建材として有利である。また、空気層8が真空であればさらに断熱効果が高まる。空気層8は接着部7の厚みによって形成されている。実施形態2では、光散乱可変部20、面状発光部10及び光反射可変部30のそれぞれが、基板6に挟まれた構造の素子として個々に形成され得るので、製造に有利な場合が生じ得る。 The light scattering variable unit 20 is disposed between the substrate 6a and the substrate 6b. The planar light emitting unit 10 is disposed between the substrate 6c and the substrate 6d. The light reflection variable unit 30 is disposed between the substrate 6e and the substrate 6f. A gap is formed between the substrate 6b and the substrate 6c. A gap is formed between the substrate 6d and the substrate 6e. The void is a laminar gap. The gap may be filled with a gas or may be a vacuum. However, when a gas is disposed in the gap, an inert gas such as nitrogen is preferable. The air gap becomes the air layer 8. For convenience, the air layer 8 is referred to, but the air layer 8 may be a vacuum. When the air layer 8 is provided, a heat insulating effect can be imparted. Therefore, it is advantageous as a building material. Moreover, if the air layer 8 is a vacuum, the heat insulation effect will increase further. The air layer 8 is formed by the thickness of the bonding portion 7. In the second embodiment, each of the light scattering variable portion 20, the planar light emitting portion 10, and the light reflection variable portion 30 can be individually formed as an element having a structure sandwiched between the substrates 6, so that there are cases where it is advantageous for manufacturing. obtain.
 図3は実施形態3を示している。実施形態3では、第1面F1側から、面状発光部10、光散乱可変部20及び光反射可変部30の順で配置されている。実施形態3は、面状発光部10と光散乱可変部20との順序が異なる以外は、実施形態1と同様の構成を有する。 FIG. 3 shows the third embodiment. In the third embodiment, the planar light emitting unit 10, the light scattering variable unit 20, and the light reflection variable unit 30 are arranged in this order from the first surface F1 side. The third embodiment has the same configuration as that of the first embodiment except that the order of the planar light emitting unit 10 and the light scattering variable unit 20 is different.
 面状発光部10は、基板6aと基板6bとの間に配置されている。光散乱可変部20は、基板6bと基板6cとの間に配置されている。光反射可変部30は、基板6cと基板6dとの間に配置されている。基板6bは、面状発光部10を支持又は封止する基板6と、光散乱可変部20を支持又は封止する基板6とを兼ねている。面状発光部10と光散乱可変部20との間には基板6bが配置されている。基板6cは、光散乱可変部20を支持又は封止する基板6と、光反射可変部30を支持又は封止する基板6とを兼ねている。光散乱可変部20と光反射可変部30との間には基板6cが配置されている。面状発光部10と光散乱可変部20との間には空隙が設けられていない。光散乱可変部20と光反射可変部30との間には空隙が設けられていない。空隙は層状の隙間である。空隙がないと、光が反射されたり屈折されたりし得る界面の数を減らすことができるため、面状発光部10からの光をより多く取り出すことができる。また、空隙が存在すると、光の干渉によって光取り出し性が低下する場合があるが、空隙がないと、光の干渉を抑制して、光取り出し性を向上することができる。 The planar light emitting unit 10 is disposed between the substrate 6a and the substrate 6b. The light scattering variable unit 20 is disposed between the substrate 6b and the substrate 6c. The light reflection variable unit 30 is disposed between the substrate 6c and the substrate 6d. The substrate 6 b serves as the substrate 6 that supports or seals the planar light emitting unit 10 and the substrate 6 that supports or seals the light scattering variable unit 20. A substrate 6 b is disposed between the planar light emitting unit 10 and the light scattering variable unit 20. The substrate 6 c serves as the substrate 6 that supports or seals the light scattering variable portion 20 and the substrate 6 that supports or seals the light reflection variable portion 30. A substrate 6 c is disposed between the light scattering variable unit 20 and the light reflection variable unit 30. No gap is provided between the planar light emitting unit 10 and the light scattering variable unit 20. No gap is provided between the light scattering variable portion 20 and the light reflection variable portion 30. The void is a laminar gap. If there is no gap, the number of interfaces where light can be reflected or refracted can be reduced, so that more light from the planar light emitting unit 10 can be extracted. In addition, when there is a gap, the light extraction property may be deteriorated due to light interference. However, when there is no void, the light interference can be suppressed and the light extraction property can be improved.
 図4は実施形態4を示している。実施形態4では、第1面F1側から、面状発光部10、光散乱可変部20及び光反射可変部30の順で配置されている。実施形態4は、面状発光部10と光散乱可変部20との順序が異なる以外は、実施形態2と同様の構成を有する。 FIG. 4 shows the fourth embodiment. In Embodiment 4, from the 1st surface F1 side, the planar light emission part 10, the light-scattering variable part 20, and the light reflection variable part 30 are arrange | positioned in order. The fourth embodiment has the same configuration as that of the second embodiment except that the order of the planar light emitting unit 10 and the light scattering variable unit 20 is different.
 面状発光部10は、基板6aと基板6bとの間に配置されている。光散乱可変部20は、基板6cと基板6dとの間に配置されている。光反射可変部30は、基板6eと基板6fとの間に配置されている。基板6bと基板6cとの間には空隙が形成されている。基板6dと基板6eの間には空隙が形成されている。空隙は層状の隙間である。空隙は気体で満たされていてもよいし、真空であってもよい。ただし、空隙に気体が配置される場合、窒素など不活性な気体であることが好ましい。空隙は空気層8となる。便宜上、空気層8というが、空気層8は真空であってもよい。空気層8が設けられていると、断熱効果を付与することができる。そのため、建材として有利である。また、空気層8が真空であればさらに断熱効果が高まる。空気層8は接着部7の厚みによって形成されている。実施形態4では、面状発光部10、光散乱可変部20及び光反射可変部30のそれぞれが、基板6に挟まれた構造の素子として個々に形成され得るので、製造に有利な場合が生じ得る。 The planar light emitting unit 10 is disposed between the substrate 6a and the substrate 6b. The light scattering variable unit 20 is disposed between the substrate 6c and the substrate 6d. The light reflection variable unit 30 is disposed between the substrate 6e and the substrate 6f. A gap is formed between the substrate 6b and the substrate 6c. A gap is formed between the substrate 6d and the substrate 6e. The void is a laminar gap. The gap may be filled with a gas or may be a vacuum. However, when a gas is disposed in the gap, an inert gas such as nitrogen is preferable. The air gap becomes the air layer 8. For convenience, the air layer 8 is referred to, but the air layer 8 may be a vacuum. When the air layer 8 is provided, a heat insulating effect can be imparted. Therefore, it is advantageous as a building material. Moreover, if the air layer 8 is a vacuum, the heat insulation effect will increase further. The air layer 8 is formed by the thickness of the bonding portion 7. In the fourth embodiment, each of the planar light emitting unit 10, the light scattering variable unit 20, and the light reflection variable unit 30 can be individually formed as an element having a structure sandwiched between the substrates 6. obtain.
 実施形態1及び3は、空隙がないため、実施形態2及び4よりも、光学的に有利になり得る。一方、実施形態2及び4は、空気層8を有するため、断熱効果を得ることができ、建材などの材料として有利になり得る。なお、実施形態1及び3の変形例として、実施形態1及び3における内部の基板6b及び基板6cの一方が、二つの基板6に分けられて、空気層8が設けられたものが例示される。このように、基板6は適宜分割されてよい。分割して空気層8を有する場合は断熱性を高めることができる。 Embodiments 1 and 3 can be optically more advantageous than Embodiments 2 and 4 because there are no gaps. On the other hand, since Embodiment 2 and 4 have the air layer 8, it can obtain a heat insulation effect and can be advantageous as a material such as building materials. As a modification of the first and third embodiments, one in which one of the internal substrate 6b and the substrate 6c in the first and third embodiments is divided into two substrates 6 and an air layer 8 is provided is exemplified. . Thus, the board | substrate 6 may be divided | segmented suitably. When it has divided and it has air layer 8, heat insulation can be improved.
 実施形態1及び2は、光散乱可変部20が面状発光部10よりも第1面F1側に配置されている。実施形態3及び4は、面状発光部10が光散乱可変部20よりも第1面F1側に配置されている。面状発光部10から生じる光をより散乱させるためには、主として光を取り出す面である第1面F1側に光散乱可変部20を配置した方がより有利である。実施形態1及び2では、光散乱性が高くなるため、視野角依存性を低減することができ、見る角度によって色の変化の少ない発光をより得ることが可能になる。また、光散乱性によって光をより多く取り出すことができるため、光取り出し効率を向上することができる。 In Embodiments 1 and 2, the light scattering variable portion 20 is disposed on the first surface F1 side with respect to the planar light emitting portion 10. In the third and fourth embodiments, the planar light emitting unit 10 is disposed on the first surface F1 side of the light scattering variable unit 20. In order to further scatter the light generated from the planar light emitting unit 10, it is more advantageous to arrange the light scattering variable unit 20 on the first surface F1 side, which is a surface from which light is mainly extracted. In the first and second embodiments, the light scattering property is increased, so that the viewing angle dependency can be reduced, and light emission with less color change can be obtained depending on the viewing angle. In addition, light extraction efficiency can be improved because more light can be extracted by the light scattering property.
 実施形態5以降では、光学的に有利な、内部の基板6が隣り合う部の基板6を兼ねており、各部の間に空気層8を有さないものを中心に説明する。もちろん、各実施形態においては、内部の基板6が分割されたものが変形例として挙げられる。また、実施形態5以降では、光学的に有利な、光散乱可変部20が面状発光部10よりも第1面F1側に配置されたものを中心に説明する。もちろん、各実施形態においては、光散乱可変部20と面状発光部10との位置が入れ替わってもよく、これらが入れ替わったものが変形例として挙げられる。 In the fifth and subsequent embodiments, an explanation will be given focusing on the optically advantageous internal substrate 6 that also serves as the adjacent substrate 6 and that does not have the air layer 8 between the components. Of course, in each embodiment, what divided the board | substrate 6 inside is mentioned as a modification. Further, in the fifth and subsequent embodiments, description will be made centering on the optically advantageous light scattering variable portion 20 disposed on the first surface F1 side with respect to the planar light emitting portion 10. Of course, in each embodiment, the positions of the light scattering variable unit 20 and the planar light emitting unit 10 may be interchanged, and those in which these are interchanged are listed as modified examples.
 図5は実施形態5を示している。実施形態5では、面状発光部10と光反射可変部30とが、隣り合う基板6(基板6b及び基板6c)の間に配置されている。面状発光部10及び光反射可変部30は、基板6を介さずに厚み方向に配置されている。面状発光部10と光反射可変部30とは接している。 FIG. 5 shows the fifth embodiment. In the fifth embodiment, the planar light emitting unit 10 and the light reflection variable unit 30 are disposed between adjacent substrates 6 (substrate 6b and substrate 6c). The planar light emitting unit 10 and the light reflection variable unit 30 are arranged in the thickness direction without the substrate 6 interposed therebetween. The planar light emitting unit 10 and the light reflection variable unit 30 are in contact with each other.
 面状発光体100においては、面状発光部10及び光反射可変部30は、少なくとも一つの共有する電極5を有していることが好ましい一態様である。電極5を共有化することにより、層の数を減らして、吸収や屈折や反射の原因となる層界面を減らすことができるため、光取り出し性を高めることができる。また、電極5を共有すると、電源50との接続が電気的に有利になりやすい。 In the planar light emitting body 100, the planar light emitting unit 10 and the light reflection variable unit 30 preferably have at least one shared electrode 5. By sharing the electrode 5, the number of layers can be reduced, and the layer interface that causes absorption, refraction, and reflection can be reduced. Therefore, light extraction can be improved. Moreover, if the electrode 5 is shared, the connection with the power source 50 is likely to be electrically advantageous.
 実施形態5では、面状発光部10の電極5bと、光反射可変部30の電極5pとを兼ねた電極5が設けられている。この電極5が、面状発光部10及び光反射可変部30で共有する電極5である。そのため、光取り出し性を高めることができる。 In the fifth embodiment, the electrode 5 serving as both the electrode 5b of the planar light emitting unit 10 and the electrode 5p of the light reflection variable unit 30 is provided. This electrode 5 is an electrode 5 shared by the planar light emitting unit 10 and the light reflection variable unit 30. Therefore, the light extraction property can be improved.
 実施形態5では、光反射可変層3は、有機発光層1を覆っていることが好ましい。それにより、有機発光層1の保護性を高めることができる。光反射可変層3は、電極5b(電極5p)ごと有機発光層1を覆っていてよい。光反射可変層3は、防湿性を有することが好ましい。光反射可変層3が防湿性を有することにより、水分の浸入を抑制することができ、有機発光層1が水分により劣化することを抑制することができる。光反射可変層3に用いる材料、例えば、液晶は、防湿性を有するものが存在する。そのため、液晶材料によって防湿性を容易に高めることができる。光反射可変層3は、吸湿材を含んでいてもよい。それにより、防湿性をさらに高めることができる。 In Embodiment 5, the light reflection variable layer 3 preferably covers the organic light emitting layer 1. Thereby, the protective property of the organic light emitting layer 1 can be improved. The light reflection variable layer 3 may cover the organic light emitting layer 1 together with the electrode 5b (electrode 5p). The light reflection variable layer 3 preferably has moisture resistance. Since the light reflection variable layer 3 has moisture resistance, it is possible to suppress the intrusion of moisture and to suppress the deterioration of the organic light emitting layer 1 due to moisture. The material used for the light reflection variable layer 3, for example, a liquid crystal, has a moistureproof property. Therefore, moisture resistance can be easily increased by the liquid crystal material. The light reflection variable layer 3 may contain a hygroscopic material. Thereby, moisture-proof property can further be improved.
 図6は実施形態6を示している。実施形態6では、光散乱可変部20と面状発光部10とが、隣り合う基板6(基板6a及び基板6b)の間に配置されている。光散乱可変部20と面状発光部10は、基板6を介さずに厚み方向に配置されている。光散乱可変部20と面状発光部10とは接している。 FIG. 6 shows the sixth embodiment. In the sixth embodiment, the light scattering variable unit 20 and the planar light emitting unit 10 are disposed between adjacent substrates 6 (substrate 6a and substrate 6b). The light scattering variable portion 20 and the planar light emitting portion 10 are arranged in the thickness direction without the substrate 6 interposed therebetween. The light scattering variable portion 20 and the planar light emitting portion 10 are in contact with each other.
 面状発光体100においては、面状発光部10及び光散乱可変部20は、少なくとも一つの共有する電極5を有していることが好ましい一態様である。電極5を共有化することにより、層の数を減らして、吸収や屈折や反射の原因となる層界面を減らすことができるため、光取り出し性を高めることができる。また、電極5を共有すると、電源50との接続が電気的に有利になりやすい。 In the planar light emitter 100, the planar light emitting unit 10 and the light scattering variable unit 20 preferably have at least one shared electrode 5. By sharing the electrode 5, the number of layers can be reduced, and the layer interface that causes absorption, refraction, and reflection can be reduced. Therefore, light extraction can be improved. Moreover, if the electrode 5 is shared, the connection with the power source 50 is likely to be electrically advantageous.
 実施形態6では、光散乱可変部20の電極5yと、面状発光部10の電極5aとを兼ねた電極5が設けられている。この電極5が、光散乱可変部20及び面状発光部10で共有する電極5である。そのため、光取り出し性を高めることができる。 In the sixth embodiment, the electrode 5 serving as both the electrode 5y of the light scattering variable portion 20 and the electrode 5a of the planar light emitting portion 10 is provided. This electrode 5 is an electrode 5 shared by the light scattering variable portion 20 and the planar light emitting portion 10. Therefore, the light extraction property can be improved.
 実施形態6では、面状発光部10と光反射可変部30との間には、基板6(基板6b)が配置されており、有機EL素子と光反射可変部30との距離が長くなる。有機EL素子内の光源から生じた光のうち第2面F2側に向かう光は、光反射可変部30によって構成される反射層によって反射して、第1面F1側に向かう光に変換され得る。このとき、有機EL素子から直接第1面F1側に向かう光と、光反射層で反射して第1面F1側に向かう光との間で干渉が生じる場合があり、干渉の度合いが大きくなると、光が取り出しにくくなる場合がある。これは、キャビティといわれる現象である。しかしながら、本形態のように、光源と反射層との距離を長くすると、干渉の度合いを小さくすることができ、光が取り出されなくなることを抑制することができる。そのため、光取り出し性に優れた面状発光体100を得ることができる。 In Embodiment 6, the substrate 6 (substrate 6b) is disposed between the planar light emitting unit 10 and the light reflection variable unit 30, and the distance between the organic EL element and the light reflection variable unit 30 becomes long. Of the light generated from the light source in the organic EL element, the light traveling toward the second surface F2 side can be reflected by the reflective layer formed by the light reflection variable unit 30 and converted into the light traveling toward the first surface F1 side. . At this time, interference may occur between the light directly traveling from the organic EL element toward the first surface F1 and the light reflected by the light reflection layer and traveling toward the first surface F1. When the degree of interference increases , It may be difficult to extract light. This is a phenomenon called a cavity. However, if the distance between the light source and the reflective layer is increased as in this embodiment, the degree of interference can be reduced, and light can no longer be extracted. Therefore, it is possible to obtain a planar light emitting body 100 having excellent light extraction properties.
 図7は実施形態7を示している。実施形態7では、光散乱可変部20と面状発光部10と光反射可変部30とが、隣り合う基板6(基板6a及び基板6b)の間に配置されている。光散乱可変部20と面状発光部10と光反射可変部30とは、基板6を介さずに厚み方向に配置されている。光散乱可変部20と面状発光部10とは接している。面状発光部10と光反射可変部30とは接している。 FIG. 7 shows the seventh embodiment. In the seventh embodiment, the light scattering variable unit 20, the planar light emitting unit 10, and the light reflection variable unit 30 are disposed between adjacent substrates 6 (substrate 6a and substrate 6b). The light scattering variable unit 20, the planar light emitting unit 10, and the light reflection variable unit 30 are arranged in the thickness direction without the substrate 6. The light scattering variable portion 20 and the planar light emitting portion 10 are in contact with each other. The planar light emitting unit 10 and the light reflection variable unit 30 are in contact with each other.
 実施形態7では、面状発光部10及び光散乱可変部20は、少なくとも一つの共有する電極5を有しており、面状発光部10及び光反射可変部30は、少なくとも一つの共有する電極5を有している。この形態では、電極5を複数の箇所で共有化することにより、層の数をさらに減らして、吸収や屈折や反射の原因となる層界面を減らすことができるため、光取り出し性を高めることができる。また、電極5を共有すると、電源50との接続が電気的に有利になりやすい。 In the seventh embodiment, the planar light emitting unit 10 and the light scattering variable unit 20 have at least one shared electrode 5, and the planar light emitting unit 10 and the light reflection variable unit 30 have at least one shared electrode. 5 In this embodiment, by sharing the electrode 5 at a plurality of locations, the number of layers can be further reduced, and the layer interface that causes absorption, refraction, and reflection can be reduced. it can. Moreover, if the electrode 5 is shared, the connection with the power source 50 is likely to be electrically advantageous.
 実施形態7では、光散乱可変部20の電極5yと、面状発光部10の電極5aとを兼ねた電極5が設けられている。この電極5が、光散乱可変部20及び面状発光部10で共有する電極5である。また、面状発光部10の電極5bと、光反射可変部30の電極5pとを兼ねた電極5が設けられている。この電極5が、面状発光部10及び光反射可変部30で共有する電極5である。そのため、光取り出し性を高めることができる。 In the seventh embodiment, the electrode 5 serving as both the electrode 5y of the light scattering variable portion 20 and the electrode 5a of the planar light emitting portion 10 is provided. This electrode 5 is an electrode 5 shared by the light scattering variable portion 20 and the planar light emitting portion 10. In addition, an electrode 5 serving as both the electrode 5 b of the planar light emitting unit 10 and the electrode 5 p of the light reflection variable unit 30 is provided. This electrode 5 is an electrode 5 shared by the planar light emitting unit 10 and the light reflection variable unit 30. Therefore, the light extraction property can be improved.
