WO2015097953A1 - Battery, separator, electrode, paint, battery pack, electronic device, electric vehicle, electricity-storage device, and power system - Google Patents

Battery, separator, electrode, paint, battery pack, electronic device, electric vehicle, electricity-storage device, and power system Download PDF

Info

Publication number
WO2015097953A1
WO2015097953A1 PCT/JP2014/005257 JP2014005257W WO2015097953A1 WO 2015097953 A1 WO2015097953 A1 WO 2015097953A1 JP 2014005257 W JP2014005257 W JP 2014005257W WO 2015097953 A1 WO2015097953 A1 WO 2015097953A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
battery
particles
containing resin
resin layer
Prior art date
Application number
PCT/JP2014/005257
Other languages
French (fr)
Japanese (ja)
Inventor
八田 一人
慶一 鏡
暢明 下坂
古賀 景三
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2015097953A1 publication Critical patent/WO2015097953A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This technology relates to batteries, separators, electrodes, paints, battery packs, electronic devices, electric vehicles, power storage devices, and power systems.
  • Lithium ion secondary batteries have excellent energy density and are widely used for portable devices.
  • a lithium ion secondary battery a battery using a laminate film as an exterior member has been put into practical use because it is lighter, has a higher energy density, and can be manufactured in a very thin shape.
  • a battery such as a lithium ion secondary battery using a laminate film as an exterior member has been known to be a polymer battery, using an electrolytic solution and a polymer compound as an electrolyte for the purpose of leakage resistance and the like. Yes.
  • a gel electrolyte battery in which the electrolytic solution is held in a polymer compound to form a so-called gel is widely used.
  • Patent Document 1 describes a separator provided with a coating film containing a heat-resistant nitrogen-containing aromatic polymer and ceramic powder.
  • Patent Document 2 describes a porous film containing ceramic particles and a binder bonded to the electrode surface.
  • JP 2010-198757 A Japanese Patent No. 4781263
  • an object of the present technology is to provide a battery, a separator, an electrode, a paint, a battery pack, an electronic device, an electric vehicle, a power storage device, and an electric power that can manage the thickness of the resin layer containing particles with high accuracy. To provide a system.
  • the present technology includes a positive electrode, a negative electrode, a separator, an electrolytic solution, and a particle-containing resin layer containing particles and a resin, and the particle diameter D50 of the particles is 50 nm or more and 450 nm or less.
  • the refractive index of the particles is from 1.3 to less than 2.4
  • the mass ratio of the particles to the resin (particle / resin) is from 15/85 to 90/10.
  • the present technology includes a separator base and a particle-containing resin layer provided on at least one main surface of the separator base and containing particles and a resin, and the particle diameter D50 of the particles is 50 nm or more and 450 nm or less, or , 750 nm to 10,000 nm, the refractive index of the particles is 1.3 to less than 2.4, and the mass ratio of the particles to the resin (particle / resin) is 15/85 to 90/10 It is.
  • the present technology includes an electrode and a particle-containing resin layer that is provided on at least one main surface of the electrode and includes particles and a resin, and the particle diameter D50 of the particles is 50 nm to 450 nm, or 750 nm to 10000 nm.
  • the refractive index of the particle is 1.3 or more and less than 2.4
  • the mass ratio of the particle to the resin (particle / resin) is 15/85 or more and 90/10 or less Electrode.
  • the particle diameter D50 of the particles is 50 nm or more and 450 nm or less, or 750 nm or more and 10,000 nm or less, and the refractive index of the particles is 1.3 or more and less than 2.4;
  • the resin is a paint having a mass ratio (particle / resin) of 15/85 to 90/10.
  • the battery pack, electronic device, electric vehicle, power storage device, and power system of the present technology include the above-described battery.
  • the thickness of the resin layer containing particles can be managed with high accuracy.
  • FIG. 1 is a schematic cross-sectional view of a separator according to an embodiment of the present technology.
  • FIG. 2 is a schematic cross-sectional view of an electrode with a particle-containing resin layer according to an embodiment of the present technology.
  • FIG. 3 is an exploded perspective view showing the configuration of a laminated film type nonaqueous electrolyte battery according to an embodiment of the present technology.
  • 4 is a cross-sectional view showing a cross-sectional configuration along the line II of the spirally wound electrode body shown in FIG. 5A to 5C are exploded perspective views showing the configuration of a laminated film type nonaqueous electrolyte battery using a laminated electrode body.
  • FIG. 5A to 5C are exploded perspective views showing the configuration of a laminated film type nonaqueous electrolyte battery using a laminated electrode body.
  • FIG. 6 is a cross-sectional view showing a configuration of a cylindrical nonaqueous electrolyte battery according to an embodiment of the present technology.
  • FIG. 7 is an enlarged cross-sectional view showing a part of a wound electrode body housed in a cylindrical nonaqueous electrolyte battery.
  • FIG. 8 is an enlarged cross-sectional view showing a part of a wound electrode body housed in a cylindrical nonaqueous electrolyte battery.
  • FIG. 9 is a perspective view showing a configuration of a prismatic nonaqueous electrolyte battery according to an embodiment of the present technology.
  • FIG. 10 is an exploded perspective view showing a configuration example of a simplified battery pack.
  • FIG. 11A is a schematic perspective view showing the appearance of a simple battery pack.
  • FIG. 11B is a schematic perspective view showing the appearance of a simple battery pack.
  • FIG. 12 is a block diagram illustrating a circuit configuration example of the battery pack according to the embodiment of the present technology.
  • FIG. 13 is a schematic diagram showing an example applied to a residential power storage system using the nonaqueous electrolyte battery of the present technology.
  • FIG. 14 is a schematic diagram schematically illustrating an example of a configuration of a hybrid vehicle that employs a series hybrid system to which the present technology is applied.
  • FIG. 15 is a schematic diagram for explaining a battery bending test.
  • FIG. 16 is a schematic cross-sectional view for explaining the battery bending test.
  • This coat layer dissolves the filler and the polymer that serves as the binder in a solvent, forms a coating, applies it, and then removes the solvent through a drying process. It has been shown that such a coating film is effective even if provided on the electrode leaf surface regardless of the separator surface (see Patent Document 2: Japanese Patent No. 4781263).
  • Controlling the thickness is important when applying a matrix polymer solution containing a gel electrolyte or a filler for forming a coating film or a binder polymer compound solution.
  • the finished coating film is typically provided with, for example, about 1 ⁇ m to 5 ⁇ m per side from the viewpoint of improving the volumetric energy density, and therefore high-precision coating is required.
  • the coating was applied to the entire length of the separator or electrode reel, and the diluted solvent was dried by passing through a drying furnace to wind up the finished product reel.
  • the specified function may not be obtained, or the element dimensions may exceed the standard, etc. Therefore, if there is an abnormality, the entire reel becomes a defective product.
  • the transparency of the particle-containing resin solution containing particles is improved. Therefore, the thickness of the particle-containing resin solution layer formed on at least one surface of the electrode and the separator can be accurately measured and adjusted in real time during the particle-containing resin solution coating process. . Thereby, the thickness of the particle-containing resin layer formed by removing the solvent from the particle-containing resin solution can be managed with high accuracy. As a result, a battery including a particle-containing resin layer whose thickness is controlled with high accuracy can be provided. In such a battery, functional deterioration of the particle-containing resin layer due to excessive or insufficient thickness of the particle-containing resin layer is suppressed, so that high safety can be maintained.
  • the present technology can provide an electrode or separator having a particle-containing resin layer containing particles having a predetermined strength and thickness with no variation in thickness, and can further provide a high short-circuit resistance and volume energy using them.
  • a battery having a high density can be provided.
  • FIG. 1 is a schematic cross-sectional view illustrating a configuration example of a separator according to the first embodiment of the present technology.
  • the separator 11 according to the first embodiment of the present technology includes a separator base 11a and a particle-containing resin layer 11b formed on at least one main surface of the separator base 11a.
  • the separator base material 11a is a porous film composed of an insulating film having a high ion permeability and a predetermined mechanical strength. A non-aqueous electrolyte is held in the pores of the separator substrate 11a.
  • a polyolefin resin such as polypropylene or polyethylene, an acrylic resin, a styrene resin, a polyester resin, or a nylon resin is preferably used as the resin material constituting the separator base 11a.
  • polyethylene such as low density polyethylene, high density polyethylene and linear polyethylene, or their low molecular weight wax content, or polyolefin resin such as polypropylene is suitable because it has an appropriate melting temperature and is easily available.
  • Those containing a porous membrane made of a polyolefin resin are excellent in separability between the positive electrode and the negative electrode, and can further reduce the decrease in internal short circuit.
  • the particle-containing resin layer 11b includes particles as a filler and a resin, and has a porous structure in which, for example, a large number of minute holes are formed.
  • the separator characteristics such as heat resistance and oxidation resistance can be improved.
  • the particle-containing resin layer 11b is formed from a particle-containing resin solution layer formed on the separator substrate 11a and including a resin solution (sometimes referred to as a paint) containing particles, a resin, and a dilution solvent. It is formed by removing the diluting solvent by drying or the like.
  • a resin solution sometimes referred to as a paint
  • the filler contained in the particle-containing resin layer 11b is within a predetermined range.
  • the particles have a refractive index and a particle diameter within a predetermined range, and the mass ratio (particle / resin) of the particle-containing resin layer 11b to the resin is within the predetermined range.
  • the particle-containing resin layer 11b is configured as described above.
  • white inorganic powders such as alumina particles are formed of colorless and transparent particles, but are white due to light scattering.
  • the inventors of the present application have found that the scattering in the particle-containing resin solution layer is substantially the same as the wavelength of visible light (blue, green, yellow, orange, red visible light) (over 450 nm and less than 750 nm). It was found to occur on the particle surface with a diameter. Then, it has been found that scattering can be avoided by selecting particles having a particle size smaller than the above wavelength range or by selecting particles having a particle size larger than the above wavelength range.
  • particles in the range of 50 nm to 450 nm, or particles of 750 nm to 10000 nm are effective.
  • the particle diameter is too small, the viscosity of the coating material is higher than that suitable for application, and thus it is preferably 50 nm or more.
  • the particle diameter is larger than 10,000 nm, there are cases where the particle becomes larger than the thickness to be applied, and the thickness of the battery does not work as designed.
  • the particle diameter of the particles contained in the particle-containing resin layer 11b can be defined by the value of the particle diameter D50. If the particle diameter D50 is in the above range (particles of 50 nm to 450 nm, or 750 nm to 10000 nm), for example, a part of the particle size distribution of D10, D90, etc. Even in the wavelength region (over 450 nm and less than 750 nm), the transparency as a whole is maintained. Even when the particles are aggregated to form secondary particles, the size of the surface irregularities of the secondary particles is equal to the wavelength of light scattering, so the particle diameter of one particle that is the basis of the irregularities is important. It is.
  • the transparency increases when the scattering due to the refraction of light coming from the difference between the refractive index of the resin solution and the refractive index of the particles (the solid is high and the liquid is low) is suppressed.
  • the particle-containing resin solution layer contains a large amount of solvent components, the refractive index is often 1.3 or more and 1.8 or less, and a material whose refractive index is as close as possible to this range (refractive index is less than 2.4, preferably When 2.1 or less) is selected, the light travels straight when passing through the particles of the particle-containing resin solution layer.
  • the mass ratio (particle / resin) between the particles and the resin in the particle-containing resin layer 11b is within a predetermined range (15/85 or more and 90/10 or less). Since the refractive index of the resin solution and the refractive index of the particles are not the same, by setting the mass ratio range and lowering the ratio of the particles, the particle-containing resin can be prevented from becoming dark even if white turbidity occurs. The transparency of the solution can be ensured. In addition, from the viewpoint of ensuring the transparency of the particle-containing resin solution, the lower the ratio of the particles, the better. However, if the particle ratio is too low, the strength of the particle-containing resin layer 11b tends to decrease. The lower limit is set.
  • the particle-containing resin layer 11b may contain an electrolytic solution.
  • the particle-containing resin layer 11b in a state where the separator 11 is incorporated in the battery, the particle-containing resin layer 11b is impregnated with the electrolytic solution, and the particle-containing resin layer 11b includes the electrolytic solution.
  • the particle-containing resin layer 11b containing the electrolytic solution has a first content depending on at least one of the absorbability of the electrolyte contained in the particle-containing resin layer 11b, the solubility in the electrolytic solution, and the swelling property. A state or a second state is formed.
  • the absorbability of the electrolyte solution of the resin, the solubility in the electrolyte solution, and the swellability can be changed by adjusting the resin type, the degree of polymerization, the molecular weight, and the like.
  • the resin in which the particle-containing resin layer 11b including the electrolytic solution forms the first state is referred to as a binder polymer compound, and the particle-containing resin layer 11b including the electrolytic solution forms the second state.
  • a matrix polymer compound is referred to as a matrix polymer compound.
  • the electrolytic solution is contained in the particle-containing resin layer 11b in a state in which the electrolytic solution is present in a microporous (void) formed by at least one of the binder polymer compound and the particles.
  • the particle-containing resin layer 11b has a function as a separator. That is, for example, the particle-containing resin layer 11b is interposed between the positive electrode and the negative electrode together with the separator base material 11a to prevent contact between the bipolar active materials, and in the same manner as the separator base material 11a, the particle-containing resin layer 11b is electrolyzed in the microporous structure. The liquid is held to form an ion conduction path between the electrodes.
  • the electrolyte solution is absorbed in the matrix polymer compound and is included in the particle-containing resin layer 11b. That is, the particle-containing resin layer 11b is impregnated with the electrolytic solution, and the matrix polymer compound swells to become a so-called gel.
  • the matrix polymer compound absorbs the electrolyte and swells to form a so-called gel state, and the matrix polymer compound holds the electrolyte and particles.
  • the porous structure of the particle-containing resin layer 11b may disappear with the swelling of the matrix polymer compound.
  • the particle-containing resin layer 11b has a function as an electrolyte. That is, the particle-containing resin layer 11b becomes an electrolyte in which the matrix polymer compound itself that has absorbed the electrolytic solution functions as an ionic conductor.
  • resin a matrix polymer compound and a binder polymer compound having a property compatible with a solvent
  • resins include fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene, fluorine-containing rubbers such as vinylidene fluoride-tetrafluoroethylene copolymer and ethylene-tetrafluoroethylene copolymer, and styrene-butadiene copolymer.
  • This resin may have, for example, a three-dimensional network structure in which the fibers are fibrillated and the fibrils are continuously connected to each other. Since the filler (particle) is supported on the resin having the three-dimensional network structure, the dispersed state can be maintained without being connected to each other. Further, the surface of the separator base material 11a and the particles may be bound to each other without the resin being fibrillated. In this case, higher binding properties can be obtained.
  • filler As the filler contained in the particle-containing resin layer 11b, from the viewpoint of reducing light scattering and ensuring the transparency of the particle-containing resin solution layer, which is a precursor of the particle-containing resin layer 11b, a particle diameter within a predetermined range, In addition, particles having a refractive index within a predetermined range are used.
  • the particle diameter D50 is set to 50 nm to 450 nm or 750 nm to 10000 nm. This is because the transparency of the particle-containing resin solution layer can be secured by using particles having a particle diameter in these ranges. Further, when the particle diameter D50 is less than 50 nm, the particle diameter is too small and becomes higher than the paint viscosity appropriate for application. This is because when the particle diameter D50 is larger than 10000 nm, there are cases where the particles are larger than the thickness to be applied, and the thickness of the battery cannot be as designed.
  • the lower limit of the particle diameter D50 in the range of 750 nm to 10,000 nm is preferably 800 nm or more, more preferably 2000 nm or more, from the viewpoint of further improving the transparency of the particle-containing resin solution layer. It is.
  • the upper limit of the particle diameter D50 in the range of 50 nm to 450 nm is preferably 400 nm or less, more preferably 300 nm or less, from the viewpoint of further improving the transparency of the particle-containing resin solution layer.
  • the particle diameter of the particles is such that, in addition to the particle diameter D50, the particle diameter D40 and the particle diameter D60 are 50 nm or more and 450 nm or less, or 750 nm or more. More preferably, it is 10,000 nm or less. That is, the particle diameter D50 of the particles is preferably 50 nm to 450 nm, the particle diameter D40 is 50 nm to 450 nm, and the particle diameter D60 is preferably 50 nm to 450 nm.
  • the particle diameter D50 of the particles is preferably 750 nm or more and 10,000 nm or less
  • the particle diameter D40 is 750 nm or more and 10,000 nm or less
  • the particle diameter D60 is preferably 750 nm or more and 10,000 nm or less.
  • the particle diameter D50 of the particles is, for example, a particle having a cumulative volume of 50% calculated from the particle side having a small particle diameter in the particle size distribution measured by the laser diffraction method after removing the resin component from the particle-containing resin layer. Is the diameter. Further, from the measured particle size distribution, a particle diameter D40 value of 40% cumulative volume and a particle diameter D60 of 60% cumulative volume can be obtained.
  • the shape of the particles is typically, for example, a spherical shape, a plate shape such as a scale shape or a flake shape, or a flat shape such as a needle shape (sometimes referred to as a flat shape), but is not limited thereto. Is not to be done.
  • the shape of the particles is preferably a non-spherical shape other than a spherical shape from the viewpoint of reducing light scattering at the grain boundary and improving the transparency, and among the non-spherical shapes, a plate shape such as a scale shape or a flake shape, or a needle shape A flat shape such as is more preferable.
  • grains which consist of a single crystal or a few single crystals are preferable rather than the secondary particle
  • the spherical shape includes not only a true spherical shape but also a shape in which the true spherical shape is slightly flat or distorted, a shape in which irregularities are formed on the true spherical surface, or a shape in which these shapes are combined.
  • the flat shape refers to a particle having a ratio (long side / short side) of the long side of the particle to the short side of the particle of 2/1 or more.
  • a plate shape such as a scale shape or a flake shape and a needle shape are a kind of flat shape, and a thin and flat shape is referred to as a plate shape, and an elongated shape like a needle is referred to as a needle shape.
  • Scale-like and flake-like shapes are types of plates.
  • the inventors of the present application have selected at least one of the maximum value and the minimum value of the projected dimension from each direction of the particle when the flat shape particle is selected among these shapes. It has been found that transparency can be further maintained by entering 50 nm or more and 450 nm or less, or 750 nm or more and 10,000 nm or less.
  • the maximum length of the main surface is preferably 750 nm or more and 10,000 nm or less, and the thickness is preferably in the range of 50 nm or more and 450 nm or less.
  • the length is 50 nm or more and 10,000 nm or less, and the thickness is in the range of 50 nm or more and 450 nm or less, there is little light scattering.
  • having spherical particles with a diameter of 350 nm or more and 850 nm or less, which is the visible light wavelength range is optimal for balancing the reduction in the viscosity of the paint and battery characteristics and the improvement in the strength of the particle-containing resin layer 11b. It is said that. Therefore, if the volume per particle is set to the same range as the spherical particles having the diameter in the above range, selecting a plate-like or needle-like particle in the projected dimension range can obtain transparency without breaking the balance. It is suitable for.
  • the refractive index of the particles is 1.3 or more and less than 2.4, and preferably 1.3 or more and 2.1 or less. This is to suppress a decrease in transparency due to scattering due to refraction of light coming from the difference in refractive index between the resin solution and the particles (difference that the solid has a high refractive index and the liquid has a low refractive index).
  • the lower refractive index is 1.3 or more and less than 2.4, preferably 1.3 or more. Use particles in the range of 2.1 or less.
  • inorganic particles and organic particles can be used as the particles.
  • the inorganic particles include particles of metal oxide, sulfate compound, carbonate compound, metal hydroxide, metal carbide, metal nitride, metal fluoride, phosphate compound, mineral, and the like.
  • particles having electrical insulation properties are typically used.
  • the surface of the particles (fine particles) of the conductive material is electrically insulated by performing surface treatment with the electrical insulation material. Sedimented particles (fine particles) may be used.
  • metal oxide examples include silicon oxide (SiO 2 , silica (silica powder, quartz glass, glass beads, diatomaceous earth, wet or dry synthetic products, etc.), wet synthetic products such as colloidal silica, and dry synthetic products such as fumed silica.
  • Zinc oxide (ZnO), tin oxide (SnO), magnesium oxide (magnesia, MgO), antimony oxide (Sb 2 O 3 ), aluminum oxide (alumina, Al 2 O 3 ), etc. are preferably used. be able to.
  • magnesium sulfate (MgSO 4 ), calcium sulfate (CaSO 4 ), barium sulfate (BaSO 4 ), strontium sulfate (SrSO 4 ) and the like can be suitably used.
  • carbonate compound magnesium carbonate (MgCO 3 , magnesite), calcium carbonate (CaCO 3 , calcite), barium carbonate (BaCO 3 ), lithium carbonate (Li 2 CO 3 ) and the like can be suitably used.
  • metal carbide boron carbide (B 4 C) or the like can be suitably used.
  • metal nitride silicon nitride (Si 3 N 4 ), boron nitride (BN), aluminum nitride (AlN), titanium nitride (TiN), or the like can be suitably used.
  • lithium fluoride LiF
  • aluminum fluoride AlF 3
  • calcium fluoride CaF 2
  • barium fluoride BaF 2
  • magnesium fluoride or the like
  • phosphate compound trilithium phosphate (Li 3 PO 4 ), magnesium phosphate, magnesium hydrogen phosphate, ammonium polyphosphate, and the like can be suitably used.
  • Examples of minerals include silicate minerals, carbonate minerals, and oxide minerals.
  • Silicate minerals are classified into nesosilicate minerals, solosilicate minerals, cyclosilicate minerals, inosilicate minerals, layered (phyllo) silicate minerals, and tectosilicate minerals based on their crystal structures. . Some are classified into fibrous silicate minerals called asbestos based on a classification standard different from the crystal structure.
  • the nesosilicate mineral is an island-like tetrahedral silicate mineral made of an independent Si—O tetrahedron ([SiO 4 ] 4 ⁇ ).
  • Examples of the nesosilicate mineral include those corresponding to olivines and meteorites.
  • olivine a continuous solid solution of Mg 2 SiO 4 (magnerite olivine) and Fe 2 SiO 4 (iron olivine)
  • magnesium silicate forsterite (bitter) Earth olivine
  • Mg 2 SiO 4 aluminum silicate
  • Al 2 SiO 5 aluminum silicate
  • Zn 2 SiO 4 zirconium silicate
  • mullite 3Al 2 O 3 .2SiO 2 to 2Al 2 O 3 .SiO 2
  • the solosilicate mineral is a group structure type silicate mineral composed of a Si—O tetrahedral double bond group ([Si 2 O 7 ] 6 ⁇ , [Si 5 O 16 ] 12 ⁇ ).
  • Examples of the silicate mineral include those corresponding to vesuvite and chlorite.
  • the cyclosilicate mineral is composed of a Si—O tetrahedral finite (3-6) ring ([Si 3 O 9 ] 6 ⁇ , [Si 4 O 12 ] 8 ⁇ , [Si 6 O 18 ] 12. - ) An annular silicate mineral.
  • Examples of the cyclosilicate mineral include beryl and tourmaline.
  • Inosilicate minerals have an infinite number of Si—O tetrahedral linkages, and are chain-like ([Si 2 O 6 ] 4 ⁇ ) and belt-like ([Si 3 O 9 ] 6 ⁇ , [Si 4 O 11 ] 6 - , [Si 5 O 15 ] 10- , [Si 7 O 21 ] 14- ).
  • Examples of the inosilicate mineral include those corresponding to pyroxenes such as calcium silicate (wollastonite, CaSiO 3 ), and those corresponding to amphibole.
  • the layered silicate mineral is a layered silicate mineral that forms a network bond of Si—O tetrahedra ([SiO 4 ] 4 ⁇ ).
  • SiO 4 tetrahedra
  • the specific example of a layered silicate mineral is mentioned later.
  • the tectosilicate mineral is a three-dimensional network structure type silicate mineral in which a Si—O tetrahedron ([SiO 4 ] 4 ⁇ ) forms a three-dimensional network bond.
  • the tectosilicates minerals, quartz, feldspars, zeolites, and the like, zeolite (M 2 / n O ⁇ Al 2 O 3 ⁇ xSiO 2 ⁇ yH 2 O, M is a metal element, n represents the valence of M, x ⁇ 2, y ⁇ 0) aluminosilicate zeolite such as (aM 2 O ⁇ bAl 2 O 3 ⁇ cSiO 2 ⁇ dH 2 O, M is as defined above .a, b, c, d are each 1 or more And the like.) And the like.
  • ⁇ Asbestos include chrysotile, amosite, anthophinite and the like.
  • the carbonate minerals dolomite (dolomite, CaMg (CO 3) 2) , hydrotalcite (Mg 6 Al 2 (CO 3 ) (OH) 16 ⁇ 4 (H 2 O)) and the like.
  • oxide mineral examples include spinel (MgAl 2 O 4 ).
  • Examples of other minerals include barium titanate (BaTiO 3 ) and strontium titanate (SrTiO 3 ).
  • the mineral may be a natural mineral or an artificial mineral.
  • clay minerals include a crystalline clay mineral, an amorphous or quasicrystalline clay mineral, and the like.
  • crystalline clay minerals include layered silicate minerals, those having a structure similar to layered silicates, silicate minerals such as other silicate minerals, and layered carbonate minerals.
  • the layered silicate mineral includes a Si—O tetrahedral sheet and an octahedral sheet such as Al—O and Mg—O combined with the tetrahedral sheet.
  • Layered silicates are typically classified by the number of tetrahedral and octahedral sheets, the number of cations in the octahedron, and the layer charge.
  • the layered silicate mineral may be one obtained by substituting all or part of metal ions between layers with organic ammonium ions or the like.
  • the layered silicate minerals include a kaolinite-serpentine group with a 1: 1 type structure, a pyrophyllite-talc group, a smectite group, a vermiculite group, a mica group with a 2: 1 type structure. And those corresponding to the brittle mica (brittle mica) family, chlorite (chlorite group), and the like.
  • Examples of the kaolinite-serpentine family include chrysotile, antigolite, lizardite, kaolinite (Al 2 Si 2 O 5 (OH) 4 ), and dickite.
  • Examples of the pyrophyllite-talc family include talc (Mg 3 Si 4 O 10 (OH) 2 ), willemsite, and granite (pyrophyllite, Al 2 Si 4 O 10 (OH) 2. ) And the like.
  • smectite group examples include saponite [(Ca / 2, Na) 0.33 (Mg, Fe 2+ ) 3 (Si, Al) 4 O 10 (OH) 2 .4H 2 O], hectorite, Sauconite, montmorillonite ⁇ (Na, Ca) 0.33 (Al, Mg) 2Si 4 O 10 (OH) 2 .nH 2 O, where clay containing montmorillonite as a main component is called bentonite ⁇ , beidellite, nontrite, etc. .
  • Examples of the mica (mica) family include, for example, moscovite (muscovite, KAl 2 (AlSi 3 ) O 10 (OH) 2 ) sericite (sericite), phlogopite (phlogopite), biotite, lipidite ( Lithia mica) and the like.
  • Examples of those belonging to the brittle mica (brittle mica) family include margarite, clintonite, and anandite.
  • Examples of the chlorite (chlorite) family include kukkeite, sudokuite, clinochlore, chamosite, and nimite.
  • a hydrous magnesium silicate having a 2: 1 ribbon structure in which a tetrahedron sheet arranged in a ribbon shape is connected to a tetrahedron sheet arranged in an adjacent ribbon shape while reversing the apex.
  • the hydrous magnesium silicate include sepiolite (foamstone: Mg 9 Si 12 O 30 (OH) 6 (OH 2 ) 4 .6H 2 O), palygorskite and the like.
  • silicate minerals zeolites (M 2 / n O ⁇ Al 2 O 3 ⁇ xSiO 2 ⁇ yH 2 O, M is a metal element, n represents the valence of M, x ⁇ 2, y ⁇ 0) , etc.
  • the layered carbonate minerals hydrotalcite (Mg 6 Al 2 (CO 3 ) (OH) 16 ⁇ 4 (H 2 O)) and the like.
  • amorphous or quasicrystalline clay mineral examples include bingellite, imogolite (Al 2 SiO 3 (OH)), and allophane.
  • These inorganic particles may be used alone or in combination of two or more.
  • the particles may be organic particles.
  • Materials constituting the organic particles include melamine, melamine cyanurate, melamine polyphosphate, cross-linked polymethyl methacrylate (cross-linked PMMA), polyethylene, polypropylene, polystyrene, polytetrafluoroethylene, polyvinylidene fluoride, polyamide, polyimide, melamine Resins, phenol resins, epoxy resins and the like can be mentioned. These materials may be used alone or in combination of two or more.
  • the lower the ratio of the particles the better. However, if the particle ratio is too low, the strength of the particle-containing resin layer 11b tends to decrease. The lower limit is set.
  • the refractive index of a resin such as PVdF is about 1.4
  • the refractive index of a solvent N-methyl-2-pyrrolidone, dimethyl carbonate, etc.
  • the refractive index of the resin is 1.2
  • the content ratio of the resin is large because it can approach the refractive index of the solid particles and suppress scattering more.
  • the thickness of the particle-containing resin layer 11b is preferably, for example, 1 ⁇ m or more and 15 ⁇ m or less. Although it is preferable because transparency can be further improved by reducing the thickness, if it is too thin, the measurement accuracy of the thickness tends to decrease. On the other hand, if it is too thick, the transparency tends to decrease.
  • the thickness of the separator 11 can be arbitrarily set as long as it is equal to or greater than a thickness that can maintain a required strength.
  • the separator 11 insulates between the positive electrode and the negative electrode, prevents a short circuit and the like, has ion permeability for suitably performing the battery reaction via the separator 11, and contributes to the battery reaction in the battery. It is preferable to set the thickness of the active material layer to be as thick as possible.
  • the thickness of the separator 11 is preferably 4 ⁇ m or more and 20 ⁇ m or less, for example.
  • the thickness of the separator 11 is not limited to this range.
  • the particle-containing resin layer 11b is formed on one main surface or both main surfaces of the separator substrate 11a. Thereby, the separator 11 can be obtained.
  • the particle-containing resin layer 11b can be formed by, for example, the following first to second examples.
  • the resin and the particles are mixed at a predetermined mass ratio, added to a dispersion solvent such as N-methyl-2-pyrrolidone, and the resin is dissolved to obtain a paint (particle-containing resin solution). Then, this coating material is apply
  • a dispersion solvent such as N-methyl-2-pyrrolidone
  • the thickness of the coating film is measured with an optical film thickness measuring device such as a laser, and if the measured value is different from the target predetermined thickness, the paint The coating thickness of the paint is adjusted by automatically adjusting the discharge amount.
  • the present technology includes particles having a refractive index within a predetermined range and a particle diameter within a predetermined range, and the mass ratio (particle / resin) of the particle-containing resin layer 11b to the resin is within a predetermined range. Therefore, a paint with improved transparency can be obtained.
  • the particle-containing resin solution layer can be formed while accurately controlling the coating thickness in real time by an optical film thickness measuring device such as a laser. Therefore, the particle-containing resin layer 11b whose thickness is controlled with high accuracy can be formed. This is the same in the second example described later.
  • the separator 11 in which the particle-containing resin layer 11b is formed on the surface of the separator substrate 11a can be obtained by drying the particle-containing resin solution layer with hot air or the like.
  • the resin does not have a unique three-dimensional network structure as in the second example described later.
  • the resin may be, for example, at least between particles and between the particles and the substrate surface. In other words, the particles bind to each other or bind the particles to the substrate surface.
  • the resin and the particles are mixed at a predetermined mass ratio, added to a dispersion solvent such as N-methyl-2-pyrrolidone, and the resin is dissolved to obtain a paint (particle-containing resin solution). Then, this coating material is apply
  • a dispersion solvent such as N-methyl-2-pyrrolidone
  • the separator substrate 11a on which the particle-containing resin solution layer is formed is immersed in a water bath to phase-separate the particle-containing resin solution, and then dried. That is, the particle-containing resin solution layer formed on the surface of the separator substrate 11a is a poor solvent for the resin that dissolves in the dispersion solvent, and a good solvent for the dispersion solvent that dissolves the resin. After contact and phase separation, dry with hot air or the like. Thereby, the separator 11 in which the particle-containing resin layer 11b made of a resin having a three-dimensional network structure carrying particles is formed on the surface of the separator substrate 11a can be obtained.
  • the particle-containing resin layer 11b is formed by a rapid poor solvent-induced phase separation phenomenon, and the particle-containing resin layer 11b is a three-dimensional structure in which the resin is fibrillated and the fibrils are continuously connected to each other.
  • Network structure three-dimensional network structure. That is, the solvent exchange is achieved by bringing the particle-containing resin solution in which the resin is dissolved into contact with a solvent such as water that is a poor solvent for the resin and a good solvent for the dispersion solvent that dissolves the resin. Occur. This causes a rapid (fast) phase separation with spinodal decomposition and the resin has a unique three-dimensional network structure.
  • the particle-containing resin layer 11b produced in the second example forms a unique porous structure by utilizing an abrupt poor solvent-induced phase separation phenomenon accompanied by spinodal decomposition by a poor solvent.
  • FIG. 2 is a schematic cross-sectional view illustrating a configuration example of an electrode with a particle-containing resin layer according to the first embodiment of the present technology.
  • the electrode 21 with particle-containing resin layer includes an electrode 21a and a particle-containing resin layer 21b formed on at least one main surface of the electrode 21a.
  • FIG. 2 shows a configuration example in which the particle-containing resin layer 21b is formed on both main surfaces of the electrode 21a, but the particle-containing resin layer 21b is formed only on one main surface of the electrode 21a. It may be.
  • the electrode 21a may be a positive electrode or a negative electrode.
  • the particle-containing resin layer 21b includes particles and a resin, and the details of the configuration and the formation method are the first implementation except that the electrode 21a is formed instead of the separator substrate 11a. It is the same as the form.
  • the particle-containing resin layer 21b is impregnated with an electrolytic solution, and the particle-containing resin layer 21b includes an electrolytic solution.
  • the particle-containing resin layer 21b containing the electrolytic solution forms the first state or the second state depending on the absorbability of the electrolytic solution of the resin contained in the particle-containing resin layer 21b.
  • the electrolytic solution is contained in the particle-containing resin layer 21b in a state where it exists in a microporous (void) formed by at least one of the binder polymer compound and particles.
  • the particle-containing resin layer 21b has a function as a separator.
  • the particle-containing resin layer 21b is interposed between the positive electrode and the negative electrode to prevent the contact between the bipolar active materials and to hold the electrolytic solution in the micropore to form an ion conduction path between the electrodes. .
  • the electrolytic solution is absorbed by the matrix polymer compound and is included in the particle-containing resin layer 21b. That is, the particle-containing resin layer 21b is impregnated with the electrolytic solution, and the matrix polymer compound swells to become a so-called gel.
  • the matrix polymer compound absorbs the electrolyte and swells to form a so-called gel state, and the matrix polymer compound holds the electrolyte and particles.
  • the porous structure of the particle-containing resin layer 21b may disappear with the swelling of the matrix polymer compound.
  • the particle-containing resin layer 21b has a function as an electrolyte. That is, the particle-containing resin layer 21b becomes an electrolyte in which the matrix polymer compound itself that has absorbed the electrolytic solution functions as an ionic conductor.
  • This nonaqueous electrolyte battery is, for example, a nonaqueous electrolyte secondary battery that can be charged and discharged, and is, for example, a lithium ion secondary battery.
  • the battery according to the third embodiment is a separator similar to that of the first embodiment, and incorporates a matrix polymer compound as the resin of the particle-containing resin layer 11b.
  • the separator 55 corresponds to the separator base material 11a
  • the gel electrolyte layer 56 corresponds to the particle-containing resin layer 11b containing the electrolytic solution formed on the separator base material 11a.
  • FIG. 3 shows a first configuration example of the nonaqueous electrolyte battery 62 according to the third embodiment.
  • This non-aqueous electrolyte battery 62 is a so-called laminate film type, in which a wound electrode body 50 to which a positive electrode lead 51 and a negative electrode lead 52 are attached is housed in a film-like exterior member 60.
  • the positive electrode lead 51 and the negative electrode lead 52 are led out from the inside of the exterior member 60 toward the outside, for example, in the same direction.
  • the positive electrode lead 51 and the negative electrode lead 52 are made of, for example, a metal material such as aluminum, copper, nickel, or stainless steel, and each have a thin plate shape or a mesh shape.
  • the exterior member 60 is made of, for example, a laminate film in which resin layers are formed on both surfaces of a metal layer.
  • an outer resin layer is formed on the surface of the metal layer that is exposed to the outside of the battery, and an inner resin layer is formed on the inner surface of the battery facing the power generation element such as the wound electrode body 50.
  • the metal layer plays the most important role in preventing moisture, oxygen and light from entering and protecting the contents.
  • Aluminum (Al) is most often used because of its lightness, extensibility, price and ease of processing.
  • the outer resin layer has a beautiful appearance, toughness, flexibility, and the like, and a resin material such as nylon or polyethylene terephthalate (PET) is used. Since the inner resin layer is a portion that melts and fuses with heat or ultrasonic waves, a polyolefin resin is appropriate, and unstretched polypropylene (CPP) is often used.
  • An adhesive layer may be provided between the metal layer, the outer resin layer, and the inner resin layer as necessary.
  • the exterior member 60 is provided with a recess that accommodates the wound electrode body 50 formed by, for example, deep drawing from the inner resin layer side toward the outer resin layer, and the inner resin layer serves as the wound electrode body 50. It is arrange
  • the inner resin layers facing each other of the exterior member 60 are in close contact with each other by fusion or the like at the outer edge of the recess.
  • the adhesion film 61 is made of a resin material having high adhesion to a metal material, and is made of, for example, polyethylene, polypropylene, or a polyolefin resin such as modified polyethylene or modified polypropylene obtained by modifying these materials.
  • the exterior member 60 may be made of a laminated film having another structure, a polymer film such as polypropylene, or a metal film, instead of the aluminum laminated film whose metal layer is made of aluminum (Al).
  • FIG. 4 shows a cross-sectional structure taken along line II of the spirally wound electrode body 50 shown in FIG.
  • the wound electrode body 50 has a structure in which a belt-like positive electrode 53 and a belt-like negative electrode 54 are laminated and wound via a belt-like separator 55 and a gel electrolyte layer 56.
  • the outermost periphery is protected by a protective tape 57 as necessary.
  • the positive electrode 53 has a structure in which a positive electrode active material layer 53B is provided on one or both surfaces of the positive electrode current collector 53A.
  • the positive electrode 53 is obtained by forming a positive electrode active material layer 53B containing a positive electrode active material on both surfaces of a positive electrode current collector 53A.
  • a positive electrode current collector 53A for example, a metal foil such as an aluminum (Al) foil, a nickel (Ni) foil, or a stainless steel (SUS) foil can be used.
  • the positive electrode active material layer 53B is configured to include any one or two or more of positive electrode materials capable of inserting and extracting lithium as a positive electrode active material. Other materials such as a conductive agent may be included.
  • a lithium-containing compound As the positive electrode material capable of inserting and extracting lithium, for example, a lithium-containing compound is preferable. This is because a high energy density can be obtained.
  • the lithium-containing compound include a composite oxide containing lithium and a transition metal element, and a phosphate compound containing lithium and a transition metal element.
  • the group which consists of cobalt (Co), nickel (Ni), manganese (Mn), and iron (Fe) as a transition metal element is preferable. This is because a higher voltage can be obtained.
  • a lithium-containing compound represented by Li x M1O 2 or Li y M2PO 4 can be used as the positive electrode material.
  • M1 and M2 represent one or more transition metal elements.
  • the values of x and y vary depending on the charge / discharge state of the battery, and are generally 0.05 ⁇ x ⁇ 1.10 and 0.05 ⁇ y ⁇ 1.10.
  • Examples of the composite oxide containing lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel composite oxide (Li x NiO 2 ), and lithium nickel cobalt composite oxide (Li x Ni).
  • lithium nickel cobalt manganese composite oxide Li x Ni (1-vw) Co v Mn w O 2 (0 ⁇ v + w ⁇ 1, v> 0, w > 0)
  • lithium manganese composite oxide LiMn 2 O 4
  • lithium manganese nickel composite oxide LiMn 2 ⁇ t N t O 4 (0 ⁇ t ⁇ 2) having a spinel structure.
  • a complex oxide containing cobalt is preferable. This is because a high capacity can be obtained and excellent cycle characteristics can be obtained.
  • Examples of the phosphate compound containing lithium and a transition metal element include a lithium iron phosphate compound (LiFePO 4 ) or a lithium iron manganese phosphate compound (LiFe 1-u Mn u PO 4 (0 ⁇ u ⁇ 1). ) And the like.
  • lithium composite oxide examples include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and lithium manganate (LiMn 2 O 4 ).
  • LiCoO 2 lithium cobaltate
  • LiNiO 2 lithium nickelate
  • LiMn 2 O 4 lithium manganate
  • a solid solution in which a part of the transition metal element is substituted with another element can also be used.
  • nickel cobalt composite lithium oxide LiNi 0.5 Co 0.5 O 2 , LiNi 0.8 Co 0.2 O 2, etc.
  • composite particles in which the surfaces of particles made of any of the above lithium-containing compounds are coated with fine particles made of any of the other lithium-containing compounds can be used. Good.
  • positive electrode materials capable of inserting and extracting lithium include oxides such as vanadium oxide (V 2 O 5 ), titanium dioxide (TiO 2 ), manganese dioxide (MnO 2 ), and iron disulfide. (FeS 2 ), disulfides such as titanium disulfide (TiS 2 ) and molybdenum disulfide (MoS 2 ), and chalcogenides containing no lithium such as niobium diselenide (NbSe 2 ) (particularly layered compounds and spinel compounds) ), Lithium-containing compounds containing lithium, and conductive polymers such as sulfur, polyaniline, polythiophene, polyacetylene, or polypyrrole.
  • the positive electrode material capable of inserting and extracting lithium may be other than the above. Further, two or more kinds of the series of positive electrode materials described above may be mixed in any combination.
  • a carbon material such as carbon black or graphite
  • the binder include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resin materials. At least one selected from a copolymer or the like mainly composed of is used.
  • the positive electrode 53 has a positive electrode lead 51 connected to one end of the positive electrode current collector 53A by spot welding or ultrasonic welding.
  • the positive electrode lead 51 is preferably a metal foil or a mesh-like one, but there is no problem even if it is not a metal as long as it is electrochemically and chemically stable and can conduct electricity. Examples of the material of the positive electrode lead 51 include aluminum (Al) and nickel (Ni).
  • the negative electrode 54 has a structure in which a negative electrode active material layer 54B is provided on one surface or both surfaces of a negative electrode current collector 54A, and the negative electrode active material layer 54B and the positive electrode active material layer 53B are arranged to face each other. Yes.
  • the negative electrode active material layer 54B may be provided only on one surface of the negative electrode current collector 54A.
  • the negative electrode current collector 54A is made of, for example, a metal foil such as a copper foil.
  • the negative electrode active material layer 54B includes one or more negative electrode materials capable of occluding and releasing lithium as the negative electrode active material, and the positive electrode active material layer 53B as necessary. Other materials such as a binder and a conductive agent similar to those described above may be included.
  • the electrochemical equivalent of the negative electrode material capable of inserting and extracting lithium is larger than the electrochemical equivalent of the positive electrode 53, and theoretically, the negative electrode 54 is in the middle of charging. Lithium metal is prevented from precipitating.
  • the nonaqueous electrolyte battery 62 is designed such that the open circuit voltage (that is, the battery voltage) in the fully charged state is in the range of, for example, 2.80 V or more and 6.00 V or less.
  • the open circuit voltage in a fully charged state is, for example, 4.20 V or more and 6.00 V. It is designed to be within the following range. In this case, the open circuit voltage in the fully charged state is preferably 4.25V or more and 6.00V or less.
  • the open circuit voltage in the fully charged state is 4.25 V or higher
  • the amount of lithium released per unit mass is increased even with the same positive electrode active material as compared to the 4.20 V battery. Accordingly, the amounts of the positive electrode active material and the negative electrode active material are adjusted. Thereby, a high energy density can be obtained.
  • Examples of the negative electrode material capable of inserting and extracting lithium include non-graphitizable carbon, graphitizable carbon, graphite, pyrolytic carbons, cokes, glassy carbons, and fired organic polymer compounds And carbon materials such as carbon fiber and activated carbon.
  • examples of coke include pitch coke, needle coke, and petroleum coke.
  • An organic polymer compound fired body is a carbonized material obtained by firing a polymer material such as a phenol resin or a furan resin at an appropriate temperature, and part of it is non-graphitizable carbon or graphitizable carbon.
  • These carbon materials are preferable because the change in crystal structure that occurs during charge and discharge is very small, a high charge and discharge capacity can be obtained, and good cycle characteristics can be obtained.
  • graphite is preferable because it has a high electrochemical equivalent and can provide a high energy density.
  • non-graphitizable carbon is preferable because excellent cycle characteristics can be obtained.
  • those having a low charge / discharge potential, specifically, those having a charge / discharge potential close to that of lithium metal are preferable because a high energy density of the battery can be easily realized.
  • anode material capable of inserting and extracting lithium and capable of increasing the capacity
  • lithium can be inserted and extracted, and at least one of a metal element and a metalloid element can be used.
  • materials containing as a constituent element are also included. This is because a high energy density can be obtained by using such a material. In particular, the use with a carbon material is more preferable because a high energy density can be obtained and excellent cycle characteristics can be obtained.
  • the negative electrode material may be a single element, alloy or compound of a metal element or metalloid element, or may have at least a part of one or more of these phases.
  • the alloy includes an alloy including one or more metal elements and one or more metalloid elements in addition to an alloy composed of two or more metal elements.
  • the nonmetallic element may be included. Some of the structures include a solid solution, a eutectic (eutectic mixture), an intermetallic compound, or two or more of them.
  • Examples of the metal element or metalloid element constituting the negative electrode material include a metal element or metalloid element capable of forming an alloy with lithium.
  • a metal element or metalloid element capable of forming an alloy with lithium.
  • the negative electrode material preferably includes a 4B group metal element or metalloid element in the short periodic table as a constituent element, and more preferably includes at least one of silicon (Si) and tin (Sn) as a constituent element. And particularly preferably those containing at least silicon. This is because silicon (Si) and tin (Sn) have a large ability to occlude and release lithium, and a high energy density can be obtained.
  • Examples of the negative electrode material having at least one of silicon and tin include at least a part of a simple substance, an alloy or a compound of silicon, a simple substance, an alloy or a compound of tin, or one or more phases thereof. The material which has in is mentioned.
  • tin alloys include silicon (Si), nickel (Ni), copper (Cu), iron (Fe), cobalt (Co), and manganese (Mn) as second constituent elements other than tin (Sn).
  • tin (Sn) compound or silicon (Si) compound examples include those containing oxygen (O) or carbon (C).
  • O oxygen
  • C carbon
  • the above-described compounds are used. Two constituent elements may be included.
  • cobalt (Co), tin (Sn), and carbon (C) are included as constituent elements, and the carbon content is 9.9 mass% or more and 29.7 mass% or less.
  • SnCoC containing material whose ratio of cobalt (Co) with respect to the sum total of tin (Sn) and cobalt (Co) is 30 mass% or more and 70 mass% or less is preferable. This is because a high energy density can be obtained in such a composition range, and excellent cycle characteristics can be obtained.
  • This SnCoC-containing material may further contain other constituent elements as necessary.
  • other constituent elements include silicon (Si), iron (Fe), nickel (Ni), chromium (Cr), indium (In), niobium (Nb), germanium (Ge), titanium (Ti), and molybdenum.
  • Mo silicon
  • Al aluminum
  • phosphorus (P) gallium
  • Ga bismuth
  • This SnCoC-containing material has a phase containing tin (Sn), cobalt (Co), and carbon (C), and this phase has a low crystallinity or an amorphous structure. It is preferable.
  • this SnCoC-containing material it is preferable that at least a part of carbon (C) as a constituent element is bonded to a metal element or a metalloid element as another constituent element.
  • the decrease in cycle characteristics is considered to be due to aggregation or crystallization of tin (Sn) or the like.
  • the combination of carbon (C) with other elements suppresses such aggregation or crystallization. Because it can.
  • XPS X-ray photoelectron spectroscopy
  • the peak of the carbon 1s orbital (C1s) appears at 284.5 eV in an energy calibrated apparatus so that the peak of the gold atom 4f orbital (Au4f) is obtained at 84.0 eV if it is graphite. .
  • Au4f gold atom 4f orbital
  • it will appear at 284.8 eV.
  • the charge density of the carbon element increases, for example, when carbon is bonded to a metal element or a metalloid element, the C1s peak appears in a region lower than 284.5 eV.
  • the peak of the synthetic wave of C1s obtained for the SnCoC-containing material appears in a region lower than 284.5 eV
  • at least a part of the carbon contained in the SnCoC-containing material is a metal element or a half of other constituent elements. Combined with metal elements.
  • the C1s peak is used to correct the energy axis of the spectrum.
  • the C1s peak of the surface-contaminated carbon is set to 284.8 eV, which is used as an energy standard.
  • the waveform of the C1s peak is obtained as a shape including the surface contamination carbon peak and the carbon peak in the SnCoC-containing material. Therefore, by analyzing using, for example, commercially available software, the surface contamination The carbon peak and the carbon peak in the SnCoC-containing material are separated. In the waveform analysis, the position of the main peak existing on the lowest bound energy side is used as the energy reference (284.8 eV).
  • Examples of the negative electrode material capable of occluding and releasing lithium include metal oxides and polymer compounds capable of occluding and releasing lithium.
  • Examples of the metal oxide include lithium titanium oxide containing titanium and lithium such as lithium titanate (Li 4 Ti 5 O 12 ), iron oxide, ruthenium oxide, or molybdenum oxide.
  • Examples of the polymer compound include polyacetylene, polyaniline, polypyrrole, and the like.
  • the separator 55 is a porous film made of an insulating film having a high ion permeability and a predetermined mechanical strength. A non-aqueous electrolyte is held in the pores of the separator 55.
  • the configuration of the separator 55 is the same as that of the separator substrate 11a of the first embodiment.
  • the gel electrolyte layer 56 includes particles as a filler, a matrix polymer compound (resin), and a nonaqueous electrolytic solution (electrolytic solution).
  • the particle-containing resin layer formed on at least one main surface of the separator 55 is an electrolytic solution. It is formed by including.
  • the particle-containing resin layer formed on at least one main surface of the separator 55 is, for example, a matrix polymer compound that absorbs the electrolytic solution and swells to form a so-called gel.
  • the molecule itself becomes the gel electrolyte layer 56 that functions as an ionic conductor. In this case, the porous structure of the particle-containing resin layer may disappear as the matrix polymer compound swells. Since the gel electrolyte layer 56 contains particles, the strength, heat resistance, and oxidation resistance of the gel electrolyte layer 56 are improved, and characteristics such as safety can be improved.
  • Nonaqueous electrolyte The nonaqueous electrolytic solution includes an electrolyte salt and a nonaqueous solvent that dissolves the electrolyte salt.
  • the electrolyte salt contains, for example, one or more light metal compounds such as lithium salts.
  • the lithium salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium tetraphenylborate (LiB (C 6 H 5) 4), methanesulfonic acid lithium (LiCH 3 SO 3), lithium trifluoromethanesulfonate (LiCF 3 SO 3), tetrachloroaluminate lithium (LiAlCl 4), six Examples thereof include dilithium fluorosilicate (Li 2 SiF 6 ), lithium chloride (LiCl), and lithium bromide (LiBr).
  • At least one selected from the group consisting of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, and lithium hexafluoroarsenate is preferable, and lithium hexafluorophosphate is more preferable.
  • Non-aqueous solvent examples include lactone solvents such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, and ⁇ -caprolactone, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, ethyl methyl carbonate, Carbonate ester solvents such as diethyl carbonate, ether solvents such as 1,2-dimethoxyethane, 1-ethoxy-2-methoxyethane, 1,2-diethoxyethane, tetrahydrofuran or 2-methyltetrahydrofuran, and nitriles such as acetonitrile
  • Nonaqueous solvents such as solvents, sulfolane-based solvents, phosphoric acids, phosphate ester solvents, and pyrrolidones are exemplified. Any one type of solvent may be used alone, or two or more types may be mixed and used
  • a mixture of a cyclic carbonate and a chain carbonate as the non-aqueous solvent, and it may contain a compound in which a part or all of the hydrogen of the cyclic carbonate or the chain carbonate includes a fluorination.
  • the fluorinated compounds include fluoroethylene carbonate (4-fluoro-1,3-dioxolan-2-one: FEC) and difluoroethylene carbonate (4,5-difluoro-1,3-dioxolan-2-one: DFEC) is preferably used.
  • the negative electrode 54 containing a compound such as silicon (Si), tin (Sn), or germanium (Ge) is used as the negative electrode active material, charge / discharge cycle characteristics can be improved.
  • difluoroethylene carbonate is preferably used as the non-aqueous solvent. This is because the cycle characteristic improvement effect is excellent.
  • This nonaqueous electrolyte battery 62 can be manufactured, for example, by the following method.
  • This nonaqueous electrolyte battery 62 typically includes, for example, the following positive electrode manufacturing process, negative electrode manufacturing process, particle-containing resin layer forming process (separator manufacturing process), winding process, and battery assembling process. Manufactured sequentially.
  • a positive electrode active material, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and the positive electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to form a paste-like positive electrode mixture slurry Is made.
  • the positive electrode mixture slurry is applied to the positive electrode current collector 53A, the solvent is dried, and the positive electrode active material layer 53B is formed by compression molding with a roll press or the like, and the positive electrode 53 is manufactured. Thereafter, the positive electrode lead 51 is attached to the end of the positive electrode current collector 53A by welding.
  • a negative electrode active material and a binder are mixed to prepare a negative electrode mixture, and the negative electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to prepare a paste-like negative electrode mixture slurry.
  • this negative electrode mixture slurry is applied to the negative electrode current collector 54A, the solvent is dried, and the negative electrode active material layer 54B is formed by compression molding with a roll press machine or the like, and the negative electrode 54 is manufactured. Thereafter, the negative electrode lead 52 is attached to the end of the negative electrode current collector 54A by welding.
  • the positive electrode 53 and the negative electrode 54 are laminated and wound via a separator 55 having a particle-containing resin layer formed on one or both main surfaces, whereby a wound electrode body 50 having a wound structure. Is made. Thereafter, the positive electrode lead 51 is attached to the end of the positive electrode current collector 53A by welding, and the negative electrode lead 52 is attached to the end of the negative electrode current collector 54A by welding.
  • the exterior member 60 made of a laminate film is deep-drawn to form a recess, the wound electrode body 50 is inserted into the recess, the unprocessed portion of the exterior member 60 is folded back to the upper portion of the recess, and the outer periphery of the recess Heat welding is performed except for a part (for example, one side).
  • an adhesion film 61 is inserted between the positive electrode lead 51 and the negative electrode lead 52 and the exterior member 60.
  • the unwelded portion of the exterior member 60 is sealed by heat fusion or the like.
  • the particle-containing resin layer is impregnated with the non-aqueous electrolyte, and the matrix polymer compound (resin) swells to form the gel electrolyte layer 56.
  • the nonaqueous electrolyte battery 62 shown in FIGS. 3 and 4 is completed.
  • FIG. 5A is an external view of a nonaqueous electrolyte battery 62 that houses the laminated electrode body 70.
  • FIG. 5B is an exploded perspective view showing a state in which the laminated electrode body 70 is accommodated in the exterior member 60.
  • FIG. 5C is an external view showing the external appearance of the nonaqueous electrolyte battery 62 shown in FIG. 5A from the bottom surface side.
  • the laminated electrode body 70 uses a laminated electrode body 70 in which a rectangular positive electrode 73 and a rectangular negative electrode 74 are laminated via a rectangular separator 75 and fixed by a fixing member 76.
  • the gel electrolyte layer is provided in contact with the positive electrode 73 and the negative electrode 74.
  • a gel electrolyte layer (not shown) is provided between the positive electrode 73 and the separator 75 and between the negative electrode 74 and the separator 75. This gel electrolyte layer is the same as the gel electrolyte layer 56 of the first configuration example.
  • a positive electrode lead 71 connected to the positive electrode 73 and a negative electrode lead 72 connected to the negative electrode 74 are led out from the laminated electrode body 70, and the positive electrode lead 71, the negative electrode lead 72, and the exterior member 60 are in close contact with each other.
  • a film 61 is provided.
  • the formation method of the gel electrolyte layer and the heat fusion method of the exterior member 60 are the same as those in the first configuration example.
  • This nonaqueous electrolyte battery is, for example, a nonaqueous electrolyte secondary battery that can be charged and discharged, and is, for example, a lithium ion secondary battery.
  • the battery according to the fourth embodiment is an electrode with a particle-containing resin layer similar to that of the second embodiment, in which a battery using a matrix polymer compound is incorporated as the resin of the particle-containing resin layer. Yes.
  • the separator 55 is the same as the separator substrate 11a, and the gel electrolyte layer 56 corresponds to the particle-containing resin layer 11b containing the electrolytic solution formed on the electrode.
  • the first configuration example of the nonaqueous electrolyte battery 62 according to the fourth embodiment is the same as that of the third embodiment shown in FIGS. 3 and 4 except for the points described below. This is the same as the first configuration example of the nonaqueous electrolyte battery 63. That is, the non-aqueous electrolyte battery 62 does not incorporate the one having the particle-containing resin layer formed on the surface of the separator 55 (the separator according to the first embodiment) as in the third embodiment. Instead, an electrode with a particle-containing resin layer similar to that of the second embodiment, in which a matrix polymer compound is used as the resin of the particle-containing resin layer, is incorporated.
  • the gel electrolyte layer 56 is formed because the particle
  • the gel electrolyte layer 56 includes particles as a filler, a matrix polymer compound (resin), and a nonaqueous electrolytic solution (electrolytic solution), and is formed on the main surfaces of at least one of the positive electrode 53 and the negative electrode 54.
  • the particle-containing resin layer is formed by containing an electrolytic solution.