 実施形態7では、光反射可変層3は、有機発光層1を覆っていることが好ましい。光反射可変層3は、電極5b(電極5p)ごと有機発光層1を覆っていてよい。それにより、防湿性を高めることができる。その理由は、実施形態5で説明したのと同様である。 In Embodiment 7, it is preferable that the light reflection variable layer 3 covers the organic light emitting layer 1. The light reflection variable layer 3 may cover the organic light emitting layer 1 together with the electrode 5b (electrode 5p). Thereby, moisture resistance can be improved. The reason is the same as described in the fifth embodiment.
 図8は実施形態8を示している。図9は実施形態9を示している。実施形態8及び9では、面状発光体100は、光吸収可変部40を備えている。 FIG. 8 shows an eighth embodiment. FIG. 9 shows a ninth embodiment. In the eighth and ninth embodiments, the planar light emitter 100 includes the light absorption variable unit 40.
 面状発光体100は、光吸収性の程度が変化可能な光吸収可変部40を備えていることが好ましい一態様である。光吸収可変部40は、面状発光部10よりも第2面F2側に配置されていることが好ましい。光吸収可変部40を有することにより、余計な光を吸収することができるため、発光エリアと非発光エリアとの間のコントラストを高めることができ、より鮮明な発光を生じることができる。また、第2面F2側からの光を吸収することにより、面状発光部10、光散乱可変部20、及び場合によっては光反射可変部30に外部からの光を照射させないようにすることができ、これらの部分の劣化を抑制することができる。例えば、第2面F2が建物の外側に配置されると、紫外線を含む外光が面状発光体100に侵入するおそれがあるが、紫外線を吸収可能な光吸収可変部40が設けられていると、紫外線の侵入を抑制することができる。 The planar light emitter 100 is preferably provided with a light absorption variable portion 40 that can change the degree of light absorption. The light absorption variable portion 40 is preferably arranged on the second surface F2 side with respect to the planar light emitting portion 10. By having the light absorption variable portion 40, it is possible to absorb extra light, so that the contrast between the light emitting area and the non-light emitting area can be increased, and clearer light emission can be generated. Further, by absorbing light from the second surface F2 side, the planar light emitting unit 10, the light scattering variable unit 20, and in some cases the light reflection variable unit 30 may not be irradiated with light from the outside. And deterioration of these portions can be suppressed. For example, when the second surface F2 is disposed outside the building, external light including ultraviolet light may enter the planar light emitter 100, but the light absorption variable portion 40 capable of absorbing ultraviolet light is provided. Intrusion of ultraviolet rays can be suppressed.
 光吸収可変部40は、光吸収性が変化する部分である。光吸収可変部40は、光吸収性の程度が変化可能に構成されている。光吸収性の程度が変化可能とは、高吸収状態と低吸収状態とを変化可能なことであってよい。あるいは、光吸収性の程度が変化可能とは、光吸収性を有する状態と、光吸収性を有さない状態とを変化可能なことであってもよい。光吸収性の程度が変化可能であると、光学的な状態を変化させることができ、光学特性の優れた面状発光体100を得ることができる。光吸収可変部40は層状に形成されていてよい。 The light absorption variable part 40 is a part where the light absorption changes. The light absorption variable unit 40 is configured such that the degree of light absorption can be changed. The fact that the degree of light absorption can be changed may mean that the high absorption state and the low absorption state can be changed. Alternatively, the fact that the degree of light absorption can be changed may mean that the state having light absorption and the state having no light absorption can be changed. If the degree of light absorptivity can be changed, the optical state can be changed, and the planar light-emitting body 100 having excellent optical characteristics can be obtained. The light absorption variable portion 40 may be formed in a layer shape.
 高吸収状態とは、光吸収性が高い状態である。高吸収状態は、例えば、一方の面から入射した光が、吸収によって他方の面に出射しない状態である。高吸収状態は、一方の面側から他方の面側に存在する物体を視認することができない状態であり得る。高吸収状態は、両側から他方の面側に存在する物体を視認することができない状態であり得る。高吸収状態は、不透明な状態であり得る。高吸収状態では、光吸収可変部40は黒色となり得る。光吸収可変部40が光吸収性を発揮する場合、光吸収可変部40は、光を吸収する吸収層として機能する。 High absorption state is a state with high light absorption. The high absorption state is, for example, a state in which light incident from one surface does not exit to the other surface due to absorption. The high absorption state may be a state in which an object existing on one surface side from the other surface side cannot be visually recognized. The high absorption state may be a state where an object existing on the other surface side from both sides cannot be visually recognized. The superabsorbent state can be an opaque state. In the high absorption state, the light absorption variable portion 40 can be black. When the light absorption variable part 40 exhibits light absorptivity, the light absorption variable part 40 functions as an absorption layer that absorbs light.
 低吸収状態とは、光吸収性が低い又は光吸収性がない状態である。低吸収状態は、例えば、一方の面から入射した光が、吸収されずに進行方向をそのまま維持して、他方の面に出射する状態である。低吸収状態は、一方の面側から他方の面側に存在する物体を見たときに、物体を明瞭に視認できる状態であり得る。低吸収状態は、透明な状態であり得る。 The low absorption state is a state where the light absorption is low or there is no light absorption. The low absorption state is, for example, a state in which light incident from one surface is not absorbed and is emitted to the other surface while maintaining the traveling direction as it is. The low absorption state may be a state where an object can be clearly visually recognized when an object existing on the other surface side is viewed from one surface side. The low absorption state can be a transparent state.
 光吸収可変部40は、光吸収性が高い高吸収状態と、光吸収性が低い又は光吸収性がない低吸収状態と、高吸収状態と低吸収状態との間の光吸収性を発揮する状態と、を有することが可能なように構成されていてもよい。高吸収状態と低吸収状態との間の光吸収性を発揮することができることで、中程度の光吸収性を付与することができるため、光学的な状態をバリエーション高く変化させることができ、光学特性をより向上することができる。ここでは、高吸収状態と低吸収状態との間の光吸収性を発揮する状態を、中吸収状態と呼ぶ。 The light absorption variable unit 40 exhibits light absorption between a high absorption state with high light absorption, a low absorption state with low or no light absorption, and a high absorption state and a low absorption state. It may be configured to have a state. The ability to exhibit light absorption between the high absorption state and the low absorption state can provide moderate light absorption, so that the optical state can be changed with high variations, and optical The characteristics can be further improved. Here, a state that exhibits light absorption between the high absorption state and the low absorption state is referred to as a medium absorption state.
 中吸収状態は、高吸収状態と低吸収状態との間において、少なくとも一つの吸収状態を有するものであってよい。例えば、高吸収状態と中吸収状態と低吸収状態との三つの状態を切り替えることにより、光吸収性を変化させることができると、光学特性が向上する。中吸収状態は、高吸収状態と低吸収状態との間において、吸収性の程度が複数の段階となった複数の状態を有するものであることが好ましい一態様である。それにより、吸収性の程度が複数の段階になるため、光学特性をより高めることができる。例えば、高吸収状態と複数の中吸収状態と低吸収状態との複数の状態を切り替えることにより、光吸収性を段階的に変化させることができると、光学特性が向上する。中吸収状態は、高吸収状態と低吸収状態との間において、高吸収状態から低吸収状態まで、連続的に変化するように構成されていることが好ましい一態様である。それにより、吸収性の程度が連続的に変化するものになるため、光学的な状態をバリエーション高く変化させることができ、光学特性をより高めることができる。例えば、高吸収状態と低吸収状態との間で目的とする光吸収性を発揮させる状態にして光吸収性を変化させることができると、中間状態を作り出すことができるため、光学特性が向上する。光吸収可変部40が、中吸収状態を有する場合、光吸収可変部40は、中吸収状態を維持できるように構成されていることが好ましい。 The medium absorption state may have at least one absorption state between the high absorption state and the low absorption state. For example, if the light absorption can be changed by switching between three states of a high absorption state, a medium absorption state, and a low absorption state, the optical characteristics are improved. It is a preferable aspect that the intermediate absorption state has a plurality of states in which the degree of absorbency is in a plurality of stages between the high absorption state and the low absorption state. Thereby, since the degree of absorbency becomes a plurality of stages, the optical characteristics can be further improved. For example, if the light absorption can be changed stepwise by switching a plurality of states of a high absorption state, a plurality of medium absorption states, and a low absorption state, the optical characteristics are improved. It is a preferable aspect that the intermediate absorption state is configured to continuously change from the high absorption state to the low absorption state between the high absorption state and the low absorption state. Thereby, since the degree of absorptivity changes continuously, the optical state can be changed with high variations, and the optical characteristics can be further improved. For example, if the light absorptivity can be changed between a high absorption state and a low absorption state so as to exhibit the desired light absorption, an intermediate state can be created, so that the optical characteristics are improved. . When the light absorption variable part 40 has a medium absorption state, it is preferable that the light absorption variable part 40 is configured to maintain the medium absorption state.
 光吸収可変部40は、少なくとも可視光の一部を吸収するものであることが好ましい。それにより、発光を鮮明にすることができる。光吸収可変部40は可視光の全部を吸収するものであることが好ましい。それにより、さらに発光を鮮明にすることができる。光吸収可変部40が可視光を吸収する場合、光吸収可変部40は光反射可変部30と面状発光部10との間に配置されることが好ましい。これにより、発光をさらに鮮明にすることができる。光吸収可変部40は、赤外線を吸収するものであってもよい。赤外線を吸収する場合、遮熱効果を得ることができる。光吸収可変部40は紫外線を吸収するものであってもよい。それにより、面状発光体100の劣化を抑制することができる。また、紫外線を吸収できると、屋内への紫外線の侵入を抑制することができる。光吸収可変部40が赤外線または紫外線を吸収する場合、光吸収可変部40は光反射可変部30より第2面F2側に配置されることが好ましい。これにより、赤外線や紫外線が、面状発光部10、光反射可変部30及び光散乱可変部20を劣化させることを抑制することができる。光吸収可変部40は、可視光、紫外線及び赤外線のいずれか1つを吸収することが好ましく、これらのうちの2つを吸収することがより好ましく、これらの全てを吸収することがさらに好ましい。 The light absorption variable part 40 preferably absorbs at least part of visible light. Thereby, light emission can be made clear. The light absorption variable unit 40 preferably absorbs all visible light. Thereby, the emission can be further clarified. When the light absorption variable unit 40 absorbs visible light, the light absorption variable unit 40 is preferably disposed between the light reflection variable unit 30 and the planar light emitting unit 10. Thereby, light emission can be made clearer. The light absorption variable unit 40 may absorb infrared rays. When absorbing infrared rays, a heat shielding effect can be obtained. The light absorption variable part 40 may absorb ultraviolet rays. Thereby, deterioration of the planar light emitter 100 can be suppressed. Moreover, if ultraviolet rays can be absorbed, the penetration of ultraviolet rays into the room can be suppressed. When the light absorption variable part 40 absorbs infrared rays or ultraviolet rays, the light absorption variable part 40 is preferably arranged on the second surface F2 side from the light reflection variable part 30. Thereby, it can suppress that infrared rays and an ultraviolet-ray deteriorate the planar light emission part 10, the light reflection variable part 30, and the light-scattering variable part 20. FIG. The light absorption variable unit 40 preferably absorbs any one of visible light, ultraviolet light, and infrared light, more preferably absorbs two of these, and more preferably absorbs all of them.
 光吸収可変部40は、吸収スペクトルの形状を変化させることが可能なように構成されていてもよい。吸収スペクトルの変化は、中吸収状態において行われるものであってよい。吸収スペクトルの形状が変化するとは、光吸収可変部40に入射する光と、光吸収可変部40を通った光とのスペクトル形状が異なることである。吸収スペクトルの変化は吸収波長の変化により行われる。例えば、青色光のみを強く吸収したり、緑色光のみを強く吸収したり、赤色光のみを強く吸収したりすることによって、スペクトルの形状は変化する。吸収スペクトルが変化すると、面状発光体100を通過する光の色が変化する。そのため、透過光の調色(色の調整)を行うことができ、光学特性を向上することができる。 The light absorption variable unit 40 may be configured to be able to change the shape of the absorption spectrum. The change in the absorption spectrum may be performed in the medium absorption state. The change in the shape of the absorption spectrum means that the spectrum shape of the light incident on the light absorption variable unit 40 and the light that has passed through the light absorption variable unit 40 are different. The absorption spectrum is changed by changing the absorption wavelength. For example, the shape of the spectrum changes by strongly absorbing only blue light, strongly absorbing only green light, or strongly absorbing only red light. When the absorption spectrum changes, the color of light passing through the planar light emitter 100 changes. Therefore, the toning (color adjustment) of the transmitted light can be performed, and the optical characteristics can be improved.
 光吸収可変部40は、光吸収性を発揮する状態では、第1面F1から第2面F2に向かう方向の光よりも、第2面F2から第1面F1に向かう方向の光に対する吸収性が高いことが好ましい。それにより、面状発光部10の劣化を抑制したり、紫外線が第1面F1側に入るのを抑制したりすることができる。もちろん、光吸収可変部40は、光吸収性を発揮する状態で、第1面F1から第2面F2に向かう方向の光と、第2面F2から第1面F1に向かう方向の光との光吸収性が同じであってもよい。あるいは、光吸収可変部40は、光吸収性を発揮する状態で、第1面F1から第2面F2に向かう方向の光の方が、第2面F2から第1面F1に向かう方向の光よりも光吸収性が高くてもよい。 In a state where the light absorption variable portion 40 exhibits light absorption, the light absorption variable portion 40 absorbs light in a direction from the second surface F2 toward the first surface F1 rather than light in a direction from the first surface F1 toward the second surface F2. Is preferably high. Thereby, deterioration of the planar light-emitting part 10 can be suppressed, or ultraviolet rays can be prevented from entering the first surface F1 side. Of course, the light absorption variable part 40 is in a state of exhibiting light absorptivity, and includes light in a direction from the first surface F1 toward the second surface F2 and light in a direction from the second surface F2 toward the first surface F1. The light absorption may be the same. Alternatively, the light absorption variable unit 40 exhibits light absorption, and light in a direction from the first surface F1 toward the second surface F2 is light in a direction from the second surface F2 toward the first surface F1. The light absorption may be higher than that.
 光吸収可変部40は、光吸収性の程度が変化可能な適宜の構造で形成され得る。光吸収可変部40は、電界変調、温度変調、光変調、ガス変調などのものであってよい。電界変調は、電界をかけることによって光吸収性が変化する方式である。温度変調は、温度によって光吸収性が変化する方式である。 The light absorption variable portion 40 can be formed with an appropriate structure that can change the degree of light absorption. The light absorption variable unit 40 may be an electric field modulation, temperature modulation, light modulation, gas modulation, or the like. Electric field modulation is a method in which light absorbency changes by applying an electric field. Temperature modulation is a method in which the light absorption changes with temperature.
 面状発光体100においては、光吸収可変部40の光吸収性を制御可能なように構成されていることが好ましい。例えば、温度変調の方式においては、外部温度の変化によって光吸収性が変化し得るが、光吸収性が外部温度に左右されることになると、所望の光学特性を得られなくなるおそれがある。そのため、光吸収性が制御されることが好ましい。温度変調では、加温器や冷却器などによって温度制御が可能である。ただし、温度の制御は電界の制御よりも容易ではない。そのため、光吸収可変部40は、電界変調であることが好ましい。それより、電界によって容易に光吸収性を変化させることができるため、光学特性を向上することができる。光吸収可変部40を有する実施形態では、電界変調の光吸収可変部40が用いられている。以下では、電界変調の光吸収可変部40を説明する。 The planar light emitter 100 is preferably configured so that the light absorption of the light absorption variable portion 40 can be controlled. For example, in the temperature modulation method, the light absorption can be changed by a change in the external temperature, but if the light absorption depends on the external temperature, there is a possibility that desired optical characteristics cannot be obtained. Therefore, it is preferable that the light absorption is controlled. In the temperature modulation, the temperature can be controlled by a heater or a cooler. However, temperature control is not easier than electric field control. Therefore, it is preferable that the light absorption variable unit 40 is electric field modulation. Accordingly, the light absorption can be easily changed by an electric field, so that the optical characteristics can be improved. In the embodiment having the light absorption variable section 40, the electric field modulation light absorption variable section 40 is used. In the following, the electric field modulation light absorption variable unit 40 will be described.
 光吸収可変部40は、光透過性を有することが可能なように構成されている。高吸収状態では、光吸収可変部40は、不透明であってよい。低吸収状態では、光吸収可変部40は、透明であってよい。中吸収状態では、光吸収可変部40は、半透明であってよい。 The light absorption variable portion 40 is configured to be capable of transmitting light. In the high absorption state, the light absorption variable portion 40 may be opaque. In the low absorption state, the light absorption variable portion 40 may be transparent. In the middle absorption state, the light absorption variable portion 40 may be translucent.
 光吸収可変部40は、対となる電極5m、5nと、この対となる電極5m、5nの間に配置された光吸収可変層4とを有している。対となる電極5m、5nでは、電極5mが第1面F1側に配置され、電極5nが第2面F2側に配置されている。光吸収可変部40は、電極5m及び電極5nの間に光吸収可変層4が配置された構成を有する。光吸収可変部40が光吸収可変層4で構成されることにより、光学特性の優れた薄型の光吸収構造を形成することができる。光吸収可変層4は、光吸収性が変化する層である。光吸収可変層4は、少なくとも高吸収状態と低吸収状態とを有する。光吸収可変層4は、好ましくは中吸収状態を有する。電極5m及び電極5nは光透過性を有する。そのため、光吸収可変層4が光吸収性を有する状態の場合、光吸収可変部40に入射した光を吸収することができる。また、光吸収可変層4が光吸収性を有さない状態の場合、光吸収可変部40に入射した光をそのまま出射することができる。 The light absorption variable section 40 includes a pair of electrodes 5m and 5n, and a light absorption variable layer 4 disposed between the pair of electrodes 5m and 5n. In the pair of electrodes 5m and 5n, the electrode 5m is disposed on the first surface F1 side, and the electrode 5n is disposed on the second surface F2 side. The light absorption variable section 40 has a configuration in which the light absorption variable layer 4 is disposed between the electrode 5m and the electrode 5n. By configuring the light absorption variable portion 40 with the light absorption variable layer 4, a thin light absorption structure with excellent optical characteristics can be formed. The light absorption variable layer 4 is a layer whose light absorption changes. The light absorption variable layer 4 has at least a high absorption state and a low absorption state. The light absorption variable layer 4 preferably has a medium absorption state. The electrode 5m and the electrode 5n are light transmissive. Therefore, when the light absorption variable layer 4 has a light absorption property, the light incident on the light absorption variable portion 40 can be absorbed. Further, when the light absorption variable layer 4 is not in a state of light absorption, the light incident on the light absorption variable portion 40 can be emitted as it is.
 光吸収可変部40は、隣り合う基板6の間に配置されている。光吸収可変部40が二つの基板6の間に配置されることで、封止されている。封止により、光吸収可変層4が保持され、さらにその劣化が抑制される。二つの基板6は一対となっている。通常、光吸収可変部40は積層により形成される。その際、積層を行うための形成基板を要する。形成基板は、一対となった基板6の少なくともいずれかにより形成される。形成基板と対向する基板6は封止基板となる。封止基板は、一対となった基板6のうちの形成基板でない方により形成される。 The light absorption variable part 40 is disposed between the adjacent substrates 6. The light absorption variable part 40 is sealed by being disposed between the two substrates 6. By sealing, the light absorption variable layer 4 is held, and further its deterioration is suppressed. The two substrates 6 are a pair. Usually, the light absorption variable part 40 is formed by lamination. At that time, a formation substrate for stacking is required. The formation substrate is formed of at least one of the pair of substrates 6. The substrate 6 facing the formation substrate is a sealing substrate. The sealing substrate is formed of the pair of substrates 6 that is not the formation substrate.