  • the particle-containing resin layer formed on both main surfaces of at least one of the positive electrode 53 and the negative electrode 54 is, for example, a matrix polymer compound that absorbs the electrolyte and swells to form a so-called gel.
  • the absorbed gel-like matrix polymer itself becomes a gel electrolyte layer 56 that functions as an ionic conductor.
  • the porous structure of the particle-containing resin layer may disappear due to swelling of the matrix polymer compound. Since the gel electrolyte layer 56 contains particles, the strength, heat resistance, and oxidation resistance of the gel electrolyte layer 56 are improved, and characteristics such as safety can be improved.
  • this nonaqueous electrolyte battery 62 contains particles after, for example, the same positive electrode preparation step and negative electrode preparation step as those in the third embodiment.
  • an electrode with a particle-containing resin layer (positive electrode) in which a particle-containing resin layer is formed on both main surfaces of the positive electrode 53 and an electrode with a particle-containing resin layer in which a particle-containing resin layer is formed on both main surfaces of the negative electrode 54 (Negative electrode) is prepared. Only one of the positive electrode and the negative electrode may be an electrode with a particle-containing resin layer.
  • the method for forming the particle-containing resin layer is the same as in the second embodiment.
  • the exterior member 60 made of a laminate film is deep-drawn to form a recess, the wound electrode body 50 is inserted into the recess, the unprocessed portion of the exterior member 60 is folded back to the upper portion of the recess, and the outer periphery of the recess Heat welding is performed except for a part (for example, one side).
  • an adhesion film 61 is inserted between the positive electrode lead 51 and the negative electrode lead 52 and the exterior member 60.
  • the unwelded portion of the exterior member 60 is sealed by heat fusion or the like.
  • the non-aqueous electrolyte solution is impregnated into the particle-containing resin layer, and the matrix polymer compound (resin) absorbs the non-aqueous electrolyte solution and swells to form the gel electrolyte layer 56. .
  • the nonaqueous electrolyte battery 62 shown in FIGS. 3 and 4 is completed.
  • the laminated electrode body 70 uses a laminated electrode body 70 in which a rectangular positive electrode 73 and a rectangular negative electrode 74 are laminated via a rectangular separator 75 and fixed by a fixing member 76.
  • the gel electrolyte layer is provided in contact with the positive electrode 73 and the negative electrode 74.
  • a gel electrolyte layer (not shown) is provided between the positive electrode 73 and the separator 75 and between the negative electrode 74 and the separator 75. This gel electrolyte layer is the same as the gel electrolyte layer 56 of the first configuration example.
  • a positive electrode lead 71 connected to the positive electrode 73 and a negative electrode lead 72 connected to the negative electrode 74 are led out from the laminated electrode body 70, and the positive electrode lead 71, the negative electrode lead 72, and the exterior member 60 are in close contact with each other.
  • a film 61 is provided.
  • the formation method of the gel electrolyte layer and the heat fusion method of the exterior member 60 are the same as those in the first configuration example.
  • the battery according to the fifth embodiment is the same separator as in the first embodiment, and incorporates a binder polymer compound as the resin of the particle-containing resin layer.
  • FIG. 6 is a cross-sectional view showing an example of a nonaqueous electrolyte battery according to the fifth embodiment.
  • the nonaqueous electrolyte battery 80 is a nonaqueous electrolyte secondary battery that can be charged and discharged, for example.
  • This non-aqueous electrolyte battery 80 is a so-called cylindrical type, and is formed in a substantially hollow cylindrical battery can 81 together with a liquid non-aqueous electrolyte (not shown) (hereinafter appropriately referred to as a non-aqueous electrolyte) in a strip shape.
  • the positive electrode 91 and the negative electrode 92 have a wound electrode body 90 wound with a separator 93 interposed therebetween.
  • the battery can 81 is made of, for example, iron plated with nickel, and has one end closed and the other end open. Inside the battery can 81, a pair of insulating plates 82a and 82b are respectively arranged perpendicular to the winding peripheral surface so as to sandwich the winding electrode body 90 therebetween.
  • Examples of the material of the battery can 81 include iron (Fe), nickel (Ni), stainless steel (SUS), aluminum (Al), titanium (Ti), and the like.
  • the battery can 81 may be plated with, for example, nickel in order to prevent corrosion due to the electrochemical non-aqueous electrolyte associated with charging / discharging of the non-aqueous electrolyte battery 10.
  • a battery lid 83 that is a positive electrode lead plate and a safety valve mechanism and a heat-sensitive resistance element (PTC element: Positive Temperature Coefficient) 87 provided inside the battery lid 83 are provided at the open end of the battery can 81 with an insulating seal. It is attached by caulking through a gasket 88 for
  • the battery lid 83 is made of the same material as the battery can 81, for example, and is provided with an opening for discharging gas generated inside the battery.
  • a safety valve 84, a disc holder 85, and a shut-off disc 86 are sequentially stacked.
  • the protruding portion 84a of the safety valve 84 is connected to the positive electrode lead 95 led out from the wound electrode body 90 through a sub disk 89 disposed so as to cover a hole 86a provided at the center of the shutoff disk 86. .
  • the safety valve mechanism is electrically connected to the battery lid 83 via the heat sensitive resistance element 87.
  • the safety valve mechanism when the internal pressure of the nonaqueous electrolyte battery 80 becomes a certain level or more due to internal short circuit or heating from the outside of the battery, the safety valve 84 is reversed, and the protrusion 84a, the battery lid 83, and the wound electrode body 90 are reversed. The electrical connection with is disconnected. That is, when the safety valve 84 is reversed, the positive electrode lead 95 is pressed by the shut-off disk 86 and the connection between the safety valve 84 and the positive electrode lead 95 is released.
  • the disc holder 85 is made of an insulating material, and when the safety valve 84 is reversed, the safety valve 84 and the shut-off disc 86 are insulated.
  • a plurality of gas vent holes are provided around the hole 86a of the shut-off disk 86.
  • gas vent holes are provided around the hole 86a of the shut-off disk 86.
  • the heat sensitive resistance element 87 increases in resistance value when the temperature rises, interrupts the current by disconnecting the electrical connection between the battery lid 83 and the wound electrode body 90, and generates abnormal heat due to an excessive current.
  • the gasket 88 is made of, for example, an insulating material, and asphalt is applied to the surface.
  • the wound electrode body 20 accommodated in the nonaqueous electrolyte battery 80 is wound around the center pin 94.
  • the wound electrode body 90 is formed by sequentially laminating a positive electrode 91 and a negative electrode 92 with a separator 93 interposed therebetween and wound in the longitudinal direction.
  • a positive electrode lead 95 is connected to the positive electrode 91, and a negative electrode lead 96 is connected to the negative electrode 92.
  • the positive electrode lead 95 is welded to the safety valve 84 and electrically connected to the battery lid 83, and the negative electrode lead 96 is welded to and electrically connected to the battery can 81.
  • FIG. 7 shows an enlarged part of the spirally wound electrode body 90 shown in FIG.
  • the positive electrode 91, the negative electrode 92, and the separator 93 will be described in detail.
  • a positive electrode active material layer 91B containing a positive electrode active material is formed on both surfaces of the positive electrode current collector 91A.
  • a metal foil such as an aluminum (Al) foil, a nickel (Ni) foil, or a stainless steel (SUS) foil can be used.
  • the positive electrode active material layer 91 ⁇ / b> B is configured to include any one or more of positive electrode materials capable of inserting and extracting lithium as a positive electrode active material. Or other materials such as a conductive agent.
  • the positive electrode active material, the conductive agent, and the binder can be the same as those in the third embodiment.
  • the positive electrode 91 has a positive electrode lead 95 connected to one end of the positive electrode current collector 91A by spot welding or ultrasonic welding.
  • the positive electrode lead 95 is preferably a metal foil or a mesh-like one, but there is no problem even if it is not a metal as long as it is electrochemically and chemically stable and can conduct electricity. Examples of the material of the positive electrode lead 95 include aluminum (Al) and nickel (Ni).
  • the negative electrode 92 has, for example, a structure in which a negative electrode active material layer 92B is provided on both surfaces of a negative electrode current collector 92A having a pair of opposed surfaces. Although not shown, the negative electrode active material layer 92B may be provided only on one surface of the negative electrode current collector 92A.
  • the negative electrode current collector 92A is made of, for example, a metal foil such as a copper foil.
  • the negative electrode active material layer 92B includes one or more negative electrode materials capable of occluding and releasing lithium as the negative electrode active material, and the positive electrode active material layer 91B as necessary. Other materials such as a binder and a conductive agent similar to those described above may be included.
  • the negative electrode active material, the conductive agent, and the binder can be the same as those in the third embodiment.
  • the separator 93 is the same as the separator 11 according to the first embodiment. That is, as shown in FIG. 7, the particle-containing resin layer 93b is formed on both main surfaces of the separator base material 93a. The particle-containing resin layer 93b may be formed only on one main surface of the separator base material 93a. The particle-containing resin layer 93b improves the strength, heat resistance, and oxidation resistance of the separator 93, and improves safety and other characteristics. As the resin contained in the particle-containing resin layer 93b, typically, a binder polymer compound is used. The separator 93 is impregnated with a non-aqueous electrolyte.
  • the particle-containing resin layer 93b is, for example, interposed between the positive electrode 91 and the negative electrode 92 together with the separator base material 93a to prevent contact between the bipolar active materials, and in the same way as the separator base material 93a, electrolysis is performed in the micropores. The liquid is held to form an ion conduction path between the electrodes.
  • Non-aqueous electrolyte The non-aqueous electrolyte is the same as in the third embodiment.
  • the particle-containing resin layer 93b is formed on at least one main surface of the separator substrate 93a to produce the separator 93.
  • the nonaqueous electrolytic solution is prepared by dissolving an electrolyte salt in a nonaqueous solvent.
  • a positive electrode lead 95 is attached to the positive electrode current collector 91A by welding or the like, and a negative electrode lead 96 is attached to the negative electrode current collector 92A by welding or the like. Thereafter, the positive electrode 91 and the negative electrode 92 are wound through a separator 93 of the present technology to form a wound electrode body 90.
  • the tip of the positive electrode lead 95 is welded to the safety valve mechanism, and the tip of the negative electrode lead 96 is welded to the battery can 81. Thereafter, the wound surface of the wound electrode body 90 is sandwiched between the pair of insulating plates 82 a and 82 b and housed in the battery can 81.
  • a non-aqueous electrolyte is injected into the battery can 81 and impregnated in the separator 93.
  • the safety valve mechanism including the battery lid 83 and the safety valve 84 and the heat sensitive resistance element 87 are fixed to the opening end of the battery can 81 by caulking through the gasket 88. Thereby, the nonaqueous electrolyte battery 80 of this technique shown in FIG. 6 is formed.
  • the nonaqueous electrolyte battery 80 when charged, for example, lithium ions are released from the positive electrode active material layer 91B, and the nonaqueous electrolyte solution impregnated in the separator 93 (the separator base material 93a and the particle-containing resin layer 93b) is used. And occluded in the negative electrode active material layer 92B. Further, when the discharge is performed, for example, lithium ions are released from the negative electrode active material layer 92B, and the positive electrode active material layer is passed through the nonaqueous electrolytic solution impregnated in the separator 93 (the separator base material 93a and the particle-containing resin layer 93b). It is occluded by 91B.
  • a cylindrical nonaqueous electrolyte battery will be described.
  • the battery according to the sixth embodiment is an electrode with a particle-containing resin layer similar to that of the second embodiment, and incorporates a battery using a binder polymer compound as the resin of the particle-containing resin layer.
  • each of the particle-containing resin layer 91C and the particle-containing resin layer 92C is interposed between the positive electrode 91 and the negative electrode 92 together with the separator 93.
  • the electrolytic solution is held in the micropore to form an ion conduction path between the electrodes.
  • the particle-containing resin layers 91C and 92C can reinforce the strength, heat resistance, and oxidation resistance of the separator 93, and can improve characteristics such as safety.
  • the separator 93 typically has a configuration similar to that of the separator base material 93a.
  • the separator 93 you may use the separator (Separator base material 93a and particle-containing resin layer 93b) similar to 5th Embodiment.
  • the configuration other than the above is the same as that of the fifth embodiment.
  • an electrode with a particle-containing resin layer (positive electrode) provided with a particle-containing resin layer 91C on one main surface of the positive electrode 91, and a particle-containing resin layer provided with at least one main surface of the negative electrode 92 with a particle-containing resin layer 92C.
  • the electrode with the particle-containing resin layer 91C provided on both main surfaces of the positive electrode 91 and the particle-containing resin layer 92C with one main electrode of the negative electrode 92 may be configured. It is good also as a structure with which the electrode with a particle-containing resin layer provided in the surface was incorporated.
  • Nonaqueous electrolyte battery manufacturing method Similarly to the second embodiment, a positive electrode with a particle-containing resin layer is produced. That is, the positive electrode 91 is produced as in the fifth embodiment. Next, a paint (particle-containing resin solution) is applied to both main surfaces or one main surface of the positive electrode 91 to form a particle-containing resin solution layer. Thereafter, the particle-containing resin layer 91C is formed by drying the particle-containing resin solution layer.
  • a negative electrode with a particle-containing resin layer is produced. Similar to the fifth embodiment, the negative electrode 92 is produced. Next, a paint (particle-containing resin solution) is applied to both main surfaces or one main surface of the negative electrode 92 to form a particle-containing resin solution layer. Thereafter, the particle-containing resin layer 92C is formed by drying the particle-containing resin solution layer.
  • the separator 93 has the same configuration as that of the separator base material 93a.
  • the nonaqueous electrolytic solution is prepared by dissolving an electrolyte salt in a nonaqueous solvent.
  • a positive electrode lead 95 is attached to the positive electrode current collector 91A by welding or the like, and a negative electrode lead 96 is attached to the negative electrode current collector 92A by welding or the like. Thereafter, the positive electrode 91 with a particle-containing resin layer and the negative electrode 92 with a particle-containing resin layer are wound through a separator 93 to obtain a wound electrode body 90.
  • the tip of the positive electrode lead 95 is welded to the safety valve mechanism, and the tip of the negative electrode lead 96 is welded to the battery can 81.
  • the wound surface of the wound electrode body 90 is sandwiched between the pair of insulating plates 82 a and 82 b and stored in the battery can 81.
  • a non-aqueous electrolyte is injected into the battery can 81 and impregnated in the separator 93, the particle-containing resin layer 91C, and the particle-containing resin layer 92C.
  • the safety valve mechanism including the battery lid 83 and the safety valve 84 and the heat sensitive resistance element 87 are fixed to the opening end of the battery can 81 by caulking through the gasket 88. Thereby, the nonaqueous electrolyte battery 80 of this technique shown in FIG. 6 is formed.
  • the particle-containing resin layer 91C, and the particle-containing resin layer 92C is used. And occluded in the negative electrode active material layer 92B. Further, when discharged, for example, lithium ions are released from the negative electrode active material layer 92B, and the positive electrode active material layer is interposed via the separator 93, the particle-containing resin layer 91C, and the non-aqueous electrolyte impregnated in the particle-containing resin layer 92C. It is occluded by 91B.
  • the battery according to the seventh embodiment is the same separator as in the first embodiment, and incorporates a binder polymer compound as the resin of the particle-containing resin layer.
  • FIG. 9 shows the configuration of a nonaqueous electrolyte battery 100 according to the seventh embodiment.
  • This non-aqueous electrolyte battery is a so-called square battery, in which the wound electrode body 120 is accommodated in a square outer can 111.
  • the nonaqueous electrolyte battery 100 includes a rectangular tube-shaped outer can 111, a wound electrode body 120 that is a power generation element housed in the outer can 111, a battery lid 112 that closes an opening of the outer can 111, a battery
  • the electrode pin 113 and the like provided in the approximate center of the lid 112 are configured.
  • the outer can 111 is formed, for example, as a hollow, bottomed rectangular tube with a conductive metal such as iron (Fe).
  • the inner surface of the outer can 111 is preferably configured to increase the conductivity of the outer can 111 by, for example, applying nickel plating or applying a conductive paint.
  • the outer peripheral surface of the outer can 111 may be covered with an outer label formed of, for example, a plastic sheet or paper, or may be protected by applying an insulating paint.
  • the battery lid 112 is formed of a conductive metal such as iron (Fe), for example, like the outer can 111.
  • the wound electrode body 120 is obtained by laminating a positive electrode and a negative electrode with a separator interposed between them and winding them in an oval shape. Since the positive electrode, the negative electrode, the separator, and the nonaqueous electrolytic solution are the same as those in the fifth embodiment, detailed description thereof is omitted.
  • the wound electrode body 120 having such a configuration is provided with a number of positive terminals 121 connected to the positive current collector and a number of negative terminals connected to the negative current collector. All the positive terminals 121 and the negative terminals are led to one end of the spirally wound electrode body 120 in the axial direction.
  • the positive terminal 121 is connected to the lower end of the electrode pin 113 by fixing means such as welding.
  • the negative electrode terminal is connected to the inner surface of the outer can 111 by fixing means such as welding.
  • the electrode pin 113 is made of a conductive shaft member, and is held by an insulator 114 with its head protruding to the upper end.
  • the electrode pin 113 is fixed to a substantially central portion of the battery lid 112 through the insulator 114.
  • the insulator 114 is made of a highly insulating material and is fitted into a through hole 115 provided on the surface side of the battery lid 112. Further, the electrode pin 113 is penetrated through the through hole 115, and the tip end portion of the positive electrode terminal 121 is fixed to the lower end surface thereof.
  • the battery lid 112 provided with such electrode pins 113 and the like is fitted in the opening of the outer can 111, and the contact surface between the outer can 111 and the battery lid 112 is joined by a fixing means such as welding. Yes. Thereby, the opening part of the armored can 111 is sealed by the battery cover 112, and is comprised airtight and liquid-tight.
  • the battery lid 112 is provided with an internal pressure release mechanism 116 that breaks a part of the battery lid 112 to release (release) the internal pressure to the outside when the pressure in the outer can 111 rises to a predetermined value or more. ing.
  • the internal pressure release mechanism 116 has two first opening grooves 116a (one first opening groove 116a not shown) linearly extending in the longitudinal direction on the inner surface of the battery lid 112, and the same as the battery.
  • the inner surface of the lid 32 includes a second opening groove 116b extending in the width direction orthogonal to the longitudinal direction and having both ends communicating with the two first opening grooves 116a.
  • the two first opening grooves 116a are provided in parallel to each other so as to be along the outer edge of the battery lid 112 in the vicinity of the inner side of the two long sides positioned so as to face the width direction of the battery lid 32.
  • the second opening groove 116 b is provided so as to be positioned at a substantially central portion between one short side outer edge and the electrode pin 113 on one side in the longitudinal direction of the electrode pin 113.
  • the first opening groove 116a and the second opening groove 116b are, for example, both V-shaped with a cross-sectional shape opened to the lower surface side. Note that the shapes of the first opening groove 116a and the second opening groove 116b are not limited to the V-shape shown in this embodiment. For example, the shapes of the first opening groove 116a and the second opening groove 116b may be U-shaped or semicircular.
  • the electrolyte injection port 117 is provided so as to penetrate the battery lid 112.
  • the electrolyte injection port 117 is used to inject the non-aqueous electrolyte after the battery lid 112 and the outer can 111 are caulked, and is sealed by the sealing member 118 after the non-aqueous electrolyte is injected.
  • the electrolyte solution inlet 117 and the sealing member 118 may not be provided.
  • the separator is the same separator as in the first embodiment, and uses a binder polymer compound as the resin of the particle-containing resin layer.
  • Non-aqueous electrolyte The non-aqueous electrolyte is the same as in the third embodiment.
  • This nonaqueous electrolyte battery can be manufactured, for example, as follows.
  • the positive electrode and the negative electrode can be produced by the same method as in the fifth embodiment.
  • a positive electrode, a negative electrode, and a separator (having a particle-containing resin layer formed on at least one surface of a base material) are sequentially laminated and wound to produce a wound electrode body 120 that is wound in an oblong shape. Subsequently, the wound electrode body 120 is accommodated in the outer can 111.
  • the electrode pin 113 provided on the battery lid 112 and the positive electrode terminal 121 led out from the wound electrode body 120 are connected.
  • the negative electrode terminal led out from the wound electrode body 120 and the battery can are connected.
  • the outer can 111 and the battery lid 112 are fitted, and for example, a non-aqueous electrolyte is injected from the electrolyte injection port 117 under reduced pressure, and the sealing member 118 is sealed. As described above, the nonaqueous electrolyte battery 100 can be obtained.
  • the battery according to the eighth embodiment is an electrode with a particle-containing resin layer similar to that of the second embodiment, and a battery using a binder polymer compound is incorporated as the resin of the particle-containing resin layer.
  • the separator may have a configuration similar to that of the separator substrate 11a on which the particle-containing resin layer is not formed. Except for the above, this embodiment is the same as the seventh embodiment.
  • a battery pack of a laminate film type battery (nonaqueous electrolyte battery) provided with the same gel electrolyte layer as in the third embodiment or the fourth embodiment.
  • a laminate film type battery nonaqueous electrolyte battery
  • This battery pack is a simple battery pack (also referred to as a soft pack).
  • a simple battery pack is built in an electronic device such as a smartphone.
  • the battery cell, protection circuit, etc. are fixed with insulating tape, and a part of the battery cell is exposed.
  • An output of a connector or the like connected to is provided.
  • FIG. 10 is an exploded perspective view showing a configuration example of a simplified battery pack.
  • FIG. 11A is a schematic perspective view showing the appearance of a simple battery pack, and
  • FIG. 11B is a schematic perspective view showing the appearance of the simple battery pack.
  • the simplified battery pack includes a battery cell 131, leads 132a and 132b led out from the battery cell 131, insulating tapes 133a to 133c, an insulating plate 134, A circuit board 135 on which a protection circuit (PCM (Protection Circuit Module)) is formed and a connector 136 are provided.
  • the battery cell 131 is the same as the nonaqueous electrolyte secondary battery according to the third or fourth embodiment, for example.
  • the insulating plate 134 and the circuit board 135 are disposed on the terrace portion 131 a at the front end of the battery cell 131, and the leads 132 a and the leads 132 b led out from the battery cell 131 are connected to the circuit board 135.
  • a connector 136 for output is connected to the circuit board 135.
  • Members such as the battery cell 131, the insulating plate 134, and the circuit board 135 are fixed by sticking insulating tapes 133a to 133c at predetermined positions.
  • FIG. 12 is a block diagram showing a circuit configuration example when the batteries according to the third to eighth embodiments of the present technology (hereinafter appropriately referred to as secondary batteries) are applied to the battery pack.
  • the battery pack includes a switch unit 304 including an assembled battery 301, an exterior, a charge control switch 302a, and a discharge control switch 303a, a current detection resistor 307, a temperature detection element 308, and a control unit 310.
  • the battery pack includes a positive electrode terminal 321 and a negative electrode lead 322, and at the time of charging, the positive electrode terminal 321 and the negative electrode lead 322 are connected to the positive electrode terminal and the negative electrode terminal of the charger, respectively, and charging is performed. Further, when the electronic device is used, the positive electrode terminal 321 and the negative electrode lead 322 are connected to the positive electrode terminal and the negative electrode terminal of the electronic device, respectively, and discharge is performed.
  • the assembled battery 301 is formed by connecting a plurality of secondary batteries 301a in series and / or in parallel.
  • the secondary battery 301a is a secondary battery of the present technology.
  • 2P3S 2 parallel 3 series
  • n parallel m series n and m are integers. Any connection method may be used.
  • the switch unit 304 includes a charge control switch 302a and a diode 302b, and a discharge control switch 303a and a diode 303b, and is controlled by the control unit 310.
  • the diode 302b has a reverse polarity with respect to the charging current flowing from the positive electrode terminal 321 in the direction of the assembled battery 301 and the forward polarity with respect to the discharging current flowing from the negative electrode lead 322 in the direction of the assembled battery 301.
  • the diode 303b has a forward polarity with respect to the charging current and a reverse polarity with respect to the discharging current.
  • the switch unit 304 is provided on the + side, but may be provided on the-side.
  • the charge control switch 302a is turned off when the battery voltage becomes the overcharge detection voltage, and is controlled by the charge / discharge control unit so that the charge current does not flow in the current path of the assembled battery 301. After the charging control switch 302a is turned off, only discharging is possible via the diode 302b. Further, it is turned off when a large current flows during charging, and is controlled by the control unit 310 so that the charging current flowing in the current path of the assembled battery 301 is cut off.
  • the discharge control switch 303 a is turned off when the battery voltage becomes the overdischarge detection voltage, and is controlled by the control unit 310 so that the discharge current does not flow in the current path of the assembled battery 301. After the discharge control switch 303a is turned off, only charging is possible via the diode 303b. Further, it is turned off when a large current flows during discharging, and is controlled by the control unit 310 so as to cut off the discharging current flowing in the current path of the assembled battery 301.
  • the temperature detection element 308 is, for example, a thermistor, is provided in the vicinity of the assembled battery 301, measures the temperature of the assembled battery 301, and supplies the measured temperature to the control unit 310.
  • the voltage detection unit 311 measures the voltage of the assembled battery 301 and each secondary battery 301a constituting the assembled battery 301, performs A / D conversion on the measured voltage, and supplies it to the control unit 310.
  • the current measurement unit 313 measures the current using the current detection resistor 307 and supplies this measurement current to the control unit 310.
  • the switch control unit 314 controls the charge control switch 302a and the discharge control switch 303a of the switch unit 304 based on the voltage and current input from the voltage detection unit 311 and the current measurement unit 313.
  • the switch control unit 314 sends a control signal to the switch unit 304 when any voltage of the secondary battery 301a falls below the overcharge detection voltage or overdischarge detection voltage, or when a large current flows suddenly. By sending, overcharge, overdischarge, and overcurrent charge / discharge are prevented.
  • the overcharge detection voltage is determined to be 4.20 V ⁇ 0.05 V, for example, and the overdischarge detection voltage is determined to be 2.4 V ⁇ 0.1 V, for example. .
  • the charge / discharge switch for example, a semiconductor switch such as a MOSFET can be used.
  • the parasitic diode of the MOSFET functions as the diodes 302b and 303b.
  • the switch control unit 314 supplies control signals DO and CO to the gates of the charge control switch 302a and the discharge control switch 303a, respectively.
  • the charge control switch 302a and the discharge control switch 303a are P-channel type, they are turned on by a gate potential that is lower than the source potential by a predetermined value or more. That is, in normal charging and discharging operations, the control signals CO and DO are set to the low level, and the charging control switch 302a and the discharging control switch 303a are turned on.
  • control signals CO and DO are set to the high level, and the charge control switch 302a and the discharge control switch 303a are turned off.
  • the memory 317 includes a RAM and a ROM, and includes, for example, an EPROM (Erasable Programmable Read Only Memory) that is a nonvolatile memory.
  • EPROM Erasable Programmable Read Only Memory
  • the numerical value calculated by the control unit 310, the internal resistance value of the battery in the initial state of each secondary battery 301a measured in the manufacturing process, and the like are stored in advance, and can be appropriately rewritten. . (Also, by storing the full charge capacity of the secondary battery 301a, for example, the remaining capacity can be calculated together with the control unit 310.
  • the temperature detection unit 318 measures the temperature using the temperature detection element 308, performs charge / discharge control at the time of abnormal heat generation, and performs correction in the calculation of the remaining capacity.
  • the batteries according to the third to eighth embodiments and the battery packs according to the ninth to tenth embodiments of the present technology described above are, for example, devices such as electronic devices, electric vehicles, and power storage devices. Can be used to mount or power.
  • Examples of electronic devices include notebook computers, PDAs (personal digital assistants), mobile phones, cordless phones, video movies, digital still cameras, electronic books, electronic dictionaries, music players, radios, headphones, game consoles, navigation systems, Memory card, pacemaker, hearing aid, electric tool, electric shaver, refrigerator, air conditioner, TV, stereo, water heater, microwave oven, dishwasher, washing machine, dryer, lighting equipment, toys, medical equipment, robots, road conditioners, traffic lights Etc.
  • examples of the electric vehicle include a railway vehicle, a golf cart, an electric cart, an electric vehicle (including a hybrid vehicle), and the like, and these are used as a driving power source or an auxiliary power source.
  • Examples of power storage devices include power storage power supplies for buildings such as houses or power generation facilities.
  • the first power storage system is a power storage system in which a power storage device is charged by a power generation device that generates power from renewable energy.
  • the second power storage system is a power storage system that includes a power storage device and supplies power to an electronic device connected to the power storage device.
  • the third power storage system is an electronic device that receives power supply from the power storage device.
  • the fourth power storage system includes an electric vehicle having a conversion device that receives power supplied from the power storage device and converts the power into a driving force of the vehicle, and a control device that performs information processing related to vehicle control based on information related to the power storage device. It is.
  • the fifth power storage system is a power system that includes a power information transmission / reception unit that transmits / receives signals to / from other devices via a network, and performs charge / discharge control of the power storage device described above based on information received by the transmission / reception unit.
  • the sixth power storage system is a power system that receives power from the power storage device described above or supplies power from the power generation device or the power network to the power storage device.
  • the power storage system will be described.
  • FIG. 4 (11-1) Residential Power Storage System as an Application Example An example in which a power storage device using a battery of the present technology is applied to a residential power storage system will be described with reference to FIG.
  • a power storage system 400 for a house 401 power is stored from a centralized power system 402 such as a thermal power generation 402a, a nuclear power generation 402b, and a hydroelectric power generation 402c through a power network 409, an information network 412, a smart meter 407, a power hub 408, and the like. Supplied to the device 403.
  • power is supplied to the power storage device 403 from an independent power source such as the power generation device 404 in the home.
  • the electric power supplied to the power storage device 403 is stored. Electric power used in the house 401 is supplied using the power storage device 403.
  • the same power storage system can be used not only for the house 401 but also for buildings.
  • the house 401 is provided with a power generation device 404, a power consumption device 405, a power storage device 403, a control device 410 that controls each device, a smart meter 407, and a sensor 411 that acquires various types of information.
  • Each device is connected by a power network 409 and an information network 412.
  • a solar cell, a fuel cell, or the like is used as the power generation device 404, and the generated power is supplied to the power consumption device 405 and / or the power storage device 403.
  • the power consuming device 405 is a refrigerator 405a, an air conditioner 405b, a television receiver 405c, a bath 405d, and the like.
  • the electric power consumption device 405 includes an electric vehicle 406.
  • the electric vehicle 406 is an electric vehicle 406a, a hybrid car 406b, and an electric motorcycle 406c.
  • the battery of the present technology is applied to the power storage device 403.
  • the battery of the present technology may be configured by, for example, the above-described lithium ion secondary battery.
  • the smart meter 407 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company.
  • the power network 409 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
  • the various sensors 411 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by various sensors 411 is transmitted to the control device 410. Based on the information from the sensor 411, the weather condition, the condition of the person, and the like can be grasped, and the power consumption device 405 can be automatically controlled to minimize the energy consumption. Furthermore, the control apparatus 410 can transmit the information regarding the house 401 to an external electric power company etc. via the internet.
  • the power hub 408 performs processing such as branching of power lines and DC / AC conversion.
  • Communication methods of the information network 412 connected to the control device 410 include a method using a communication interface such as UART (Universal Asynchronous Receiver-Transceiver), wireless communication such as Bluetooth, ZigBee, Wi-Fi, etc.
  • a communication interface such as UART (Universal Asynchronous Receiver-Transceiver), wireless communication such as Bluetooth, ZigBee, Wi-Fi, etc.
  • Bluetooth method is applied to multimedia communication and can perform one-to-many connection communication.
  • ZigBee uses the physical layer of IEEE (Institute of Electrical and Electronics Electronics) (802.15.4).
  • IEEE802.15.4 is a name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
  • the control device 410 is connected to an external server 413.
  • the server 413 may be managed by any one of the house 401, the power company, and the service provider.
  • the information transmitted and received by the server 413 is, for example, information related to power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device (for example, a television receiver) in the home, or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, for example, a television receiver, a mobile phone, a PDA (Personal Digital Assistant) or the like.
  • the control device 410 that controls each unit includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and is stored in the power storage device 403 in this example.
  • the control device 410 is connected to the power storage device 403, the domestic power generation device 404, the power consumption device 405, various sensors 411, the server 413 and the information network 412, and adjusts, for example, the amount of commercial power used and the amount of power generation It has a function to do. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
  • the power generation device 404 (solar power generation, wind power generation) in the home is used as the power storage device 403. Can be stored. Therefore, even if the generated power of the power generation device 404 in the home fluctuates, it is possible to perform control such that the amount of power transmitted to the outside is constant or discharge is performed as necessary. For example, the power obtained by solar power generation is stored in the power storage device 403, and the nighttime power at a low charge is stored in the power storage device 403 at night, and the power stored by the power storage device 403 is discharged during a high daytime charge. You can also use it.
  • control device 410 is stored in the power storage device 403 .
  • control device 410 may be stored in the smart meter 407 or may be configured independently.
  • the power storage system 400 may be used for a plurality of homes in an apartment house, or may be used for a plurality of detached houses.
  • FIG. 14 schematically shows an example of the configuration of a hybrid vehicle that employs a series hybrid system to which the present technology is applied.
  • a series hybrid system is a car that runs on an electric power driving force conversion device using electric power generated by a generator driven by an engine or electric power once stored in a battery.
  • the hybrid vehicle 500 includes an engine 501, a generator 502, a power driving force conversion device 503, driving wheels 504 a, driving wheels 504 b, wheels 505 a, wheels 505 b, a battery 508, a vehicle control device 509, various sensors 510, and a charging port 511. Is installed.
  • the battery of the present technology described above is applied to the battery 508.
  • Hybrid vehicle 500 travels using power driving force conversion device 503 as a power source.
  • An example of the power / driving force conversion device 503 is a motor.
  • the electric power / driving force converter 503 is operated by the electric power of the battery 508, and the rotational force of the electric power / driving force converter 503 is transmitted to the driving wheels 504a and 504b.
  • DC-AC DC-AC
  • AC-DC conversion AC-DC conversion
  • the power driving force converter 503 can be applied to either an AC motor or a DC motor.
  • the various sensors 510 control the engine speed through the vehicle control device 509 and control the opening (throttle opening) of a throttle valve (not shown).
  • Various sensors 510 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the rotational force of the engine 501 is transmitted to the generator 502, and the electric power generated by the generator 502 by the rotational force can be stored in the battery 508.
  • the resistance force at the time of deceleration is applied as a rotational force to the electric power driving force conversion device 503, and the regenerative electric power generated by the electric power driving force conversion device 503 by this rotational force becomes the battery 508. Accumulated in.
  • the battery 508 is connected to an external power source of the hybrid vehicle 500, so that it can receive power from the external power source using the charging port 511 as an input port and store the received power.
  • an information processing device that performs information processing related to vehicle control based on information related to the secondary battery may be provided.
  • an information processing apparatus for example, there is an information processing apparatus that displays a battery remaining amount based on information on the remaining amount of the battery.
  • the present technology is also effective for a parallel hybrid vehicle in which the engine and motor outputs are both driving sources, and the system is switched between the three modes of driving with only the engine, driving with the motor, and engine and motor. Applicable. Furthermore, the present technology can be effectively applied to a so-called electric vehicle that travels only by a drive motor without using an engine.
  • Example 1-1 [Production of positive electrode] A positive electrode mixture obtained by mixing 91% by mass of lithium cobaltate (LiCoO 2 ) as a positive electrode active material, 6% by mass of carbon black as a conductive agent, and 3% by mass of polyvinylidene fluoride (PVdF) as a binder.
  • the positive electrode mixture was dispersed in N-methyl-2-pyrrolidone (NMP) as a dispersion medium to obtain a positive electrode mixture slurry.
  • NMP N-methyl-2-pyrrolidone
  • This positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of a strip-shaped aluminum foil having a thickness of 12 ⁇ m so that a part of the positive electrode current collector was exposed.
  • the dispersion medium of the applied positive electrode mixture slurry was evaporated and dried, and compression-molded with a roll press to form a positive electrode active material layer.
  • the positive electrode terminal was attached to the exposed portion of the positive electrode current collector to form the positive electrode.
  • coated negative mix slurry was evaporated and dried, and the negative electrode active material layer was formed by compression molding with a roll press. Finally, the negative electrode terminal was attached to the exposed portion of the positive electrode current collector to form a negative electrode.
  • a 9 ⁇ m-thick polyethylene (PE) microporous film (polyethylene separator) was used as the substrate.
  • a coating material was applied to both surfaces of the substrate as described below to form a particle-containing resin solution layer (coating film), and then dried to form a particle-containing resin layer.
  • boehmite particles as a filler particle diameter D50: 1000 nm, refractive index 1.7, flat particles (plate-like particles)
  • matrix polymer compound (resin) vinylidene fluoride and hexafluoropropylene The polymer (PVdF-HFP, refractive index 1.4) was dispersed in N-methyl-2-pyrrolidone (NMP, refractive index 1.2) to prepare a paint (particle-containing resin solution). At this time, the amount of each material was adjusted so that the solid content (boehmite particles and PVdF-HFP) was 20% by mass with respect to the total amount of the coating material.
  • the content of boehmite particles is 10% by mass with respect to the total amount of paint
  • the content of PVdF-HFP is 10% by mass with respect to the total amount of paint
  • the content of NMP is with respect to the total amount of paint. 80% by mass.
  • the mass ratio (particle / resin) between boehmite particles and PVdF-HFP is 50/50.
  • this paint was uniformly applied to each of both surfaces of the base material with a predetermined paint thickness (5.0 ⁇ m in Example 1-1).
  • a predetermined paint thickness 5.0 ⁇ m in Example 1-1.
  • the thickness of the paint film was measured with a laser thickness meter, and when the measured value was different from the predetermined paint thickness, the discharge amount of the paint was automatically adjusted so as to approach the predetermined paint thickness.
  • coating is measured by the triangulation of a laser beam. It is obtained from the difference in the distance of the reflection point between the reflected light on the paint surface and the reflected light on the coating object (electrode or separator). Based on this information, the opening degree of the coating head gap or the amount of paint discharged is automatically adjusted via a program.
  • the NMP is removed from the particle-containing resin solution layer by passing the substrate coated with the paint in a dryer, and the substrate is composed of PVdF-HFP and boehmite particles formed on both sides of the substrate.
  • a separator having a particle-containing resin layer was produced.
  • a separator having a positive electrode, a negative electrode, and a particle-containing resin layer formed on both sides is laminated in the order of positive electrode, separator, negative electrode, and separator, wound in a flat shape many times in the longitudinal direction, and then the end of winding is adhesive tape
  • the wound electrode body was formed by fixing with.
  • the wound electrode body was sandwiched between the exterior members, and the three sides were heat-sealed. Note that a laminate film having a soft aluminum layer was used for the exterior member.
  • electrolyte solution was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt in a non-aqueous solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed.
  • LiPF 6 lithium hexafluorophosphate
  • the mass ratio of the constituents of the electrolyte (EC / DMC / LiPF 6) (EC / DMC / LiPF 6) was adjusted to the amount of each component such that the 35/50/15.
  • a laminated film type battery shown in FIG. 3 having a thickness of 4.5 mm, a width of 30 mm, and a height of 50 mm was produced.
  • Example 1-2 to Example 1-55 laminate film type batteries were produced in the same manner as in Example 1-1 except that the particles used were changed as shown in Table 1 below.
  • Example 1-1 A laminated film type battery was produced in the same manner as in Example 1-1 except that the particles were not mixed in the paint.
  • Comparative Example 1-2 to Comparative Example 1-10 ⁇ Comparative Example 1-2 to Comparative Example 1-10>
  • the material type of the particles used was changed to one having a different refractive index or colored particles, and the shape of the particles was also changed to spherical or polyhedral. Except for this, a laminated film type battery was produced in the same manner as in Example 1-1.
  • Example 1 except that the material type of the particles used was changed to one having a different refractive index, the shape of the particles was changed to a polyhedron, and the mass ratio (particle / resin) was changed as shown in Table 1 below. In the same manner as in Example 1, a laminate film type battery was produced.
  • Example 1-12 A laminated film type battery was produced in the same manner as in Example 1-1 except that the mass ratio (particle / resin) was changed as shown in Table 1 below.
  • Comparative Example 1-16> A laminated film type battery was produced in the same manner as Comparative Example 1-12 except that the material type and particle diameter of the particles were changed as shown in Table 1 below, and the shape of the particles was changed to a polyhedron.
  • the particles after removing the gel electrolyte component etc. from the gel electrolyte layer have a cumulative volume of 50% calculated from the particle side with a small particle diameter.
  • the particle diameter was defined as the particle diameter D50 of the particles.
  • the value of the particle diameter D40 of the volume cumulative 40% and the value of the particle diameter D60 of the volume cumulative 60% were obtained from the measured particle size distribution as needed.
  • the measured value of the laser thickness meter during coating was recorded. Then, after drying and removing the solvent, the thickness of the measurement site where the measurement value of the laser thickness gauge was recorded was measured with a contact-type thickness gauge. In the measurement using a contact-type thickness meter, measurement was performed by applying a load of 50 g to a flat contact terminal having a diameter of 5 mm, and the value obtained by subtracting the thickness of the application target (electrode or separator) from the measured value was defined as the application thickness. And when the difference of the measured value of a laser thickness meter and application
  • the solvent (NMP) dilution ratio and the drying were adjusted so that the coating thickness of the paint was the same as the completed thickness after removal of the solvent (NMP) by drying. Temperature is used as a manufacturing condition. That is, the thickness of the coating immediately after application whose solid content was known was determined by calculation from the area density of the coating film in advance, the solvent of the coating film was removed, and the thickness after drying was measured with a contact-type thickness meter. The NMP dilution rate and the drying temperature adjusted so that the difference between the calculated value and the measured value was within ⁇ 10% as a percentage of the measured value were used as the production conditions.
  • the voltage of the battery CELL was confirmed with a voltmeter (tester) 600, and if a voltage drop of 1% or more was confirmed, the short circuit determination was rejected. Moreover, when it short-circuited, it was set as the measurement impossible, and other than that was set as the pass.
  • the paint includes particles having a particle diameter and a refractive index within a predetermined range, and the mass ratio (particle / resin) is a predetermined value. It is within the range. Thereby, since the paint was transparent, the pass / fail judgment of the laser measurement was acceptable. Moreover, since the thickness control of the gel electrolyte was successful, the battery bending test was acceptable. In Comparative Example 1-1, the gel electrolyte did not contain particles, so the strength was insufficient, and the battery bending test failed. In Comparative Examples 1-2 to 1-10, since the refractive index of the particles contained in the coating material is not within the predetermined range, the coating material is not transparent.
  • Example 1-1 and Example 1-1 except that the amounts of each component of boehmite particles, resin (PVdF-HFP), LiPF 6 and solvent (NMP), which are constituents of the paint, were changed as shown in Table 2 below. Similarly, a laminate film type battery was produced. In Table 2, the amount of each component of particles, resin (PVdF-HFP), LiPF 6 , and solvent is expressed as a mass percentage with respect to the total amount of paint (total amount of constituent components).
  • Example 2-9 to Example 2-16> Except for changing the amounts of talc particles, resin (PVdF-HFP), LiPF 6 and solvent (NMP) as constituent components of the paint as shown in Table 2 below, Example 1-2 and Similarly, a laminate film type battery was produced.
  • Table 2 the amount of each component of particles, resin (PVdF-HFP), LiPF 6 , and solvent is expressed as a mass percentage with respect to the total amount of paint (total amount of constituent components).
  • Example 1-8 except that the amount of each component of aluminum oxide particles, resin (PVdF-HFP), LiPF 6 and solvent (NMP), which are constituents of the paint, was changed as shown in Table 2 below. In the same manner, a laminate film type battery was produced. In Table 2, the amount of each component of particles, resin (PVdF-HFP), LiPF 6 , and solvent is expressed as a mass percentage with respect to the total amount of paint quality (total amount of constituent components).
  • Table 2 shows the evaluation results.
  • the paint includes particles having a particle diameter and a refractive index within a predetermined range, and the mass ratio (particle / resin) is a predetermined value. It is within the range. Thereby, since the paint was transparent, the pass / fail judgment of the laser measurement was acceptable.
  • Example 3-1 to Example 3-13 In Example 3-1 to Example 3-13, the same procedure as in Example 1-1 was performed, except that the particle diameter D50 of boehmite particles, which are constituents of the paint, was changed as shown in Table 3 below. A laminated film type battery was produced.
  • Example 3-14 to Example 3-26 the particle diameter D50 of talc particles, which are constituents of the paint, was changed as shown in Table 3 below.
  • a battery was produced as follows. Except for the above, a laminated film type battery was produced in the same manner as in Example 1-2.
  • a positive electrode was produced in the same manner as in Example 1-2. Moreover, the particle
  • Example 1-2 the same paint as in Example 1-2 was uniformly applied to each of both surfaces of the positive electrode with a predetermined paint thickness (5.0 ⁇ m).
  • a predetermined paint thickness 5.0 ⁇ m.
  • the thickness of the paint film was measured with a laser thickness meter, and when the measured value was different from the predetermined paint thickness, the discharge amount of the paint was automatically adjusted so as to approach the predetermined paint thickness.
  • the NMP was removed from the particle-containing resin solution layer by passing the positive electrode coated with the paint in a dryer, thereby forming a particle-containing resin layer composed of PVdF and boehmite on both sides of the positive electrode.
  • a negative electrode was produced in the same manner as in Example 1-2.
  • a particle-containing resin layer was formed on both sides of the negative electrode in the same manner as the positive electrode.
  • a positive electrode with a particle-containing resin layer formed on both sides, and a negative electrode and a separator with a particle-containing resin layer formed on both sides are laminated in the order of positive electrode, separator, negative electrode and separator, and wound in a flat shape many times in the longitudinal direction. Then, the wound electrode body was formed by fixing the winding end portion with an adhesive tape.
  • the wound electrode body was sandwiched between the exterior members, and the three sides were heat-sealed. Note that a laminate film having a soft aluminum layer was used for the exterior member.
  • electrolyte solution was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt in a non-aqueous solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • the mass ratio of the constituents of the electrolyte (EC / DMC / LiPF 6) (EC / DMC / LiPF 6) is such that the 35/50/15 and adjust the amount of each component.
  • a laminated film type battery having a battery shape of thickness 4.5 mm, 30 mm, and height 50 mm was produced.
  • Example 3-27 to Example 3-39 the particle diameter D50 of the aluminum oxide particles, which are constituents of the paint, was changed as shown in Table 3 below.
  • a battery was produced in the same manner as in Example 3-14. Except for the above, a laminated film type battery was produced in the same manner as in Example 1-8.
  • Table 3 shows the evaluation results.
  • the paint includes particles having a particle diameter and a refractive index within a predetermined range, and the mass ratio (particle / resin) is a predetermined value. It is within the range. Thereby, since the paint was transparent, the pass / fail judgment of the laser measurement was acceptable.
  • Example 4-1 to Example 4-8 the material type of the paint was changed to boehmite.
  • the predetermined paint thickness when applying the paint was set to 12.0 ⁇ m. Except for the above, a laminated film type battery was produced in the same manner as in Example 1-14.
  • Table 4 shows the evaluation results.
  • the paint includes particles having a particle diameter and a refractive index within a predetermined range, and the mass ratio (particle / resin) is a predetermined value. It is within the range. Thereby, since the paint was transparent, the pass / fail judgment of the laser measurement was acceptable. In Example 4-3, there was some coating unevenness due to the large particles. In Example 4-7, since the particles were small, the viscosity was high and there was some coating unevenness.
  • Example 5-1 to Example 5-3 a laminated film type battery was prepared in the same manner as in Example 3-14, except that the plate-like talc particles shown in Table 5 below were used as the filler. Produced.
  • Example 5-4 to Example 5-6 a laminated film type battery was obtained in the same manner as in Example 3-27 except that acicular aluminum oxide particles shown in Table 5 below were used as the filler. Was made.
  • Table 5 shows the evaluation results.
  • the paint includes particles having a particle diameter and a refractive index within a predetermined range, and the mass ratio (particle / resin) is a predetermined value. It is within the range. Thereby, since the paint was transparent, the pass / fail judgment of the laser measurement was acceptable.
  • Example 6-1 to Example 6-29 As shown in Table 6 below, a laminate film type was obtained in the same manner as in Example 1-1 except that the type of resin constituting the paint was changed. A battery was produced.
  • the paint includes particles having a particle diameter and a refractive index within a predetermined range, and the mass ratio (particle / resin) is a predetermined value. It is within the range. Thereby, since the paint was transparent, the pass / fail judgment of the laser measurement was acceptable.
  • Example 7-1 to Example 7-6 laminating was performed in the same manner as in Example 1-1 except that the predetermined paint thickness when applying the paint was changed as shown in Table 7 below. A film type battery was produced.
  • Table 7 shows the evaluation results.
  • the paint includes particles having a particle diameter and a refractive index within a predetermined range, and the mass ratio (particle / resin) is a predetermined value. It is within the range. Thereby, since the paint was transparent, the pass / fail judgment of the laser measurement was acceptable.
  • the particle diameter was the same as the coating thickness, and slight coating unevenness occurred. When the thickness of the coating was 1 ⁇ m or less, uneven coating was likely to occur and the transparency was liable to be slightly reduced.
  • Example 8-1 a laminated film type battery was produced in the same manner as in Example 1-1.
  • Example 8-2 [Preparation of positive electrode, preparation of negative electrode] A positive electrode and a negative electrode were produced in the same manner as in Example 1-1.
  • a 9 ⁇ m-thick polyethylene (PE) microporous film was used as the substrate.
  • a coating material was applied to both surfaces of the substrate as described below to form a particle-containing resin solution layer (coating film), and then dried to form a particle-containing resin layer.
  • boehmite particles (particle diameter D50: 1000 nm, refractive index 1.7, flat particles (plate-like particles)) as a filler and vinylidene fluoride (PVdF, refractive index 1.4) as a binder polymer compound (resin).
  • NMP N-methyl-2-pyrrolidone
  • the quantity of each material was adjusted so that solid content (boehmite particle
  • the content of boehmite particles is 10% by mass with respect to the total amount of paint
  • the content of PVdF is 10% by mass with respect to the total amount of paint
  • the content of NMP is 80% with respect to the total amount of paint. It was set as mass%.
  • the mass ratio (particle / resin) of boehmite particles and PVdF is 50/50.
  • this paint was uniformly applied to each of both surfaces of the base material with a predetermined paint thickness shown in Table 8.
  • the thickness of the paint film was measured with a laser thickness meter, and when the measured value was different from the predetermined paint thickness, the discharge amount of the paint was automatically adjusted so as to approach the predetermined paint thickness.
  • the NMP is removed from the particle-containing resin solution layer by passing the substrate coated with the coating material in a dryer, and the particle-containing resin comprising PVDF and boehmite formed on both surfaces of the substrate.
  • a separator having a layer was prepared.
  • a separator having a positive electrode, a negative electrode, and a particle-containing resin layer formed on both sides is laminated in the order of positive electrode, separator, negative electrode, and separator, wound in a flat shape many times in the longitudinal direction, and then the end of winding is adhesive tape
  • the wound electrode body was formed by fixing with.
  • the wound electrode body was sandwiched between the exterior members, and the three sides were heat-sealed. Note that a laminate film having a soft aluminum layer was used for the exterior member.
  • electrolyte solution was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt in a non-aqueous solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • the mass ratio of the constituents of the electrolyte (EC / DMC / LiPF 6) (EC / DMC / LiPF 6) is such that the 35/50/15 and adjust the amount of each component.
  • a laminated film type battery shown in FIG. 3 having a thickness of 4.5 mm, a width of 30 mm, and a height of 50 mm was produced.
  • Example 8-3 the configuration of each of the positive electrode, the negative electrode, the separator, and the particle-containing resin layer and the application target of the particle-containing resin layer were the same as in Example 8-2, and the laminated electrode body was covered with a laminate film. A laminate film type battery was produced.
  • the NMP is removed from the particle-containing resin solution layer by passing the substrate coated with the coating material in a dryer, and the particle-containing resin comprising PVDF and boehmite formed on both surfaces of the substrate.
  • a separator having a layer was prepared.
  • a rectangular positive electrode and a rectangular negative electrode, and a rectangular separator were laminated in the order of the positive electrode, the separator, the negative electrode, and the separator to form a laminated electrode body.
  • the laminated electrode body was covered with a laminate film having a soft aluminum layer, and the three sides around the laminated electrode body were heat-sealed and sealed and sealed. After that, an electrolytic solution was poured into this, and the remaining one side was heat-sealed under reduced pressure and sealed.
  • a laminated film type battery shown in FIGS. 5A to 5C having a battery shape of 4.5 mm in thickness, 30 mm in width, and 50 mm in height was produced.
  • Example 8-4 In the same manner as in Example 8-1, a positive electrode and a negative electrode were produced. In addition, a separator having a particle-containing resin layer formed on both sides was obtained using the same paint as in Example 8-2.
  • a positive electrode, a negative electrode, and a separator having a particle-containing resin layer formed on both sides are laminated in the order of the positive electrode, the separator, the negative electrode, and the separator, wound many times in the longitudinal direction in a flat shape, A wound electrode body was formed by fixing with an adhesive tape.
  • the wound electrode body was accommodated in a rectangular battery can.
  • the battery can is sealed with the battery lid, and the nonaqueous electrolyte is injected from the electrolyte inlet. And sealed with a sealing member.
  • a prismatic battery shown in FIG. 9 having a battery shape of 5.2 mm thickness, 34 mm width, and 36 mm height (523436 size) was produced.
  • Example 8-2 In the same manner as in Example 8-1, a positive electrode and a negative electrode were produced. In addition, a separator having a particle-containing resin layer formed on both sides was obtained using the same paint as in Example 8-2.
  • a positive electrode, a negative electrode, and a separator with a particle-containing resin layer formed on both sides are laminated in the order of the positive electrode, separator, negative electrode, and separator, wound many times in the longitudinal direction, and then the winding end is fixed with an adhesive tape.
  • a wound electrode body was formed.
  • the positive electrode terminal was bonded to the safety valve bonded to the battery lid, and the negative electrode lead was connected to the negative electrode can.
  • a center pin was inserted into the center of the wound electrode body.
  • a non-aqueous electrolyte was injected into the inside of the cylindrical battery can from above the insulating plate.
  • a safety valve mechanism including a safety valve, a disk holder, and a shut-off disk, a PTC element, and a battery lid were sealed in the open portion of the battery can by caulking through an insulating sealing gasket.
  • the battery shape was 18 mm in diameter and 65 mm in height (ICR18650 size), and the cylindrical battery shown in FIG. 6 was produced.
  • Example 8-6 a simple battery pack (soft pack) shown in FIGS. 10, 11A, and 11B was manufactured using the same laminate film type battery as in Example 8-1.
  • Example 8-7 a laminated film type battery was produced in the same manner as in Example 8-1, except that the coating material was applied only to one surface on the negative electrode side of the separator.
  • Example 8-8 a laminate film type battery was produced in the same manner as in Example 8-1, except that the coating material was applied only to one side of the separator on the positive electrode side.
  • Example 8-9 [Preparation of positive electrode, formation of particle-containing resin layer] A positive electrode was produced in the same manner as in Example 8-1. Moreover, the particle
  • Example 8-2 the same paint as in Example 8-2 was uniformly applied to each of both surfaces of the positive electrode with a predetermined paint thickness (5.0 ⁇ m).
  • a predetermined paint thickness 5.0 ⁇ m.
  • the thickness of the paint film was measured with a laser thickness meter, and when the measured value was different from the predetermined paint thickness, the discharge amount of the paint was automatically adjusted so as to approach the predetermined paint thickness.
  • the NMP was removed from the particle-containing resin solution layer by passing the positive electrode coated with the paint in a dryer, thereby forming a particle-containing resin layer composed of PVdF and boehmite on both sides of the positive electrode.
  • a negative electrode was produced in the same manner as in Example 8-1.
  • a particle-containing resin layer was formed on both sides of the negative electrode in the same manner as the positive electrode.
  • a positive electrode with a particle-containing resin layer formed on both sides, and a negative electrode and a separator with a particle-containing resin layer formed on both sides are laminated in the order of positive electrode, separator, negative electrode and separator, and wound in a flat shape many times in the longitudinal direction. Then, the wound electrode body was formed by fixing the winding end portion with an adhesive tape.
  • the wound electrode body was sandwiched between the exterior members, and the three sides were heat-sealed. Note that a laminate film having a soft aluminum layer was used for the exterior member.
  • electrolyte solution was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt in a non-aqueous solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • the mass ratio of the constituents of the electrolyte (EC / DMC / LiPF 6) (EC / DMC / LiPF 6) is such that the 35/50/15 and adjust the amount of each component.
  • a laminated film type battery having a battery shape of thickness 4.5 mm, 30 mm, and height 50 mm was produced.
  • Example 8-10> [Preparation of positive electrode, formation of particle-containing resin layer] A positive electrode was produced in the same manner as in Example 8-1. Moreover, the particle
  • Example 8-1 (Formation of particle-containing resin layer) The same paint as in Example 8-1 was uniformly applied at a predetermined paint thickness (5.0 ⁇ m) shown on each of both surfaces of the positive electrode. At this time, during coating, the thickness of the paint film was measured with a laser thickness meter, and when the measured value was different from the predetermined paint thickness, the discharge amount of the paint was automatically adjusted so as to approach the predetermined paint thickness.
  • the NMP is removed from the particle-containing resin solution layer by passing the positive electrode on which the paint is applied in a dryer, thereby forming a particle-containing resin layer composed of PVdF-HFP and boehmite particles on both sides of the positive electrode. did.
  • a negative electrode was produced in the same manner as in Example 1-1.
  • a particle-containing resin layer was formed on both sides of the negative electrode in the same manner as the positive electrode.
  • a positive electrode with a particle-containing resin layer formed on both sides, and a negative electrode and a separator with a particle-containing resin layer formed on both sides are laminated in the order of positive electrode, separator, negative electrode and separator, and wound in a flat shape many times in the longitudinal direction. Then, the wound electrode body was formed by fixing the winding end portion with an adhesive tape.
  • the wound electrode body was sandwiched between the exterior members, and the three sides were heat-sealed. Note that a laminate film having a soft aluminum layer was used for the exterior member.
  • Example 8-1 Thereafter, the same electrolytic solution as in Example 8-1 was poured into this, and the remaining one side was heat-sealed under reduced pressure and sealed. At this time, the electrolyte solution was impregnated into the particle-containing resin layer, and the matrix polymer compound was swollen to form a gel electrolyte (gel electrolyte layer).
  • a laminated film type battery shown in FIG. 3 having a thickness of 4.5 mm, a width of 30 mm, and a height of 50 mm was produced.
  • Example 8-11 the configuration of each of the positive electrode, the negative electrode, the separator, and the particle-containing resin layer and the application target of the particle-containing resin layer were the same as in Example 8-9, and the laminated electrode body was packaged with a laminate film. A laminate film type battery was produced.
  • each electrode to which the paint was applied was passed through a dryer to remove NMP from the particle-containing resin solution layer to obtain a positive electrode with a particle-containing resin layer and a negative electrode with a particle-containing resin layer.
  • a rectangular positive electrode and a rectangular negative electrode, and a rectangular separator were laminated in the order of the positive electrode, the separator, the negative electrode, and the separator to form a laminated electrode body.
  • the laminated electrode body was covered with a laminate film having a soft aluminum layer, and the three sides around the laminated electrode body were heat-sealed and sealed and sealed. After that, the same electrolytic solution as in Example 8-9 was poured into this, and the remaining one side was heat-sealed under reduced pressure and sealed.
  • a laminated film type battery shown in FIGS. 5A to 5C having a battery shape of 4.5 mm in thickness, 30 mm in width, and 50 mm in height was produced.
  • Example 8-12 In the same manner as in Example 8-9, a positive electrode with a particle-containing resin layer, a negative electrode with a particle-containing resin layer having a particle-containing resin layer formed on both surfaces, and a separator were obtained.
  • a positive electrode with a particle-containing resin layer and a negative electrode with a particle-containing resin layer, and a separator are laminated in the order of positive electrode, separator, negative electrode and separator, wound many times in the longitudinal direction into a flat shape, A wound electrode body was formed by fixing with an adhesive tape.
  • the wound electrode body was accommodated in a rectangular battery can.
  • the battery can is sealed with the battery lid, and the nonaqueous electrolyte is injected from the electrolyte inlet. And sealed with a sealing member.
  • a prismatic battery shown in FIG. 9 having a battery shape of 5.2 mm thickness, 34 mm width, and 36 mm height (523436 size) was produced.
  • Example 8-13> In the same manner as in Example 8-9, a positive electrode with a particle-containing resin layer having a particle-containing resin layer formed on both sides, a negative electrode with a particle-containing resin layer having a particle-containing resin layer formed on both sides, and a separator were obtained.
  • a positive electrode with a particle-containing resin layer, a negative electrode with a particle-containing resin layer, and a separator are laminated in the order of positive electrode, separator, negative electrode, and separator, wound many times in the longitudinal direction, and then the winding end is fixed with an adhesive tape Thus, a wound electrode body was formed.
  • the positive electrode terminal was bonded to the safety valve bonded to the battery lid, and the negative electrode lead was connected to the negative electrode can.
  • a center pin was inserted into the center of the wound electrode body.
  • a non-aqueous electrolyte was injected into the inside of the cylindrical battery can from above the insulating plate.
  • a safety valve mechanism including a safety valve, a disk holder, and a shut-off disk, a PTC element, and a battery lid were sealed in the open portion of the battery can by caulking through an insulating sealing gasket.
  • the battery shape was 18 mm in diameter and 65 mm in height (ICR18650 size), and the cylindrical battery shown in FIG. 6 was produced.
  • Example 8-14 a simple battery pack (soft pack) shown in FIGS. 10, 11A, and 11B using the same laminate film type battery as in Example 8-9 was produced.
  • Example 8-15 a laminated film type battery was produced in the same manner as in Example 8-9, except that the paint was applied only on both sides of the negative electrode.
  • Example 8-16 a laminated film type battery was produced in the same manner as in Example 8-1, except that the paint was applied only on both sides of the positive electrode.
  • Table 8 shows the evaluation results.
  • the paint includes particles having a particle diameter and a refractive index within a predetermined range, and the mass ratio (particle / resin) is a predetermined value. It is within the range. Thereby, since the paint was transparent, the pass / fail judgment of the laser measurement was acceptable. Moreover, since the thickness control of the particle-containing resin layer was successful, the battery bending test was acceptable.
  • Example 3-14 At least one of the particles and the mass ratio (particle / resin) of the paint was applied to Example 3-14 to Example 3-39, Example 4-1 to Example 4-8, and Example 5-1 to The same laser measurement pass judgment was performed for the wound laminate film battery as in Example 8-1 except that it was changed to the same as in Example 5-6. As a result, the same evaluation results as those shown in Table 3, Table 4, and Table 5 were obtained.
  • At least one of the particles and the mass ratio (particle / resin) of the coating material was changed to the same as in Example 1-2 to Example 1-55 and Comparative Example 1-1 to Comparative Example 1-16 Except for the above, a winding type laminate film battery similar to that in Example 8-2 was also subjected to the same laser measurement pass / fail judgment and battery bending test. As a result, the same evaluation results as those shown in Table 1 were obtained. At least one of the particles and the mass ratio (particle / resin) of the paint was applied to Example 2-1 to Example 2-24, Example 3-1 to Example 3-39, and Example 4-1 to The same laser measurement was performed for the wound laminate film battery as in Example 8-2 except that it was changed to the same as in Example 4-8 and Example 5-1 to Example 5-6.
  • the nonaqueous electrolyte battery may be a primary battery.
  • the present technology can be similarly applied to a case of having another battery structure such as a coin type or a button type.
  • the separator 55 is the same separator as in the first embodiment, and uses a binder polymer compound as the resin of the particle-containing resin layer. It is good.
  • the gel electrolyte layer 56 may have a configuration in which the filler is omitted.
  • the electrode may be an electrode with a particle-containing resin layer using a binder polymer compound.
  • the gel electrolyte layer 56 may have a configuration in which the filler is omitted.
  • this technique can also take the following structures.
  • the particle diameter D50 of the particles is 50 nm or more and 450 nm or less, or 750 nm or more and 10,000 nm or less,
  • the particle has a refractive index of 1.3 or more and less than 2.4
  • the battery has a mass ratio (particle / resin) between the particles and the resin of 15/85 or more and 90/10 or less.
  • the particle-containing resin layer includes one main surface and the other main surface of the positive electrode, one main surface and the other main surface of the negative electrode, and one main surface and the other main surface of the separator.
  • the resin is a binder polymer compound,
  • the resin is a matrix polymer compound,
  • the particle-containing resin layer includes the particles and the matrix polymer compound, and the particle-containing resin solution layer, which is a precursor of the particle-containing resin layer, has both surfaces of at least one of the positive electrode and the negative electrode, Or formed on at least one surface of both surfaces of the separator,
  • the particles are at least one of inorganic particles and organic particles.
  • the inorganic particles are silicon oxide, zinc oxide, tin oxide, magnesium oxide, antimony oxide, aluminum oxide, magnesium sulfate, calcium sulfate, barium sulfate, strontium sulfate, magnesium carbonate, calcium carbonate, barium carbonate, lithium carbonate, magnesium hydroxide.
  • the organic particles include melamine, melamine cyanurate, melamine polyphosphate, cross-linked polymethyl methacrylate, polyethylene, polypropylene, polystyrene, polytetrafluoroethylene, polyvinylidene fluoride, polyamide, polyimide, melamine resin, phenol resin, and epoxy resin.
  • the silicate mineral is talc, calcium silicate, zinc silicate, zirconium silicate, aluminum silicate, magnesium silicate, kaolinite, sepiolite, imogolite, sericite, pyrophyllite, mica, zeolite, mullite, saponite.
  • the carbonate mineral is at least one selected from the group consisting of hydrotalcite and dolomite
  • the resin is polyvinylidene fluoride, polytetrafluoroethylene, vinylidene fluoride-tetrafluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer.
  • Polymer Polymer, styrene-butadiene copolymer and its hydride, acrylonitrile-butadiene copolymer and its hydride, acrylonitrile-butadiene-styrene copolymer and its hydride, methacrylic acid ester-acrylic acid ester copolymer, styrene -Acrylate ester copolymer, Acrylonitrile- Acrylate ester copolymer, Ethylene propylene rubber, Polyvinyl alcohol, Polyvinyl acetate, Ethyl cellulose, Cellulose derivatives, Polyphenylene ether At least one selected from the group consisting of tellurium, polysulfone, polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, polyamideimide, polyacrylonitrile, polyvinyl alcohol, polyether, acrylic resin, polyester, polyethylene glycol The battery according to any one of [1
  • Electrodes A particle-containing resin layer provided on at least one main surface of the electrode and containing particles and a resin;
  • the particle diameter D50 of the particles is 50 nm or more and 450 nm or less, or 750 nm or more and 10,000 nm or less,
  • the particle has a refractive index of 1.3 or more and less than 2.4,
  • the particle diameter D50 of the particles is 50 nm or more and 450 nm or less, or 750 nm or more and 10,000 nm or less, The particle has a refractive index of 1.3 or more and less than 2.4, The coating material whose mass ratio (particle / resin) of said particle
  • a battery pack having an exterior housing the battery.
  • An electronic apparatus comprising the battery according to any one of [10] and receiving power supply from the battery.
  • a power storage device that includes the battery according to any one of [10] and supplies electric power to an electronic device connected to the battery.
  • a power information control device that transmits and receives signals to and from other devices via a network, The power storage device according to [17], wherein charge / discharge control of the battery is performed based on information received by the power information control device.
  • a power system that receives power from the battery according to any one of [10], or that supplies power to the battery from a power generation device or a power network.
  • protective tape 60 ... exterior member, 61. ..Adhesive film, 70 ... Laminated electrode body, 71 ... Positive electrode lead, 72 ... Negative electrode lead, 73 ... Positive electrode, 74 ... Negative electrode, 75 ... Separator, 76 ...
  • -Sealing member, 120 Winding electrode body, 121 ... Positive electrode terminal, 131 ... Battery cell, 131a ... Terrace part, 132a, 132b ... Lead, 133a, 133b, 133c ... Insulating tape 134 ... Insulating plate 135 ... Circuit board 136 ... Connector 301 ... Battery pack 301a ... Secondary battery 302a ... Charge control switch 302b -Diode, 303a ... Discharge control switch, 303b ... Diode, 304 ... Switch part, 307 ... Current detection resistor, 308 ... Temperature detection element, 310 ...
  • Control part 311 ... ⁇ Electric Pressure detection unit, 313 ... Current measurement unit, 314 ... Switch control unit, 317 ... Memory, 318 ... Temperature detection unit, 321 ... Positive terminal, 322 ... Negative terminal, 400 ⁇ Power storage system, 401 ⁇ Housing, 402 ⁇ Centralized power system, 402a ⁇ ⁇ ⁇ Thermal power generation, 402b ⁇ ⁇ ⁇ Nuclear power generation, 402c ⁇ ⁇ ⁇ Hydroelectric power generation, 403 ⁇ ⁇ ⁇ Power storage device, ..Power generation device, 405 ... Power consumption device, 405a ... Refrigerator, 405b ... Air conditioning device, 405c ... Television receiver, 405d ... Bath, 406 ...
  • Electric vehicle 406a .. Electric vehicle, 406b ... Hybrid car, 406c ... Electric motorcycle, 407 ... Smart meter, 408 ... Power hub, 409 ... Power network, 410 ... Control device, DESCRIPTION OF SYMBOLS 11 ... Sensor, 412 ... Information network, 413 ... Server, 500 ... Hybrid vehicle, 501 ... Engine, 502 ... Generator, 503 ... Electric power driving force converter, 504a ... Drive wheel, 504b ... Drive wheel, 505a ... Wheel, 505b ... Wheel, 508 ... Battery, 509 ... Vehicle control device, 510 ... Sensor, 511 ... Charge mouth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)

Abstract

This battery is provided with a positive electrode, a negative electrode, a liquid electrolyte, and a particle-containing resin layer that contains particles and a resin. The size (D50) of said particles is either between 50 and 450 nm, inclusive, or between 750 and 10,000 nm, inclusive. The index of refraction of the particles is at least 1.3 but less than 2.4, and the mass ratio (particles/resin) between the particles and the resin is between 15/85 and 90/10, inclusive.

Description

電池、セパレータ、電極、塗料、電池パック、電子機器、電動車両、蓄電装置および電力システムBatteries, separators, electrodes, paints, battery packs, electronic devices, electric vehicles, power storage devices, and power systems
 本技術は、電池、セパレータ、電極、塗料、電池パック、電子機器、電動車両、蓄電装置および電力システムに関する。 This technology relates to batteries, separators, electrodes, paints, battery packs, electronic devices, electric vehicles, power storage devices, and power systems.
 リチウムイオン二次電池は、エネルギー密度に優れ携帯機器用等に普及している。リチウムイオン二次電池としては、より軽量でエネルギー密度が高いこと、極めて薄い形状のものを製造可能であること等から、外装部材にラミネートフィルムを用いたものが実用化されている。 Lithium ion secondary batteries have excellent energy density and are widely used for portable devices. As a lithium ion secondary battery, a battery using a laminate film as an exterior member has been put into practical use because it is lighter, has a higher energy density, and can be manufactured in a very thin shape.
 外装部材としてラミネートフィルムを用いたリチウムイオン二次電池等の電池は、耐漏液性等の目的から、電解質として、電解液および高分子化合物を用いることが行われており、ポリマー電池として知られている。中でも、電解液を高分子化合物に保持させていわゆるゲル状としたゲル電解質電池は、広く普及している。 A battery such as a lithium ion secondary battery using a laminate film as an exterior member has been known to be a polymer battery, using an electrolytic solution and a polymer compound as an electrolyte for the purpose of leakage resistance and the like. Yes. Among them, a gel electrolyte battery in which the electrolytic solution is held in a polymer compound to form a so-called gel is widely used.
 本技術に関連する技術として、特許文献1には、耐熱性含窒素芳香族重合体およびセラミック粉末を含む塗工膜を備えたセパレータが記載されている。特許文献2には、電極表面に接着されるセラミックス粒子および結着剤を含む多孔膜が記載されている。 As a technique related to this technique, Patent Document 1 describes a separator provided with a coating film containing a heat-resistant nitrogen-containing aromatic polymer and ceramic powder. Patent Document 2 describes a porous film containing ceramic particles and a binder bonded to the electrode surface.
特開2010-198757号公報JP 2010-198757 A 特許第4781263号公報Japanese Patent No. 4781263
 粒子を含有する樹脂層を備えた電池では、これを形成するための塗料に白濁等が生じることに起因して、粒子を含有する樹脂層の厚みを高精度で管理することが難しかった。 In a battery provided with a resin layer containing particles, it was difficult to control the thickness of the resin layer containing particles with high accuracy due to the occurrence of white turbidity in the coating material for forming the battery.
 したがって、本技術の目的は、粒子を含有する樹脂層の厚みを高精度で管理することができる電池、セパレータ、電極、塗料、これらを用いた電池パック、電子機器、電動車両、蓄電装置および電力システムを提供することにある。 Accordingly, an object of the present technology is to provide a battery, a separator, an electrode, a paint, a battery pack, an electronic device, an electric vehicle, a power storage device, and an electric power that can manage the thickness of the resin layer containing particles with high accuracy. To provide a system.
 上記問題点を解消するために、本技術は、正極と、負極と、セパレータと、電解液と、粒子および樹脂を含む粒子含有樹脂層とを備え、粒子の粒子径D50は、50nm以上450nm以下、または、750nm以上10000nm以下であり、粒子の屈折率は、1.3以上2.4未満であり、粒子と樹脂との質量比(粒子/樹脂)は、15/85以上90/10以下である電池である。 In order to solve the above problems, the present technology includes a positive electrode, a negative electrode, a separator, an electrolytic solution, and a particle-containing resin layer containing particles and a resin, and the particle diameter D50 of the particles is 50 nm or more and 450 nm or less. Alternatively, the refractive index of the particles is from 1.3 to less than 2.4, and the mass ratio of the particles to the resin (particle / resin) is from 15/85 to 90/10. There is a battery.
 本技術は、セパレータ基材と、セパレータ基材の少なくとも一方の主面に設けられ、且つ、粒子および樹脂を含む粒子含有樹脂層とを備え、粒子の粒子径D50は、50nm以上450nm以下、または、750nm以上10000nm以下であり、粒子の屈折率は、1.3以上2.4未満であり、粒子と樹脂との質量比(粒子/樹脂)は、15/85以上90/10以下であるセパレータである。 The present technology includes a separator base and a particle-containing resin layer provided on at least one main surface of the separator base and containing particles and a resin, and the particle diameter D50 of the particles is 50 nm or more and 450 nm or less, or , 750 nm to 10,000 nm, the refractive index of the particles is 1.3 to less than 2.4, and the mass ratio of the particles to the resin (particle / resin) is 15/85 to 90/10 It is.
 本技術は、電極と、電極の少なくとも一方の主面に設けられ、且つ、粒子および樹脂を含む粒子含有樹脂層とを備え、粒子の粒子径D50は、50nm以上450nm以下、または、750nm以上10000nm以下であり、粒子の屈折率は、1.3以上2.4未満であり、粒子と樹脂との質量比(粒子/樹脂)は、15/85以上90/10以下である粒子含有樹脂層付きの電極である。 The present technology includes an electrode and a particle-containing resin layer that is provided on at least one main surface of the electrode and includes particles and a resin, and the particle diameter D50 of the particles is 50 nm to 450 nm, or 750 nm to 10000 nm. With a particle-containing resin layer, the refractive index of the particle is 1.3 or more and less than 2.4, and the mass ratio of the particle to the resin (particle / resin) is 15/85 or more and 90/10 or less Electrode.
 粒子と、樹脂と、溶媒とを含み、粒子の粒子径D50は、50nm以上450nm以下、または、750nm以上10000nm以下であり、粒子の屈折率は、1.3以上2.4未満であり、粒子と樹脂との質量比(粒子/樹脂)は、15/85以上90/10以下である塗料である。 Particles, resin, and solvent, the particle diameter D50 of the particles is 50 nm or more and 450 nm or less, or 750 nm or more and 10,000 nm or less, and the refractive index of the particles is 1.3 or more and less than 2.4; The resin is a paint having a mass ratio (particle / resin) of 15/85 to 90/10.
 また、本技術の電池パック、電子機器、電動車両、蓄電装置および電力システムは、上述の電池を備えることを特徴とする。 Moreover, the battery pack, electronic device, electric vehicle, power storage device, and power system of the present technology include the above-described battery.
 本技術によれば、粒子を含有する樹脂層の厚みを高精度で管理することができる。 According to the present technology, the thickness of the resin layer containing particles can be managed with high accuracy.
図1は本技術の実施の形態によるセパレータの概略断面図である。FIG. 1 is a schematic cross-sectional view of a separator according to an embodiment of the present technology. 図2は本技術の実施の形態による粒子含有樹脂層付き電極の概略断面図である。FIG. 2 is a schematic cross-sectional view of an electrode with a particle-containing resin layer according to an embodiment of the present technology. 図3は本技術の実施の形態によるラミネートフィルム型非水電解質電池の構成を示す分解斜視図である。FIG. 3 is an exploded perspective view showing the configuration of a laminated film type nonaqueous electrolyte battery according to an embodiment of the present technology. 図4は図3に示す巻回電極体のI-I線に沿った断面構成を表す断面図である。4 is a cross-sectional view showing a cross-sectional configuration along the line II of the spirally wound electrode body shown in FIG. 図5A~図5Cは積層電極体を用いたラミネートフィルム型非水電解質電池の構成を示す分解斜視図である。5A to 5C are exploded perspective views showing the configuration of a laminated film type nonaqueous electrolyte battery using a laminated electrode body. 図6は本技術の実施の形態による円筒型非水電解質電池の構成を示す断面図である。FIG. 6 is a cross-sectional view showing a configuration of a cylindrical nonaqueous electrolyte battery according to an embodiment of the present technology. 図7は円筒型非水電解質電池に収容される巻回電極体の一部を拡大して示す断面図である。FIG. 7 is an enlarged cross-sectional view showing a part of a wound electrode body housed in a cylindrical nonaqueous electrolyte battery. 図8は円筒型非水電解質電池に収容される巻回電極体の一部を拡大して示す断面図である。FIG. 8 is an enlarged cross-sectional view showing a part of a wound electrode body housed in a cylindrical nonaqueous electrolyte battery. 図9は本技術の実施の形態による角型非水電解質電池の構成を示す斜視図である。FIG. 9 is a perspective view showing a configuration of a prismatic nonaqueous electrolyte battery according to an embodiment of the present technology. 図10は簡易型の電池パックの構成例を示す分解斜視図である。FIG. 10 is an exploded perspective view showing a configuration example of a simplified battery pack. 図11Aは簡易型の電池パックの外観を示す概略斜視図である。図11Bは簡易型の電池パックの外観を示す概略斜視図である。FIG. 11A is a schematic perspective view showing the appearance of a simple battery pack. FIG. 11B is a schematic perspective view showing the appearance of a simple battery pack. 図12は本技術の実施の形態による電池パックの回路構成例を示すブロック図である。FIG. 12 is a block diagram illustrating a circuit configuration example of the battery pack according to the embodiment of the present technology. 図13は本技術の非水電解質電池を用いた住宅用の蓄電システムに適用した例を示す概略図である。FIG. 13 is a schematic diagram showing an example applied to a residential power storage system using the nonaqueous electrolyte battery of the present technology. 図14は本技術が適用されるシリーズハイブリッドシステムを採用するハイブリッド車両の構成の一例を概略的に示す概略図である。FIG. 14 is a schematic diagram schematically illustrating an example of a configuration of a hybrid vehicle that employs a series hybrid system to which the present technology is applied. 図15は電池折曲げ試験を説明するための概略模式図である。FIG. 15 is a schematic diagram for explaining a battery bending test. 図16は電池折曲げ試験を説明するための概略断面図である。FIG. 16 is a schematic cross-sectional view for explaining the battery bending test.
(技術的背景)
 まず、本技術の理解を容易にするため、本技術の技術的背景について説明する。近年の高容量化の要求に伴い、ラミネートフィルム型のポリマー電池の外装パックも簡易なものになってきており、誤使用により強い圧力がかかった際の変形が大きければ電池内部でショートが発生し易くなり、電池として機能しないこともあり得る。これに対して、ゲル電解質中にアルミナ等の粒子を混ぜてゲル電解質の強度を向上することが提案されている。
(Technical background)
First, in order to facilitate understanding of the present technology, the technical background of the present technology will be described. Along with the recent demand for higher capacity, the outer packaging of laminated film type polymer batteries has also become simpler, and if there is a large deformation due to strong pressure due to misuse, a short circuit will occur inside the battery. It becomes easy and may not function as a battery. On the other hand, it has been proposed to improve the strength of the gel electrolyte by mixing particles such as alumina in the gel electrolyte.
 リチウムイオン二次電池などの電池では、体積エネルギー密度をさらに高めることが求められている。電池の体積エネルギー密度向上の方策としては、セパレータを薄くしその分を活物質に振り分けエネルギー密度を向上させる技術が検討されている。外装が金属である場合には問題ないが、金属異物が内部に混入した場合の対策として、セパレータが薄くなった分、無機物のフィラーを薄くコートし短絡耐性を補充する技術が考案されている(特許文献1:特開2010-198757号公報参照)。 In a battery such as a lithium ion secondary battery, it is required to further increase the volume energy density. As a measure for improving the volumetric energy density of a battery, a technique for improving the energy density by thinning the separator and allocating the separator to the active material has been studied. There is no problem when the exterior is a metal, but as a countermeasure when metal foreign matter is mixed inside, a technology has been devised to supplement the short-circuit resistance by thinly coating the inorganic filler as the separator becomes thinner ( (Patent Document 1: Japanese Patent Application Laid-Open No. 2010-198757).
 このコート層はフィラーとバインダーとなる高分子を溶剤に溶かし塗料を作り塗布を行い、乾燥工程を経て溶剤を取り除く。このような塗膜はセパレータ表面にかかわらず、電極葉面に設けても効果的であることが示されている(特許文献2:特許第4781263号公報参照)。 This coat layer dissolves the filler and the polymer that serves as the binder in a solvent, forms a coating, applies it, and then removes the solvent through a drying process. It has been shown that such a coating film is effective even if provided on the electrode leaf surface regardless of the separator surface (see Patent Document 2: Japanese Patent No. 4781263).
 これらのゲル電解質や塗膜を形成するためのフィラーを含むマトリックス高分子化合物溶液や、バインダー高分子化合物溶液の塗布を行う際には、厚みの制御が重要である。完成する塗膜は体積エネルギー密度向上の観点から、典型的には、例えば、片面当たり1μm~5μm程度で設けられるため、精度の高い塗布が求められる。 Controlling the thickness is important when applying a matrix polymer solution containing a gel electrolyte or a filler for forming a coating film or a binder polymer compound solution. The finished coating film is typically provided with, for example, about 1 μm to 5 μm per side from the viewpoint of improving the volumetric energy density, and therefore high-precision coating is required.
 旧来の塗布方法では、一度条件だしを行ったのち、セパレータもしくは電極のリール全長に塗布を行い、乾燥炉をくぐらせ希釈溶剤を乾燥させて巻きとり、完成品リールとしていた。後の検査で塗布中の厚み変動により、規格値の範囲を外れて厚みの薄い部分や、厚い部分がある場合には、所定の機能が得られなかったり、素子の寸法が規格を超えたりなどの不具合が発生するため、異常があった場合にはリール全体が不良品となるという問題がある。 In the conventional coating method, after applying the conditions once, the coating was applied to the entire length of the separator or electrode reel, and the diluted solvent was dried by passing through a drying furnace to wind up the finished product reel. In later inspections, due to thickness fluctuations during application, if there are thin or thick parts outside the standard value range, the specified function may not be obtained, or the element dimensions may exceed the standard, etc. Therefore, if there is an abnormality, the entire reel becomes a defective product.
 この対策として塗布後未乾燥の状態でインライン検査しながらリアルタイムで補正をかけるという方法が有効ではあるが、インラインで塗料厚みを測定するには、非接触の測定法が必須であり、レーザー変位計を用いて測定することが有効である。しかしながら無機粒子等の粒子を含む塗料のほとんどが有色か白濁しており、塗りたての状態で厚みを測定することができない。 As a countermeasure, it is effective to apply correction in real time while in-line inspection is performed in an undried state after application. However, a non-contact measurement method is indispensable for measuring the paint thickness in-line. It is effective to measure using However, most paints containing particles such as inorganic particles are colored or cloudy, and the thickness cannot be measured in a freshly applied state.
 そこで、本技術では、粒子を含有する粒子含有樹脂溶液の透明度を向上させている。このため、電極およびセパレータの少なくとも何れかの表面上に形成する粒子含有樹脂溶液層の厚みを、粒子含有樹脂溶液の塗布工程の際に、リアルタイムで精度良く測定し調整することができるようになる。これにより、粒子含有樹脂溶液から溶媒を除去することにより形成される粒子含有樹脂層の厚みを、高精度で管理することができる。その結果、高い精度で厚みが管理された粒子含有樹脂層を備えた電池を提供することができる。このような電池では、粒子含有樹脂層の厚みの過不足による粒子含有樹脂層の機能劣化が抑制されるので、高安全性を保つことができる。また、本技術では、厚みばらつきがなく、所定強度と薄さを有した粒子を含む粒子含有樹脂層を備えた電極もしくはセパレータを歩留まり良く提供でき、さらにはそれらを用い短絡耐性が高く、体積エネルギー密度に富む電池を提供できる。 Therefore, in the present technology, the transparency of the particle-containing resin solution containing particles is improved. Therefore, the thickness of the particle-containing resin solution layer formed on at least one surface of the electrode and the separator can be accurately measured and adjusted in real time during the particle-containing resin solution coating process. . Thereby, the thickness of the particle-containing resin layer formed by removing the solvent from the particle-containing resin solution can be managed with high accuracy. As a result, a battery including a particle-containing resin layer whose thickness is controlled with high accuracy can be provided. In such a battery, functional deterioration of the particle-containing resin layer due to excessive or insufficient thickness of the particle-containing resin layer is suppressed, so that high safety can be maintained. In addition, the present technology can provide an electrode or separator having a particle-containing resin layer containing particles having a predetermined strength and thickness with no variation in thickness, and can further provide a high short-circuit resistance and volume energy using them. A battery having a high density can be provided.
 以下、本技術の実施の形態について図面を参照して説明する。なお、説明は、以下の順序で行う。
1.第1の実施の形態(セパレータの例)
2.第2の実施の形態(粒子含有樹脂層付き電極の例)
3.第3の実施の形態(ラミネートフィルム型電池の例)
4.第4の実施の形態(ラミネートフィルム型電池の例)
5.第5の実施の形態(円筒型電池の例)
6.第6の実施の形態(円筒型電池の例)
7.第7の実施の形態(角型電池の例)
8.第8の実施の形態(電池パックの例)
9.第9の実施の形態(電池パックの例)
10.第10の実施の形態(蓄電システム等の例)
11.他の実施の形態 (変形例)
 なお、以下に説明する実施の形態等は本技術の好適な具体例であり、本技術の内容がこれらの実施の形態等に限定されるものではない。また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また例示した効果と異なる効果が存在することを否定するものではない。
Hereinafter, embodiments of the present technology will be described with reference to the drawings. The description will be given in the following order.
1. First embodiment (example of separator)
2. Second Embodiment (Example of electrode with particle-containing resin layer)
3. Third embodiment (example of laminated film type battery)
4). Fourth embodiment (example of laminated film type battery)
5. Fifth embodiment (example of cylindrical battery)
6). Sixth embodiment (example of cylindrical battery)
7). Seventh embodiment (an example of a prismatic battery)
8). Eighth embodiment (example of battery pack)
9. Ninth embodiment (example of battery pack)
10. Tenth embodiment (an example of a power storage system)
11. Other Embodiment (Modification)
The embodiments described below are suitable specific examples of the present technology, and the contents of the present technology are not limited to these embodiments. Moreover, the effect described in this specification is an illustration to the last, is not limited, and does not deny that the effect different from the illustrated effect exists.
1.第1の実施の形態
(1-1)セパレータの構成
 本技術の第1の実施の形態によるセパレータについて説明する。図1は、本技術の第1の実施の形態によるセパレータの構成例を示す概略断面図である。図1に示すように、本技術の第1の実施の形態によるセパレータ11は、セパレータ基材11aと、セパレータ基材11aの少なくとも一方の主面に形成された粒子含有樹脂層11bとを備える。
1. First Embodiment (1-1) Configuration of Separator A separator according to a first embodiment of the present technology will be described. FIG. 1 is a schematic cross-sectional view illustrating a configuration example of a separator according to the first embodiment of the present technology. As shown in FIG. 1, the separator 11 according to the first embodiment of the present technology includes a separator base 11a and a particle-containing resin layer 11b formed on at least one main surface of the separator base 11a.
[セパレータ基材]
 セパレータ基材11aは、イオン透過度が大きく、所定の機械的強度を有する絶縁性の膜から構成される多孔質膜である。セパレータ基材11aの空孔には、非水電解液が保持される。
[Separator substrate]
The separator base material 11a is a porous film composed of an insulating film having a high ion permeability and a predetermined mechanical strength. A non-aqueous electrolyte is held in the pores of the separator substrate 11a.
 このようなセパレータ基材11aを構成する樹脂材料は、例えばポリプロピレンもしくはポリエチレン等のポリオレフィン樹脂、アクリル樹脂、スチレン樹脂、ポリエステル樹脂またはナイロン樹脂等を用いることが好ましい。特に、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレン等のポリエチレン、もしくはそれらの低分子量ワックス分、またはポリプロピレン等のポリオレフィン樹脂は溶融温度が適当であり、入手が容易なので好適に用いられる。また、これら2種以上の多孔質膜を積層した構造、もしくは、2種以上の樹脂材料を溶融混練して形成した多孔質膜としてもよい。ポリオレフィン樹脂からなる多孔質膜を含むものは、正極と負極との分離性に優れ、内部短絡の低下をいっそう低減することができる。 For example, a polyolefin resin such as polypropylene or polyethylene, an acrylic resin, a styrene resin, a polyester resin, or a nylon resin is preferably used as the resin material constituting the separator base 11a. In particular, polyethylene such as low density polyethylene, high density polyethylene and linear polyethylene, or their low molecular weight wax content, or polyolefin resin such as polypropylene is suitable because it has an appropriate melting temperature and is easily available. Moreover, it is good also as a porous film formed by melt-kneading the structure which laminated | stacked these 2 or more types of porous films, or 2 or more types of resin materials. Those containing a porous membrane made of a polyolefin resin are excellent in separability between the positive electrode and the negative electrode, and can further reduce the decrease in internal short circuit.
[粒子含有樹脂層]
 粒子含有樹脂層11bは、フィラーとしての粒子と樹脂とを含み、例えば微小な空孔が多数形成されている等の多孔構造を有するものである。粒子含有樹脂層11bを備えることで、耐熱性、耐酸化性等のセパレータの特性を向上することができる。
[Particle-containing resin layer]
The particle-containing resin layer 11b includes particles as a filler and a resin, and has a porous structure in which, for example, a large number of minute holes are formed. By providing the particle-containing resin layer 11b, the separator characteristics such as heat resistance and oxidation resistance can be improved.
 詳細は後述するが、粒子含有樹脂層11bは、セパレータ基材11a上に形成された、粒子と樹脂と希釈溶媒とを含む樹脂溶液(塗料と称する場合もある)よりなる粒子含有樹脂溶液層から、乾燥等によって希釈溶媒を除去することにより形成されるものである。 Although details will be described later, the particle-containing resin layer 11b is formed from a particle-containing resin solution layer formed on the separator substrate 11a and including a resin solution (sometimes referred to as a paint) containing particles, a resin, and a dilution solvent. It is formed by removing the diluting solvent by drying or the like.
 本技術では、光の散乱を低減させて粒子含有樹脂層11bの前駆体である粒子含有樹脂溶液層の透明性を確保する観点から、粒子含有樹脂層11bに含まれるフィラーとして、所定範囲内の屈折率、且つ、所定範囲内の粒子径を有する粒子を含み、且つ、粒子含有樹脂層11bの粒子と樹脂との質量比(粒子/樹脂)を、所定範囲内としている。 In the present technology, from the viewpoint of ensuring the transparency of the particle-containing resin solution layer that is a precursor of the particle-containing resin layer 11b by reducing light scattering, the filler contained in the particle-containing resin layer 11b is within a predetermined range. The particles have a refractive index and a particle diameter within a predetermined range, and the mass ratio (particle / resin) of the particle-containing resin layer 11b to the resin is within the predetermined range.
 粒子含有樹脂層11bを上記構成にした理由について説明する。例えば、アルミナ粒子等の白い無機物の粉体は、無色透明な粒子で構成されているが、光の散乱現象により白くなっている。本願発明者等は、鋭意検討の結果、粒子含有樹脂溶液層中の散乱は、可視光(青、緑、黄色、橙色、赤の可視光)の波長とほぼ同じ範囲(450nm超750nm未満)の径を持つ粒子表面で発生することを見出した。そして、上記波長範囲よりも小さな粒子径の粒子を選択する、または、上記波長範囲よりも大きな粒子径の粒子を選択することによって散乱を回避できることを見出した。具体的には、50nm以上450nm以下の範囲の粒子、若しくは、750nm以上10000nm以下の粒子が有効である。ただし、粒子径が小さすぎると塗布に適切な塗料粘度よりも高くなるため、50nm以上であることが好ましい。また、粒子径が10000nmよりも大きい場合には塗布したい厚みよりも粒子の方が大きくなるケースがあり、電池の厚みが設計どおりにいかなくなる。 The reason why the particle-containing resin layer 11b is configured as described above will be described. For example, white inorganic powders such as alumina particles are formed of colorless and transparent particles, but are white due to light scattering. As a result of intensive studies, the inventors of the present application have found that the scattering in the particle-containing resin solution layer is substantially the same as the wavelength of visible light (blue, green, yellow, orange, red visible light) (over 450 nm and less than 750 nm). It was found to occur on the particle surface with a diameter. Then, it has been found that scattering can be avoided by selecting particles having a particle size smaller than the above wavelength range or by selecting particles having a particle size larger than the above wavelength range. Specifically, particles in the range of 50 nm to 450 nm, or particles of 750 nm to 10000 nm are effective. However, if the particle diameter is too small, the viscosity of the coating material is higher than that suitable for application, and thus it is preferably 50 nm or more. In addition, when the particle diameter is larger than 10,000 nm, there are cases where the particle becomes larger than the thickness to be applied, and the thickness of the battery does not work as designed.
 粒子含有樹脂層11bに含まれる粒子の粒子径は、粒子径D50の値で規定することができる。なお、粒子径D50が、上記範囲(50nm以上450nm以下の粒子、若しくは、750nm以上10000nm以下)に入っていれば、例えばD10、D90等の粒度分布の一部の粒子径が、上記可視光の波長領域(450nm超750nm未満)に入っていても全体としての透明度が保たれる。また、粒子が凝集して二次粒子を形成している場合でも、二次粒子の表面凸凹のサイズが光散乱する波長と等しくなるため、凸凹のもととなる粒子1個の粒子径が重要である。 The particle diameter of the particles contained in the particle-containing resin layer 11b can be defined by the value of the particle diameter D50. If the particle diameter D50 is in the above range (particles of 50 nm to 450 nm, or 750 nm to 10000 nm), for example, a part of the particle size distribution of D10, D90, etc. Even in the wavelength region (over 450 nm and less than 750 nm), the transparency as a whole is maintained. Even when the particles are aggregated to form secondary particles, the size of the surface irregularities of the secondary particles is equal to the wavelength of light scattering, so the particle diameter of one particle that is the basis of the irregularities is important. It is.
 さらに、樹脂溶液の屈折率と粒子の屈折率との違い(固体は高く、液体は低い)からくる光の屈折による散乱をおさえると透明度が増すことも見出した。粒子含有樹脂溶液層は、溶媒成分を多く含むため屈折率が1.3以上1.8以下となるケースが多く、できるだけこの範囲に屈折率が近い材料(屈折率が2.4未満、好ましくは2.1以下)を選択すると、光が粒子含有樹脂溶液層の粒子を透過する際に直進して進めるようになる。 Furthermore, it was found that the transparency increases when the scattering due to the refraction of light coming from the difference between the refractive index of the resin solution and the refractive index of the particles (the solid is high and the liquid is low) is suppressed. Since the particle-containing resin solution layer contains a large amount of solvent components, the refractive index is often 1.3 or more and 1.8 or less, and a material whose refractive index is as close as possible to this range (refractive index is less than 2.4, preferably When 2.1 or less) is selected, the light travels straight when passing through the particles of the particle-containing resin solution layer.
 さらに、粒子含有樹脂層11bの粒子と樹脂との質量比(粒子/樹脂)を、所定範囲内(15/85以上90/10以下)としている。樹脂溶液の屈折率と粒子の屈折率とが同じにならないので、上記質量比の範囲を設定して粒子の比率を下げることによって、白濁が生じても濃くならないようにすることで、粒子含有樹脂溶液の透明性を確保することができる。なお、粒子含有樹脂溶液の透明性を確保する観点からは粒子の比率が低い程好ましいが、粒子の比率が低すぎると粒子含有樹脂層11bの強度が低下する傾向にあるため、上記質量比の下限値を設定している。 Furthermore, the mass ratio (particle / resin) between the particles and the resin in the particle-containing resin layer 11b is within a predetermined range (15/85 or more and 90/10 or less). Since the refractive index of the resin solution and the refractive index of the particles are not the same, by setting the mass ratio range and lowering the ratio of the particles, the particle-containing resin can be prevented from becoming dark even if white turbidity occurs. The transparency of the solution can be ensured. In addition, from the viewpoint of ensuring the transparency of the particle-containing resin solution, the lower the ratio of the particles, the better. However, if the particle ratio is too low, the strength of the particle-containing resin layer 11b tends to decrease. The lower limit is set.
 粒子含有樹脂層11bは、電解液を含んでいてもよい。例えば、セパレータ11が電池に組み込まれた状態では、粒子含有樹脂層11bに電解液が含浸され、粒子含有樹脂層11bは電解液を含む。この場合、電解液を含む粒子含有樹脂層11bは、粒子含有樹脂層11bに含まれる樹脂の電解液の吸収性、電解液に対する溶解性および膨潤性の少なくとも何れか等に応じて、第1の状態または第2の状態を形成する。 The particle-containing resin layer 11b may contain an electrolytic solution. For example, in a state where the separator 11 is incorporated in the battery, the particle-containing resin layer 11b is impregnated with the electrolytic solution, and the particle-containing resin layer 11b includes the electrolytic solution. In this case, the particle-containing resin layer 11b containing the electrolytic solution has a first content depending on at least one of the absorbability of the electrolyte contained in the particle-containing resin layer 11b, the solubility in the electrolytic solution, and the swelling property. A state or a second state is formed.
 なお、樹脂の電解液の吸収性、電解液に対する溶解性および膨潤性は、樹脂種、重合度、分子量等を調整することによって、変えることができる。本明細書では、電解液を含む粒子含有樹脂層11bが第1の状態を形成する樹脂を、バインダー高分子化合物と称し、電解液を含む粒子含有樹脂層11bが第2の状態を形成する樹脂を、マトリックス高分子化合物と称する。 In addition, the absorbability of the electrolyte solution of the resin, the solubility in the electrolyte solution, and the swellability can be changed by adjusting the resin type, the degree of polymerization, the molecular weight, and the like. In this specification, the resin in which the particle-containing resin layer 11b including the electrolytic solution forms the first state is referred to as a binder polymer compound, and the particle-containing resin layer 11b including the electrolytic solution forms the second state. Is referred to as a matrix polymer compound.
(第1の状態)
 第1の状態では、電解液が、バインダー高分子化合物および粒子の少なくとも何れかによって形成された微多孔内(空隙)に存在した状態で、粒子含有樹脂層11bに含まれた状態となる。この場合、粒子含有樹脂層11bは、セパレータとしての機能を有する。すなわち、粒子含有樹脂層11bは、例えば、セパレータ基材11aと共に、正極と負極との間に介在し、両極活物質の接触を防止するとともに、セパレータ基材11aと同様、その微多孔内に電解液を保持して電極間のイオン伝導の通路を形成する。
(First state)
In the first state, the electrolytic solution is contained in the particle-containing resin layer 11b in a state in which the electrolytic solution is present in a microporous (void) formed by at least one of the binder polymer compound and the particles. In this case, the particle-containing resin layer 11b has a function as a separator. That is, for example, the particle-containing resin layer 11b is interposed between the positive electrode and the negative electrode together with the separator base material 11a to prevent contact between the bipolar active materials, and in the same manner as the separator base material 11a, the particle-containing resin layer 11b is electrolyzed in the microporous structure. The liquid is held to form an ion conduction path between the electrodes.
(第2の状態)
 第2の状態では、電解液が、マトリックス高分子化合物に吸収された状態で、粒子含有樹脂層11bに含まれた状態となる。すなわち、粒子含有樹脂層11bに電解液が含浸され、マトリックス高分子化合物が膨潤し、いわゆるゲル状となる。なお、この状態では、マトリックス高分子化合物は電解液を吸収し膨潤していわゆるゲル状態となり、マトリックス高分子化合物によって電解液および粒子が保持される。粒子含有樹脂層11bの多孔構造は、マトリックス高分子化合物の膨潤とともに消滅してもよい。この場合、粒子含有樹脂層11bは、電解質としての機能を有する。すなわち、粒子含有樹脂層11bは、電解液を吸収したマトリックス高分子化合物自体がイオン伝導体として機能する電解質となる。
(Second state)
In the second state, the electrolyte solution is absorbed in the matrix polymer compound and is included in the particle-containing resin layer 11b. That is, the particle-containing resin layer 11b is impregnated with the electrolytic solution, and the matrix polymer compound swells to become a so-called gel. In this state, the matrix polymer compound absorbs the electrolyte and swells to form a so-called gel state, and the matrix polymer compound holds the electrolyte and particles. The porous structure of the particle-containing resin layer 11b may disappear with the swelling of the matrix polymer compound. In this case, the particle-containing resin layer 11b has a function as an electrolyte. That is, the particle-containing resin layer 11b becomes an electrolyte in which the matrix polymer compound itself that has absorbed the electrolytic solution functions as an ionic conductor.
(樹脂)
 樹脂としては、マトリックス高分子化合物およびバインダー高分子化合物として、溶媒に相溶可能な性質を有するものを用いることができる。このような樹脂としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等の含フッ素樹脂、フッ化ビニリデン-テトラフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体等の含フッ素ゴム、スチレン-ブタジエン共重合体およびその水素化物、アクリロニトリル-ブタジエン共重合体およびその水素化物、アクリロニトリル-ブタジエン-スチレン共重合体およびその水素化物、メタクリル酸エステル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニル等のゴム類、エチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド(特にアラミド)、ポリアミドイミド、ポリアクリロニトリル、ポリビニルアルコール、ポリエーテル、アクリル酸樹脂またはポリエステル等の融点およびガラス転移温度の少なくとも一方が180℃以上の樹脂、ポリエチレングリコール等が挙げられる。
(resin)
As the resin, a matrix polymer compound and a binder polymer compound having a property compatible with a solvent can be used. Such resins include fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene, fluorine-containing rubbers such as vinylidene fluoride-tetrafluoroethylene copolymer and ethylene-tetrafluoroethylene copolymer, and styrene-butadiene copolymer. Polymer and its hydride, acrylonitrile-butadiene copolymer and its hydride, acrylonitrile-butadiene-styrene copolymer and its hydride, methacrylic acid ester-acrylic acid ester copolymer, styrene-acrylic acid ester copolymer , Rubbers such as acrylonitrile-acrylic acid ester copolymer, ethylene propylene rubber, polyvinyl alcohol, polyvinyl acetate, ethyl cellulose, methyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose Melting point and glass of cellulose derivatives, polyphenylene ether, polysulfone, polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide (especially aramid), polyamideimide, polyacrylonitrile, polyvinyl alcohol, polyether, acrylic resin or polyester Examples thereof include a resin having at least one transition temperature of 180 ° C. or higher and polyethylene glycol.
 この樹脂は、例えば、フィブリル化し、フィブリルが相互連続的に繋がった三次元的なネットワーク構造を有していてもよい。フィラー(粒子)が、この三次元的なネットワーク構造を有する樹脂に担持されることにより、互いに連結することなく分散状態を保つことができる。また、樹脂はフィブリル化せずにセパレータ基材11aの表面や粒子同士を結着してもよい。この場合、より高い結着性を得ることができる。 This resin may have, for example, a three-dimensional network structure in which the fibers are fibrillated and the fibrils are continuously connected to each other. Since the filler (particle) is supported on the resin having the three-dimensional network structure, the dispersed state can be maintained without being connected to each other. Further, the surface of the separator base material 11a and the particles may be bound to each other without the resin being fibrillated. In this case, higher binding properties can be obtained.
(フィラー)
 粒子含有樹脂層11bに含まれるフィラーとしては、光の散乱を低減させて粒子含有樹脂層11bの前駆体である粒子含有樹脂溶液層の透明性を確保する観点から、所定範囲内の粒子径、且つ、所定範囲内の屈折率を有する粒子を用いる。
(Filler)
As the filler contained in the particle-containing resin layer 11b, from the viewpoint of reducing light scattering and ensuring the transparency of the particle-containing resin solution layer, which is a precursor of the particle-containing resin layer 11b, a particle diameter within a predetermined range, In addition, particles having a refractive index within a predetermined range are used.
(粒子の粒子径)
 粒子の粒子径としては、粒子径D50が、50nm以上450nm以下、若しくは、750nm以上10000nm以下に設定されている。これらの範囲の粒子径を有する粒子を用いることにより、粒子含有樹脂溶液層の透明度を確保できるからである。また、粒子径D50が50nm未満の場合には、粒子径が小さすぎて、塗布に適切な塗料粘度よりも高くなるからである。粒子径D50が、10000nmよりも大きい場合には塗布したい厚みよりも粒子の方が大きくなるケースがあり、電池の厚みが設計どおりにいかなくなるからである。
(Particle diameter)
As the particle diameter of the particles, the particle diameter D50 is set to 50 nm to 450 nm or 750 nm to 10000 nm. This is because the transparency of the particle-containing resin solution layer can be secured by using particles having a particle diameter in these ranges. Further, when the particle diameter D50 is less than 50 nm, the particle diameter is too small and becomes higher than the paint viscosity appropriate for application. This is because when the particle diameter D50 is larger than 10000 nm, there are cases where the particles are larger than the thickness to be applied, and the thickness of the battery cannot be as designed.
 また、上記粒子径D50の750nm以上10000nm以下の範囲の下限については、粒子含有樹脂溶液層の透明性をより向上できる観点から、好ましくは800nm以上、より好ましくは2000nm以上である。である。また、上記粒子径D50の50nm以上450nm以下の範囲の上限については、粒子含有樹脂溶液層の透明性をより向上させる観点から、好ましくは400nm以下であり、より好ましくは300nm以下である。 The lower limit of the particle diameter D50 in the range of 750 nm to 10,000 nm is preferably 800 nm or more, more preferably 2000 nm or more, from the viewpoint of further improving the transparency of the particle-containing resin solution layer. It is. The upper limit of the particle diameter D50 in the range of 50 nm to 450 nm is preferably 400 nm or less, more preferably 300 nm or less, from the viewpoint of further improving the transparency of the particle-containing resin solution layer.
 また、粒子含有樹脂溶液層の透明性をより向上させる観点から、粒子の粒子径としては、粒子径D50に加えて、さらに粒子径D40および粒子径D60が、50nm以上450nm以下、または、750nm以上10000nm以下であることがより好ましい。すなわち、粒子の粒子径D50が50nm以上450nm以下であり、且つ、粒子径D40が50nm以上450nm以下であり、粒子径D60が50nm以上450nm以下であることが好ましい。あるいは、粒子の粒子径D50が750nm以上10000nm以下であり、且つ、粒子径D40が750nm以上10000nm以下であり、粒子径D60が750nm以上10000nm以下であることが好ましい。 Further, from the viewpoint of further improving the transparency of the particle-containing resin solution layer, the particle diameter of the particles is such that, in addition to the particle diameter D50, the particle diameter D40 and the particle diameter D60 are 50 nm or more and 450 nm or less, or 750 nm or more. More preferably, it is 10,000 nm or less. That is, the particle diameter D50 of the particles is preferably 50 nm to 450 nm, the particle diameter D40 is 50 nm to 450 nm, and the particle diameter D60 is preferably 50 nm to 450 nm. Alternatively, the particle diameter D50 of the particles is preferably 750 nm or more and 10,000 nm or less, the particle diameter D40 is 750 nm or more and 10,000 nm or less, and the particle diameter D60 is preferably 750 nm or more and 10,000 nm or less.
(粒子径の測定)
 粒子の粒子径D50は、例えば、粒子含有樹脂層から樹脂成分等を除去した後の粒子を、レーザー回折法により測定した粒度分布において、小さい粒子径の粒子側から起算した体積累計50%の粒子径である。また、上記測定した粒度分布から、体積累計40%の粒子径D40の値や体積累計60%の粒子径D60を得ることができる。
(Measurement of particle diameter)
The particle diameter D50 of the particles is, for example, a particle having a cumulative volume of 50% calculated from the particle side having a small particle diameter in the particle size distribution measured by the laser diffraction method after removing the resin component from the particle-containing resin layer. Is the diameter. Further, from the measured particle size distribution, a particle diameter D40 value of 40% cumulative volume and a particle diameter D60 of 60% cumulative volume can be obtained.
 粒子の形状は、典型的には、例えば、球状、または、鱗片状、薄片状等の板状、若しくは針状等の扁平形状(扁平状と称する場合もある)等であるが、これに限定されるものではない。粒子の形状としては、粒界での光散乱をより少なくでき透明性をより向上できる観点から、球状以外の非球状が好ましく、非球状の中でも鱗片状、薄片状等の板状、若しくは針状等の扁平形状がより好ましい。また、粒子としては、透明性をより向上できる観点から、球状になりやすい多結晶体や一次粒子の凝集体である二次粒子よりも、単結晶または少数の単結晶からなる粒子が好ましい。なお、球状には、真球状のみならず、真球状がやや扁平または歪んだ形状、真球状の表面に凹凸が形成された形状、またはこれらの形状が組み合わされた形状等も含まれる。扁平形状とは、粒子の長辺と粒子の短辺との比(長辺/短辺)が、2/1以上である粒子のことをいう。その値は、例えば走査型電子顕微鏡(SEM:Scanning Electron Microscope)で撮影した粒子の拡大写真から読み取ることができる。鱗片状、薄片状等の板状および針状は、扁平形状の一種であり、薄くて平たい形状を板状と称し、針のように細長い形状を針状と称する。また、鱗片状および薄片状は板状の一種である。 The shape of the particles is typically, for example, a spherical shape, a plate shape such as a scale shape or a flake shape, or a flat shape such as a needle shape (sometimes referred to as a flat shape), but is not limited thereto. Is not to be done. The shape of the particles is preferably a non-spherical shape other than a spherical shape from the viewpoint of reducing light scattering at the grain boundary and improving the transparency, and among the non-spherical shapes, a plate shape such as a scale shape or a flake shape, or a needle shape A flat shape such as is more preferable. Moreover, as a particle | grain, from the viewpoint which can improve transparency more, the particle | grains which consist of a single crystal or a few single crystals are preferable rather than the secondary particle | grains which are the polycrystal which tends to become spherical, and the aggregate of a primary particle. Note that the spherical shape includes not only a true spherical shape but also a shape in which the true spherical shape is slightly flat or distorted, a shape in which irregularities are formed on the true spherical surface, or a shape in which these shapes are combined. The flat shape refers to a particle having a ratio (long side / short side) of the long side of the particle to the short side of the particle of 2/1 or more. The value can be read from, for example, an enlarged photograph of particles taken with a scanning electron microscope (SEM). A plate shape such as a scale shape or a flake shape and a needle shape are a kind of flat shape, and a thin and flat shape is referred to as a plate shape, and an elongated shape like a needle is referred to as a needle shape. Scale-like and flake-like shapes are types of plates.
 本願発明者等は、鋭意検討の結果、これらの形状の中でも扁平形状の粒子を選んだ場合には、その粒子の各方向からの投影寸法の最大値および最少値の少なくとも一方が、上記範囲(50nm以上450nm以下、または750nm以上10000nm以下)に入ることにより透明をより保つことができることを見出している。例えば、板状であれば主要面の最大長が750nm以上10000nm以下であり、厚みが50nm以上450nm以下の範囲であることが好ましい。針状であれば長さが50nm以上10000nm以下であり、太さが50nm以上450nm以下の範囲であると、光の散乱が少ない。 As a result of intensive studies, the inventors of the present application have selected at least one of the maximum value and the minimum value of the projected dimension from each direction of the particle when the flat shape particle is selected among these shapes. It has been found that transparency can be further maintained by entering 50 nm or more and 450 nm or less, or 750 nm or more and 10,000 nm or less. For example, in the case of a plate shape, the maximum length of the main surface is preferably 750 nm or more and 10,000 nm or less, and the thickness is preferably in the range of 50 nm or more and 450 nm or less. In the case of a needle shape, the length is 50 nm or more and 10,000 nm or less, and the thickness is in the range of 50 nm or more and 450 nm or less, there is little light scattering.
 また、例えば、可視光波長範囲である350nm以上850nm以下の直径を持つ球状粒子を持つと、塗料の粘度や電池特性の影響低減と粒子含有樹脂層11bとの強度向上のバランスをとるのに最適とされている。したがって、1粒子あたりの体積を、上記範囲の直径を持つ球状粒子と同じ範囲とするのに、上記投影寸法範囲の板状や針状の粒子を選択するとバランスを崩さずに透明性を得るのに好適である。 In addition, for example, having spherical particles with a diameter of 350 nm or more and 850 nm or less, which is the visible light wavelength range, is optimal for balancing the reduction in the viscosity of the paint and battery characteristics and the improvement in the strength of the particle-containing resin layer 11b. It is said that. Therefore, if the volume per particle is set to the same range as the spherical particles having the diameter in the above range, selecting a plate-like or needle-like particle in the projected dimension range can obtain transparency without breaking the balance. It is suitable for.
(粒子の屈折率)
 粒子の屈折率は、粒子含有樹脂溶液層の透明性を確保する観点から、1.3以上2.4未満であり、1.3以上2.1以下であることが好ましい。樹脂溶液と粒子との屈折率の違い(固体は屈折率が高く、液体は屈折率が低いという違い)からくる光の屈折による散乱による透明性の低下を抑えるためである。固体である粒子の屈折率を、液体である樹脂溶液の屈折率に近づけるため、固体である粒子の中でも、低い方の屈折率である1.3以上2.4未満、好ましくは1.3以上2.1以下の範囲の粒子を用いる。
(Refractive index of particles)
From the viewpoint of ensuring the transparency of the particle-containing resin solution layer, the refractive index of the particles is 1.3 or more and less than 2.4, and preferably 1.3 or more and 2.1 or less. This is to suppress a decrease in transparency due to scattering due to refraction of light coming from the difference in refractive index between the resin solution and the particles (difference that the solid has a high refractive index and the liquid has a low refractive index). In order to make the refractive index of the solid particles close to the refractive index of the resin solution that is a liquid, among the solid particles, the lower refractive index is 1.3 or more and less than 2.4, preferably 1.3 or more. Use particles in the range of 2.1 or less.