 光吸収可変部40は、電極5mと電極5nとの間に電圧を印加することにより、光吸収可変層4における光吸収性の程度が変化する。電極5mと電極5nとは、配線53により、電源50に電気的に接続されている。電源50から給電を行うことにより、光吸収可変部40に電圧が印加される。光吸収可変部40の電源50は直流電源により構成されていてもよいし、交流電源により構成されてもよい。図の例では、光吸収可変部40の電源50は交流電源52により構成されている。電界により光吸収性が変化する材料では、電圧印加の開始から時間がたつと、電圧印加時の光吸収性の状態が維持できなくなる場合がある。交流電源52では、電圧を双方向に交互に印加することができ、電圧の方向を変えることで実質的に継続して電圧を印加することが可能である。そのため、交流電源52により、安定した光吸収性を得ることができる。交流の波形は矩形波であることが好ましい。それにより、印加する電圧量が一定になりやすくなるため、光吸収性を安定化させることがより可能になる。もちろん、交流はパルスであってよい。また、電源50は直流電源で構成されることも好ましい。電界により光吸収性が変化する材料では、一方向の電気の流れにより光吸収性が変化し得る場合がある。そのため、直流電源により、安定した光吸収性を得ることができる。なお、中吸収状態は、電圧の印加量が制御されることによって形成され得る。 The light absorption variable portion 40 changes the degree of light absorption in the light absorption variable layer 4 by applying a voltage between the electrode 5m and the electrode 5n. The electrode 5m and the electrode 5n are electrically connected to the power source 50 through a wiring 53. By supplying power from the power supply 50, a voltage is applied to the light absorption variable unit 40. The power supply 50 of the light absorption variable unit 40 may be constituted by a DC power supply or an AC power supply. In the example shown in the figure, the power supply 50 of the light absorption variable unit 40 is constituted by an AC power supply 52. In the case of a material whose light absorptivity changes due to an electric field, the light absorptive state at the time of voltage application may not be maintained over time from the start of voltage application. In the AC power supply 52, a voltage can be alternately applied in both directions, and a voltage can be applied substantially continuously by changing the direction of the voltage. Therefore, stable light absorption can be obtained by the AC power supply 52. The AC waveform is preferably a rectangular wave. As a result, the amount of voltage to be applied is likely to be constant, so that the light absorption can be more stabilized. Of course, the alternating current may be a pulse. The power supply 50 is preferably constituted by a DC power supply. In a material whose light absorptivity changes due to an electric field, the light absorptivity may change depending on the flow of electricity in one direction. Therefore, stable light absorption can be obtained by a DC power source. The intermediate absorption state can be formed by controlling the voltage application amount.
 光吸収可変層4の材料としては、電界変調によって光吸収性が変わる材料を好ましく用いることができる。電界変調の材料として、例えば、酸化タングステンなどが挙げられる。なお、温度変調の材料として、例えば、酸化バナジウムなどが挙げられる。また、光変調の材料として、例えば、Ag/Ti積層構造などが挙げられる。 As the material for the light absorption variable layer 4, a material whose light absorption changes by electric field modulation can be preferably used. Examples of the electric field modulation material include tungsten oxide. Examples of the temperature modulation material include vanadium oxide. Examples of the light modulation material include an Ag / Ti laminated structure.
 光吸収可変部40は、電圧無印加時に光吸収状態となり、電圧印加時に光透過状態となることが好ましい一態様である。液晶材料では、電圧の印加により吸収性が変化し得る。
液晶では、電圧の印加で配向を揃えることが可能である。液晶では、薄型で吸収性の高い光吸収可変部40を形成することができる。もちろん、光吸収可変部40は、電圧無印加時に光透過状態となり、電圧印加時に光吸収状態となるものであってもよい。
The light absorption variable unit 40 is preferably in a light absorption state when no voltage is applied and in a light transmission state when a voltage is applied. In the liquid crystal material, the absorptivity can be changed by applying a voltage.
In liquid crystals, the alignment can be made uniform by applying a voltage. In the liquid crystal, the light absorption variable section 40 which is thin and has high absorbability can be formed. Of course, the light absorption variable unit 40 may be in a light transmission state when no voltage is applied and in a light absorption state when a voltage is applied.
 光吸収可変層4は、電圧を印加したときの光吸収状態が維持されるものであることが好ましい一態様である。それにより、光吸収状態を変化させたいときに電圧を印加し、そうでないときには電圧を印加させなくてもよいので、電力効率が高まる。光吸収状態が維持される性質はヒステリシスと呼ばれる。この性質は記憶性(メモリ性)といってもよい。所定電圧以上の電圧を付加することにより、ヒステリシスは発揮され得る。光吸収状態の維持される時間は、長いほどよいが、例えば、1時間以上が好ましく、3時間以上がより好ましく、6時間以上がさらに好ましく、12時間以上がよりさらに好ましく、24時間以上がよりもっと好ましい。 The light absorption variable layer 4 is preferably one in which the light absorption state when a voltage is applied is maintained. Thereby, a voltage is applied when it is desired to change the light absorption state, and it is not necessary to apply a voltage when it is not, so that the power efficiency is improved. The property that the light absorption state is maintained is called hysteresis. This property may be called memory property (memory property). Hysteresis can be exerted by applying a voltage higher than a predetermined voltage. The longer the time during which the light absorption state is maintained, the better. For example, it is preferably 1 hour or longer, more preferably 3 hours or longer, further preferably 6 hours or longer, more preferably 12 hours or longer, more preferably 24 hours or longer. More preferable.
 実施形態8は、実施形態5の面状発光体100の第2面F2側に光吸収可変部40を配置した構造となっている。光吸収可変部40は、基板6cと基板6dとの間に配置されている。基板6cは、面状発光部10及び光反射可変部30を支持又は封止する基板6と、光吸収可変部40を支持又は封止する基板6とを兼ねている。光反射可変部30と光吸収可変部40との間には基板6cが配置されている。実施形態8では、光吸収可変部40を他の部分とは切り離して独立して構成することができるため、製造が容易になる可能性がある。また、光吸収性を高めることができる可能性がある。 Embodiment 8 has a structure in which the light absorption variable portion 40 is arranged on the second surface F2 side of the planar light emitter 100 of Embodiment 5. The light absorption variable unit 40 is disposed between the substrate 6c and the substrate 6d. The substrate 6 c serves as the substrate 6 that supports or seals the planar light emitting unit 10 and the light reflection variable unit 30 and the substrate 6 that supports or seals the light absorption variable unit 40. A substrate 6 c is disposed between the light reflection variable unit 30 and the light absorption variable unit 40. In the eighth embodiment, the light absorption variable portion 40 can be configured independently from other portions, and therefore, manufacturing may be facilitated. Moreover, there is a possibility that light absorption can be improved.
 実施形態9は、実施形態8を変形した例であり、実施形態8における基板6cを除いた例である。光吸収可変部40は、基板6bと基板6cとの間に配置されている。基板6bと基板6cとの間には、面状発光部10と光反射可変部30と光吸収可変部40とが設けられている。光反射可変部30と光吸収可変部40とは接している。 Embodiment 9 is an example in which Embodiment 8 is modified, and is an example in which the substrate 6c in Embodiment 8 is excluded. The light absorption variable part 40 is disposed between the substrate 6b and the substrate 6c. Between the substrate 6b and the substrate 6c, the planar light emitting unit 10, the light reflection variable unit 30, and the light absorption variable unit 40 are provided. The light reflection variable unit 30 and the light absorption variable unit 40 are in contact with each other.
 面状発光体100においては、光吸収可変部40を有する場合、光反射可変部30及び光吸収可変部40は、少なくとも一つの共有する電極5を有していることが好ましい一態様である。それにより、電極5を共有化することにより、層の数を減らして、吸収や屈折や反射の原因となる層界面を減らすことができる。また、電極5を共有すると、電源50との接続が電気的に有利になりやすい。 When the planar light emitter 100 includes the light absorption variable unit 40, it is a preferable aspect that the light reflection variable unit 30 and the light absorption variable unit 40 have at least one shared electrode 5. Thereby, by sharing the electrode 5, the number of layers can be reduced, and the layer interface that causes absorption, refraction, and reflection can be reduced. Moreover, if the electrode 5 is shared, the connection with the power source 50 is likely to be electrically advantageous.
 実施形態9では、光反射可変部30の電極5qと、光吸収可変部40の電極5mとを兼ねた電極5が設けられている。この電極5が、光反射可変部30及び光吸収可変部40で共有する電極5である。そのため、効率よく光吸収性を高めることができる。 In the ninth embodiment, the electrode 5 serving as both the electrode 5q of the light reflection variable unit 30 and the electrode 5m of the light absorption variable unit 40 is provided. This electrode 5 is an electrode 5 shared by the light reflection variable unit 30 and the light absorption variable unit 40. Therefore, light absorption can be improved efficiently.
 実施形態8及び9では、光吸収可変部40が光反射可変部30よりも第2面F2側に配置された例を示しているが、光吸収可変部40は面状発光体10と光反射可変部30との間に配置されてもよい。実施形態8及び9の変形例として、光吸収可変部40と光反射可変部30との配置が入れ替わったものが挙げられる。 In the eighth and ninth embodiments, the light absorption variable unit 40 is disposed on the second surface F2 side with respect to the light reflection variable unit 30. However, the light absorption variable unit 40 and the surface light emitter 10 and light reflection are illustrated. You may arrange | position between the variable parts 30. As a modification of the eighth and ninth embodiments, a configuration in which the arrangement of the light absorption variable unit 40 and the light reflection variable unit 30 is exchanged can be given.
 図10は実施形態10を示している。図11は実施形態11を示している。図12は実施形態12を示している。ただし、図12では面状発光体100の一部が示されている。図13は実施形態13を示している。図14は実施形態14を示している。図15は実施形態15を示している。図16は実施形態16を示している。図17は実施形態17を示している。図18は実施形態18を示している。実施形態10~18では、光反射可変部30は、第1光反射可変部31及び第2光反射可変部32を有している。 FIG. 10 shows the tenth embodiment. FIG. 11 shows an eleventh embodiment. FIG. 12 shows a twelfth embodiment. However, in FIG. 12, a part of the planar light emitter 100 is shown. FIG. 13 shows a thirteenth embodiment. FIG. 14 shows a fourteenth embodiment. FIG. 15 shows a fifteenth embodiment. FIG. 16 shows a sixteenth embodiment. FIG. 17 shows the seventeenth embodiment. FIG. 18 shows an eighteenth embodiment. In Embodiments 10 to 18, the light reflection variable unit 30 includes a first light reflection variable unit 31 and a second light reflection variable unit 32.
 実施形態10及び11では、面状発光部10と第1光反射可変部31とが隣り合う基板6(基板6b及び6c)の間に配置されている。面状発光部10と第1光反射可変部31とは厚み方向に接して配置されている。実施形態13では、面状発光部10と第1光反射可変部31と第2光反射可変部32とが隣り合う基板6(基板6b及び6c)の間に配置されている。面状発光部10と第1光反射可変部31とは厚み方向に接して配置されており、第1光反射可変部31と第2光反射可変部32とは厚み方向に接して配置されている。実施形態14、15及び16では、光散乱可変部20と面状発光部10とが隣り合う基板6(基板6a及び6b)の間に配置されている。光散乱可変部20と面状発光部10とは厚み方向に接して配置されている。実施形態16では、第1光反射可変部31と第2光反射可変部32とが隣り合う基板6(基板6b及び6c)の間に配置されている。第1光反射可変部31と第2光反射可変部32とは厚み方向に接して配置されている。実施形態17では、光散乱可変部20と面状発光部10と第1光反射可変部31とが隣り合う基板6(基板6a及び6b)の間に配置されている。光散乱可変部20と面状発光部10とは厚み方向に接して配置され、面状発光部10と第1光反射可変部31とは厚み方向に接して配置されている。実施形態18では、光散乱可変部20と面状発光部10と第1光反射可変部31と第2光反射可変部32とが隣り合う基板6(基板6a及び6b)の間に配置されている。光散乱可変部20と面状発光部10とは厚み方向に接して配置されており、面状発光部10と第1光反射可変部31とは厚み方向に接して配置されており、第1光反射可変部31と第2光反射可変部32とは厚み方向に接して配置されている。 In Embodiments 10 and 11, the planar light emitting unit 10 and the first light reflection variable unit 31 are disposed between the adjacent substrates 6 ( substrates 6b and 6c). The planar light emitting unit 10 and the first light reflection variable unit 31 are arranged in contact with each other in the thickness direction. In the thirteenth embodiment, the planar light emitting unit 10, the first light reflection variable unit 31, and the second light reflection variable unit 32 are disposed between the adjacent substrates 6 ( substrates 6b and 6c). The planar light emitting unit 10 and the first light reflection variable unit 31 are arranged in contact with each other in the thickness direction, and the first light reflection variable unit 31 and the second light reflection variable unit 32 are arranged in contact with each other in the thickness direction. Yes. In the fourteenth, fifteenth and sixteenth embodiments, the light scattering variable portion 20 and the planar light emitting portion 10 are disposed between adjacent substrates 6 ( substrates 6a and 6b). The light scattering variable portion 20 and the planar light emitting portion 10 are arranged in contact with each other in the thickness direction. In the sixteenth embodiment, the first light reflection variable portion 31 and the second light reflection variable portion 32 are disposed between the adjacent substrates 6 ( substrates 6b and 6c). The first light reflection variable part 31 and the second light reflection variable part 32 are arranged in contact with each other in the thickness direction. In the seventeenth embodiment, the light scattering variable unit 20, the planar light emitting unit 10, and the first light reflection variable unit 31 are disposed between adjacent substrates 6 ( substrates 6a and 6b). The light scattering variable portion 20 and the planar light emitting portion 10 are arranged in contact with each other in the thickness direction, and the planar light emitting portion 10 and the first light reflection variable portion 31 are arranged in contact with each other in the thickness direction. In the eighteenth embodiment, the light scattering variable unit 20, the planar light emitting unit 10, the first light reflection variable unit 31, and the second light reflection variable unit 32 are arranged between adjacent substrates 6 ( substrates 6a and 6b). Yes. The light scattering variable portion 20 and the planar light emitting portion 10 are disposed in contact with each other in the thickness direction, and the planar light emitting portion 10 and the first light reflection variable portion 31 are disposed in contact with each other in the thickness direction. The light reflection variable part 31 and the second light reflection variable part 32 are arranged in contact with each other in the thickness direction.
 面状発光体100においては、光反射可変部30は、第1の偏光を反射可能な第1光反射可変部31と、第2の偏光を反射可能な第2光反射可変部32とを有することが好ましい。第1光反射可変部31と第2光反射可変部32とは、光反射性が可変な部分が離間して配置されていることが好ましい。第1光反射可変部31と第2光反射可変部32とを有することにより、より多くの光を反射させることができるため、反射性を高めることができ、光学特性を向上することができる。 In the planar light emitter 100, the light reflection variable unit 30 includes a first light reflection variable unit 31 capable of reflecting the first polarized light and a second light reflection variable unit 32 capable of reflecting the second polarized light. It is preferable. It is preferable that the first light reflection variable part 31 and the second light reflection variable part 32 are arranged so that the parts having variable light reflectivity are separated from each other. By having the first light reflection variable section 31 and the second light reflection variable section 32, more light can be reflected, so that the reflectivity can be improved and the optical characteristics can be improved.
 第1光反射可変部31は、第1の偏光を反射可能なように構成されている。第2光反射可変部32は、第2の偏光を反射可能なように構成されている。第1の偏光と第2の偏光とは相補的な関係にある。光の成分を偏光により分解した際に、ある特定の偏光で取り出されるものを第1の偏光としたときに、第1の偏光以外の光が第2の偏光となる。第1の偏光及び第2の偏光の関係は、左円偏光及び右円偏光の関係であり得る。第1の偏光が左円偏光である場合、第2の偏光が右円偏光となる。あるいは、第1の偏光が右円偏光である場合、第2の偏光が左円偏光となる。左円偏光及び右円偏光は円偏光と呼ばれる。円偏光の反射は、螺旋構造の分子配向により生じ得る。螺旋構造は、上述したように液晶によって形成され得る。螺旋構造が右回りか左回りかによって、円偏光の左右が決まる。図10~18においては、第1光反射可変部31及び第2光反射可変部32に、これらが理解しやすいよう、逆向きの螺旋構造を模した模様を入れている。なお、第1の偏光及び第2の偏光の関係は、直線偏光の関係であってもよい。直線偏光では、第1の偏光が縦変更となり、第2の偏光が横偏光となり得る。 The first light reflection variable unit 31 is configured to reflect the first polarized light. The second light reflection variable unit 32 is configured to reflect the second polarized light. The first polarized light and the second polarized light are in a complementary relationship. When the light component is decomposed by the polarized light and the first polarized light is taken out as a specific polarized light, the light other than the first polarized light becomes the second polarized light. The relationship between the first polarization and the second polarization may be a relationship between left circular polarization and right circular polarization. When the first polarization is left circular polarization, the second polarization is right circular polarization. Alternatively, when the first polarized light is right circular polarized light, the second polarized light is left circular polarized light. Left circularly polarized light and right circularly polarized light are called circularly polarized light. The reflection of circularly polarized light can be caused by the molecular orientation of the helical structure. The spiral structure can be formed by liquid crystal as described above. The right and left of circularly polarized light are determined depending on whether the spiral structure is clockwise or counterclockwise. 10 to 18, the first light reflection variable portion 31 and the second light reflection variable portion 32 are provided with patterns simulating reverse spiral structures so that they can be easily understood. The relationship between the first polarized light and the second polarized light may be a linearly polarized light relationship. In linearly polarized light, the first polarized light can be changed vertically, and the second polarized light can be converted into horizontally polarized light.
 光は、第1の偏光と第2の偏光に分解される。第1の偏光と第2の偏光とを合わせたものが分解前の光となる。そのため、第1の偏光と、第2の偏光との両方を反射可能であると、理論的には全ての光を反射させることが可能になるため、高い光反射性を発揮することができる。 The light is decomposed into the first polarized light and the second polarized light. A combination of the first polarized light and the second polarized light becomes light before decomposition. For this reason, if both the first polarized light and the second polarized light can be reflected, all light can be reflected theoretically, so that high light reflectivity can be exhibited.
 第1光反射可変部31及び第2光反射可変部32の具体的な構成は、共通事項として、光反射可変部30で説明したものと同様であってよい。偏光する光が異なること以外は、第1光反射可変部31及び第2光反射可変部32は同様の構成を有し得る。第1の偏光と第2の偏光との違いは、例えば、光反射性が変化する材料のキラル性の違いにより生じ得る。 Specific configurations of the first light reflection variable unit 31 and the second light reflection variable unit 32 may be the same as those described in the light reflection variable unit 30 as a common matter. The first light reflection variable unit 31 and the second light reflection variable unit 32 may have the same configuration except that the polarized light is different. The difference between the first polarized light and the second polarized light can be caused by, for example, a difference in chirality of materials whose light reflectivity changes.
 第1光反射可変部31は、対となる電極5p、5qと、この対となる電極5p、5qの間に配置された第1光反射可変層3aとを有している。対となる電極5p、5qでは、電極5pが第1面F1側に配置され、電極5qが第2面F2側に配置されている。第1光反射可変部31は、電極5p及び電極5qの間に第1光反射可変層3aが配置された構成を有する。第1光反射可変層3aは、光反射性が変化する層である。第1光反射可変層3aは、少なくとも高反射状態と低反射状態とを有する。第1光反射可変層3aは、好ましくは中反射状態を有する。電極5p及び電極5qは光透過性を有する。そのため、第1光反射可変層3aが光反射性を有する状態の場合、第1光反射可変部31に入射した光のうち、第1の偏光を効率よく反射させることができる。また、第1光反射可変層3aが光反射性を有さない状態の場合、第1光反射可変部31に入射した光をそのまま出射することができる。 The first light reflection variable section 31 includes a pair of electrodes 5p and 5q, and a first light reflection variable layer 3a disposed between the pair of electrodes 5p and 5q. In the pair of electrodes 5p and 5q, the electrode 5p is disposed on the first surface F1 side, and the electrode 5q is disposed on the second surface F2 side. The first light reflection variable section 31 has a configuration in which the first light reflection variable layer 3a is disposed between the electrode 5p and the electrode 5q. The first light reflection variable layer 3a is a layer whose light reflectivity changes. The first light reflection variable layer 3a has at least a high reflection state and a low reflection state. The first light reflection variable layer 3a preferably has a middle reflection state. The electrode 5p and the electrode 5q are light transmissive. Therefore, in the case where the first light reflection variable layer 3 a has a light reflectivity, it is possible to efficiently reflect the first polarized light in the light incident on the first light reflection variable portion 31. In addition, when the first light reflection variable layer 3a is not light-reflective, the light incident on the first light reflection variable portion 31 can be emitted as it is.