 粒子としては、具体的には、例えば無機粒子および有機粒子の少なくとも何れか等を用いることができる。無機粒子としては、例えば、金属酸化物、硫酸塩化合物、炭酸塩化合物、金属水酸化物、金属炭化物、金属窒化物、金属フッ化物、リン酸塩化合物、鉱物等の粒子を挙げることができる。なお、粒子としては、典型的には電気絶縁性を有するものを用いるが、導電性材料の粒子(微粒子)の表面を、電気絶縁性材料で表面処理等を行うことで、電気絶縁性を持たせた粒子(微粒子)を用いてもよい。 Specifically, for example, at least one of inorganic particles and organic particles can be used as the particles. Examples of the inorganic particles include particles of metal oxide, sulfate compound, carbonate compound, metal hydroxide, metal carbide, metal nitride, metal fluoride, phosphate compound, mineral, and the like. As the particles, particles having electrical insulation properties are typically used. However, the surface of the particles (fine particles) of the conductive material is electrically insulated by performing surface treatment with the electrical insulation material. Sedimented particles (fine particles) may be used.
 金属酸化物としては、酸化ケイ素(SiO2、シリカ(珪石粉末、石英ガラス、ガラスビーズ、珪藻土、湿式又は乾式の合成品等、湿式合成品としてはコロイダルシリカ、乾式合成品としてはフュームドシリカが挙げられる。))、酸化亜鉛(ZnO)、酸化スズ(SnO)、酸化マグネシウム(マグネシア、MgO)、酸化アンチモン(Sb23)、酸化アルミニウム(アルミナ、Al23)等を好適に用いることができる。 Examples of the metal oxide include silicon oxide (SiO 2 , silica (silica powder, quartz glass, glass beads, diatomaceous earth, wet or dry synthetic products, etc.), wet synthetic products such as colloidal silica, and dry synthetic products such as fumed silica. Zinc oxide (ZnO), tin oxide (SnO), magnesium oxide (magnesia, MgO), antimony oxide (Sb 2 O 3 ), aluminum oxide (alumina, Al 2 O 3 ), etc. are preferably used. be able to.
 硫酸塩化合物としては、硫酸マグネシウム(MgSO4)、硫酸カルシウム(CaSO4)、硫酸バリウム(BaSO4)、硫酸ストロンチウム(SrSO4)等を好適に用いることができる。炭酸塩化合物としては、炭酸マグネシウム(MgCO3、マグネサイト)、炭酸カルシウム(CaCO3、方解石)、炭酸バリウム(BaCO3)、炭酸リチウム(Li2CO3)等を好適に用いることができる。金属水酸化物としては、水酸化マグネシウム(Mg(OH)2、ブルサイト)、水酸化アルミニウム(Al(OH)3(バイヤーライト、ギブサイト))、水酸化亜鉛(Zn(OH)2)等や、ベーマイト(Al232OまたはAlOOH、ダイアスポア)、ホワイトカーボン(SiO2・nH2O、シリカ水和物)、酸化ジルコニウム水和物(ZrO2・nH2O(n=0.5~10))、酸化マグネシウム水和物(MgOa・mH2O(a=0.8~1.2、m=0.5~10))等の酸化水酸化物、水和酸化物や、水酸化マグネシウム8水和物等の水酸化水和物等を好適に用いることができる。金属炭化物としては、炭化ホウ素(B4C)等を好適に用いることができる。金属窒化物としては、窒化ケイ素(Si34)、窒化ホウ素(BN)、窒化アルミニウム(AlN)または窒化チタン(TiN)等を好適に用いることができる。 As the sulfate compound, magnesium sulfate (MgSO 4 ), calcium sulfate (CaSO 4 ), barium sulfate (BaSO 4 ), strontium sulfate (SrSO 4 ) and the like can be suitably used. As the carbonate compound, magnesium carbonate (MgCO 3 , magnesite), calcium carbonate (CaCO 3 , calcite), barium carbonate (BaCO 3 ), lithium carbonate (Li 2 CO 3 ) and the like can be suitably used. Examples of metal hydroxides include magnesium hydroxide (Mg (OH) 2 , brucite), aluminum hydroxide (Al (OH) 3 (Buyerlite, Gibbsite)), zinc hydroxide (Zn (OH) 2 ), etc. , Boehmite (Al 2 O 3 H 2 O or AlOOH, diaspore), white carbon (SiO 2 .nH 2 O, silica hydrate), zirconium oxide hydrate (ZrO 2 .nH 2 O (n = 0.5) To 10)), oxide hydroxides such as magnesium oxide hydrate (MgO a · mH 2 O (a = 0.8 to 1.2, m = 0.5 to 10)), hydrated oxides, Hydroxic hydrates such as magnesium hydroxide octahydrate can be suitably used. As the metal carbide, boron carbide (B 4 C) or the like can be suitably used. As the metal nitride, silicon nitride (Si 3 N 4 ), boron nitride (BN), aluminum nitride (AlN), titanium nitride (TiN), or the like can be suitably used.
 金属フッ化物としては、フッ化リチウム(LiF)、フッ化アルミニウム(AlF3)、フッ化カルシウム(CaF2)、フッ化バリウム(BaF2)、フッ化マグネシウム等を好適に用いることができる。リン酸塩化合物としては、リン酸トリリチウム(Li3PO4)、リン酸マグネシウム、リン酸水素マグネシウム、ポリリン酸アンモニウム等を好適に用いることができる。 As the metal fluoride, lithium fluoride (LiF), aluminum fluoride (AlF 3 ), calcium fluoride (CaF 2 ), barium fluoride (BaF 2 ), magnesium fluoride, or the like can be suitably used. As the phosphate compound, trilithium phosphate (Li 3 PO 4 ), magnesium phosphate, magnesium hydrogen phosphate, ammonium polyphosphate, and the like can be suitably used.
 鉱物としては、ケイ酸塩鉱物、炭酸塩鉱物、酸化鉱物等が挙げられる。ケイ酸塩鉱物は、結晶構造を基に、ネソケイ酸塩鉱物、ソロケイ酸塩鉱物、サイクロケイ酸塩鉱物、イノケイ酸塩鉱物、層状(フィロ)ケイ酸塩鉱物、テクトケイ酸塩鉱物に分類される。なお、結晶構造とは異なる分類基準で、アスベスト類と称される繊維状ケイ酸塩鉱物に分類されるものもある。 Examples of minerals include silicate minerals, carbonate minerals, and oxide minerals. Silicate minerals are classified into nesosilicate minerals, solosilicate minerals, cyclosilicate minerals, inosilicate minerals, layered (phyllo) silicate minerals, and tectosilicate minerals based on their crystal structures. . Some are classified into fibrous silicate minerals called asbestos based on a classification standard different from the crystal structure.
 ネソケイ酸塩鉱物は、独立のSi-O四面体([SiO44-)よりなる島状四面体型ケイ酸鉱物である。ネソケイ酸塩鉱物としては、かんらん石類、柘榴石類に該当するもの等が挙げられる。ネソケイ酸塩鉱物としては、より具体的には、オリビン(Mg2SiO4(苦土かんらん石)とFe2SiO4(鉄かんらん石)の連続固溶体)、ケイ酸マグネシウム(フォルステライト(苦土かんらん石)、Mg2SiO4)、ケイ酸アルミニウム(Al2SiO5、珪線石、紅柱石、藍晶石)、ケイ酸亜鉛(珪亜鉛鉱物、Zn2SiO4)、ケイ酸ジルコニウム(ジルコン、ZrSiO4)、ムライト(3Al23・2SiO2~2Al23・SiO2)等が挙げられる。 The nesosilicate mineral is an island-like tetrahedral silicate mineral made of an independent Si—O tetrahedron ([SiO 4 ] 4− ). Examples of the nesosilicate mineral include those corresponding to olivines and meteorites. More specifically, as the nesosilicate mineral, olivine (a continuous solid solution of Mg 2 SiO 4 (magnerite olivine) and Fe 2 SiO 4 (iron olivine)), magnesium silicate (forsterite (bitter) Earth olivine), Mg 2 SiO 4 ), aluminum silicate (Al 2 SiO 5 , wilted stone, clinopite, kyanite), zinc silicate (silica zinc mineral, Zn 2 SiO 4 ), zirconium silicate ( Zircon, ZrSiO 4 ), mullite (3Al 2 O 3 .2SiO 2 to 2Al 2 O 3 .SiO 2 ) and the like.
 ソロケイ酸塩鉱物は、Si-O四面体の複結合群([Si276-、[Si51612-)よりなる群構造型ケイ酸塩鉱物である。ソロケイ酸塩鉱物としては、ベスブ石、緑簾石類に該当するもの等が挙げられる。 The solosilicate mineral is a group structure type silicate mineral composed of a Si—O tetrahedral double bond group ([Si 2 O 7 ] 6− , [Si 5 O 16 ] 12− ). Examples of the silicate mineral include those corresponding to vesuvite and chlorite.
 サイクロケイ酸塩鉱物は、Si-O四面体の有限(3-6個)結合の環状体([Si396-、[Si4128-、[Si61812-)よりなる環状体型のケイ酸塩鉱物である。サイクロケイ酸塩鉱物としては、緑柱石、電気石類等が挙げられる。 The cyclosilicate mineral is composed of a Si—O tetrahedral finite (3-6) ring ([Si 3 O 9 ] 6− , [Si 4 O 12 ] 8− , [Si 6 O 18 ] 12. - ) An annular silicate mineral. Examples of the cyclosilicate mineral include beryl and tourmaline.
 イノケイ酸塩鉱物は、Si-O四面体の連結が無限に延びて、鎖状([Si264-)および帯状([Si396-、[Si4116-、[Si51510-、[Si72114-)をなす繊維状型ケイ酸塩鉱物である。イノケイ酸塩鉱物としては、例えば、ケイ酸カルシウム(珪灰石(ワラストナイト)、CaSiO3)等の輝石類に該当するもの等、角閃石類に該当するもの等が挙げられる。 Inosilicate minerals have an infinite number of Si—O tetrahedral linkages, and are chain-like ([Si 2 O 6 ] 4− ) and belt-like ([Si 3 O 9 ] 6− , [Si 4 O 11 ] 6 - , [Si 5 O 15 ] 10- , [Si 7 O 21 ] 14- ). Examples of the inosilicate mineral include those corresponding to pyroxenes such as calcium silicate (wollastonite, CaSiO 3 ), and those corresponding to amphibole.
 層状珪酸塩鉱物は、Si-O四面体([SiO44-)の網状結合をなす層状型ケイ酸塩鉱物である。なお、層状珪酸塩鉱物の具体例は、後述する。 The layered silicate mineral is a layered silicate mineral that forms a network bond of Si—O tetrahedra ([SiO 4 ] 4− ). In addition, the specific example of a layered silicate mineral is mentioned later.
 テクトケイ酸塩鉱物は、Si-O四面体([SiO44-)が3次元的の網目結合をなす3次元網目構造型ケイ酸塩鉱物である。テクトケイ酸塩鉱物としては、石英、長石類、沸石類等、ゼオライト(M2/nO・Al23・xSiO2・yH2O、Mは金属元素、nはMの価数、x≧2、y≧0)=沸石等のアルミノケイ酸塩(aM2O・bAl23・cSiO2・dH2O、Mは上記と同義である。a、b、c、dは、それぞれ1以上の整数である。)等が挙げられる。 The tectosilicate mineral is a three-dimensional network structure type silicate mineral in which a Si—O tetrahedron ([SiO 4 ] 4− ) forms a three-dimensional network bond. The tectosilicates minerals, quartz, feldspars, zeolites, and the like, zeolite (M 2 / n O · Al 2 O 3 · xSiO 2 · yH 2 O, M is a metal element, n represents the valence of M, x ≧ 2, y ≧ 0) = aluminosilicate zeolite such as (aM 2 O · bAl 2 O 3 · cSiO 2 · dH 2 O, M is as defined above .a, b, c, d are each 1 or more And the like.) And the like.
 アスべスト類としては、クリソタイル、アモサイト、アンソフィナイト等が挙げられる。 ¡Asbestos include chrysotile, amosite, anthophinite and the like.
 炭酸塩鉱物としては、ドロマイト(苦灰石、CaMg(CO32)、ハイドロタルサイト(Mg6Al2(CO3)(OH)16・4(H2O))等が挙げられる。 The carbonate minerals, dolomite (dolomite, CaMg (CO 3) 2) , hydrotalcite (Mg 6 Al 2 (CO 3 ) (OH) 16 · 4 (H 2 O)) and the like.
 酸化鉱物としては、スピネル(MgAl24)等が挙げられる。 Examples of the oxide mineral include spinel (MgAl 2 O 4 ).
 その他の鉱物としては、チタン酸バリウム(BaTiO3)またはチタン酸ストロンチウム(SrTiO3)等が挙げられる。なお、鉱物は天然鉱物であっても人工鉱物であってもよい。 Examples of other minerals include barium titanate (BaTiO 3 ) and strontium titanate (SrTiO 3 ). The mineral may be a natural mineral or an artificial mineral.
 なお、これらの鉱物の中で、粘土鉱物に分類されるものがある。この粘土鉱物としては、結晶質の粘土鉱物、非結晶質または準結晶質の粘土鉱物等が挙げられる。結晶質の粘土鉱物としては、層状ケイ酸塩鉱物、層状ケイ酸塩に近い構造のもの、その他のケイ酸塩鉱物等のケイ酸塩鉱物、層状炭酸塩鉱物等が挙げられる。 Of these minerals, some are classified as clay minerals. Examples of the clay mineral include a crystalline clay mineral, an amorphous or quasicrystalline clay mineral, and the like. Examples of crystalline clay minerals include layered silicate minerals, those having a structure similar to layered silicates, silicate minerals such as other silicate minerals, and layered carbonate minerals.
 層状ケイ酸塩鉱物は、Si-Oの四面体シートと、四面体シートと組合うAl-O、Mg-O等の八面体シートとを備えるものである。層状ケイ酸塩は、典型的には四面体シートおよび八面体シートの数、八面体の陽イオンの数、層電荷によって分類される。なお、層状ケイ酸塩鉱物は、層間の金属イオンの全部または一部を有機アンモニウムイオン等で置換したもの等であってもよい。 The layered silicate mineral includes a Si—O tetrahedral sheet and an octahedral sheet such as Al—O and Mg—O combined with the tetrahedral sheet. Layered silicates are typically classified by the number of tetrahedral and octahedral sheets, the number of cations in the octahedron, and the layer charge. The layered silicate mineral may be one obtained by substituting all or part of metal ions between layers with organic ammonium ions or the like.
 具体的には、層状ケイ酸塩鉱物としては、1:1型構造のカオリナイト-蛇紋石族、2:1型構造のパイロフィライト-タルク族、スメクタイト族、バーミキュライト族、マイカ(雲母)族、ブリトルマイカ(脆雲母)族、クロライト(緑泥石族)等に該当するもの等が挙げられる。 Specifically, the layered silicate minerals include a kaolinite-serpentine group with a 1: 1 type structure, a pyrophyllite-talc group, a smectite group, a vermiculite group, a mica group with a 2: 1 type structure. And those corresponding to the brittle mica (brittle mica) family, chlorite (chlorite group), and the like.
 カオリナイト-蛇紋石族に該当するものとしては、例えば、クリソタイル、アンチゴライト、リザーダイト、カオリナイト(Al2Si25(OH)4)、ディッカイト等が挙げられる。パイロフィライト-タルク族に該当するものとしては、例えば、タルク(Mg3Si410(OH)2)、ウィレムサイト、葉ろう石(パイロフィライト、Al2Si410(OH)2)等が挙げられる。スメクタイト族に該当するものとしては、例えば、サポナイト〔(Ca/2,Na)0.33(Mg,Fe2+3(Si,Al)410(OH)2・4H2O〕、ヘクトライト、ソーコナイト、モンモリロナイト{(Na,Ca)0.33(Al,Mg)2Si410(OH)2・nH2O、なお、モンモリロナイトを主成分とする粘土はベントナイトと称する}、バイデライト、ノントライト等が挙げられる。マイカ(雲母)族に該当するものとしては、例えば、モスコバイト(白雲母、KAl2(AlSi3)O10(OH)2)セリサイト(絹雲母)、フロゴパイト(金雲母)、バイオタイト、レピドライト(リチア雲母)等が挙げられる。ブリトルマイカ(脆雲母)族に該当するものとしては、例えば、マーガライト、クリントナイト、アナンダイト等が挙げられる。クロライト(緑泥石)族に該当するものとしては、例えば、クッケアイト、スドーアイト、クリノクロア、シャモサイト、ニマイト等が挙げられる。 Examples of the kaolinite-serpentine family include chrysotile, antigolite, lizardite, kaolinite (Al 2 Si 2 O 5 (OH) 4 ), and dickite. Examples of the pyrophyllite-talc family include talc (Mg 3 Si 4 O 10 (OH) 2 ), willemsite, and granite (pyrophyllite, Al 2 Si 4 O 10 (OH) 2. ) And the like. Examples of the smectite group include saponite [(Ca / 2, Na) 0.33 (Mg, Fe 2+ ) 3 (Si, Al) 4 O 10 (OH) 2 .4H 2 O], hectorite, Sauconite, montmorillonite {(Na, Ca) 0.33 (Al, Mg) 2Si 4 O 10 (OH) 2 .nH 2 O, where clay containing montmorillonite as a main component is called bentonite}, beidellite, nontrite, etc. . Examples of the mica (mica) family include, for example, moscovite (muscovite, KAl 2 (AlSi 3 ) O 10 (OH) 2 ) sericite (sericite), phlogopite (phlogopite), biotite, lipidite ( Lithia mica) and the like. Examples of those belonging to the brittle mica (brittle mica) family include margarite, clintonite, and anandite. Examples of the chlorite (chlorite) family include kukkeite, sudokuite, clinochlore, chamosite, and nimite.
 層状ケイ酸塩に近い構造のものとしては、リボン状に配列した四面体シートが頂点を逆転しながら隣のリボン状に配列した四面体シートとつながる2:1リボン構造をとる含水マグネシウムケイ酸塩等が挙げられる。含水マグネシウムケイ酸塩としては、セピオライト(海泡石:Mg9Si1230(OH)6(OH24・6H2O)、パリゴルスカイト等が挙げられる。 As a structure close to a layered silicate, a hydrous magnesium silicate having a 2: 1 ribbon structure in which a tetrahedron sheet arranged in a ribbon shape is connected to a tetrahedron sheet arranged in an adjacent ribbon shape while reversing the apex. Etc. Examples of the hydrous magnesium silicate include sepiolite (foamstone: Mg 9 Si 12 O 30 (OH) 6 (OH 2 ) 4 .6H 2 O), palygorskite and the like.
 その他のケイ酸塩鉱物としては、ゼオライト(M2/nO・Al23・xSiO2・yH2O、Mは金属元素、nはMの価数、x≧2、y≧0)等の多孔質アルミノケイ酸塩、アタパルジャイト〔(Mg,Al)2Si410(OH)・6H2O〕等が挙げられる。 Other silicate minerals, zeolites (M 2 / n O · Al 2 O 3 · xSiO 2 · yH 2 O, M is a metal element, n represents the valence of M, x ≧ 2, y ≧ 0) , etc. Porous aluminosilicate, attapulgite [(Mg, Al) 2 Si 4 O 10 (OH) · 6H 2 O], and the like.
 層状炭酸塩鉱物としては、ハイドロタルサイト(Mg6Al2(CO3)(OH)16・4(H2O))等が挙げられる。 The layered carbonate minerals, hydrotalcite (Mg 6 Al 2 (CO 3 ) (OH) 16 · 4 (H 2 O)) and the like.
 非結晶質または準結晶質の粘土鉱物としては、ビンゲライト、イモゴライト(Al2SiO3(OH))、アロフェン等が挙げられる。 Examples of the amorphous or quasicrystalline clay mineral include bingellite, imogolite (Al 2 SiO 3 (OH)), and allophane.
 これらの無機粒子は、単独で用いてもよいし、2種以上を混合して用いてもよい。 These inorganic particles may be used alone or in combination of two or more.
 粒子としては、有機粒子であってもよい。有機粒子を構成する材料としては、メラミン、メラミンシアヌレート、ポリリン酸メラミン、架橋ポリメタクリル酸メチル(架橋PMMA)、ポリエチレン、ポリプロピレン、ポリスチレン、ポリテトラフルオロエチレン、ポリビニリデンフルオリド、ポリアミド、ポリイミド、メラミン樹脂、フェノール樹脂、エポキシ樹脂等が挙げられる。これら材料は、単独で用いてもよいし、2種以上を混合して用いてもよい。 The particles may be organic particles. Materials constituting the organic particles include melamine, melamine cyanurate, melamine polyphosphate, cross-linked polymethyl methacrylate (cross-linked PMMA), polyethylene, polypropylene, polystyrene, polytetrafluoroethylene, polyvinylidene fluoride, polyamide, polyimide, melamine Resins, phenol resins, epoxy resins and the like can be mentioned. These materials may be used alone or in combination of two or more.
(粒子と樹脂との混合比)
 粒子と樹脂との混合比は、粒子含有樹脂溶液の透明性を確保できる観点から、質量比(粒子/樹脂)で粒子/樹脂=15/85以上90/10以下の範囲であり、透明性をより向上できる観点から、15/85以上80/20以下の範囲であることがより好ましく、15/85以上70/30未満の範囲であることがさらに好ましい。なお、粒子含有樹脂溶液の透明性を確保する観点からは粒子の比率が低い程好ましいが、粒子の比率が低すぎると粒子含有樹脂層11bの強度が低下する傾向にあるため、上記質量比の下限値を設定している。また、例えば、PVdF等の樹脂の屈折率は、1.4程等であり、溶媒(N-メチル-2-ピロリドン、ジメチルカーボネート等)の屈折率は1.2等であり、樹脂の屈折率は樹脂溶液の溶媒よりも高いため、樹脂の含有比率が多い方が固体粒子の屈折率に近づき散乱をより抑制できるので好ましい。
(Mixing ratio of particles and resin)
From the viewpoint of ensuring the transparency of the particle-containing resin solution, the mixing ratio of the particles and the resin is in a range of particles / resin = 15/85 to 90/10 in terms of mass ratio (particle / resin). From the viewpoint of further improvement, the range is more preferably 15/85 or more and 80/20 or less, and further preferably 15/85 or more and less than 70/30. In addition, from the viewpoint of ensuring the transparency of the particle-containing resin solution, the lower the ratio of the particles, the better. However, if the particle ratio is too low, the strength of the particle-containing resin layer 11b tends to decrease. The lower limit is set. Further, for example, the refractive index of a resin such as PVdF is about 1.4, the refractive index of a solvent (N-methyl-2-pyrrolidone, dimethyl carbonate, etc.) is 1.2, and the refractive index of the resin. Is higher than the solvent of the resin solution, and therefore, it is preferable that the content ratio of the resin is large because it can approach the refractive index of the solid particles and suppress scattering more.
(粒子含有樹脂層の厚み)
 粒子含有樹脂層11bの厚みは、例えば、1μm以上15μm以下であることが好ましい。厚みが薄くなることで透明性をより向上できるため好ましいが、薄すぎると厚みの測定精度が低下する傾向にある。一方、厚すぎると透明性が低減する傾向にある。
(Thickness of particle-containing resin layer)
The thickness of the particle-containing resin layer 11b is preferably, for example, 1 μm or more and 15 μm or less. Although it is preferable because transparency can be further improved by reducing the thickness, if it is too thin, the measurement accuracy of the thickness tends to decrease. On the other hand, if it is too thick, the transparency tends to decrease.
(セパレータの厚さ)
 セパレータ11の厚さは、必要な強度を保つことができる厚さ以上であれば任意に設定可能である。セパレータ11は、正極と負極との間の絶縁を図り、短絡等を防止するとともに、セパレータ11を介した電池反応を好適に行うためのイオン透過性を有し、かつ電池内において電池反応に寄与する活物質層の体積効率をできるだけ高くできる厚さに設定されることが好ましい。具体的に、セパレータ11の厚さは、例えば4μm以上20μm以下であることが好ましい。なお、セパレータ11の厚さは、この範囲に限定されるものではない。
(Thickness of separator)
The thickness of the separator 11 can be arbitrarily set as long as it is equal to or greater than a thickness that can maintain a required strength. The separator 11 insulates between the positive electrode and the negative electrode, prevents a short circuit and the like, has ion permeability for suitably performing the battery reaction via the separator 11, and contributes to the battery reaction in the battery. It is preferable to set the thickness of the active material layer to be as thick as possible. Specifically, the thickness of the separator 11 is preferably 4 μm or more and 20 μm or less, for example. In addition, the thickness of the separator 11 is not limited to this range.
(1-2)セパレータの製造方法
 上述した第1の実施の形態によるセパレータ11は、下記のようにして製造することができる。
(1-2) Separator Manufacturing Method The separator 11 according to the first embodiment described above can be manufactured as follows.
 セパレータ基材11aの一方の主面または両方の主面に粒子含有樹脂層11bを形成する。これにより、セパレータ11を得ることができる。粒子含有樹脂層11bは、例えば、以下の第1の例~第2の例により形成できる。 The particle-containing resin layer 11b is formed on one main surface or both main surfaces of the separator substrate 11a. Thereby, the separator 11 can be obtained. The particle-containing resin layer 11b can be formed by, for example, the following first to second examples.
(第1の例)
 樹脂と粒子とを所定の質量比で混合し、N-メチル-2-ピロリドン等の分散溶媒に添加し、樹脂を溶解させて塗料(粒子含有樹脂溶液)を得る。続いて、この塗料を、セパレータ基材11aの少なくとも一方の面に塗布し、粒子含有樹脂溶液層を形成する。
(First example)
The resin and the particles are mixed at a predetermined mass ratio, added to a dispersion solvent such as N-methyl-2-pyrrolidone, and the resin is dissolved to obtain a paint (particle-containing resin solution). Then, this coating material is apply | coated to at least one surface of the separator base material 11a, and a particle | grain containing resin solution layer is formed.
 粒子含有樹脂溶液層形成の際、典型的には、レーザー等の光学系の膜厚測定装置で塗布膜の厚みを計測し、計測値が、目的とする所定の厚みと異なる場合には、塗料の吐出量を自動で調整することにより、塗料の塗布厚を調整している。本技術では、所定範囲内の屈折率、且つ、所定範囲内の粒子径を有する粒子を含み、且つ、粒子含有樹脂層11bの粒子と樹脂との質量比(粒子/樹脂)を、所定範囲内としているので、透明性を向上した塗料を得ることができる。これにより、レーザー等の光学系の膜厚測定装置でリアルタイムで塗布厚みを精度良く管理しながら粒子含有樹脂溶液層を形成できる。したがって、高精度に厚みが管理された粒子含有樹脂層11bを形成できる。なお、この点については、後述の第2の例も同様である。 When forming the particle-containing resin solution layer, typically, the thickness of the coating film is measured with an optical film thickness measuring device such as a laser, and if the measured value is different from the target predetermined thickness, the paint The coating thickness of the paint is adjusted by automatically adjusting the discharge amount. The present technology includes particles having a refractive index within a predetermined range and a particle diameter within a predetermined range, and the mass ratio (particle / resin) of the particle-containing resin layer 11b to the resin is within a predetermined range. Therefore, a paint with improved transparency can be obtained. Thereby, the particle-containing resin solution layer can be formed while accurately controlling the coating thickness in real time by an optical film thickness measuring device such as a laser. Therefore, the particle-containing resin layer 11b whose thickness is controlled with high accuracy can be formed. This is the same in the second example described later.
 塗布後、粒子含有樹脂溶液層を、熱風等にて乾燥させることによって、セパレータ基材11aの表面に粒子含有樹脂層11bが形成されたセパレータ11を得ることができる。なお、第1の例では、樹脂は、後述する第2の例にように独特の三次元網目構造とはならず、樹脂は、例えば、粒子間並びに粒子と基材表面との間の少なくとも何れかに存在し、粒子同士を結着したり、粒子と基材表面とを結着したりしている。 After the coating, the separator 11 in which the particle-containing resin layer 11b is formed on the surface of the separator substrate 11a can be obtained by drying the particle-containing resin solution layer with hot air or the like. In the first example, the resin does not have a unique three-dimensional network structure as in the second example described later. The resin may be, for example, at least between particles and between the particles and the substrate surface. In other words, the particles bind to each other or bind the particles to the substrate surface.
(第2の例)
 第1の例と同様、樹脂と粒子とを所定の質量比で混合し、N-メチル-2-ピロリドン等の分散溶媒に添加し、樹脂を溶解させて塗料(粒子含有樹脂溶液)を得る。続いて、この塗料を、セパレータ基材11aの少なくとも一方の面に塗布し、粒子含有樹脂溶液層を形成する。
(Second example)
As in the first example, the resin and the particles are mixed at a predetermined mass ratio, added to a dispersion solvent such as N-methyl-2-pyrrolidone, and the resin is dissolved to obtain a paint (particle-containing resin solution). Then, this coating material is apply | coated to at least one surface of the separator base material 11a, and a particle | grain containing resin solution layer is formed.
 続いて、粒子含有樹脂溶液層が形成されたセパレータ基材11aを水浴に浸漬して粒子含有樹脂溶液を相分離させたのち乾燥する。すなわち、セパレータ基材11aの表面に形成した粒子含有樹脂溶液層を、分散溶媒に溶解する樹脂に対して貧溶媒であり、かつ樹脂を溶解させる分散溶媒に対しては良溶媒である水等に接触させて相分離させたのち、熱風等にて乾燥する。これにより、セパレータ基材11aの表面に、粒子を担持した三次元網目構造の樹脂からなる粒子含有樹脂層11bが形成されたセパレータ11を得ることができる。 Subsequently, the separator substrate 11a on which the particle-containing resin solution layer is formed is immersed in a water bath to phase-separate the particle-containing resin solution, and then dried. That is, the particle-containing resin solution layer formed on the surface of the separator substrate 11a is a poor solvent for the resin that dissolves in the dispersion solvent, and a good solvent for the dispersion solvent that dissolves the resin. After contact and phase separation, dry with hot air or the like. Thereby, the separator 11 in which the particle-containing resin layer 11b made of a resin having a three-dimensional network structure carrying particles is formed on the surface of the separator substrate 11a can be obtained.
 このような方法を用いることにより、急激な貧溶媒誘起相分離現象による粒子含有樹脂層11bが形成され、粒子含有樹脂層11bは、樹脂がフィブリル化し、フィブリルが相互連続的に繋がった三次元的なネットワーク構造(三次元網目構造)を有する。すなわち、樹脂が溶解された粒子含有樹脂溶液を、樹脂に対して貧溶媒であり、かつ樹脂を溶解させる分散溶媒に対しては良溶媒である水等の溶媒に接触させることで、溶媒交換が起こる。これにより、スピノーダル分解を伴う急激な(速度の速い)相分離が生じ、樹脂が独特の三次元網目構造を有するようになる。このように第2の例で作製した粒子含有樹脂層11bは、貧溶媒による、スピノーダル分解を伴う急激な貧溶媒誘起相分離現象を利用することによって独特の多孔質構造を形成している。 By using such a method, the particle-containing resin layer 11b is formed by a rapid poor solvent-induced phase separation phenomenon, and the particle-containing resin layer 11b is a three-dimensional structure in which the resin is fibrillated and the fibrils are continuously connected to each other. Network structure (three-dimensional network structure). That is, the solvent exchange is achieved by bringing the particle-containing resin solution in which the resin is dissolved into contact with a solvent such as water that is a poor solvent for the resin and a good solvent for the dispersion solvent that dissolves the resin. Occur. This causes a rapid (fast) phase separation with spinodal decomposition and the resin has a unique three-dimensional network structure. As described above, the particle-containing resin layer 11b produced in the second example forms a unique porous structure by utilizing an abrupt poor solvent-induced phase separation phenomenon accompanied by spinodal decomposition by a poor solvent.
2.第2の実施の形態
 本技術の第2の実施の形態による粒子含有樹脂層付き電極について説明する。図2は、本技術の第1の実施の形態による粒子含有樹脂層付き電極の構成例を示す概略断面図である。
2. Second Embodiment An electrode with a particle-containing resin layer according to a second embodiment of the present technology will be described. FIG. 2 is a schematic cross-sectional view illustrating a configuration example of an electrode with a particle-containing resin layer according to the first embodiment of the present technology.
 図2に示すように、粒子含有樹脂層付き電極21は、電極21aと、電極21aの少なくとも一方の主面に形成された粒子含有樹脂層21bとを備える。なお、図2は、電極21aの両方の主面に粒子含有樹脂層21bが形成された構成例を示しているが、電極21aの一方の主面のみに粒子含有樹脂層21bが形成されたものであってもよい。また、電極21aは、正極であっても、負極であってもよい。 2, the electrode 21 with particle-containing resin layer includes an electrode 21a and a particle-containing resin layer 21b formed on at least one main surface of the electrode 21a. FIG. 2 shows a configuration example in which the particle-containing resin layer 21b is formed on both main surfaces of the electrode 21a, but the particle-containing resin layer 21b is formed only on one main surface of the electrode 21a. It may be. The electrode 21a may be a positive electrode or a negative electrode.
[粒子含有樹脂層]
 粒子含有樹脂層21bは、粒子と、樹脂とを含むものであり、その構成および形成方法の詳細は、セパレータ基材11aに代えて電極21aに対して形成されること以外は、第1の実施の形態と同様である。
[Particle-containing resin layer]
The particle-containing resin layer 21b includes particles and a resin, and the details of the configuration and the formation method are the first implementation except that the electrode 21a is formed instead of the separator substrate 11a. It is the same as the form.
 なお、第2の実施の形態による粒子含有樹脂層付き電極21が電池に組み込まれた状態では、粒子含有樹脂層21bは電解液に含浸され、粒子含有樹脂層21bは電解液を含む。この場合、電解液を含む粒子含有樹脂層21bは、粒子含有樹脂層21bに含まれる樹脂の電解液の吸収性等に応じて、第1の状態または第2の状態を形成する。 In addition, in the state where the electrode 21 with particle-containing resin layer according to the second embodiment is incorporated in a battery, the particle-containing resin layer 21b is impregnated with an electrolytic solution, and the particle-containing resin layer 21b includes an electrolytic solution. In this case, the particle-containing resin layer 21b containing the electrolytic solution forms the first state or the second state depending on the absorbability of the electrolytic solution of the resin contained in the particle-containing resin layer 21b.
(第1の状態)
 第1の状態では、電解液が、バインダー高分子化合物および粒子の少なくとも何れかによって形成された微多孔内(空隙)に存在した状態で、粒子含有樹脂層21bに含まれた状態となる。この場合、粒子含有樹脂層21bは、セパレータとしての機能を有する。すなわち、粒子含有樹脂層21bは、正極と負極との間に介在し、両極活物質の接触を防止するとともに、その微多孔内に電解液を保持して電極間のイオン伝導の通路を形成する。
(First state)
In the first state, the electrolytic solution is contained in the particle-containing resin layer 21b in a state where it exists in a microporous (void) formed by at least one of the binder polymer compound and particles. In this case, the particle-containing resin layer 21b has a function as a separator. In other words, the particle-containing resin layer 21b is interposed between the positive electrode and the negative electrode to prevent the contact between the bipolar active materials and to hold the electrolytic solution in the micropore to form an ion conduction path between the electrodes. .
(第2の状態)
 第2の状態では、電解液が、マトリックス高分子化合物に吸収された状態で、粒子含有樹脂層21bに含まれた状態となる。すなわち、粒子含有樹脂層21bに電解液が含浸され、マトリックス高分子化合物が膨潤し、いわゆるゲル状となる。なお、この状態では、マトリックス高分子化合物は電解液を吸収し膨潤していわゆるゲル状態となり、マトリックス高分子化合物によって電解液および粒子が保持される。粒子含有樹脂層21bの多孔構造は、マトリックス高分子化合物の膨潤とともに消滅してもよい。この場合、粒子含有樹脂層21bは、電解質としての機能を有する。すなわち、粒子含有樹脂層21bは、電解液を吸収したマトリックス高分子化合物自体がイオン伝導体として機能する電解質となる。
(Second state)
In the second state, the electrolytic solution is absorbed by the matrix polymer compound and is included in the particle-containing resin layer 21b. That is, the particle-containing resin layer 21b is impregnated with the electrolytic solution, and the matrix polymer compound swells to become a so-called gel. In this state, the matrix polymer compound absorbs the electrolyte and swells to form a so-called gel state, and the matrix polymer compound holds the electrolyte and particles. The porous structure of the particle-containing resin layer 21b may disappear with the swelling of the matrix polymer compound. In this case, the particle-containing resin layer 21b has a function as an electrolyte. That is, the particle-containing resin layer 21b becomes an electrolyte in which the matrix polymer compound itself that has absorbed the electrolytic solution functions as an ionic conductor.
<3.第3の実施の形態>
 本技術の第3の実施の形態では、ラミネートフィルム型の非水電解質電池(電池)について説明する。この非水電解質電池は、例えば充電および放電が可能な非水電解質二次電池であり、また、例えばリチウムイオン二次電池である。
<3. Third Embodiment>
In the third embodiment of the present technology, a laminated film type nonaqueous electrolyte battery (battery) will be described. This nonaqueous electrolyte battery is, for example, a nonaqueous electrolyte secondary battery that can be charged and discharged, and is, for example, a lithium ion secondary battery.
 以下では、第3の実施の形態によるラミネートフィルム型の非水電解質電池の2つの構成例(第1の構成例および第2の構成例)について説明する。 Hereinafter, two configuration examples (a first configuration example and a second configuration example) of the laminated film type nonaqueous electrolyte battery according to the third embodiment will be described.
 なお、第3の実施の形態による電池は、第1の実施の形態と同様のセパレータであって、粒子含有樹脂層11bの樹脂としてマトリックス高分子化合物を用いたものが組み込まれている。第3の実施の形態による電池では、セパレータ55が、セパレータ基材11aに対応し、ゲル電解質層56が、セパレータ基材11aに形成された電解液を含む粒子含有樹脂層11bに対応する。 Note that the battery according to the third embodiment is a separator similar to that of the first embodiment, and incorporates a matrix polymer compound as the resin of the particle-containing resin layer 11b. In the battery according to the third embodiment, the separator 55 corresponds to the separator base material 11a, and the gel electrolyte layer 56 corresponds to the particle-containing resin layer 11b containing the electrolytic solution formed on the separator base material 11a.
(3-1)第1の構成
 図3は、第3の実施の形態による非水電解質電池62の第1の構成例を表すものである。この非水電解質電池62は、いわゆるラミネートフィルム型といわれるものであり、正極リード51および負極リード52が取り付けられた巻回電極体50をフィルム状の外装部材60の内部に収容したものである。
(3-1) First Configuration FIG. 3 shows a first configuration example of the nonaqueous electrolyte battery 62 according to the third embodiment. This non-aqueous electrolyte battery 62 is a so-called laminate film type, in which a wound electrode body 50 to which a positive electrode lead 51 and a negative electrode lead 52 are attached is housed in a film-like exterior member 60.
 正極リード51および負極リード52は、それぞれ、外装部材60の内部から外部に向かい例えば同一方向に導出されている。正極リード51および負極リード52は、例えば、アルミニウム、銅、ニッケルあるいはステンレス等の金属材料によりそれぞれ構成されており、それぞれ薄板状または網目状とされている。 The positive electrode lead 51 and the negative electrode lead 52 are led out from the inside of the exterior member 60 toward the outside, for example, in the same direction. The positive electrode lead 51 and the negative electrode lead 52 are made of, for example, a metal material such as aluminum, copper, nickel, or stainless steel, and each have a thin plate shape or a mesh shape.
 外装部材60は、例えば、金属層の両面に樹脂層が形成されたラミネートフィルムからなる。ラミネートフィルムは、金属層のうち電池外側に露出する面に外側樹脂層が形成され、巻回電極体50等の発電要素に対向する電池内側面に内側樹脂層が形成される。 The exterior member 60 is made of, for example, a laminate film in which resin layers are formed on both surfaces of a metal layer. In the laminate film, an outer resin layer is formed on the surface of the metal layer that is exposed to the outside of the battery, and an inner resin layer is formed on the inner surface of the battery facing the power generation element such as the wound electrode body 50.
 金属層は、水分、酸素、光の進入を防ぎ内容物を守る最も重要な役割を担っており、軽さ、伸び性、価格、加工のしやすさからアルミニウム(Al)が最もよく使われる。外側樹脂層は、外観の美しさや強靱さ、柔軟性等を有し、ナイロンまたはポリエチレンテレフタレート(PET)等の樹脂材料が用いられる。内側樹脂層は、熱や超音波で溶け、互いに融着する部分であるため、ポリオレフィン樹脂が適切であり、無延伸ポリプロピレン(CPP)が多用される。金属層と外側樹脂層および内側樹脂層との間には、必要に応じて接着剤層を設けてもよい。 The metal layer plays the most important role in preventing moisture, oxygen and light from entering and protecting the contents. Aluminum (Al) is most often used because of its lightness, extensibility, price and ease of processing. The outer resin layer has a beautiful appearance, toughness, flexibility, and the like, and a resin material such as nylon or polyethylene terephthalate (PET) is used. Since the inner resin layer is a portion that melts and fuses with heat or ultrasonic waves, a polyolefin resin is appropriate, and unstretched polypropylene (CPP) is often used. An adhesive layer may be provided between the metal layer, the outer resin layer, and the inner resin layer as necessary.
 外装部材60は、例えば深絞りにより内側樹脂層側から外側樹脂層の方向に向けて形成された、巻回電極体50を収容する凹部が設けられており、内側樹脂層が巻回電極体50と対向するように配設されている。外装部材60の対向する内側樹脂層同士は、凹部の外縁部において融着等により互いに密着されている。外装部材60と正極リード51および負極リード52との間には、外装部材60の内側樹脂層と、金属材料からなる正極リード51および負極リード52との接着性を向上させるための密着フィルム61が配置されている。密着フィルム61は、金属材料との接着性の高い樹脂材料からなり、例えば、ポリエチレン、ポリプロピレンや、これら材料が変性された変性ポリエチレンあるいは変性ポリプロピレン等のポリオレフィン樹脂により構成されている。 The exterior member 60 is provided with a recess that accommodates the wound electrode body 50 formed by, for example, deep drawing from the inner resin layer side toward the outer resin layer, and the inner resin layer serves as the wound electrode body 50. It is arrange | positioned so that it may oppose. The inner resin layers facing each other of the exterior member 60 are in close contact with each other by fusion or the like at the outer edge of the recess. Between the exterior member 60 and the positive electrode lead 51 and the negative electrode lead 52, there is an adhesive film 61 for improving the adhesion between the inner resin layer of the exterior member 60 and the positive electrode lead 51 and the negative electrode lead 52 made of a metal material. Has been placed. The adhesion film 61 is made of a resin material having high adhesion to a metal material, and is made of, for example, polyethylene, polypropylene, or a polyolefin resin such as modified polyethylene or modified polypropylene obtained by modifying these materials.
 なお、外装部材60は、金属層がアルミニウム(Al)からなるアルミラミネートフィルムに代えて、他の構造を有するラミネートフィルム、ポリプロピレン等の高分子フィルムあるいは金属フィルムにより構成するようにしてもよい。 The exterior member 60 may be made of a laminated film having another structure, a polymer film such as polypropylene, or a metal film, instead of the aluminum laminated film whose metal layer is made of aluminum (Al).
 図4は、図3に示した巻回電極体50のI-I線に沿った断面構造を表すものである。 FIG. 4 shows a cross-sectional structure taken along line II of the spirally wound electrode body 50 shown in FIG.
 図4に示すように、巻回電極体50は、帯状の正極53および帯状の負極54が帯状のセパレータ55およびゲル電解質層56を介して積層され巻回された構造を有している。最外周部は必要に応じて保護テープ57により保護されている。 As shown in FIG. 4, the wound electrode body 50 has a structure in which a belt-like positive electrode 53 and a belt-like negative electrode 54 are laminated and wound via a belt-like separator 55 and a gel electrolyte layer 56. The outermost periphery is protected by a protective tape 57 as necessary.
[正極]
 正極53は、正極集電体53Aの片面あるいは両面に正極活物質層53Bが設けられた構造を有している。
[Positive electrode]
The positive electrode 53 has a structure in which a positive electrode active material layer 53B is provided on one or both surfaces of the positive electrode current collector 53A.
 正極53は、正極活物質を含有する正極活物質層53Bが、正極集電体53Aの両面上に形成されたものである。正極集電体53Aとしては、例えばアルミニウム(Al)箔、ニッケル(Ni)箔あるいは、ステンレス(SUS)箔等の金属箔を用いることができる。 The positive electrode 53 is obtained by forming a positive electrode active material layer 53B containing a positive electrode active material on both surfaces of a positive electrode current collector 53A. As the positive electrode current collector 53A, for example, a metal foil such as an aluminum (Al) foil, a nickel (Ni) foil, or a stainless steel (SUS) foil can be used.
 正極活物質層53Bは、正極活物質として、リチウムを吸蔵および放出することが可能な正極材料のいずれか1種または2種以上を含んで構成されており、必要に応じて、結着剤、導電剤等の他の材料を含んでいてもよい。 The positive electrode active material layer 53B is configured to include any one or two or more of positive electrode materials capable of inserting and extracting lithium as a positive electrode active material. Other materials such as a conductive agent may be included.
 リチウムを吸蔵および放出することが可能な正極材料としては、例えば、リチウム含有化合物が好ましい。高いエネルギー密度が得られるからである。このリチウム含有化合物としては、例えば、リチウムと遷移金属元素とを含む複合酸化物や、リチウムと遷移金属元素とを含むリン酸化合物等が挙げられる。中でも、遷移金属元素としてコバルト(Co)、ニッケル(Ni)、マンガン(Mn)および鉄(Fe)からなる群のうちの少なくとも1種を含むものが好ましい。より高い電圧が得られるからである。 As the positive electrode material capable of inserting and extracting lithium, for example, a lithium-containing compound is preferable. This is because a high energy density can be obtained. Examples of the lithium-containing compound include a composite oxide containing lithium and a transition metal element, and a phosphate compound containing lithium and a transition metal element. Especially, what contains at least 1 sort (s) of the group which consists of cobalt (Co), nickel (Ni), manganese (Mn), and iron (Fe) as a transition metal element is preferable. This is because a higher voltage can be obtained.
 正極材料は、例えば、LixM1O2あるいはLiyM2PO4で表されるリチウム含有化合物を用いることができる。式中、M1およびM2は1種類以上の遷移金属元素を表す。xおよびyの値は電池の充放電状態によって異なり、通常、0.05≦x≦1.10、0.05≦y≦1.10である。リチウムと遷移金属元素とを含む複合酸化物としては、例えば、リチウムコバルト複合酸化物(LixCoO2)、リチウムニッケル複合酸化物(LixNiO2)、リチウムニッケルコバルト複合酸化物(LixNi1-zCoz2(0<z<1))、リチウムニッケルコバルトマンガン複合酸化物(LixNi(1-v-w)CovMnw2(0<v+w<1、v>0、w>0))、またはスピネル型構造を有するリチウムマンガン複合酸化物(LiMn24)あるいはリチウムマンガンニッケル複合酸化物(LiMn2-tNit4(0<t<2))等が挙げられる。中でも、コバルトを含む複合酸化物が好ましい。高い容量が得られると共に、優れたサイクル特性も得られるからである。また、リチウムと遷移金属元素とを含むリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO4)あるいはリチウム鉄マンガンリン酸化合物(LiFe1-uMnuPO4(0<u<1))等が挙げられる。 As the positive electrode material, for example, a lithium-containing compound represented by Li x M1O 2 or Li y M2PO 4 can be used. In the formula, M1 and M2 represent one or more transition metal elements. The values of x and y vary depending on the charge / discharge state of the battery, and are generally 0.05 ≦ x ≦ 1.10 and 0.05 ≦ y ≦ 1.10. Examples of the composite oxide containing lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel composite oxide (Li x NiO 2 ), and lithium nickel cobalt composite oxide (Li x Ni). 1-z Co z O 2 (0 <z <1)), lithium nickel cobalt manganese composite oxide (Li x Ni (1-vw) Co v Mn w O 2 (0 <v + w <1, v> 0, w > 0)), or lithium manganese composite oxide (LiMn 2 O 4 ) or lithium manganese nickel composite oxide (LiMn 2−t N t O 4 (0 <t <2)) having a spinel structure. . Among these, a complex oxide containing cobalt is preferable. This is because a high capacity can be obtained and excellent cycle characteristics can be obtained. Examples of the phosphate compound containing lithium and a transition metal element include a lithium iron phosphate compound (LiFePO 4 ) or a lithium iron manganese phosphate compound (LiFe 1-u Mn u PO 4 (0 <u <1). ) And the like.
 このようなリチウム複合酸化物として、具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等が挙げられる。また、遷移金属元素の一部を他の元素に置換した固溶体も使用可能である。例えば、ニッケルコバルト複合リチウム酸化物(LiNi0.5Co0.52、LiNi0.8Co0.22等)がその例として挙げられる。これらのリチウム複合酸化物は、高電圧を発生でき、エネルギー密度が優れたものである。 Specific examples of such a lithium composite oxide include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and lithium manganate (LiMn 2 O 4 ). A solid solution in which a part of the transition metal element is substituted with another element can also be used. Examples thereof include nickel cobalt composite lithium oxide (LiNi 0.5 Co 0.5 O 2 , LiNi 0.8 Co 0.2 O 2, etc.). These lithium composite oxides can generate a high voltage and have an excellent energy density.
 更にまた、より高い電極充填性とサイクル特性が得られるという観点から、上記リチウム含有化合物のいずれかよりなる粒子の表面を、他のリチウム含有化合物のいずれかよりなる微粒子で被覆した複合粒子としてもよい。 Furthermore, from the viewpoint that higher electrode filling properties and cycle characteristics can be obtained, composite particles in which the surfaces of particles made of any of the above lithium-containing compounds are coated with fine particles made of any of the other lithium-containing compounds can be used. Good.
 この他、リチウムを吸蔵および放出することが可能な正極材料としては、例えば、酸化バナジウム(V25)、二酸化チタン(TiO2)、二酸化マンガン(MnO2)等の酸化物、二硫化鉄(FeS2)、二硫化チタン(TiS2)、二硫化モリブデン(MoS2)等の二硫化物、二セレン化ニオブ(NbSe2)等のリチウムを含有しないカルコゲン化物(特に層状化合物やスピネル型化合物)、リチウムを含有するリチウム含有化合物、ならびに、硫黄、ポリアニリン、ポリチオフェン、ポリアセチレンあるいはポリピロール等の導電性高分子も挙げられる。もちろん、リチウムを吸蔵および放出することが可能な正極材料は、上記以外のものであってもよい。また、上記した一連の正極材料は、任意の組み合わせで2種以上混合されてもよい。 In addition, examples of positive electrode materials capable of inserting and extracting lithium include oxides such as vanadium oxide (V 2 O 5 ), titanium dioxide (TiO 2 ), manganese dioxide (MnO 2 ), and iron disulfide. (FeS 2 ), disulfides such as titanium disulfide (TiS 2 ) and molybdenum disulfide (MoS 2 ), and chalcogenides containing no lithium such as niobium diselenide (NbSe 2 ) (particularly layered compounds and spinel compounds) ), Lithium-containing compounds containing lithium, and conductive polymers such as sulfur, polyaniline, polythiophene, polyacetylene, or polypyrrole. Of course, the positive electrode material capable of inserting and extracting lithium may be other than the above. Further, two or more kinds of the series of positive electrode materials described above may be mixed in any combination.
 導電剤としては、例えばカーボンブラックあるいはグラファイト等の炭素材料等が用いられる。結着剤としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル(PAN)、スチレンブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)等の樹脂材料、ならびにこれら樹脂材料を主体とする共重合体等から選択される少なくとも1種が用いられる。 As the conductive agent, for example, a carbon material such as carbon black or graphite is used. Examples of the binder include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resin materials. At least one selected from a copolymer or the like mainly composed of is used.
 正極53は正極集電体53Aの一端部にスポット溶接または超音波溶接で接続された正極リード51を有している。この正極リード51は金属箔、網目状のものが望ましいが、電気化学的および化学的に安定であり、導通がとれるものであれば金属でなくとも問題はない。正極リード51の材料としては、例えばアルミニウム(Al)、ニッケル(Ni)等が挙げられる。 The positive electrode 53 has a positive electrode lead 51 connected to one end of the positive electrode current collector 53A by spot welding or ultrasonic welding. The positive electrode lead 51 is preferably a metal foil or a mesh-like one, but there is no problem even if it is not a metal as long as it is electrochemically and chemically stable and can conduct electricity. Examples of the material of the positive electrode lead 51 include aluminum (Al) and nickel (Ni).
[負極]
 負極54は、負極集電体54Aの片面あるいは両面に負極活物質層54Bが設けられた構造を有しており、負極活物質層54Bと正極活物質層53Bとが対向するように配置されている。
[Negative electrode]
The negative electrode 54 has a structure in which a negative electrode active material layer 54B is provided on one surface or both surfaces of a negative electrode current collector 54A, and the negative electrode active material layer 54B and the positive electrode active material layer 53B are arranged to face each other. Yes.
 なお、図示はしないが、負極集電体54Aの片面のみに負極活物質層54Bを設けるようにしてもよい。負極集電体54Aは、例えば、銅箔等の金属箔により構成されている。 Although not shown, the negative electrode active material layer 54B may be provided only on one surface of the negative electrode current collector 54A. The negative electrode current collector 54A is made of, for example, a metal foil such as a copper foil.
 負極活物質層54Bは、負極活物質として、リチウムを吸蔵および放出することが可能な負極材料のいずれか1種または2種以上を含んで構成されており、必要に応じて正極活物質層53Bと同様の結着剤や導電剤等の他の材料を含んで構成されていてもよい。 The negative electrode active material layer 54B includes one or more negative electrode materials capable of occluding and releasing lithium as the negative electrode active material, and the positive electrode active material layer 53B as necessary. Other materials such as a binder and a conductive agent similar to those described above may be included.
 なお、この非水電解質電池62では、リチウムを吸蔵および放出することが可能な負極材料の電気化学当量が、正極53の電気化学当量よりも大きくなっており、理論上、充電の途中において負極54にリチウム金属が析出しないようになっている。 In the nonaqueous electrolyte battery 62, the electrochemical equivalent of the negative electrode material capable of inserting and extracting lithium is larger than the electrochemical equivalent of the positive electrode 53, and theoretically, the negative electrode 54 is in the middle of charging. Lithium metal is prevented from precipitating.
 また、この非水電解質電池62は、完全充電状態における開回路電圧(すなわち電池電圧)が、例えば2.80V以上6.00V以下の範囲内になるように設計されている。特に、負極活物質としてLi/Li+に対して0V近くでリチウム合金となるまたはリチウムを吸蔵する材料を用いた場合には、完全充電状態における開回路電圧が、例えば4.20V以上6.00V以下の範囲内になるように設計されている。この場合、満充電状態における開回路電圧が4.25V以上6.00V以下とされることが好ましい。満充電状態における開回路電圧が4.25V以上とされる場合は、4.20Vの電池と比較して、同じ正極活物質であっても単位質量当たりのリチウムの放出量が多くなるため、それに応じて正極活物質と負極活物質との量が調整される。これにより、高いエネルギー密度が得られるようになっている。 The nonaqueous electrolyte battery 62 is designed such that the open circuit voltage (that is, the battery voltage) in the fully charged state is in the range of, for example, 2.80 V or more and 6.00 V or less. In particular, when a material that becomes a lithium alloy or absorbs lithium at a voltage close to 0 V with respect to Li / Li + is used as the negative electrode active material, the open circuit voltage in a fully charged state is, for example, 4.20 V or more and 6.00 V. It is designed to be within the following range. In this case, the open circuit voltage in the fully charged state is preferably 4.25V or more and 6.00V or less. When the open circuit voltage in the fully charged state is 4.25 V or higher, the amount of lithium released per unit mass is increased even with the same positive electrode active material as compared to the 4.20 V battery. Accordingly, the amounts of the positive electrode active material and the negative electrode active material are adjusted. Thereby, a high energy density can be obtained.
 リチウムを吸蔵および放出することが可能な負極材料としては、例えば、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維あるいは活性炭等の炭素材料が挙げられる。このうち、コークス類には、ピッチコークス、ニードルコークスあるいは石油コークス等がある。有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂等の高分子材料を適当な温度で焼成して炭素化したものをいい、一部には難黒鉛化性炭素または易黒鉛化性炭素に分類されるものもある。これら炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができると共に、良好なサイクル特性を得ることができるので好ましい。特に黒鉛は、電気化学当量が大きく、高いエネルギー密度を得ることができ好ましい。また、難黒鉛化性炭素は、優れたサイクル特性が得られるので好ましい。更にまた、充放電電位が低いもの、具体的には充放電電位がリチウム金属に近いものが、電池の高エネルギー密度化を容易に実現することができるので好ましい。 Examples of the negative electrode material capable of inserting and extracting lithium include non-graphitizable carbon, graphitizable carbon, graphite, pyrolytic carbons, cokes, glassy carbons, and fired organic polymer compounds And carbon materials such as carbon fiber and activated carbon. Of these, examples of coke include pitch coke, needle coke, and petroleum coke. An organic polymer compound fired body is a carbonized material obtained by firing a polymer material such as a phenol resin or a furan resin at an appropriate temperature, and part of it is non-graphitizable carbon or graphitizable carbon. Some are classified as: These carbon materials are preferable because the change in crystal structure that occurs during charge and discharge is very small, a high charge and discharge capacity can be obtained, and good cycle characteristics can be obtained. In particular, graphite is preferable because it has a high electrochemical equivalent and can provide a high energy density. Further, non-graphitizable carbon is preferable because excellent cycle characteristics can be obtained. Furthermore, those having a low charge / discharge potential, specifically, those having a charge / discharge potential close to that of lithium metal are preferable because a high energy density of the battery can be easily realized.
 リチウムを吸蔵および放出することが可能であり、かつ高容量化が可能な他の負極材料としては、リチウムを吸蔵および放出することが可能であり、金属元素および半金属元素のうちの少なくとも1種を構成元素として含む材料も挙げられる。このような材料を用いれば、高いエネルギー密度を得ることができるからである。特に、炭素材料と共に用いるようにすれば、高エネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるのでより好ましい。この負極材料は金属元素あるいは半金属元素の単体でも合金でも化合物でもよく、またこれらの1種または2種以上の相を少なくとも一部に有するようなものでもよい。なお、本技術において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、非金属元素を含んでいてもよい。その組織には固溶体、共晶(共融混合物)、金属間化合物あるいはそれらのうちの2種以上が共存するものがある。 As another anode material capable of inserting and extracting lithium and capable of increasing the capacity, lithium can be inserted and extracted, and at least one of a metal element and a metalloid element can be used. Also included are materials containing as a constituent element. This is because a high energy density can be obtained by using such a material. In particular, the use with a carbon material is more preferable because a high energy density can be obtained and excellent cycle characteristics can be obtained. The negative electrode material may be a single element, alloy or compound of a metal element or metalloid element, or may have at least a part of one or more of these phases. In the present technology, the alloy includes an alloy including one or more metal elements and one or more metalloid elements in addition to an alloy composed of two or more metal elements. Moreover, the nonmetallic element may be included. Some of the structures include a solid solution, a eutectic (eutectic mixture), an intermetallic compound, or two or more of them.
 この負極材料を構成する金属元素あるいは半金属元素としては、例えば、リチウムと合金を形成することが可能な金属元素または半金属元素が挙げられる。具体的には、マグネシウム(Mg)、ホウ素(B)、アルミニウム(Al)、チタン(Ti)、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛(Zn)、ハフニウム(Hf)、ジルコニウム(Zr)、イットリウム(Y)、パラジウム(Pd)あるいは白金(Pt)が挙げられる。これらは結晶質のものでもアモルファスのものでもよい。 Examples of the metal element or metalloid element constituting the negative electrode material include a metal element or metalloid element capable of forming an alloy with lithium. Specifically, magnesium (Mg), boron (B), aluminum (Al), titanium (Ti), gallium (Ga), indium (In), silicon (Si), germanium (Ge), tin (Sn), Lead (Pb), bismuth (Bi), cadmium (Cd), silver (Ag), zinc (Zn), hafnium (Hf), zirconium (Zr), yttrium (Y), palladium (Pd) or platinum (Pt) Can be mentioned. These may be crystalline or amorphous.
 負極材料としては、短周期型周期表における4B族の金属元素あるいは半金属元素を構成元素として含むものが好ましく、より好ましいのはケイ素(Si)およびスズ(Sn)の少なくとも一方を構成元素として含むものであり、特に好ましくは少なくともケイ素を含むものである。ケイ素(Si)およびスズ(Sn)は、リチウムを吸蔵および放出する能力が大きく、高いエネルギー密度を得ることができるからである。ケイ素およびスズのうちの少なくとも1種を有する負極材料としては、例えば、ケイ素の単体、合金または化合物や、スズの単体、合金または化合物や、それらの1種または2種以上の相を少なくとも一部に有する材料が挙げられる。 The negative electrode material preferably includes a 4B group metal element or metalloid element in the short periodic table as a constituent element, and more preferably includes at least one of silicon (Si) and tin (Sn) as a constituent element. And particularly preferably those containing at least silicon. This is because silicon (Si) and tin (Sn) have a large ability to occlude and release lithium, and a high energy density can be obtained. Examples of the negative electrode material having at least one of silicon and tin include at least a part of a simple substance, an alloy or a compound of silicon, a simple substance, an alloy or a compound of tin, or one or more phases thereof. The material which has in is mentioned.
 ケイ素の合金としては、例えば、ケイ素以外の第2の構成元素として、スズ(Sn)、ニッケル(Ni)、銅(Cu)、鉄(Fe)、コバルト(Co)、マンガン(Mn)、亜鉛(Zn)、インジウム(In)、銀(Ag)、チタン(Ti)、ゲルマニウム(Ge)、ビスマス(Bi)、アンチモン(Sb)およびクロム(Cr)からなる群のうちの少なくとも1種を含むものが挙げられる。スズの合金としては、例えば、スズ(Sn)以外の第2の構成元素として、ケイ素(Si)、ニッケル(Ni)、銅(Cu)、鉄(Fe)、コバルト(Co)、マンガン(Mn)、亜鉛(Zn)、インジウム(In)、銀(Ag)、チタン(Ti)、ゲルマニウム(Ge)、ビスマス(Bi)、アンチモン(Sb)およびクロム(Cr)からなる群のうちの少なくとも1種を含むものが挙げられる。 As an alloy of silicon, for example, as a second constituent element other than silicon, tin (Sn), nickel (Ni), copper (Cu), iron (Fe), cobalt (Co), manganese (Mn), zinc ( One containing at least one of the group consisting of Zn), indium (In), silver (Ag), titanium (Ti), germanium (Ge), bismuth (Bi), antimony (Sb) and chromium (Cr) Can be mentioned. Examples of tin alloys include silicon (Si), nickel (Ni), copper (Cu), iron (Fe), cobalt (Co), and manganese (Mn) as second constituent elements other than tin (Sn). , Zinc (Zn), indium (In), silver (Ag), titanium (Ti), germanium (Ge), bismuth (Bi), antimony (Sb) and chromium (Cr). Including.
 スズ(Sn)の化合物あるいはケイ素(Si)の化合物としては、例えば、酸素(O)あるいは炭素(C)を含むものが挙げられ、スズ(Sn)またはケイ素(Si)に加えて、上述した第2の構成元素を含んでいてもよい。 Examples of the tin (Sn) compound or silicon (Si) compound include those containing oxygen (O) or carbon (C). In addition to tin (Sn) or silicon (Si), the above-described compounds are used. Two constituent elements may be included.
 中でも、この負極材料としては、コバルト(Co)と、スズ(Sn)と、炭素(C)とを構成元素として含み、炭素の含有量が9.9質量%以上29.7質量%以下であり、かつスズ(Sn)とコバルト(Co)との合計に対するコバルト(Co)の割合が30質量%以上70質量%以下であるSnCoC含有材料が好ましい。このような組成範囲において高いエネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるからである。 Among these, as the negative electrode material, cobalt (Co), tin (Sn), and carbon (C) are included as constituent elements, and the carbon content is 9.9 mass% or more and 29.7 mass% or less. And the SnCoC containing material whose ratio of cobalt (Co) with respect to the sum total of tin (Sn) and cobalt (Co) is 30 mass% or more and 70 mass% or less is preferable. This is because a high energy density can be obtained in such a composition range, and excellent cycle characteristics can be obtained.
 このSnCoC含有材料は、必要に応じて更に他の構成元素を含んでいてもよい。他の構成元素としては、例えば、ケイ素(Si)、鉄(Fe)、ニッケル(Ni)、クロム(Cr)、インジウム(In)、ニオブ(Nb)、ゲルマニウム(Ge)、チタン(Ti)、モリブデン(Mo)、アルミニウム(Al)、リン(P)、ガリウム(Ga)またはビスマス(Bi)が好ましく、2種以上を含んでいてもよい。容量またはサイクル特性を更に向上させることができるからである。 This SnCoC-containing material may further contain other constituent elements as necessary. Examples of other constituent elements include silicon (Si), iron (Fe), nickel (Ni), chromium (Cr), indium (In), niobium (Nb), germanium (Ge), titanium (Ti), and molybdenum. (Mo), aluminum (Al), phosphorus (P), gallium (Ga) or bismuth (Bi) are preferable and may contain two or more. This is because the capacity or cycle characteristics can be further improved.
 なお、このSnCoC含有材料は、スズ(Sn)と、コバルト(Co)と、炭素(C)とを含む相を有しており、この相は結晶性の低いまたは非晶質な構造を有していることが好ましい。また、このSnCoC含有材料では、構成元素である炭素(C)の少なくとも一部が、他の構成元素である金属元素または半金属元素と結合していることが好ましい。サイクル特性の低下はスズ(Sn)等が凝集あるいは結晶化することによるものであると考えられるが、炭素(C)が他の元素と結合することにより、そのような凝集あるいは結晶化を抑制することができるからである。 This SnCoC-containing material has a phase containing tin (Sn), cobalt (Co), and carbon (C), and this phase has a low crystallinity or an amorphous structure. It is preferable. In this SnCoC-containing material, it is preferable that at least a part of carbon (C) as a constituent element is bonded to a metal element or a metalloid element as another constituent element. The decrease in cycle characteristics is considered to be due to aggregation or crystallization of tin (Sn) or the like. However, the combination of carbon (C) with other elements suppresses such aggregation or crystallization. Because it can.
 元素の結合状態を調べる測定方法としては、例えばX線光電子分光法(XPS)が挙げられる。XPSでは、炭素の1s軌道(C1s)のピークは、グラファイトであれば、金原子の4f軌道(Au4f)のピークが84.0eVに得られるようにエネルギー較正された装置において、284.5eVに現れる。また、表面汚染炭素であれば、284.8eVに現れる。これに対して、炭素元素の電荷密度が高くなる場合、例えば炭素が金属元素または半金属元素と結合している場合には、C1sのピークは、284.5eVよりも低い領域に現れる。すなわち、SnCoC含有材料について得られるC1sの合成波のピークが284.5eVよりも低い領域に現れる場合には、SnCoC含有材料に含まれる炭素の少なくとも一部が他の構成元素である金属元素または半金属元素と結合している。 As a measuring method for examining the bonding state of elements, for example, X-ray photoelectron spectroscopy (XPS) can be mentioned. In XPS, the peak of the carbon 1s orbital (C1s) appears at 284.5 eV in an energy calibrated apparatus so that the peak of the gold atom 4f orbital (Au4f) is obtained at 84.0 eV if it is graphite. . Moreover, if it is surface contamination carbon, it will appear at 284.8 eV. On the other hand, when the charge density of the carbon element increases, for example, when carbon is bonded to a metal element or a metalloid element, the C1s peak appears in a region lower than 284.5 eV. That is, when the peak of the synthetic wave of C1s obtained for the SnCoC-containing material appears in a region lower than 284.5 eV, at least a part of the carbon contained in the SnCoC-containing material is a metal element or a half of other constituent elements. Combined with metal elements.
 なお、XPS測定では、スペクトルのエネルギー軸の補正に、例えばC1sのピークを用いる。通常、表面には表面汚染炭素が存在しているので、表面汚染炭素のC1sのピークを284.8eVとし、これをエネルギー基準とする。XPS測定では、C1sのピークの波形は、表面汚染炭素のピークとSnCoC含有材料中の炭素のピークとを含んだ形として得られるので、例えば市販のソフトウエアを用いて解析することにより、表面汚染炭素のピークと、SnCoC含有材料中の炭素のピークとを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。 In XPS measurement, for example, the C1s peak is used to correct the energy axis of the spectrum. Usually, since surface-contaminated carbon exists on the surface, the C1s peak of the surface-contaminated carbon is set to 284.8 eV, which is used as an energy standard. In the XPS measurement, the waveform of the C1s peak is obtained as a shape including the surface contamination carbon peak and the carbon peak in the SnCoC-containing material. Therefore, by analyzing using, for example, commercially available software, the surface contamination The carbon peak and the carbon peak in the SnCoC-containing material are separated. In the waveform analysis, the position of the main peak existing on the lowest bound energy side is used as the energy reference (284.8 eV).
 リチウムを吸蔵および放出することが可能な負極材料としては、例えば、リチウムを吸蔵および放出することが可能な金属酸化物または高分子化合物等も挙げられる。金属酸化物としては、例えば、チタン酸リチウム(Li4Ti512)等のチタンとリチウムとを含むリチウムチタン酸化物、酸化鉄、酸化ルテニウムまたは酸化モリブデン等が挙げられる。高分子化合物としては、例えば、ポリアセチレン、ポリアニリンまたはポリピロール等が挙げられる。 Examples of the negative electrode material capable of occluding and releasing lithium include metal oxides and polymer compounds capable of occluding and releasing lithium. Examples of the metal oxide include lithium titanium oxide containing titanium and lithium such as lithium titanate (Li 4 Ti 5 O 12 ), iron oxide, ruthenium oxide, or molybdenum oxide. Examples of the polymer compound include polyacetylene, polyaniline, polypyrrole, and the like.
[セパレータ]
 セパレータ55は、イオン透過度が大きく、所定の機械的強度を有する絶縁性の膜から構成される多孔質膜である。セパレータ55の空孔には、非水電解液が保持される。セパレータ55の構成は、第1の実施の形態のセパレータ基材11aと同様である。
[Separator]
The separator 55 is a porous film made of an insulating film having a high ion permeability and a predetermined mechanical strength. A non-aqueous electrolyte is held in the pores of the separator 55. The configuration of the separator 55 is the same as that of the separator substrate 11a of the first embodiment.
[ゲル電解質層]
 ゲル電解質層56は、フィラーとしての粒子とマトリックス高分子化合物(樹脂)と非水電解液(電解液)とを含み、セパレータ55の少なくとも一方の主面に形成された粒子含有樹脂層が電解液を含むことにより形成されたものである。セパレータ55の少なくとも一方の主面に形成された粒子含有樹脂層は、例えば、マトリックス高分子化合物が電解液を吸収し膨潤していわゆるゲル状となって、電解液を吸収したゲル状のマトリックス高分子自体がイオン伝導体として機能するゲル電解質層56となる。なお、この場合、マトリックス高分子化合物の膨潤とともに、粒子含有樹脂層の多孔構造は消滅してもよい。ゲル電解質層56には、粒子が含まれているので、ゲル電解質層56の強度や耐熱性、耐酸化性が向上し、安全性等の特性を向上することができる。
[Gel electrolyte layer]
The gel electrolyte layer 56 includes particles as a filler, a matrix polymer compound (resin), and a nonaqueous electrolytic solution (electrolytic solution). The particle-containing resin layer formed on at least one main surface of the separator 55 is an electrolytic solution. It is formed by including. The particle-containing resin layer formed on at least one main surface of the separator 55 is, for example, a matrix polymer compound that absorbs the electrolytic solution and swells to form a so-called gel. The molecule itself becomes the gel electrolyte layer 56 that functions as an ionic conductor. In this case, the porous structure of the particle-containing resin layer may disappear as the matrix polymer compound swells. Since the gel electrolyte layer 56 contains particles, the strength, heat resistance, and oxidation resistance of the gel electrolyte layer 56 are improved, and characteristics such as safety can be improved.
(非水電解液)
 非水電解液は、電解質塩と、この電解質塩を溶解する非水溶媒とを含む。
(Nonaqueous electrolyte)
The nonaqueous electrolytic solution includes an electrolyte salt and a nonaqueous solvent that dissolves the electrolyte salt.
(電解質塩)
 電解質塩は、例えば、リチウム塩等の軽金属化合物の1種あるいは2種以上を含有している。このリチウム塩としては、例えば、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、過塩素酸リチウム(LiClO4)、六フッ化ヒ酸リチウム(LiAsF6)、テトラフェニルホウ酸リチウム(LiB(C654)、メタンスルホン酸リチウム(LiCH3SO3)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、テトラクロロアルミン酸リチウム(LiAlCl4)、六フッ化ケイ酸二リチウム(Li2SiF6)、塩化リチウム(LiCl)あるいは臭化リチウム(LiBr)等が挙げられる。中でも、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウムおよび六フッ化ヒ酸リチウムからなる群のうちの少なくとも1種が好ましく、六フッ化リン酸リチウムがより好ましい。
(Electrolyte salt)
The electrolyte salt contains, for example, one or more light metal compounds such as lithium salts. Examples of the lithium salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium tetraphenylborate (LiB (C 6 H 5) 4), methanesulfonic acid lithium (LiCH 3 SO 3), lithium trifluoromethanesulfonate (LiCF 3 SO 3), tetrachloroaluminate lithium (LiAlCl 4), six Examples thereof include dilithium fluorosilicate (Li 2 SiF 6 ), lithium chloride (LiCl), and lithium bromide (LiBr). Among these, at least one selected from the group consisting of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, and lithium hexafluoroarsenate is preferable, and lithium hexafluorophosphate is more preferable.
(非水溶媒)
 非水溶媒としては、例えば、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトンあるいはε-カプロラクトン等のラクトン系溶媒、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ビニレン、炭酸ジメチル、炭酸エチルメチルあるいは炭酸ジエチル等の炭酸エステル系溶媒、1,2-ジメトキシエタン、1-エトキシ-2-メトキシエタン、1,2-ジエトキシエタン、テトラヒドロフランあるいは2-メチルテトラヒドロフラン等のエーテル系溶媒、アセトニトリル等のニトリル系溶媒、スルフォラン系溶媒、リン酸類、リン酸エステル溶媒、またはピロリドン類等の非水溶媒が挙げられる。溶媒は、いずれか1種を単独で用いてもよく、2種以上を混合して用いてもよい。
(Non-aqueous solvent)
Examples of the non-aqueous solvent include lactone solvents such as γ-butyrolactone, γ-valerolactone, δ-valerolactone, and ε-caprolactone, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, ethyl methyl carbonate, Carbonate ester solvents such as diethyl carbonate, ether solvents such as 1,2-dimethoxyethane, 1-ethoxy-2-methoxyethane, 1,2-diethoxyethane, tetrahydrofuran or 2-methyltetrahydrofuran, and nitriles such as acetonitrile Nonaqueous solvents such as solvents, sulfolane-based solvents, phosphoric acids, phosphate ester solvents, and pyrrolidones are exemplified. Any one type of solvent may be used alone, or two or more types may be mixed and used.
 また、非水溶媒として、環状炭酸エステルおよび鎖状炭酸エステルを混合して用いることが好ましく、環状炭酸エステルまたは鎖状炭酸エステルの水素の一部または全部がフッ素化された化合物を含むことがより好ましい。このフッ素化された化合物としては、フルオロエチレンカーボネート(4-フルオロ-1,3-ジオキソラン-2-オン:FEC)およびジフルオロエチレンカーボネート(4,5-ジフルオロ-1,3-ジオキソラン-2-オン:DFEC)を用いることが好ましい。負極活物質としてケイ素(Si)、スズ(Sn)、ゲルマニウム(Ge)等の化合物を含む負極54を用いた場合であっても、充放電サイクル特性を向上させることができるためである。なかでも、非水溶媒としてジフルオロエチレンカーボネートを用いることが好ましい。サイクル特性改善効果に優れるためである。 In addition, it is preferable to use a mixture of a cyclic carbonate and a chain carbonate as the non-aqueous solvent, and it may contain a compound in which a part or all of the hydrogen of the cyclic carbonate or the chain carbonate includes a fluorination. preferable. The fluorinated compounds include fluoroethylene carbonate (4-fluoro-1,3-dioxolan-2-one: FEC) and difluoroethylene carbonate (4,5-difluoro-1,3-dioxolan-2-one: DFEC) is preferably used. This is because even when the negative electrode 54 containing a compound such as silicon (Si), tin (Sn), or germanium (Ge) is used as the negative electrode active material, charge / discharge cycle characteristics can be improved. Of these, difluoroethylene carbonate is preferably used as the non-aqueous solvent. This is because the cycle characteristic improvement effect is excellent.
(3-2)非水電解質電池の製造方法
 この非水電解質電池62は、例えば、以下の方法により製造することができる。この非水電解質電池62は、典型的には、例えば、以下の正極作製工程と、負極作製工程と、粒子含有樹脂層形成工程(セパレータ作製工程)と、巻回工程と、電池組み立て工程とを順次行うことにより製造される。
(3-2) Manufacturing Method of Nonaqueous Electrolyte Battery This nonaqueous electrolyte battery 62 can be manufactured, for example, by the following method. This nonaqueous electrolyte battery 62 typically includes, for example, the following positive electrode manufacturing process, negative electrode manufacturing process, particle-containing resin layer forming process (separator manufacturing process), winding process, and battery assembling process. Manufactured sequentially.
[正極作製工程]
 正極活物質と、導電剤と、結着剤とを混合して正極合剤を調製し、この正極合剤をN-メチル-2-ピロリドン等の溶剤に分散させてペースト状の正極合剤スラリーを作製する。次に、この正極合剤スラリーを正極集電体53Aに塗布し溶剤を乾燥させ、ロールプレス機等により圧縮成型することにより正極活物質層53Bを形成し、正極53を作製する。その後、正極集電体53Aの端部に正極リード51を溶接により取り付ける。
[Positive electrode manufacturing process]
A positive electrode active material, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and the positive electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to form a paste-like positive electrode mixture slurry Is made. Next, the positive electrode mixture slurry is applied to the positive electrode current collector 53A, the solvent is dried, and the positive electrode active material layer 53B is formed by compression molding with a roll press or the like, and the positive electrode 53 is manufactured. Thereafter, the positive electrode lead 51 is attached to the end of the positive electrode current collector 53A by welding.
[負極作製工程]
 負極活物質と、結着剤とを混合して負極合剤を調製し、この負極合剤をN-メチル-2-ピロリドン等の溶剤に分散させてペースト状の負極合剤スラリーを作製する。次に、この負極合剤スラリーを負極集電体54Aに塗布し溶剤を乾燥させ、ロールプレス機等により圧縮成型することにより負極活物質層54Bを形成し、負極54を作製する。その後、負極集電体54Aの端部に負極リード52を溶接により取り付ける。
[Negative electrode fabrication process]
A negative electrode active material and a binder are mixed to prepare a negative electrode mixture, and the negative electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to prepare a paste-like negative electrode mixture slurry. Next, this negative electrode mixture slurry is applied to the negative electrode current collector 54A, the solvent is dried, and the negative electrode active material layer 54B is formed by compression molding with a roll press machine or the like, and the negative electrode 54 is manufactured. Thereafter, the negative electrode lead 52 is attached to the end of the negative electrode current collector 54A by welding.
[粒子含有樹脂層形成工程(セパレータ作製工程)]
 まず、セパレータ55の一方の主面または両方の主面に粒子含有樹脂層が形成された第1の実施の形態と同様のセパレータを作製する。粒子含有樹脂層形成工程の詳細は、第1の実施の形態と同様である。なお、セパレータ55の構成が、セパレータ基材11aの構成に対応し、これと同様の構成を有する。セパレータ55とセパレータ55の少なくとも一方の主面に形成された粒子含有樹脂層とが、第1の実施の形態によるセパレータ11(セパレータ基材11aとセパレータ基材11aの少なくとも一方の主面に形成された粒子含有樹脂層11bとを含むセパレータ11)に対応し、これと同様の構成を有する。
[Particle-containing resin layer formation step (separator preparation step)]
First, a separator similar to that of the first embodiment in which the particle-containing resin layer is formed on one main surface or both main surfaces of the separator 55 is manufactured. The details of the particle-containing resin layer forming step are the same as in the first embodiment. The configuration of the separator 55 corresponds to the configuration of the separator base material 11a and has the same configuration. The separator 55 and the particle-containing resin layer formed on at least one main surface of the separator 55 are formed on the separator 11 according to the first embodiment (at least one main surface of the separator base material 11a and the separator base material 11a). Corresponding to the separator 11) including the particle-containing resin layer 11b.
[巻回工程]
 次に、正極53および負極54を、一方の主面または両方の主面に粒子含有樹脂層が形成されたセパレータ55を介し積層および巻回することにより、巻回構造を有する巻回電極体50を作製する。そののち、正極集電体53Aの端部に正極リード51を溶接により取り付けると共に、負極集電体54Aの端部に負極リード52を溶接により取り付ける。
[Winding process]
Next, the positive electrode 53 and the negative electrode 54 are laminated and wound via a separator 55 having a particle-containing resin layer formed on one or both main surfaces, whereby a wound electrode body 50 having a wound structure. Is made. Thereafter, the positive electrode lead 51 is attached to the end of the positive electrode current collector 53A by welding, and the negative electrode lead 52 is attached to the end of the negative electrode current collector 54A by welding.
[電池組み立て工程]
 次に、ラミネートフィルムからなる外装部材60を深絞り加工することで凹部を形成し、巻回電極体50をこの凹部に挿入し、外装部材60の未加工部分を凹部上部に折り返し、凹部の外周の一部(例えば一辺)を除いて熱溶着する。その際、正極リード51および負極リード52と外装部材60との間には密着フィルム61を挿入する。
[Battery assembly process]
Next, the exterior member 60 made of a laminate film is deep-drawn to form a recess, the wound electrode body 50 is inserted into the recess, the unprocessed portion of the exterior member 60 is folded back to the upper portion of the recess, and the outer periphery of the recess Heat welding is performed except for a part (for example, one side). At that time, an adhesion film 61 is inserted between the positive electrode lead 51 and the negative electrode lead 52 and the exterior member 60.
 続いて、非水電解液を調製して、外装部材60の未溶着部分から内部に注入したのち、その外装部材60の未溶着部を熱融着等で密封する。このとき真空封止することにより、非水電解液が粒子含有樹脂層に含浸され、そのマトリックス高分子化合物(樹脂)が膨潤して、ゲル電解質層56が形成される。これにより、図3および図4に示した非水電解質電池62が完成する。 Subsequently, after preparing a non-aqueous electrolyte and injecting it from the unwelded portion of the exterior member 60, the unwelded portion of the exterior member 60 is sealed by heat fusion or the like. At this time, by vacuum sealing, the particle-containing resin layer is impregnated with the non-aqueous electrolyte, and the matrix polymer compound (resin) swells to form the gel electrolyte layer 56. Thereby, the nonaqueous electrolyte battery 62 shown in FIGS. 3 and 4 is completed.
(3-3)第2の構成(積層型)
 上述の第1の構成では、巻回電極体50が外装部材60で外装された非水電解質電池62について説明したが、図5A~図5Cに示すように、巻回電極体50の代わりに積層電極体70を用いてもよい。図5Aは、積層電極体70を収容した非水電解質電池62の外観図である。図5Bは、外装部材60に積層電極体70が収容される様子を示す分解斜視図である。図5Cは、図5Aに示す非水電解質電池62の底面側からの外観を示す外観図である。
(3-3) Second configuration (laminated type)
In the first configuration described above, the nonaqueous electrolyte battery 62 in which the spirally wound electrode body 50 is sheathed with the exterior member 60 has been described. However, as shown in FIGS. The electrode body 70 may be used. FIG. 5A is an external view of a nonaqueous electrolyte battery 62 that houses the laminated electrode body 70. FIG. 5B is an exploded perspective view showing a state in which the laminated electrode body 70 is accommodated in the exterior member 60. FIG. 5C is an external view showing the external appearance of the nonaqueous electrolyte battery 62 shown in FIG. 5A from the bottom surface side.
 積層電極体70は、矩形状の正極73および矩形状の負極74を、矩形状のセパレータ75を介して積層し、固定部材76で固定した積層電極体70を用いる。なお、図示は省略するが、ゲル電解質層が正極73および負極74に接するように設けられている。例えば、正極73およびセパレータ75の間、並びに、負極74およびセパレータ75の間にゲル電解質層(図示省略)が設けられている。このゲル電解質層は、第1の構成例のゲル電解質層56と同様である。積層電極体70からは、正極73と接続された正極リード71および負極74と接続された負極リード72とが導出されており、正極リード71および負極リード72と外装部材60との間には密着フィルム61が設けられる。 The laminated electrode body 70 uses a laminated electrode body 70 in which a rectangular positive electrode 73 and a rectangular negative electrode 74 are laminated via a rectangular separator 75 and fixed by a fixing member 76. Although not shown, the gel electrolyte layer is provided in contact with the positive electrode 73 and the negative electrode 74. For example, a gel electrolyte layer (not shown) is provided between the positive electrode 73 and the separator 75 and between the negative electrode 74 and the separator 75. This gel electrolyte layer is the same as the gel electrolyte layer 56 of the first configuration example. A positive electrode lead 71 connected to the positive electrode 73 and a negative electrode lead 72 connected to the negative electrode 74 are led out from the laminated electrode body 70, and the positive electrode lead 71, the negative electrode lead 72, and the exterior member 60 are in close contact with each other. A film 61 is provided.
 なお、ゲル電解質層の形成方法および外装部材60の熱融着方法は、第1の構成例と同様である。 In addition, the formation method of the gel electrolyte layer and the heat fusion method of the exterior member 60 are the same as those in the first configuration example.
<4.第4の実施の形態>
 本技術の第4の実施の形態では、ラミネートフィルム型の非水電解質電池(電池)について説明する。この非水電解質電池は、例えば充電および放電が可能な非水電解質二次電池であり、また、例えばリチウムイオン二次電池である。
<4. Fourth Embodiment>
In the fourth embodiment of the present technology, a laminated film type nonaqueous electrolyte battery (battery) will be described. This nonaqueous electrolyte battery is, for example, a nonaqueous electrolyte secondary battery that can be charged and discharged, and is, for example, a lithium ion secondary battery.
 以下では、第4の実施の形態によるラミネートフィルム型の非水電解質電池の2つの構成例(第1の構成例および第2の構成例)について説明する。 Hereinafter, two configuration examples (a first configuration example and a second configuration example) of the laminate film type nonaqueous electrolyte battery according to the fourth embodiment will be described.
 なお、第4の実施の形態による電池は、第2の実施の形態と同様の粒子含有樹脂層付き電極であって、粒子含有樹脂層の樹脂としてマトリックス高分子化合物を用いたものが組み込まれている。第4の実施の形態による電池では、セパレータ55が、セパレータ基材11aと同様であり、ゲル電解質層56が、電極上に形成された電解液を含む粒子含有樹脂層11bに対応する。 The battery according to the fourth embodiment is an electrode with a particle-containing resin layer similar to that of the second embodiment, in which a battery using a matrix polymer compound is incorporated as the resin of the particle-containing resin layer. Yes. In the battery according to the fourth embodiment, the separator 55 is the same as the separator substrate 11a, and the gel electrolyte layer 56 corresponds to the particle-containing resin layer 11b containing the electrolytic solution formed on the electrode.
(4-1)第1の構成
 第4の実施の形態による非水電解質電池62の第1の構成例は、以下に述べる点を除き、図3および図4に示す第3の実施の形態による非水電解質電池63の第1の構成例と同様である。すなわち、この非水電解質電池62は、第3の実施の形態のように、セパレータ55の表面に粒子含有樹脂層が形成されたもの(第1の実施の形態によるセパレータ)が組み込まれていない。その代わりに、第2の実施の形態と同様の粒子含有樹脂層付き電極であって、粒子含有樹脂層の樹脂としてマトリックス高分子化合物を用いたものが組み込まれている。そして、電極の表面に形成された粒子含有樹脂層が電解液を含むことにより、ゲル電解質層56を形成している。以上のこと以外は、第3の実施の形態と同様である。以下では、第3の実施の形態と同一構成の重複する説明は適宜省略し、第3の実施の形態と異なる点を詳細に説明する。
(4-1) First Configuration The first configuration example of the nonaqueous electrolyte battery 62 according to the fourth embodiment is the same as that of the third embodiment shown in FIGS. 3 and 4 except for the points described below. This is the same as the first configuration example of the nonaqueous electrolyte battery 63. That is, the non-aqueous electrolyte battery 62 does not incorporate the one having the particle-containing resin layer formed on the surface of the separator 55 (the separator according to the first embodiment) as in the third embodiment. Instead, an electrode with a particle-containing resin layer similar to that of the second embodiment, in which a matrix polymer compound is used as the resin of the particle-containing resin layer, is incorporated. And the gel electrolyte layer 56 is formed because the particle | grain containing resin layer formed in the surface of an electrode contains electrolyte solution. Except for the above, this embodiment is the same as the third embodiment. In the following, overlapping description of the same configuration as that of the third embodiment will be omitted as appropriate, and differences from the third embodiment will be described in detail.
[ゲル電解質層]
 ゲル電解質層56は、フィラーとしての粒子とマトリックス高分子化合物(樹脂)と非水電解液(電解液)とを含み、正極53および負極54の少なくとも一方の電極の両方の主面に形成された粒子含有樹脂層が電解液を含むことにより形成されたものである。正極53および負極54の少なくとも一方の電極の両方の主面に形成された粒子含有樹脂層は、例えば、マトリックス高分子化合物が電解液を吸収し膨潤していわゆるゲル状となって、電解液を吸収したゲル状のマトリックス高分子自体がイオン伝導体として機能するゲル電解質層56となる。なお、この場合、マトリックス高分子化合物の膨潤により、粒子含有樹脂層の多孔構造は消滅してもよい。ゲル電解質層56には、粒子が含まれているので、ゲル電解質層56の強度や耐熱性、耐酸化性が向上し、安全性等の特性を向上することができる。
[Gel electrolyte layer]
The gel electrolyte layer 56 includes particles as a filler, a matrix polymer compound (resin), and a nonaqueous electrolytic solution (electrolytic solution), and is formed on the main surfaces of at least one of the positive electrode 53 and the negative electrode 54. The particle-containing resin layer is formed by containing an electrolytic solution. The particle-containing resin layer formed on both main surfaces of at least one of the positive electrode 53 and the negative electrode 54 is, for example, a matrix polymer compound that absorbs the electrolyte and swells to form a so-called gel. The absorbed gel-like matrix polymer itself becomes a gel electrolyte layer 56 that functions as an ionic conductor. In this case, the porous structure of the particle-containing resin layer may disappear due to swelling of the matrix polymer compound. Since the gel electrolyte layer 56 contains particles, the strength, heat resistance, and oxidation resistance of the gel electrolyte layer 56 are improved, and characteristics such as safety can be improved.
(4-2)非水電解質電池の製造方法
 この非水電解質電池62は、典型的には、例えば、第3の実施の形態と同様の正極作製工程および負極作製工程を行った後、粒子含有樹脂層形成工程(粒子含有樹脂層付き電極作製工程)と、巻回工程と、電池組み立て工程とを順次行うことにより製造される。
(4-2) Method for Producing Nonaqueous Electrolyte Battery Typically, this nonaqueous electrolyte battery 62 contains particles after, for example, the same positive electrode preparation step and negative electrode preparation step as those in the third embodiment. Manufactured by sequentially performing a resin layer forming step (electrode manufacturing step with particle-containing resin layer), a winding step, and a battery assembly step.
[粒子含有樹脂層形成工程]
 まず、正極53の両方の主面に粒子含有樹脂層が形成された粒子含有樹脂層付き電極(正極)および負極54の両方の主面に粒子含有樹脂層が形成された粒子含有樹脂層付き電極(負極)を作製する。なお、正極および負極のうちの一方の電極のみを、粒子含有樹脂層付き電極としてもよい。粒子含有樹脂層の形成方法は、第2の実施の形態と同様である。
[Particle-containing resin layer forming step]
First, an electrode with a particle-containing resin layer (positive electrode) in which a particle-containing resin layer is formed on both main surfaces of the positive electrode 53 and an electrode with a particle-containing resin layer in which a particle-containing resin layer is formed on both main surfaces of the negative electrode 54 (Negative electrode) is prepared. Only one of the positive electrode and the negative electrode may be an electrode with a particle-containing resin layer. The method for forming the particle-containing resin layer is the same as in the second embodiment.
[巻回工程]
 次に、粒子含有樹脂層付き正極53および粒子含有樹脂層付き負極54を、セパレータ55を介し積層および巻回することにより、巻回構造を有する巻回電極体50を作製する。
[Winding process]
Next, the positive electrode 53 with a particle-containing resin layer and the negative electrode 54 with a particle-containing resin layer are stacked and wound with a separator 55 interposed therebetween, so that a wound electrode body 50 having a wound structure is produced.
[電池組み立て工程]
 次に、ラミネートフィルムからなる外装部材60を深絞り加工することで凹部を形成し、巻回電極体50をこの凹部に挿入し、外装部材60の未加工部分を凹部上部に折り返し、凹部の外周の一部(例えば一辺)を除いて熱溶着する。その際、正極リード51および負極リード52と外装部材60との間には密着フィルム61を挿入する。
[Battery assembly process]
Next, the exterior member 60 made of a laminate film is deep-drawn to form a recess, the wound electrode body 50 is inserted into the recess, the unprocessed portion of the exterior member 60 is folded back to the upper portion of the recess, and the outer periphery of the recess Heat welding is performed except for a part (for example, one side). At that time, an adhesion film 61 is inserted between the positive electrode lead 51 and the negative electrode lead 52 and the exterior member 60.
 続いて、非水電解液を調製して、外装部材60の未溶着部分から内部に注入したのち、その外装部材60の未溶着部を熱融着等で密封する。このとき真空封止することにより、非水電解液が粒子含有樹脂層に含浸され、そのマトリックス高分子化合物(樹脂)が非水電解液を吸収し膨潤して、ゲル電解質層56が形成される。これにより、図3および図4に示した非水電解質電池62が完成する。 Subsequently, after preparing a non-aqueous electrolyte and injecting it from the unwelded portion of the exterior member 60, the unwelded portion of the exterior member 60 is sealed by heat fusion or the like. At this time, by vacuum sealing, the non-aqueous electrolyte solution is impregnated into the particle-containing resin layer, and the matrix polymer compound (resin) absorbs the non-aqueous electrolyte solution and swells to form the gel electrolyte layer 56. . Thereby, the nonaqueous electrolyte battery 62 shown in FIGS. 3 and 4 is completed.
(4-3)第2の構成
 上述の第1の構成例では、巻回電極体50が外装部材60で外装された非水電解質電池62について説明したが、巻回電極体50の代わりに積層電極体70を用いてもよい。第4の実施の形態による非水電解質電池62の第2の構成例は、図5A~図5Cに示す構成と同様である。
(4-3) Second Configuration In the first configuration example described above, the nonaqueous electrolyte battery 62 in which the wound electrode body 50 is sheathed with the exterior member 60 has been described. The electrode body 70 may be used. A second configuration example of the nonaqueous electrolyte battery 62 according to the fourth embodiment is the same as the configuration shown in FIGS. 5A to 5C.
 積層電極体70は、矩形状の正極73および矩形状の負極74を、矩形状のセパレータ75を介して積層し、固定部材76で固定した積層電極体70を用いる。なお、図示は省略するが、ゲル電解質層が正極73および負極74に接するように設けられている。例えば、正極73およびセパレータ75の間、並びに、負極74およびセパレータ75の間にゲル電解質層(図示省略)が設けられている。このゲル電解質層は、第1の構成例のゲル電解質層56と同様である。積層電極体70からは、正極73と接続された正極リード71および負極74と接続された負極リード72とが導出されており、正極リード71および負極リード72と外装部材60との間には密着フィルム61が設けられる。 The laminated electrode body 70 uses a laminated electrode body 70 in which a rectangular positive electrode 73 and a rectangular negative electrode 74 are laminated via a rectangular separator 75 and fixed by a fixing member 76. Although not shown, the gel electrolyte layer is provided in contact with the positive electrode 73 and the negative electrode 74. For example, a gel electrolyte layer (not shown) is provided between the positive electrode 73 and the separator 75 and between the negative electrode 74 and the separator 75. This gel electrolyte layer is the same as the gel electrolyte layer 56 of the first configuration example. A positive electrode lead 71 connected to the positive electrode 73 and a negative electrode lead 72 connected to the negative electrode 74 are led out from the laminated electrode body 70, and the positive electrode lead 71, the negative electrode lead 72, and the exterior member 60 are in close contact with each other. A film 61 is provided.
 なお、ゲル電解質層の形成方法および外装部材60の熱融着方法は、第1の構成例と同様である。 In addition, the formation method of the gel electrolyte layer and the heat fusion method of the exterior member 60 are the same as those in the first configuration example.
5.第5の実施の形態
 第5の実施の形態では、円筒型の非水電解質電池について説明する。第5の実施の形態による電池は、第1の実施の形態と同様のセパレータであって、粒子含有樹脂層の樹脂としてバインダー高分子化合物を用いたものが組み込まれている。
5. Fifth Embodiment In the fifth embodiment, a cylindrical nonaqueous electrolyte battery will be described. The battery according to the fifth embodiment is the same separator as in the first embodiment, and incorporates a binder polymer compound as the resin of the particle-containing resin layer.
(5-1)非水電解質電池の構成
 図6は、第5の実施の形態による非水電解質電池の一例を示す断面図である。非水電解質電池80は、例えば充電および放電が可能な非水電解質二次電池である。この非水電解質電池80は、いわゆる円筒型と呼ばれるものであり、ほぼ中空円柱状の電池缶81の内部に、図示しない液体状の非水電解質(以下、非水電解液と適宜称する)とともに帯状の正極91と負極92とがセパレータ93を介して巻回された巻回電極体90を有している。
(5-1) Configuration of Nonaqueous Electrolyte Battery FIG. 6 is a cross-sectional view showing an example of a nonaqueous electrolyte battery according to the fifth embodiment. The nonaqueous electrolyte battery 80 is a nonaqueous electrolyte secondary battery that can be charged and discharged, for example. This non-aqueous electrolyte battery 80 is a so-called cylindrical type, and is formed in a substantially hollow cylindrical battery can 81 together with a liquid non-aqueous electrolyte (not shown) (hereinafter appropriately referred to as a non-aqueous electrolyte) in a strip shape. The positive electrode 91 and the negative electrode 92 have a wound electrode body 90 wound with a separator 93 interposed therebetween.
 電池缶81は、例えばニッケルめっきが施された鉄により構成されており、一端部が閉鎖され他端部が開放されている。電池缶81の内部には、巻回電極体90を挟むように巻回周面に対して垂直に一対の絶縁板82a、82bがそれぞれ配置されている。 The battery can 81 is made of, for example, iron plated with nickel, and has one end closed and the other end open. Inside the battery can 81, a pair of insulating plates 82a and 82b are respectively arranged perpendicular to the winding peripheral surface so as to sandwich the winding electrode body 90 therebetween.
 電池缶81の材料としては、鉄(Fe)、ニッケル(Ni)、ステンレス(SUS)、アルミニウム(Al)、チタン(Ti)等が挙げられる。この電池缶81には、非水電解質電池10の充放電に伴う電気化学的な非水電解液による腐食を防止するために、例えばニッケル等のメッキが施されていてもよい。電池缶81の開放端部には、正極リード板である電池蓋83と、この電池蓋83の内側に設けられた安全弁機構および熱感抵抗素子(PTC素子:Positive Temperature Coefficient)87が、絶縁封口のためのガスケット88を介してかしめられることにより取り付けられている。 Examples of the material of the battery can 81 include iron (Fe), nickel (Ni), stainless steel (SUS), aluminum (Al), titanium (Ti), and the like. The battery can 81 may be plated with, for example, nickel in order to prevent corrosion due to the electrochemical non-aqueous electrolyte associated with charging / discharging of the non-aqueous electrolyte battery 10. A battery lid 83 that is a positive electrode lead plate and a safety valve mechanism and a heat-sensitive resistance element (PTC element: Positive Temperature Coefficient) 87 provided inside the battery lid 83 are provided at the open end of the battery can 81 with an insulating seal. It is attached by caulking through a gasket 88 for
 電池蓋83は、例えば電池缶81と同様の材料により構成されており、電池内部で発生したガスを排出するための開口部が設けられている。安全弁機構は、安全弁84とディスクホルダ85と遮断ディスク86とが順に重ねられている。安全弁84の突出部84aは遮断ディスク86の中心部に設けられた孔部86aを覆うように配置されたサブディスク89を介して巻回電極体90から導出された正極リード95と接続されている。サブディスク89を介して安全弁84と正極リード95とが接続されることにより、安全弁84の反転時に正極リード95が孔部86aから引き込まれることを防止する。また、安全弁機構は、熱感抵抗素子87を介して電池蓋83と電気的に接続されている。 The battery lid 83 is made of the same material as the battery can 81, for example, and is provided with an opening for discharging gas generated inside the battery. In the safety valve mechanism, a safety valve 84, a disc holder 85, and a shut-off disc 86 are sequentially stacked. The protruding portion 84a of the safety valve 84 is connected to the positive electrode lead 95 led out from the wound electrode body 90 through a sub disk 89 disposed so as to cover a hole 86a provided at the center of the shutoff disk 86. . By connecting the safety valve 84 and the positive electrode lead 95 via the sub disk 89, the positive electrode lead 95 is prevented from being drawn from the hole 86a when the safety valve 84 is reversed. Further, the safety valve mechanism is electrically connected to the battery lid 83 via the heat sensitive resistance element 87.
 安全弁機構は、電池内部短絡あるいは電池外部からの加熱等により非水電解質電池80の内圧が一定以上となった場合に、安全弁84が反転し、突出部84aと電池蓋83と巻回電極体90との電気的接続を切断するものである。すなわち、安全弁84が反転した際には遮断ディスク86により正極リード95が押さえられて安全弁84と正極リード95との接続が解除される。ディスクホルダ85は絶縁性材料からなり、安全弁84が反転した場合には安全弁84と遮断ディスク86とが絶縁される。 In the safety valve mechanism, when the internal pressure of the nonaqueous electrolyte battery 80 becomes a certain level or more due to internal short circuit or heating from the outside of the battery, the safety valve 84 is reversed, and the protrusion 84a, the battery lid 83, and the wound electrode body 90 are reversed. The electrical connection with is disconnected. That is, when the safety valve 84 is reversed, the positive electrode lead 95 is pressed by the shut-off disk 86 and the connection between the safety valve 84 and the positive electrode lead 95 is released. The disc holder 85 is made of an insulating material, and when the safety valve 84 is reversed, the safety valve 84 and the shut-off disc 86 are insulated.
 また、電池内部でさらにガスが発生し、電池内圧がさらに上昇した場合には、安全弁84の一部が裂壊してガスを電池蓋83側に排出可能としている。 In addition, when further gas is generated inside the battery and the internal pressure of the battery further increases, a part of the safety valve 84 is broken and the gas can be discharged to the battery lid 83 side.
 また、遮断ディスク86の孔部86aの周囲には例えば複数のガス抜き孔(図示せず)が設けられており、巻回電極体90からガスが発生した場合にはガスを効果的に電池蓋83側に排出可能な構成としている。 In addition, for example, a plurality of gas vent holes (not shown) are provided around the hole 86a of the shut-off disk 86. When gas is generated from the wound electrode body 90, the gas is effectively removed from the battery lid. It is set as the structure which can discharge | emit to 83 side.
 熱感抵抗素子87は、温度が上昇した際に抵抗値が増大し、電池蓋83と巻回電極体90との電気的接続を切断することによって電流を遮断し、過大電流による異常な発熱を防止する。ガスケット88は、例えば絶縁材料により構成されており、表面にはアスファルトが塗布されている。 The heat sensitive resistance element 87 increases in resistance value when the temperature rises, interrupts the current by disconnecting the electrical connection between the battery lid 83 and the wound electrode body 90, and generates abnormal heat due to an excessive current. To prevent. The gasket 88 is made of, for example, an insulating material, and asphalt is applied to the surface.
 非水電解質電池80内に収容される巻回電極体20は、センターピン94を中心に巻回されている。巻回電極体90は、正極91および負極92がセパレータ93を介して順に積層され、長手方向に巻回されてなる。正極91には正極リード95が接続されており、負極92には負極リード96が接続されている。正極リード95は、上述のように、安全弁84に溶接されて電池蓋83と電気的に接続されており、負極リード96は電池缶81に溶接されて電気的に接続されている。 The wound electrode body 20 accommodated in the nonaqueous electrolyte battery 80 is wound around the center pin 94. The wound electrode body 90 is formed by sequentially laminating a positive electrode 91 and a negative electrode 92 with a separator 93 interposed therebetween and wound in the longitudinal direction. A positive electrode lead 95 is connected to the positive electrode 91, and a negative electrode lead 96 is connected to the negative electrode 92. As described above, the positive electrode lead 95 is welded to the safety valve 84 and electrically connected to the battery lid 83, and the negative electrode lead 96 is welded to and electrically connected to the battery can 81.
 図7は、図6に示した巻回電極体90の一部を拡大して表すものである。以下、正極91、負極92、セパレータ93について、詳細に説明する。 FIG. 7 shows an enlarged part of the spirally wound electrode body 90 shown in FIG. Hereinafter, the positive electrode 91, the negative electrode 92, and the separator 93 will be described in detail.
[正極]
 正極91は、正極活物質を含有する正極活物質層91Bが、正極集電体91Aの両面上に形成されたものである。正極集電体91Aとしては、例えばアルミニウム(Al)箔、ニッケル(Ni)箔あるいは、ステンレス(SUS)箔等の金属箔を用いることができる。
[Positive electrode]
In the positive electrode 91, a positive electrode active material layer 91B containing a positive electrode active material is formed on both surfaces of the positive electrode current collector 91A. As the positive electrode current collector 91A, for example, a metal foil such as an aluminum (Al) foil, a nickel (Ni) foil, or a stainless steel (SUS) foil can be used.
 正極活物質層91Bは、正極活物質としては、リチウムを吸蔵および放出することが可能な正極材料のいずれか1種または2種以上を含んで構成されており、必要に応じて、結着剤や導電剤等の他の材料を含んでいてもよい。なお、正極活物質、導電剤および結着剤は、それぞれ第3の実施の形態と同様のものを用いることができる。 The positive electrode active material layer 91 </ b> B is configured to include any one or more of positive electrode materials capable of inserting and extracting lithium as a positive electrode active material. Or other materials such as a conductive agent. The positive electrode active material, the conductive agent, and the binder can be the same as those in the third embodiment.
 正極91は正極集電体91Aの一端部にスポット溶接または超音波溶接で接続された正極リード95を有している。この正極リード95は金属箔、網目状のものが望ましいが、電気化学的および化学的に安定であり、導通がとれるものであれば金属でなくとも問題はない。正極リード95の材料としては、例えばアルミニウム(Al)、ニッケル(Ni)等が挙げられる。 The positive electrode 91 has a positive electrode lead 95 connected to one end of the positive electrode current collector 91A by spot welding or ultrasonic welding. The positive electrode lead 95 is preferably a metal foil or a mesh-like one, but there is no problem even if it is not a metal as long as it is electrochemically and chemically stable and can conduct electricity. Examples of the material of the positive electrode lead 95 include aluminum (Al) and nickel (Ni).
[負極]
 負極92は、例えば、対向する一対の面を有する負極集電体92Aの両面に負極活物質層92Bが設けられた構造を有している。なお、図示はしないが、負極集電体92Aの片面のみに負極活物質層92Bを設けるようにしてもよい。負極集電体92Aは、例えば、銅箔等の金属箔により構成されている。
[Negative electrode]
The negative electrode 92 has, for example, a structure in which a negative electrode active material layer 92B is provided on both surfaces of a negative electrode current collector 92A having a pair of opposed surfaces. Although not shown, the negative electrode active material layer 92B may be provided only on one surface of the negative electrode current collector 92A. The negative electrode current collector 92A is made of, for example, a metal foil such as a copper foil.
 負極活物質層92Bは、負極活物質として、リチウムを吸蔵および放出することが可能な負極材料のいずれか1種または2種以上を含んで構成されており、必要に応じて正極活物質層91Bと同様の結着剤や導電剤等の他の材料を含んで構成されていてもよい。なお、負極活物質、導電剤および結着剤は、それぞれ第3の実施の形態と同様のものを用いることができる。 The negative electrode active material layer 92B includes one or more negative electrode materials capable of occluding and releasing lithium as the negative electrode active material, and the positive electrode active material layer 91B as necessary. Other materials such as a binder and a conductive agent similar to those described above may be included. The negative electrode active material, the conductive agent, and the binder can be the same as those in the third embodiment.
[セパレータ]
 セパレータ93は、第1の実施の形態によるセパレータ11と同様である。すなわち、図7に示すように、セパレータ基材93aの両方の主面に粒子含有樹脂層93bが形成されている。セパレータ基材93aの一方の主面のみに粒子含有樹脂層93bが形成されていてもよい。粒子含有樹脂層93bにより、セパレータ93の強度や耐熱性、耐酸化性が向上し、安全性等の特性を向上することができる。なお、粒子含有樹脂層93bに含まれる樹脂としては、典型的には、バインダー高分子化合物を用いる。セパレータ93には、非水電解液が含浸される。粒子含有樹脂層93bは、例えば、セパレータ基材93aと共に、正極91と負極92との間に介在し、両極活物質の接触を防止するとともに、セパレータ基材93aと同様、その微多孔内に電解液を保持して電極間のイオン伝導の通路を形成する。
[Separator]
The separator 93 is the same as the separator 11 according to the first embodiment. That is, as shown in FIG. 7, the particle-containing resin layer 93b is formed on both main surfaces of the separator base material 93a. The particle-containing resin layer 93b may be formed only on one main surface of the separator base material 93a. The particle-containing resin layer 93b improves the strength, heat resistance, and oxidation resistance of the separator 93, and improves safety and other characteristics. As the resin contained in the particle-containing resin layer 93b, typically, a binder polymer compound is used. The separator 93 is impregnated with a non-aqueous electrolyte. The particle-containing resin layer 93b is, for example, interposed between the positive electrode 91 and the negative electrode 92 together with the separator base material 93a to prevent contact between the bipolar active materials, and in the same way as the separator base material 93a, electrolysis is performed in the micropores. The liquid is held to form an ion conduction path between the electrodes.
[非水電解液]
 非水電解液は、第3の実施の形態と同様である。
[Non-aqueous electrolyte]
The non-aqueous electrolyte is the same as in the third embodiment.
(5-2)非水電解質電池の製造方法
[正極の製造方法、負極の製造方法]
 第3の実施の形態と同様にして、正極91および負極92を作製する。
(5-2) Manufacturing method of non-aqueous electrolyte battery [positive electrode manufacturing method, negative electrode manufacturing method]
The positive electrode 91 and the negative electrode 92 are produced in the same manner as in the third embodiment.
[セパレータの製造方法]
 第1の実施の形態と同様にして、セパレータ基材93aの少なくとも一方の主面に粒子含有樹脂層93bを形成して、セパレータ93を作製する。
[Manufacturing method of separator]
In the same manner as in the first embodiment, the particle-containing resin layer 93b is formed on at least one main surface of the separator substrate 93a to produce the separator 93.
[非水電解液の調製]
 非水電解液は、非水溶媒に対して電解質塩を溶解させて調製する。
[Preparation of non-aqueous electrolyte]
The nonaqueous electrolytic solution is prepared by dissolving an electrolyte salt in a nonaqueous solvent.
[非水電解質電池の組み立て]
 正極集電体91Aに正極リード95を溶接等により取り付けると共に、負極集電体92Aに負極リード96を溶接等により取り付ける。その後、正極91と負極92とを本技術のセパレータ93を介して巻回し巻回電極体90とする。正極リード95の先端部を安全弁機構に溶接すると共に、負極リード96の先端部を電池缶81に溶接する。この後、巻回電極体90の巻回面を一対の絶縁板82a,82bで挟み、電池缶81の内部に収納する。巻回電極体90を電池缶81の内部に収納したのち、非水電解液を電池缶81の内部に注入し、セパレータ93に含浸させる。そののち、電池缶81の開口端部に電池蓋83、安全弁84等からなる安全弁機構および熱感抵抗素子87をガスケット88を介してかしめることにより固定する。これにより、図6に示した本技術の非水電解質電池80が形成される。
[Assembly of non-aqueous electrolyte battery]
A positive electrode lead 95 is attached to the positive electrode current collector 91A by welding or the like, and a negative electrode lead 96 is attached to the negative electrode current collector 92A by welding or the like. Thereafter, the positive electrode 91 and the negative electrode 92 are wound through a separator 93 of the present technology to form a wound electrode body 90. The tip of the positive electrode lead 95 is welded to the safety valve mechanism, and the tip of the negative electrode lead 96 is welded to the battery can 81. Thereafter, the wound surface of the wound electrode body 90 is sandwiched between the pair of insulating plates 82 a and 82 b and housed in the battery can 81. After the wound electrode body 90 is accommodated in the battery can 81, a non-aqueous electrolyte is injected into the battery can 81 and impregnated in the separator 93. After that, the safety valve mechanism including the battery lid 83 and the safety valve 84 and the heat sensitive resistance element 87 are fixed to the opening end of the battery can 81 by caulking through the gasket 88. Thereby, the nonaqueous electrolyte battery 80 of this technique shown in FIG. 6 is formed.
 この非水電解質電池80では、充電を行うと、例えば、正極活物質層91Bからリチウムイオンが放出され、セパレータ93(セパレータ基材93aおよび粒子含有樹脂層93b)に含浸された非水電解液を介して負極活物質層92Bに吸蔵される。また、放電を行うと、例えば、負極活物質層92Bからリチウムイオンが放出され、セパレータ93(セパレータ基材93aおよび粒子含有樹脂層93b)に含浸された非水電解液を介して正極活物質層91Bに吸蔵される。 In the nonaqueous electrolyte battery 80, when charged, for example, lithium ions are released from the positive electrode active material layer 91B, and the nonaqueous electrolyte solution impregnated in the separator 93 (the separator base material 93a and the particle-containing resin layer 93b) is used. And occluded in the negative electrode active material layer 92B. Further, when the discharge is performed, for example, lithium ions are released from the negative electrode active material layer 92B, and the positive electrode active material layer is passed through the nonaqueous electrolytic solution impregnated in the separator 93 (the separator base material 93a and the particle-containing resin layer 93b). It is occluded by 91B.
6.第6の実施の形態
 第6の実施の形態では、円筒型の非水電解質電池について説明する。第6の実施の形態による電池は、第2の実施の形態と同様の粒子含有樹脂層付き電極であって、粒子含有樹脂層の樹脂としてバインダー高分子化合物を用いたものが組み込まれている。
6). Sixth Embodiment In a sixth embodiment, a cylindrical nonaqueous electrolyte battery will be described. The battery according to the sixth embodiment is an electrode with a particle-containing resin layer similar to that of the second embodiment, and incorporates a battery using a binder polymer compound as the resin of the particle-containing resin layer.
(6-1)非水電解質電池の構成
 図8に示すように、粒子含有樹脂層91Cおよび粒子含有樹脂層92Cのそれぞれは、例えば、セパレータ93と共に、正極91と負極92との間に介在し、両極活物質の接触を防止するとともに、セパレータ93と同様、その微多孔内に電解液を保持して電極間のイオン伝導の通路を形成する。粒子含有樹脂層91C、92Cにより、セパレータ93の強度や耐熱性、耐酸化性を補強することができ、安全性等の特性を向上することができる。セパレータ93は、典型的にはセパレータ基材93aと同様の構成を有する。なお、セパレータ93としては、第5の実施の形態と同様のセパレータ(セパレータ基材93aおよび粒子含有樹脂層93b)を用いてもよい。以上の構成以外は、第5の実施の形態と同様である。
(6-1) Configuration of Nonaqueous Electrolyte Battery As shown in FIG. 8, each of the particle-containing resin layer 91C and the particle-containing resin layer 92C, for example, is interposed between the positive electrode 91 and the negative electrode 92 together with the separator 93. In addition to preventing contact between the bipolar active materials, like the separator 93, the electrolytic solution is held in the micropore to form an ion conduction path between the electrodes. The particle-containing resin layers 91C and 92C can reinforce the strength, heat resistance, and oxidation resistance of the separator 93, and can improve characteristics such as safety. The separator 93 typically has a configuration similar to that of the separator base material 93a. In addition, as the separator 93, you may use the separator (Separator base material 93a and particle-containing resin layer 93b) similar to 5th Embodiment. The configuration other than the above is the same as that of the fifth embodiment.