 第1光反射可変部31は、隣り合う基板6の間に配置されている。第1光反射可変部31が二つの基板6の間に配置されることで、封止されている。第1光反射可変部31は、電極5pと電極5qとの間に電圧を印加することにより、第1光反射可変層3aにおける光反射性の程度が変化する。電極5pと電極5qとは、配線53により、電源50に電気的に接続されている。電源50から給電を行うことにより、第1光反射可変部31に電圧が印加される。第1光反射可変部31の電源50は交流電源52により構成されている。 The first light reflection variable portion 31 is disposed between the adjacent substrates 6. The first light reflection variable portion 31 is disposed between the two substrates 6 to be sealed. The first light reflection variable unit 31 changes the degree of light reflectivity in the first light reflection variable layer 3a by applying a voltage between the electrode 5p and the electrode 5q. The electrode 5p and the electrode 5q are electrically connected to the power source 50 through a wiring 53. By supplying power from the power supply 50, a voltage is applied to the first light reflection variable unit 31. The power source 50 of the first light reflection variable unit 31 is constituted by an AC power source 52.
 第2光反射可変部32は、対となる電極5r、5sと、この対となる電極5r、5sの間に配置された第2光反射可変層3bとを有している。対となる電極5r、5sでは、電極5rが第1面F1側に配置され、電極5sが第2面F2側に配置されている。第2光反射可変部32は、電極5r及び電極5sの間に第2光反射可変層3bが配置された構成を有する。第2光反射可変層3bは、光反射性が変化する層である。第2光反射可変層3bは、少なくとも高反射状態と低反射状態とを有する。第2光反射可変層3bは、好ましくは中反射状態を有する。電極5r及び電極5sは光透過性を有する。そのため、第2光反射可変層3bが光反射性を有する状態の場合、第2光反射可変部32に入射した光のうち、第2の偏光を効率よく反射させることができる。また、第2光反射可変層3bが光反射性を有さない状態の場合、第2光反射可変部32に入射した光をそのまま出射することができる。 The second light reflection variable section 32 has a pair of electrodes 5r and 5s and a second light reflection variable layer 3b disposed between the pair of electrodes 5r and 5s. In the pair of electrodes 5r and 5s, the electrode 5r is disposed on the first surface F1 side, and the electrode 5s is disposed on the second surface F2 side. The second light reflection variable section 32 has a configuration in which the second light reflection variable layer 3b is disposed between the electrode 5r and the electrode 5s. The second light reflection variable layer 3b is a layer whose light reflectivity changes. The second light reflection variable layer 3b has at least a high reflection state and a low reflection state. The second light reflection variable layer 3b preferably has a middle reflection state. The electrode 5r and the electrode 5s are light transmissive. Therefore, when the second light reflection variable layer 3b has a light reflectivity, the second polarized light out of the light incident on the second light reflection variable portion 32 can be efficiently reflected. Further, when the second light reflection variable layer 3b is not light-reflective, the light incident on the second light reflection variable portion 32 can be emitted as it is.
 第2光反射可変部32は、隣り合う基板6の間に配置されている。第2光反射可変部32が二つの基板6の間に配置されることで、封止されている。第2光反射可変部32は、電極5rと電極5sとの間に電圧を印加することにより、第2光反射可変層3bにおける光反射性の程度が変化する。電極5rと電極5sとは、配線53により、電源50に電気的に接続されている。電源50から給電を行うことにより、第2光反射可変部32に電圧が印加される。第2光反射可変部32の電源50は交流電源52により構成されている。 The second light reflection variable portion 32 is disposed between the adjacent substrates 6. The second light reflection variable portion 32 is disposed between the two substrates 6 to be sealed. The second light reflection variable unit 32 changes the degree of light reflectivity in the second light reflection variable layer 3b by applying a voltage between the electrode 5r and the electrode 5s. The electrode 5 r and the electrode 5 s are electrically connected to the power source 50 through a wiring 53. By supplying power from the power supply 50, a voltage is applied to the second light reflection variable unit 32. The power source 50 of the second light reflection variable unit 32 is constituted by an AC power source 52.
 第1光反射可変部31及び第2光反射可変部32は、独立して駆動可能なように構成されてもよいし、連動して駆動可能なように構成されてもよい。独立して駆動が可能な場合、特定の偏光を反射させることができ、複雑な光学状態を得ることが可能となり、光学特性を高めることができる。連動して駆動可能なように構成された場合、光反射性の程度を簡単に制御することができる。 The first light reflection variable unit 31 and the second light reflection variable unit 32 may be configured to be driven independently, or may be configured to be driven in conjunction with each other. When independent driving is possible, specific polarized light can be reflected, a complicated optical state can be obtained, and optical characteristics can be improved. When configured to be driven in conjunction with each other, the degree of light reflectivity can be easily controlled.
 第1光反射可変部31及び第2光反射可変部32は、光反射可変部30全体として高反射状態であるときには、両方同時に高反射状態であることが好ましい。それにより、高い反射性を得ることができる。第1光反射可変部31及び第2光反射可変部32は、光反射可変部30全体として低反射状態であるときには、両方同時に低反射状態であることが好ましい。それにより、反射性のより低い状態を得ることができる。 When the first light reflection variable unit 31 and the second light reflection variable unit 32 are in the high reflection state as a whole, the light reflection variable unit 30 is preferably in the high reflection state at the same time. Thereby, high reflectivity can be obtained. When the first light reflection variable unit 31 and the second light reflection variable unit 32 are in the low reflection state as a whole of the light reflection variable unit 30, it is preferable that both are in the low reflection state at the same time. Thereby, a less reflective state can be obtained.
 光反射可変部30では、第1光反射可変部31における光反射が可変な部分である第1光反射可変層3aと、第2光反射可変部32における光反射が可変な部分である第2光反射可変層3bとが離間されている。第1光反射可変層3a及び第2光反射可変層3bはそれぞれ、液晶などで構成され得る。第1光反射可変層3aと第2光反射可変層3bが接していると、第1光反射可変層3aの成分と第2光反射可変層3bの成分とが混じり合い、反射性が得られにくくなるおそれがある。例えば、液晶分子のキラル性が異なる材料が、第1光反射可変層3a及び第2光反射可変層3bに用いられ得るが、液晶分子が混じるとキラル性が失われて、反射性が低下する。そのため、第1光反射可変層3aと第2光反射可変層3bとが離間されていることが好ましいのである。 In the light reflection variable section 30, the first light reflection variable layer 3a which is a variable light reflection portion in the first light reflection variable section 31 and the second light reflection variable section in the second light reflection variable section 32 are variable. The light reflection variable layer 3b is separated. Each of the first light reflection variable layer 3a and the second light reflection variable layer 3b may be formed of a liquid crystal or the like. When the first light reflection variable layer 3a and the second light reflection variable layer 3b are in contact with each other, the components of the first light reflection variable layer 3a and the components of the second light reflection variable layer 3b are mixed to obtain reflectivity. May be difficult. For example, materials having different chirality of liquid crystal molecules can be used for the first light reflection variable layer 3a and the second light reflection variable layer 3b, but when liquid crystal molecules are mixed, the chirality is lost and the reflectivity is lowered. . Therefore, it is preferable that the first light reflection variable layer 3a and the second light reflection variable layer 3b are separated from each other.
 第1光反射可変層3aと第2光反射可変層3bとが離間する態様について説明する。以下では、便宜上、第1光反射可変層3aと第2光反射可変層3bとを離間する部分を離間部と定義する。 A mode in which the first light reflection variable layer 3a and the second light reflection variable layer 3b are separated will be described. Hereinafter, for the sake of convenience, a portion that separates the first light reflection variable layer 3a and the second light reflection variable layer 3b is defined as a separation portion.
 実施形態10、11、12、14、15及び17では、離間部は基板6により構成されている。実施形態13、16及び18では、離間部は電極5により構成されている。 In the tenth, eleventh, eleventh, twelfth, fourteenth, fifteenth and seventeenth embodiments, the separation portion is constituted by the substrate 6. In the thirteenth, sixteenth and eighteenth embodiments, the spacing portion is constituted by the electrode 5.
 面状発光体100は、第1面F1を有する基板6(基板6a)を備え、第1光反射可変部31と第2光反射可変部32との間に、この基板6(基板6a)と同種の材料で形成された板体が配置されていることが、離間の好ましい一態様である。第1光反射可変層3aと第2光反射可変層3bとが、基板6と同種の材料の板体で分離されることにより、基板6と板体との光学的な条件がより同じになるため、光学特性を向上することができる。このとき、板体は離間部を構成する。第1面F1を有する基板6がガラスである場合、層を離間する板体は、ガラスであることが好ましい。さらに、この基板6と板体とは、ガラスの種類(例えば、無アルカリガラスなど)も同じであることが、低コストになるためより好ましい。また、屈折率が同じであることがより好ましい。実施形態10、11、14及び15において、基板6cが基板6aと同種の材料である場合、基板6cが板体となり、この態様となる。また、実施形態17において、基板6bが基板6aと同種の材料である場合、基板6bが板体となり、この態様となる。 The planar light emitter 100 includes a substrate 6 (substrate 6a) having a first surface F1, and the substrate 6 (substrate 6a) and the second light reflection variable unit 32 are disposed between the first light reflection variable unit 31 and the second light reflection variable unit 32. It is a preferable embodiment of the separation that the plates formed of the same kind of material are arranged. The first light reflection variable layer 3a and the second light reflection variable layer 3b are separated by a plate made of the same material as that of the substrate 6, so that the optical conditions of the substrate 6 and the plate become more the same. Therefore, the optical characteristics can be improved. At this time, the plate body constitutes a separation portion. When the board | substrate 6 which has the 1st surface F1 is glass, it is preferable that the plate body which spaces apart a layer is glass. Further, it is more preferable that the substrate 6 and the plate have the same kind of glass (for example, non-alkali glass) because the cost is low. More preferably, the refractive indexes are the same. In Embodiment 10, 11, 14, and 15, when the board | substrate 6c is the same kind of material as the board | substrate 6a, the board | substrate 6c becomes a plate body and becomes this aspect. In the seventeenth embodiment, when the substrate 6b is made of the same kind of material as the substrate 6a, the substrate 6b is a plate body, which is this mode.
 面状発光体100は、第1光反射可変部31と前記第2光反射可変部32との間に、可撓性を有するシートが配置されていることが、離間の好ましい一態様である。第1光反射可変層3aと第2光反射可変層3bとが、シートで分離されることにより、第1光反射可変層3aと第2光反射可変層3bとが混じり合わないとともに、シートによって破断時の飛散を抑制することができる。シートは離間部を構成する。シートは樹脂製のものであることが好ましい。それにより、さらに破断時の飛散を抑制して、安全性を高めることができる。実施形態10、11、14及び15において、基板6cがシートである場合、この態様となる。また、実施形態17において、基板6bがシートである場合、この態様となる。 In the planar light emitting body 100, it is a preferable mode of separation that a flexible sheet is disposed between the first light reflection variable portion 31 and the second light reflection variable portion 32. Since the first light reflection variable layer 3a and the second light reflection variable layer 3b are separated by the sheet, the first light reflection variable layer 3a and the second light reflection variable layer 3b are not mixed, and depending on the sheet Scattering at the time of breakage can be suppressed. The sheet constitutes a separation portion. The sheet is preferably made of resin. Thereby, the scattering at the time of a fracture | rupture can be suppressed and safety can be improved. In Embodiment 10, 11, 14, and 15, when the board | substrate 6c is a sheet | seat, it becomes this aspect. In the seventeenth embodiment, this mode is used when the substrate 6b is a sheet.
 第1光反射可変部31及び第2光反射可変部32は、少なくとも一つの共有する電極5を有することが好ましい。電極5の共有は電気的な共有であってよい。電極5を共有することにより、電気的特性と光学特性とを向上することができる。また、電極5の共有により、二つの光反射可変層3を連動しやすくすることができる。 It is preferable that the first light reflection variable unit 31 and the second light reflection variable unit 32 have at least one shared electrode 5. The sharing of the electrode 5 may be an electrical sharing. By sharing the electrode 5, electrical characteristics and optical characteristics can be improved. Moreover, the sharing of the electrode 5 can facilitate the interlocking of the two light reflection variable layers 3.
 図11の実施形態11は、電極5を共有した一例である。第1光反射可変部31の電極5qと第2光反射可変部32の電極5rとが、電気的に同じ電極5となり、共有されている。このような電極5の共有は、配線構造によって形成することができる。配線53によって電極5が共有されている。 Embodiment 11 in FIG. 11 is an example in which the electrode 5 is shared. The electrode 5q of the first light reflection variable unit 31 and the electrode 5r of the second light reflection variable unit 32 are electrically the same electrode 5 and are shared. Such sharing of the electrode 5 can be formed by a wiring structure. The electrode 5 is shared by the wiring 53.
 図12の実施形態12は、第1光反射可変部31及び第2光反射可変部32との間に、基板6(板体、シートなど)が配置された場合の共有の一例を示している。この例では、電極接続部5tを有する。電極5q及び電極5rは、導電性の材料で形成された電極接続部5tに接続されている。図12では、電極接続部5tは基板6の側方に形成されている。電極接続部5tが形成されることにより、電極5qと電極5rとを電気的に接続することが可能になり、電極5が共有される。電極接続部5tは、図示の態様に限られない。例えば、電極接続部5tは、基板6を貫通するように設けられるものであってもよい。図12の電極共有の構造は、図15の実施形態15にも適用することができる。 The twelfth embodiment of FIG. 12 shows an example of sharing when the substrate 6 (plate body, sheet, etc.) is disposed between the first light reflection variable unit 31 and the second light reflection variable unit 32. . In this example, the electrode connection portion 5t is provided. The electrode 5q and the electrode 5r are connected to an electrode connection portion 5t formed of a conductive material. In FIG. 12, the electrode connection portion 5 t is formed on the side of the substrate 6. By forming the electrode connection portion 5t, the electrode 5q and the electrode 5r can be electrically connected, and the electrode 5 is shared. The electrode connecting portion 5t is not limited to the illustrated mode. For example, the electrode connection portion 5t may be provided so as to penetrate the substrate 6. The electrode sharing structure of FIG. 12 can also be applied to the embodiment 15 of FIG.
 第1光反射可変層3aと第2光反射可変層3bとの間に、共有する電極5が配置されることにより、光反射が可変な部分が離間されていることが、離間の好ましい一態様である。この場合、離間部は、電極5により構成される。電極5で第1光反射可変層3aと第2光反射可変層3bとを離間することにより、層の数を減らすことができ、光が吸収や反射などによって消失するのを抑制することができる。また、電極5を共有化することにより効率よく、電圧を印加することができる。実施形態13、16及び18が、この態様となる。実施形態13、16及び18では、第1光反射可変部31と第2光反射可変部32とが接している。 A preferred aspect of the separation is that the shared electrode 5 is disposed between the first light reflection variable layer 3a and the second light reflection variable layer 3b so that the portions where the light reflection is variable are separated. It is. In this case, the separation portion is constituted by the electrode 5. By separating the first light reflection variable layer 3a and the second light reflection variable layer 3b by the electrode 5, the number of layers can be reduced, and the disappearance of light due to absorption or reflection can be suppressed. . In addition, the voltage can be applied efficiently by sharing the electrode 5. Embodiments 13, 16, and 18 are this mode. In the thirteenth, sixteenth and eighteenth embodiments, the first light reflection variable unit 31 and the second light reflection variable unit 32 are in contact with each other.
 図19は実施形態19を示す。図20は実施形態20を示す。図21は実施形態21を示す。図22は実施形態22を示す。図23は実施形態23を示す。実施形態19~23は、光反射可変部30が第1光反射可変部31と第2光反射可変部32とを有するものにおいて、光吸収可変部40を設けた例である。 FIG. 19 shows the nineteenth embodiment. FIG. 20 shows a twentieth embodiment. FIG. 21 shows a twenty-first embodiment. FIG. 22 shows a twenty-second embodiment. FIG. 23 shows a twenty-third embodiment. Embodiments 19 to 23 are examples in which the light absorption variable unit 40 is provided in the case where the light reflection variable unit 30 includes the first light reflection variable unit 31 and the second light reflection variable unit 32.
 図19の実施形態19は、実施形態13の変形例である。実施形態19は、実施形態13の面状発光体100の第2面F2側に光吸収可変部40を配置した構造となっている。光吸収可変部40は、基板6cと基板6dとの間に配置されている。基板6cは、面状発光部10及び光反射可変部30を支持又は封止する基板6と、光吸収可変部40を支持又は封止する基板6とを兼ねている。光反射可変部30(特に第2光反射可変部32)と光吸収可変部40との間には基板6cが配置されている。実施形態19では、光吸収可変部40を他の部分とは切り離して独立して構成することができるため、製造が容易になる可能性がある。また、光吸収性を高めることができる可能性がある。 Nineteenth embodiment of FIG. 19 is a modification of the thirteenth embodiment. The nineteenth embodiment has a structure in which the light absorption variable portion 40 is disposed on the second surface F2 side of the planar light emitter 100 of the thirteenth embodiment. The light absorption variable unit 40 is disposed between the substrate 6c and the substrate 6d. The substrate 6 c serves as the substrate 6 that supports or seals the planar light emitting unit 10 and the light reflection variable unit 30 and the substrate 6 that supports or seals the light absorption variable unit 40. A substrate 6 c is disposed between the light reflection variable section 30 (particularly the second light reflection variable section 32) and the light absorption variable section 40. In the nineteenth embodiment, the light absorption variable portion 40 can be configured independently from other portions, and therefore, manufacturing may be facilitated. Moreover, there is a possibility that light absorption can be improved.
 図20の実施形態20は、実施形態13の変形例である。実施形態20は、実施形態13において基板6bと基板6cとの間に光吸収可変部40を設けた例である。光吸収可変部40は第2光反射可変部32に接している。実施形態20では、第2光反射可変部32の電極5sと、光吸収可変部40の電極5mとを兼ねた電極5が設けられている。この電極5は、第2光反射可変部32及び光吸収可変部40で共有する電極5である。第2光反射可変部32及び光吸収可変部40が電極5を共有化することにより、層の数を減らして、吸収や屈折や反射の原因となる層界面を減らすことができる。また、電極5を共有すると、電源50との接続が電気的に有利になりやすい。 20 is a modification of the thirteenth embodiment. The twentieth embodiment is an example in which the light absorption variable portion 40 is provided between the substrate 6b and the substrate 6c in the thirteenth embodiment. The light absorption variable part 40 is in contact with the second light reflection variable part 32. In the twentieth embodiment, the electrode 5 serving as both the electrode 5s of the second light reflection variable portion 32 and the electrode 5m of the light absorption variable portion 40 is provided. The electrode 5 is an electrode 5 shared by the second light reflection variable unit 32 and the light absorption variable unit 40. Since the second light reflection variable unit 32 and the light absorption variable unit 40 share the electrode 5, the number of layers can be reduced and the layer interface that causes absorption, refraction, and reflection can be reduced. Moreover, if the electrode 5 is shared, the connection with the power source 50 is likely to be electrically advantageous.