 なお、負極92に対して粒子含有樹脂層92Cを形成しないで、粒子含有樹脂層91Cを正極91の両方または一方の主面に設けた粒子含有樹脂層付き電極(正極)のみが組み込まれた構成としてもよい。正極91に対して粒子含有樹脂層91Cを形成しないで、粒子含有樹脂層92Cを負極92の両方または一方の主面に設けた粒子含有樹脂層付き電極(負極)のみが組み込まれた構成としてもよい。また、粒子含有樹脂層91Cを正極91の一方の主面に設けた粒子含有樹脂層付き電極(正極)と、粒子含有樹脂層92Cを負極92の少なくとも一方の主面に設けた粒子含有樹脂層付き電極とが組み込まれた構成としてもよい、また、粒子含有樹脂層91Cを正極91の両方の主面に設けた粒子含有樹脂層付き電極と、粒子含有樹脂層92Cを負極92の片方の主面に設けた粒子含有樹脂層付き電極とが組み込まれた構成としてもよい。 A configuration in which only the electrode (positive electrode) with a particle-containing resin layer in which the particle-containing resin layer 91C is provided on both or one main surface of the positive electrode 91 without forming the particle-containing resin layer 92C with respect to the negative electrode 92 is incorporated. It is good. Even if only the electrode (negative electrode) with the particle containing resin layer which provided the particle containing resin layer 92C in both or one main surface of the negative electrode 92 without forming the particle containing resin layer 91C with respect to the positive electrode 91 is incorporated. Good. Further, an electrode with a particle-containing resin layer (positive electrode) provided with a particle-containing resin layer 91C on one main surface of the positive electrode 91, and a particle-containing resin layer provided with at least one main surface of the negative electrode 92 with a particle-containing resin layer 92C. The electrode with the particle-containing resin layer 91C provided on both main surfaces of the positive electrode 91 and the particle-containing resin layer 92C with one main electrode of the negative electrode 92 may be configured. It is good also as a structure with which the electrode with a particle-containing resin layer provided in the surface was incorporated.
(6-2)非水電解質電池の製造方法
[正極の製造方法]
 第2の実施の形態と同様に、粒子含有樹脂層付き正極を作製する。すなわち、第5の実施の形態と同様に、正極91を作製する。次に、正極91の両方の主面または一方の主面に、塗料(粒子含有樹脂溶液)を塗布して粒子含有樹脂溶液層を形成する。その後、粒子含有樹脂溶液層を乾燥することにより粒子含有樹脂層91Cを形成する。
(6-2) Nonaqueous electrolyte battery manufacturing method [Positive electrode manufacturing method]
Similarly to the second embodiment, a positive electrode with a particle-containing resin layer is produced. That is, the positive electrode 91 is produced as in the fifth embodiment. Next, a paint (particle-containing resin solution) is applied to both main surfaces or one main surface of the positive electrode 91 to form a particle-containing resin solution layer. Thereafter, the particle-containing resin layer 91C is formed by drying the particle-containing resin solution layer.
[負極の製造方法]
 第2の実施の形態と同様に、粒子含有樹脂層付き負極を作製する。第5の実施の形態と同様に、負極92を作製する。次に、負極92の両方の主面または一方の主面に、塗料(粒子含有樹脂溶液)を塗布して粒子含有樹脂溶液層を形成する。その後、粒子含有樹脂溶液層を乾燥することにより粒子含有樹脂層92Cを形成する。
[Production method of negative electrode]
Similarly to the second embodiment, a negative electrode with a particle-containing resin layer is produced. Similar to the fifth embodiment, the negative electrode 92 is produced. Next, a paint (particle-containing resin solution) is applied to both main surfaces or one main surface of the negative electrode 92 to form a particle-containing resin solution layer. Thereafter, the particle-containing resin layer 92C is formed by drying the particle-containing resin solution layer.
[セパレータ]
 セパレータ93は、セパレータ基材93aの構成と同様のものを用意する。
[Separator]
The separator 93 has the same configuration as that of the separator base material 93a.
[非水電解液の調製]
 非水電解液は、非水溶媒に対して電解質塩を溶解させて調製する。
[Preparation of non-aqueous electrolyte]
The nonaqueous electrolytic solution is prepared by dissolving an electrolyte salt in a nonaqueous solvent.
[非水電解質電池の組み立て]
 正極集電体91Aに正極リード95を溶接等により取り付けると共に、負極集電体92Aに負極リード96を溶接等により取り付ける。その後、粒子含有樹脂層付き正極91と粒子含有樹脂層付き負極92とをセパレータ93を介して巻回し巻回電極体90とする。正極リード95の先端部を安全弁機構に溶接すると共に、負極リード96の先端部を電池缶81に溶接する。
[Assembly of non-aqueous electrolyte battery]
A positive electrode lead 95 is attached to the positive electrode current collector 91A by welding or the like, and a negative electrode lead 96 is attached to the negative electrode current collector 92A by welding or the like. Thereafter, the positive electrode 91 with a particle-containing resin layer and the negative electrode 92 with a particle-containing resin layer are wound through a separator 93 to obtain a wound electrode body 90. The tip of the positive electrode lead 95 is welded to the safety valve mechanism, and the tip of the negative electrode lead 96 is welded to the battery can 81.
 この後、巻回電極体90の巻回面を一対の絶縁板82a,82bで挟み、電池缶81の内部に収納する。巻回電極体90を電池缶81の内部に収納したのち、非水電解液を電池缶81の内部に注入し、セパレータ93および粒子含有樹脂層91Cおよび粒子含有樹脂層92Cに含浸させる。そののち、電池缶81の開口端部に電池蓋83、安全弁84等からなる安全弁機構および熱感抵抗素子87をガスケット88を介してかしめることにより固定する。これにより、図6に示した本技術の非水電解質電池80が形成される。 Thereafter, the wound surface of the wound electrode body 90 is sandwiched between the pair of insulating plates 82 a and 82 b and stored in the battery can 81. After the wound electrode body 90 is housed in the battery can 81, a non-aqueous electrolyte is injected into the battery can 81 and impregnated in the separator 93, the particle-containing resin layer 91C, and the particle-containing resin layer 92C. After that, the safety valve mechanism including the battery lid 83 and the safety valve 84 and the heat sensitive resistance element 87 are fixed to the opening end of the battery can 81 by caulking through the gasket 88. Thereby, the nonaqueous electrolyte battery 80 of this technique shown in FIG. 6 is formed.
 この非水電解質電池80では、充電を行うと、例えば、正極活物質層91Bからリチウムイオンが放出され、セパレータ93、粒子含有樹脂層91Cおよび粒子含有樹脂層92Cに含浸された非水電解液を介して負極活物質層92Bに吸蔵される。また、放電を行うと、例えば、負極活物質層92Bからリチウムイオンが放出され、セパレータ93、粒子含有樹脂層91Cおよび粒子含有樹脂層92Cに含浸された非水電解液を介して正極活物質層91Bに吸蔵される。 In the nonaqueous electrolyte battery 80, when charged, for example, lithium ions are released from the positive electrode active material layer 91B, and the nonaqueous electrolyte solution impregnated in the separator 93, the particle-containing resin layer 91C, and the particle-containing resin layer 92C is used. And occluded in the negative electrode active material layer 92B. Further, when discharged, for example, lithium ions are released from the negative electrode active material layer 92B, and the positive electrode active material layer is interposed via the separator 93, the particle-containing resin layer 91C, and the non-aqueous electrolyte impregnated in the particle-containing resin layer 92C. It is occluded by 91B.
7.第7の実施の形態
 第7の実施の形態では、角型の非水電解質電池について説明する。第7の実施の形態による電池は、第1の実施の形態と同様のセパレータであって、粒子含有樹脂層の樹脂としてバインダー高分子化合物を用いたものが組み込まれている。
7). Seventh Embodiment In the seventh embodiment, a rectangular nonaqueous electrolyte battery will be described. The battery according to the seventh embodiment is the same separator as in the first embodiment, and incorporates a binder polymer compound as the resin of the particle-containing resin layer.
(7-1)非水電解質電池の構成
 図9は、第7の実施の形態による非水電解質電池100の構成を表すものである。この非水電解質電池は、いわゆる角型電池といわれるものであり、巻回電極体120を角型の外装缶111内に収容したものである。
(7-1) Configuration of Nonaqueous Electrolyte Battery FIG. 9 shows the configuration of a nonaqueous electrolyte battery 100 according to the seventh embodiment. This non-aqueous electrolyte battery is a so-called square battery, in which the wound electrode body 120 is accommodated in a square outer can 111.
 非水電解質電池100は、角筒状の外装缶111と、この外装缶111内に収納される発電要素である巻回電極体120と、外装缶111の開口部を閉じる電池蓋112と、電池蓋112の略中央部に設けられた電極ピン113等によって構成されている。 The nonaqueous electrolyte battery 100 includes a rectangular tube-shaped outer can 111, a wound electrode body 120 that is a power generation element housed in the outer can 111, a battery lid 112 that closes an opening of the outer can 111, a battery The electrode pin 113 and the like provided in the approximate center of the lid 112 are configured.
 外装缶111は、例えば、鉄(Fe)等の導電性を有する金属によって、中空で有底の角筒体として形成されている。この外装缶111の内面は、例えば、ニッケルめっきを施したり導電性塗料を塗布する等して、外装缶111の導電性を高める構成とすることが好ましい。また、外装缶111の外周面は、例えば、プラスチックシートや紙等によって形成される外装ラベルで覆われたり、絶縁性塗料が塗布されて保護されてもよい。電池蓋112は、外装缶111と同じく、例えば、鉄(Fe)等の導電性を有する金属により形成されている。 The outer can 111 is formed, for example, as a hollow, bottomed rectangular tube with a conductive metal such as iron (Fe). The inner surface of the outer can 111 is preferably configured to increase the conductivity of the outer can 111 by, for example, applying nickel plating or applying a conductive paint. Further, the outer peripheral surface of the outer can 111 may be covered with an outer label formed of, for example, a plastic sheet or paper, or may be protected by applying an insulating paint. The battery lid 112 is formed of a conductive metal such as iron (Fe), for example, like the outer can 111.
 巻回電極体120は、正極および負極をセパレータを介して積層し、小判型に細長く巻回することによって得られる。正極、負極、セパレータおよび非水電解液は、第5の実施の形態と同様であるので、詳細な説明を省略する。 The wound electrode body 120 is obtained by laminating a positive electrode and a negative electrode with a separator interposed between them and winding them in an oval shape. Since the positive electrode, the negative electrode, the separator, and the nonaqueous electrolytic solution are the same as those in the fifth embodiment, detailed description thereof is omitted.
 このような構成を有する巻回電極体120には、正極集電体に接続された多数の正極端子121と、負極集電体に接続された多数の負極端子とが設けられている。すべての正極端子121および負極端子は、巻回電極体120の軸方向の一端に導出されている。そして、正極端子121は、電極ピン113の下端に溶接等の固着手段によって接続されている。また、負極端子は外装缶111の内面に溶接等の固着手段によって接続されている。 The wound electrode body 120 having such a configuration is provided with a number of positive terminals 121 connected to the positive current collector and a number of negative terminals connected to the negative current collector. All the positive terminals 121 and the negative terminals are led to one end of the spirally wound electrode body 120 in the axial direction. The positive terminal 121 is connected to the lower end of the electrode pin 113 by fixing means such as welding. The negative electrode terminal is connected to the inner surface of the outer can 111 by fixing means such as welding.
 電極ピン113は導電性の軸部材からなり、その頭部を上端に突出させた状態で絶縁体114によって保持されている。この絶縁体114を介して電極ピン113が電池蓋112の略中央部に固定されている。絶縁体114は絶縁性の高い材料で形成されていて、電池蓋112の表面側に設けた貫通孔115に嵌合されている。また、貫通孔115には電極ピン113が貫通され、その下端面に正極端子121の先端部が固定されている。 The electrode pin 113 is made of a conductive shaft member, and is held by an insulator 114 with its head protruding to the upper end. The electrode pin 113 is fixed to a substantially central portion of the battery lid 112 through the insulator 114. The insulator 114 is made of a highly insulating material and is fitted into a through hole 115 provided on the surface side of the battery lid 112. Further, the electrode pin 113 is penetrated through the through hole 115, and the tip end portion of the positive electrode terminal 121 is fixed to the lower end surface thereof.
 このような電極ピン113等が設けられた電池蓋112が、外装缶111の開口部に嵌合されており、外装缶111と電池蓋112との接触面が溶接等の固着手段で接合されている。これにより、外装缶111の開口部が電池蓋112により密封されて、気密および液密に構成されている。この電池蓋112には、外装缶111内の圧力が所定値以上に上昇したときに当該電池蓋112の一部を破断させて内部圧力を外部に逃がす(放出させる)内圧開放機構116が設けられている。 The battery lid 112 provided with such electrode pins 113 and the like is fitted in the opening of the outer can 111, and the contact surface between the outer can 111 and the battery lid 112 is joined by a fixing means such as welding. Yes. Thereby, the opening part of the armored can 111 is sealed by the battery cover 112, and is comprised airtight and liquid-tight. The battery lid 112 is provided with an internal pressure release mechanism 116 that breaks a part of the battery lid 112 to release (release) the internal pressure to the outside when the pressure in the outer can 111 rises to a predetermined value or more. ing.
 内圧開放機構116は、電池蓋112の内面において長手方向に直線的に延在された2本の第1の開口溝116a(1本の第1の開口溝116aは図示せず)と、同じく電池蓋32の内面において長手方向と直交する幅方向に延在されて両端が2本の第1の開口溝116aに連通される第2の開口溝116bとから構成されている。2本の第1の開口溝116aは、電池蓋32の幅方向に対向するように位置する長辺側2辺の内側近傍において電池蓋112の長辺側外縁に沿うように互いに平行に設けられている。また、第2の開口溝116bは、電極ピン113の長手方向の一側において一方の短辺側外縁と電極ピン113との略中央部に位置するように設けられている。 The internal pressure release mechanism 116 has two first opening grooves 116a (one first opening groove 116a not shown) linearly extending in the longitudinal direction on the inner surface of the battery lid 112, and the same as the battery. The inner surface of the lid 32 includes a second opening groove 116b extending in the width direction orthogonal to the longitudinal direction and having both ends communicating with the two first opening grooves 116a. The two first opening grooves 116a are provided in parallel to each other so as to be along the outer edge of the battery lid 112 in the vicinity of the inner side of the two long sides positioned so as to face the width direction of the battery lid 32. ing. Further, the second opening groove 116 b is provided so as to be positioned at a substantially central portion between one short side outer edge and the electrode pin 113 on one side in the longitudinal direction of the electrode pin 113.
 第1の開口溝116aおよび第2の開口溝116bは、例えばともに断面形状が下面側に開口したV字形状とされている。なお、第1の開口溝116aおよび第2の開口溝116bの形状は、この実施の形態に示すV字形に限定されるものではない。例えば、第1の開口溝116aおよび第2の開口溝116bの形状をU字形や半円形としてもよい。 The first opening groove 116a and the second opening groove 116b are, for example, both V-shaped with a cross-sectional shape opened to the lower surface side. Note that the shapes of the first opening groove 116a and the second opening groove 116b are not limited to the V-shape shown in this embodiment. For example, the shapes of the first opening groove 116a and the second opening groove 116b may be U-shaped or semicircular.
 電解液注入口117は、電池蓋112を貫通するように設けられている。電解液注入口117は、電池蓋112と外装缶111とをかしめた後、非水電解液を注液するために用いるものであり、非水電解液注液後は封止部材118によって密封される。このため、予め正極および負極と、セパレータとの間にゲル電解質を形成して巻回電極体を作製する場合には、電解液注入口117および封止部材118は設けなくてもよい。 The electrolyte injection port 117 is provided so as to penetrate the battery lid 112. The electrolyte injection port 117 is used to inject the non-aqueous electrolyte after the battery lid 112 and the outer can 111 are caulked, and is sealed by the sealing member 118 after the non-aqueous electrolyte is injected. The For this reason, when forming a wound electrode body by previously forming a gel electrolyte between the positive electrode, the negative electrode, and the separator, the electrolyte solution inlet 117 and the sealing member 118 may not be provided.
[セパレータ]
 セパレータは、第1の実施の形態と同様のセパレータであって、粒子含有樹脂層の樹脂としてバインダー高分子化合物を用いたものを用いている。
[Separator]
The separator is the same separator as in the first embodiment, and uses a binder polymer compound as the resin of the particle-containing resin layer.
[非水電解液]
 非水電解液は、第3の実施の形態と同様である。
[Non-aqueous electrolyte]
The non-aqueous electrolyte is the same as in the third embodiment.
(7-2)非水電解質電池の製造方法
 この非水電解質電池は、例えば、次のようにして製造することができる。
(7-2) Method for Manufacturing Nonaqueous Electrolyte Battery This nonaqueous electrolyte battery can be manufactured, for example, as follows.
[正極および負極の製造方法]
 正極および負極は、第5の実施の形態と同様の方法により作製することができる。
[Method for producing positive electrode and negative electrode]
The positive electrode and the negative electrode can be produced by the same method as in the fifth embodiment.
[非水電解質電池の組み立て]
 正極と負極と、セパレータ(基材の少なくとも一方の面に粒子含有樹脂層が形成されたもの)とを順に積層および巻回し、小判型に細長く巻回された巻回電極体120を作製する。続いて、巻回電極体120を外装缶111内に収容する。
[Assembly of non-aqueous electrolyte battery]
A positive electrode, a negative electrode, and a separator (having a particle-containing resin layer formed on at least one surface of a base material) are sequentially laminated and wound to produce a wound electrode body 120 that is wound in an oblong shape. Subsequently, the wound electrode body 120 is accommodated in the outer can 111.
 そして、電池蓋112に設けられた電極ピン113と、巻回電極体120から導出された正極端子121とを接続する。また、図示しないが、巻回電極体120から導出された負極端子と電池缶とを接続する。この後、外装缶111と電池蓋112とを嵌合し、例えば減圧下において電解液注入口117から非水電解液を注入して封止部材118にて封止する。以上により、非水電解質電池100を得ることができる。 Then, the electrode pin 113 provided on the battery lid 112 and the positive electrode terminal 121 led out from the wound electrode body 120 are connected. Although not shown, the negative electrode terminal led out from the wound electrode body 120 and the battery can are connected. Thereafter, the outer can 111 and the battery lid 112 are fitted, and for example, a non-aqueous electrolyte is injected from the electrolyte injection port 117 under reduced pressure, and the sealing member 118 is sealed. As described above, the nonaqueous electrolyte battery 100 can be obtained.
8.第8の実施の形態
 第8の実施の形態では、角型の非水電解質電池について説明する。第8の実施の形態による電池は、第2の実施の形態と同様の粒子含有樹脂層付き電極であって、粒子含有樹脂層の樹脂としてバインダー高分子化合物を用いたものが組み込まれている。セパレータは、粒子含有樹脂層が形成されていないセパレータ基材11aと同様の構成を有するものであってもよい。以上のこと以外は、第7の実施の形態と同様である。
8). Eighth Embodiment In an eighth embodiment, a rectangular nonaqueous electrolyte battery will be described. The battery according to the eighth embodiment is an electrode with a particle-containing resin layer similar to that of the second embodiment, and a battery using a binder polymer compound is incorporated as the resin of the particle-containing resin layer. The separator may have a configuration similar to that of the separator substrate 11a on which the particle-containing resin layer is not formed. Except for the above, this embodiment is the same as the seventh embodiment.
9.第9の実施の形態
 第9の実施の形態では、第3の実施の形態または第4の実施の形態と同様のゲル電解質層を備えたラミネートフィルム型の電池(非水電解質電池)の電池パックの例について説明する
9. Ninth Embodiment In the ninth embodiment, a battery pack of a laminate film type battery (nonaqueous electrolyte battery) provided with the same gel electrolyte layer as in the third embodiment or the fourth embodiment. Explain the example
 この電池パックは、簡易型の電池パック(ソフトパックとも称する)である。簡易型の電池パックは、スマートフォン(smartphone)等の電子機器に内蔵されるものであり、電池セルや保護回路等が絶縁テープ等で固定され、電池セルの一部が露出され、電子機機本体に接続されるコネクタ等の出力が設けられたものである。 This battery pack is a simple battery pack (also referred to as a soft pack). A simple battery pack is built in an electronic device such as a smartphone. The battery cell, protection circuit, etc. are fixed with insulating tape, and a part of the battery cell is exposed. An output of a connector or the like connected to is provided.
 簡易型の電池パックの構成の一例について説明する。図10は簡易型の電池パックの構成例を示す分解斜視図である。図11Aは、簡易型の電池パックの外観を示す概略斜視図であり、図11Bは、簡易型の電池パックの外観を示す概略斜視図である。 An example of the configuration of a simple battery pack will be described. FIG. 10 is an exploded perspective view showing a configuration example of a simplified battery pack. FIG. 11A is a schematic perspective view showing the appearance of a simple battery pack, and FIG. 11B is a schematic perspective view showing the appearance of the simple battery pack.
 図10および図11A~図11Bに示すように、簡易型の電池パックは、電池セル131と、電池セル131から導出されたリード132aおよび132bと、絶縁テープ133a~133cと、絶縁プレート134と、保護回路(PCM(Protection Circuit Module))が形成された回路基板135と、コネクタ136とを備える。電池セル131は、例えば、第3または第4の実施の形態による非水電解質二次電池と同様である。 As shown in FIGS. 10 and 11A to 11B, the simplified battery pack includes a battery cell 131, leads 132a and 132b led out from the battery cell 131, insulating tapes 133a to 133c, an insulating plate 134, A circuit board 135 on which a protection circuit (PCM (Protection Circuit Module)) is formed and a connector 136 are provided. The battery cell 131 is the same as the nonaqueous electrolyte secondary battery according to the third or fourth embodiment, for example.
 電池セル131の前端のテラス部131aに、絶縁プレート134および回路基板135が配置され、電池セル131から導出されたリード132aおよびリード132bが、回路基板135に接続される。 The insulating plate 134 and the circuit board 135 are disposed on the terrace portion 131 a at the front end of the battery cell 131, and the leads 132 a and the leads 132 b led out from the battery cell 131 are connected to the circuit board 135.
 回路基板135には、出力のためのコネクタ136が接続されている。電池セル131、絶縁プレート134および回路基板135等の部材は、絶縁テープ133a~133cを所定箇所に貼ることによって固定されている。 A connector 136 for output is connected to the circuit board 135. Members such as the battery cell 131, the insulating plate 134, and the circuit board 135 are fixed by sticking insulating tapes 133a to 133c at predetermined positions.
<10.第10の実施の形態>
 図12は、本技術の第3の実施~第8の実施の形態による電池(以下、二次電池と適宜称する)を電池パックに適用した場合の回路構成例を示すブロック図である。電池パックは、組電池301、外装、充電制御スイッチ302aと、放電制御スイッチ303a、を備えるスイッチ部304、電流検出抵抗307、温度検出素子308、制御部310を備えている。
<10. Tenth Embodiment>
FIG. 12 is a block diagram showing a circuit configuration example when the batteries according to the third to eighth embodiments of the present technology (hereinafter appropriately referred to as secondary batteries) are applied to the battery pack. The battery pack includes a switch unit 304 including an assembled battery 301, an exterior, a charge control switch 302a, and a discharge control switch 303a, a current detection resistor 307, a temperature detection element 308, and a control unit 310.
 また、電池パックは、正極端子321および負極リード322を備え、充電時には正極端子321および負極リード322がそれぞれ充電器の正極端子、負極端子に接続され、充電が行われる。また、電子機器使用時には、正極端子321および負極リード322がそれぞれ電子機器の正極端子、負極端子に接続され、放電が行われる。 Further, the battery pack includes a positive electrode terminal 321 and a negative electrode lead 322, and at the time of charging, the positive electrode terminal 321 and the negative electrode lead 322 are connected to the positive electrode terminal and the negative electrode terminal of the charger, respectively, and charging is performed. Further, when the electronic device is used, the positive electrode terminal 321 and the negative electrode lead 322 are connected to the positive electrode terminal and the negative electrode terminal of the electronic device, respectively, and discharge is performed.
 組電池301は、複数の二次電池301aを直列および/または並列に接続してなる。この二次電池301aは本技術の二次電池である。なお、図12では、6つの二次電池301aが、2並列3直列(2P3S)に接続された場合が例として示されているが、その他、n並列m直列(n,mは整数)のように、どのような接続方法でもよい。 The assembled battery 301 is formed by connecting a plurality of secondary batteries 301a in series and / or in parallel. The secondary battery 301a is a secondary battery of the present technology. In addition, in FIG. 12, although the case where the six secondary batteries 301a are connected to 2 parallel 3 series (2P3S) is shown as an example, it is like n parallel m series (n and m are integers). Any connection method may be used.
 スイッチ部304は、充電制御スイッチ302aおよびダイオード302b、ならびに放電制御スイッチ303aおよびダイオード303bを備え、制御部310によって制御される。ダイオード302bは、正極端子321から組電池301の方向に流れる充電電流に対して逆方向で、負極リード322から組電池301の方向に流れる放電電流に対して順方向の極性を有する。ダイオード303bは、充電電流に対して順方向で、放電電流に対して逆方向の極性を有する。尚、例では+側にスイッチ部304を設けているが、-側に設けても良い。 The switch unit 304 includes a charge control switch 302a and a diode 302b, and a discharge control switch 303a and a diode 303b, and is controlled by the control unit 310. The diode 302b has a reverse polarity with respect to the charging current flowing from the positive electrode terminal 321 in the direction of the assembled battery 301 and the forward polarity with respect to the discharging current flowing from the negative electrode lead 322 in the direction of the assembled battery 301. The diode 303b has a forward polarity with respect to the charging current and a reverse polarity with respect to the discharging current. In the example, the switch unit 304 is provided on the + side, but may be provided on the-side.
 充電制御スイッチ302aは、電池電圧が過充電検出電圧となった場合にOFFされて、組電池301の電流経路に充電電流が流れないように充放電制御部によって制御される。充電制御スイッチ302aのOFF後は、ダイオード302bを介することによって放電のみが可能となる。また、充電時に大電流が流れた場合にOFFされて、組電池301の電流経路に流れる充電電流を遮断するように、制御部310によって制御される。 The charge control switch 302a is turned off when the battery voltage becomes the overcharge detection voltage, and is controlled by the charge / discharge control unit so that the charge current does not flow in the current path of the assembled battery 301. After the charging control switch 302a is turned off, only discharging is possible via the diode 302b. Further, it is turned off when a large current flows during charging, and is controlled by the control unit 310 so that the charging current flowing in the current path of the assembled battery 301 is cut off.
 放電制御スイッチ303aは、電池電圧が過放電検出電圧となった場合にOFFされて、組電池301の電流経路に放電電流が流れないように制御部310によって制御される。放電制御スイッチ303aのOFF後は、ダイオード303bを介することによって充電のみが可能となる。また、放電時に大電流が流れた場合にOFFされて、組電池301の電流経路に流れる放電電流を遮断するように、制御部310によって制御される。 The discharge control switch 303 a is turned off when the battery voltage becomes the overdischarge detection voltage, and is controlled by the control unit 310 so that the discharge current does not flow in the current path of the assembled battery 301. After the discharge control switch 303a is turned off, only charging is possible via the diode 303b. Further, it is turned off when a large current flows during discharging, and is controlled by the control unit 310 so as to cut off the discharging current flowing in the current path of the assembled battery 301.
 温度検出素子308は例えばサーミスタであり、組電池301の近傍に設けられ、組電池301の温度を測定して測定温度を制御部310に供給する。電圧検出部311は、組電池301およびそれを構成する各二次電池301aの電圧を測定し、この測定電圧をA/D変換して、制御部310に供給する。電流測定部313は、電流検出抵抗307を用いて電流を測定し、この測定電流を制御部310に供給する。 The temperature detection element 308 is, for example, a thermistor, is provided in the vicinity of the assembled battery 301, measures the temperature of the assembled battery 301, and supplies the measured temperature to the control unit 310. The voltage detection unit 311 measures the voltage of the assembled battery 301 and each secondary battery 301a constituting the assembled battery 301, performs A / D conversion on the measured voltage, and supplies it to the control unit 310. The current measurement unit 313 measures the current using the current detection resistor 307 and supplies this measurement current to the control unit 310.
 スイッチ制御部314は、電圧検出部311および電流測定部313から入力された電圧および電流を基に、スイッチ部304の充電制御スイッチ302aおよび放電制御スイッチ303aを制御する。スイッチ制御部314は、二次電池301aのいずれかの電圧が過充電検出電圧もしくは過放電検出電圧以下になったとき、また、大電流が急激に流れたときに、スイッチ部304に制御信号を送ることにより、過充電および過放電、過電流充放電を防止する。 The switch control unit 314 controls the charge control switch 302a and the discharge control switch 303a of the switch unit 304 based on the voltage and current input from the voltage detection unit 311 and the current measurement unit 313. The switch control unit 314 sends a control signal to the switch unit 304 when any voltage of the secondary battery 301a falls below the overcharge detection voltage or overdischarge detection voltage, or when a large current flows suddenly. By sending, overcharge, overdischarge, and overcurrent charge / discharge are prevented.
 ここで、例えば、二次電池がリチウムイオン二次電池の場合、過充電検出電圧が例えば4.20V±0.05Vと定められ、過放電検出電圧が例えば2.4V±0.1Vと定められる。 Here, for example, when the secondary battery is a lithium ion secondary battery, the overcharge detection voltage is determined to be 4.20 V ± 0.05 V, for example, and the overdischarge detection voltage is determined to be 2.4 V ± 0.1 V, for example. .
 充放電スイッチは、例えばMOSFET等の半導体スイッチを使用できる。この場合MOSFETの寄生ダイオードがダイオード302bおよび303bとして機能する。充放電スイッチとして、Pチャンネル型FETを使用した場合は、スイッチ制御部314は、充電制御スイッチ302aおよび放電制御スイッチ303aのそれぞれのゲートに対して、制御信号DOおよびCOをそれぞれ供給する。充電制御スイッチ302aおよび放電制御スイッチ303aはPチャンネル型である場合、ソース電位より所定値以上低いゲート電位によってONする。すなわち、通常の充電および放電動作では、制御信号COおよびDOをローレベルとし、充電制御スイッチ302aおよび放電制御スイッチ303aをON状態とする。 As the charge / discharge switch, for example, a semiconductor switch such as a MOSFET can be used. In this case, the parasitic diode of the MOSFET functions as the diodes 302b and 303b. When a P-channel FET is used as the charge / discharge switch, the switch control unit 314 supplies control signals DO and CO to the gates of the charge control switch 302a and the discharge control switch 303a, respectively. When the charge control switch 302a and the discharge control switch 303a are P-channel type, they are turned on by a gate potential that is lower than the source potential by a predetermined value or more. That is, in normal charging and discharging operations, the control signals CO and DO are set to the low level, and the charging control switch 302a and the discharging control switch 303a are turned on.
 そして、例えば過充電もしくは過放電の際には、制御信号COおよびDOをハイレベルとし、充電制御スイッチ302aおよび放電制御スイッチ303aをOFF状態とする。 For example, in the case of overcharge or overdischarge, the control signals CO and DO are set to the high level, and the charge control switch 302a and the discharge control switch 303a are turned off.
 メモリ317は、RAMやROMからなり例えば不揮発性メモリであるEPROM(Erasable Programmable Read Only Memory)等からなる。メモリ317では、制御部310で演算された数値や、製造工程の段階で測定された各二次電池301aの初期状態における電池の内部抵抗値等が予め記憶され、また適宜、書き換えも可能である。(また、二次電池301aの満充電容量を記憶させておくことで、制御部310とともに例えば残容量を算出することができる。 The memory 317 includes a RAM and a ROM, and includes, for example, an EPROM (Erasable Programmable Read Only Memory) that is a nonvolatile memory. In the memory 317, the numerical value calculated by the control unit 310, the internal resistance value of the battery in the initial state of each secondary battery 301a measured in the manufacturing process, and the like are stored in advance, and can be appropriately rewritten. . (Also, by storing the full charge capacity of the secondary battery 301a, for example, the remaining capacity can be calculated together with the control unit 310.
 温度検出部318では、温度検出素子308を用いて温度を測定し、異常発熱時に充放電制御を行ったり、残容量の算出における補正を行う。 The temperature detection unit 318 measures the temperature using the temperature detection element 308, performs charge / discharge control at the time of abnormal heat generation, and performs correction in the calculation of the remaining capacity.
<11.第11の実施の形態>
 上述した本技術の第3の実施の形態~第8の実施の形態による電池および第9の実施の形態~第10実施の形態による電池パックは、例えば電子機器や電動車両、蓄電装置等の機器に搭載または電力を供給するために使用することができる。
<11. Eleventh embodiment>
The batteries according to the third to eighth embodiments and the battery packs according to the ninth to tenth embodiments of the present technology described above are, for example, devices such as electronic devices, electric vehicles, and power storage devices. Can be used to mount or power.
 電子機器として、例えばノート型パソコン、PDA(携帯情報端末)、携帯電話、コードレスフォン子機、ビデオムービー、デジタルスチルカメラ、電子書籍、電子辞書、音楽プレイヤー、ラジオ、ヘッドホン、ゲーム機、ナビゲーションシステム、メモリーカード、ペースメーカー、補聴器、電動工具、電気シェーバー、冷蔵庫、エアコン、テレビ、ステレオ、温水器、電子レンジ、食器洗い器、洗濯機、乾燥器、照明機器、玩具、医療機器、ロボット、ロードコンディショナー、信号機等が挙げられる。 Examples of electronic devices include notebook computers, PDAs (personal digital assistants), mobile phones, cordless phones, video movies, digital still cameras, electronic books, electronic dictionaries, music players, radios, headphones, game consoles, navigation systems, Memory card, pacemaker, hearing aid, electric tool, electric shaver, refrigerator, air conditioner, TV, stereo, water heater, microwave oven, dishwasher, washing machine, dryer, lighting equipment, toys, medical equipment, robots, road conditioners, traffic lights Etc.
 また、電動車両としては鉄道車両、ゴルフカート、電動カート、電気自動車(ハイブリッド自動車を含む)等が挙げられ、これらの駆動用電源または補助用電源として用いられる。 Also, examples of the electric vehicle include a railway vehicle, a golf cart, an electric cart, an electric vehicle (including a hybrid vehicle), and the like, and these are used as a driving power source or an auxiliary power source.
 蓄電装置としては、住宅をはじめとする建築物用または発電設備用の電力貯蔵用電源等が挙げられる。 Examples of power storage devices include power storage power supplies for buildings such as houses or power generation facilities.
 以下では、上述した適用例のうち、上述した本技術の電池を適用した蓄電装置を用いた蓄電システムの具体例を説明する。 Hereinafter, a specific example of a power storage system using a power storage device to which the above-described battery of the present technology is applied will be described among the application examples described above.
 この蓄電システムは、例えば下記の様な構成が挙げられる。第1の蓄電システムは、再生可能エネルギーから発電を行う発電装置によって蓄電装置が充電される蓄電システムである。第2の蓄電システムは、蓄電装置を有し、蓄電装置に接続される電子機器に電力を供給する蓄電システムである。第3の蓄電システムは、蓄電装置から、電力の供給を受ける電子機器である。これらの蓄電システムは、外部の電力供給網と協働して電力の効率的な供給を図るシステムとして実施される。 This power storage system has the following configuration, for example. The first power storage system is a power storage system in which a power storage device is charged by a power generation device that generates power from renewable energy. The second power storage system is a power storage system that includes a power storage device and supplies power to an electronic device connected to the power storage device. The third power storage system is an electronic device that receives power supply from the power storage device. These power storage systems are implemented as a system for efficiently supplying power in cooperation with an external power supply network.
 さらに、第4の蓄電システムは、蓄電装置から電力の供給を受けて車両の駆動力に変換する変換装置と、蓄電装置に関する情報に基づいて車両制御に関する情報処理を行なう制御装置とを有する電動車両である。第5の蓄電システムは、他の機器とネットワークを介して信号を送受信する電力情報送受信部とを備え、送受信部が受信した情報に基づき、上述した蓄電装置の充放電制御を行う電力システムである。第6の蓄電システムは、上述した蓄電装置から、電力の供給を受け、または発電装置または電力網から蓄電装置に電力を供給する電力システムである。以下、蓄電システムについて説明する。 Furthermore, the fourth power storage system includes an electric vehicle having a conversion device that receives power supplied from the power storage device and converts the power into a driving force of the vehicle, and a control device that performs information processing related to vehicle control based on information related to the power storage device. It is. The fifth power storage system is a power system that includes a power information transmission / reception unit that transmits / receives signals to / from other devices via a network, and performs charge / discharge control of the power storage device described above based on information received by the transmission / reception unit. . The sixth power storage system is a power system that receives power from the power storage device described above or supplies power from the power generation device or the power network to the power storage device. Hereinafter, the power storage system will be described.
(11-1)応用例としての住宅における蓄電システム
 本技術の電池を用いた蓄電装置を住宅用の蓄電システムに適用した例について、図13を参照して説明する。例えば住宅401用の蓄電システム400においては、火力発電402a、原子力発電402b、水力発電402c等の集中型電力系統402から電力網409、情報網412、スマートメータ407、パワーハブ408等を介し、電力が蓄電装置403に供給される。これと共に、家庭内の発電装置404等の独立電源から電力が蓄電装置403に供給される。蓄電装置403に供給された電力が蓄電される。蓄電装置403を使用して、住宅401で使用する電力が給電される。住宅401に限らずビルに関しても同様の蓄電システムを使用できる。
(11-1) Residential Power Storage System as an Application Example An example in which a power storage device using a battery of the present technology is applied to a residential power storage system will be described with reference to FIG. For example, in a power storage system 400 for a house 401, power is stored from a centralized power system 402 such as a thermal power generation 402a, a nuclear power generation 402b, and a hydroelectric power generation 402c through a power network 409, an information network 412, a smart meter 407, a power hub 408, and the like. Supplied to the device 403. At the same time, power is supplied to the power storage device 403 from an independent power source such as the power generation device 404 in the home. The electric power supplied to the power storage device 403 is stored. Electric power used in the house 401 is supplied using the power storage device 403. The same power storage system can be used not only for the house 401 but also for buildings.
 住宅401には、発電装置404、電力消費装置405、蓄電装置403、各装置を制御する制御装置410、スマートメータ407、各種情報を取得するセンサ411が設けられている。各装置は、電力網409および情報網412によって接続されている。発電装置404として、太陽電池、燃料電池等が利用され、発電した電力が電力消費装置405および/または蓄電装置403に供給される。電力消費装置405は、冷蔵庫405a、空調装置405b、テレビジョン受信機405c、風呂405d等である。さらに、電力消費装置405には、電動車両406が含まれる。電動車両406は、電気自動車406a、ハイブリッドカー406b、電気バイク406cである。 The house 401 is provided with a power generation device 404, a power consumption device 405, a power storage device 403, a control device 410 that controls each device, a smart meter 407, and a sensor 411 that acquires various types of information. Each device is connected by a power network 409 and an information network 412. A solar cell, a fuel cell, or the like is used as the power generation device 404, and the generated power is supplied to the power consumption device 405 and / or the power storage device 403. The power consuming device 405 is a refrigerator 405a, an air conditioner 405b, a television receiver 405c, a bath 405d, and the like. Furthermore, the electric power consumption device 405 includes an electric vehicle 406. The electric vehicle 406 is an electric vehicle 406a, a hybrid car 406b, and an electric motorcycle 406c.
 蓄電装置403に対して、本技術の電池が適用される。本技術の電池は、例えば上述したリチウムイオン二次電池によって構成されていてもよい。スマートメータ407は、商用電力の使用量を測定し、測定された使用量を、電力会社に送信する機能を備えている。電力網409は、直流給電、交流給電、非接触給電の何れか一つまたは複数を組み合わせても良い。 The battery of the present technology is applied to the power storage device 403. The battery of the present technology may be configured by, for example, the above-described lithium ion secondary battery. The smart meter 407 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company. The power network 409 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
 各種のセンサ411は、例えば人感センサ、照度センサ、物体検知センサ、消費電力センサ、振動センサ、接触センサ、温度センサ、赤外線センサ等である。各種のセンサ411により取得された情報は、制御装置410に送信される。センサ411からの情報によって、気象の状態、人の状態等が把握されて電力消費装置405を自動的に制御してエネルギー消費を最小とすることができる。さらに、制御装置410は、住宅401に関する情報をインターネットを介して外部の電力会社等に送信することができる。 The various sensors 411 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by various sensors 411 is transmitted to the control device 410. Based on the information from the sensor 411, the weather condition, the condition of the person, and the like can be grasped, and the power consumption device 405 can be automatically controlled to minimize the energy consumption. Furthermore, the control apparatus 410 can transmit the information regarding the house 401 to an external electric power company etc. via the internet.
 パワーハブ408によって、電力線の分岐、直流交流変換等の処理がなされる。制御装置410と接続される情報網412の通信方式としては、UART(Universal Asynchronous Receiver-Transceiver:非同期シリアル通信用送受信回路)等の通信インターフェースを使う方法、Bluetooth、ZigBee、Wi-Fi等の無線通信規格によるセンサーネットワークを利用する方法がある。Bluetooth方式は、マルチメディア通信に適用され、一対多接続の通信を行うことができる。ZigBeeは、IEEE(Institute of Electrical and Electronics Engineers)802.15.4の物理層を使用するものである。IEEE802.15.4は、PAN(Personal Area Network)またはW(Wireless)PANと呼ばれる短距離無線ネットワーク規格の名称である。 The power hub 408 performs processing such as branching of power lines and DC / AC conversion. Communication methods of the information network 412 connected to the control device 410 include a method using a communication interface such as UART (Universal Asynchronous Receiver-Transceiver), wireless communication such as Bluetooth, ZigBee, Wi-Fi, etc. There is a method of using a sensor network according to the standard. The Bluetooth method is applied to multimedia communication and can perform one-to-many connection communication. ZigBee uses the physical layer of IEEE (Institute of Electrical and Electronics Electronics) (802.15.4). IEEE802.15.4 is a name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
 制御装置410は、外部のサーバ413と接続されている。このサーバ413は、住宅401、電力会社、サービスプロバイダーの何れかによって管理されていても良い。サーバ413が送受信する情報は、たとえば、消費電力情報、生活パターン情報、電力料金、天気情報、天災情報、電力取引に関する情報である。これらの情報は、家庭内の電力消費装置(たとえばテレビジョン受信機)から送受信しても良いが、家庭外の装置(たとえば、携帯電話機等)から送受信しても良い。これらの情報は、表示機能を持つ機器、たとえば、テレビジョン受信機、携帯電話機、PDA(Personal Digital Assistants)等に、表示されても良い。 The control device 410 is connected to an external server 413. The server 413 may be managed by any one of the house 401, the power company, and the service provider. The information transmitted and received by the server 413 is, for example, information related to power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device (for example, a television receiver) in the home, or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, for example, a television receiver, a mobile phone, a PDA (Personal Digital Assistant) or the like.
 各部を制御する制御装置410は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等で構成され、この例では、蓄電装置403に格納されている。制御装置410は、蓄電装置403、家庭内の発電装置404、電力消費装置405、各種のセンサ411、サーバ413と情報網412により接続され、例えば、商用電力の使用量と、発電量とを調整する機能を有している。なお、その他にも、電力市場で電力取引を行う機能等を備えていても良い。 The control device 410 that controls each unit includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and is stored in the power storage device 403 in this example. The control device 410 is connected to the power storage device 403, the domestic power generation device 404, the power consumption device 405, various sensors 411, the server 413 and the information network 412, and adjusts, for example, the amount of commercial power used and the amount of power generation It has a function to do. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
 以上のように、電力が火力発電402a、原子力発電402b、水力発電402c等の集中型電力系統402のみならず、家庭内の発電装置404(太陽光発電、風力発電)の発電電力を蓄電装置403に蓄えることができる。したがって、家庭内の発電装置404の発電電力が変動しても、外部に送出する電力量を一定にしたり、または、必要なだけ放電するといった制御を行うことができる。例えば、太陽光発電で得られた電力を蓄電装置403に蓄えると共に、夜間は料金が安い深夜電力を蓄電装置403に蓄え、昼間の料金が高い時間帯に蓄電装置403によって蓄電した電力を放電して利用するといった使い方もできる。 As described above, not only the centralized power system 402 such as the thermal power generation 402a, the nuclear power generation 402b, and the hydroelectric power generation 402c but also the power generation device 404 (solar power generation, wind power generation) in the home is used as the power storage device 403. Can be stored. Therefore, even if the generated power of the power generation device 404 in the home fluctuates, it is possible to perform control such that the amount of power transmitted to the outside is constant or discharge is performed as necessary. For example, the power obtained by solar power generation is stored in the power storage device 403, and the nighttime power at a low charge is stored in the power storage device 403 at night, and the power stored by the power storage device 403 is discharged during a high daytime charge. You can also use it.
 なお、この例では、制御装置410が蓄電装置403内に格納される例を説明したが、スマートメータ407内に格納されても良いし、単独で構成されていても良い。さらに、蓄電システム400は、集合住宅における複数の家庭を対象として用いられてもよいし、複数の戸建て住宅を対象として用いられてもよい。 In this example, the example in which the control device 410 is stored in the power storage device 403 has been described. However, the control device 410 may be stored in the smart meter 407 or may be configured independently. Furthermore, the power storage system 400 may be used for a plurality of homes in an apartment house, or may be used for a plurality of detached houses.
(11-2)応用例としての車両における蓄電システム
 本技術を車両用の蓄電システムに適用した例について、図14を参照して説明する。図14に、本技術が適用されるシリーズハイブリッドシステムを採用するハイブリッド車両の構成の一例を概略的に示す。シリーズハイブリッドシステムはエンジンで動かす発電機で発電された電力、あるいはそれをバッテリーに一旦貯めておいた電力を用いて、電力駆動力変換装置で走行する車である。
(11-2) Power Storage System in Vehicle as Application Example An example in which the present technology is applied to a power storage system for a vehicle will be described with reference to FIG. FIG. 14 schematically shows an example of the configuration of a hybrid vehicle that employs a series hybrid system to which the present technology is applied. A series hybrid system is a car that runs on an electric power driving force conversion device using electric power generated by a generator driven by an engine or electric power once stored in a battery.
 このハイブリッド車両500には、エンジン501、発電機502、電力駆動力変換装置503、駆動輪504a、駆動輪504b、車輪505a、車輪505b、バッテリー508、車両制御装置509、各種センサ510、充電口511が搭載されている。バッテリー508に対して、上述した本技術の電池が適用される。 The hybrid vehicle 500 includes an engine 501, a generator 502, a power driving force conversion device 503, driving wheels 504 a, driving wheels 504 b, wheels 505 a, wheels 505 b, a battery 508, a vehicle control device 509, various sensors 510, and a charging port 511. Is installed. The battery of the present technology described above is applied to the battery 508.
 ハイブリッド車両500は、電力駆動力変換装置503を動力源として走行する。電力駆動力変換装置503の一例は、モータである。バッテリー508の電力によって電力駆動力変換装置503が作動し、この電力駆動力変換装置503の回転力が駆動輪504a、504bに伝達される。なお、必要な個所に直流-交流(DC-AC)あるいは逆変換(AC-DC変換)を用いることによって、電力駆動力変換装置503が交流モータでも直流モータでも適用可能である。各種センサ510は、車両制御装置509を介してエンジン回転数を制御したり、図示しないスロットルバルブの開度(スロットル開度)を制御したりする。各種センサ510には、速度センサ、加速度センサ、エンジン回転数センサ等が含まれる。 Hybrid vehicle 500 travels using power driving force conversion device 503 as a power source. An example of the power / driving force conversion device 503 is a motor. The electric power / driving force converter 503 is operated by the electric power of the battery 508, and the rotational force of the electric power / driving force converter 503 is transmitted to the driving wheels 504a and 504b. In addition, by using DC-AC (DC-AC) or reverse conversion (AC-DC conversion) at a required place, the power driving force converter 503 can be applied to either an AC motor or a DC motor. The various sensors 510 control the engine speed through the vehicle control device 509 and control the opening (throttle opening) of a throttle valve (not shown). Various sensors 510 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
 エンジン501の回転力は発電機502に伝えられ、その回転力によって発電機502により生成された電力をバッテリー508に蓄積することが可能である。 The rotational force of the engine 501 is transmitted to the generator 502, and the electric power generated by the generator 502 by the rotational force can be stored in the battery 508.
 図示しない制動機構によりハイブリッド車両500が減速すると、その減速時の抵抗力が電力駆動力変換装置503に回転力として加わり、この回転力によって電力駆動力変換装置503により生成された回生電力がバッテリー508に蓄積される。 When the hybrid vehicle 500 decelerates by a braking mechanism (not shown), the resistance force at the time of deceleration is applied as a rotational force to the electric power driving force conversion device 503, and the regenerative electric power generated by the electric power driving force conversion device 503 by this rotational force becomes the battery 508. Accumulated in.
 バッテリー508は、ハイブリッド車両500の外部の電源に接続されることで、その外部電源から充電口511を入力口として電力供給を受け、受けた電力を蓄積することも可能である。 The battery 508 is connected to an external power source of the hybrid vehicle 500, so that it can receive power from the external power source using the charging port 511 as an input port and store the received power.
 図示しないが、二次電池に関する情報に基づいて車両制御に関する情報処理を行なう情報処理装置を備えていても良い。このような情報処理装置としては、例えば、電池の残量に関する情報に基づき、電池残量表示を行う情報処理装置等がある。 Although not shown, an information processing device that performs information processing related to vehicle control based on information related to the secondary battery may be provided. As such an information processing apparatus, for example, there is an information processing apparatus that displays a battery remaining amount based on information on the remaining amount of the battery.
 なお、以上は、エンジンで動かす発電機で発電された電力、或いはそれをバッテリーに一旦貯めておいた電力を用いて、モータで走行するシリーズハイブリッド車を例として説明した。しかしながら、エンジンとモータの出力がいずれも駆動源とし、エンジンのみで走行、モータのみで走行、エンジンとモータ走行という3つの方式を適宜切り替えて使用するパラレルハイブリッド車に対しても本技術は有効に適用可能である。さらに、エンジンを用いず駆動モータのみによる駆動で走行する所謂、電動車両に対しても本技術は有効に適用可能である。 In the above description, the series hybrid vehicle that runs on the motor using the power generated by the generator driven by the engine or the power stored once in the battery has been described as an example. However, the present technology is also effective for a parallel hybrid vehicle in which the engine and motor outputs are both driving sources, and the system is switched between the three modes of driving with only the engine, driving with the motor, and engine and motor. Applicable. Furthermore, the present technology can be effectively applied to a so-called electric vehicle that travels only by a drive motor without using an engine.
 以下、実施例により本技術を詳細に説明する。なお、本技術は、下記の実施例の構成に限定されるものではない。 Hereinafter, the present technology will be described in detail by way of examples. In addition, this technique is not limited to the structure of the following Example.
<実施例1-1>
[正極の作製]
 正極活物質であるコバルト酸リチウム(LiCoO2)91質量%と、導電剤であるカーボンブラック6質量%と、結着剤であるポリフッ化ビニリデン(PVdF)3質量%とを混合して正極合剤を調製し、この正極合剤を分散媒であるN-メチル-2-ピロリドン(NMP)に分散させて正極合剤スラリーとした。この正極合剤スラリーを厚さ12μmの帯状アルミニウム箔からなる正極集電体の両面に、正極集電体の一部が露出するようにして塗布した。この後、塗布した正極合剤スラリーの分散媒を蒸発・乾燥させ、ロールプレスにて圧縮成型することにより、正極活物質層を形成した。最後に、正極端子を正極集電体露出部に取り付け、正極を形成した。
<Example 1-1>
[Production of positive electrode]
A positive electrode mixture obtained by mixing 91% by mass of lithium cobaltate (LiCoO 2 ) as a positive electrode active material, 6% by mass of carbon black as a conductive agent, and 3% by mass of polyvinylidene fluoride (PVdF) as a binder. The positive electrode mixture was dispersed in N-methyl-2-pyrrolidone (NMP) as a dispersion medium to obtain a positive electrode mixture slurry. This positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of a strip-shaped aluminum foil having a thickness of 12 μm so that a part of the positive electrode current collector was exposed. Thereafter, the dispersion medium of the applied positive electrode mixture slurry was evaporated and dried, and compression-molded with a roll press to form a positive electrode active material layer. Finally, the positive electrode terminal was attached to the exposed portion of the positive electrode current collector to form the positive electrode.
[負極の作製]
 負極活物質である平均粒径20μmの粒状黒鉛粉末96質量%と、結着剤としてスチレン-ブタジエン共重合体のアクリル酸変性体1.5質量%と、増粘剤としてカルボキシメチルセルロース1.5質量%とを混合して負極合剤とし、さらに適量の水を加えて攪拌することにより、負極合剤スラリーを調製した。この負極合剤スラリーを厚さ15μmの帯状銅箔からなる負極集電体の両面に、負極集電体の一部が露出するようにして塗布した。この後、塗布した負極合剤スラリーの分散媒を蒸発・乾燥させ、ロールプレスにて圧縮成型することにより、負極活物質層を形成した。最後に、負極端子を正極集電体露出部に取り付け、負極を形成した。
[Production of negative electrode]
96% by mass of granular graphite powder having an average particle diameter of 20 μm as a negative electrode active material, 1.5% by mass of acrylic acid-modified styrene-butadiene copolymer as a binder, and 1.5% by mass of carboxymethylcellulose as a thickener % Was mixed to make a negative electrode mixture, and an appropriate amount of water was further added and stirred to prepare a negative electrode mixture slurry. This negative electrode mixture slurry was applied to both sides of a negative electrode current collector made of a strip-shaped copper foil having a thickness of 15 μm so that a part of the negative electrode current collector was exposed. Then, the dispersion medium of the apply | coated negative mix slurry was evaporated and dried, and the negative electrode active material layer was formed by compression molding with a roll press. Finally, the negative electrode terminal was attached to the exposed portion of the positive electrode current collector to form a negative electrode.
[セパレータの作製]
 基材として厚さ9μmポリエチレン(PE)製微多孔性フィルム(ポリエチレンセパレータ)を用いた。この基材の両面に、下記の様にして、塗料を塗布して粒子含有樹脂溶液層(塗料膜)を形成した後、これを乾燥し、粒子含有樹脂層を形成した。
[Preparation of separator]
A 9 μm-thick polyethylene (PE) microporous film (polyethylene separator) was used as the substrate. A coating material was applied to both surfaces of the substrate as described below to form a particle-containing resin solution layer (coating film), and then dried to form a particle-containing resin layer.
 まず、フィラーであるベーマイト粒子(粒子径D50:1000nm、屈折率1.7、扁平状粒子(板状粒子))とマトリックス高分子化合物(樹脂)であるフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体(PVdF-HFP、屈折率1.4)とを、N-メチル-2-ピロリドン(NMP、屈折率1.2)に分散させて、塗料(粒子含有樹脂溶液)を調製した。この際、固形分(ベーマイト粒子およびPVdF-HFP)が塗料の全体量に対して20質量%となるように、各材料の量を調整した。すなわち、ベーマイト粒子の含有量は塗料の全体量に対して10質量%とし、PVdF-HFPの含有量は塗料の全体量に対して10質量%とし、NMPの含有量は塗料の全体量に対して80質量%とした。なお、ベーマイト粒子とPVdF-HFPとの質量比(粒子/樹脂)は50/50である。 First, boehmite particles as a filler (particle diameter D50: 1000 nm, refractive index 1.7, flat particles (plate-like particles)) and matrix polymer compound (resin) vinylidene fluoride and hexafluoropropylene The polymer (PVdF-HFP, refractive index 1.4) was dispersed in N-methyl-2-pyrrolidone (NMP, refractive index 1.2) to prepare a paint (particle-containing resin solution). At this time, the amount of each material was adjusted so that the solid content (boehmite particles and PVdF-HFP) was 20% by mass with respect to the total amount of the coating material. That is, the content of boehmite particles is 10% by mass with respect to the total amount of paint, the content of PVdF-HFP is 10% by mass with respect to the total amount of paint, and the content of NMP is with respect to the total amount of paint. 80% by mass. The mass ratio (particle / resin) between boehmite particles and PVdF-HFP is 50/50.
 次に、この塗料を、基材の両面のそれぞれに所定の塗料厚み(実施例1-1では5.0μm)で均一に塗布した。この際、塗布中に、レーザー厚み計で塗料膜の厚みを計測し、計測値が所定の塗料厚みと異なる場合には、所定の塗料厚みに近づくように塗料の吐出量を自動で調整した。なお、塗布直後の塗料厚み測定はレーザー光の三角測量にて測定している。塗料表面での反射光と塗料を透過し、塗布対象(電極もしくはセパレータ)での反射光との反射点の距離の差から求められる。この情報をもとに、塗布ヘッドのギャップの開度もしくは塗料を吐出する量を、プログラムを介して自動で調整している。 Next, this paint was uniformly applied to each of both surfaces of the base material with a predetermined paint thickness (5.0 μm in Example 1-1). At this time, during coating, the thickness of the paint film was measured with a laser thickness meter, and when the measured value was different from the predetermined paint thickness, the discharge amount of the paint was automatically adjusted so as to approach the predetermined paint thickness. In addition, the coating thickness measurement immediately after application | coating is measured by the triangulation of a laser beam. It is obtained from the difference in the distance of the reflection point between the reflected light on the paint surface and the reflected light on the coating object (electrode or separator). Based on this information, the opening degree of the coating head gap or the amount of paint discharged is automatically adjusted via a program.
 その後、塗料が塗布された基材を乾燥機中にくぐらせることにより、粒子含有樹脂溶液層からNMPを除去し、基材と、基材の両面に形成されたPVdF-HFPおよびベーマイト粒子からなる粒子含有樹脂層とを有するセパレータを作製した。 Thereafter, the NMP is removed from the particle-containing resin solution layer by passing the substrate coated with the paint in a dryer, and the substrate is composed of PVdF-HFP and boehmite particles formed on both sides of the substrate. A separator having a particle-containing resin layer was produced.
[ラミネートフィルム型電池の組み立て]
 正極、負極および粒子含有樹脂層が両面に形成されたセパレータを、正極、セパレータ、負極、セパレータの順に積層し、長手方向に多数回、扁平形状に巻回させた後、巻き終わり部分を粘着テープで固定することにより巻回電極体を形成した。
[Assembly of laminated film type battery]
A separator having a positive electrode, a negative electrode, and a particle-containing resin layer formed on both sides is laminated in the order of positive electrode, separator, negative electrode, and separator, wound in a flat shape many times in the longitudinal direction, and then the end of winding is adhesive tape The wound electrode body was formed by fixing with.
 次に、巻回電極体を、外装部材の間に挟み、3辺を熱融着した。なお、外装部材には、軟質アルミニウム層を有するラミネートフィルムを用いた。 Next, the wound electrode body was sandwiched between the exterior members, and the three sides were heat-sealed. Note that a laminate film having a soft aluminum layer was used for the exterior member.
 そののち、これに電解液を注入し、減圧下で残りの1辺を熱融着し、密封した。この際、電解液を粒子含有樹脂層に含浸させ、マトリックス高分子化合物を膨潤させゲル状の電解質(ゲル電解質層)を形成した。なお、電解液としては、以下のように調製したものを用いた。炭酸エチレン(EC)と炭酸ジメチル(DMC)とを混合した非水溶媒に対して、電解質塩として六フッ化リン酸リチウム(LiPF6)を溶解させることにより、電解液を調製した。この際、電解液の構成成分(EC/DMC/LiPF6)の質量比(EC/DMC/LiPF6)が35/50/15となるように各構成成分の量を調整した。以上により、電池形状が厚さ4.5mm、幅30mm、高さ50mmの図3に示すラミネートフィルム型電池を作製した。 After that, an electrolytic solution was poured into this, and the remaining one side was heat-sealed under reduced pressure and sealed. At this time, the electrolyte solution was impregnated into the particle-containing resin layer, and the matrix polymer compound was swollen to form a gel electrolyte (gel electrolyte layer). In addition, what was prepared as follows was used as electrolyte solution. An electrolyte solution was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt in a non-aqueous solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed. In this case, the mass ratio of the constituents of the electrolyte (EC / DMC / LiPF 6) (EC / DMC / LiPF 6) was adjusted to the amount of each component such that the 35/50/15. Thus, a laminated film type battery shown in FIG. 3 having a thickness of 4.5 mm, a width of 30 mm, and a height of 50 mm was produced.
<実施例1-2~実施例1-55>
 実施例1-2~実施例1-55では、下掲の表1に示すように、用いる粒子を変えたこと以外は、実施例1-1と同様にして、ラミネートフィルム型電池を作製した。
<Example 1-2 to Example 1-55>
In Examples 1-2 to 1-55, laminate film type batteries were produced in the same manner as in Example 1-1 except that the particles used were changed as shown in Table 1 below.
<比較例1-1>
 塗料に粒子を混合しなかったこと以外は、実施例1-1と同様にして、ラミネートフィルム型電池を作製した。
<Comparative Example 1-1>
A laminated film type battery was produced in the same manner as in Example 1-1 except that the particles were not mixed in the paint.
<比較例1-2~比較例1-10>
 比較例1-2~比較例1-10では、下掲の表1に示すように、用いる粒子の材料種を屈折率が異なるものまたは有色粒子に変え、粒子の形状も球状または多面体に変えたこと以外は、実施例1-1と同様にして、ラミネートフィルム型電池を作製した。
<Comparative Example 1-2 to Comparative Example 1-10>
In Comparative Examples 1-2 to 1-10, as shown in Table 1 below, the material type of the particles used was changed to one having a different refractive index or colored particles, and the shape of the particles was also changed to spherical or polyhedral. Except for this, a laminated film type battery was produced in the same manner as in Example 1-1.
<比較例1-11>
 用いる粒子の材料種を屈折率が異なるものに変え、粒子の形状も多面体に変え、質量比(粒子/樹脂)を、下掲の表1に示すように変えたこと以外は、実施例1-1と同様にして、ラミネートフィルム型電池を作製した。
<Comparative Example 1-11>
Example 1 except that the material type of the particles used was changed to one having a different refractive index, the shape of the particles was changed to a polyhedron, and the mass ratio (particle / resin) was changed as shown in Table 1 below. In the same manner as in Example 1, a laminate film type battery was produced.
<比較例1-12>
 質量比(粒子/樹脂)を、下掲の表1に示すように変えたこと以外は、実施例1-1と同様にして、ラミネートフィルム型電池を作製した。
<Comparative Example 1-12>
A laminated film type battery was produced in the same manner as in Example 1-1 except that the mass ratio (particle / resin) was changed as shown in Table 1 below.
<比較例1-13~比較例1-15>
 粒子の粒子径を下掲の表1に示すように変えたこと以外は、実施例1-1と同様にして、ラミネートフィルム型電池を作製した。
<Comparative Example 1-13 to Comparative Example 1-15>
A laminated film type battery was produced in the same manner as in Example 1-1 except that the particle diameter of the particles was changed as shown in Table 1 below.
<比較例1-16>
 粒子の材料種および粒子径を下掲の表1に示すように変え、粒子の形状も多面体に変えこと以外は、比較例1-12と同様にして、ラミネートフィルム型電池を作製した。
<Comparative Example 1-16>
A laminated film type battery was produced in the same manner as Comparative Example 1-12 except that the material type and particle diameter of the particles were changed as shown in Table 1 below, and the shape of the particles was changed to a polyhedron.
(評価:粒子の粒子径、塗料の外観)
 上述の実施例および比較例において、粒子の粒子径、塗料の外観は以下のようにして測定または評価したものである。(後述の実施例および比較例も同様)
(Evaluation: Particle size, paint appearance)
In the above-mentioned Examples and Comparative Examples, the particle diameter of the particles and the appearance of the paint are measured or evaluated as follows. (The same applies to Examples and Comparative Examples described later)
(粒子径の測定)
 ゲル電解質層(電解液を含む粒子含有樹脂層)からゲル電解質成分等を除去した後の粒子を、レーザー回折法により測定した粒度分布において、小さい粒子径の粒子側から起算した体積累計50%の粒子径を、粒子の粒子径D50とした。なお、必要に応じて、上記測定した粒度分布から、体積累計40%の粒子径D40の値や体積累計60%の粒子径D60の値も得た。
(Measurement of particle diameter)
In the particle size distribution measured by laser diffractometry, the particles after removing the gel electrolyte component etc. from the gel electrolyte layer (particle-containing resin layer containing the electrolyte solution) have a cumulative volume of 50% calculated from the particle side with a small particle diameter. The particle diameter was defined as the particle diameter D50 of the particles. In addition, the value of the particle diameter D40 of the volume cumulative 40% and the value of the particle diameter D60 of the volume cumulative 60% were obtained from the measured particle size distribution as needed.
(外観評価)
 視覚観察により、塗料膜の外観を観察した。なお、透明性の程度で、さらに透明、透明、概ね透明、半透明と段階的に評価した。透明、ほぼ透明、概ね透明の場合は、いずれも、塗料膜を通して、塗布対象(電極またはセパレータ)の輪郭を完全に視認できた。また、不透明の場合は、塗料膜を通して、塗布対象(電極またはセパレータ)の輪郭を視認できなかった。
(Appearance evaluation)
The appearance of the paint film was observed by visual observation. The degree of transparency was further evaluated stepwise as transparent, transparent, generally transparent, and translucent. In each of the cases of transparent, almost transparent, and almost transparent, the outline of the application target (electrode or separator) was completely visible through the paint film. Moreover, when it was opaque, the outline of the application target (electrode or separator) could not be visually recognized through the paint film.
(電池評価:レーザー計測の合否判定)
 塗料塗布中のレーザー厚み計の測定値を記録した。その後、乾燥して溶媒除去後において、レーザー厚み計の測定値を記録した測定部位の厚さを、接触式の厚み計で測定した。なお、接触式の厚み計による測定では、Φ5mmの平面接触端子に50gの荷重を加えて計測し、計測値から塗布対象(電極またはセパレータ)の厚みを引いた値を塗布厚みとした。そして、レーザー厚み計の測定値と塗布厚みとの差が、所定の塗料厚みに対する百分率で±10%以内の場合は、合格、それ以外の場合は不合格とした。
(Battery evaluation: Pass / fail judgment of laser measurement)
The measured value of the laser thickness meter during coating was recorded. Then, after drying and removing the solvent, the thickness of the measurement site where the measurement value of the laser thickness gauge was recorded was measured with a contact-type thickness gauge. In the measurement using a contact-type thickness meter, measurement was performed by applying a load of 50 g to a flat contact terminal having a diameter of 5 mm, and the value obtained by subtracting the thickness of the application target (electrode or separator) from the measured value was defined as the application thickness. And when the difference of the measured value of a laser thickness meter and application | coating thickness was less than +/- 10% in the percentage with respect to predetermined | prescribed coating material thickness, it was set as the rejection in other than that.
 なお、上述の電池の製造工程における塗料膜作製工程では、塗料の塗布厚みと、乾燥による溶媒(NMP)除去後の完成厚みとが同じになるように調整された溶媒(NMP)希釈率および乾燥温度を作製条件としている。すなわち、予め、塗布膜の面積密度より、固形分のわかっている塗布直後の塗料の厚みを計算によって求め、塗布膜の溶剤を除去し乾燥後の厚みを接触式厚み計で測定した。そして、計算値と測定値との差が、測定値に対する百分率で±10%以内となるように調整されたNMP希釈率および乾燥温度を作製条件とした。 In the paint film production process in the battery manufacturing process described above, the solvent (NMP) dilution ratio and the drying were adjusted so that the coating thickness of the paint was the same as the completed thickness after removal of the solvent (NMP) by drying. Temperature is used as a manufacturing condition. That is, the thickness of the coating immediately after application whose solid content was known was determined by calculation from the area density of the coating film in advance, the solvent of the coating film was removed, and the thickness after drying was measured with a contact-type thickness meter. The NMP dilution rate and the drying temperature adjusted so that the difference between the calculated value and the measured value was within ± 10% as a percentage of the measured value were used as the production conditions.
(電池評価:電池折曲げ試験)
 作製した電池を、23℃の雰囲気下において、1Cの定電流で電池電圧が4.2Vに達するまで定電流充電した後、4.2Vの定電圧で充電時間の合計が2.5時間となるまで定電圧充電した。次に、図15および図16に示すように、30mmの間隔で並置された2本の丸棒S上に、充電した電池CELLを配置し、電池CELLのセンター位置に対して、上方から1本の丸棒Sを押し当てて、300Nまたは押し当てた部分が3mmたわむ(下方に3mm下がる状態になる)まで加圧した。その際、電圧計(テスター)600により電池CELLの電圧を確認し、1%以上の電圧低下を確認したら短絡判定を不合格とした。また短絡した場合は測定不能とし、それ以外を合格とした。
(Battery evaluation: Battery bending test)
The produced battery was charged at a constant current of 1 C at a constant current of 1 C until the battery voltage reached 4.2 V, and then the total charging time was 2.5 hours at a constant voltage of 4.2 V. Until constant voltage charging. Next, as shown in FIGS. 15 and 16, the charged battery CELL is arranged on the two round bars S juxtaposed at an interval of 30 mm, and one battery from the upper side with respect to the center position of the battery CELL. Was pressed until 300N or the pressed portion was deflected by 3 mm (down to 3 mm downward). At that time, the voltage of the battery CELL was confirmed with a voltmeter (tester) 600, and if a voltage drop of 1% or more was confirmed, the short circuit determination was rejected. Moreover, when it short-circuited, it was set as the measurement impossible, and other than that was set as the pass.
 評価結果を表1に示す。 Evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
 表1に示すように、実施例1-1~実施例1-55では、塗料が、所定範囲内の粒子径および屈折率を有する粒子を含み、且つ、質量比(粒子/樹脂)が、所定範囲内とされている。これにより、塗料が透明であるので、レーザー計測の合否判定が合格であった。また、ゲル電解質の厚み管理がうまくいったので、電池折曲げ試験が合格であった。比較例1-1では、ゲル電解質が、粒子を含まないため強度が不足し、電池折曲げ試験が不合格であった。比較例1-2~比較例1-10では、塗料に含まれる粒子の屈折率が所定範囲内にないため、塗料が透明ではなくなるため、レーザー計測の合否判定が不合格であった。また、塗料が透明ではないため、厚み管理がうまくいかずゲル電解質の厚みが不足したため、電池折曲げ試験が不合格であった。比較例1-11では、粒子の濃度を低くしたため塗料は概ね透明になり、レーザー計測の合否判定が合格であった。一方、粒子の濃度が低すぎたため、電池折曲げ試験が不合格であった。比較例1-12では、塗料が半透明であり、レーザー計測の合否判定が不合格であった。また、ゲル電解質の厚みが不足したため、電池折曲げ試験が不合格であった。比較例1-13では、粒子の粒子径が所定範囲内にないため、塗料が透明ではなくなるため、レーザー計測の合否判定が不合格であった。また、ゲル電解質の厚みが不足したため、電池折曲げ試験が不合格であった。比較例1-14では、粒子の粒子径が小さすぎるため、塗料の粘度が高く塗布できなかった。比較例1-15では、粒子の粒子径が大きすぎるため、5μmの厚みで塗ることができなかった。比較例1-16では、粒子の屈折率、粒子径、質量比(粒子/樹脂)の何れも所定の範囲内にないため、塗料が透明ではなくなり、レーザー計測の合否判定が不合格であった。また、塗料が透明ではないため、厚み管理がうまくいかずゲル電解質の厚みが不足したため、電池折曲げ試験が不合格であった。なお、透明度が悪い場合、レーザー計測では、実際の塗料膜の厚みより厚いデータとなって、このデータに基づいて塗料の塗出量が自動で調整されるので、実際には薄くしか塗られていない状態となり、所定厚みより薄い厚みの塗料膜が得られる。したがって、透明度が悪い場合、接触式厚み計による測定値が小さくなる。透明度が上がる程、レーザー計測の塗料膜の厚みの測定精度が上がるので、薄く塗られる部分ができにくくなってマージン分を厚く塗る必要がなくなるため塗料膜の薄型化が可能になり、電池の体積エネルギー密度を向上できる。 As shown in Table 1, in Examples 1-1 to 1-55, the paint includes particles having a particle diameter and a refractive index within a predetermined range, and the mass ratio (particle / resin) is a predetermined value. It is within the range. Thereby, since the paint was transparent, the pass / fail judgment of the laser measurement was acceptable. Moreover, since the thickness control of the gel electrolyte was successful, the battery bending test was acceptable. In Comparative Example 1-1, the gel electrolyte did not contain particles, so the strength was insufficient, and the battery bending test failed. In Comparative Examples 1-2 to 1-10, since the refractive index of the particles contained in the coating material is not within the predetermined range, the coating material is not transparent. Moreover, since the paint was not transparent, the thickness control was not successful, and the thickness of the gel electrolyte was insufficient, so the battery bending test was rejected. In Comparative Example 1-11, since the particle concentration was lowered, the paint became almost transparent, and the pass / fail judgment of the laser measurement was acceptable. On the other hand, the battery bending test failed because the concentration of the particles was too low. In Comparative Example 1-12, the paint was translucent, and the laser measurement pass / fail judgment was unacceptable. Moreover, since the thickness of the gel electrolyte was insufficient, the battery bending test was rejected. In Comparative Example 1-13, since the particle diameter of the particles was not within the predetermined range, the paint was not transparent, and the laser measurement pass / fail judgment was unacceptable. Moreover, since the thickness of the gel electrolyte was insufficient, the battery bending test was rejected. In Comparative Example 1-14, since the particle diameter of the particles was too small, the viscosity of the coating material was too high to be applied. In Comparative Example 1-15, since the particle diameter of the particles was too large, it could not be applied with a thickness of 5 μm. In Comparative Example 1-16, since the refractive index, particle diameter, and mass ratio (particle / resin) of the particles were not within the predetermined ranges, the paint was not transparent and the laser measurement pass / fail judgment was unacceptable. . Moreover, since the paint was not transparent, the thickness control was not successful, and the thickness of the gel electrolyte was insufficient, so the battery bending test was rejected. If the transparency is poor, laser measurement results in data that is thicker than the actual paint film thickness, and the amount of paint applied is automatically adjusted based on this data. Thus, a paint film having a thickness smaller than a predetermined thickness is obtained. Therefore, when the transparency is poor, the value measured by the contact-type thickness meter becomes small. As the transparency increases, the measurement accuracy of the coating film thickness of laser measurement increases, so it becomes difficult to create a thinly coated part, and it is not necessary to apply a thick margin, so the coating film can be made thinner and the volume of the battery Energy density can be improved.
<実施例2-1~実施例2-8>
 塗料の構成成分であるベーマイト粒子、樹脂(PVdF-HFP)、LiPF6および溶媒(NMP)の各成分の量を下掲の表2に示すように変えたこと以外は、実施例1-1と同様にして、ラミネートフィルム型電池を作製した。なお、表2中において、粒子、樹脂(PVdF-HFP)、LiPF6、溶媒の各成分の量は、塗料の全体量(構成成分の合計量)に対する質量百分率で示している。
<Example 2-1 to Example 2-8>
Example 1-1 and Example 1-1 except that the amounts of each component of boehmite particles, resin (PVdF-HFP), LiPF 6 and solvent (NMP), which are constituents of the paint, were changed as shown in Table 2 below. Similarly, a laminate film type battery was produced. In Table 2, the amount of each component of particles, resin (PVdF-HFP), LiPF 6 , and solvent is expressed as a mass percentage with respect to the total amount of paint (total amount of constituent components).
<実施例2-9~実施例2-16>
 塗料の構成成分であるタルク粒子、樹脂(PVdF-HFP)、LiPF6および溶媒(NMP)の各成分の量を下掲の表2に示すように変えたこと以外は、実施例1-2と同様にして、ラミネートフィルム型電池を作製した。なお、表2中において、粒子、樹脂(PVdF-HFP)、LiPF6、溶媒の各成分の量は、塗料の全体量(構成成分の合計量)に対する質量百分率で示している。
<Example 2-9 to Example 2-16>
Except for changing the amounts of talc particles, resin (PVdF-HFP), LiPF 6 and solvent (NMP) as constituent components of the paint as shown in Table 2 below, Example 1-2 and Similarly, a laminate film type battery was produced. In Table 2, the amount of each component of particles, resin (PVdF-HFP), LiPF 6 , and solvent is expressed as a mass percentage with respect to the total amount of paint (total amount of constituent components).
<実施例2-17~実施例2-24>
 塗料の構成成分である酸化アルミニウム粒子、樹脂(PVdF-HFP)、LiPF6および溶媒(NMP)の各成分の量を下掲の表2に示すように変えたこと以外は、実施例1-8と同様にして、ラミネートフィルム型電池を作製した。なお、表2中において、粒子、樹脂(PVdF-HFP)、LiPF6、溶媒の各成分の量は、塗料質の全体量(構成成分の合計量)に対する質量百分率で示している。
<Example 2-17 to Example 2-24>
Example 1-8, except that the amount of each component of aluminum oxide particles, resin (PVdF-HFP), LiPF 6 and solvent (NMP), which are constituents of the paint, was changed as shown in Table 2 below. In the same manner, a laminate film type battery was produced. In Table 2, the amount of each component of particles, resin (PVdF-HFP), LiPF 6 , and solvent is expressed as a mass percentage with respect to the total amount of paint quality (total amount of constituent components).
(電池評価:レーザー計測の合否判定)
 作製した各実施例および各比較例のラミネートフィルム型電池について、実施例1-1と同様にして、レーザー計測の合否判定を行った。
(Battery evaluation: Pass / fail judgment of laser measurement)
Regarding the produced laminated film type batteries of each Example and each Comparative Example, the pass / fail judgment of laser measurement was performed in the same manner as in Example 1-1.
 表2に評価結果を示す。 Table 2 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例2-1~実施例2-24では、塗料が、所定範囲内の粒子径および屈折率を有する粒子を含み、且つ、質量比(粒子/樹脂)が、所定範囲内とされている。これにより、塗料が透明であるので、レーザー計測の合否判定が合格であった。 As shown in Table 2, in Examples 2-1 to 2-24, the paint includes particles having a particle diameter and a refractive index within a predetermined range, and the mass ratio (particle / resin) is a predetermined value. It is within the range. Thereby, since the paint was transparent, the pass / fail judgment of the laser measurement was acceptable.
<実施例3-1~実施例3-13>
 実施例3-1~実施例3-13では、塗料の構成成分であるベーマイト粒子の粒子径D50を下掲の表3に示すように変えたこと以外は、実施例1-1と同様にして、ラミネートフィルム型電池を作製した。
<Example 3-1 to Example 3-13>
In Example 3-1 to Example 3-13, the same procedure as in Example 1-1 was performed, except that the particle diameter D50 of boehmite particles, which are constituents of the paint, was changed as shown in Table 3 below. A laminated film type battery was produced.
<実施例3-14~実施例3-26>
 実施例3-14~実施例3-26では、塗料の構成成分であるタルク粒子の粒子径D50を下掲の表3に示すように変えた。また以下のようにして電池を作製した。以上のこと以外は、実施例1-2と同様にして、ラミネートフィルム型電池を作製した。
<Example 3-14 to Example 3-26>
In Examples 3-14 to 3-26, the particle diameter D50 of talc particles, which are constituents of the paint, was changed as shown in Table 3 below. A battery was produced as follows. Except for the above, a laminated film type battery was produced in the same manner as in Example 1-2.
[正極の作製、粒子含有樹脂層の形成]
 実施例1-2と同様にして、正極を作製した。また、正極の両面に以下のようにして粒子含有樹脂層を形成した。
[Preparation of positive electrode, formation of particle-containing resin layer]
A positive electrode was produced in the same manner as in Example 1-2. Moreover, the particle | grain containing resin layer was formed as follows on both surfaces of a positive electrode.
 次に、実施例1-2と同様の塗料を、正極の両面のそれぞれに所定の塗料厚み(5.0μm)で均一に塗布した。この際、塗布中に、レーザー厚み計で塗料膜の厚みを計測し、計測値が所定の塗料厚みと異なる場合には、所定の塗料厚みに近づくように塗料の吐出量を自動で調整した。 Next, the same paint as in Example 1-2 was uniformly applied to each of both surfaces of the positive electrode with a predetermined paint thickness (5.0 μm). At this time, during coating, the thickness of the paint film was measured with a laser thickness meter, and when the measured value was different from the predetermined paint thickness, the discharge amount of the paint was automatically adjusted so as to approach the predetermined paint thickness.
 その後、塗料が塗布された正極を乾燥機中にくぐらせることにより、粒子含有樹脂溶液層からNMPを除去し、これにより、正極の両面にPVdFおよびベーマイトからなる粒子含有樹脂層を形成した。 Then, the NMP was removed from the particle-containing resin solution layer by passing the positive electrode coated with the paint in a dryer, thereby forming a particle-containing resin layer composed of PVdF and boehmite on both sides of the positive electrode.
[負極の作製、粒子含有樹脂層の形成]
 実施例1-2と同様にして、負極を作製した。また、正極と同様の手法で、負極の両面に粒子含有樹脂層を形成した。
[Production of negative electrode, formation of particle-containing resin layer]
A negative electrode was produced in the same manner as in Example 1-2. In addition, a particle-containing resin layer was formed on both sides of the negative electrode in the same manner as the positive electrode.
[セパレータの作製]
 基材として厚さ9μmポリエチレン(PE)製微多孔性フィルムを用いた。
[Preparation of separator]
A 9 μm-thick polyethylene (PE) microporous film was used as the substrate.
[ラミネートフィルム型電池の組み立て]
 粒子含有樹脂層が両面に形成された正極、粒子含有樹脂層が両面に形成された負極およびセパレータを、正極、セパレータ、負極、セパレータの順に積層し、長手方向に多数回、扁平形状に巻回させた後、巻き終わり部分を粘着テープで固定することにより巻回電極体を形成した。
[Assembly of laminated film type battery]
A positive electrode with a particle-containing resin layer formed on both sides, and a negative electrode and a separator with a particle-containing resin layer formed on both sides are laminated in the order of positive electrode, separator, negative electrode and separator, and wound in a flat shape many times in the longitudinal direction. Then, the wound electrode body was formed by fixing the winding end portion with an adhesive tape.
 次に、巻回電極体を、外装部材の間に挟み、3辺を熱融着した。なお、外装部材には、軟質アルミニウム層を有するラミネートフィルムを用いた。 Next, the wound electrode body was sandwiched between the exterior members, and the three sides were heat-sealed. Note that a laminate film having a soft aluminum layer was used for the exterior member.
 そののち、これに電解液を注入し、減圧下で残りの1辺を熱融着し、密封した。なお、電解液としては、以下のように調製したものを用いた。炭酸エチレン(EC)と炭酸ジメチル(DMC)とを混合した非水溶媒に対して、電解質塩として六フッ化リン酸リチウム(LiPF6)を溶解させることにより、電解液を調製した。この際、電解液の構成成分(EC/DMC/LiPF6)の質量比(EC/DMC/LiPF6)が35/50/15となるように、各構成成分の量を調整した。以上により、電池形状が厚さ4.5mm、30mm、高さ50mmのラミネートフィルム型電池を作製した。 After that, an electrolytic solution was poured into this, and the remaining one side was heat-sealed under reduced pressure and sealed. In addition, what was prepared as follows was used as electrolyte solution. An electrolyte solution was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt in a non-aqueous solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed. In this case, the mass ratio of the constituents of the electrolyte (EC / DMC / LiPF 6) (EC / DMC / LiPF 6) is such that the 35/50/15 and adjust the amount of each component. Thus, a laminated film type battery having a battery shape of thickness 4.5 mm, 30 mm, and height 50 mm was produced.
<実施例3-27~実施例3-39>
 実施例3-27~実施例3-39では、塗料の構成成分である酸化アルミニウム粒子の粒子径D50を下掲の表3に示すように変えた。また実施例3-14と同様にして電池を作製した。以上のこと以外は、実施例1-8と同様にして、ラミネートフィルム型電池を作製した。
<Example 3-27 to Example 3-39>
In Examples 3-27 to 3-39, the particle diameter D50 of the aluminum oxide particles, which are constituents of the paint, was changed as shown in Table 3 below. A battery was produced in the same manner as in Example 3-14. Except for the above, a laminated film type battery was produced in the same manner as in Example 1-8.
(電池評価:レーザー計測の合否判定)
 作製した各実施例および各比較例のラミネートフィルム型電池について、実施例1-1と同様にして、レーザー計測の合否判定を行った。
(Battery evaluation: Pass / fail judgment of laser measurement)
Regarding the produced laminated film type batteries of each Example and each Comparative Example, the pass / fail judgment of laser measurement was performed in the same manner as in Example 1-1.
 表3に評価結果を示す。 Table 3 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例3-1~実施例3-39では、塗料が、所定範囲内の粒子径および屈折率を有する粒子を含み、且つ、質量比(粒子/樹脂)が、所定範囲内とされている。これにより、塗料が透明であるので、レーザー計測の合否判定が合格であった。 As shown in Table 3, in Examples 3-1 to 3-39, the paint includes particles having a particle diameter and a refractive index within a predetermined range, and the mass ratio (particle / resin) is a predetermined value. It is within the range. Thereby, since the paint was transparent, the pass / fail judgment of the laser measurement was acceptable.
<実施例4-1~実施例4-8>
 実施例4-1~実施例4-8では、塗料の材料種をベーマイトに変えた。塗料の構成成分であるベーマイト粒子の粒子径D40、粒子径D50、粒子径D60を下掲の表4に示すように変えた。塗料を塗布する際の所定の塗料厚みを12.0μmに設定した。以上のこと以外は、実施例1-14と同様にして、ラミネートフィルム型電池を作製した。
<Example 4-1 to Example 4-8>
In Examples 4-1 to 4-8, the material type of the paint was changed to boehmite. The particle size D40, particle size D50, and particle size D60 of boehmite particles, which are constituents of the paint, were changed as shown in Table 4 below. The predetermined paint thickness when applying the paint was set to 12.0 μm. Except for the above, a laminated film type battery was produced in the same manner as in Example 1-14.
(電池評価:レーザー計測の合否判定)
 作製した各実施例および各比較例のラミネートフィルム型電池について、実施例1-1と同様にして、レーザー計測の合否判定を行った。
(Battery evaluation: Pass / fail judgment of laser measurement)
Regarding the produced laminated film type batteries of each Example and each Comparative Example, the pass / fail judgment of laser measurement was performed in the same manner as in Example 1-1.
 表4に評価結果を示す。 Table 4 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実施例4-1~実施例4-8では、塗料が、所定範囲内の粒子径および屈折率を有する粒子を含み、且つ、質量比(粒子/樹脂)が、所定範囲内とされている。これにより、塗料が透明であるので、レーザー計測の合否判定が合格であった。なお、実施例4-3では、粒子が大きいため若干の塗りムラがあった。実施例4-7では、粒子が小さいため、粘度が高く若干の塗りムラがあった。 As shown in Table 4, in Examples 4-1 to 4-8, the paint includes particles having a particle diameter and a refractive index within a predetermined range, and the mass ratio (particle / resin) is a predetermined value. It is within the range. Thereby, since the paint was transparent, the pass / fail judgment of the laser measurement was acceptable. In Example 4-3, there was some coating unevenness due to the large particles. In Example 4-7, since the particles were small, the viscosity was high and there was some coating unevenness.
<実施例5-1~実施例5-3>
 実施例5-1~実施例5-3では、フィラーとして、下掲の表5に示す板状のタルク粒子を用いたいこと以外は、実施例3-14と同様にして、ラミネートフィルム型電池を作製した。
<Example 5-1 to Example 5-3>
In Example 5-1 to Example 5-3, a laminated film type battery was prepared in the same manner as in Example 3-14, except that the plate-like talc particles shown in Table 5 below were used as the filler. Produced.
<実施例5-4~実施例5-6>
 実施例5-4~実施例5-6では、フィラーとして、下掲の表5に示す針状の酸化アルミニウム粒子を用いたこと以外は、実施例3-27と同様にして、ラミネートフィルム型電池を作製した。
<Example 5-4 to Example 5-6>
In Example 5-4 to Example 5-6, a laminated film type battery was obtained in the same manner as in Example 3-27 except that acicular aluminum oxide particles shown in Table 5 below were used as the filler. Was made.
(電池評価:レーザー計測の合否判定)
 作製した各実施例および各比較例のラミネートフィルム型電池について、実施例1-1と同様にして、レーザー計測の合否判定を行った。
(Battery evaluation: Pass / fail judgment of laser measurement)
Regarding the produced laminated film type batteries of each Example and each Comparative Example, the pass / fail judgment of laser measurement was performed in the same manner as in Example 1-1.
 表5に評価結果を示す。 Table 5 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、実施例5-1~実施例5-6では、塗料が、所定範囲内の粒子径および屈折率を有する粒子を含み、且つ、質量比(粒子/樹脂)が、所定範囲内とされている。これにより、塗料が透明であるので、レーザー計測の合否判定が合格であった。 As shown in Table 5, in Examples 5-1 to 5-6, the paint includes particles having a particle diameter and a refractive index within a predetermined range, and the mass ratio (particle / resin) is a predetermined value. It is within the range. Thereby, since the paint was transparent, the pass / fail judgment of the laser measurement was acceptable.
<実施例6-1~実施例6-29>
 実施例6-1~実施例6-29では、下掲の表6に示すように、塗料を構成する樹脂の種類を変えたこと以外は、実施例1-1と同様にして、ラミネートフィルム型電池を作製した。
<Example 6-1 to Example 6-29>
In Examples 6-1 to 6-29, as shown in Table 6 below, a laminate film type was obtained in the same manner as in Example 1-1 except that the type of resin constituting the paint was changed. A battery was produced.
(電池評価:レーザー計測の合否判定)
 作製した各実施例および各比較例のラミネートフィルム型電池について、実施例1-1と同様にして、レーザー計測の合否判定を行った。
(Battery evaluation: Pass / fail judgment of laser measurement)
Regarding the produced laminated film type batteries of each Example and each Comparative Example, the pass / fail judgment of laser measurement was performed in the same manner as in Example 1-1.
 表6に評価結果を示す Table 6 shows the evaluation results
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、実施例6-1~実施例6-29では、塗料が、所定範囲内の粒子径および屈折率を有する粒子を含み、且つ、質量比(粒子/樹脂)が、所定範囲内とされている。これにより、塗料が透明であるので、レーザー計測の合否判定が合格であった。 As shown in Table 6, in Examples 6-1 to 6-29, the paint includes particles having a particle diameter and a refractive index within a predetermined range, and the mass ratio (particle / resin) is a predetermined value. It is within the range. Thereby, since the paint was transparent, the pass / fail judgment of the laser measurement was acceptable.
<実施例7-1~実施例7-6>
 実施例7-1~実施例7-6では、塗料を塗布する際の所定の塗料厚みを下掲の表7に示すように変えたこと以外は、実施例1-1と同様にして、ラミネートフィルム型電池を作製した。
<Example 7-1 to Example 7-6>
In Examples 7-1 to 7-6, laminating was performed in the same manner as in Example 1-1 except that the predetermined paint thickness when applying the paint was changed as shown in Table 7 below. A film type battery was produced.
(電池評価:レーザー計測の合否判定)
 作製した各実施例のラミネートフィルム型電池について、実施例1-1と同様にして、レーザー計測の合否判定を行った。
(Battery evaluation: Pass / fail judgment of laser measurement)
Regarding the manufactured laminated film type batteries of each Example, the pass / fail judgment of laser measurement was performed in the same manner as in Example 1-1.
 表7に評価結果を示す。 Table 7 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、実施例7-1~実施例7-6では、塗料が、所定範囲内の粒子径および屈折率を有する粒子を含み、且つ、質量比(粒子/樹脂)が、所定範囲内とされている。これにより、塗料が透明であるので、レーザー計測の合否判定が合格であった。なお、実施例7-6では、粒子径と塗料の厚みが同じで若干の塗りムラ発生した。塗料の厚みが1μm以下であると塗りムラがでやすくなり透明度が若干低下する傾向にあった。 As shown in Table 7, in Examples 7-1 to 7-6, the paint includes particles having a particle diameter and a refractive index within a predetermined range, and the mass ratio (particle / resin) is a predetermined value. It is within the range. Thereby, since the paint was transparent, the pass / fail judgment of the laser measurement was acceptable. In Example 7-6, the particle diameter was the same as the coating thickness, and slight coating unevenness occurred. When the thickness of the coating was 1 μm or less, uneven coating was likely to occur and the transparency was liable to be slightly reduced.
<実施例8-1>
 実施例8-1では、実施例1-1と同様にして、ラミネートフィルム型電池を作製した。
<Example 8-1>
In Example 8-1, a laminated film type battery was produced in the same manner as in Example 1-1.
<実施例8-2>
[正極の作製、負極の作製]
 正極および負極を、実施例1-1と同様にして作製した。
<Example 8-2>
[Preparation of positive electrode, preparation of negative electrode]
A positive electrode and a negative electrode were produced in the same manner as in Example 1-1.
[セパレータの作製]
 基材として厚さ9μmポリエチレン(PE)製微多孔性フィルムを用いた。この基材の両面に、下記の様にして、塗料を塗布して粒子含有樹脂溶液層(塗料膜)を形成した後、これを乾燥し、粒子含有樹脂層を形成した。
[Preparation of separator]
A 9 μm-thick polyethylene (PE) microporous film was used as the substrate. A coating material was applied to both surfaces of the substrate as described below to form a particle-containing resin solution layer (coating film), and then dried to form a particle-containing resin layer.
 まず、フィラーであるベーマイト粒子(粒子径D50:1000nm、屈折率1.7、扁平状粒子(板状粒子))とバインダー高分子化合物(樹脂)であるフッ化ビニリデン(PVdF、屈折率1.4)とを、N-メチル-2-ピロリドン(NMP、屈折率1.2)に分散させて、塗料(粒子含有樹脂溶液)を調製した。この際、固形分(ベーマイト粒子およびPVdF)が塗料の全体量に対して20質量%となるように、各材料の量を調整した。すなわち、ベーマイト粒子の含有量は塗料の全体量に対して10質量%とし、PVdFの含有量は塗料の全体量に対して10質量%とし、NMPの含有量は塗料の全体量に対して80質量%とした。なお、ベーマイト粒子とPVdFとの質量比(粒子/樹脂)は50/50である。 First, boehmite particles (particle diameter D50: 1000 nm, refractive index 1.7, flat particles (plate-like particles)) as a filler and vinylidene fluoride (PVdF, refractive index 1.4) as a binder polymer compound (resin). ) Was dispersed in N-methyl-2-pyrrolidone (NMP, refractive index 1.2) to prepare a paint (particle-containing resin solution). Under the present circumstances, the quantity of each material was adjusted so that solid content (boehmite particle | grains and PVdF) might be 20 mass% with respect to the whole quantity of a coating material. That is, the content of boehmite particles is 10% by mass with respect to the total amount of paint, the content of PVdF is 10% by mass with respect to the total amount of paint, and the content of NMP is 80% with respect to the total amount of paint. It was set as mass%. In addition, the mass ratio (particle / resin) of boehmite particles and PVdF is 50/50.
 次に、この塗料を、基材の両面のそれぞれに表8に示す所定の塗料厚みの厚みで均一に塗布した。この際、塗布中に、レーザー厚み計で塗料膜の厚みを計測し、計測値が所定の塗料厚みと異なる場合には、所定の塗料厚みに近づくように塗料の吐出量を自動で調整した。 Next, this paint was uniformly applied to each of both surfaces of the base material with a predetermined paint thickness shown in Table 8. At this time, during coating, the thickness of the paint film was measured with a laser thickness meter, and when the measured value was different from the predetermined paint thickness, the discharge amount of the paint was automatically adjusted so as to approach the predetermined paint thickness.
 その後、塗料が塗布された基材を乾燥機中にくぐらせることにより、粒子含有樹脂溶液層からNMPを除去し、基材と、基材の両面に形成されたPVdFおよびベーマイトからなる粒子含有樹脂層とを有するセパレータを作製した。 Then, the NMP is removed from the particle-containing resin solution layer by passing the substrate coated with the coating material in a dryer, and the particle-containing resin comprising PVDF and boehmite formed on both surfaces of the substrate. A separator having a layer was prepared.
[ラミネートフィルム型電池の組み立て]
 正極、負極および粒子含有樹脂層が両面に形成されたセパレータを、正極、セパレータ、負極、セパレータの順に積層し、長手方向に多数回、扁平形状に巻回させた後、巻き終わり部分を粘着テープで固定することにより巻回電極体を形成した。
[Assembly of laminated film type battery]
A separator having a positive electrode, a negative electrode, and a particle-containing resin layer formed on both sides is laminated in the order of positive electrode, separator, negative electrode, and separator, wound in a flat shape many times in the longitudinal direction, and then the end of winding is adhesive tape The wound electrode body was formed by fixing with.
 次に、巻回電極体を、外装部材の間に挟み、3辺を熱融着した。なお、外装部材には、軟質アルミニウム層を有するラミネートフィルムを用いた。 Next, the wound electrode body was sandwiched between the exterior members, and the three sides were heat-sealed. Note that a laminate film having a soft aluminum layer was used for the exterior member.
 そののち、これに電解液を注入し、減圧下で残りの1辺を熱融着し、密封した。なお、電解液としては、以下のように調製したものを用いた。炭酸エチレン(EC)と炭酸ジメチル(DMC)とを混合した非水溶媒に対して、電解質塩として六フッ化リン酸リチウム(LiPF6)を溶解させることにより、電解液を調製した。この際、電解液の構成成分(EC/DMC/LiPF6)の質量比(EC/DMC/LiPF6)が35/50/15となるように、各構成成分の量を調整した。以上により、電池形状が厚さ4.5mm、幅30mm、高さ50mmの図3に示すラミネートフィルム型電池を作製した。 After that, an electrolytic solution was poured into this, and the remaining one side was heat-sealed under reduced pressure and sealed. In addition, what was prepared as follows was used as electrolyte solution. An electrolyte solution was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt in a non-aqueous solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed. In this case, the mass ratio of the constituents of the electrolyte (EC / DMC / LiPF 6) (EC / DMC / LiPF 6) is such that the 35/50/15 and adjust the amount of each component. Thus, a laminated film type battery shown in FIG. 3 having a thickness of 4.5 mm, a width of 30 mm, and a height of 50 mm was produced.
<実施例8-3>
 実施例8-3では、正極、負極、セパレータおよび粒子含有樹脂層のそれぞれの構成および粒子含有樹脂層の塗布対象が、実施例8-2と同様であり、積層電極体をラミネートフィルムで外装したラミネートフィルム型電池を作製した。
<Example 8-3>
In Example 8-3, the configuration of each of the positive electrode, the negative electrode, the separator, and the particle-containing resin layer and the application target of the particle-containing resin layer were the same as in Example 8-2, and the laminated electrode body was covered with a laminate film. A laminate film type battery was produced.
[ラミネートフィルム型電池の組み立て]
 実施例8-2と同様の塗料を、基材の両面のそれぞれに表8に示す所定の塗料厚みの厚みで均一に塗布した。この際、塗布中に、レーザー厚み計で塗料膜の厚みを計測し、計測値が所定の塗料厚みと異なる場合には、所定の塗料厚みに近づくように塗料の吐出量を自動で調整した。
[Assembly of laminated film type battery]
The same paint as in Example 8-2 was uniformly applied to each of both surfaces of the base material with a predetermined paint thickness shown in Table 8. At this time, during coating, the thickness of the paint film was measured with a laser thickness meter, and when the measured value was different from the predetermined paint thickness, the discharge amount of the paint was automatically adjusted so as to approach the predetermined paint thickness.
 その後、塗料が塗布された基材を乾燥機中にくぐらせることにより、粒子含有樹脂溶液層からNMPを除去し、基材と、基材の両面に形成されたPVdFおよびベーマイトからなる粒子含有樹脂層とを有するセパレータを作製した。 Then, the NMP is removed from the particle-containing resin solution layer by passing the substrate coated with the coating material in a dryer, and the particle-containing resin comprising PVDF and boehmite formed on both surfaces of the substrate. A separator having a layer was prepared.
 次に、矩形状の正極および矩形状の負極と、矩形状のセパレータとを、正極、セパレータ、負極、セパレータの順に、積層して積層電極体を形成した。 Next, a rectangular positive electrode and a rectangular negative electrode, and a rectangular separator were laminated in the order of the positive electrode, the separator, the negative electrode, and the separator to form a laminated electrode body.
 次に、積層電極体を、軟質アルミニウム層を有するラミネートフィルムで外装し、積層電極体周辺の3辺を熱融着して封止し、密閉した。そののち、これに電解液を注入し、減圧下で残りの1辺を熱融着し、密封した。これにより、電池形状が厚さ4.5mm、幅30mm、高さ50mmの図5A~図5Cに示すラミネートフィルム型電池を作製した。 Next, the laminated electrode body was covered with a laminate film having a soft aluminum layer, and the three sides around the laminated electrode body were heat-sealed and sealed and sealed. After that, an electrolytic solution was poured into this, and the remaining one side was heat-sealed under reduced pressure and sealed. Thus, a laminated film type battery shown in FIGS. 5A to 5C having a battery shape of 4.5 mm in thickness, 30 mm in width, and 50 mm in height was produced.
<実施例8-4>
 実施例8-1と同様にして、正極、負極を作製した。また、実施例8-2と同様の塗料を用いて、粒子含有樹脂層が両面に形成されたセパレータを得た。
<Example 8-4>
In the same manner as in Example 8-1, a positive electrode and a negative electrode were produced. In addition, a separator having a particle-containing resin layer formed on both sides was obtained using the same paint as in Example 8-2.
[角型電池の組み立て]
 正極および負極と、粒子含有樹脂層が両面に形成されたセパレータとを、正極、セパレータ、負極、セパレータの順に積層し、長手方向に多数回、扁平形状に巻回させた後、巻き終わり部分を粘着テープで固定することにより巻回電極体を形成した。次に、図9に示すように、巻回電極体を角型の電池缶に収容した。続いて、電池蓋に設けられた電極ピンと、巻回電極体から導出された正極端子とを接続した後、電池缶を電池蓋にて封口し、電解液注入口から非水電解液を注入して封止部材にて封止し、密閉した。これにより、電池形状が厚さ5.2mm、幅34mm、高さ36mm(523436サイズ)の図9に示す角型電池を作製した。
[Assembly of square battery]
A positive electrode, a negative electrode, and a separator having a particle-containing resin layer formed on both sides are laminated in the order of the positive electrode, the separator, the negative electrode, and the separator, wound many times in the longitudinal direction in a flat shape, A wound electrode body was formed by fixing with an adhesive tape. Next, as shown in FIG. 9, the wound electrode body was accommodated in a rectangular battery can. Subsequently, after connecting the electrode pin provided on the battery lid and the positive electrode terminal derived from the wound electrode body, the battery can is sealed with the battery lid, and the nonaqueous electrolyte is injected from the electrolyte inlet. And sealed with a sealing member. Thus, a prismatic battery shown in FIG. 9 having a battery shape of 5.2 mm thickness, 34 mm width, and 36 mm height (523436 size) was produced.
<実施例8-5> <Example 8-5>
 実施例8-1と同様にして、正極、負極を作製した。また、実施例8-2と同様の塗料を用いて、粒子含有樹脂層が両面に形成されたセパレータを得た。 In the same manner as in Example 8-1, a positive electrode and a negative electrode were produced. In addition, a separator having a particle-containing resin layer formed on both sides was obtained using the same paint as in Example 8-2.
[円筒型電池の組み立て]
 正極および負極と、粒子含有樹脂層が両面に形成されたセパレータとを、正極、セパレータ、負極、セパレータの順に積層し、長手方向に多数回巻回させた後、巻き終わり部分を粘着テープで固定することにより巻回電極体を形成した。次に、正極端子を電池蓋と接合された安全弁に接合すると共に、負極リードを負極缶に接続した。巻回電極体を一対の絶縁板で挟んで電池缶の内部に収納した後、巻回電極体の中心にセンターピンを挿入した。
[Assembly of cylindrical battery]
A positive electrode, a negative electrode, and a separator with a particle-containing resin layer formed on both sides are laminated in the order of the positive electrode, separator, negative electrode, and separator, wound many times in the longitudinal direction, and then the winding end is fixed with an adhesive tape. Thus, a wound electrode body was formed. Next, the positive electrode terminal was bonded to the safety valve bonded to the battery lid, and the negative electrode lead was connected to the negative electrode can. After the wound electrode body was sandwiched between a pair of insulating plates and housed inside the battery can, a center pin was inserted into the center of the wound electrode body.
 続いて、円筒型の電池缶の内部に絶縁板の上から非水電解液を注液した。最後に、電池缶の開放部に、安全弁、ディスクホルダ、遮断ディスクからなる安全弁機構、PTC素子ならびに電池蓋を、絶縁封口ガスケットを介してかしめることにより密閉した。これにより、電池形状が直径18mm、高さ65mm(ICR18650サイズ)、図6に示す円筒型電池を作製した。 Subsequently, a non-aqueous electrolyte was injected into the inside of the cylindrical battery can from above the insulating plate. Finally, a safety valve mechanism including a safety valve, a disk holder, and a shut-off disk, a PTC element, and a battery lid were sealed in the open portion of the battery can by caulking through an insulating sealing gasket. Thereby, the battery shape was 18 mm in diameter and 65 mm in height (ICR18650 size), and the cylindrical battery shown in FIG. 6 was produced.
<実施例8-6>
 実施例8-6では、実施例8-1と同様のラミネートフィルム型電池を用いた、図10、図11Aおよび図11Bに示す簡易型の電池パック(ソフトパック)を作製した。
<Example 8-6>
In Example 8-6, a simple battery pack (soft pack) shown in FIGS. 10, 11A, and 11B was manufactured using the same laminate film type battery as in Example 8-1.
<実施例8-7>
 実施例8-7では、塗料をセパレータの負極側の片面のみに塗布したこと以外は、実施例8-1と同様にして、ラミネートフィルム型電池を作製した。
<Example 8-7>
In Example 8-7, a laminated film type battery was produced in the same manner as in Example 8-1, except that the coating material was applied only to one surface on the negative electrode side of the separator.
<実施例8-8>
 実施例8-8では、塗料をセパレータの正極側の片面のみに塗布したこと以外は、実施例8-1と同様にして、ラミネートフィルム型電池を作製した。
<Example 8-8>
In Example 8-8, a laminate film type battery was produced in the same manner as in Example 8-1, except that the coating material was applied only to one side of the separator on the positive electrode side.
<実施例8-9>
[正極の作製、粒子含有樹脂層の形成]
 実施例8-1と同様にして、正極を作製した。また、正極の両面に以下のようにして粒子含有樹脂層を形成した。
<Example 8-9>
[Preparation of positive electrode, formation of particle-containing resin layer]
A positive electrode was produced in the same manner as in Example 8-1. Moreover, the particle | grain containing resin layer was formed as follows on both surfaces of a positive electrode.
 次に、実施例8-2と同様の塗料を、正極の両面のそれぞれに所定の塗料厚み(5.0μm)で均一に塗布した。この際、塗布中に、レーザー厚み計で塗料膜の厚みを計測し、計測値が所定の塗料厚みと異なる場合には、所定の塗料厚みに近づくように塗料の吐出量を自動で調整した。 Next, the same paint as in Example 8-2 was uniformly applied to each of both surfaces of the positive electrode with a predetermined paint thickness (5.0 μm). At this time, during coating, the thickness of the paint film was measured with a laser thickness meter, and when the measured value was different from the predetermined paint thickness, the discharge amount of the paint was automatically adjusted so as to approach the predetermined paint thickness.
 その後、塗料が塗布された正極を乾燥機中にくぐらせることにより、粒子含有樹脂溶液層からNMPを除去し、これにより、正極の両面にPVdFおよびベーマイトからなる粒子含有樹脂層を形成した。 Then, the NMP was removed from the particle-containing resin solution layer by passing the positive electrode coated with the paint in a dryer, thereby forming a particle-containing resin layer composed of PVdF and boehmite on both sides of the positive electrode.
[負極の作製、粒子含有樹脂層の形成]
 実施例8-1と同様にして、負極を作製した。また、正極と同様の手法で、負極の両面に粒子含有樹脂層を形成した。
[Production of negative electrode, formation of particle-containing resin layer]
A negative electrode was produced in the same manner as in Example 8-1. In addition, a particle-containing resin layer was formed on both sides of the negative electrode in the same manner as the positive electrode.
[セパレータの作製]
 基材として厚さ9μmポリエチレン(PE)製微多孔性フィルムを用いた。
[Preparation of separator]
A 9 μm-thick polyethylene (PE) microporous film was used as the substrate.
[ラミネートフィルム型電池の組み立て]
 粒子含有樹脂層が両面に形成された正極、粒子含有樹脂層が両面に形成された負極およびセパレータを、正極、セパレータ、負極、セパレータの順に積層し、長手方向に多数回、扁平形状に巻回させた後、巻き終わり部分を粘着テープで固定することにより巻回電極体を形成した。
[Assembly of laminated film type battery]
A positive electrode with a particle-containing resin layer formed on both sides, and a negative electrode and a separator with a particle-containing resin layer formed on both sides are laminated in the order of positive electrode, separator, negative electrode and separator, and wound in a flat shape many times in the longitudinal direction. Then, the wound electrode body was formed by fixing the winding end portion with an adhesive tape.
 次に、巻回電極体を、外装部材の間に挟み、3辺を熱融着した。なお、外装部材には、軟質アルミニウム層を有するラミネートフィルムを用いた。 Next, the wound electrode body was sandwiched between the exterior members, and the three sides were heat-sealed. Note that a laminate film having a soft aluminum layer was used for the exterior member.
 そののち、これに電解液を注入し、減圧下で残りの1辺を熱融着し、密封した。なお、電解液としては、以下のように調製したものを用いた。炭酸エチレン(EC)と炭酸ジメチル(DMC)とを混合した非水溶媒に対して、電解質塩として六フッ化リン酸リチウム(LiPF6)を溶解させることにより、電解液を調製した。この際、電解液の構成成分(EC/DMC/LiPF6)の質量比(EC/DMC/LiPF6)が35/50/15となるように、各構成成分の量を調整した。以上により、電池形状が厚さ4.5mm、30mm、高さ50mmのラミネートフィルム型電池を作製した。 After that, an electrolytic solution was poured into this, and the remaining one side was heat-sealed under reduced pressure and sealed. In addition, what was prepared as follows was used as electrolyte solution. An electrolyte solution was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt in a non-aqueous solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed. In this case, the mass ratio of the constituents of the electrolyte (EC / DMC / LiPF 6) (EC / DMC / LiPF 6) is such that the 35/50/15 and adjust the amount of each component. Thus, a laminated film type battery having a battery shape of thickness 4.5 mm, 30 mm, and height 50 mm was produced.
<実施例8-10>
 [正極の作製、粒子含有樹脂層の形成]
 実施例8-1と同様にして、正極を作製した。また、正極の両面に以下のようにして粒子含有樹脂層を形成した。
<Example 8-10>
[Preparation of positive electrode, formation of particle-containing resin layer]
A positive electrode was produced in the same manner as in Example 8-1. Moreover, the particle | grain containing resin layer was formed as follows on both surfaces of a positive electrode.
(粒子含有樹脂層の形成)
 実施例8-1と同様の塗料を、正極の両面のそれぞれに示す所定の塗料厚み(5.0μm)で均一に塗布した。この際、塗布中に、レーザー厚み計で塗料膜の厚みを計測し、計測値が所定の塗料厚みと異なる場合には、所定の塗料厚みに近づくように塗料の吐出量を自動で調整した。
(Formation of particle-containing resin layer)
The same paint as in Example 8-1 was uniformly applied at a predetermined paint thickness (5.0 μm) shown on each of both surfaces of the positive electrode. At this time, during coating, the thickness of the paint film was measured with a laser thickness meter, and when the measured value was different from the predetermined paint thickness, the discharge amount of the paint was automatically adjusted so as to approach the predetermined paint thickness.
 その後、塗料が塗布された正極を乾燥機中にくぐらせることにより、粒子含有樹脂溶液層からNMPを除去し、これにより、正極の両面にPVdF-HFPおよびベーマイト粒子からなる粒子含有樹脂層を形成した。 Thereafter, the NMP is removed from the particle-containing resin solution layer by passing the positive electrode on which the paint is applied in a dryer, thereby forming a particle-containing resin layer composed of PVdF-HFP and boehmite particles on both sides of the positive electrode. did.
[負極の作製、粒子含有樹脂層の形成]
 実施例1-1と同様にして、負極を作製した。また、正極と同様の手法で、負極の両面に粒子含有樹脂層を形成した。
[Production of negative electrode, formation of particle-containing resin layer]
A negative electrode was produced in the same manner as in Example 1-1. In addition, a particle-containing resin layer was formed on both sides of the negative electrode in the same manner as the positive electrode.
[セパレータの作製]
 基材として厚さ9μmポリエチレン(PE)製微多孔性フィルムを用いた。
[Preparation of separator]
A 9 μm-thick polyethylene (PE) microporous film was used as the substrate.
[ラミネートフィルム型電池の組み立て]
 粒子含有樹脂層が両面に形成された正極、粒子含有樹脂層が両面に形成された負極およびセパレータを、正極、セパレータ、負極、セパレータの順に積層し、長手方向に多数回、扁平形状に巻回させた後、巻き終わり部分を粘着テープで固定することにより巻回電極体を形成した。
[Assembly of laminated film type battery]
A positive electrode with a particle-containing resin layer formed on both sides, and a negative electrode and a separator with a particle-containing resin layer formed on both sides are laminated in the order of positive electrode, separator, negative electrode and separator, and wound in a flat shape many times in the longitudinal direction. Then, the wound electrode body was formed by fixing the winding end portion with an adhesive tape.
 次に、巻回電極体を、外装部材の間に挟み、3辺を熱融着した。なお、外装部材には、軟質アルミニウム層を有するラミネートフィルムを用いた。 Next, the wound electrode body was sandwiched between the exterior members, and the three sides were heat-sealed. Note that a laminate film having a soft aluminum layer was used for the exterior member.
 そののち、これに実施例8-1と同様の電解液を注入し、減圧下で残りの1辺を熱融着し、密封した。この際、電解液を粒子含有樹脂層に含浸させ、マトリックス高分子化合物を膨潤させゲル状の電解質(ゲル電解質層)を形成した。以上により、電池形状が厚さ4.5mm、幅30mm、高さ50mmの図3に示すラミネートフィルム型電池を作製した。 Thereafter, the same electrolytic solution as in Example 8-1 was poured into this, and the remaining one side was heat-sealed under reduced pressure and sealed. At this time, the electrolyte solution was impregnated into the particle-containing resin layer, and the matrix polymer compound was swollen to form a gel electrolyte (gel electrolyte layer). Thus, a laminated film type battery shown in FIG. 3 having a thickness of 4.5 mm, a width of 30 mm, and a height of 50 mm was produced.
<実施例8-11>
 実施例8-11では、正極、負極、セパレータおよび粒子含有樹脂層のそれぞれの構成および粒子含有樹脂層の塗布対象が、実施例8-9と同様であり、積層電極体をラミネートフィルムで外装したラミネートフィルム型電池を作製した。
<Example 8-11>
In Example 8-11, the configuration of each of the positive electrode, the negative electrode, the separator, and the particle-containing resin layer and the application target of the particle-containing resin layer were the same as in Example 8-9, and the laminated electrode body was packaged with a laminate film. A laminate film type battery was produced.