 図21の実施形態21は、実施形態16の変形例である。実施形態21は、実施形態16の面状発光体100の第2面F2側に光吸収可変部40を配置した構造となっている。光吸収可変部40は、基板6cと基板6dとの間に配置されている。基板6cは、面状発光部10及び光反射可変部30を支持又は封止する基板6と、光吸収可変部40を支持又は封止する基板6とを兼ねている。光反射可変部30(特に第2光反射可変部32)と光吸収可変部40との間には基板6cが配置されている。実施形態21では、光吸収可変部40を他の部分とは切り離して独立して構成することができるため、製造が容易になる可能性がある。また、光吸収性を高めることができる可能性がある。 21 is a modification of the sixteenth embodiment. The twenty-first embodiment has a structure in which the light absorption variable portion 40 is disposed on the second surface F2 side of the planar light emitter 100 of the sixteenth embodiment. The light absorption variable unit 40 is disposed between the substrate 6c and the substrate 6d. The substrate 6 c serves as the substrate 6 that supports or seals the planar light emitting unit 10 and the light reflection variable unit 30 and the substrate 6 that supports or seals the light absorption variable unit 40. A substrate 6 c is disposed between the light reflection variable section 30 (particularly the second light reflection variable section 32) and the light absorption variable section 40. In the twenty-first embodiment, the light absorption variable portion 40 can be configured independently from other portions, and therefore, manufacturing may be facilitated. Moreover, there is a possibility that light absorption can be improved.
 図22の実施形態22は、実施形態16の変形例である。実施形態22は、実施形態16において基板6bと基板6cとの間に光吸収可変部40を設けた例である。光吸収可変部40は第2光反射可変部32に接している。実施形態22では、第2光反射可変部32の電極5sと、光吸収可変部40の電極5mとを兼ねた電極5が設けられている。この電極5は、第2光反射可変部32及び光吸収可変部40で共有する電極5である。第2光反射可変部32及び光吸収可変部40が電極5を共有化することにより、層の数を減らして、吸収や屈折や反射の原因となる層界面を減らすことができる。また、電極5を共有すると、電源50との接続が電気的に有利になりやすい。 22 is a modification of the sixteenth embodiment. The twenty-second embodiment is an example in which the light absorption variable unit 40 is provided between the substrate 6b and the substrate 6c in the sixteenth embodiment. The light absorption variable part 40 is in contact with the second light reflection variable part 32. In the twenty-second embodiment, the electrode 5 serving as both the electrode 5s of the second light reflection variable unit 32 and the electrode 5m of the light absorption variable unit 40 is provided. The electrode 5 is an electrode 5 shared by the second light reflection variable unit 32 and the light absorption variable unit 40. Since the second light reflection variable unit 32 and the light absorption variable unit 40 share the electrode 5, the number of layers can be reduced and the layer interface that causes absorption, refraction, and reflection can be reduced. Moreover, if the electrode 5 is shared, the connection with the power source 50 is likely to be electrically advantageous.
 図23の実施形態23は、実施形態18の変形例である。実施形態23は、実施形態18において基板6aと基板6bとの間に光吸収可変部40を設けた例である。光吸収可変部40は第2光反射可変部32に接している。実施形態23では、第2光反射可変部32の電極5sと、光吸収可変部40の電極5mとを兼ねた電極5が設けられている。この電極5は、第2光反射可変部32及び光吸収可変部40で共有する電極5である。第2光反射可変部32及び光吸収可変部40が電極5を共有化することにより、層の数を減らして、吸収や屈折や反射の原因となる層界面を減らすことができる。また、電極5を共有すると、電源50との接続が電気的に有利になりやすい。 23 is a modification of the eighteenth embodiment. The twenty-third embodiment is an example in which the light absorption variable portion 40 is provided between the substrate 6a and the substrate 6b in the eighteenth embodiment. The light absorption variable part 40 is in contact with the second light reflection variable part 32. In the twenty-third embodiment, the electrode 5 serving as both the electrode 5s of the second light reflection variable unit 32 and the electrode 5m of the light absorption variable unit 40 is provided. The electrode 5 is an electrode 5 shared by the second light reflection variable unit 32 and the light absorption variable unit 40. Since the second light reflection variable unit 32 and the light absorption variable unit 40 share the electrode 5, the number of layers can be reduced and the layer interface that causes absorption, refraction, and reflection can be reduced. Moreover, if the electrode 5 is shared, the connection with the power source 50 is likely to be electrically advantageous.
 実施形態19~23においても、光反射可変部30が第1光反射可変部31と第2光反射可変部32とを有することにより、光反射性を向上することができる。また、光吸収可変部40を有することにより、光吸収により発光をより鮮明にすることができる。また、光吸収によって、面状発光体100の各部の劣化を抑制することができる。 Also in Embodiments 19 to 23, the light reflection variable section 30 includes the first light reflection variable section 31 and the second light reflection variable section 32, so that the light reflectivity can be improved. Moreover, by having the light absorption variable part 40, light emission can be made clearer by light absorption. Moreover, deterioration of each part of the planar light emitter 100 can be suppressed by light absorption.
 実施形態19~23では、光吸収可変部40が光反射可変部30よりも第2面F2側に配置された例を示しているが、光吸収可変部40は面状発光体10と光反射可変部30との間に配置されてもよい。また、光吸収可変部40は、第1光反射可変部31と第2光反射可変部32との間に配置されていてもよい。実施形態19~23の変形例として、光吸収可変部40が面状発光体10と第1光反射可変部31との間に配置されたものや、光吸収可変部40が第1光反射可変部31と第2光反射可変部32との間に配置されたものが挙げられる。 In the nineteenth to twenty-third embodiments, an example in which the light absorption variable unit 40 is disposed on the second surface F2 side with respect to the light reflection variable unit 30 is shown. You may arrange | position between the variable parts 30. In addition, the light absorption variable unit 40 may be disposed between the first light reflection variable unit 31 and the second light reflection variable unit 32. As modified examples of the nineteenth to twenty-third embodiments, the light absorption variable section 40 is disposed between the planar light emitter 10 and the first light reflection variable section 31, or the light absorption variable section 40 is the first light reflection variable. The thing arrange | positioned between the part 31 and the 2nd light reflection variable part 32 is mentioned.
 図24は、光透過性を有する電極5の一例を示している。図24Aに示すように、この電極5は、透明導電層5eと補助配線5fとにより構成されている。図24Bでは、厚み方向、すなわち、基板6の表面に垂直な方向に補助配線5fを見た様子を示している。基板6の表面に垂直な方向に見た様子が平面視となる。 FIG. 24 shows an example of the light-transmitting electrode 5. As shown in FIG. 24A, the electrode 5 is composed of a transparent conductive layer 5e and an auxiliary wiring 5f. FIG. 24B shows a state in which the auxiliary wiring 5f is viewed in the thickness direction, that is, in a direction perpendicular to the surface of the substrate 6. The state seen in the direction perpendicular to the surface of the substrate 6 is a plan view.
 光透過性を有する電極5は、光を透過させる性質を発揮するために透明性を有する材料が用いられて形成され得る。しかしながら、透明性と導電性とを両立させることは容易ではない。電極5の透明性を高めようとすると、比抵抗が高くなる傾向にあり通電性が低下しやすい。通電性が低下すると、電気が流れにくくなり、面内での電気特性が不均一になってしまう。例えば、面の中心付近では、端部に配置される給電位置から遠くなるため、端部よりも電気が流れにくく、電流や電圧が低下しやすい。一方、電気抵抗を低くしようとすると、透明性が低下し、光学特性が低下する傾向にある。抵抗を低くするためには厚みを厚くすることが考えられるが、厚みが厚いと透明性が低下するためである。そこで、補助配線5fを設けることが有利になる。補助配線5fは、透明導電層5eよりも通電性が高い材料で構成されている。補助配線5fを設けることにより、透明導電層5eの通電性を補って、電極5全体としての通電性を高めることができる。そのため、電流及び電圧を面内でより均一にすることができるため、光学特性を向上することができる。 The light-transmitting electrode 5 can be formed using a transparent material in order to exhibit the property of transmitting light. However, it is not easy to achieve both transparency and conductivity. If the transparency of the electrode 5 is to be increased, the specific resistance tends to increase and the conductivity is likely to decrease. If the conductivity is reduced, it becomes difficult for electricity to flow, and the in-plane electrical characteristics become non-uniform. For example, in the vicinity of the center of the surface, since it is far from the feeding position arranged at the end, electricity is less likely to flow than the end, and current and voltage are likely to decrease. On the other hand, when an attempt is made to lower the electrical resistance, the transparency is lowered and the optical properties tend to be lowered. In order to reduce the resistance, it is conceivable to increase the thickness, but if the thickness is large, the transparency is lowered. Therefore, it is advantageous to provide the auxiliary wiring 5f. The auxiliary wiring 5f is made of a material having higher electrical conductivity than the transparent conductive layer 5e. By providing the auxiliary wiring 5f, the conductivity of the transparent conductive layer 5e can be supplemented and the conductivity of the electrode 5 as a whole can be improved. Therefore, the current and voltage can be made more uniform in the plane, so that the optical characteristics can be improved.
 図24Aでは、透明導電層5eの表面に補助配線5fが設けられている。透明導電層5eと補助配線5fとは接している。透明導電層5eに補助配線5fの一部又は全部が埋められる構造であってもよい。図24Aでは、透明導電層5eの上側に補助配線5fを設けた例を示しているが、透明導電層5eの下側に補助配線5fを設けてもよいし、透明導電層5eの上下両側に補助配線5fを設けてもよい。補助配線5fが、透明導電層5eのいずれの面に設けられるかは、積層プロセスにおける積層順に依存するところもある。積層プロセスにおいて、透明導電層5e及び補助配線5fの順に積層されるように、透明導電層5e及び補助配線5fが配置されることが好ましい一態様である。もちろん、補助配線5f及び透明導電層5eの順に積層されるように、透明導電層5e及び補助配線5fが配置されてもよい。 In FIG. 24A, the auxiliary wiring 5f is provided on the surface of the transparent conductive layer 5e. The transparent conductive layer 5e and the auxiliary wiring 5f are in contact with each other. The transparent conductive layer 5e may have a structure in which part or all of the auxiliary wiring 5f is buried. 24A shows an example in which the auxiliary wiring 5f is provided on the upper side of the transparent conductive layer 5e. However, the auxiliary wiring 5f may be provided on the lower side of the transparent conductive layer 5e, or on both upper and lower sides of the transparent conductive layer 5e. An auxiliary wiring 5f may be provided. In which surface of the transparent conductive layer 5e the auxiliary wiring 5f is provided depends on the stacking order in the stacking process. In the lamination process, it is a preferable aspect that the transparent conductive layer 5e and the auxiliary wiring 5f are arranged so that the transparent conductive layer 5e and the auxiliary wiring 5f are laminated in this order. Of course, the transparent conductive layer 5e and the auxiliary wiring 5f may be arranged so that the auxiliary wiring 5f and the transparent conductive layer 5e are laminated in this order.
 補助配線5fは、透明性を有さなくてよい。補助配線5fは、不透明であってもよいし、半透明であってもよい。補助配線5fは、金属などの材料で構成され得る。補助配線5fは、金属の積層体で構成されてもよいし、合金によって構成されてもよい。 The auxiliary wiring 5f does not have to be transparent. The auxiliary wiring 5f may be opaque or translucent. The auxiliary wiring 5f can be made of a material such as metal. The auxiliary wiring 5f may be formed of a metal laminate or an alloy.
 図24Bに示すように、補助配線5fは、網目状に形成されていることが好ましい。補助配線5fが網目状となることで、網目の間から光を通すことができるため、電極5としての光透過性を確保することができる。補助配線5fは、格子状に形成されていることがより好ましい。それにより、より均一に導電性を補助することができる。格子状は、四角形の格子であってもよいし、六角形の格子であってもよい。補助配線5fは、四角形の格子であることが好ましい一態様である。四角形の格子状は、パターニングが容易である。四角形の格子状は、グリッド状と呼ばれる。 As shown in FIG. 24B, the auxiliary wiring 5f is preferably formed in a mesh shape. Since the auxiliary wiring 5f has a mesh shape, light can be transmitted from between the meshes, so that light transmittance as the electrode 5 can be ensured. The auxiliary wiring 5f is more preferably formed in a lattice shape. Thereby, conductivity can be assisted more uniformly. The lattice shape may be a square lattice or a hexagonal lattice. In one preferred embodiment, the auxiliary wiring 5f is a quadrangular lattice. The rectangular lattice shape is easy to pattern. A square lattice shape is called a grid shape.
 図24Bでは、補助配線5fは、複数の線によって構成されている。この線は直線で構成されている。もちろん、曲線や、波線などであってもよいが、直線の方が電気特性及び光学特性を高めやすく、また製造も容易である。グリッド状の補助配線5fでは、補助配線5fを構成する線は、縦方向の線と横方向の線とで構成され得る。縦方向の線は等間隔で配置されているものであってよい。横方向の線は等間隔で配置されるものであってよい。 In FIG. 24B, the auxiliary wiring 5f is composed of a plurality of lines. This line is a straight line. Of course, it may be a curved line or a wavy line, but a straight line is easier to improve electrical and optical characteristics, and is easier to manufacture. In the grid-like auxiliary wiring 5f, the lines constituting the auxiliary wiring 5f can be composed of a vertical line and a horizontal line. The vertical lines may be arranged at equal intervals. The horizontal lines may be arranged at equal intervals.
 補助配線5fを構成する線の幅は、1000μm以下であってよく、500μm以下であってよく、100μm以下であってもよい。補助配線5fの部分は光を通さないものであり得るが、補助配線5fの幅が小さいことにより、電極5全体として光を通すことができ、また、視認したときに、補助配線5fが目立つことなく違和感のない透明性を得ることができる。補助配線5fの線の幅が大きくなりすぎると、例えば格子状など補助配線5fの部分で形成される模様が目立つおそれがあるため、補助配線5fの線の幅は小さい方が有利である。ただし、補助配線5fによる通電補助性を高めるためには、線幅が大きい方が有利である。そのため、補助配線5fの線の幅は、例えば、1μm以上にすることができる。 The width of the lines constituting the auxiliary wiring 5f may be 1000 μm or less, 500 μm or less, or 100 μm or less. Although the portion of the auxiliary wiring 5f may be impermeable to light, since the width of the auxiliary wiring 5f is small, the electrode 5 as a whole can transmit light, and the auxiliary wiring 5f is conspicuous when visually recognized. Transparency without any discomfort can be obtained. If the line width of the auxiliary wiring 5f becomes too large, a pattern formed in the auxiliary wiring 5f part such as a lattice shape may be conspicuous. Therefore, it is advantageous that the line width of the auxiliary wiring 5f is small. However, a larger line width is advantageous in order to enhance the current-carrying assistability by the auxiliary wiring 5f. Therefore, the width of the auxiliary wiring 5f can be set to 1 μm or more, for example.
 補助配線5fを有する電極5は、面状発光体100の電極5のうち、一又は複数の適宜の箇所において用いることができる。光散乱可変部20の電極5として用いてもよい。面状発光部10の電極5として用いてもよい。光反射可変部30の電極5として用いてもよい。光吸収可変部40の電極5として用いてもよい。各部においては、対となる二つの電極5のうちの一方が、補助配線5fを有していてもよいし、両方が補助配線5fを有していてもよい。 The electrode 5 having the auxiliary wiring 5f can be used at one or a plurality of appropriate locations in the electrode 5 of the planar light emitter 100. You may use as the electrode 5 of the light-scattering variable part 20. FIG. You may use as the electrode 5 of the planar light emission part 10. You may use as the electrode 5 of the light reflection variable part 30. You may use as the electrode 5 of the light absorption variable part 40. FIG. In each part, one of the pair of two electrodes 5 may have the auxiliary wiring 5f, or both may have the auxiliary wiring 5f.
 面状発光部10に含まれる対となる電極5(電極5a及び電極5b)のうちの一方又は両方が、補助配線5fを有することがより好ましい。有機EL素子で構成される面状発光部10においては、面内においてより均一な発光を得るためには、面内での通電性の向上が求められる。面状発光部10に含まれる電極5が補助電極5fを有すると、面内の通電性が向上し、発光特性を高めることができる。 More preferably, one or both of the pair of electrodes 5 (electrode 5a and electrode 5b) included in the planar light emitting unit 10 have the auxiliary wiring 5f. In the planar light emitting unit 10 composed of an organic EL element, in order to obtain more uniform light emission in the surface, it is required to improve the conductivity in the surface. When the electrode 5 included in the planar light emitting unit 10 includes the auxiliary electrode 5f, the in-plane conductivity is improved and the light emission characteristics can be improved.
 面状発光部10においては、補助配線5fは、電極5のうちの有機発光層1側に設けられていることが好ましい一態様である。もちろん、補助配線5fは、電極5のうちの有機発光層1側とは反対側に設けられていてもよい。補助配線5fの配置は、積層プロセスに依存するところがあるが、要するに補助配線5fと透明導電層5eとが接していれば、導電性の高い電極5を得ることができる。 In the planar light emitting unit 10, the auxiliary wiring 5 f is preferably provided on the organic light emitting layer 1 side of the electrode 5. Of course, the auxiliary wiring 5f may be provided on the side of the electrode 5 opposite to the organic light emitting layer 1 side. Although the arrangement of the auxiliary wiring 5f depends on the lamination process, in short, if the auxiliary wiring 5f is in contact with the transparent conductive layer 5e, the electrode 5 having high conductivity can be obtained.
 補助配線5fは、透明導電層5eに接しない部分が絶縁体により被覆されていてもよい。補助配線5fの被覆は、特に面状発光部10の電極5に行われることが好ましい。補助配線5fの部分は導電性が高いため、補助配線5fにそのまま電気が流れると、補助配線5fの部分で電気が流れやすくなり、補助配線5fの部分で過剰発光してしまうおそれがある。また、補助配線5fは光を通さない部分となり得るが、補助配線5fの部分で発光が生じても、その光は厚み方向には取り出せなくなるため、発光が無駄となって光取り出し性が低下してしまうおそれがある。しかしながら、補助配線5fを絶縁体で被覆することにより、過剰発光を抑制することができ、また、光の無駄を抑制して光をより多く取り出すことができるため、光取り出し性を向上することができる。もちろん、補助配線5fの絶縁体の被覆は、光散乱可変部20、光反射可変部30及び光吸収可変部40に用いられる電極5のいずれか一つ以上の電極5に行われていてもよい。 The auxiliary wiring 5f may be covered with an insulator at a portion not in contact with the transparent conductive layer 5e. The covering of the auxiliary wiring 5f is particularly preferably performed on the electrode 5 of the planar light emitting unit 10. Since the portion of the auxiliary wiring 5f has high conductivity, if electricity flows through the auxiliary wiring 5f as it is, electricity tends to flow through the portion of the auxiliary wiring 5f, and excessive light emission may occur at the portion of the auxiliary wiring 5f. Further, the auxiliary wiring 5f can be a portion that does not allow light to pass through. However, even if light is emitted from the portion of the auxiliary wiring 5f, the light cannot be extracted in the thickness direction. There is a risk that. However, by covering the auxiliary wiring 5f with an insulator, excessive light emission can be suppressed, and more light can be extracted while suppressing waste of light, so that the light extraction performance can be improved. it can. Of course, the covering of the insulator of the auxiliary wiring 5f may be performed on any one or more of the electrodes 5 used in the light scattering variable unit 20, the light reflection variable unit 30, and the light absorption variable unit 40. .
 面状発光体100が補助配線5fを有する電極5を複数有する場合、異なる電極5における補助配線5fは、平面視において重なるパターンであることが好ましい一態様である。補助配線5fの部分は光を通さない部分となり得るが、平面視において重なるように補助配線5fが設けられることにより、光を通さない部分をより少なくすることができるため、光学特性を向上することができる。例えば、一の電極5における補助配線5fがグリッド状である場合に、他の電極5における補助電極5fが同じ形状のグリッド状であると、重複するパターンとなり、光を透過しやすくすることができる。もちろん、電気特性を高めるために、複数の電極5の補助配線5fが平面視においてずれて配置されていてもよい。 When the planar light-emitting body 100 includes a plurality of electrodes 5 having the auxiliary wiring 5f, it is a preferable aspect that the auxiliary wirings 5f in the different electrodes 5 have a pattern overlapping in plan view. Although the portion of the auxiliary wiring 5f can be a portion that does not allow light to pass through, by providing the auxiliary wiring 5f so as to overlap in plan view, the portion that does not allow light to pass can be reduced, so that the optical characteristics are improved. Can do. For example, when the auxiliary wiring 5f in one electrode 5 has a grid shape, if the auxiliary electrode 5f in the other electrode 5 has a grid shape with the same shape, an overlapping pattern is formed and light can be easily transmitted. . Of course, in order to improve electrical characteristics, the auxiliary wirings 5f of the plurality of electrodes 5 may be shifted from each other in plan view.
 面状発光体100においては、各部は独立して駆動可能なように構成されていることが好ましい。それにより、各部を独立して制御することができるため、光学特性を高めることができる。光散乱可変部20と面状発光部10と光反射可変部30とは、独立して駆動可能なように構成されていることが好ましい。それにより、光学的性質の異なる状態を容易に作り出すことができるため、優れた光学特性を得ることができる。光吸収可変部40が設けられた場合、光吸収可変部40は独立して駆動可能なように構成されていることが好ましい。それにより、光学特性がさらに高まる。ただし、第1光反射可変部31及び第2光反射可変部32は、互いに独立して駆動してもよいし、互いに連動して駆動してもよい。 In the planar light-emitting body 100, each part is preferably configured to be driven independently. Thereby, since each part can be controlled independently, an optical characteristic can be improved. It is preferable that the light scattering variable unit 20, the planar light emitting unit 10, and the light reflection variable unit 30 are configured to be driven independently. As a result, states having different optical properties can be easily created, and thus excellent optical properties can be obtained. When the light absorption variable part 40 is provided, it is preferable that the light absorption variable part 40 is configured to be driven independently. Thereby, the optical characteristics are further enhanced. However, the first light reflection variable unit 31 and the second light reflection variable unit 32 may be driven independently of each other or may be driven in conjunction with each other.
 独立して駆動可能とは、各部への電圧の印加を独立して行うことができることであってよい。各部への電圧の印加は、各部において電極5が独立している場合はもちろん、ある部において電極5を他の部の電極5と共有する場合であっても、可能である。上記の実施形態においては、電極5を共有する場合があり、共有する電極5に異なる電源50がつながる場合があるが、電圧のレベルを制御することにより、独立して駆動させることができる。直流電源51と交流電源52とが共有の電極5に接続される場合には、直流電源51の二つの電極5のうちの一方をグランド電極として機能させれば、交流を制御することが可能である。例えば、図5に示される実施形態5では、電極5bと電極5pとは同じ電極5で構成されており、共有する電極5となる。このとき、共有する電極5をグランド電極として機能させて、交流電源52側の電極5の電圧レベルを制御すれば、直流電源51と交流電源52とを分離して制御することが可能になり、面状発光部10と光反射可変部30とを独立して駆動可能になる。また、一の交流電源52と他の交流電源52とが共有する電極5に接続される場合には、電圧レベルを調整することで、この二つの交流電源52のうちの一方を機能させたり、他方を機能させたり、両方を機能させたりさせなかったり、といった制御を行うことができる。 “Driving independently” may mean that voltage can be applied to each part independently. The application of voltage to each part is possible not only when the electrode 5 is independent in each part but also when the electrode 5 is shared with the electrode 5 of another part in a certain part. In the above embodiment, the electrode 5 may be shared, and different power sources 50 may be connected to the shared electrode 5, but can be driven independently by controlling the voltage level. When the DC power source 51 and the AC power source 52 are connected to the common electrode 5, if one of the two electrodes 5 of the DC power source 51 functions as a ground electrode, AC can be controlled. is there. For example, in the fifth embodiment shown in FIG. 5, the electrode 5 b and the electrode 5 p are composed of the same electrode 5 and are shared electrodes 5. At this time, by controlling the voltage level of the electrode 5 on the AC power source 52 side by causing the shared electrode 5 to function as a ground electrode, the DC power source 51 and the AC power source 52 can be controlled separately. The planar light emitting unit 10 and the light reflection variable unit 30 can be driven independently. When one AC power supply 52 and another AC power supply 52 are connected to the electrode 5 shared, one of these two AC power supplies 52 can be made to function by adjusting the voltage level, It is possible to perform control such that the other is functioning or both are not functioning.
 交流電源52が複数個連続する場合や、直流電源51と複数の交流電源52とが連続する場合でも同様の制御を行うことで、独立して制御可能である。例えば、図17に示す実施形態17では、二つの交流電源52の間に直流電源51が配置された構造となっている。この場合、直流電源51の二つの電極5のうち一方をグランド電極として機能させ、他方をグランド電極から所定の電圧差の所定電圧の電極5として機能させることができる。電圧レベルにおいて、グランド電極が第1の基準の電極5とすると、所定電圧の電極5は第2の基準の電極5となる。そして、第1の基準の電極5及び第2の基準の電極5の電圧に基づいた電圧レベルで、二つの交流電源52によりそれぞれ交流を作り出すことによって、各部の駆動が可能になる。 It is possible to control independently by performing the same control even when a plurality of AC power sources 52 are continuous or when a DC power source 51 and a plurality of AC power sources 52 are continuous. For example, the seventeenth embodiment shown in FIG. 17 has a structure in which a DC power source 51 is disposed between two AC power sources 52. In this case, one of the two electrodes 5 of the DC power supply 51 can function as a ground electrode, and the other can function as an electrode 5 having a predetermined voltage difference from the ground electrode. If the ground electrode is the first reference electrode 5 at the voltage level, the electrode 5 having a predetermined voltage becomes the second reference electrode 5. Then, each part can be driven by generating alternating currents by the two AC power sources 52 at voltage levels based on the voltages of the first reference electrode 5 and the second reference electrode 5.
 図25は、面状発光体100の製造方法の一例である。各実施形態の面状発光体100は、積層プロセスを用いて形成することができる。図25では、実施形態17の面状発光体100の製造例が示されている。図25は、面状発光体100の製造方法の一例に過ぎず、面状発光体100は適宜の方法で形成され得る。図25を参照すれば、他の実施形態の製造も理解されるであろう。 FIG. 25 is an example of a method for manufacturing the planar light emitter 100. The planar light emitter 100 of each embodiment can be formed using a lamination process. In FIG. 25, the manufacture example of the planar light-emitting body 100 of Embodiment 17 is shown. FIG. 25 is merely an example of a method of manufacturing the planar light emitter 100, and the planar light emitter 100 can be formed by an appropriate method. With reference to FIG. 25, the manufacture of other embodiments will be understood.
 面状発光体100の製造にあたっては、まず、図25Aに示すように、基板6を準備する。この基板6は形成基板として機能し、第1基板6xとなる。そして、図25Bに示すように、この基板6に、光散乱可変部20を形成する。このとき、光散乱可変層2の材料が高分子分散型液晶の場合、積層が容易になる。高分子分散型液晶の場合、形状の保持性を有することが多いため、液相注入法を用いることなく、積層可能であるからである。 In manufacturing the planar light emitter 100, first, as shown in FIG. 25A, a substrate 6 is prepared. The substrate 6 functions as a formation substrate and becomes the first substrate 6x. Then, as shown in FIG. 25B, the light scattering variable portion 20 is formed on the substrate 6. At this time, when the material of the light scattering variable layer 2 is a polymer-dispersed liquid crystal, stacking is facilitated. This is because polymer-dispersed liquid crystals often have shape retention and can be stacked without using a liquid phase injection method.
 次に、図25Cに示すように、光散乱可変部20の上に、面状発光部10を形成する。面状発光部10の形成は、面状発光部10を構成する有機EL素子の各層を積層させることにより、行うことができる。積層は、スパッタ、蒸着、塗布などの方法のいずれか又はこれらを組み合わせて行うことができる。光散乱可変部20の電極5と面状発光部10の電極5とが共有されていてよい。 Next, as shown in FIG. 25C, the planar light emitting unit 10 is formed on the light scattering variable unit 20. The planar light emitting unit 10 can be formed by laminating the layers of the organic EL elements constituting the planar light emitting unit 10. Lamination can be performed by any method such as sputtering, vapor deposition, coating, or a combination thereof. The electrode 5 of the light scattering variable unit 20 and the electrode 5 of the planar light emitting unit 10 may be shared.
 図25Dに示すように、面状発光部10の形成後、積層体が設けられた側で、第1基板6xに対向させて封止基板として機能する第2基板6yを基板6として配置し、第2基板6yと面状発光部10との間に第1光反射可変部31を構成する材料を注入する。第1光反射可変部31を構成する材料は液晶であり得るため、注入法により容易に第1光反射可変部31を形成することができる。第1基板6xと第2基板6yとは外周部分が接着剤によって接着されていてよい。また、接着剤はスペーサとして機能していてよい。 As shown in FIG. 25D, after the planar light emitting unit 10 is formed, a second substrate 6y that functions as a sealing substrate is disposed as a substrate 6 on the side where the stacked body is provided, facing the first substrate 6x, A material constituting the first light reflection variable unit 31 is injected between the second substrate 6 y and the planar light emitting unit 10. Since the material which comprises the 1st light reflection variable part 31 may be a liquid crystal, the 1st light reflection variable part 31 can be formed easily by the injection method. The outer peripheral portion of the first substrate 6x and the second substrate 6y may be bonded with an adhesive. The adhesive may function as a spacer.
 そして、図25Eに示すように、第1光反射可変部31の形成後、基板6として第3基板6zを第2基板6yに対向させて配置し、第2基板6yと第3基板6zとの間に第2光反射可変部32を構成する材料を注入する。第2光反射可変部32を構成する材料は液晶であり得るため、注入法により容易に第2光反射可変部32を形成することができる。第2基板6yと第3基板6zとは外周部分が接着剤によって接着されていてよい。また、接着剤はスペーサとして機能していてよい。 Then, as shown in FIG. 25E, after the first light reflection variable portion 31 is formed, the third substrate 6z is disposed as the substrate 6 so as to face the second substrate 6y, and the second substrate 6y and the third substrate 6z are arranged. In the meantime, a material constituting the second light reflection variable portion 32 is injected. Since the material constituting the second light reflection variable portion 32 can be liquid crystal, the second light reflection variable portion 32 can be easily formed by an injection method. The outer periphery of the second substrate 6y and the third substrate 6z may be bonded with an adhesive. The adhesive may function as a spacer.
 この方法では積層は第1面F1側から行っている。第1基板6xの外部側の表面が第1面F1となり、第3基板6zの外部側の表面が第2面F2となる。もちろん、積層は第2面F2側から行ってもよい。また、第1面F1側から積層させたものと、第2面F2側から積層させたものとを合わせるようにしてもよい。以上により、面状発光体100を得ることができる。 In this method, lamination is performed from the first surface F1 side. The outer surface of the first substrate 6x is the first surface F1, and the outer surface of the third substrate 6z is the second surface F2. Of course, the lamination may be performed from the second surface F2 side. Moreover, you may make it match | combine what was laminated | stacked from the 1st surface F1 side, and what was laminated | stacked from the 2nd surface F2 side. Thus, the planar light emitter 100 can be obtained.
 図26は、面状発光体100の機能の一例を示している。図26では、各部は模式的に図示されている。矢印は光の進行を示している。図26では、機能している部を斜線で示している。機能しているとは、光散乱可変部20においては光散乱性が発揮されている状態であり、面状発光部10においては発光している状態であり、光反射可変部30においては光反射性が発揮されている状態である。各部が機能していない場合、その部は透明となり得る。なお、説明を単純化するため、光散乱性や光反射性が中間の状態は示していないが、中間状態があってもよい。また、光吸収可変部40は示していないが、光吸収可変部40を有する場合も理解できるであろう。図26において、図26A~図26Gは、各部の機能の状態が異なっており、面状発光体100としてそれぞれ異なる状態となっている。 FIG. 26 shows an example of the function of the planar light emitter 100. In FIG. 26, each part is schematically illustrated. Arrows indicate the progress of light. In FIG. 26, the functioning part is indicated by hatching. “Functional” means that the light scattering property is exhibited in the light scattering variable portion 20, the light is emitted in the planar light emitting portion 10, and the light reflection is reflected in the light reflection variable portion 30. It is in a state where sex is being demonstrated. If each part is not functioning, it can be transparent. In order to simplify the description, an intermediate state of light scattering and light reflectivity is not shown, but an intermediate state may be present. Moreover, although the light absorption variable part 40 is not shown, it will be understood that the light absorption variable part 40 is provided. In FIG. 26, FIGS. 26A to 26G are different in the function state of each part, and are in different states as the planar light emitter 100. FIG.
 表1は、図26に示す面状発光体100の状態と対応させた表である。機能している部をONとして表示し、機能していない部をOFFとして表示している。入切の表示においては、ONは「入」、OFFは「切」と考えてよい。各部はスイッチングによりON及びOFFが制御されていてよい。なお、このON及びOFFは電圧の印加の有無とは異なっていてもよい。例えば、光散乱可変部20は、電圧を印加しないときに光散乱性を発揮し、電圧を印加したときに光散乱性を発揮しない場合があるが、その場合、電圧印加時がOFFとなり、電圧不印加時がONとなる。また、例えば、光反射可変部30においても、電圧を印加しないときに光反射性を発揮し、電圧を印加したときに光反射性を発揮しない場合があるが、その場合、電圧印加時がOFFとなり、電圧不印加時がONとなる。このような制御は、液晶を光散乱可変性又は光反射可変性の材料として用いた場合に行われやすい。 Table 1 is a table corresponding to the state of the planar light emitter 100 shown in FIG. The functioning part is displayed as ON, and the functioning part is displayed as OFF. In the on / off display, ON may be considered “ON” and OFF may be considered “OFF”. Each part may be controlled to be ON and OFF by switching. The ON and OFF may be different from the presence or absence of voltage application. For example, the light scattering variable unit 20 may exhibit light scattering properties when no voltage is applied, and may not exhibit light scattering properties when a voltage is applied. Turns on when no voltage is applied. In addition, for example, the light reflection variable unit 30 may exhibit light reflectivity when no voltage is applied and may not exhibit light reflectivity when a voltage is applied. In this case, the voltage application is OFF. Thus, it is turned on when no voltage is applied. Such control is easily performed when the liquid crystal is used as a light scattering variable or light reflection variable material.
 図26及び表1により、面状発光体100を窓などとして用いて配置した場合の機能を説明する。窓では、面状発光体100は第1面F1を屋内側に、第2面F2を屋外側に配置させることができる。面状発光体100は、光学的な特性を変化させることができるため、利用価値が高い。 Referring to FIG. 26 and Table 1, functions when the planar light emitter 100 is arranged using a window or the like will be described. In the window, the planar light emitting body 100 can be arranged with the first surface F1 on the indoor side and the second surface F2 on the outdoor side. The planar light-emitting body 100 has high utility value because it can change optical characteristics.
 図26Aは、状態Aを示し、光反射可変部30がONとなり、面状発光部10及び光散乱可変部20がOFFとなっている。状態Aでは、光反射可変部30が光反射性を発揮する。面状発光部10は発光せず、光散乱可変部20は光散乱性を有さずに透明である。状態Aでは、外部(第2面F2側)からの光は光反射可変部30で反射されて内部(第1面F1側)に入らない。そのため、遮光効果を有することができる。また、内部(第1面F1側)からの光は光反射可変部30で反射されて内部(第1面F1側)に戻る。そのため、鏡として機能することができる。もちろん、この状態においては、反射性の程度によっては、鏡として機能しなくてもよい。 FIG. 26A shows the state A, where the light reflection variable unit 30 is ON, and the planar light emitting unit 10 and the light scattering variable unit 20 are OFF. In the state A, the light reflection variable unit 30 exhibits light reflectivity. The planar light emitting unit 10 does not emit light, and the light scattering variable unit 20 is transparent without having light scattering properties. In the state A, the light from the outside (the second surface F2 side) is reflected by the light reflection variable unit 30 and does not enter the inside (the first surface F1 side). Therefore, it can have a light shielding effect. In addition, light from the inside (first surface F1 side) is reflected by the light reflection variable unit 30 and returns to the inside (first surface F1 side). Therefore, it can function as a mirror. Of course, in this state, it may not function as a mirror depending on the degree of reflectivity.
 図26Bは、状態Bを示し、光反射可変部30及び光散乱可変部20がOFFとなり、面状発光部10がONとなっている。状態Bでは、面状発光部10が発光する。光反射可変部30は光反射性を有さずに透明である。光散乱可変部20は光散乱性を有さずに透明である。状態Bでは、面状発光部10で生じた光は内部(第1面F1側)に出射する。そのため、照明効果を有することができる。また、外部(第2面F2側)からの光は、光反射可変部30、面状発光部10及び光散乱可変部20を通して内部(第1面F1側)に届く。日中においては、外光を利用することができる。そのため、外部から採光を得ることができ、照明効果を高めることができる。また、面状発光部10の光を外部(第2面F2側)に出射させることも可能である。そのため、両面発光にすることができる。夜においては、外部を照らすことが可能である。例えば、内部への光は照明に、外部への光はイルミネーションなどとして利用することができる。 FIG. 26B shows a state B, where the light reflection variable unit 30 and the light scattering variable unit 20 are OFF, and the planar light emitting unit 10 is ON. In the state B, the planar light emitting unit 10 emits light. The light reflection variable unit 30 is transparent without having light reflectivity. The light scattering variable unit 20 is transparent without having light scattering properties. In the state B, the light generated in the planar light emitting unit 10 is emitted inside (the first surface F1 side). Therefore, it can have a lighting effect. Further, the light from the outside (second surface F2 side) reaches the inside (first surface F1 side) through the light reflection variable portion 30, the planar light emitting portion 10, and the light scattering variable portion 20. During the day, outside light can be used. Therefore, it is possible to obtain daylighting from the outside and enhance the lighting effect. It is also possible to emit the light from the planar light emitting unit 10 to the outside (on the second surface F2 side). Therefore, double-sided light emission can be achieved. At night it is possible to illuminate the outside. For example, the light to the inside can be used for illumination, and the light to the outside can be used for illumination.
 図26Cは、状態Cを示し、光反射可変部30及び面状発光部10がOFFとなり、光散乱可変部20がONとなっている。状態Bでは、光散乱可変部20が光散乱性を発揮する。面状発光部10は発光せず、光反射可変部30は光反射性を有さずに透明である。状態Cでは、外部(第2面F2側)からの光は光散乱可変部20で散乱されて内部(第1面F1側)には散乱光が出射する。また、内部(第1面F1側)からの光は光散乱可変部20で散乱されて外部(第2面F2側)には散乱光が出射する。そのため、光は反対側に届くものの、反対側に存在する物体はぼやけて視認しにくくなる。面状発光体100はいわば半透明の状態となる。これにより、光を通しながらぼやけて見えさせることができるため、プライバシー保護の機能を付与することができる。また、日中においては、プライバシーを保護しながら、外部からの採光を得ることができる。状態Cでは、面状発光体100は、すりガラス状になったり、曇りガラス状になったりし得る。 FIG. 26C shows a state C, in which the light reflection variable unit 30 and the planar light emitting unit 10 are OFF, and the light scattering variable unit 20 is ON. In the state B, the light scattering variable unit 20 exhibits light scattering properties. The planar light emitting unit 10 does not emit light, and the light reflection variable unit 30 is transparent without having light reflectivity. In the state C, the light from the outside (the second surface F2 side) is scattered by the light scattering variable unit 20, and the scattered light is emitted inside (the first surface F1 side). Light from the inside (first surface F1 side) is scattered by the light scattering variable unit 20, and scattered light is emitted to the outside (second surface F2 side). Therefore, although the light reaches the opposite side, the object existing on the opposite side is blurred and difficult to visually recognize. The planar light-emitting body 100 is in a semitransparent state. Thereby, since it can be made to look blurry through light, the function of privacy protection can be provided. In the daytime, it is possible to obtain daylighting from the outside while protecting the privacy. In the state C, the planar light-emitting body 100 can be ground glass or cloudy glass.
 図26Dは、状態Dを示し、光反射可変部30及び面状発光部10がONとなり、光散乱可変部20がOFFとなっている。状態Dでは、面状発光部10が発光する。光反射可変部30は光反射性を発揮する。光散乱可変部20は光散乱性を有さずに透明である。状態Dでは、面状発光部10で生じた光は内部(第1面F1側)に出射する。このとき、面状発光部10の発光源から直接第1面F1側に向かう光だけではなく、この発光源から第2面F2側に向かう光も光反射可変部30で反射させて第1面F1側に向かう光に変換して、光を第1面F1から出射させることができる。そのため、発光効率を高めることができ、照明効果を高く得ることができる。また、状態Aと同様に、外部からの光を遮断して、遮光効果も発揮することができる。状態Dでは、光散乱可変部20によって光が散乱されないため、配向性の高い光を得ることができ、特定の方向に高効率に発光することが可能である。 FIG. 26D shows a state D, where the light reflection variable section 30 and the planar light emitting section 10 are ON, and the light scattering variable section 20 is OFF. In the state D, the planar light emitting unit 10 emits light. The light reflection variable unit 30 exhibits light reflectivity. The light scattering variable unit 20 is transparent without having light scattering properties. In the state D, the light generated by the planar light emitting unit 10 is emitted inside (the first surface F1 side). At this time, not only the light directly directed from the light emitting source of the planar light emitting unit 10 toward the first surface F1 but also the light directed from the light emitting source toward the second surface F2 is reflected by the light reflection variable unit 30 to be reflected on the first surface. The light can be emitted from the first surface F <b> 1 by converting the light toward the F <b> 1 side. Therefore, the luminous efficiency can be increased, and the illumination effect can be increased. Moreover, similarly to the state A, the light from the outside can be blocked and the light shielding effect can be exhibited. In the state D, since light is not scattered by the light scattering variable unit 20, light with high orientation can be obtained, and light can be emitted with high efficiency in a specific direction.
 図26Eは、状態Eを示し、面状発光部10及び光散乱可変部20がONとなり、光反射可変部30がOFFとなっている。状態Eでは、面状発光部10が発光する。光散乱可変部20は光散乱性を発揮する。光反射可変部30は光反射性を有さずに透明である。状態Eでは、面状発光部10で生じた光は内部(第1面F1側)に出射する。このとき、面状発光部10から内部(第1面F1側)に向かう光を光散乱可変部20で散乱させて、散乱した光を内部に出射することができる。そのため、角度依存性を低減して光を得ることができ、照明効果を高く得ることができる。なお、光反射可変部30は機能していないため、面状発光部10で生じた光は外部(第2面F2側)にも向かう。そのため、両面発光も可能である。 FIG. 26E shows a state E, in which the planar light emitting unit 10 and the light scattering variable unit 20 are ON, and the light reflection variable unit 30 is OFF. In the state E, the planar light emitting unit 10 emits light. The light scattering variable unit 20 exhibits light scattering properties. The light reflection variable unit 30 is transparent without having light reflectivity. In the state E, the light generated in the planar light emitting unit 10 is emitted inside (the first surface F1 side). At this time, the light traveling from the planar light emitting unit 10 toward the inside (the first surface F1 side) can be scattered by the light scattering variable unit 20, and the scattered light can be emitted to the inside. Therefore, angle dependency can be reduced and light can be obtained, and a high illumination effect can be obtained. In addition, since the light reflection variable part 30 is not functioning, the light generated in the planar light emitting part 10 is directed to the outside (the second face F2 side). Therefore, double-sided light emission is also possible.
 図26Fは、状態Fを示し、光反射可変部30、面状発光部10及び光散乱可変部20がONとなっている。状態Fでは、面状発光部10が発光する。光散乱可変部20は光散乱性を発揮する。光反射可変部30は光反射性を発揮する。状態Fでは、面状発光部10で生じた光は内部(第1面F1側)に出射する。このとき、面状発光部10の発光源から直接第1面F1側に向かう光だけではなく、この発光源から第2面F2側に向かう光も光反射可変部30で反射させて第1面F1側に向かう光に変換して、光を第1面F1から出射させることができる。また、面状発光部10から内部(第1面F1側)に向かう光を光散乱可変部20で散乱させて、散乱した光を内部に出射することができる。そのため、光取り出し効率が高く、角度依存性を低減して光を得ることができ、照明効果を高く得ることができる。また、状態Aと同様に、外部からの光を遮断して、遮光効果も発揮することができる。状態Fは、照明として優れた状態となる。 FIG. 26F shows the state F, and the light reflection variable section 30, the planar light emitting section 10, and the light scattering variable section 20 are ON. In the state F, the planar light emitting unit 10 emits light. The light scattering variable unit 20 exhibits light scattering properties. The light reflection variable unit 30 exhibits light reflectivity. In the state F, the light generated in the planar light emitting unit 10 is emitted inside (the first surface F1 side). At this time, not only the light directly directed from the light emitting source of the planar light emitting unit 10 toward the first surface F1 but also the light directed from the light emitting source toward the second surface F2 is reflected by the light reflection variable unit 30 to be reflected on the first surface. The light can be emitted from the first surface F <b> 1 by converting the light toward the F <b> 1 side. Moreover, the light which goes to the inside (1st surface F1 side) from the planar light emission part 10 is scattered by the light-scattering variable part 20, and the scattered light can be radiate | emitted inside. Therefore, the light extraction efficiency is high, the angle dependency can be reduced, light can be obtained, and the illumination effect can be enhanced. Moreover, similarly to the state A, the light from the outside can be blocked and the light shielding effect can be exhibited. State F is an excellent state for illumination.
 図26Gは、状態Gを示し、光反射可変部30、面状発光部10及び光散乱可変部20がOFFとなっている。状態Gでは、面状発光部10は発光しない。光散乱可変部20は光散乱性を有さずに透明である。光反射可変部30は光反射性を有さずに透明である。状態Gでは、内部(第1面F1側)及び外部(第2面F2側)の一方からの光を他方に通すことができる。そのため、透明な部材として利用可能である。例えば、透明な窓として利用することができる。状態Gでは、外部から内部への採光が可能である。 FIG. 26G shows the state G, and the light reflection variable portion 30, the planar light emitting portion 10, and the light scattering variable portion 20 are OFF. In the state G, the planar light emitting unit 10 does not emit light. The light scattering variable unit 20 is transparent without having light scattering properties. The light reflection variable unit 30 is transparent without having light reflectivity. In the state G, light from one of the inside (the first surface F1 side) and the outside (the second surface F2 side) can pass through the other. Therefore, it can be used as a transparent member. For example, it can be used as a transparent window. In the state G, lighting from the outside to the inside is possible.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 面状発光体100が光吸収可変部40を有する場合の機能は、図26及び表1に基づいて理解できる。光吸収可変部40がONになったとき、光吸収可変部40が光吸収性を発揮する。光吸収可変部40がOFFになったとき、光吸収可変部40は光吸収性を有さずに透明となる。光吸収可変部40がOFFの場合は、図26及び表1で説明した機能と同じである。光吸収可変部40がONとなった場合、外部(第2面F2側)から光が内部(第1面F1側)に通るのを抑制したりなくしたりすることができる。そのため、面状発光体100の光による劣化を抑制することができる。また、屋内に紫外線が侵入するのを抑制して紫外線カット効果を高めたり、屋内に赤外線が侵入するのを抑制して遮熱効果を高めたりすることができる。 The function when the planar light emitter 100 has the light absorption variable portion 40 can be understood based on FIG. When the light absorption variable part 40 is turned on, the light absorption variable part 40 exhibits light absorption. When the light absorption variable part 40 is turned off, the light absorption variable part 40 does not have light absorption and becomes transparent. When the light absorption variable unit 40 is OFF, the function is the same as described with reference to FIG. When the light absorption variable unit 40 is turned on, it is possible to suppress or eliminate the passage of light from the outside (second surface F2 side) to the inside (first surface F1 side). Therefore, it is possible to suppress deterioration of the planar light emitter 100 due to light. In addition, it is possible to enhance the ultraviolet blocking effect by suppressing the penetration of ultraviolet rays into the indoor space, or to enhance the heat shielding effect by suppressing the penetration of infrared rays into the indoor space.
 光吸収可変部40を設けた場合、さらに各状態においては次の機能を発揮する。図26Aの状態Aにおいて、光吸収可変部40がONとなった場合、外部(第2面F2側)での光反射をなくすことができる。図26B、図26D、図26E及び図26Fの状態B、D、E及びFにおいて、光吸収可変部40がONとなった場合、面状発光部10よりも後方の第2面F2側で光吸収性を発揮することで、光のコントラストを高めることができ、より鮮明な発光を得ることができる。また、図26B及び図26Eの状態B及びEの場合、外部(第2面F2側)に光が出射するのを抑制できる。図26Gの状態Gにおいて、光吸収可変部40がONとなった場合、遮光を行うことができる。光吸収可変部40を有する場合においては、面状発光部10からの光を取り出して照明などに利用するときには、状態Fでさらに光吸収可変部40がONであることがより好ましい状態となる。光吸収可変部40がONになったとき、光吸収可変部40は黒色になることが好ましい。 When the light absorption variable portion 40 is provided, the following functions are exhibited in each state. In the state A of FIG. 26A, when the light absorption variable unit 40 is turned on, light reflection on the outside (the second surface F2 side) can be eliminated. In the states B, D, E, and F of FIGS. 26B, 26D, 26E, and 26F, when the light absorption variable unit 40 is turned on, light is emitted on the second surface F2 side behind the planar light emitting unit 10. By exhibiting the absorptivity, the contrast of light can be increased and clearer light emission can be obtained. In the case of states B and E in FIGS. 26B and 26E, light can be prevented from being emitted to the outside (the second surface F2 side). In the state G of FIG. 26G, when the light absorption variable unit 40 is turned on, light shielding can be performed. In the case where the light absorption variable unit 40 is provided, when the light from the planar light emitting unit 10 is extracted and used for illumination or the like, it is more preferable that the light absorption variable unit 40 is further ON in the state F. When the light absorption variable section 40 is turned on, the light absorption variable section 40 is preferably black.
 面状発光体100は上記で説明した以外の機能も有し得ることは理解できるであろう。例えば、面状発光体100は眩しさを抑制することができる。面状発光体100は、光を遮るカーテンとして利用することができる。例えば、光反射性や光散乱性において中間の状態を有する場合、明るさや色の調整を行ったりすることができる。面状発光体100はスイッチングによって光学的な状態を変えることができる。 It will be understood that the planar light emitter 100 may have functions other than those described above. For example, the planar light emitter 100 can suppress glare. The planar light emitter 100 can be used as a curtain that blocks light. For example, when the light reflection property and the light scattering property are in an intermediate state, the brightness and the color can be adjusted. The planar light emitter 100 can change its optical state by switching.
 面状発光体100は、上記で説明した光学的特性を利用できる種々の用途に適用可能である。面状発光体100は、照明装置として利用することができる。面状発光体100により構成された照明装置では、点灯時に優れた発光特性を得ることができる。また、非点灯時においては、光を反射させて遮光や鏡化したり、透過させて反対側を視認させたり、半透明にしてプライバシーを保護したりすることができる。 The planar light emitter 100 can be applied to various uses that can utilize the optical characteristics described above. The planar light emitter 100 can be used as a lighting device. In the illuminating device constituted by the planar light emitter 100, it is possible to obtain excellent light emission characteristics at the time of lighting. In addition, when not lit, light can be reflected to block or mirror, or transmitted to make the opposite side visible, or to be translucent to protect privacy.
 図27は、面状発光体100の一例であり、照明装置に利用した例である。 FIG. 27 is an example of the planar light emitter 100, which is an example used for a lighting device.
 面状発光体100は、光散乱可変部20と面状発光部10と光反射可変部30とを外周で囲む枠体60を備えることが好ましい。それにより、面状発光体100の強度を高めることができる。また、面状発光体100の側部を保護することができる。また、面状発光体100の取り扱い性を高めることができる。面状発光体100が光吸収可変部40を有する場合は、枠体60は、光吸収可変部40を外周で囲むことが好ましい。 The planar light emitting body 100 preferably includes a frame body 60 that surrounds the light scattering variable section 20, the planar light emitting section 10, and the light reflection variable section 30 on the outer periphery. Thereby, the intensity | strength of the planar light-emitting body 100 can be raised. Moreover, the side part of the planar light-emitting body 100 can be protected. Moreover, the handleability of the planar light emitter 100 can be improved. When the planar light-emitting body 100 has the light absorption variable part 40, it is preferable that the frame 60 surrounds the light absorption variable part 40 by outer periphery.
 枠体60は給電部61を有することが好ましい。それにより、面状発光体100に電気を供給することができるため、上記の機能を有効に発揮することができる。給電部61は、電極5と電気的に接続される。それにより、面状発光体100に電気を供給することができる。給電部61は、電気的にショートしないように電極5と接続されることが好ましい。例えば、面状発光部10の電極5aと電極5bとのそれぞれに対応する給電部61が絶縁されて設けられる。光散乱可変部20、光反射可変部30及び光吸収可変部40についても同様である。給電部61は、電極パッドや金属部材などで構成することが可能である。 The frame body 60 preferably has a power feeding unit 61. Thereby, since electricity can be supplied to the planar light-emitting body 100, said function can be exhibited effectively. The power feeding unit 61 is electrically connected to the electrode 5. Thereby, electricity can be supplied to the planar light emitter 100. The power feeding unit 61 is preferably connected to the electrode 5 so as not to be electrically short-circuited. For example, the power feeding unit 61 corresponding to each of the electrode 5a and the electrode 5b of the planar light emitting unit 10 is provided in an insulated manner. The same applies to the light scattering variable unit 20, the light reflection variable unit 30, and the light absorption variable unit 40. The power feeding unit 61 can be composed of an electrode pad, a metal member, or the like.
 給電部61は外部電源と接続されるように構成されていることが好ましい。それにより、容易に電気を供給することができる。もちろん、面状発光体100は、枠体60内に、電池などの内部電源を備えることが可能なものであってもよい。内部電源の使用により、外部電源を要することなく駆動することが可能である。 The power feeding unit 61 is preferably configured to be connected to an external power source. Thereby, electricity can be easily supplied. Of course, the planar light emitter 100 may be capable of having an internal power source such as a battery in the frame body 60. By using an internal power supply, it is possible to drive without requiring an external power supply.
 給電部61と電極5との電気的な接続は適宜の手法が用いられてよい。給電部61と電極5とは接触式で電気接続されてもよいし、非接触式で電気接続されてもよい。給電部61と電極5とは非接触式で給電可能なように構成されていることが好ましい。非接触式では給電の構造を形成するのが容易になる。非接触式の給電は、電気を受ける電極5の部分と給電部61とが直接接触していなくても、これらが近くにあることにより、電気を通すことができる方式である。非接触方式では面状発光体100を有する開閉可能な窓を容易に形成することができる。もちろん、接触式で給電してもよく、その場合、電気を容易に通すことができる。 An appropriate method may be used for the electrical connection between the power supply unit 61 and the electrode 5. The power feeding unit 61 and the electrode 5 may be electrically connected in a contact manner or may be electrically connected in a non-contact manner. The power supply unit 61 and the electrode 5 are preferably configured to be capable of supplying power in a non-contact manner. In the non-contact type, it is easy to form a power feeding structure. The non-contact type power feeding is a method in which electricity can be conducted when the portion of the electrode 5 that receives electricity and the power feeding portion 61 are not in direct contact with each other because they are close to each other. In the non-contact method, an openable / closable window having the planar light emitter 100 can be easily formed. Of course, power may be supplied in a contact manner, in which case electricity can be easily passed.
 枠体60は蓄電部62を有することが好ましい。それにより、外部電源との接続が不用意に絶たれたり、停電などによって外部電源から電気が供給されなくなったりして、外部電源からの給電が停止した場合でも、蓄電部62から給電を行うことができる。そのため、安定して駆動することが可能になる。蓄電部62は、二次電池などの電池などにより構成され得る。例えば、リチウム電池などが利用されてよい。蓄電部62は、給電部61と電気的に接続されていることが好ましい。それにより、給電部61に電気を供給することができる。蓄電部62は、外部電源と電気的に接続されていてもよい。その場合、蓄電部62を充電することができる。なお、外部電源と接続されない面状発光体100では、蓄電部62は内部電源となり得る。 The frame 60 preferably has a power storage unit 62. As a result, even when the power supply from the external power supply is stopped because the connection with the external power supply is inadvertently disconnected or the power supply from the external power supply is stopped due to a power failure or the like, power supply from the power storage unit 62 is performed. Can do. Therefore, it becomes possible to drive stably. The power storage unit 62 can be configured by a battery such as a secondary battery. For example, a lithium battery may be used. The power storage unit 62 is preferably electrically connected to the power supply unit 61. Thereby, electricity can be supplied to the power feeding unit 61. The power storage unit 62 may be electrically connected to an external power source. In that case, the power storage unit 62 can be charged. Note that in the planar light emitter 100 that is not connected to an external power source, the power storage unit 62 can be an internal power source.
 図27Aは、一つの面状発光体100の外周部に枠体60が設けられた例である。枠体60は給電部61と蓄電部62とを有する。面状発光体100は、長方形、正方形などの形状であってよい。それにより、面状に配置することが容易になる。また、取り扱い性を高めることができる。もちろん、面状発光体100の形状はこれに限定されるものではなく、多角形形状や円形であってもよい。 FIG. 27A is an example in which a frame body 60 is provided on the outer peripheral portion of one planar light-emitting body 100. The frame body 60 includes a power feeding unit 61 and a power storage unit 62. The planar light emitter 100 may have a shape such as a rectangle or a square. Thereby, it becomes easy to arrange in a planar shape. Moreover, handleability can be improved. Of course, the shape of the planar light emitter 100 is not limited to this, and may be a polygonal shape or a circular shape.
 図27B及び図27Cは、複数個の面状発光体100が面状に配置された例である。面状発光体100は複数個が面状に配置されたものであってもよい。これらの例では、面状発光体100が4個用いられている。面状発光体100の個数は、4個に限定されるものではなく、9個、16個、25個などであってもよい。面状発光体100を面状に配置することにより、大面積の照明を得ることができる。面状発光体100が面状に並べられたもの(照明装置)の形状は、長方形、正方形などの形状であってよい。 27B and 27C are examples in which a plurality of planar light emitters 100 are arranged in a planar shape. A plurality of planar light emitters 100 may be arranged in a planar shape. In these examples, four planar light emitters 100 are used. The number of planar light emitters 100 is not limited to four, and may be 9, 16, 25, and the like. By disposing the planar light emitter 100 in a planar shape, it is possible to obtain a large area illumination. The shape of the planar light emitters 100 (illumination device) arranged in a planar shape may be a rectangle, a square, or the like.
 図27Bでは、複数の面状発光体100は、枠体60を介さずに、面状発光体100が接触して並べられている。それにより、枠体60の影が形成されることが抑制され、光学特性を高めることができる。 In FIG. 27B, the plurality of planar light emitters 100 are arranged in contact with each other without the frame body 60 interposed therebetween. Thereby, the shadow of the frame 60 is suppressed, and the optical characteristics can be improved.
 図27Cでは、複数の面状発光体100は、それぞれの外周部が枠体60に囲まれており、枠体60を介して面状に並べられている。それにより、給電が容易になり、個々の面状発光体100に、より均一に電気を供給することができる。また、枠体60の部分を枠模様として使用することができ、意匠性を高めることができる。隣り合う面状発光体100の間には枠体60が配置されている。 In FIG. 27C, each of the plurality of planar light emitting bodies 100 is surrounded by the frame body 60 and arranged in a planar shape via the frame body 60. As a result, power supply is facilitated, and electricity can be supplied more uniformly to the individual planar light emitters 100. Moreover, the part of the frame 60 can be used as a frame pattern, and the design property can be improved. A frame 60 is disposed between the adjacent planar light emitters 100.
 図27B及び図27Cでは、個々の面状発光体100の状態が個別に制御されることが好ましい一態様である。この場合、面状発光体100はセグメントで分けられ得る。面状発光体100が個別に制御されると、所望の部分ごとに目的とする機能を持たせることができるため、光学特性を向上することができる。例えば、一部の部分を発光させて照明として用い、その他の部分を散乱させて曇りガラス状にするなどの制御を行うことができる。個別に制御を行うには、図27Cの方が有利である。 27B and 27C, it is a preferable aspect that the states of the individual planar light emitters 100 are individually controlled. In this case, the planar light emitter 100 can be divided into segments. When the planar light-emitting body 100 is individually controlled, a desired function can be provided for each desired portion, so that optical characteristics can be improved. For example, it is possible to perform control such that part of the light is emitted and used as illumination, and the other part is scattered to form a frosted glass. FIG. 27C is more advantageous for performing individual control.
 図27A~図27Cの面状発光体100は、照明装置として利用することができる。図27A~図27Cの面状発光体100は、建材として利用することができる。図27A~図27Cの面状発光体100は、窓として利用することができる。光学特性の異なる状態を作り出す窓は、アクティブウィンドウと定義され得る。 27A to 27C can be used as a lighting device. 27A to 27C can be used as a building material. 27A to 27C can be used as a window. A window that creates different states of optical properties can be defined as an active window.
 面状発光体100は、建材として利用することが好ましい一態様である。面状発光体100により構成された建材では、光学特性に優れた建材を得ることができる。建材としては、窓がより好ましい。窓は、内窓、外窓のいずれにも利用可能である。また、窓として車載窓の利用も可能である。車載窓は、自動用、電車、機関車、列車などの車両用や、飛行機用、船用などの窓であってよい。また、建材としては、壁材、パーティション、サイネージなどに利用することもできる。サイネージはいわゆる照明広告であってよい。壁材は、外壁用であってもよいし、内壁用であってもよい。 The planar light-emitting body 100 is an aspect that is preferably used as a building material. In the building material comprised by the planar light-emitting body 100, the building material excellent in the optical characteristic can be obtained. As a building material, a window is more preferable. The window can be used for either the inner window or the outer window. Further, an in-vehicle window can be used as the window. The in-vehicle window may be a window for vehicles such as an automatic vehicle, a train, a locomotive, and a train, an airplane, and a ship. As building materials, it can also be used for wall materials, partitions, signage and the like. The signage may be a so-called lighting advertisement. The wall material may be for the outer wall or for the inner wall.
 面状発光体100は、表示装置であってもよい。表示装置はTFTなどの表示構造を備えるものであってよい。表示構造は面状に形成され、面状発光体100に厚み方向で重ねられるものであってよい。表示構造は、面状発光体100の内部に組み込まれるものであってもよいし、面状発光体100の表面に重ねられるものであってもよい。表示装置は、サイネージとして利用することが可能である。例えば、映像を映し出すサイネージを得ることができる。 The planar light emitter 100 may be a display device. The display device may include a display structure such as a TFT. The display structure may be formed in a planar shape and overlapped with the planar light emitter 100 in the thickness direction. The display structure may be incorporated in the planar light emitter 100 or may be superimposed on the surface of the planar light emitter 100. The display device can be used as a signage. For example, a signage that displays an image can be obtained.
 面状発光体100は、断熱層、紫外線カット層、赤外線カット層のいずれか1つ以上を備えていてもよい。断熱層を備える場合、断熱効果を高めることができる。紫外線カット層を備える場合、紫外線の透過を抑制することができる。赤外線カット層を備える場合、遮熱効果を高めることができる。紫外線カット層では、例えば、屋外から屋内へ紫外線が通過するのを抑制できる。そのため、紫外線カット機能を有する窓などとして利用可能である。紫外線カット層は、面状発光部10よりも第2面F2側に設けることが好ましく、光反射可変部30よりも第2面F2側に設けることがより好ましい。それにより、面状発光体100の劣化を抑制することができる。紫外線カット層は、両面に設けられてもよい。面状発光体100が屋外に配置される場合には、両面から紫外線を受けるおそれがあるが、そのような場合でも面状発光体100の内部の劣化を抑制することができる。断熱層、紫外線カット層、赤外線カット層は透明であることが好ましい。それにより、面状発光体100の光学特性を維持しながら、それぞれの機能を付与することができる。面状発光体100は、断熱層、紫外線カット層、赤外線カット層の全てを備えていてもよい。 The planar light emitter 100 may include one or more of a heat insulating layer, an ultraviolet cut layer, and an infrared cut layer. When the heat insulating layer is provided, the heat insulating effect can be enhanced. When the ultraviolet cut layer is provided, the transmission of ultraviolet rays can be suppressed. When the infrared cut layer is provided, the heat shielding effect can be enhanced. In the ultraviolet cut layer, for example, it is possible to prevent ultraviolet rays from passing from the outside to the inside. For this reason, it can be used as a window having an ultraviolet cut function. The ultraviolet cut layer is preferably provided on the second surface F2 side with respect to the planar light emitting unit 10, and more preferably provided on the second surface F2 side with respect to the light reflection variable unit 30. Thereby, deterioration of the planar light emitter 100 can be suppressed. The ultraviolet cut layer may be provided on both sides. When the planar light emitter 100 is disposed outdoors, there is a risk of receiving ultraviolet rays from both sides, but even in such a case, deterioration inside the planar light emitter 100 can be suppressed. It is preferable that the heat insulation layer, the ultraviolet ray cut layer, and the infrared ray cut layer are transparent. Thereby, each function can be provided while maintaining the optical characteristics of the planar light emitter 100. The planar light emitter 100 may include all of a heat insulating layer, an ultraviolet cut layer, and an infrared cut layer.
 図28は、面状発光体100を備えた窓の一例を示す概略斜視図である。図28では、理解しやすいよう、隠れた部分を適宜図示し、手前側の部分を分解して層構成が分かるようにしている。この窓は建材となり得る。この窓は照明装置となり得る。窓は備え付けの窓であってもよいし、開閉可能な窓であってもよい。窓は、光散乱可変部20と面状発光部10と光反射可変部30とを有する面状発光体100を備えている。そのため、上記で説明した機能を発揮することができ、光学特性に優れた窓を得ることができる。 FIG. 28 is a schematic perspective view showing an example of a window provided with the planar light emitter 100. In FIG. 28, for easy understanding, the hidden part is illustrated as appropriate, and the front part is disassembled so that the layer structure can be understood. This window can be a building material. This window can be a lighting device. The window may be a built-in window or a window that can be opened and closed. The window includes a planar light emitter 100 having a light scattering variable portion 20, a planar light emitting portion 10, and a light reflection variable portion 30. Therefore, the function described above can be exhibited, and a window having excellent optical characteristics can be obtained.
 図28の窓の例では、模様63が面状発光体100内に埋め込まれている。模様63により意匠性を高めることができる。模様63は繊維状の模様であってよい。もちろん、模様63は図柄によって構成されていてもよい。模様63が設けられる場合、模様63は、導電材料により構成され、電極5に接していることが好ましい。それにより、電極5の通電性を補助することができ、意匠性を高めながら、電気効率を高めることができる。もちろん、面状発光体100は模様63を有していなくてもよい。 28, the pattern 63 is embedded in the planar light emitter 100. In the example of the window in FIG. The design can be enhanced by the pattern 63. The pattern 63 may be a fibrous pattern. Of course, the pattern 63 may be configured by a pattern. When the pattern 63 is provided, the pattern 63 is preferably made of a conductive material and is in contact with the electrode 5. Thereby, the electrical conductivity of the electrode 5 can be assisted, and the electrical efficiency can be enhanced while improving the design. Of course, the planar light emitter 100 may not have the pattern 63.
 図28の窓は枠体60を備えている。枠体60はサッシとなり得る。枠体60は給電部61を有している。そのため、面状発光体100に電気を供給することができる。枠体60は蓄電部62を有している。そのため、面状発光体100の駆動を安定化させることができる。枠体60は換気口64を有していてもよい。それにより、喚起を行うことができる。換気口64は開閉自在に構成されていることが好ましい。換気口64は、例えばルーバなどで構成することができる。 The window shown in FIG. The frame 60 can be a sash. The frame body 60 has a power feeding unit 61. Therefore, electricity can be supplied to the planar light emitter 100. The frame 60 has a power storage unit 62. Therefore, the driving of the planar light emitter 100 can be stabilized. The frame body 60 may have a ventilation port 64. Thereby, arousal can be performed. The ventilation port 64 is preferably configured to be openable and closable. The ventilation port 64 can be comprised with a louver etc., for example.

Claims (17)

  1.  光透過性を有する有機エレクトロルミネッセンス素子で構成される面状発光部と、光散乱性の程度が変化可能な光散乱可変部と、光反射性の程度が変化可能な光反射可変部と、を備え、
     前記面状発光部からの光を取り出すように構成された第1面と、前記第1面とは反対側に配置された第2面とを有し、
     前記光散乱可変部と前記面状発光部と前記光反射可変部とは、前記第1面と前記第2面との間において厚み方向に配置され、
     前記光反射可変部は、前記面状発光部及び前記光散乱可変部よりも前記第2面側に配置されている、面状発光体。
    A planar light-emitting part composed of an organic electroluminescence element having light transmission, a light scattering variable part capable of changing the degree of light scattering, and a light reflection variable part capable of changing the degree of light reflection. Prepared,
    A first surface configured to extract light from the planar light emitting unit, and a second surface disposed on the opposite side of the first surface;
    The light scattering variable portion, the planar light emitting portion, and the light reflection variable portion are disposed in the thickness direction between the first surface and the second surface,
    The said light reflection variable part is a planar light-emitting body arrange | positioned at the said 2nd surface side rather than the said planar light emission part and the said light-scattering variable part.
  2.  前記光反射可変部は、光反射性が高い高反射状態と、光反射性が低い又は光反射性がない低反射状態と、前記高反射状態と前記低反射状態との間の光反射性を発揮する状態と、を有することが可能なように構成されている、請求項1に記載の面状発光体。 The light reflection variable unit has a high reflection state with high light reflectivity, a low reflection state with low or no light reflectivity, and light reflectivity between the high reflection state and the low reflection state. The planar light-emitting body according to claim 1, wherein the planar light-emitting body is configured to have a state of exhibiting.
  3.  前記光散乱可変部は、光散乱性が高い高散乱状態と、光散乱性が低い又は光散乱性がない低散乱状態と、前記高散乱状態と前記低散乱状態との間の光散乱性を発揮する状態と、を有することが可能なように構成されている、請求項1又は2に記載の面状発光体。 The light scattering variable unit has a high scattering state with a high light scattering property, a low scattering state with a low light scattering property or no light scattering property, and a light scattering property between the high scattering state and the low scattering state. The planar light-emitting body according to claim 1, wherein the planar light-emitting body is configured to have a state of exerting.
  4.  前記面状発光部は、対となる電極と、この対となる電極の間に配置された有機発光層とを有し、
     前記光反射可変部は、対となる電極と、この対となる電極の間に配置された光反射可変層とを有し、
     前記面状発光部及び前記光反射可変部は、少なくとも一つの共有する電極を有する、請求項1~3のいずれか1項に記載の面状発光体。
    The planar light emitting portion has a pair of electrodes and an organic light emitting layer disposed between the pair of electrodes,
    The light reflection variable portion has a pair of electrodes and a light reflection variable layer disposed between the pair of electrodes,
    The planar light emitter according to any one of claims 1 to 3, wherein the planar light emitting unit and the light reflection variable unit have at least one shared electrode.
  5.  前記面状発光部は、対となる電極と、この対となる電極の間に配置された有機発光層とを有し、
     前記光散乱可変部は、対となる電極と、この対となる電極の間に配置された光散乱可変層とを有し、
     前記面状発光部及び前記光散乱可変部は、少なくとも一つの共有する電極を有する、請求項1~4のいずれか1項に記載の面状発光体。
    The planar light emitting portion has a pair of electrodes and an organic light emitting layer disposed between the pair of electrodes,
    The light scattering variable part has a pair of electrodes and a light scattering variable layer disposed between the pair of electrodes,
    The planar light emitter according to any one of claims 1 to 4, wherein the planar light emitting section and the light scattering variable section have at least one shared electrode.
  6.  光吸収性の程度が変化可能な光吸収可変部を備え、
     前記光吸収可変部は、前記面状発光部よりも前記第2面側に配置されている、請求項1~5のいずれか1項に記載の面状発光体。
    It has a light absorption variable part that can change the degree of light absorption,
    The planar light emitter according to any one of claims 1 to 5, wherein the light absorption variable portion is disposed closer to the second surface than the planar light emitting portion.
  7.  前記光吸収可変部は、対となる電極と、この対となる電極の間に配置された光吸収可変層とを有し、
     前記光反射可変部は、対となる電極と、この対となる電極の間に配置された光反射可変層とを有し、
     前記光反射可変部及び前記光吸収可変部は、少なくとも一つの共有する電極を有する、請求項6に記載の面状発光体。
    The light absorption variable portion has a pair of electrodes and a light absorption variable layer disposed between the pair of electrodes,
    The light reflection variable portion has a pair of electrodes and a light reflection variable layer disposed between the pair of electrodes,
    The planar light-emitting body according to claim 6, wherein the light reflection variable part and the light absorption variable part have at least one shared electrode.
  8.  前記光反射可変部は、第1の偏光を反射可能な第1光反射可変部と、第2の偏光を反射可能な第2光反射可変部とを有し、
     前記第1光反射可変部と前記第2光反射可変部とは、光反射性が可変な部分が離間して配置されている、請求項1~7のいずれか1項に記載の面状発光体。
    The light reflection variable unit includes a first light reflection variable unit capable of reflecting the first polarized light, and a second light reflection variable unit capable of reflecting the second polarized light.
    The planar light emission according to any one of claims 1 to 7, wherein the first light reflection variable portion and the second light reflection variable portion are arranged such that portions having variable light reflectivity are spaced apart from each other. body.
  9.  前記第1光反射可変部は、対となる電極と、この対となる電極の間に配置された第1光反射可変層とを有し、
     前記第2光反射可変部は、対となる電極と、この対となる電極の間に配置された第2光反射可変層とを有し、
     前記第1光反射可変部及び前記第2光反射可変部は、少なくとも一つの共有する電極を有する、請求項8に記載の面状発光体。
    The first light reflection variable portion includes a pair of electrodes and a first light reflection variable layer disposed between the pair of electrodes,
    The second light reflection variable portion includes a pair of electrodes and a second light reflection variable layer disposed between the pair of electrodes,
    The planar light-emitting body according to claim 8, wherein the first light reflection variable portion and the second light reflection variable portion have at least one shared electrode.
  10.  前記第1光反射可変層と前記第2光反射可変層との間に、前記共有する電極が配置されることにより、前記光反射が可変な部分が離間されている、請求項9に記載の面状発光体。 The portion where the light reflection is variable is separated by disposing the shared electrode between the first light reflection variable layer and the second light reflection variable layer. Planar light emitter.
  11.  前記第1光反射可変部と前記第2光反射可変部との間に、可撓性を有するシートが配置されている、請求項8又は9に記載の面状発光体。 The planar light-emitting body according to claim 8 or 9, wherein a flexible sheet is disposed between the first light reflection variable portion and the second light reflection variable portion.
  12.  前記第1面を有する基板を備え、
     前記第1光反射可変部と前記第2光反射可変部との間に、前記基板と同種の材料で形成された板体が配置されている、請求項8又は9に記載の面状発光体。
    Comprising a substrate having the first surface;
    The planar light-emitting body according to claim 8 or 9, wherein a plate body made of the same kind of material as that of the substrate is disposed between the first light reflection variable section and the second light reflection variable section. .
  13.  前記光散乱可変部と前記面状発光部と前記光反射可変部とは、独立して駆動可能なように構成されている、請求項1~12のいずれか1項に記載の面状発光体。 The planar light emitter according to any one of claims 1 to 12, wherein the light scattering variable section, the planar light emitting section, and the light reflection variable section are configured to be independently driven. .
  14.  前記光散乱可変部と前記面状発光部と前記光反射可変部とを外周で囲む枠体を備え、
     前記枠体は給電部を有する、請求項1~13のいずれか1項に記載の面状発光体。
    A frame that surrounds the light scattering variable portion, the planar light emitting portion, and the light reflection variable portion with an outer periphery;
    The planar light-emitting body according to any one of claims 1 to 13, wherein the frame includes a power feeding unit.
  15.  前記枠体は蓄電部を有する、請求項14に記載の面状発光体。 The planar light-emitting body according to claim 14, wherein the frame includes a power storage unit.
  16.  請求項1~15のいずれか1項に記載の面状発光体と、給電部とを備えた照明装置。 An illumination device comprising the planar light-emitting body according to any one of claims 1 to 15 and a power feeding unit.
  17.  請求項1~15のいずれか1項に記載の面状発光体と、給電部とを備えた建材。 A building material comprising the planar light-emitting body according to any one of claims 1 to 15 and a power feeding unit.
PCT/JP2014/005599 2013-12-25 2014-11-07 Planar light-emitting body, and lighting device and building material using said planar light-emitting body WO2015097965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013267337 2013-12-25
JP2013-267337 2013-12-25

Publications (1)

Publication Number Publication Date
WO2015097965A1 true WO2015097965A1 (en) 2015-07-02

Family

ID=53477885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005599 WO2015097965A1 (en) 2013-12-25 2014-11-07 Planar light-emitting body, and lighting device and building material using said planar light-emitting body

Country Status (2)

Country Link
TW (1) TW201545597A (en)
WO (1) WO2015097965A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643478A (en) * 1992-07-24 1994-02-18 Sharp Corp Liquid crystal display device
JPH06111615A (en) * 1992-09-30 1994-04-22 Sanyo Electric Co Ltd Dimming method for lighting system
JPH1025975A (en) * 1996-05-07 1998-01-27 Masanobu Kujirada Window device
JP2000054749A (en) * 1998-08-03 2000-02-22 Ekuseru Light Kk Sliding screen door
JP2009266570A (en) * 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd Planar lighting fixture
JP2013112940A (en) * 2011-11-25 2013-06-10 Mitsubishi Chemicals Corp Luminous building material panel for outdoor use and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643478A (en) * 1992-07-24 1994-02-18 Sharp Corp Liquid crystal display device
JPH06111615A (en) * 1992-09-30 1994-04-22 Sanyo Electric Co Ltd Dimming method for lighting system
JPH1025975A (en) * 1996-05-07 1998-01-27 Masanobu Kujirada Window device
JP2000054749A (en) * 1998-08-03 2000-02-22 Ekuseru Light Kk Sliding screen door
JP2009266570A (en) * 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd Planar lighting fixture
JP2013112940A (en) * 2011-11-25 2013-06-10 Mitsubishi Chemicals Corp Luminous building material panel for outdoor use and method for manufacturing the same

Also Published As

Publication number Publication date
TW201545597A (en) 2015-12-01

Similar Documents

Publication Publication Date Title
US9904136B2 (en) Light masked smart glazing
WO2016006181A1 (en) Optical switching device and construction material
US20170122028A1 (en) Light control element and building material provided with same
WO2007107903A1 (en) Led-based lighting device with colour control
JP6425080B2 (en) Optical device
WO2017098687A1 (en) Optical device
JP2015206934A (en) image display device
WO2017122245A1 (en) Optical device, and window with light distribution function
JP2006234963A (en) Liquid crystal display device
JP2017219554A (en) Optical device and manufacturing method thereof
JP6351001B2 (en) Manufacturing method of optical switching device
JP2006154402A (en) Reflective liquid crystal display device
WO2015097965A1 (en) Planar light-emitting body, and lighting device and building material using said planar light-emitting body
KR102156779B1 (en) Transparent display device and method of fabricating the same
WO2016185684A1 (en) Optical device
JP2007052159A (en) Display device
WO2016009596A1 (en) Surface light emitting body, lighting device provided with same, and building material
JP6402959B2 (en) Optical device
JP6493710B2 (en) Optical device
WO2016006166A1 (en) Planar light-emitting unit, planar light-emitting body, illumination device, and construction material
JP2016201323A (en) Light emitting device and display device
JP2007052160A (en) Display device
JP2007052161A (en) Display device
WO2016009597A1 (en) Planar optical element, illumination device, and construction material
WO2015182039A1 (en) Surface light emitting body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14875676

Country of ref document: EP

Kind code of ref document: A1