[ラミネートフィルム型電池の組み立て]
 実施例8-9と同様の塗料を、正極の両面および負極の両面のそれぞれに所定の塗料厚み(5.0μm)で均一に塗布した。この際、塗布中に、レーザー厚み計で塗料膜の厚みを計測し、計測値が所定の塗料厚みと異なる場合には、所定の塗料厚みに近づくように塗料の吐出量を自動で調整した。
[Assembly of laminated film type battery]
The same coating material as in Example 8-9 was uniformly applied to both the positive electrode surface and the negative electrode surface with a predetermined coating thickness (5.0 μm). At this time, during coating, the thickness of the paint film was measured with a laser thickness meter, and when the measured value was different from the predetermined paint thickness, the discharge amount of the paint was automatically adjusted so as to approach the predetermined paint thickness.
 その後、塗料が塗布された各電極を乾燥機中にくぐらせることにより、粒子含有樹脂溶液層からNMPを除去し、粒子含有樹脂層付き正極、粒子含有樹脂層付き負極を得た。 Thereafter, each electrode to which the paint was applied was passed through a dryer to remove NMP from the particle-containing resin solution layer to obtain a positive electrode with a particle-containing resin layer and a negative electrode with a particle-containing resin layer.
 次に、矩形状の正極および矩形状の負極と、矩形状のセパレータとを、正極、セパレータ、負極、セパレータの順に、積層して積層電極体を形成した。 Next, a rectangular positive electrode and a rectangular negative electrode, and a rectangular separator were laminated in the order of the positive electrode, the separator, the negative electrode, and the separator to form a laminated electrode body.
 次に、積層電極体を、軟質アルミニウム層を有するラミネートフィルムで外装し、積層電極体周辺の3辺を熱融着して封止し、密閉した。そののち、これに実施例8-9と同様の電解液を注入し、減圧下で残りの1辺を熱融着し、密封した。これにより、電池形状が厚さ4.5mm、幅30mm、高さ50mmの図5A~図5Cに示すラミネートフィルム型電池を作製した。 Next, the laminated electrode body was covered with a laminate film having a soft aluminum layer, and the three sides around the laminated electrode body were heat-sealed and sealed and sealed. After that, the same electrolytic solution as in Example 8-9 was poured into this, and the remaining one side was heat-sealed under reduced pressure and sealed. Thus, a laminated film type battery shown in FIGS. 5A to 5C having a battery shape of 4.5 mm in thickness, 30 mm in width, and 50 mm in height was produced.
<実施例8-12>
 実施例8-9と同様にして、粒子含有樹脂層付き正極、粒子含有樹脂層が両面に形成された粒子含有樹脂層付き負極、セパレータを得た。
<Example 8-12>
In the same manner as in Example 8-9, a positive electrode with a particle-containing resin layer, a negative electrode with a particle-containing resin layer having a particle-containing resin layer formed on both surfaces, and a separator were obtained.
[角型電池の組み立て]
 粒子含有樹脂層付き正極および粒子含有樹脂層付き負極と、セパレータとを、正極、セパレータ、負極、セパレータの順に積層し、長手方向に多数回、扁平形状に巻回させた後、巻き終わり部分を粘着テープで固定することにより巻回電極体を形成した。次に、図9に示すように、巻回電極体を角型の電池缶に収容した。続いて、電池蓋に設けられた電極ピンと、巻回電極体から導出された正極端子とを接続した後、電池缶を電池蓋にて封口し、電解液注入口から非水電解液を注入して封止部材にて封止し、密閉した。これにより、電池形状が厚さ5.2mm、幅34mm、高さ36mm(523436サイズ)の図9に示す角型電池を作製した。
[Assembly of square battery]
A positive electrode with a particle-containing resin layer and a negative electrode with a particle-containing resin layer, and a separator are laminated in the order of positive electrode, separator, negative electrode and separator, wound many times in the longitudinal direction into a flat shape, A wound electrode body was formed by fixing with an adhesive tape. Next, as shown in FIG. 9, the wound electrode body was accommodated in a rectangular battery can. Subsequently, after connecting the electrode pin provided on the battery lid and the positive electrode terminal derived from the wound electrode body, the battery can is sealed with the battery lid, and the nonaqueous electrolyte is injected from the electrolyte inlet. And sealed with a sealing member. Thus, a prismatic battery shown in FIG. 9 having a battery shape of 5.2 mm thickness, 34 mm width, and 36 mm height (523436 size) was produced.
<実施例8-13>
 実施例8-9と同様にして、粒子含有樹脂層が両面に形成された粒子含有樹脂層付き正極、粒子含有樹脂層が両面に形成された粒子含有樹脂層付き負極、セパレータを得た。
<Example 8-13>
In the same manner as in Example 8-9, a positive electrode with a particle-containing resin layer having a particle-containing resin layer formed on both sides, a negative electrode with a particle-containing resin layer having a particle-containing resin layer formed on both sides, and a separator were obtained.
[円筒型電池の組み立て]
 粒子含有樹脂層付き正極および粒子含有樹脂層付き負極と、セパレータとを、正極、セパレータ、負極、セパレータの順に積層し、長手方向に多数回巻回させた後、巻き終わり部分を粘着テープで固定することにより巻回電極体を形成した。次に、正極端子を電池蓋と接合された安全弁に接合すると共に、負極リードを負極缶に接続した。巻回電極体を一対の絶縁板で挟んで電池缶の内部に収納した後、巻回電極体の中心にセンターピンを挿入した。
[Assembly of cylindrical battery]
A positive electrode with a particle-containing resin layer, a negative electrode with a particle-containing resin layer, and a separator are laminated in the order of positive electrode, separator, negative electrode, and separator, wound many times in the longitudinal direction, and then the winding end is fixed with an adhesive tape Thus, a wound electrode body was formed. Next, the positive electrode terminal was bonded to the safety valve bonded to the battery lid, and the negative electrode lead was connected to the negative electrode can. After the wound electrode body was sandwiched between a pair of insulating plates and housed inside the battery can, a center pin was inserted into the center of the wound electrode body.
 続いて、円筒型の電池缶の内部に絶縁板の上から非水電解液を注液した。最後に、電池缶の開放部に、安全弁、ディスクホルダ、遮断ディスクからなる安全弁機構、PTC素子ならびに電池蓋を、絶縁封口ガスケットを介してかしめることにより密閉した。これにより、電池形状が直径18mm、高さ65mm(ICR18650サイズ)、図6に示す円筒型電池を作製した。 Subsequently, a non-aqueous electrolyte was injected into the inside of the cylindrical battery can from above the insulating plate. Finally, a safety valve mechanism including a safety valve, a disk holder, and a shut-off disk, a PTC element, and a battery lid were sealed in the open portion of the battery can by caulking through an insulating sealing gasket. Thereby, the battery shape was 18 mm in diameter and 65 mm in height (ICR18650 size), and the cylindrical battery shown in FIG. 6 was produced.
<実施例8-14>
  実施例8-14では、実施例8-9と同様のラミネートフィルム型電池を用いた、図10、図11Aおよび図11Bに示す簡易型の電池パック(ソフトパック)を作製した。
<Example 8-14>
In Example 8-14, a simple battery pack (soft pack) shown in FIGS. 10, 11A, and 11B using the same laminate film type battery as in Example 8-9 was produced.
<実施例8-15>
 実施例8-15では、塗料を負極の両面のみに塗布したこと以外は、実施例8-9と同様にして、ラミネートフィルム型電池を作製した。
<Example 8-15>
In Example 8-15, a laminated film type battery was produced in the same manner as in Example 8-9, except that the paint was applied only on both sides of the negative electrode.
<実施例8-16>
 実施例8-16では、塗料を正極の両面のみに塗布したこと以外は、実施例8-1と同様にして、ラミネートフィルム型電池を作製した。
<Example 8-16>
In Example 8-16, a laminated film type battery was produced in the same manner as in Example 8-1, except that the paint was applied only on both sides of the positive electrode.
(電池評価:レーザー計測の合否判定、電池折曲げ試験)
 作製した各実施例のラミネートフィルム型電池について、実施例1-1と同様にして、レーザー計測の合否判定および電池折曲げ試験を行った。
(Battery evaluation: pass / fail judgment of laser measurement, battery bending test)
Regarding the produced laminated film type batteries of each Example, a laser measurement pass / fail judgment and a battery bending test were performed in the same manner as in Example 1-1.
 表8に評価結果を示す。 Table 8 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、実施例8-1~実施例8-16では、塗料が、所定範囲内の粒子径および屈折率を有する粒子を含み、且つ、質量比(粒子/樹脂)が、所定範囲内とされている。これにより、塗料が透明であるので、レーザー計測の合否判定が合格であった。また、粒子含有樹脂層の厚み管理がうまくいったので、電池折曲げ試験が合格であった。 As shown in Table 8, in Examples 8-1 to 8-16, the paint includes particles having a particle diameter and a refractive index within a predetermined range, and the mass ratio (particle / resin) is a predetermined value. It is within the range. Thereby, since the paint was transparent, the pass / fail judgment of the laser measurement was acceptable. Moreover, since the thickness control of the particle-containing resin layer was successful, the battery bending test was acceptable.
<他の実施例および他の比較例についての評価>
 塗料の粒子および質量比(粒子/樹脂)の少なくとも何れか一つを、実施例3-14~実施例3-39、実施例4-1~実施例4-8、実施例5-1~実施例5-6と同様のものに変えたこと以外は、実施例8-1と同様にした巻回型ラミネートフィルム電池についても、同様のレーザー計測の合格判定を行った。その結果、表3、表4、表5に示すものと同様の評価結果が得られた。
<Evaluation of other examples and other comparative examples>
At least one of the particles and the mass ratio (particle / resin) of the paint was applied to Example 3-14 to Example 3-39, Example 4-1 to Example 4-8, and Example 5-1 to The same laser measurement pass judgment was performed for the wound laminate film battery as in Example 8-1 except that it was changed to the same as in Example 5-6. As a result, the same evaluation results as those shown in Table 3, Table 4, and Table 5 were obtained.
 塗料の粒子および質量比(粒子/樹脂)の少なくとも何れか一つを、実施例1-2~実施例1-55、比較例1-1~比較例1-16と同様のものに変えたこと以外は、実施例8-2と同様にした巻回型ラミネートフィルム電池についても、同様のレーザー計測の合否判定および電池折曲げ試験を行った。その結果、表1に示すもの同様の評価結果が得られた。塗料の粒子および質量比(粒子/樹脂)の少なくとも何れか一つを、実施例2-1~実施例2-24、実施例3-1~実施例3-39、実施例4-1~実施例4-8、実施例5-1~実施例5-6と同様のものに変えたこと以外は、実施例8-2と同様にした巻回型ラミネートフィルム電池についても、同様のレーザー計測の合格判定を行った。その結果、表2~表5に示すものと同様の評価結果が得られた。樹脂の材料種を実施例6-1~実施例6-29と同様のものに変えたこと以外は、実施例実施例8-2と同様にした巻回型ラミネートフィルム電池についても、同様のレーザー計測の合否判定および電池折曲げ試験を行った。その結果、表6に示すものと同様の評価結果が得られた。塗料の厚みを実施例7-1~実施例7-6と同様のものに変えたこと以外は、実施例8-2と同様にした巻回型ラミネートフィルム電池についても、同様のレーザー計測の合否判定および電池折曲げ試験を行った。その結果、表7に示すものと同様の評価結果が得られた。 At least one of the particles and the mass ratio (particle / resin) of the coating material was changed to the same as in Example 1-2 to Example 1-55 and Comparative Example 1-1 to Comparative Example 1-16 Except for the above, a winding type laminate film battery similar to that in Example 8-2 was also subjected to the same laser measurement pass / fail judgment and battery bending test. As a result, the same evaluation results as those shown in Table 1 were obtained. At least one of the particles and the mass ratio (particle / resin) of the paint was applied to Example 2-1 to Example 2-24, Example 3-1 to Example 3-39, and Example 4-1 to The same laser measurement was performed for the wound laminate film battery as in Example 8-2 except that it was changed to the same as in Example 4-8 and Example 5-1 to Example 5-6. A pass judgment was made. As a result, evaluation results similar to those shown in Tables 2 to 5 were obtained. The same laser is applied to the wound laminate film battery similar to that in Example 8-2 except that the material type of the resin is changed to the same as in Example 6-1 to Example 6-29. Measurement acceptance / rejection and battery bending test were performed. As a result, the same evaluation results as those shown in Table 6 were obtained. The same laser measurement pass / fail was also obtained for the wound laminate film battery as in Example 8-2, except that the coating thickness was changed to the same as in Examples 7-1 to 7-6. Judgment and battery bending test were performed. As a result, the same evaluation results as those shown in Table 7 were obtained.
 上記と同様に、塗料の粒子、質量比(粒子/樹脂)、樹脂の材料種および塗料の厚みの少なくとも何れか一つを、表1~表7に示す実施例および比較例(実施例1-1を除く)と同様のものに変えたこと以外は、実施例8-3~実施例8-9、実施例8-11~実施例8-16と同様にした電池についても、同様の評価を行った。その結果、表1~表7に示すものと同様の評価結果が得られた。 In the same manner as described above, at least one of paint particles, mass ratio (particle / resin), resin material type, and paint thickness was measured according to Examples and Comparative Examples shown in Tables 1 to 7 (Example 1). The same evaluation was made for the batteries similar to those in Examples 8-3 to 8-9 and Examples 8-11 to 8-16 except that the battery was changed to the same as that in Example 8-3. went. As a result, the same evaluation results as those shown in Tables 1 to 7 were obtained.
 上記と同様に、塗料の粒子、質量比(粒子/樹脂)、樹脂の材料種および塗料の厚みの少なくとも何れか一つを、表1~表7に示す実施例および比較例(実施例1-1、実施例3-14~実施例3-39、実施例4-1~実施例4-8および実施例5-1~実施例5-6を除く)と同様のものに変えたこと以外は、実施例8-10と同様にした電池についても、同様の評価を行った。その結果、表1~表3、表6~表7に示すものと同様の評価結果が得られた。 In the same manner as described above, at least one of paint particles, mass ratio (particle / resin), resin material type, and paint thickness was measured according to Examples and Comparative Examples shown in Tables 1 to 7 (Example 1). 1, except for Example 3-14 to Example 3-39, Example 4-1 to Example 4-8, and Example 5-1 to Example 5-6) The same evaluation was performed on the same batteries as in Examples 8-10. As a result, the same evaluation results as those shown in Tables 1 to 3 and Tables 6 to 7 were obtained.
10.他の実施の形態
 以上、本技術を各実施の形態および実施例によって説明したが、本技術はこれらに限定されるものではなく、本技術の要旨の範囲内で種々の変形が可能である。
10. Other Embodiments The present technology has been described above with reference to the embodiments and examples. However, the present technology is not limited thereto, and various modifications can be made within the scope of the gist of the present technology.
 例えば、上述の実施の形態および実施例において挙げた数値、構造、形状、材料、原料、製造プロセス等はあくまでも例に過ぎず、必要に応じてこれらと異なる数値、構造、形状、材料、原料、製造プロセス等を用いてもよい。 For example, the numerical values, structures, shapes, materials, raw materials, manufacturing processes and the like given in the above-described embodiments and examples are merely examples, and different numerical values, structures, shapes, materials, raw materials, and the like as necessary. A manufacturing process or the like may be used.
 また、上述の実施の形態および実施例の構成、方法、工程、形状、材料および数値等は、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。例えば、非水電解質電池は一次電池であってもよい。 Further, the configurations, methods, processes, shapes, materials, numerical values, and the like of the above-described embodiments and examples can be combined with each other without departing from the gist of the present technology. For example, the nonaqueous electrolyte battery may be a primary battery.
 また、本技術は、コイン型またはボタン型等の他の電池構造を有する場合についても、同様に適用可能である。 In addition, the present technology can be similarly applied to a case of having another battery structure such as a coin type or a button type.
 また、第3の実施の形態~第4の実施の形態において、セパレータ55を、第1の実施の形態と同様のセパレータであって、粒子含有樹脂層の樹脂としてバインダー高分子化合物を用いたものとしてもよい。この場合、ゲル電解質層56を、フィラーを省略した構成としてもよい。また、第3の実施の形態において、電極を、バインダー高分子化合物を用いた粒子含有樹脂層付きの電極としてもよい。この場合、ゲル電解質層56を、フィラーを省略した構成としてもよい。 In the third to fourth embodiments, the separator 55 is the same separator as in the first embodiment, and uses a binder polymer compound as the resin of the particle-containing resin layer. It is good. In this case, the gel electrolyte layer 56 may have a configuration in which the filler is omitted. In the third embodiment, the electrode may be an electrode with a particle-containing resin layer using a binder polymer compound. In this case, the gel electrolyte layer 56 may have a configuration in which the filler is omitted.
 なお、本技術は、以下の構成をとることもできる。
[1]
 正極と、
 負極と、
 セパレータと、
 電解液と、
 粒子および樹脂を含む粒子含有樹脂層と
を備え、
 前記粒子の粒子径D50は、50nm以上450nm以下、または、750nm以上10000nm以下であり、
 前記粒子の屈折率は、1.3以上2.4未満であり、
 前記粒子と前記樹脂との質量比(粒子/樹脂)は、15/85以上90/10以下である電池。
[2]
 前記粒子含有樹脂層は、前記正極の一方の主面および他方の主面、前記負極の一方の主面および他方の主面、並びに、前記セパレータの一方の主面および他方の主面の中から選ばれた少なくとも一つの主面上に形成されたものである[1]に記載の電池。
[3]
 前記樹脂は、バインダー高分子化合物であり、
 前記粒子含有樹脂層は、前記電解液を前記樹脂および前記粒子の少なくとも何れかにより形成される空隙に保持する[2]に記載の電池。
[4]
 前記樹脂は、マトリックス高分子化合物であり、
 前記粒子含有樹脂層は、前記粒子および前記マトリックス高分子化合物を含み、且つ、前記粒子含有樹脂層の前駆体である粒子含有樹脂溶液層が、前記正極および前記負極の少なくとも一方の電極の両面、または、前記セパレータの両面の少なくとも一方の面に形成され、
 前記粒子含有樹脂溶液層に前記電解液が含浸され、前記マトリックス高分子化合物が膨潤してゲル化したものである[2]に記載の電池。
[5]
 前記粒子含有樹脂層の厚みは、1μm以上15μm以下である[1]~[4]の何れかに記載の電池。
[6]
 前記粒子は、無機粒子および有機粒子の少なくとも何れかである[1]~[5]の何れかに記載の電池。
[7]
 前記無機粒子は、酸化ケイ素、酸化亜鉛、酸化スズ、酸化マグネシウム、酸化アンチモン、酸化アルミニウム、硫酸マグネシウム、硫酸カルシウム、硫酸バリウム、硫酸ストロンチウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、炭酸リチウム、水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、ベーマイト、ホワイトカーボン、酸化ジルコニウム水和物、酸化マグネシウム水和物、水酸化マグネシウム8水和物、炭化ホウ素、窒化ケイ素、窒化ホウ素、窒化アルミニウム、窒化チタン、フッ化リチウム、フッ化アルミニウム、フッ化カルシウム、フッ化バリウム、フッ化マグネシウム、リン酸トリリチウム、リン酸マグネシウム、リン酸水素マグネシウム、ポリリン酸アンモニウム、ケイ酸塩鉱物、炭酸塩鉱物、酸化鉱物からなる群から選ばれた少なくとも何れかの粒子であり、
 前記有機粒子は、メラミン、メラミンシアヌレート、ポリリン酸メラミン、架橋ポリメタクリル酸メチル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリテトラフルオロエチレン、ポリビニリデンフルオリド、ポリアミド、ポリイミド、メラミン樹脂、フェノール樹脂、エポキシ樹脂からなる群から選ばれた少なくとも何れかの粒子である[6]に記載の電池。
[8]
 前記ケイ酸塩鉱物は、タルク、ケイ酸カルシウム、ケイ酸亜鉛、ケイ酸ジルコニウム、ケイ酸アルミニウム、ケイ酸マグネシウム、カオリナイト、セピオライト、イモゴライト、セリサイト、パイロフィライト、雲母、ゼオライト、ムライト、サポナイト、アタパルジャイト、モンモリロナイトからなる群から選ばれた少なくとも1種であり、
 前記炭酸塩鉱物は、ハイドロタルサイト、ドロマイトからなる群から選ばれた少なくとも1種であり、
 前記酸化鉱物は、スピネルである[7]に記載の電池。
[9]
 前記樹脂は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ化ビニリデン-テトラフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合体およびその水素化物、アクリロニトリル-ブタジエン共重合体およびその水素化物、アクリロニトリル-ブタジエン-スチレン共重合体およびその水素化物、メタクリル酸エステル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニル、エチルセルロース、セルロース誘導体、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド、ポリアミドイミド、ポリアクリロニトリル、ポリビニルアルコール、ポリエーテル、アクリル酸樹脂、ポリエステル、ポリエチレングリコールからなる群から選ばれた少なくとも何れかである[1]~[8]の何れかに記載の電池。
[10]
 前記粒子は、厚みが50nm以上450nm以下の板状の粒子または太さが50nm以上450nm以下の針状の粒子である[1]~[9]の何れかに記載の電池。
[11]
 セパレータ基材と、
 該セパレータ基材の少なくとも一方の主面に設けられ、且つ、粒子および樹脂を含む粒子含有樹脂層と
を備え、
 前記粒子の粒子径D50は、50nm以上450nm以下、または、750nm以上10000nm以下であり、
 前記粒子の屈折率は、1.3以上2.4未満であり、
 前記粒子と前記樹脂との質量比(粒子/樹脂)は、15/85以上90/10以下であるセパレータ。
[12]
 電極と、
 該電極の少なくとも一方の主面に設けられ、且つ、粒子および樹脂を含む粒子含有樹脂層と
を備え、
 前記粒子の粒子径D50は、50nm以上450nm以下、または、750nm以上10000nm以下であり、
 前記粒子の屈折率は、1.3以上2.4未満であり、
 前記粒子と前記樹脂との質量比(粒子/樹脂)は、15/85以上90/10以下である粒子含有樹脂層付きの電極。
[13]
 粒子と、
 樹脂と、
 溶媒と
を含み、
 前記粒子の粒子径D50は、50nm以上450nm以下、または、750nm以上10000nm以下であり、
 前記粒子の屈折率は、1.3以上2.4未満であり、
 前記粒子と前記樹脂との質量比(粒子/樹脂)は、15/85以上90/10以下である塗料。
[14]
 [1]~[10]の何れかに記載の電池と、
 前記電池を制御する制御部と、
 前記電池を内包する外装と
を有する電池パック。
[15]
 [1]~[10]の何れかに記載の電池を有し、前記電池から電力の供給を受ける電子機器。
[16]
 [1]~[10]の何れかに記載の電池と、
 前記電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
 前記電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
を有する電動車両。
[17]
 [1]~[10]の何れかに記載の電池を有し、前記電池に接続される電子機器に電力を供給する蓄電装置。
[18]
 他の機器とネットワークを介して信号を送受信する電力情報制御装置を備え、
 前記電力情報制御装置が受信した情報に基づき、前記電池の充放電制御を行う[17]に記載の蓄電装置。
[19]
 [1]~[10]の何れかに記載の電池から電力の供給を受け、または、発電装置もしくは電力網から前記電池に電力が供給される電力システム。
In addition, this technique can also take the following structures.
[1]
A positive electrode;
A negative electrode,
A separator;
An electrolyte,
A particle-containing resin layer containing particles and resin,
The particle diameter D50 of the particles is 50 nm or more and 450 nm or less, or 750 nm or more and 10,000 nm or less,
The particle has a refractive index of 1.3 or more and less than 2.4,
The battery has a mass ratio (particle / resin) between the particles and the resin of 15/85 or more and 90/10 or less.
[2]
The particle-containing resin layer includes one main surface and the other main surface of the positive electrode, one main surface and the other main surface of the negative electrode, and one main surface and the other main surface of the separator. The battery according to [1], which is formed on at least one selected main surface.
[3]
The resin is a binder polymer compound,
The battery according to [2], wherein the particle-containing resin layer holds the electrolytic solution in a void formed by at least one of the resin and the particles.
[4]
The resin is a matrix polymer compound,
The particle-containing resin layer includes the particles and the matrix polymer compound, and the particle-containing resin solution layer, which is a precursor of the particle-containing resin layer, has both surfaces of at least one of the positive electrode and the negative electrode, Or formed on at least one surface of both surfaces of the separator,
The battery according to [2], wherein the particle-containing resin solution layer is impregnated with the electrolytic solution, and the matrix polymer compound swells and gels.
[5]
The battery according to any one of [1] to [4], wherein the particle-containing resin layer has a thickness of 1 μm to 15 μm.
[6]
The battery according to any one of [1] to [5], wherein the particles are at least one of inorganic particles and organic particles.
[7]
The inorganic particles are silicon oxide, zinc oxide, tin oxide, magnesium oxide, antimony oxide, aluminum oxide, magnesium sulfate, calcium sulfate, barium sulfate, strontium sulfate, magnesium carbonate, calcium carbonate, barium carbonate, lithium carbonate, magnesium hydroxide. , Aluminum hydroxide, zinc hydroxide, boehmite, white carbon, zirconium oxide hydrate, magnesium oxide hydrate, magnesium hydroxide octahydrate, boron carbide, silicon nitride, boron nitride, aluminum nitride, titanium nitride, fluorine Lithium fluoride, aluminum fluoride, calcium fluoride, barium fluoride, magnesium fluoride, trilithium phosphate, magnesium phosphate, magnesium hydrogen phosphate, ammonium polyphosphate, silicate mineral, carbonate mineral, oxide mineral At least one of particles selected from Ranaru group,
The organic particles include melamine, melamine cyanurate, melamine polyphosphate, cross-linked polymethyl methacrylate, polyethylene, polypropylene, polystyrene, polytetrafluoroethylene, polyvinylidene fluoride, polyamide, polyimide, melamine resin, phenol resin, and epoxy resin. The battery according to [6], which is at least one particle selected from the group consisting of:
[8]
The silicate mineral is talc, calcium silicate, zinc silicate, zirconium silicate, aluminum silicate, magnesium silicate, kaolinite, sepiolite, imogolite, sericite, pyrophyllite, mica, zeolite, mullite, saponite. At least one selected from the group consisting of attapulgite and montmorillonite,
The carbonate mineral is at least one selected from the group consisting of hydrotalcite and dolomite,
The battery according to [7], wherein the oxide mineral is spinel.
[9]
The resin is polyvinylidene fluoride, polytetrafluoroethylene, vinylidene fluoride-tetrafluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer. Polymer, styrene-butadiene copolymer and its hydride, acrylonitrile-butadiene copolymer and its hydride, acrylonitrile-butadiene-styrene copolymer and its hydride, methacrylic acid ester-acrylic acid ester copolymer, styrene -Acrylate ester copolymer, Acrylonitrile- Acrylate ester copolymer, Ethylene propylene rubber, Polyvinyl alcohol, Polyvinyl acetate, Ethyl cellulose, Cellulose derivatives, Polyphenylene ether At least one selected from the group consisting of tellurium, polysulfone, polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, polyamideimide, polyacrylonitrile, polyvinyl alcohol, polyether, acrylic resin, polyester, polyethylene glycol The battery according to any one of [1] to [8].
[10]
The battery according to any one of [1] to [9], wherein the particles are plate-like particles having a thickness of 50 nm to 450 nm or needle-like particles having a thickness of 50 nm to 450 nm.
[11]
A separator substrate;
A particle-containing resin layer provided on at least one main surface of the separator substrate and containing particles and a resin;
The particle diameter D50 of the particles is 50 nm or more and 450 nm or less, or 750 nm or more and 10,000 nm or less,
The particle has a refractive index of 1.3 or more and less than 2.4,
The mass ratio (particle / resin) between the particles and the resin is a separator of 15/85 or more and 90/10 or less.
[12]
Electrodes,
A particle-containing resin layer provided on at least one main surface of the electrode and containing particles and a resin;
The particle diameter D50 of the particles is 50 nm or more and 450 nm or less, or 750 nm or more and 10,000 nm or less,
The particle has a refractive index of 1.3 or more and less than 2.4,
The electrode with the particle | grain containing resin layer whose mass ratio (particle / resin) of the said particle | grain and the said resin is 15/85 or more and 90/10 or less.
[13]
Particles,
Resin,
A solvent,
The particle diameter D50 of the particles is 50 nm or more and 450 nm or less, or 750 nm or more and 10,000 nm or less,
The particle has a refractive index of 1.3 or more and less than 2.4,
The coating material whose mass ratio (particle / resin) of said particle | grain and said resin is 15/85 or more and 90/10 or less.
[14]
The battery according to any one of [1] to [10];
A control unit for controlling the battery;
A battery pack having an exterior housing the battery.
[15]
[1] An electronic apparatus comprising the battery according to any one of [10] and receiving power supply from the battery.
[16]
The battery according to any one of [1] to [10];
A conversion device that receives supply of electric power from the battery and converts it into driving force of a vehicle;
An electric vehicle comprising: a control device that performs information processing related to vehicle control based on information related to the battery.
[17]
[1] A power storage device that includes the battery according to any one of [10] and supplies electric power to an electronic device connected to the battery.
[18]
A power information control device that transmits and receives signals to and from other devices via a network,
The power storage device according to [17], wherein charge / discharge control of the battery is performed based on information received by the power information control device.
[19]
[1] A power system that receives power from the battery according to any one of [10], or that supplies power to the battery from a power generation device or a power network.
 11・・・セパレータ、11a・・・セパレータ基材、11b・・・粒子含有樹脂層、21・・・粒子含有樹脂層付き電極、21a・・・電極、21b・・・粒子含有樹脂層、50・・・巻回電極体、51・・・正極リード、52・・・負極リード、53・・・正極、53A・・・正極集電体、53B・・・正極活物質層、54・・・負極、54A・・・負極集電体、54B・・・負極活物質層、55・・・セパレータ、56・・・ゲル電解質層、57・・・保護テープ、60・・・外装部材、61・・・密着フィルム、70・・・積層電極体、71・・・正極リード、72・・・負極リード、73・・・正極、74・・・負極、75・・・セパレータ、76・・・固定部材、80・・・非水電解質電池、81・・・電池缶、82a,82b・・・絶縁板、83・・・電池蓋、84・・・安全弁、84a・・・凸部、85・・・ディスクホルダ、86・・・遮断ディスク、86a・・・孔部、87・・・熱感抵抗素子、88・・・ガスケット、89・・・サブディスク、90・・・巻回電極体、91・・・正極、91A・・・正極集電体、91B・・・正極活物質層、91C・・・粒子含有樹脂層、92・・・負極、92A・・・負極集電体、92B・・・負極活物質層、92C・・・粒子含有樹脂層、93・・・セパレータ、93a・・・セパレータ基材、93b・・・粒子含有樹脂層、94・・・センターピン、95・・・正極リード、96・・・負極リード、100・・・非水電解質電池、111・・・外装缶、112・・・電池蓋、113・・・電極ピン、114・・・絶縁体、115・・・貫通孔、116・・・内圧開放機構、116a・・・第1の開口溝、116b・・・第2の開口溝、117・・・電解液注入口、118・・・封止部材、120・・・巻回電極体、121・・・正極端子、131・・・電池セル、131a・・・テラス部、132a、132b・・・リード、133a、133b、133c・・・絶縁テープ、134・・・絶縁プレート、135・・・回路基板、136・・・コネクタ、301・・・組電池、301a・・・二次電池、302a・・・充電制御スイッチ、302b・・・ダイオード、303a・・・放電制御スイッチ、303b・・・ダイオード、304・・・スイッチ部、307・・・電流検出抵抗、308・・・温度検出素子、310・・・制御部、311・・・電圧検出部、313・・・電流測定部、314・・・スイッチ制御部、317・・・メモリ、318・・・温度検出部、321・・・正極端子、322・・・負極端子、400・・・蓄電システム、401・・・住宅、402・・・集中型電力系統、402a・・・火力発電、402b・・・原子力発電、402c・・・水力発電、403・・・蓄電装置、404・・・発電装置、405・・・電力消費装置、405a・・・冷蔵庫、405b・・・空調装置、405c・・・テレビジョン受信機、405d・・・風呂、406・・・電動車両、406a・・・電気自動車、406b・・・ハイブリッドカー、406c・・・電気バイク、407・・・スマートメータ、408・・・パワーハブ、409・・・電力網、410・・・制御装置、411・・・センサ、412・・・情報網、413・・・サーバ、500・・・ハイブリッド車両、501・・・エンジン、502・・・発電機、503・・・電力駆動力変換装置、504a・・・駆動輪、504b・・・駆動輪、505a・・・車輪、505b・・・車輪、508・・・バッテリー、509・・・車両制御装置、510・・・センサ、511・・・充電口 DESCRIPTION OF SYMBOLS 11 ... Separator, 11a ... Separator base material, 11b ... Particle-containing resin layer, 21 ... Electrode with particle-containing resin layer, 21a ... Electrode, 21b ... Particle-containing resin layer, 50・ ・ ・ Wound electrode body, 51 ・ ・ ・ Positive electrode lead, 52 ・ ・ ・ Negative electrode lead, 53 ・ ・ ・ Positive electrode, 53A ・ ・ ・ Positive electrode current collector, 53B ・ ・ ・ Positive electrode active material layer, 54 ・ ・ ・Negative electrode, 54A ... negative electrode current collector, 54B ... negative electrode active material layer, 55 ... separator, 56 ... gel electrolyte layer, 57 ... protective tape, 60 ... exterior member, 61. ..Adhesive film, 70 ... Laminated electrode body, 71 ... Positive electrode lead, 72 ... Negative electrode lead, 73 ... Positive electrode, 74 ... Negative electrode, 75 ... Separator, 76 ... Fixed 80, nonaqueous electrolyte battery, 81 ... battery can, 82a, 82 ... Insulating plate, 83 ... Battery cover, 84 ... Safety valve, 84a ... Projection, 85 ... Disc holder, 86 ... Shut-off disc, 86a ... Hole, 87 ... Heat-sensitive resistance element, 88 ... gasket, 89 ... sub-disc, 90 ... wound electrode body, 91 ... positive electrode, 91A ... positive electrode current collector, 91B ... positive electrode active material Layer, 91C ... particle-containing resin layer, 92 ... negative electrode, 92A ... negative electrode current collector, 92B ... negative electrode active material layer, 92C ... particle-containing resin layer, 93 ... separator, 93a ... Separator base material, 93b ... Particle-containing resin layer, 94 ... Center pin, 95 ... Positive electrode lead, 96 ... Negative electrode lead, 100 ... Nonaqueous electrolyte battery, 111 ... -Exterior can, 112 ... Battery cover, 113 ... Electrode pin, 114 ... Edge body 115... Through-hole 116... Internal pressure release mechanism 116 a... First opening groove 116 b ... Second opening groove 117 117 Electrolyte injection port 118. -Sealing member, 120 ... Winding electrode body, 121 ... Positive electrode terminal, 131 ... Battery cell, 131a ... Terrace part, 132a, 132b ... Lead, 133a, 133b, 133c ... Insulating tape 134 ... Insulating plate 135 ... Circuit board 136 ... Connector 301 ... Battery pack 301a ... Secondary battery 302a ... Charge control switch 302b -Diode, 303a ... Discharge control switch, 303b ... Diode, 304 ... Switch part, 307 ... Current detection resistor, 308 ... Temperature detection element, 310 ... Control part, 311 ...・ Electric Pressure detection unit, 313 ... Current measurement unit, 314 ... Switch control unit, 317 ... Memory, 318 ... Temperature detection unit, 321 ... Positive terminal, 322 ... Negative terminal, 400 ··· Power storage system, 401 ··· Housing, 402 ··· Centralized power system, 402a · · · Thermal power generation, 402b · · · Nuclear power generation, 402c · · · Hydroelectric power generation, 403 · · · Power storage device, ..Power generation device, 405 ... Power consumption device, 405a ... Refrigerator, 405b ... Air conditioning device, 405c ... Television receiver, 405d ... Bath, 406 ... Electric vehicle, 406a .. Electric vehicle, 406b ... Hybrid car, 406c ... Electric motorcycle, 407 ... Smart meter, 408 ... Power hub, 409 ... Power network, 410 ... Control device, DESCRIPTION OF SYMBOLS 11 ... Sensor, 412 ... Information network, 413 ... Server, 500 ... Hybrid vehicle, 501 ... Engine, 502 ... Generator, 503 ... Electric power driving force converter, 504a ... Drive wheel, 504b ... Drive wheel, 505a ... Wheel, 505b ... Wheel, 508 ... Battery, 509 ... Vehicle control device, 510 ... Sensor, 511 ... Charge mouth

Claims (19)

  1.  正極と、
     負極と、
     セパレータと、
     電解液と、
     粒子および樹脂を含む粒子含有樹脂層と
    を備え、
     前記粒子の粒子径D50は、50nm以上450nm以下、または、750nm以上10000nm以下であり、
     前記粒子の屈折率は、1.3以上2.4未満であり、
     前記粒子と前記樹脂との質量比(粒子/樹脂)は、15/85以上90/10以下である電池。
    A positive electrode;
    A negative electrode,
    A separator;
    An electrolyte,
    A particle-containing resin layer containing particles and resin,
    The particle diameter D50 of the particles is 50 nm or more and 450 nm or less, or 750 nm or more and 10,000 nm or less,
    The particle has a refractive index of 1.3 or more and less than 2.4,
    The battery has a mass ratio (particle / resin) between the particles and the resin of 15/85 or more and 90/10 or less.
  2.  前記粒子含有樹脂層は、前記正極の一方の主面および他方の主面、前記負極の一方の主面および他方の主面、並びに、前記セパレータの一方の主面および他方の主面の中から選ばれた少なくとも一つの主面上に形成されたものである請求項1に記載の電池。 The particle-containing resin layer includes one main surface and the other main surface of the positive electrode, one main surface and the other main surface of the negative electrode, and one main surface and the other main surface of the separator. The battery according to claim 1, wherein the battery is formed on at least one selected main surface.
  3.  前記樹脂は、バインダー高分子化合物であり、
     前記粒子含有樹脂層は、前記電解液を前記樹脂および前記粒子の少なくとも何れかにより形成される空隙に保持する請求項2に記載の電池。
    The resin is a binder polymer compound,
    The battery according to claim 2, wherein the particle-containing resin layer holds the electrolytic solution in a gap formed by at least one of the resin and the particles.
  4.  前記樹脂は、マトリックス高分子化合物であり、
     前記粒子含有樹脂層は、前記粒子および前記マトリックス高分子化合物を含み、且つ、前記粒子含有樹脂層の前駆体である粒子含有樹脂溶液層が、前記正極および前記負極の少なくとも一方の電極の両面、または、前記セパレータの両面の少なくとも一方の面に形成され、
     前記粒子含有樹脂溶液層に前記電解液が含浸され、前記マトリックス高分子化合物が膨潤してゲル化したものである請求項2に記載の電池。
    The resin is a matrix polymer compound,
    The particle-containing resin layer includes the particles and the matrix polymer compound, and the particle-containing resin solution layer, which is a precursor of the particle-containing resin layer, has both surfaces of at least one of the positive electrode and the negative electrode, Or formed on at least one surface of both surfaces of the separator,
    The battery according to claim 2, wherein the particle-containing resin solution layer is impregnated with the electrolytic solution, and the matrix polymer compound swells and gels.
  5.  前記粒子含有樹脂層の厚みは、1μm以上15μm以下である請求項1に記載の電池。 The battery according to claim 1, wherein the particle-containing resin layer has a thickness of 1 μm or more and 15 μm or less.
  6.  前記粒子は、無機粒子および有機粒子の少なくとも何れかである請求項1に記載の電池。 The battery according to claim 1, wherein the particles are at least one of inorganic particles and organic particles.
  7.  前記無機粒子は、酸化ケイ素、酸化亜鉛、酸化スズ、酸化マグネシウム、酸化アンチモン、酸化アルミニウム、硫酸マグネシウム、硫酸カルシウム、硫酸バリウム、硫酸ストロンチウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、炭酸リチウム、水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、ベーマイト、ホワイトカーボン、酸化ジルコニウム水和物、酸化マグネシウム水和物、水酸化マグネシウム8水和物、炭化ホウ素、窒化ケイ素、窒化ホウ素、窒化アルミニウム、窒化チタン、フッ化リチウム、フッ化アルミニウム、フッ化カルシウム、フッ化バリウム、フッ化マグネシウム、リン酸トリリチウム、リン酸マグネシウム、リン酸水素マグネシウム、ポリリン酸アンモニウム、ケイ酸塩鉱物、炭酸塩鉱物、酸化鉱物からなる群から選ばれた少なくとも何れかの粒子であり、
     前記有機粒子は、メラミン、メラミンシアヌレート、ポリリン酸メラミン、架橋ポリメタクリル酸メチル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリテトラフルオロエチレン、ポリビニリデンフルオリド、ポリアミド、ポリイミド、メラミン樹脂、フェノール樹脂、エポキシ樹脂からなる群から選ばれた少なくとも何れかの粒子である請求項6に記載の電池。
    The inorganic particles are silicon oxide, zinc oxide, tin oxide, magnesium oxide, antimony oxide, aluminum oxide, magnesium sulfate, calcium sulfate, barium sulfate, strontium sulfate, magnesium carbonate, calcium carbonate, barium carbonate, lithium carbonate, magnesium hydroxide. , Aluminum hydroxide, zinc hydroxide, boehmite, white carbon, zirconium oxide hydrate, magnesium oxide hydrate, magnesium hydroxide octahydrate, boron carbide, silicon nitride, boron nitride, aluminum nitride, titanium nitride, fluorine Lithium fluoride, aluminum fluoride, calcium fluoride, barium fluoride, magnesium fluoride, trilithium phosphate, magnesium phosphate, magnesium hydrogen phosphate, ammonium polyphosphate, silicate mineral, carbonate mineral, oxide mineral At least one of particles selected from Ranaru group,
    The organic particles include melamine, melamine cyanurate, melamine polyphosphate, cross-linked polymethyl methacrylate, polyethylene, polypropylene, polystyrene, polytetrafluoroethylene, polyvinylidene fluoride, polyamide, polyimide, melamine resin, phenol resin, and epoxy resin. The battery according to claim 6, wherein the battery is at least one particle selected from the group consisting of:
  8.  前記ケイ酸塩鉱物は、タルク、ケイ酸カルシウム、ケイ酸亜鉛、ケイ酸ジルコニウム、ケイ酸アルミニウム、ケイ酸マグネシウム、カオリナイト、セピオライト、イモゴライト、セリサイト、パイロフィライト、雲母、ゼオライト、ムライト、サポナイト、アタパルジャイト、モンモリロナイトからなる群から選ばれた少なくとも1種であり、
     前記炭酸塩鉱物は、ハイドロタルサイト、ドロマイトからなる群から選ばれた少なくとも1種であり、
     前記酸化鉱物は、スピネルである請求項7に記載の電池。
    The silicate mineral is talc, calcium silicate, zinc silicate, zirconium silicate, aluminum silicate, magnesium silicate, kaolinite, sepiolite, imogolite, sericite, pyrophyllite, mica, zeolite, mullite, saponite. At least one selected from the group consisting of attapulgite and montmorillonite,
    The carbonate mineral is at least one selected from the group consisting of hydrotalcite and dolomite,
    The battery according to claim 7, wherein the oxide mineral is spinel.
  9.  前記樹脂は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ化ビニリデン-テトラフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合体およびその水素化物、アクリロニトリル-ブタジエン共重合体およびその水素化物、アクリロニトリル-ブタジエン-スチレン共重合体およびその水素化物、メタクリル酸エステル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニル、エチルセルロース、セルロース誘導体、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド、ポリアミドイミド、ポリアクリロニトリル、ポリビニルアルコール、ポリエーテル、アクリル酸樹脂、ポリエステル、ポリエチレングリコールからなる群から選ばれた少なくとも何れかである請求項1に記載の電池。 The resin is polyvinylidene fluoride, polytetrafluoroethylene, vinylidene fluoride-tetrafluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer. Polymer, styrene-butadiene copolymer and its hydride, acrylonitrile-butadiene copolymer and its hydride, acrylonitrile-butadiene-styrene copolymer and its hydride, methacrylic acid ester-acrylic acid ester copolymer, styrene -Acrylate ester copolymer, Acrylonitrile-Acrylate ester copolymer, Ethylene propylene rubber, Polyvinyl alcohol, Polyvinyl acetate, Ethyl cellulose, Cellulose derivatives, Polyphenylene At least one selected from the group consisting of ether, polysulfone, polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, polyamideimide, polyacrylonitrile, polyvinyl alcohol, polyether, acrylic resin, polyester, polyethylene glycol The battery according to claim 1.
  10.  前記粒子は、厚みが50nm以上450nm以下の板状の粒子または太さが50nm以上450nm以下の針状の粒子である請求項1に記載の電池。 2. The battery according to claim 1, wherein the particles are plate-like particles having a thickness of 50 nm to 450 nm or needle-like particles having a thickness of 50 nm to 450 nm.
  11.  セパレータ基材と、
     該セパレータ基材の少なくとも一方の主面に設けられ、且つ、粒子および樹脂を含む粒子含有樹脂層と
    を備え、
     前記粒子の粒子径D50は、50nm以上450nm以下、または、750nm以上10000nm以下であり、
     前記粒子の屈折率は、1.3以上2.4未満であり、
     前記粒子と前記樹脂との質量比(粒子/樹脂)は、15/85以上90/10以下であるセパレータ。
    A separator substrate;
    A particle-containing resin layer provided on at least one main surface of the separator substrate and containing particles and a resin;
    The particle diameter D50 of the particles is 50 nm or more and 450 nm or less, or 750 nm or more and 10,000 nm or less,
    The particle has a refractive index of 1.3 or more and less than 2.4,
    The mass ratio (particle / resin) between the particles and the resin is a separator of 15/85 or more and 90/10 or less.
  12.  電極と、
     該電極の少なくとも一方の主面に設けられ、且つ、粒子および樹脂を含む粒子含有樹脂層と
    を備え、
     前記粒子の粒子径D50は、50nm以上450nm以下、または、750nm以上10000nm以下であり、
     前記粒子の屈折率は、1.3以上2.4未満であり、
     前記粒子と前記樹脂との質量比(粒子/樹脂)は、15/85以上90/10以下である粒子含有樹脂層付きの電極。
    Electrodes,
    A particle-containing resin layer provided on at least one main surface of the electrode and containing particles and a resin;
    The particle diameter D50 of the particles is 50 nm or more and 450 nm or less, or 750 nm or more and 10,000 nm or less,
    The particle has a refractive index of 1.3 or more and less than 2.4,
    The electrode with the particle | grain containing resin layer whose mass ratio (particle / resin) of the said particle | grain and the said resin is 15/85 or more and 90/10 or less.
  13.  粒子と、
     樹脂と、
     溶媒と
    を含み、
     前記粒子の粒子径D50は、50nm以上450nm以下、または、750nm以上10000nm以下であり、
     前記粒子の屈折率は、1.3以上2.4未満であり、
     前記粒子と前記樹脂との質量比(粒子/樹脂)は、15/85以上90/10以下である塗料。
    Particles,
    Resin,
    A solvent,
    The particle diameter D50 of the particles is 50 nm or more and 450 nm or less, or 750 nm or more and 10,000 nm or less,
    The particle has a refractive index of 1.3 or more and less than 2.4,
    The coating material whose mass ratio (particle / resin) of said particle | grain and said resin is 15/85 or more and 90/10 or less.
  14.  請求項1に記載の電池と、
     前記電池を制御する制御部と、
     前記電池を内包する外装と
    を有する電池パック。
    A battery according to claim 1;
    A control unit for controlling the battery;
    A battery pack having an exterior housing the battery.
  15.  請求項1に記載の電池を有し、前記電池から電力の供給を受ける電子機器。 An electronic device having the battery according to claim 1 and receiving supply of electric power from the battery.
  16.  請求項1に記載の電池と、
     前記電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
     前記電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
    を有する電動車両。
    A battery according to claim 1;
    A conversion device that receives supply of electric power from the battery and converts it into driving force of a vehicle;
    An electric vehicle comprising: a control device that performs information processing related to vehicle control based on information related to the battery.
  17.  請求項1に記載の電池を有し、前記電池に接続される電子機器に電力を供給する蓄電装置。 A power storage device that has the battery according to claim 1 and supplies electric power to an electronic device connected to the battery.
  18.  他の機器とネットワークを介して信号を送受信する電力情報制御装置を備え、
     前記電力情報制御装置が受信した情報に基づき、前記電池の充放電制御を行う請求項17に記載の蓄電装置。
    A power information control device that transmits and receives signals to and from other devices via a network,
    The power storage device according to claim 17, wherein charge / discharge control of the battery is performed based on information received by the power information control device.
  19.  請求項1に記載の電池から電力の供給を受け、または、発電装置もしくは電力網から前記電池に電力が供給される電力システム。 A power system that receives power from the battery according to claim 1 or that supplies power to the battery from a power generation device or a power network.
PCT/JP2014/005257 2013-12-27 2014-10-16 Battery, separator, electrode, paint, battery pack, electronic device, electric vehicle, electricity-storage device, and power system WO2015097953A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-273541 2013-12-27
JP2013273541 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015097953A1 true WO2015097953A1 (en) 2015-07-02

Family

ID=53477875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005257 WO2015097953A1 (en) 2013-12-27 2014-10-16 Battery, separator, electrode, paint, battery pack, electronic device, electric vehicle, electricity-storage device, and power system

Country Status (1)

Country Link
WO (1) WO2015097953A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105668718A (en) * 2016-04-12 2016-06-15 上海应用技术学院 Preparation method of boron carbide/graphite co-doped lead dioxide plastic piece electrode
CN106058167A (en) * 2016-02-03 2016-10-26 万向A二三系统有限公司 Porous silicon-based alloy composite
JP2017080736A (en) * 2015-10-23 2017-05-18 住友化学株式会社 Production method of functional film, control device and control method
CN107256938A (en) * 2017-06-27 2017-10-17 华南理工大学 A kind of non-woven fabrics lithium ion battery separator and preparation method thereof
CN108292728A (en) * 2016-06-08 2018-07-17 株式会社Lg化学 Diaphragm and the electrochemical appliance for including the diaphragm
CN108463904A (en) * 2016-01-15 2018-08-28 三星Sdi株式会社 For secondary cell partition board and include the lithium secondary battery of the partition board
CN108767176A (en) * 2018-06-01 2018-11-06 江苏清陶能源科技有限公司 A kind of lithium ion battery is with stablizing ceramic slurry and preparation method thereof and application
CN108878741A (en) * 2018-07-10 2018-11-23 福建师范大学 Method of modifying of the mica to coating film
CN108923013A (en) * 2018-07-10 2018-11-30 福建师范大学 Coating diaphragm preparation method containing PMMA and P-C key simultaneously
JP2019075321A (en) * 2017-10-18 2019-05-16 トヨタ自動車株式会社 Separator, non-aqueous electrolyte secondary battery, and method of manufacturing separator
CN110336069A (en) * 2019-07-02 2019-10-15 东莞市创明电池技术有限公司 A kind of lithium ion battery and preparation method thereof
CN111769236A (en) * 2020-06-10 2020-10-13 华南农业大学 Nano cellulose based shell-like structure composite lithium battery diaphragm and preparation method and application thereof
CN113410574A (en) * 2020-11-19 2021-09-17 华东理工大学 Polyvinyl alcohol-attapulgite composite nanofiber membrane and preparation method thereof
CN114846692A (en) * 2019-12-24 2022-08-02 松下知识产权经营株式会社 Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527274A (en) * 1997-12-19 2001-12-25 モルテック・コーポレーション Separator for electrochemical cell
JP2009064566A (en) * 2007-09-04 2009-03-26 Hitachi Maxell Ltd Separator for battery and nonaqueous electrolyte battery
JP2010108753A (en) * 2008-10-30 2010-05-13 Teijin Ltd Separator for nonaqueous secondary battery and manufacturing method therefor, and the nonaqueous secondary battery
JP2011054503A (en) * 2009-09-04 2011-03-17 Hitachi Maxell Ltd Separator for electrochemical element, electrochemical element and manufacturing method thereof
WO2011040562A1 (en) * 2009-09-30 2011-04-07 日本ゼオン株式会社 Porous membrane for secondary battery, and secondary battery
JP2012256521A (en) * 2011-06-09 2012-12-27 Sony Corp Battery module, electronic apparatus, power system, and electric vehicle
JP2013055036A (en) * 2011-08-11 2013-03-21 Toyota Motor Corp Sulfide-based solid-state battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527274A (en) * 1997-12-19 2001-12-25 モルテック・コーポレーション Separator for electrochemical cell
JP2009064566A (en) * 2007-09-04 2009-03-26 Hitachi Maxell Ltd Separator for battery and nonaqueous electrolyte battery
JP2010108753A (en) * 2008-10-30 2010-05-13 Teijin Ltd Separator for nonaqueous secondary battery and manufacturing method therefor, and the nonaqueous secondary battery
JP2011054503A (en) * 2009-09-04 2011-03-17 Hitachi Maxell Ltd Separator for electrochemical element, electrochemical element and manufacturing method thereof
WO2011040562A1 (en) * 2009-09-30 2011-04-07 日本ゼオン株式会社 Porous membrane for secondary battery, and secondary battery
JP2012256521A (en) * 2011-06-09 2012-12-27 Sony Corp Battery module, electronic apparatus, power system, and electric vehicle
JP2013055036A (en) * 2011-08-11 2013-03-21 Toyota Motor Corp Sulfide-based solid-state battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017080736A (en) * 2015-10-23 2017-05-18 住友化学株式会社 Production method of functional film, control device and control method
CN108463904A (en) * 2016-01-15 2018-08-28 三星Sdi株式会社 For secondary cell partition board and include the lithium secondary battery of the partition board
CN108463904B (en) * 2016-01-15 2022-06-07 三星Sdi株式会社 Separator for secondary battery and lithium secondary battery comprising the same
CN106058167A (en) * 2016-02-03 2016-10-26 万向A二三系统有限公司 Porous silicon-based alloy composite
CN105668718A (en) * 2016-04-12 2016-06-15 上海应用技术学院 Preparation method of boron carbide/graphite co-doped lead dioxide plastic piece electrode
CN108292728A (en) * 2016-06-08 2018-07-17 株式会社Lg化学 Diaphragm and the electrochemical appliance for including the diaphragm
US11177533B2 (en) 2016-06-08 2021-11-16 Lg Chem, Ltd. Separator and electrochemical device including the same
CN107256938A (en) * 2017-06-27 2017-10-17 华南理工大学 A kind of non-woven fabrics lithium ion battery separator and preparation method thereof
JP2019075321A (en) * 2017-10-18 2019-05-16 トヨタ自動車株式会社 Separator, non-aqueous electrolyte secondary battery, and method of manufacturing separator
CN108767176B (en) * 2018-06-01 2021-06-22 江苏清陶能源科技有限公司 Stable ceramic slurry for lithium ion battery and preparation method and application thereof
CN108767176A (en) * 2018-06-01 2018-11-06 江苏清陶能源科技有限公司 A kind of lithium ion battery is with stablizing ceramic slurry and preparation method thereof and application
CN108923013A (en) * 2018-07-10 2018-11-30 福建师范大学 Coating diaphragm preparation method containing PMMA and P-C key simultaneously
CN108878741A (en) * 2018-07-10 2018-11-23 福建师范大学 Method of modifying of the mica to coating film
CN108923013B (en) * 2018-07-10 2021-05-14 福建师范大学 Preparation method of coating diaphragm containing PMMA and P-C bonds simultaneously
CN110336069A (en) * 2019-07-02 2019-10-15 东莞市创明电池技术有限公司 A kind of lithium ion battery and preparation method thereof
CN110336069B (en) * 2019-07-02 2020-11-17 东莞市创明电池技术有限公司 Lithium ion battery and preparation method thereof
CN114846692A (en) * 2019-12-24 2022-08-02 松下知识产权经营株式会社 Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN111769236B (en) * 2020-06-10 2021-09-24 华南农业大学 Nano cellulose based shell-like structure composite lithium battery diaphragm and preparation method and application thereof
CN111769236A (en) * 2020-06-10 2020-10-13 华南农业大学 Nano cellulose based shell-like structure composite lithium battery diaphragm and preparation method and application thereof
CN113410574A (en) * 2020-11-19 2021-09-17 华东理工大学 Polyvinyl alcohol-attapulgite composite nanofiber membrane and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6372491B2 (en) Batteries, separators, electrodes, battery packs, electronic devices, electric vehicles, power storage devices, and power systems
JP6489023B2 (en) Battery, method of manufacturing battery, battery pack, electronic device, electric vehicle, storage device, and power system
WO2015097953A1 (en) Battery, separator, electrode, paint, battery pack, electronic device, electric vehicle, electricity-storage device, and power system
KR102101533B1 (en) Battery, electrolyte, battery pack, electronic apparatus, electric vehicle, electricity storage device, and power system
JP6439793B2 (en) Batteries, battery packs, electronic devices, electric vehicles, power storage devices, and power systems
JP5903807B2 (en) Separator, non-aqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP6209973B2 (en) Lithium ion secondary battery, battery pack, electronic device, electric vehicle, power storage device, and power system
WO2016136132A1 (en) Electrolyte, battery, battery pack, electronic device, electric vehicle, electrical storage device, and power system
JP6795069B2 (en) Negative electrodes, batteries, battery packs, electronic devices, electric vehicles, power storage devices and power systems
JP6540011B2 (en) Battery, battery pack, electronic device, electric vehicle, power storage device and power system
JP6540014B2 (en) Battery, battery pack, electronic device, electric vehicle, power storage device and power system
JP6540013B2 (en) Battery, battery pack, electronic device, electric vehicle, power storage device and power system
JP6209974B2 (en) Lithium ion secondary battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP6540012B2 (en) Battery, battery pack, electronic device, electric vehicle, power storage device and power system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP