WO2015097837A1 - Marker pattern generation method, information recording medium, information reconstruction method, and information recording medium reconstruction device - Google Patents

Marker pattern generation method, information recording medium, information reconstruction method, and information recording medium reconstruction device Download PDF

Info

Publication number
WO2015097837A1
WO2015097837A1 PCT/JP2013/085031 JP2013085031W WO2015097837A1 WO 2015097837 A1 WO2015097837 A1 WO 2015097837A1 JP 2013085031 W JP2013085031 W JP 2013085031W WO 2015097837 A1 WO2015097837 A1 WO 2015097837A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
pixels
pixel
recording
marker
Prior art date
Application number
PCT/JP2013/085031
Other languages
French (fr)
Japanese (ja)
Inventor
純也 飯塚
Original Assignee
日立コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立コンシューマエレクトロニクス株式会社 filed Critical 日立コンシューマエレクトロニクス株式会社
Priority to PCT/JP2013/085031 priority Critical patent/WO2015097837A1/en
Publication of WO2015097837A1 publication Critical patent/WO2015097837A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00772Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track on record carriers storing information in the form of optical interference patterns, e.g. holograms
    • G11B7/00781Auxiliary information, e.g. index marks, address marks, pre-pits, gray codes

Definitions

  • the present invention relates to a marker pattern generation method, an information recording medium, an information reproduction method, and an information recording medium reproduction apparatus.
  • Patent Document 1 JP-T-2008-536158
  • a predetermined spare block is allocated over each data page, and each spare block includes a known pixel pattern, an area of the data page, and a predetermined spare block; By determining the data page position error by calculating the best match between and correcting the data pixels according to the corresponding data page position error at the detector. A process for making it possible to distinguish a two-dimensional data page is described.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2010-003358 describes a technique that can reduce the aperture size of the filter disposed in the beam waist and improve the recording density.
  • Patent Document 1 as an example of a spare block suitable for determining a position error of a data page, a covariance value between a specific subblock in the spare block and a plurality of other subblocks in contact with the end is 0. The pattern that becomes is described. In addition, regarding the method of determining the position error of the data page using the spare block, the “integer position that most closely matches the spare block pattern” is obtained by covariance calculation, and then the “adjacent value” is linearly determined. An example realized by “interpolating” is described.
  • an object of the present application is to realize a spare block capable of determining a position error even from a detection image in which inter-pixel interference is increased, and to realize position error determination using the spare block.
  • the above-described problem is to replace each recording pixel of the intermediate pattern with a recording unit in which recording pixels having the same polarity as each recording pixel are arranged in a number of recording pixels in at least one of the row direction and the column direction. It is solved by.
  • FIG. 2 is a block diagram showing a recording / reproducing apparatus for an optical information recording medium for recording and / or reproducing digital information using holography.
  • the optical information recording / reproducing device 10 is connected to an external control device 91 via an input / output control unit 90.
  • the optical information recording / reproducing apparatus 10 receives the information signal to be recorded from the external control device 91 by the input / output control unit 90.
  • the optical information recording / reproducing apparatus 10 transmits the reproduced information signal to the external control apparatus 91 by the input / output control unit 90.
  • the optical information recording / reproducing apparatus 10 includes a pickup 11, a reproduction reference light optical system 12, a cure optical system 13, a disk rotation angle detection optical system 14, and a rotation motor 50.
  • the optical information recording medium 1 is a rotation motor. 50 can be rotated.
  • the pickup 11 plays a role of irradiating the optical information recording medium 1 with reference light and signal light and recording digital information on the recording medium using holography.
  • the information signal to be recorded is sent by the controller 89 to the spatial light modulator in the pickup 11 via the signal generator 86, and the signal light is modulated by the spatial light modulator.
  • the reproduction reference light optical system 12 When reproducing the information recorded on the optical information recording medium 1, the reproduction reference light optical system 12 generates a light wave that causes the reference light emitted from the pickup 11 to enter the optical information recording medium in a direction opposite to that during recording. Generate.
  • the reproduction light reproduced by the reproduction reference light is detected by a photodetector described later in the pickup 11, and the signal is reproduced by the signal processing unit 85.
  • the irradiation time of the reference light and the signal light applied to the optical information recording medium 1 can be adjusted by controlling the opening / closing time of the shutter in the pickup 11 via the shutter control unit 87 by the controller 89.
  • the cure optical system 13 plays a role of generating a light beam used for pre-cure and post-cure of the optical information recording medium 1.
  • Precure is a pre-process for irradiating a predetermined light beam in advance before irradiating the desired position with reference light and signal light when recording information at a desired position in the optical information recording medium 1.
  • Post-cure is a post-process for irradiating a predetermined light beam after recording information at a desired position in the optical information recording medium 1 so that additional recording cannot be performed at the desired position.
  • the disk rotation angle detection optical system 14 is used to detect the rotation angle of the optical information recording medium 1.
  • a signal corresponding to the rotation angle is detected by the disk rotation angle detection optical system 14, and a disk rotation motor control unit is detected by the controller 89 using the detected signal.
  • the rotation angle of the optical information recording medium 1 can be controlled via 88.
  • a predetermined light source driving current is supplied from the light source driving unit 82 to the light sources in the pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14, and each light source emits a light beam with a predetermined light amount. Can do.
  • the pickup 11 and the disc cure optical system 13 are provided with a mechanism capable of sliding the position in the radial direction of the optical information recording medium 1, and position control is performed via the access control unit 81.
  • the recording technology using the principle of angle multiplexing of holography tends to have a very small tolerance for the deviation of the reference beam angle.
  • a mechanism for detecting the deviation amount of the reference beam angle is provided in the pickup 11, a servo control signal is generated by the servo signal generation unit 83, and the deviation amount is corrected via the servo control unit 84. It is necessary to provide a servo mechanism for this purpose in the optical information recording / reproducing apparatus 10.
  • the pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14 may be simplified by combining several optical system configurations or all optical system configurations into one.
  • FIG. 3 shows a recording principle in an example of a basic optical system configuration of the pickup 11 in the optical information recording / reproducing apparatus 10.
  • the light beam emitted from the light source 301 passes through the collimator lens 302 and enters the shutter 303.
  • the shutter 303 When the shutter 303 is open, after the light beam passes through the shutter 303, the optical ratio of the p-polarized light and the s-polarized light becomes a desired ratio by the optical element 304 composed of, for example, a half-wave plate.
  • the optical element 304 composed of, for example, a half-wave plate.
  • the light is incident on a PBS (Polarization Beam Splitter) prism 305.
  • PBS Polarization Beam Splitter
  • the light beam that has passed through the PBS prism 305 functions as signal light 306, and after the light beam diameter is expanded by the beam expander 308, the light beam passes through the phase mask 309, the relay lens 310, and the PBS prism 311 and passes through the spatial light modulator 312. Is incident on.
  • the signal light to which information is added by the spatial light modulator 312 reflects the PBS prism 311 and propagates through the relay lens 313 and the spatial filter 314. Thereafter, the signal light is condensed on the optical information recording medium 1 by the objective lens 315.
  • the light beam reflected from the PBS prism 305 functions as reference light 307 and is set to a predetermined polarization direction according to recording or reproduction by the polarization direction conversion element 316 and then galvano- lated via the mirror 317 and the mirror 318. Incident on the mirror 319. Since the angle of the galvanometer mirror 319 can be adjusted by the actuator 320, the incident angle of the reference light incident on the optical information recording medium 1 after passing through the lens 321 and the lens 322 can be set to a desired angle. In order to set the incident angle of the reference light, an element that converts the wavefront of the reference light may be used instead of the galvanometer mirror.
  • the signal light and the reference light are incident on the optical information recording medium 1 so as to overlap each other, whereby an interference fringe pattern is formed in the recording medium, and information is recorded by writing this pattern on the recording medium.
  • the incident angle of the reference light incident on the optical information recording medium 1 can be changed by the galvanometer mirror 319, recording by angle multiplexing is possible.
  • holograms corresponding to each reference beam angle are called pages, and a set of pages angle-multiplexed in the same area is called a book. .
  • FIG. 4 shows a reproduction principle in an example of a basic optical system configuration of the pickup 11 in the optical information recording / reproducing apparatus 10.
  • the reference light is incident on the optical information recording medium 1 as described above, and the light beam transmitted through the optical information recording medium 1 is reflected by the galvanometer mirror 324 whose angle can be adjusted by the actuator 323. By doing so, the reproduction reference light is generated.
  • the reproduction light reproduced by the reproduction reference light propagates through the objective lens 315, the relay lens 313, and the spatial filter 314. Thereafter, the reproduction light passes through the PBS prism 311 and enters the photodetector 325, and the recorded signal can be reproduced.
  • the photodetector 325 for example, an image sensor such as a CMOS image sensor or a CCD image sensor can be used, but any element may be used as long as the data page can be reproduced.
  • the pixels of the spatial light modulator 312 and the photodetector 325 are distinguished as necessary, and the former pixel is referred to as “recording pixel” and the latter pixel as “reproduction pixel”.
  • the data page is decoded from the detection image oversampled by the photodetector 325 having a reproduction pixel interval smaller than the recording pixel interval of the data page image projected on the pixel surface of the photodetector 325 during reproduction. Further, regarding the ratio of the reproduction pixel interval to the recording pixel interval (the reciprocal of the oversampling ratio), the row direction is ⁇ x and the column direction is ⁇ y.
  • the optical system shown in FIG. 5 has an advantage that the size can be greatly reduced by making the signal light and the reference light incident on the same objective lens as compared with the optical system configuration shown in FIG.
  • FIG. 6 shows an operation flow of recording and reproduction in the optical information recording / reproducing apparatus 10.
  • a flow relating to recording / reproduction using holography in particular will be described.
  • FIG. 6A shows an operation flow from when the optical information recording medium 1 is inserted into the optical information recording / reproducing apparatus 10 until preparation for recording or reproduction is completed
  • FIG. FIG. 6C shows an operation flow until information is recorded on the information recording medium 1
  • FIG. 6C shows an operation flow until the information recorded on the optical information recording medium 1 is reproduced from the ready state.
  • the optical information recording / reproducing apparatus 10 discriminates whether or not the inserted medium is a medium for recording or reproducing digital information using holography, for example. (602).
  • the optical information recording / reproducing apparatus 10 reads control data provided on the optical information recording medium (603). ), For example, information relating to the optical information recording medium and information relating to various setting conditions during recording and reproduction, for example.
  • the operation flow from the ready state to recording information is as follows. First, data to be recorded is received (611), and information corresponding to the data is received from the spatial light modulator in the pickup 11. Send to.
  • the access control unit 81 is controlled to position the pickup 11 and the cure optical system 13 at predetermined positions on the optical information recording medium.
  • the optical information recording medium 1 has address information, it reproduces the address information, checks whether it is positioned at the target position, and calculates the amount of deviation from the predetermined position if it is not positioned at the target position. And repeat the positioning operation.
  • a predetermined area is pre-cured using the light beam emitted from the cure optical system 13 (614), and data page generation processing (617) including main data generation (615) and page header addition (616) is performed, and pickup is performed.
  • Data is recorded using the reference light and the signal light emitted from 11 (618).
  • post cure is performed using the light beam emitted from the cure optical system 13 (619). Data may be verified as necessary.
  • Main data is a part that occupies most of the data page, and mainly stores user data.
  • a table indicating the correspondence between the logical address handled by the external control device 91 and the position of each data page in the optical information recording medium 1, or the replacement of a data page that has become difficult to reproduce due to a defect You may make it store the replacement position list
  • the page header is an area provided on the data page for storing information such as the type and data format of the data recorded on the data page and the address for identifying the multiple recorded pages. Is provided separately from the recording area on the data page.
  • the operation flow from the ready state to the reproduction of recorded information is as follows.
  • the access control unit 81 is controlled, and the pickup 11 and the reproduction reference light are reproduced.
  • the position of the optical system 12 is positioned at a predetermined position on the optical information recording medium.
  • the optical information recording medium 1 has address information, it reproduces the address information, checks whether it is positioned at the target position, and calculates the amount of deviation from the predetermined position if it is not positioned at the target position. And repeat the positioning operation.
  • the reference light is emitted from the pickup 11, the information recorded on the optical information recording medium is read, the data page is acquired (622), and the reproduction data is obtained after the determination of the page header portion in the data page (623). Detection (624) and transmission (625). If the page data is not identified as the target data page as a result of the page header determination (623), there is a possibility that a data page different from the target is detected, so that the reproduction data is not transmitted (625). Either cancel or re-execute from the processes of (621) and (622).
  • FIG. 9 shows a data processing flow during recording and reproduction.
  • FIG. 9A shows the two-dimensional data on the spatial light modulator 312 after the recording data reception processing 611 in the input / output control unit 90.
  • FIG. 9B shows a recording data processing flow in the signal generation unit 86 until conversion, and
  • FIG. 9B shows the process up to reproduction data transmission processing 624 in the input / output control unit 90 after the two-dimensional data is detected by the photodetector 325.
  • the reproduction data processing flow in the signal processing unit 85 is shown.
  • the data processing during recording will be described with reference to FIG.
  • the processing from 901 to 906 corresponds to the internal processing of the main data generation (615) in the processing of FIG.
  • the signal generator 81 receives the user data (901), it is divided into a plurality of data strings, and each data string is converted to CRC (902) so that error detection during reproduction can be performed, so that the number of on pixels is substantially equal to the number of off pixels.
  • CRC CRC
  • an error correction encoding such as a Reed-Solomon code (904) is performed so that error correction can be performed during reproduction. )I do.
  • the two-dimensional data (905) is configured by arranging the error correction encoded data string according to a predetermined rule.
  • a modulation process such as run-length limited modulation may be added in the process 905.
  • a marker serving as a reference for image position detection and image distortion correction at the time of reproduction is added to the two-dimensional data thus configured (906), and a page header is added (616) to the spatial light modulator 312. Data is transferred (907).
  • the processing from 912 to 919 corresponds to the internal processing of data reproduction (624) in the processing of FIG.
  • the image data detected by the photodetector 325 is transferred to the signal processing unit 85 (911), and the page header is determined from the detected image data (623), and the data stored in the page header is acquired.
  • the image position is detected with reference to the marker included in the image data (912), and distortion such as the tilt, magnification, and distortion of the image is corrected (913), and then binarization processing (914) is performed.
  • error correction processing (917) is performed to remove the parity data strings.
  • descrambling processing (918) is performed, CRC error detection processing (919) is performed, CRC CRC is deleted, and user data is transmitted (920) via the input / output control unit 90. If it can be expected that the image position detection by the marker (912) can be performed more easily than the determination of the page header (623), the order of these processes is changed, and the image position detection result by the marker is used for the page. A header search may be performed.
  • FIG. 7 is a block diagram of the signal generation unit 86 of the information recording / reproducing apparatus 10.
  • the input / output control unit 90 When the input of user data is started to the input / output control unit 90, the input / output control unit 90 notifies the controller 89 that the input of user data has started. Upon receiving this notification, the controller 89 instructs the signal generation unit 86 to record one page of data input from the input / output control unit 90, and provides the header pattern generation unit 710 with information to be stored in the page header. A processing command from the controller 89 is notified to the sub-controller 701 in the signal generation unit 86 via the control line 708. Upon receiving this notification, the sub-controller 701 controls each signal processing unit via the control line 708 so that the signal processing units are operated in parallel.
  • the memory control unit 703 is controlled to store the user data input from the input / output control unit 90 via the data line 709 in the memory 702.
  • a marker pattern 712 that satisfies a condition that is suitable for detecting a sub-pixel position of an image is stored.
  • the stored marker pattern may be a single pattern or a plurality of patterns.
  • the memory element storing user data and the memory element storing the marker pattern 712 may be a single element or different elements.
  • the CRC calculation unit 704 performs control to convert the user data into CRC.
  • the scramble unit 705 scrambles the CRC-converted data to add a pseudo-random data sequence
  • the error correction encoding unit 706 performs error correction encoding to add the parity data sequence
  • the marker adding unit 710 performs the control.
  • a recording marker for the main data portion of the data page is generated by adding a reference marker at the time of reproduction, and stored in the memory 702.
  • the header pattern generation unit 711 generates a page header recording pattern based on the information stored in the page header input from the controller 89 and stores it in the memory 702.
  • the pickup interface unit 707 reads the recording pattern of the main data and the recording pattern of the page header from the memory 702 in the arrangement order of the two-dimensional data on the spatial light modulator 312, and causes the spatial light modulator 312 in the pickup 11 to read it. Transfer two-dimensional data.
  • FIG. 8 is a block diagram of the signal processing unit 85 of the information recording / reproducing apparatus 10.
  • the controller 89 instructs the signal processing unit 85 to reproduce the data for one page input from the pickup 11.
  • a processing command from the controller 89 is notified to the sub-controller 801 in the signal processing unit 85 via the control line 811.
  • the sub-controller 801 controls each signal processing unit via the control line 811 so that the signal processing units operate in parallel.
  • the memory control unit 803 is controlled to store the image data input from the pickup 11 via the pickup interface unit 810 via the data line 812 in the memory 802.
  • the header pattern decoding unit 813 decodes the data stored in the page header, and the identification information of the detected data page is the data page targeted for reproduction.
  • the image position detection unit 809 performs control to detect a marker from the image data stored in the memory 802 and extract an effective data range.
  • a reference detection pattern 814 that corresponds to the marker pattern 712 of the recorded data page and imitates a pattern imaged at a predetermined reproduction pixel position on the photodetector 325 during reproduction.
  • the memory element that stores the user data and the memory element that stores the reference detection pattern 814 may be a single element or another element.
  • the image distortion correction unit 808 performs distortion correction such as image inclination, magnification, distortion, and the like, and controls to convert the image data into the expected two-dimensional data size.
  • Each bit data of a plurality of bits constituting the size-converted two-dimensional data is binarized by a binarization unit 807 to determine “0” or “1”, and the data is arranged in the memory 802 in the order of the output of the reproduction data. Control to store.
  • the error correction unit 806 corrects an error included in each data sequence, and the scramble release unit 805 releases the scramble to add the pseudo random number data sequence, and then the CRC calculation unit 804 causes an error in the user data on the memory 802. Check not included. Thereafter, the user data is transferred from the memory 802 to the input / output control unit 90.
  • FIG. 10 shows a configuration example of the image position detection unit 809.
  • the image position detection unit 809 includes a search region pattern acquisition unit 1001, a reference pattern acquisition unit 1002, a covariance calculation unit 1003, a covariance peak position determination unit 1004, and a subpixel position determination unit 1005.
  • the search area pattern acquisition unit 1001 acquires, from the memory 802, an area including one marker pattern among the data pages detected by the photodetector 325.
  • the reference pattern acquisition unit 1002 acquires the reference detection pattern 814 stored in the memory 802.
  • the covariance calculation unit 1003 applies to all partial regions that have the same number of reproduced pixels as the reference detection pattern 814 acquired by the reference pattern acquisition unit 1002 included in the region acquired by the search region pattern acquisition unit 1001. Thus, the covariance value with the reference detection pattern 814 is calculated.
  • the covariance peak position discriminating unit 1004 discriminates a partial region where the covariance value obtained by the covariance calculation unit 1003 is maximized, and obtains a marker detection position in pixel units.
  • the subpixel position discriminating unit 1005 discriminates a position (subpixel position) of one pixel or less by calculation using a covariance value in the vicinity of the partial region where the covariance value determined by the covariance peak position determining unit 1004 is maximum. To do.
  • the sub-pixel position information obtained in this way is transmitted to the image distortion correction unit 808, and is used for distortion correction such as image inclination, magnification, and distortion.
  • Patent Document 2 modulation that limits the minimum continuous length of on-pixels and off-pixels to a natural number of 2 or more in at least one of the row direction and the column direction of a data page.
  • the spatial filter 314 in which the aperture size in this direction is reduced in inverse proportion to the minimum continuous length, the size of the hologram on the disk is reduced and recording is performed while ensuring the data page detectability. Improve density.
  • the signal light 306 from the spatial light modulator 312 has an intensity distribution similar to the two-dimensional spatial frequency spectrum of the data page at a position on the optical axis where the spatial filter 314 is inserted at the time of recording.
  • the aperture of the spatial filter 314 acts as a low-pass filter for the two-dimensional data pattern image. For this reason, when reproducing a data page recorded with a reduced aperture size of the spatial filter 314 as in the technique of Patent Document 2, the pixel surface of the photodetector 325 during reproduction with respect to the on-pixel of one recording pixel of the spatial light modulator 312. Since the spread of the signal light 306 irradiated thereon increases, interference between pixels increases.
  • the spatial frequency component corresponding to the repetition of the on-pixel and off-pixel having the minimum continuous length is allowed to pass, and the on-pixel and off-state having a continuous length 1 smaller than the minimum continuous length are passed.
  • the aperture size of the spatial filter 314 is determined so as to block the spatial frequency component corresponding to the repetition of the pixel.
  • Patent Document 1 describes a marker pattern suitable for detecting a subpixel position.
  • a spare block (marker) suitable for determining the position error of the data page all the covariance values of a specific sub-block in the spare block and other sub-blocks in contact with the end are all A pattern that becomes zero is used.
  • the subpixel position detection using the spare block is a reproduction pixel for obtaining a position where the covariance value is maximum from the image detected by the photodetector 325 with reference to the ideal detection image based on the specific subblock.
  • the spare block described in Patent Document 1 when the spare block described in Patent Document 1 is applied to the data page to which the technique of Patent Document 2 is applied, the spare block portion is strongly affected by the inter-pixel interference by the spatial filter 314 and is less than the minimum continuous length. There will be a continuous length pattern. On the other hand, according to the marker pattern generation method of the present application described below, such a pattern can be avoided.
  • the covariance value at the peak position and the covariance value for positions close to this position approach each other. This is because the spread of the signal light 306 irradiated on the pixel surface of the photodetector 325 with respect to one recording pixel of the spatial light modulator 312 has an intensity distribution similar to the pattern of the original spatial light modulator 312 (that is, This can be explained intuitively by being able to model the pattern with a large covariance value).
  • the adjacent position of the position where the covariance value should originally be determined is determined. There is an increased risk of misjudging that the position has the maximum covariance value.
  • the first is to reduce the covariance value of the position adjacent to the peak position.
  • sub-pixel position detection is possible even in a detection image with large inter-pixel interference.
  • the inter-pixel interference depends on the product of the aperture size of the spatial filter 312 and the recording pixel pitch of the spatial light modulator 312 along this direction, and is recorded in the same manner as when the aperture size of the spatial filter 312 is reduced. Even when the pixel pitch is reduced, the inter-pixel interference increases.
  • the product of the recording pixel pitch in the row direction of the spatial light modulator 312 and the aperture size of the spatial filter 314 along this direction the product of the pixel pitch in the column direction and the aperture size along this direction, In the smaller direction, the inter-pixel interference increases, in other words, the ratio of the recording pixel pitch to the size of the detected image corresponding to a single recording pixel increases.
  • FIG. 1 is a flowchart of marker pattern generation processing.
  • the marker pattern generation process is roughly divided into an intermediate pattern generation step 101 and an enlarged pattern generation step 102.
  • the intermediate pattern generation step 101 the intermediate pattern center area excluding the outer edge part composed of the recording pixels in contact with the boundary and the partial area inscribed in the boundary of the intermediate pattern having the same two-dimensional pixel arrangement as the intermediate pattern central part To obtain a characteristic intermediate pattern in which the covariance value with all of is zero.
  • the intermediate pattern generation step 101 includes, for example, an intermediate pattern candidate acquisition step 103, an intermediate pattern center acquisition step 1104, an inscribed partial region acquisition step 105, a covariance value calculation step 106, and a covariance condition determination step 107. I do.
  • the intermediate pattern candidate acquisition step 103 is a step of acquiring an intermediate pattern candidate that is a two-dimensional pattern having the same number of recording pixels in the column direction and the row direction as the intermediate pattern to be obtained.
  • the intermediate pattern center portion acquisition step 104 is a step of acquiring an intermediate pattern center portion excluding an outer edge portion composed of recording pixels in contact with the boundary from the intermediate pattern candidates.
  • the inscribed partial area acquisition step 105 selects all of the inscribed partial areas from the intermediate pattern candidates, which are partial areas inscribed in the boundary of the intermediate pattern while the number of recording pixels in the column direction and the row direction is the same as the intermediate pattern center. It is a step to acquire.
  • This is a step for obtaining a value.
  • the covariance condition determining step 107 is a step for determining whether or not all the covariance values obtained in the covariance value calculating step 106 are all 0. If all the covariance values are 0, the intermediate pattern candidate at that time is determined as the intermediate pattern candidate. On the other hand, if it is determined that all the patterns are not 0, the intermediate pattern candidate acquisition step 103 is performed again to update the intermediate pattern candidates, and the processes 103 to 107 described above are performed.
  • each recording pixel of the intermediate pattern has Nx pixels in the row direction and Ny pixels in the column direction (Nx, Ny is a positive integer, at least one is 2 or more). Replace with the same polarity pattern.
  • Nx and Ny are the same as or larger than the minimum continuous length of the user data portion in the corresponding direction.
  • a row direction enlargement step 108 and a column direction enlargement step 109 are performed.
  • each recording pixel of the intermediate pattern is replaced with a recording unit having the same polarity as these pixels, and having the size of one recording pixel in the column direction and Nx recording pixels in the row direction.
  • each recording pixel of the enlarged row direction pattern is changed to a recording unit having the same polarity as these pixels, the size of Ny recording pixels in the column direction, and the size of one recording pixel in the row direction. Replace all.
  • an enlargement pattern is finally obtained that is enlarged Nx times in the row direction and Ny times in the column direction with respect to the intermediate pattern.
  • the enlarged pattern obtained in this way is applied as a marker pattern.
  • FIG. 12 is an example of an intermediate pattern. Hatched squares represent off pixels, and white squares represent on pixels. In this embodiment, the number of recorded pixels is 8 pixels in both the row direction and the column direction, and the outer edge surrounding this is the boundary.
  • FIG. 13 shows an intermediate pattern central portion (1401) and an inscribed partial region (1402) in the intermediate pattern shown in FIG. In FIG. 13 (e), the dotted line portion represents the intermediate pattern central portion 1401, and specifically, the recording pixels in contact with the boundary are excluded from the intermediate patterns that form a square of 8 recording pixels in the row direction and the column direction. This is a square area having 6 recording pixels per side. 13 (a) to 13 (d) and FIGS.
  • the area surrounded by a thick line represents the inscribed partial area 1402, and 6 recording pixels per side having the same intermediate pattern. It is inscribed in the boundary of the intermediate pattern while forming a square. Note that different values (for example, 1 for the on pixel and ⁇ 1 for the off pixel) are given to the on pixel and the off pixel, and the intermediate pattern center portion 1401 shown in FIG. 13 (e) and FIGS. 13 (a) to (d) ), Calculating the covariance values between the inscribed partial areas 1402 shown in each of FIGS. 13G to 13I, all the covariance values are zero. Further, the intermediate pattern in FIG.
  • the information amount of the marker pattern 712 stored in the memory 702 Can be saved.
  • FIG. 14A shows an example of a recording unit for generating an intermediate pattern and an enlarged pattern.
  • the polarity (on pixel or off pixel) of all the recording pixels in the recording unit is the same as the intermediate pattern of the replacement source.
  • FIG. 14B shows an enlarged pattern obtained by the intermediate pattern and the replacement shown in FIG.
  • modulation is performed so that the minimum continuous number of on pixels and off pixels is 2 in the row direction.
  • the spatial frequency component corresponding to the pattern in which the on-pixel and the off-pixel of one recording pixel are repeated in the row direction is blocked by the opening of the spatial filter 314, the continuous number in the row direction is included in the marker pattern.
  • the effect of ensuring the detectability can be obtained by not including one pattern.
  • FIG. 17 shows an example of an intermediate pattern and another enlarged pattern that has undergone an enlarged pattern generation step 1102.
  • FIG. 17A shows an example of a recording unit for generating an intermediate pattern and an enlarged pattern.
  • the polarity (on pixel or off pixel) of all the recording pixels in the recording unit is the same as the intermediate pattern of the replacement source.
  • FIG. 17B shows an enlarged pattern obtained by the intermediate pattern and the replacement shown in FIG.
  • modulation is performed such that the minimum continuous number of on-pixels and off-pixels is 2 in both the row direction and the column direction by applying the technique of Patent Document 2.
  • the spatial frequency component corresponding to the pattern in which the on-pixel and the off-pixel of one recording pixel are repeated in the row direction and the column direction is blocked by the opening of the spatial filter 314, it is continuously included in the marker pattern.
  • the effect of ensuring the detectability can be obtained by not including the pattern of Formula 1.
  • the minimum continuous number of on-pixels and off-pixels in the row direction is Nx and the column direction is applied by applying the technique of Patent Document 2.
  • the spatial filter 314 has an opening that repeats the on pixel and the off pixel of the (NxN-1) recording pixel in the row direction and (Ny -1) recording pixel in the column direction. Even when the corresponding spatial frequency component is cut off, it is possible to ensure detectability by not including a continuous number of patterns less than (Nx-1) in the row direction and (Ny-1) in the column direction in the marker pattern. Is obtained.
  • the enlarged pattern obtained in this way is composed only of patterns in which the continuous number of on-pixels and off-pixels is a multiple of predetermined integers Nx and Ny in the row direction and the column direction of each recording pixel.
  • the marker pattern center excluding the outer edge corresponding to the range of distances within the same number of pixels as the predetermined integers Nx and Ny and the marker pattern center have the same number of pixels in the row direction and the column direction.
  • the covariance value with all of the marker pattern inscribed partial areas inscribed in the marker pattern boundary is zero.
  • the marker pattern middle part region having the same number of pixels in both the row direction and the column direction as the marker pattern center part and existing in the marker pattern but not inscribed in the boundary of the marker pattern, and the marker pattern center part
  • ) Ny ′) is (Nx ⁇
  • the size is proportional to.
  • Reference numeral 1601 denotes a marker pattern central part
  • 1602 denotes a marker pattern inscribed partial area
  • 1603 denotes a marker pattern intermediate partial area.
  • FIGS. 15 (a) to 15 (o) show all the positional relationships of the area of the recording pixels in the row direction 12 and the column direction 6 that can exist in the enlarged pattern, and FIGS. 15 (a) and 15 (b) in contact with the outer edge.
  • FIG. 15H existing at the center the marker pattern central portion 1601 is formed, and in the remaining FIGS. 15E and 15K, the marker pattern intermediate portion region 1603 is formed.
  • FIG. 16 shows a covariance value between the marker pattern central portion 1601 and a pattern at a position shifted by Nx recording pixels in the row direction and Ny recording pixels in the column direction.
  • (Nx ′, Ny ′) ( ⁇ 1, 0)
  • (Nx ′, Ny ′) (1, 0) corresponding to the marker pattern intermediate partial area 1603
  • the covariance value is 0.5 for this pattern.
  • Reference numeral 1901 denotes a marker pattern central portion
  • 1902 denotes a marker pattern inscribed partial area
  • 1903 denotes a marker pattern middle partial area.
  • FIGS. 18 (a) to (y) show all the positional relationships of the recording pixels in the row direction 12 and the column direction 12 that can exist in the enlarged pattern.
  • FIGS. 18 (a) and 18 (b) are in contact with the outer edge. , (C), (d), (e), (f), (j), (k), (o), (p), (t), (u), (v), (w), ( In (x) and (y), the marker pattern internal partial region 1902, in FIG. 18 (m) existing at the center, the marker pattern central portion 1901, and the remaining FIG. 18 (g), (h), (i), (l ), (N), (q), (r), and (s), the marker pattern intermediate partial region 1903 is obtained.
  • FIG. 20 (a) shows, as a more general form, when the number of recording pixels of one recording unit is Nx recording pixels in the row direction and Ny recording pixels in the column direction, the recording pixel ⁇ of the intermediate pattern and the enlarged pattern
  • the recording unit has the same polarity as each recording image of the intermediate pattern, and has a size of Ny recording pixels in the column direction and Nx recording pixels in the row direction.
  • the obtained enlarged pattern (applied as a marker pattern) has the number of recording pixels Ny times in the column direction and Nx times in the row direction with respect to the original intermediate pattern.
  • the center portion of the marker pattern has a smaller number of recording pixels by 2Nx recording pixels in the row direction and 2Ny recording pixels in the column direction than the enlarged pattern.
  • the 20B shows the covariance value between the pattern at the position shifted from the marker pattern central portion 1901 by Nx recording pixels in the row direction and Ny recording pixels in the column direction.
  • the covariance value of the pattern at the position corresponding to the marker pattern intermediate partial region changes depending on the relative position (Nx ′, Ny ′) with respect to the marker pattern center, and the value is (Nx ⁇
  • a reference detection pattern having a reproduction pixel number that imitates a detection image corresponding to the recording pixel area at the center of the marker pattern is provided during reproduction. And the center of gravity from the covariance value acquired for the reproduction pixel area located in the vicinity and the area corresponding to the recording pixel area of the marker pattern.
  • modulation is performed such that the minimum continuous numbers of on-pixels and off-pixels in the row direction and the column direction become Nx and Ny, respectively, while the spatial filter 314 opens the row.
  • the pattern or column that is not more than Nx ⁇ 1 in the row direction in the marker pattern The effect of ensuring the detectability can be obtained by not including a pattern with a large inter-pixel interference that is equal to or less than the continuous number Ny ⁇ 1 in the direction.
  • a method for detecting the sub-pixel position of the reproduction pixel at the time of reproducing the data page using the marker pattern described in the first embodiment will be described.
  • reference numeral 1101 denotes a step of acquiring a partial detection image
  • 1102 denotes a reference detection pattern generation step
  • 1103 denotes a covariance value calculation step
  • 1104 denotes a pixel unit position determination step
  • 1105 denotes a subpixel position determination step.
  • step 1101 of acquiring a partial detection image a partial detection image of a part including only one marker pattern is acquired from page data detected by the photodetector 325. Even in the case where the position of the data page imaged on the pixel surface of the photodetector 325 shifts, a certainly large reproduction pixel area is necessary for the marker pattern to exist inside. It is necessary to reduce the reproduction pixel area to such an extent that a plurality of marker patterns do not exist in the partial detection image. Further, the larger the partial detection image, the larger the calculation amount of processing. Therefore, the size of the partial detection image should be within the minimum necessary range that allows for the detection position shift.
  • a reference detection pattern used for a covariance calculation performed in a later stage is generated.
  • the reference detection pattern is a pattern simulating a detection image corresponding to the recording pixel area at the center of the marker pattern, and the number of reproduced pixels is about 1 / ⁇ x times in the row direction and 1 / ⁇ y in the column direction.
  • the number of recording pixels at the center of the marker pattern is set to be about twice as large ( ⁇ x and ⁇ y are the ratio of the reproduction pixel interval to the recording pixel interval in the row direction and the column direction, respectively, and the reciprocal of the oversampling ratio).
  • the sub-pixel detection is performed using the marker pattern having the marker pattern central portion 1601 of 12 recording pixels in the row direction and 8 recording pixels in the column direction
  • the number of reproduced pixels of the reference detection pattern is 16 in the row direction and the column direction.
  • a reference detection pattern as shown in 21 (b) is provided.
  • the pattern with multi-valued luminance is taken into consideration.
  • the reference detection pattern generation step 1102 needs to be performed before the covariance value calculation step 1103, but is not performed every time a data page is detected, but is created by a simulator or the like provided outside the apparatus in advance.
  • the stored pattern may be stored in the memory 802 or the like.
  • the covariance value calculation step 1103 all detection image portions having the same size as the reference detection pattern obtained in the reference detection pattern generation step 1102 included in the range of the partial detection image acquired in step 1101 of acquiring the partial detection image. Find the covariance value for the region.
  • the pixel unit position determination step 1104 the position of the marker pattern in the reproduction pixel unit from the maximum covariance value obtained in the covariance value calculation step 1103 and the corresponding position of the detected image partial region. Is determined.
  • the sub-pixel position determining step 1105 the reproduction pixels of only the integer N1 that does not exceed Nx / ⁇ x in the row direction with respect to the outside of the detected image partial region where the covariance value determined in the pixel unit position determining step 1104 is maximum.
  • the subpixel position Is determined.
  • the calculation of Equation 1 or Equation 2 can be applied to the subpixel position determination from the covariance value.
  • ⁇ x is a sub-pixel position in the row direction
  • ⁇ y is a sub-pixel position in the column direction
  • N1 is an integer not exceeding Nx / ⁇ x
  • N2 is an integer not exceeding Ny / ⁇ y
  • ⁇ x is a scale factor in the row direction
  • ⁇ y is a scale factor in the column direction.
  • the covariance value for the detection image partial area shifted by p reproduction pixels in the row direction and q reproduction pixels in the column direction from the detection image partial area where the covariance value is maximum is represented by Cov [p] [ q].
  • the calculation is performed using the covariance value with all.
  • Equation 2 the processing of Equation 1 is simplified, and the same reproduction pixel position is fixed in the column direction around the detected image partial region where the covariance value determined in the pixel unit position determination step 1104 is the maximum.
  • the sub-pixel position in the row direction is determined using the covariance value in the range shifted by ⁇ N1 playback pixels in the direction, fixed to the same playback pixel position in the row direction, and the range shifted by ⁇ N2 playback pixels in the column direction
  • the sub-pixel position in the column direction is determined using the covariance value. Since the effect of the present technology can be obtained by applying either Equation 1 or Equation 2, it is preferable that the selection is made in consideration of the amount of calculation processing load and subpixel position detection accuracy.
  • FIGS. 22 (a) and 22 (b) An example of the characteristics of the sub-pixel position detection method according to the present method described above is shown in FIGS. 22 (a) and 22 (b). These determine the aperture size of the spatial filter 314 so as to limit a spatial frequency of about 1.1 times the spatial frequency corresponding to the repetition pattern of on-pixel and off-pixel of one recording pixel in the column direction. On the other hand, in the row direction, the aperture size of the spatial filter 314 is determined so as to limit the spatial frequency of about 0.55 times the spatial frequency corresponding to the repeated pattern of on-pixel and off-pixel of one recording pixel. This was obtained by simulation simulating the condition that increased the amount of inter-pixel interference with respect to the direction.
  • FIG. 22A shows an application when the relative position between the received light image and the reproduction pixel is shifted in the row direction with reference to the position where the same image as the reference detection pattern is detected by the reproduction pixel of the photodetector 325.
  • the relationship between the shift amount and the detected shift amount is shown.
  • FIG. 22B shows the detection error amount (difference between the detection shift amount and the applied shift amount) at this time.
  • the applied shift amount is within the range of 0.5 reproduction pixels. As long as the accuracy of the detected shift amount can be ensured.
  • the position where the same image as the reference detection pattern having the maximum covariance value is detected by the reproduction pixel of the photodetector 325 and the vicinity thereof are detected.
  • the covariance value approaches and the covariance value detected for the adjacent position is maximized.
  • the scale factor ⁇ x is given so that the average detection error amount in the range of the shift amount 0 to 1.5 reproduction pixels is minimized.
  • the covariance peak position is misidentified as the adjacent position under the reproduction condition where the inter-pixel interference is large. Even if it occurs, it is possible to obtain the effect of correctly obtaining the subpixel position.
  • the present invention can be applied not only to the angle multiplexing method but also to other methods such as a shift multiplexing method.
  • the two-dimensional data page need not be recorded as a hologram, and may be recorded in another form.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them by, for example, an integration means.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • SYMBOLS 1 Optical information recording medium, 10 ... Optical information recording / reproducing apparatus, 11 ... Pickup, 12 ... Reference light optical system for reproduction, 13 ... Disc Cure optical system, 14: Optical system for detecting the disk rotation angle, 81 ... access control unit, 82: Light source drive unit, 83: Servo signal generation unit, 84 ... Servo control unit, 85 ... Signal processing unit, 86 ... Signal generation unit, 87: shutter control unit, 88 ... disk rotation motor control unit, 89 ... Controller, 90 ... Input / output control unit, 91 ... External control device, 101 ... Intermediate pattern generation step, 102 ... Expansion pattern generation step, 103 ...
  • Intermediate pattern candidate update step 104 ... Intermediate pattern center acquisition step, 105 ... inscribed partial region acquisition step, 106 ... covariance value calculation step, 107 ... covariance condition determination step, 108 ... row direction enlargement step, 109 ... Column direction enlargement step, 301: Light source, 303: Shutter, 306: Signal light, 307: Reference light, 308 ... Beam expander, 309 ... Phase mask, 310 ... Relay lens, 311 ... PBS prism, 312 ... Spatial light modulator, 313 ... Relay lens, 314 ... Spatial filter, 315: Objective lens, 316: Polarization direction conversion element, 320 ... Actuator, 321 ... Lens, 322 ...
  • Step of acquiring a partial detection image 1102 ... reference detection pattern generation step, 1103 ... Covariance value calculation step, 1104: Pixel unit position determining step, 1105 ... Subpixel position determination step, 1401 ... middle pattern center, 1402 ... inscribed partial area, 1601 ... Marker pattern center, 1602 ... Marker pattern inscribed partial area, 1603 ... Marker pattern middle partial area, 1901 ... Marker pattern center, 1902: Marker pattern inscribed partial area, 1903: Marker pattern middle part area

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

The present invention addresses the problem of providing, in reconstruction processing for holographic memory, marker patterns for which sub-pixel position detection is possible even in a data page for which the amount of inter-pixel interference is significant. As an example of means which resolves the problem, a marker pattern generation method is provided with an intermediate pattern generation step and a magnification pattern generation step, wherein: in the intermediate pattern generation step, an intermediate pattern is generated so that, for the intermediate pattern, the covariance value is 0 between the intermediate pattern central portion, which excludes an outer edge comprising pixels adjacent to the boundary of the same, and a partial region, which is inscribed in the boundary of the intermediate pattern; and in the magnification pattern generation step, each recording pixel of the intermediate pattern is substituted with a recording unit in which a plurality of recording pixels of the same polarity as the first-mentioned recording pixel are arrayed in the row-direction and/or the column-direction.

Description

マーカーパタン生成方法、情報記録媒体、情報再生方法、および情報記録媒体再生装置Marker pattern generation method, information recording medium, information reproducing method, and information recording medium reproducing apparatus
 本発明は、マーカーパタン生成方法、情報記録媒体、情報再生方法、および情報記録媒体再生装置に関する。 The present invention relates to a marker pattern generation method, an information recording medium, an information reproduction method, and an information recording medium reproduction apparatus.
 ホログラム再生技術として、特表2008-536158号公報(特許文献1)がある。本公報には、「各データページ全体にわたって、所定の予備のブロックを割り当てることであって、各予備のブロックは既知の画素パタンを含む、ことと、データページの領域と所定の予備のブロックとの間の最良のマッチングを計算することによって、データページの位置誤差を決定することと、検出器においてデータ画素を対応するデータページの位置誤差に従って補正することとを包含する」処理を行うことによって、二次元データページを判別可能とする処理が記載されている。 As a hologram reproduction technique, there is JP-T-2008-536158 (Patent Document 1). According to this publication, “a predetermined spare block is allocated over each data page, and each spare block includes a known pixel pattern, an area of the data page, and a predetermined spare block; By determining the data page position error by calculating the best match between and correcting the data pixels according to the corresponding data page position error at the detector. A process for making it possible to distinguish a two-dimensional data page is described.
 また、特開2010-003358号公報(特許文献2)には、ビームウェストに配置したフィルタの開口サイズを小型化し、記録密度の向上を可能とする技術が記載されている。 Also, Japanese Patent Application Laid-Open No. 2010-003358 (Patent Document 2) describes a technique that can reduce the aperture size of the filter disposed in the beam waist and improve the recording density.
特表2008-536158号公報Special table 2008-536158 特開2010-003358号公報JP 2010-003358 A
 特許文献1には、データページの位置誤差の決定に適した予備のブロックの例として、予備ブロック内の特定のサブブロックと、端部に接する他の複数のサブブロックとの共分散値が0になるパタンが記載されている。また、この予備ブロックを用いたデータページの位置誤差決定方法について、共分散演算によって「予備ブロックパターンと最も強くマッチングする整数位置」を求め、続いてこれの「隣接値との間を線形的に補間する」ことによって実現する例が記載されている。 In Patent Document 1, as an example of a spare block suitable for determining a position error of a data page, a covariance value between a specific subblock in the spare block and a plurality of other subblocks in contact with the end is 0. The pattern that becomes is described. In addition, regarding the method of determining the position error of the data page using the spare block, the “integer position that most closely matches the spare block pattern” is obtained by covariance calculation, and then the “adjacent value” is linearly determined. An example realized by “interpolating” is described.
 一方で、特許文献2に記載された技術を適用すると、フィルタの開口サイズの小型化のため、再生時に検出される単一記録画素の検出像は拡大され、画素間干渉が増大する。このとき、特許文献1に記載された予備ブロックを適用すると、検出時において予備ブロックパターンと最も強くマッチングする整数位置における共分散値と、その隣接値が接近することが分かった。すなわち、雑音等が加わったときに「予備ブロックパターンと最も強くマッチングする整数位置」を隣接位置と誤判別し、位置誤差を正しく求められない危険性がある。 On the other hand, when the technique described in Patent Document 2 is applied, the detection image of a single recording pixel detected at the time of reproduction is enlarged due to a reduction in the aperture size of the filter, and inter-pixel interference increases. At this time, when the spare block described in Patent Document 1 was applied, it was found that the covariance value at the integer position that most strongly matches the spare block pattern at the time of detection and the adjacent value thereof approach each other. That is, when noise or the like is added, there is a risk that the “integer position that most closely matches the spare block pattern” is erroneously determined as an adjacent position, and the position error cannot be obtained correctly.
 そこで、本願では画素間干渉が増大した検出像からでも位置誤差決定可能な予備ブロックと、これを用いた位置誤差決定を実現することを課題とした。 Therefore, an object of the present application is to realize a spare block capable of determining a position error even from a detection image in which inter-pixel interference is increased, and to realize position error determination using the spare block.
 上記課題は、その一例として、中間パタンの各記録画素を、該各記録画素と同一極性の記録画素を行方向と列方向の少なくとも一方に複数の記録画素数だけ並べた記録ユニットに置換することにより解決される。 For example, the above-described problem is to replace each recording pixel of the intermediate pattern with a recording unit in which recording pixels having the same polarity as each recording pixel are arranged in a number of recording pixels in at least one of the row direction and the column direction. It is solved by.
 本発明によれば、画素間干渉が増大した検出像からでも、より正確に位置誤差決定を行うことが可能となる。 According to the present invention, it is possible to determine a position error more accurately even from a detection image in which inter-pixel interference is increased.
マーカーパタン生成処理の実施例を表す流れ図Flow chart representing an example of marker pattern generation processing 光情報記録再生装置の実施例を表す概略図Schematic diagram showing an embodiment of an optical information recording / reproducing apparatus 光情報記録再生装置内のピックアップの実施例を表す概略図Schematic showing an embodiment of a pickup in an optical information recording / reproducing apparatus 光情報記録再生装置内のピックアップの実施例を表す概略図Schematic showing an embodiment of a pickup in an optical information recording / reproducing apparatus 光情報記録再生装置内のピックアップの実施例を表す概略図Schematic showing an embodiment of a pickup in an optical information recording / reproducing apparatus 光情報記録再生装置の動作フローの実施例を表す概略図Schematic showing an embodiment of the operation flow of the optical information recording / reproducing apparatus 光情報記録再生装置の動作フローの実施例を表す概略図Schematic showing an embodiment of the operation flow of the optical information recording / reproducing apparatus 光情報記録再生装置の動作フローの実施例を表す概略図Schematic showing an embodiment of the operation flow of the optical information recording / reproducing apparatus 光情報記録再生装置内の信号生成部の実施例を表す概略図Schematic showing the Example of the signal generation part in an optical information recording / reproducing apparatus 光情報記録再生装置内の信号処理部の実施例を表す概略図Schematic showing the Example of the signal processing part in an optical information recording / reproducing apparatus 信号生成部及び信号処理部の動作フローの実施例を表す概略図Schematic showing the Example of the operation | movement flow of a signal generation part and a signal processing part 信号生成部及び信号処理部の動作フローの実施例を表す概略図Schematic showing the Example of the operation | movement flow of a signal generation part and a signal processing part 画像位置検出部の一構成例を表す概略図Schematic showing one configuration example of the image position detection unit 再生時のサブピクセル位置検出処理のフローを表す概略図Schematic showing the flow of sub-pixel position detection processing during playback 中間パタンの一例を表す概略図Schematic showing an example of intermediate pattern 中間パタン中心部と内接部分領域の具体例を表す概略図、Schematic showing a specific example of the middle part of the intermediate pattern and the inscribed partial area, 拡大パタンの生成方法を表す概略図Schematic diagram showing how to create enlarged patterns マーカーパタン中心部、マーカーパタン内接部分領域、マーカーパタン中間部分領域を表す概略図Schematic diagram showing the marker pattern center, marker pattern inscribed partial area, and marker pattern intermediate partial area マーカーパタン中心部に対する、その周辺パタンとの共分散値を表すテーブルTable showing the covariance value with the surrounding pattern for the center of the marker pattern 拡大パタンの生成方法を表す概略図Schematic diagram showing how to create enlarged patterns マーカーパタン中心部、マーカーパタン内接部分領域、マーカーパタン中間部分領域を表す概略図Schematic diagram showing the marker pattern center, marker pattern inscribed partial area, and marker pattern intermediate partial area マーカーパタン中心部に対する、その周辺パタンとの共分散値を表すテーブルTable showing the covariance value with the surrounding pattern for the center of the marker pattern 記録ユニットの概略図とマーカーパタン中心部に対する、その周辺パタンとの共分散値を表すテーブルSchematic diagram of recording unit and table showing covariance values of marker pattern center and surrounding pattern 光検出器の画素面に結像されるマーカーパタンのシミュレーション像と、対応した基準検出パタンを表す概略図Schematic diagram showing the marker pattern simulation image formed on the pixel surface of the photodetector and the corresponding reference detection pattern 本方式によるサブピクセル位置検出特性の一例を表すグラフGraph showing an example of sub-pixel position detection characteristics by this method
 以下、本発明の実施例について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本発明の実施形態を添付図面に従って説明する。本実施例に記載のマーカーパタンによれば、従来同様のマーカーパタンの外側の記録パタンの影響の小さいサブピクセル位置検出を可能としつつ、画素間干渉が大きい再生条件においても検出性を確保できる効果が得られる。 Embodiments of the present invention will be described with reference to the accompanying drawings. According to the marker pattern described in the present embodiment, it is possible to detect a sub-pixel position with a small influence of a recording pattern outside the marker pattern as in the conventional case, and to ensure the detectability even under a reproduction condition with a large inter-pixel interference. Is obtained.
 図2はホログラフィを利用してデジタル情報を記録および/または再生する光情報記録媒体の記録再生装置を示すブロック図である。 FIG. 2 is a block diagram showing a recording / reproducing apparatus for an optical information recording medium for recording and / or reproducing digital information using holography.
 光情報記録再生装置10は、入出力制御部90を介して外部制御装置91と接続されている。記録する場合には、光情報記録再生装置10は外部制御装置91から記録する情報信号を入出力制御部90により受信する。再生する場合には、光情報記録再生装置10は再生した情報信号を入出力制御部90により外部制御装置91に送信する。 The optical information recording / reproducing device 10 is connected to an external control device 91 via an input / output control unit 90. In the case of recording, the optical information recording / reproducing apparatus 10 receives the information signal to be recorded from the external control device 91 by the input / output control unit 90. When reproducing, the optical information recording / reproducing apparatus 10 transmits the reproduced information signal to the external control apparatus 91 by the input / output control unit 90.
 光情報記録再生装置10は、ピックアップ11、再生用参照光光学系12、キュア光学系13、ディスク回転角度検出用光学系14、及び回転モータ50を備えており、光情報記録媒体1は回転モータ50によって回転可能な構成となっている。 The optical information recording / reproducing apparatus 10 includes a pickup 11, a reproduction reference light optical system 12, a cure optical system 13, a disk rotation angle detection optical system 14, and a rotation motor 50. The optical information recording medium 1 is a rotation motor. 50 can be rotated.
 ピックアップ11は、参照光と信号光を光情報記録媒体1に照射してホログラフィを利用してデジタル情報を記録媒体に記録する役割を果たす。この際、記録する情報信号はコントローラ89によって信号生成部86を介してピックアップ11内の空間光変調器に送られ、信号光は空間光変調器によって変調される。 The pickup 11 plays a role of irradiating the optical information recording medium 1 with reference light and signal light and recording digital information on the recording medium using holography. At this time, the information signal to be recorded is sent by the controller 89 to the spatial light modulator in the pickup 11 via the signal generator 86, and the signal light is modulated by the spatial light modulator.
 光情報記録媒体1に記録した情報を再生する場合は、ピックアップ11から出射された参照光を記録時とは逆の向きに光情報記録媒体に入射させる光波を再生用参照光光学系12にて生成する。再生用参照光によって再生される再生光をピックアップ11内の後述する光検出器によって検出し、信号処理部85によって信号を再生する。 When reproducing the information recorded on the optical information recording medium 1, the reproduction reference light optical system 12 generates a light wave that causes the reference light emitted from the pickup 11 to enter the optical information recording medium in a direction opposite to that during recording. Generate. The reproduction light reproduced by the reproduction reference light is detected by a photodetector described later in the pickup 11, and the signal is reproduced by the signal processing unit 85.
 光情報記録媒体1に照射する参照光と信号光の照射時間は、ピックアップ11内のシャッタの開閉時間をコントローラ89によってシャッタ制御部87を介して制御することで調整できる。 The irradiation time of the reference light and the signal light applied to the optical information recording medium 1 can be adjusted by controlling the opening / closing time of the shutter in the pickup 11 via the shutter control unit 87 by the controller 89.
 キュア光学系13は、光情報記録媒体1のプリキュアおよびポストキュアに用いる光ビームを生成する役割を果たす。プリキュアとは、光情報記録媒体1内の所望の位置に情報を記録する際、所望位置に参照光と信号光を照射する前に予め所定の光ビームを照射する前工程である。ポストキュアとは、光情報記録媒体1内の所望の位置に情報を記録した後、該所望の位置に追記不可能とするために所定の光ビームを照射する後工程である。 The cure optical system 13 plays a role of generating a light beam used for pre-cure and post-cure of the optical information recording medium 1. Precure is a pre-process for irradiating a predetermined light beam in advance before irradiating the desired position with reference light and signal light when recording information at a desired position in the optical information recording medium 1. Post-cure is a post-process for irradiating a predetermined light beam after recording information at a desired position in the optical information recording medium 1 so that additional recording cannot be performed at the desired position.
 ディスク回転角度検出用光学系14は、光情報記録媒体1の回転角度を検出するために用いられる。光情報記録媒体1を所定の回転角度に調整する場合は、ディスク回転角度検出用光学系14によって回転角度に応じた信号を検出し、検出された信号を用いてコントローラ89によってディスク回転モータ制御部88を介して光情報記録媒体1の回転角度を制御する事が出来る。 The disk rotation angle detection optical system 14 is used to detect the rotation angle of the optical information recording medium 1. When the optical information recording medium 1 is adjusted to a predetermined rotation angle, a signal corresponding to the rotation angle is detected by the disk rotation angle detection optical system 14, and a disk rotation motor control unit is detected by the controller 89 using the detected signal. The rotation angle of the optical information recording medium 1 can be controlled via 88.
 光源駆動部82からは所定の光源駆動電流がピックアップ11、キュア光学系13、ディスク回転角度検出用光学系14内の光源に供給され、各々の光源からは所定の光量で光ビームを発光することができる。 A predetermined light source driving current is supplied from the light source driving unit 82 to the light sources in the pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14, and each light source emits a light beam with a predetermined light amount. Can do.
 また、ピックアップ11、そして、ディスクキュア光学系13は、光情報記録媒体1の半径方向に位置をスライドできる機構が設けられており、アクセス制御部81を介して位置制御がおこなわれる。 Further, the pickup 11 and the disc cure optical system 13 are provided with a mechanism capable of sliding the position in the radial direction of the optical information recording medium 1, and position control is performed via the access control unit 81.
 ところで、ホログラフィの角度多重の原理を利用した記録技術は、参照光角度のずれに対する許容誤差が極めて小さくなる傾向がある。 By the way, the recording technology using the principle of angle multiplexing of holography tends to have a very small tolerance for the deviation of the reference beam angle.
 従って、ピックアップ11内に、参照光角度のずれ量を検出する機構を設けて、サーボ信号生成部83にてサーボ制御用の信号を生成し、サーボ制御部84を介して該ずれ量を補正するためのサーボ機構を光情報記録再生装置10内に備えることが必要となる。 Accordingly, a mechanism for detecting the deviation amount of the reference beam angle is provided in the pickup 11, a servo control signal is generated by the servo signal generation unit 83, and the deviation amount is corrected via the servo control unit 84. It is necessary to provide a servo mechanism for this purpose in the optical information recording / reproducing apparatus 10.
 また、ピックアップ11、キュア光学系13、ディスク回転角度検出用光学系14は、いくつかの光学系構成または全ての光学系構成をひとつに纏めて簡素化しても構わない。 Further, the pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14 may be simplified by combining several optical system configurations or all optical system configurations into one.
 図3は、光情報記録再生装置10におけるピックアップ11の基本的な光学系構成の一例における記録原理を示したものである。光源301を出射した光ビームはコリメートレンズ302を透過し、シャッタ303に入射する。シャッタ303が開いている時は、光ビームはシャッタ303を通過した後、例えば2分の1波長板などで構成される光学素子304によってp偏光とs偏光の光量比が所望の比になるようになど偏光方向が制御された後、PBS(Polarization Beam Splitter)プリズム305に入射する。 FIG. 3 shows a recording principle in an example of a basic optical system configuration of the pickup 11 in the optical information recording / reproducing apparatus 10. The light beam emitted from the light source 301 passes through the collimator lens 302 and enters the shutter 303. When the shutter 303 is open, after the light beam passes through the shutter 303, the optical ratio of the p-polarized light and the s-polarized light becomes a desired ratio by the optical element 304 composed of, for example, a half-wave plate. After the polarization direction is controlled, the light is incident on a PBS (Polarization Beam Splitter) prism 305.
 PBSプリズム305を透過した光ビームは、信号光306として働き、ビームエキスパンダ308によって光ビーム径が拡大された後、位相マスク309、リレーレンズ310、PBSプリズム311を透過して空間光変調器312に入射する。 The light beam that has passed through the PBS prism 305 functions as signal light 306, and after the light beam diameter is expanded by the beam expander 308, the light beam passes through the phase mask 309, the relay lens 310, and the PBS prism 311 and passes through the spatial light modulator 312. Is incident on.
 空間光変調器312によって情報が付加された信号光は、PBSプリズム311を反射し、リレーレンズ313ならびに空間フィルタ314を伝播する。その後、信号光は対物レンズ315によって光情報記録媒体1に集光する。 The signal light to which information is added by the spatial light modulator 312 reflects the PBS prism 311 and propagates through the relay lens 313 and the spatial filter 314. Thereafter, the signal light is condensed on the optical information recording medium 1 by the objective lens 315.
 一方、PBSプリズム305を反射した光ビームは参照光307として働き、偏光方向変換素子316によって記録時または再生時に応じて所定の偏光方向に設定された後、ミラー317ならびにミラー318を経由してガルバノミラー319に入射する。ガルバノミラー319はアクチュエータ320によって角度を調整可能のため、レンズ321とレンズ322を通過した後に光情報記録媒体1に入射する参照光の入射角度を、所望の角度に設定することができる。なお、参照光の入射角度を設定するために、ガルバノミラーに代えて、参照光の波面を変換する素子を用いても構わない。 On the other hand, the light beam reflected from the PBS prism 305 functions as reference light 307 and is set to a predetermined polarization direction according to recording or reproduction by the polarization direction conversion element 316 and then galvano- lated via the mirror 317 and the mirror 318. Incident on the mirror 319. Since the angle of the galvanometer mirror 319 can be adjusted by the actuator 320, the incident angle of the reference light incident on the optical information recording medium 1 after passing through the lens 321 and the lens 322 can be set to a desired angle. In order to set the incident angle of the reference light, an element that converts the wavefront of the reference light may be used instead of the galvanometer mirror.
 このように信号光と参照光とを光情報記録媒体1において、互いに重ね合うように入射させることで、記録媒体内には干渉縞パタンが形成され、このパタンを記録媒体に書き込むことで情報を記録する。また、ガルバノミラー319によって光情報記録媒体1に入射する参照光の入射角度を変化させることができるため、角度多重による記録が可能である。 In this way, the signal light and the reference light are incident on the optical information recording medium 1 so as to overlap each other, whereby an interference fringe pattern is formed in the recording medium, and information is recorded by writing this pattern on the recording medium. To do. In addition, since the incident angle of the reference light incident on the optical information recording medium 1 can be changed by the galvanometer mirror 319, recording by angle multiplexing is possible.
 以降、同じ領域に参照光角度を変えて記録されたホログラムにおいて、1つ1つの参照光角度に対応したホログラムをページと呼び、同領域に角度多重されたページの集合をブックと呼ぶことにする。 Hereinafter, in holograms recorded in the same area with different reference beam angles, holograms corresponding to each reference beam angle are called pages, and a set of pages angle-multiplexed in the same area is called a book. .
 図4は、光情報記録再生装置10におけるピックアップ11の基本的な光学系構成の一例における再生原理を示したものである。記録した情報を再生する場合は、前述したように参照光を光情報記録媒体1に入射し、光情報記録媒体1を透過した光ビームを、アクチュエータ323によって角度調整可能なガルバノミラー324にて反射させることで、その再生用参照光を生成する。 FIG. 4 shows a reproduction principle in an example of a basic optical system configuration of the pickup 11 in the optical information recording / reproducing apparatus 10. When reproducing the recorded information, the reference light is incident on the optical information recording medium 1 as described above, and the light beam transmitted through the optical information recording medium 1 is reflected by the galvanometer mirror 324 whose angle can be adjusted by the actuator 323. By doing so, the reproduction reference light is generated.
 この再生用参照光によって再生された再生光は、対物レンズ315、リレーレンズ313ならびに空間フィルタ314を伝播する。その後、再生光はPBSプリズム311を透過して光検出器325に入射し、記録した信号を再生することができる。光検出器325としては例えばCMOSイメージセンサーやCCDイメージセンサーなどの撮像素子を用いることができるが、データページを再生可能であれば、どのような素子であっても構わない。なお、以下では必要に応じて空間光変調器312と光検出器325の画素を区別し、前者の画素を「記録画素」、後者の画素を「再生画素」と表記する。再生時に光検出器325の画素面上に投影されるデータページ像の記録画素間隔よりも小さい再生画素間隔を有する光検出器325によってオーバーサンプリングした検出像から、データページの復号を行う。また、記録画素間隔に対する再生画素間隔の比(オーバーサンプリング比の逆数)ついて、行方向をαx、列方向をαyとおく。 The reproduction light reproduced by the reproduction reference light propagates through the objective lens 315, the relay lens 313, and the spatial filter 314. Thereafter, the reproduction light passes through the PBS prism 311 and enters the photodetector 325, and the recorded signal can be reproduced. As the photodetector 325, for example, an image sensor such as a CMOS image sensor or a CCD image sensor can be used, but any element may be used as long as the data page can be reproduced. In the following, the pixels of the spatial light modulator 312 and the photodetector 325 are distinguished as necessary, and the former pixel is referred to as “recording pixel” and the latter pixel as “reproduction pixel”. The data page is decoded from the detection image oversampled by the photodetector 325 having a reproduction pixel interval smaller than the recording pixel interval of the data page image projected on the pixel surface of the photodetector 325 during reproduction. Further, regarding the ratio of the reproduction pixel interval to the recording pixel interval (the reciprocal of the oversampling ratio), the row direction is αx and the column direction is αy.
 図5で示した光学系は、信号光と参照光を同一の対物レンズに入射させる構成とすることで、図3で示した光学系構成に比して、大幅に小型化できる利点を有する。 The optical system shown in FIG. 5 has an advantage that the size can be greatly reduced by making the signal light and the reference light incident on the same objective lens as compared with the optical system configuration shown in FIG.
 図6は、光情報記録再生装置10における記録、再生の動作フローを示したものである。ここでは、特にホログラフィを利用した記録再生に関するフローを説明する。 FIG. 6 shows an operation flow of recording and reproduction in the optical information recording / reproducing apparatus 10. Here, a flow relating to recording / reproduction using holography in particular will be described.
 図6(a)は、光情報記録再生装置10に光情報記録媒体1を挿入した後、記録または再生の準備が完了するまでの動作フローを示し、図6(b)は準備完了状態から光情報記録媒体1に情報を記録するまでの動作フロー、図6(c)は準備完了状態から光情報記録媒体1に記録した情報を再生するまでの動作フローを示したものである。 FIG. 6A shows an operation flow from when the optical information recording medium 1 is inserted into the optical information recording / reproducing apparatus 10 until preparation for recording or reproduction is completed, and FIG. FIG. 6C shows an operation flow until information is recorded on the information recording medium 1, and FIG. 6C shows an operation flow until the information recorded on the optical information recording medium 1 is reproduced from the ready state.
 図6(a)に示すように媒体を挿入すると(601)、光情報記録再生装置10は、例えば挿入された媒体がホログラフィを利用してデジタル情報を記録または再生する媒体であるかどうかディスク判別を行う(602)。 When a medium is inserted as shown in FIG. 6A (601), the optical information recording / reproducing apparatus 10 discriminates whether or not the inserted medium is a medium for recording or reproducing digital information using holography, for example. (602).
 ディスク判別の結果、ホログラフィを利用してデジタル情報を記録または再生する光情報記録媒体であると判断されると、光情報記録再生装置10は光情報記録媒体に設けられたコントロールデータを読み出し(603)、例えば光情報記録媒体に関する情報や、例えば記録や再生時における各種設定条件に関する情報を取得する。 As a result of disc discrimination, when it is determined that the optical information recording medium records or reproduces digital information using holography, the optical information recording / reproducing apparatus 10 reads control data provided on the optical information recording medium (603). ), For example, information relating to the optical information recording medium and information relating to various setting conditions during recording and reproduction, for example.
 コントロールデータの読み出し後は、コントロールデータに応じた各種調整やピックアップ11に関わる学習処理(604)を行い、光情報記録再生装置10は、記録または再生の準備が完了する(605)。 After reading out the control data, various adjustments according to the control data and learning processing (604) related to the pickup 11 are performed, and the optical information recording / reproducing apparatus 10 is ready for recording or reproduction (605).
 準備完了状態から情報を記録するまでの動作フローは図6(b)に示すように、まず記録するデータを受信して(611)、該データに応じた情報をピックアップ11内の空間光変調器に送る。 As shown in FIG. 6B, the operation flow from the ready state to recording information is as follows. First, data to be recorded is received (611), and information corresponding to the data is received from the spatial light modulator in the pickup 11. Send to.
 その後、光情報記録媒体に高品質の情報を記録できるように、必要に応じて例えば光源301のパワー最適化やシャッタ303による露光時間の最適化等の各種記録用学習処理を事前に行う(612)。 Thereafter, various recording learning processes such as optimization of the power of the light source 301 and optimization of exposure time by the shutter 303 are performed in advance so that high-quality information can be recorded on the optical information recording medium (612). ).
 その後、シーク動作(613)ではアクセス制御部81を制御して、ピックアップ11ならびにキュア光学系13の位置を光情報記録媒体の所定の位置に位置づけする。光情報記録媒体1がアドレス情報を持つ場合には、アドレス情報を再生し、目的の位置に位置づけされているか確認し、目的の位置に配置されていなければ、所定の位置とのずれ量を算出し、再度位置づけする動作を繰り返す。 Thereafter, in the seek operation (613), the access control unit 81 is controlled to position the pickup 11 and the cure optical system 13 at predetermined positions on the optical information recording medium. When the optical information recording medium 1 has address information, it reproduces the address information, checks whether it is positioned at the target position, and calculates the amount of deviation from the predetermined position if it is not positioned at the target position. And repeat the positioning operation.
 その後、キュア光学系13から出射する光ビームを用いて所定の領域をプリキュアし(614)、メインデータ生成(615)とページヘッダ付加(616)を含むデータページ生成処理(617)を行い、ピックアップ11から出射する参照光と信号光を用いてデータを記録する(618)。データを記録した後は、キュア光学系13から出射する光ビームを用いてポストキュアを行う(619)。必要に応じてデータをベリファイしても構わない。メインデータはデータページのうちの大半を占める部位であり、主としてユーザデータが格納される。ユーザデータ以外に、特定のデータページにおいて、外部制御装置91が扱う論理アドレスと光情報記録媒体1における各データページの位置との対応を表すテーブルや、欠陥によって再生困難になったデータページの交替処理における、交替前と交替先とのデータページの位置の対応を表す交替位置リストを格納するようにしてもよい。また、ページヘッダとはデータページに記録されたデータの種別やデータ形式、多重記録されたページを識別のためのアドレスなどの情報を格納するためにデータページ上に設けた領域であり、メインデータとはデータページ上の記録するための領域と分けて設ける。 Thereafter, a predetermined area is pre-cured using the light beam emitted from the cure optical system 13 (614), and data page generation processing (617) including main data generation (615) and page header addition (616) is performed, and pickup is performed. Data is recorded using the reference light and the signal light emitted from 11 (618). After recording the data, post cure is performed using the light beam emitted from the cure optical system 13 (619). Data may be verified as necessary. Main data is a part that occupies most of the data page, and mainly stores user data. In addition to user data, in a specific data page, a table indicating the correspondence between the logical address handled by the external control device 91 and the position of each data page in the optical information recording medium 1, or the replacement of a data page that has become difficult to reproduce due to a defect You may make it store the replacement position list | wrist showing the response | compatibility of the position of the data page before replacement and the replacement destination in a process. The page header is an area provided on the data page for storing information such as the type and data format of the data recorded on the data page and the address for identifying the multiple recorded pages. Is provided separately from the recording area on the data page.
 準備完了状態から記録された情報を再生するまでの動作フローは図6(c)に示すように、まずシーク動作(621)で、アクセス制御部81を制御して、ピックアップ11ならびに再生用参照光光学系12の位置を光情報記録媒体の所定の位置に位置づけする。光情報記録媒体1がアドレス情報を持つ場合には、アドレス情報を再生し、目的の位置に位置づけされているか確認し、目的の位置に配置されていなければ、所定の位置とのずれ量を算出し、再度位置づけする動作を繰り返す。 As shown in FIG. 6C, the operation flow from the ready state to the reproduction of recorded information is as follows. First, in the seek operation (621), the access control unit 81 is controlled, and the pickup 11 and the reproduction reference light are reproduced. The position of the optical system 12 is positioned at a predetermined position on the optical information recording medium. When the optical information recording medium 1 has address information, it reproduces the address information, checks whether it is positioned at the target position, and calculates the amount of deviation from the predetermined position if it is not positioned at the target position. And repeat the positioning operation.
 続いて、ピックアップ11から参照光を出射し、光情報記録媒体に記録された情報を読み出し、データページを取得し(622)、データページ内のページヘッダ部の判別(623)の後に再生データを検出(624)して送信する(625)。ページヘッダ部の判別(623)の結果として目標とするデータページと識別されない場合においては、目標とは異なるデータページを検出しているおそれがあるので、再生データの送信(625)は行わずに中止するか、(621)(622)の処理から再度実行しなおす。 Subsequently, the reference light is emitted from the pickup 11, the information recorded on the optical information recording medium is read, the data page is acquired (622), and the reproduction data is obtained after the determination of the page header portion in the data page (623). Detection (624) and transmission (625). If the page data is not identified as the target data page as a result of the page header determination (623), there is a possibility that a data page different from the target is detected, so that the reproduction data is not transmitted (625). Either cancel or re-execute from the processes of (621) and (622).
 図9は、記録、再生時のデータ処理フローを示したものであり、図9(a)は、入出力制御部90において記録データ受信処理611後、空間光変調器312上の2次元データに変換するまでの信号生成部86での記録データ処理フローを示しており、図9(b)は光検出器325で2次元データを検出後、入出力制御部90における再生データ送信処理624までの信号処理部85での再生データ処理フローを示している。 FIG. 9 shows a data processing flow during recording and reproduction. FIG. 9A shows the two-dimensional data on the spatial light modulator 312 after the recording data reception processing 611 in the input / output control unit 90. FIG. 9B shows a recording data processing flow in the signal generation unit 86 until conversion, and FIG. 9B shows the process up to reproduction data transmission processing 624 in the input / output control unit 90 after the two-dimensional data is detected by the photodetector 325. The reproduction data processing flow in the signal processing unit 85 is shown.
 図9(a)を用いて記録時のデータ処理について説明する。901から906までの処理は、図6(b)の処理におけるメインデータ生成(615)の内部の処理に対応する。信号生成部81がユーザデータを受信(901)すると、複数のデータ列に分割、再生時エラー検出が行えるように各データ列をCRC化(902)し、オンピクセル数とオフピクセル数をほぼ等しくし、同一パタンの繰り返しを防ぐことを目的にデータ列に擬似乱数データ列を加えるスクランブル(903)を施した後、再生時にエラー訂正が行えるようにリード・ソロモン符号等の誤り訂正符号化(904)を行う。次に誤り訂正符号化されたデータ列を予め定めた規則に従って配置して、2次元データ(905)を構成する。なお、905の処理においてランレングス制限変調などの変調処理を加えてもよい。このように構成した2次元データに対して再生時の画像位置検出や画像歪補正での基準となるマーカーを付加(906)し、ページヘッダを付加(616)の上で空間光変調器312にデータを転送(907)する。 The data processing during recording will be described with reference to FIG. The processing from 901 to 906 corresponds to the internal processing of the main data generation (615) in the processing of FIG. When the signal generator 81 receives the user data (901), it is divided into a plurality of data strings, and each data string is converted to CRC (902) so that error detection during reproduction can be performed, so that the number of on pixels is substantially equal to the number of off pixels. Then, after performing scramble (903) for adding a pseudo-random data sequence to the data sequence for the purpose of preventing repetition of the same pattern, an error correction encoding such as a Reed-Solomon code (904) is performed so that error correction can be performed during reproduction. )I do. Next, the two-dimensional data (905) is configured by arranging the error correction encoded data string according to a predetermined rule. Note that a modulation process such as run-length limited modulation may be added in the process 905. A marker serving as a reference for image position detection and image distortion correction at the time of reproduction is added to the two-dimensional data thus configured (906), and a page header is added (616) to the spatial light modulator 312. Data is transferred (907).
 次に図9(b)を用いて再生時のデータ処理フローについて説明する。912から919までの処理は、図6(c)の処理におけるデータ再生(624)の内部の処理に対応する。光検出器325で検出された画像データが信号処理部85に転送(911)されるとともに、検出された画像データから、ページヘッダを判別(623)し、ページヘッダに格納されたデータを取得する、次に、この画像データに含まれるマーカーを基準に画像位置を検出(912)し、画像の傾き・倍率・ディストーションなどの歪みを補正(913)した後、2値化処理(914)を行い、マーカーを除去(915)することで1ページ分の2次元データを取得(916)する。このようにして得られた2次元データを複数のデータ列に変換した後、誤り訂正処理(917)を行い、パリティデータ列を取り除く。次にスクランブル解除処理(918)を施し、CRCによる誤り検出処理(919)を行ってCRCパリティを削除した後にユーザデータを入出力制御部90経由で送信(920)する。なお、マーカーによる画像位置検出(912)が、ページヘッダの判別(623)よりも容易に行えることが期待できる場合は、これらの処理の順序を入れ替えて、マーカーによる画像位置検出結果を用いてページヘッダの探索を行ってもよい。 Next, the data processing flow during reproduction will be described with reference to FIG. The processing from 912 to 919 corresponds to the internal processing of data reproduction (624) in the processing of FIG. The image data detected by the photodetector 325 is transferred to the signal processing unit 85 (911), and the page header is determined from the detected image data (623), and the data stored in the page header is acquired. Next, the image position is detected with reference to the marker included in the image data (912), and distortion such as the tilt, magnification, and distortion of the image is corrected (913), and then binarization processing (914) is performed. By removing the marker (915), two-dimensional data for one page is acquired (916). After converting the two-dimensional data obtained in this way into a plurality of data strings, error correction processing (917) is performed to remove the parity data strings. Next, descrambling processing (918) is performed, CRC error detection processing (919) is performed, CRC CRC is deleted, and user data is transmitted (920) via the input / output control unit 90. If it can be expected that the image position detection by the marker (912) can be performed more easily than the determination of the page header (623), the order of these processes is changed, and the image position detection result by the marker is used for the page. A header search may be performed.
 図7は、情報記録再生装置10の信号生成部86のブロック図である。 FIG. 7 is a block diagram of the signal generation unit 86 of the information recording / reproducing apparatus 10.
 入出力制御部90にユーザデータの入力が開始されると、入出力制御部90はコントローラ89にユーザデータの入力が開始されたことを通知する。コントローラ89は本通知を受け、信号生成部86に入出力制御部90から入力される1ページ分のデータを記録処理するよう命ずるとともに、ページヘッダに格納する情報をヘッダパタン生成部710に与える。コントローラ89からの処理命令は制御用ライン708を経由し、信号生成部86内サブコントローラ701に通知される。この通知を受け、サブコントローラ701は各信号処理部を並列に動作させるよう制御用ライン708を介して各信号処理部の制御を行う。 When the input of user data is started to the input / output control unit 90, the input / output control unit 90 notifies the controller 89 that the input of user data has started. Upon receiving this notification, the controller 89 instructs the signal generation unit 86 to record one page of data input from the input / output control unit 90, and provides the header pattern generation unit 710 with information to be stored in the page header. A processing command from the controller 89 is notified to the sub-controller 701 in the signal generation unit 86 via the control line 708. Upon receiving this notification, the sub-controller 701 controls each signal processing unit via the control line 708 so that the signal processing units are operated in parallel.
 先ずメモリ制御部703に、データライン709を介して入出力制御部90から入力されるユーザデータをメモリ702に格納するよう制御する。また、メモリ702の別の領域には、画像のサブピクセル位置検出に適するように定めた条件を満たす、マーカーパタン 712が格納される。格納されるマーカーパタンは単一のパタンであってもよいし、複数のパタンであってもよい。また、ユーザデータが格納されるメモリ素子とマーカーパタン712が格納されるメモリ素子は単一の素子であってもよいし、別の素子であってもよい。 First, the memory control unit 703 is controlled to store the user data input from the input / output control unit 90 via the data line 709 in the memory 702. In another area of the memory 702, a marker pattern 712 that satisfies a condition that is suitable for detecting a sub-pixel position of an image is stored. The stored marker pattern may be a single pattern or a plurality of patterns. The memory element storing user data and the memory element storing the marker pattern 712 may be a single element or different elements.
 メモリ702に格納したユーザデータがある一定量に達すると、CRC演算部704でユーザデータをCRC化する制御を行う。次にCRC化したデータに、スクランブル部705で擬似乱数データ列を加えるスクランブル化を施し、誤り訂正符号化部706でパリティデータ列を加える誤り訂正符号化する制御を行い、さらにマーカー付加部 710によって再生時に基準となるマーカーを付加してデータページのうちのメインデータの部分の記録パタンを生成し、メモリ702に格納する。一方で、ヘッダパタン生成部711では、コントローラ89から入力されたページヘッダに格納する情報に基づいてページヘッダの記録パタンを生成し、メモリ702に格納する。 When the user data stored in the memory 702 reaches a certain amount, the CRC calculation unit 704 performs control to convert the user data into CRC. Next, the scramble unit 705 scrambles the CRC-converted data to add a pseudo-random data sequence, the error correction encoding unit 706 performs error correction encoding to add the parity data sequence, and the marker adding unit 710 performs the control. A recording marker for the main data portion of the data page is generated by adding a reference marker at the time of reproduction, and stored in the memory 702. On the other hand, the header pattern generation unit 711 generates a page header recording pattern based on the information stored in the page header input from the controller 89 and stores it in the memory 702.
 最後にピックアップインターフェース部707にメモリ702からメインデータの記録パタンとページヘッダの記録パタンを空間光変調器312上の2次元データの並び順で読み出させ、ピックアップ11内の空間光変調器312に2次元データを転送する。 Finally, the pickup interface unit 707 reads the recording pattern of the main data and the recording pattern of the page header from the memory 702 in the arrangement order of the two-dimensional data on the spatial light modulator 312, and causes the spatial light modulator 312 in the pickup 11 to read it. Transfer two-dimensional data.
 図8は、情報記録再生装置10の信号処理部85のブロック図である。 FIG. 8 is a block diagram of the signal processing unit 85 of the information recording / reproducing apparatus 10.
 コントローラ89はピックアップ11内の光検出器325が画像データを検出すると、信号処理部85にピックアップ11から入力される1ページ分のデータを再生処理するよう命ずる。コントローラ89からの処理命令は制御用ライン811を経由し、信号処理部85内サブコントローラ801に通知される。本通知を受け、サブコントローラ801は各信号処理部を並列に動作させるよう制御用ライン811を介して各信号処理部の制御を行う。先ず、メモリ制御部803に、データライン812を介して、ピックアップ11からピックアップインターフェース部810を経由して入力される画像データをメモリ802に格納するよう制御する。 When the photodetector 325 in the pickup 11 detects the image data, the controller 89 instructs the signal processing unit 85 to reproduce the data for one page input from the pickup 11. A processing command from the controller 89 is notified to the sub-controller 801 in the signal processing unit 85 via the control line 811. In response to this notification, the sub-controller 801 controls each signal processing unit via the control line 811 so that the signal processing units operate in parallel. First, the memory control unit 803 is controlled to store the image data input from the pickup 11 via the pickup interface unit 810 via the data line 812 in the memory 802.
 メモリ802に格納されたデータがある一定量に達すると、ヘッダパタン復号部813によってページヘッダに格納されたデータを復号し、検出されたデータページの識別情報が再生の目標とするデータページであると判定したのちに、続いて画像位置検出部809でメモリ802に格納された画像データ内からマーカーを検出して有効データ範囲を抽出する制御を行う。メモリ802の別の領域には、記録したデータページのマーカーパタン712に対応し、再生時に光検出器325上に予め定めた再生画素位置で結像されたパタンを模した、基準検出パタン814が格納される。ユーザデータが格納されるメモリ素子と基準検出パタン814が格納されるメモリ素子は単一の素子であってもよいし、別の素子であってもよい。 When the data stored in the memory 802 reaches a certain amount, the header pattern decoding unit 813 decodes the data stored in the page header, and the identification information of the detected data page is the data page targeted for reproduction. After the determination, the image position detection unit 809 performs control to detect a marker from the image data stored in the memory 802 and extract an effective data range. In another area of the memory 802, a reference detection pattern 814 that corresponds to the marker pattern 712 of the recorded data page and imitates a pattern imaged at a predetermined reproduction pixel position on the photodetector 325 during reproduction. Stored. The memory element that stores the user data and the memory element that stores the reference detection pattern 814 may be a single element or another element.
 次に、検出されたマーカーを用いて画像歪み補正部808で、画像の傾き・倍率・ディストーションなどの歪み補正を行い、画像データを期待される2次元データのサイズに変換する制御する。サイズ変換された2次元データを構成する複数ビットの各ビットデータを、2値化部807において“0”、“1”判定する2値化し、メモリ802上に再生データの出力の並びでデータを格納する制御を行う。次に誤り訂正部806で各データ列に含まれる誤りを訂正し、スクランブル解除部805で擬似乱数データ列を加えるスクランブルを解除した後、CRC演算部804でメモリ802上のユーザデータ内に誤りが含まれない確認を行う。その後、入出力制御部90にメモリ802からユーザデータを転送する。 Next, using the detected marker, the image distortion correction unit 808 performs distortion correction such as image inclination, magnification, distortion, and the like, and controls to convert the image data into the expected two-dimensional data size. Each bit data of a plurality of bits constituting the size-converted two-dimensional data is binarized by a binarization unit 807 to determine “0” or “1”, and the data is arranged in the memory 802 in the order of the output of the reproduction data. Control to store. Next, the error correction unit 806 corrects an error included in each data sequence, and the scramble release unit 805 releases the scramble to add the pseudo random number data sequence, and then the CRC calculation unit 804 causes an error in the user data on the memory 802. Check not included. Thereafter, the user data is transferred from the memory 802 to the input / output control unit 90.
 図10は、画像位置検出部809の一構成例を表している。画像位置検出部809は、内部に探索領域パタン取得部1001と、基準パタン取得部1002と、共分散演算部1003と、共分散ピーク位置判別部1004と、サブピクセル位置判別部1005とを有する。 FIG. 10 shows a configuration example of the image position detection unit 809. The image position detection unit 809 includes a search region pattern acquisition unit 1001, a reference pattern acquisition unit 1002, a covariance calculation unit 1003, a covariance peak position determination unit 1004, and a subpixel position determination unit 1005.
 探索領域パタン取得部1001は、光検出器325で検出したデータページのうち、マーカーパタンを一つ含む領域をメモリ802から取得する。基準パタン取得部1002は、メモリ802に格納された基準検出パタン814を取得する。共分散演算部1003は、探索領域パタン取得部1001で取得した領域内に含まれる、基準パタン取得部1002で取得した基準検出パタン814と同一の再生画素数の領域を有する全ての部分領域に対して、基準検出パタン814との共分散値を計算する。共分散ピーク位置判別部1004は、共分散演算部1003求めた共分散値が最大となる部分領域を判別し、ピクセル単位でのマーカー検出位置を求める。サブピクセル位置判別部1005は共分散ピーク位置判別部1004で判別した共分散値が最大となる部分領域の近傍の共分散値を用いた演算によって、1ピクセル以下の位置(サブピクセル位置)を判別する。このようにして求められたサブピクセル位置情報は、画像歪み補正部808に伝達され、画像の傾き・倍率・ディストーションなどの歪み補正に用いる。 The search area pattern acquisition unit 1001 acquires, from the memory 802, an area including one marker pattern among the data pages detected by the photodetector 325. The reference pattern acquisition unit 1002 acquires the reference detection pattern 814 stored in the memory 802. The covariance calculation unit 1003 applies to all partial regions that have the same number of reproduced pixels as the reference detection pattern 814 acquired by the reference pattern acquisition unit 1002 included in the region acquired by the search region pattern acquisition unit 1001. Thus, the covariance value with the reference detection pattern 814 is calculated. The covariance peak position discriminating unit 1004 discriminates a partial region where the covariance value obtained by the covariance calculation unit 1003 is maximized, and obtains a marker detection position in pixel units. The subpixel position discriminating unit 1005 discriminates a position (subpixel position) of one pixel or less by calculation using a covariance value in the vicinity of the partial region where the covariance value determined by the covariance peak position determining unit 1004 is maximum. To do. The sub-pixel position information obtained in this way is transmitted to the image distortion correction unit 808, and is used for distortion correction such as image inclination, magnification, and distortion.
 ところで、特開2010-003358号公報(特許文献2)に記載の技術では、データページの行方向と列方向の少なくとも一方においてオンピクセルおよびオフピクセルの最小連続長を2以上の自然数に制限する変調を行う一方で、この方向の開口サイズを最小連続長に反比例して小型化した空間フィルタ314を用いることによって、データページの検出性を確保しつつ、ディスク上におけるホログラムの寸法を小型化し、記録密度を向上させる。記録時における空間フィルタ314の挿入される光軸上の位置において、空間光変調器312からの信号光306はデータページの2次元空間周波数スペクトルと相似な強度分布をなすことが知られており、空間フィルタ314の開口は二次元データパタン像に対して低域通過フィルタとして作用する。このため特許文献2の技術のように空間フィルタ314の開口サイズを小型化して記録したデータページの再生時には空間光変調器312の1記録画素のオンピクセルに対する再生時の光検出器325の画素面上に照射される信号光306の広がりが大きくなるので、画素間の干渉が増大する。なお、効果的に記録密度を向上させるためには、最小連続長のオンピクセルとオフピクセルの繰り返しに対応した空間周波数の成分は通過させるとともに、最小連続長より1小さい連続長のオンピクセルとオフピクセルの繰り返しに対応した空間周波数成分は遮断するように空間フィルタ314の開口サイズを定める。 By the way, in the technique described in Japanese Patent Laid-Open No. 2010-003358 (Patent Document 2), modulation that limits the minimum continuous length of on-pixels and off-pixels to a natural number of 2 or more in at least one of the row direction and the column direction of a data page. On the other hand, by using the spatial filter 314 in which the aperture size in this direction is reduced in inverse proportion to the minimum continuous length, the size of the hologram on the disk is reduced and recording is performed while ensuring the data page detectability. Improve density. It is known that the signal light 306 from the spatial light modulator 312 has an intensity distribution similar to the two-dimensional spatial frequency spectrum of the data page at a position on the optical axis where the spatial filter 314 is inserted at the time of recording. The aperture of the spatial filter 314 acts as a low-pass filter for the two-dimensional data pattern image. For this reason, when reproducing a data page recorded with a reduced aperture size of the spatial filter 314 as in the technique of Patent Document 2, the pixel surface of the photodetector 325 during reproduction with respect to the on-pixel of one recording pixel of the spatial light modulator 312. Since the spread of the signal light 306 irradiated thereon increases, interference between pixels increases. In order to effectively improve the recording density, the spatial frequency component corresponding to the repetition of the on-pixel and off-pixel having the minimum continuous length is allowed to pass, and the on-pixel and off-state having a continuous length 1 smaller than the minimum continuous length are passed. The aperture size of the spatial filter 314 is determined so as to block the spatial frequency component corresponding to the repetition of the pixel.
 一方で、特表2008-536158号公報(特許文献1)では、サブピクセル位置の検出に適したマーカーパタンが記載されている。これによれば、データページの位置誤差の決定に適した予備のブロック(マーカー)として、予備ブロック内の特定のサブブロックと、端部に接する他の複数のサブブロックとの共分散値が全て0になるパタンを用いる。また、この予備のブロックを用いたサブピクセル位置検出は、前記の特定のサブブロックに基づく理想検出像を基準として光検出器325で検出した像から共分散値が最大となる位置を求める再生画素単位でのマーカー位置判別に続き、この共分散値が最大となる位置周囲での共分散値を用いた演算処理によって行う。これによって、予備ブロックの外側の記録画素パタンからの影響を十分に低減してサブピクセル位置を検出することを可能としている。しかし、筆者が探索したところ、特許文献1のように最小連続長を制限しつつ予備のブロックの共分散値に関する条件を満たし、ピクセル位置の検出に適すると考えられるものは見出せなかった。 On the other hand, Japanese Patent Publication No. 2008-536158 (Patent Document 1) describes a marker pattern suitable for detecting a subpixel position. According to this, as a spare block (marker) suitable for determining the position error of the data page, all the covariance values of a specific sub-block in the spare block and other sub-blocks in contact with the end are all A pattern that becomes zero is used. The subpixel position detection using the spare block is a reproduction pixel for obtaining a position where the covariance value is maximum from the image detected by the photodetector 325 with reference to the ideal detection image based on the specific subblock. Subsequent to marker position determination in units, this is performed by arithmetic processing using a covariance value around the position where the covariance value is maximum. This makes it possible to detect the subpixel position while sufficiently reducing the influence from the recording pixel pattern outside the spare block. However, as a result of a search by the author, it was not possible to find a device that satisfies the conditions regarding the covariance values of the spare blocks while limiting the minimum continuous length as in Patent Document 1, and is considered suitable for detecting the pixel position.
 ここで、特許文献2の技術を適用したデータページにおいて特許文献1に記載の予備ブロックを適用する場合、予備ブロックの部位には空間フィルタ314によって画素間干渉の影響を強く受ける、最小連続長未満の連続長のパタンが存在することになる。これに対し、以下で説明する本願のマーカーパタン生成方法によれば、このようなパタンを回避することが可能である。 Here, when the spare block described in Patent Document 1 is applied to the data page to which the technique of Patent Document 2 is applied, the spare block portion is strongly affected by the inter-pixel interference by the spatial filter 314 and is less than the minimum continuous length. There will be a continuous length pattern. On the other hand, according to the marker pattern generation method of the present application described below, such a pattern can be avoided.
 また、画素間の干渉が大きくなることで、ピーク位置における共分散値と、この位置に近接する位置に対する共分散値が接近する。このことは、空間光変調器312の1記録画素に対する光検出器325の画素面上に照射される信号光306の広がりによって、もとの空間光変調器312のパタンと同様強度分布の(つまり共分散値が大きい)パタンが周囲に重ねあわされる形態でモデリングできることで直感的に説明できる。このとき、光検出器325で検出した像から共分散値が最大となる位置を求める再生画素単位でのマーカー位置判別処理において、本来共分散値が最大となると判別されるべき位置の隣接位置を共分散値の最大となる位置であると誤判別する危険性が増大する。 Also, as the interference between pixels increases, the covariance value at the peak position and the covariance value for positions close to this position approach each other. This is because the spread of the signal light 306 irradiated on the pixel surface of the photodetector 325 with respect to one recording pixel of the spatial light modulator 312 has an intensity distribution similar to the pattern of the original spatial light modulator 312 (that is, This can be explained intuitively by being able to model the pattern with a large covariance value). At this time, in the marker position determination processing in units of reproduction pixels for obtaining the position where the covariance value is maximized from the image detected by the photodetector 325, the adjacent position of the position where the covariance value should originally be determined is determined. There is an increased risk of misjudging that the position has the maximum covariance value.
 この問題に対して、大別すると2つの方策が考えられる。一つ目は、ピーク位置の隣接位置の共分散値を低減することである。2つめは、ピーク位置を隣接位置と誤判別した場合においても、続くサブピクセル位置検出処理において妥当な検出結果が得られるようにすることである。本願では、後者の方策に基づき、画素間干渉の大きい検出像においてもサブピクセル位置検出を可能とする。なお、画素間干渉については、空間フィルタ312の開口サイズとこの方向に沿った空間光変調器312の記録画素ピッチとの積に依存し、空間フィルタ312の開口サイズを小さくしたときと同様に記録画素ピッチを小さくした場合においても画素間干渉は大きくなる。より具体的には、空間光変調器312の行方向の記録画素ピッチとこの方向に沿った空間フィルタ314の開口サイズの積と、列方向の画素ピッチとこの方向に沿った開口サイズの積とを比較し、より小さい方向のほうが画素間干渉が大きくなり、言い換えると単一の記録画素に対応する検出像の大きさに対する記録画素ピッチの比が大きくなる。 に 対 し て There are two main measures for this problem. The first is to reduce the covariance value of the position adjacent to the peak position. Second, even when the peak position is misidentified as an adjacent position, an appropriate detection result can be obtained in the subsequent subpixel position detection processing. In the present application, based on the latter measure, sub-pixel position detection is possible even in a detection image with large inter-pixel interference. The inter-pixel interference depends on the product of the aperture size of the spatial filter 312 and the recording pixel pitch of the spatial light modulator 312 along this direction, and is recorded in the same manner as when the aperture size of the spatial filter 312 is reduced. Even when the pixel pitch is reduced, the inter-pixel interference increases. More specifically, the product of the recording pixel pitch in the row direction of the spatial light modulator 312 and the aperture size of the spatial filter 314 along this direction, the product of the pixel pitch in the column direction and the aperture size along this direction, In the smaller direction, the inter-pixel interference increases, in other words, the ratio of the recording pixel pitch to the size of the detected image corresponding to a single recording pixel increases.
 次に、マーカーパタンの生成方法を詳細に説明する。図1はマーカーパタン生成処理の流れ図である。マーカーパタン生成処理は、大別すると中間パタン生成ステップ101と拡大パタン生成ステップ 102からなる。中間パタン生成ステップ101では、境界と接する記録画素からなる外縁部を除いた中間パタン中心部と前記中間パタン中心部と同一の二次元画素配置を有しつつ前記中間パタンの境界に内接する部分領域の全てとの共分散値が0となる特徴する中間パタンを得る。 Next, the method for generating the marker pattern will be described in detail. FIG. 1 is a flowchart of marker pattern generation processing. The marker pattern generation process is roughly divided into an intermediate pattern generation step 101 and an enlarged pattern generation step 102. In the intermediate pattern generation step 101, the intermediate pattern center area excluding the outer edge part composed of the recording pixels in contact with the boundary and the partial area inscribed in the boundary of the intermediate pattern having the same two-dimensional pixel arrangement as the intermediate pattern central part To obtain a characteristic intermediate pattern in which the covariance value with all of is zero.
 中間パタン生成ステップ101は、たとえば内部に中間パタン候補取得ステップ103、中間パタン中心部取得ステップ1104と、内接部分領域取得ステップ105と、共分散値計算ステップ106と、共分散条件判定ステップ107とを行う。 The intermediate pattern generation step 101 includes, for example, an intermediate pattern candidate acquisition step 103, an intermediate pattern center acquisition step 1104, an inscribed partial region acquisition step 105, a covariance value calculation step 106, and a covariance condition determination step 107. I do.
 中間パタン候補取得ステップ103は、求める中間パタンと列方向、行方向とも同一の記録画素数を有する二次元パタンである中間パタン候補を取得するステップである。中間パタン中心部取得ステップ104は、中間パタン候補から、境界と接する記録画素からなる外縁部を除いた中間パタン中心部を取得するステップである。内接部分領域取得ステップ105は中間パタン候補から、中間パタン中心部と列方向と行方向の記録画素数がともに一致しつつ中間パタンの境界に内接する部分領域である内接部分領域の全てを取得するステップである。共分散値計算ステップ106では、内接部分領域取得ステップ105で取得した中間パタンの境界に内接する部分領域の全てに対し、中間パタン中心部取得ステップ104で取得した中間パタン中心部との共分散値を求めるステップである。共分散条件判定ステップ107では共分散値計算ステップ106で求めた各々の共分散値が全て0か否かを判定するステップであり、全て0であった場合は、そのときの中間パタン候補を中間パタンとして採用する一方で、全て0と判定されない場合は、再度中間パタン候補取得ステップ103を行って、中間パタン候補を更新し、以上に述べた103から107の処理を行う。 The intermediate pattern candidate acquisition step 103 is a step of acquiring an intermediate pattern candidate that is a two-dimensional pattern having the same number of recording pixels in the column direction and the row direction as the intermediate pattern to be obtained. The intermediate pattern center portion acquisition step 104 is a step of acquiring an intermediate pattern center portion excluding an outer edge portion composed of recording pixels in contact with the boundary from the intermediate pattern candidates. The inscribed partial area acquisition step 105 selects all of the inscribed partial areas from the intermediate pattern candidates, which are partial areas inscribed in the boundary of the intermediate pattern while the number of recording pixels in the column direction and the row direction is the same as the intermediate pattern center. It is a step to acquire. In the covariance value calculation step 106, the covariance with the intermediate pattern center acquired in the intermediate pattern center acquisition step 104 for all of the partial regions inscribed in the boundary of the intermediate pattern acquired in the inscribed partial region acquisition step 105. This is a step for obtaining a value. The covariance condition determining step 107 is a step for determining whether or not all the covariance values obtained in the covariance value calculating step 106 are all 0. If all the covariance values are 0, the intermediate pattern candidate at that time is determined as the intermediate pattern candidate. On the other hand, if it is determined that all the patterns are not 0, the intermediate pattern candidate acquisition step 103 is performed again to update the intermediate pattern candidates, and the processes 103 to 107 described above are performed.
 拡大パタン生成ステップ 102では、中間パタンの各記録画素を行方向にNx画素、列方向Ny画素(Nx, Nyは正の整数で、少なくとも一方は2以上)の記録画素数を有する前記各記録画素と同一極性のパタンに置換する。ここで、NxとNyはそれぞれ対応する方向におけるユーザデータ部の最小連続長と同一か、もしくはより大きい値とする。拡大パタン生成ステップ 102では、たとえば行方向拡大ステップ 108と列方向拡大ステップ109とを行う。行方向拡大ステップ 108では、中間パタンの各記録画素を、これらの画素と同一の極性を有し、列方向に1記録画素、行方向にNx記録画素のサイズを有する記録ユニットに全て置換する。これによって、中間パタンを行方向にNx倍した行方向拡大パタンを得る。列方向拡大ステップ109では、同様に拡大行方向パタンの各記録画素を、これらの画素と同一の極性を有し、列方向にNy記録画素、行方向に1記録画素のサイズを有する記録ユニットにすべて置換する。行方向拡大ステップ 108と列方向拡大ステップ109とを経て、最終的には中間パタンに対して行方向にNx倍、列方向にNy倍に拡大した拡大パタンが得られる。本実施例では、このようにして得られた拡大パタンをマーカーパタンとして適用する。なお、拡大パタン生成ステップ102での拡大倍率Nx, Nyが大きいほど、画素間干渉の影響を小さくできる。このため、中間パタン生成ステップ101と拡大パタン生成ステップ102の2つのステップを有する生成法によれば、中間パタンを基準として、記録するページデータの再生に必要な位置検出精度や信頼性と、許容されるマーカーパタンの占有率を勘案してNx,Nyを切り替えることにより、ケースに応じた適正なマーカーパタンを設けることを容易に行うことができる効果が得られる。 In the enlarged pattern generation step 102, each recording pixel of the intermediate pattern has Nx pixels in the row direction and Ny pixels in the column direction (Nx, Ny is a positive integer, at least one is 2 or more). Replace with the same polarity pattern. Here, Nx and Ny are the same as or larger than the minimum continuous length of the user data portion in the corresponding direction. In the enlargement pattern generation step 102, for example, a row direction enlargement step 108 and a column direction enlargement step 109 are performed. In the row direction enlargement step 108, each recording pixel of the intermediate pattern is replaced with a recording unit having the same polarity as these pixels, and having the size of one recording pixel in the column direction and Nx recording pixels in the row direction. As a result, a row direction enlarged pattern obtained by multiplying the intermediate pattern by Nx in the row direction is obtained. In the column direction enlargement step 109, similarly, each recording pixel of the enlarged row direction pattern is changed to a recording unit having the same polarity as these pixels, the size of Ny recording pixels in the column direction, and the size of one recording pixel in the row direction. Replace all. Through the row direction enlargement step 108 and the column direction enlargement step 109, an enlargement pattern is finally obtained that is enlarged Nx times in the row direction and Ny times in the column direction with respect to the intermediate pattern. In the present embodiment, the enlarged pattern obtained in this way is applied as a marker pattern. Note that the larger the magnifications Nx and Ny in the enlarged pattern generation step 102, the smaller the influence of inter-pixel interference. Therefore, according to the generation method having the two steps of the intermediate pattern generation step 101 and the enlarged pattern generation step 102, the position detection accuracy and reliability required for reproducing the page data to be recorded, and the tolerance By switching Nx and Ny in consideration of the occupancy rate of the marker pattern to be performed, it is possible to easily provide an appropriate marker pattern according to the case.
 次に、以上で生成方法を説明した中間パタンとマーカーパタンについて実例を示す。 Next, actual examples of the intermediate pattern and the marker pattern that have been described above with respect to the generation method will be shown.
 図12は中間パタンの一例である。ハッチングして示した正方形はオフピクセル、白色の正方形はオンピクセルを現している。本実施例では、記録画素数について、行方向と列方向とも8画素としており、これを囲む外縁が境界である。また、図13は図12に示した中間パタン内における中間パタン中心部(1401)と、内接部分領域(1402)を表している。図13(e)において、点線部は中間パタン中心部1401を表しており、具体的には行方向と列方向とも8記録画素の正方形をなす中間パタンのうち、境界に接する記録画素を除いた一辺当たり6記録画素を有する正方形の領域となる。また図13(a)~(d), 図13(g)~(i)の各々において、太線で囲まれた領域は内接部分領域1402 を表しており、中間パタン同一の一辺あたり6記録画素の正方形をなしつつ,中間パタンの境界に内接している。なお、オンピクセルとオフピクセルに異なる値(たとえば、オンピクセルに1,オフピクセルに-1)を与え、図13(e)に示した中間パタン中心部1401と、図13(a)~(d), 図13(g)~(i)の各々に示した内接部分領域1402との間の共分散値を求めると、全ての共分散値が0になる。また、図12の中間パタンは、中心点に対して点対称かつ行方向・列方向とも中心線に対して反転した極性となるパタンとなっている。これによって、オンピクセルとオフピクセルの数を同一にできる。また、中間パタンおよび拡大パタンにおいて、その1/4の記録画素が決まれば、他の3/4の記録画素も連動して決めることができるので、メモリ702内に格納するマーカーパタン712の情報量を節約できる。 FIG. 12 is an example of an intermediate pattern. Hatched squares represent off pixels, and white squares represent on pixels. In this embodiment, the number of recorded pixels is 8 pixels in both the row direction and the column direction, and the outer edge surrounding this is the boundary. FIG. 13 shows an intermediate pattern central portion (1401) and an inscribed partial region (1402) in the intermediate pattern shown in FIG. In FIG. 13 (e), the dotted line portion represents the intermediate pattern central portion 1401, and specifically, the recording pixels in contact with the boundary are excluded from the intermediate patterns that form a square of 8 recording pixels in the row direction and the column direction. This is a square area having 6 recording pixels per side. 13 (a) to 13 (d) and FIGS. 13 (g) to 13 (i), the area surrounded by a thick line represents the inscribed partial area 1402, and 6 recording pixels per side having the same intermediate pattern. It is inscribed in the boundary of the intermediate pattern while forming a square. Note that different values (for example, 1 for the on pixel and −1 for the off pixel) are given to the on pixel and the off pixel, and the intermediate pattern center portion 1401 shown in FIG. 13 (e) and FIGS. 13 (a) to (d) ), Calculating the covariance values between the inscribed partial areas 1402 shown in each of FIGS. 13G to 13I, all the covariance values are zero. Further, the intermediate pattern in FIG. 12 is a pattern that is point-symmetric with respect to the center point and has a polarity reversed with respect to the center line in both the row direction and the column direction. Thereby, the number of on pixels and off pixels can be made the same. In addition, if the 1/4 recording pixel is determined in the intermediate pattern and the enlarged pattern, the other 3/4 recording pixels can be determined in conjunction with each other. Therefore, the information amount of the marker pattern 712 stored in the memory 702 Can be saved.
 図14は、中間パタンと、拡大パタン生成ステップ 1102を経た拡大パタンの例を表しており、図14では行方向にNx=2倍、列方向にNy=1倍とする例を示している。図14(a)は中間パタンの記録画素と、拡大パタンを生成する際の記録ユニットの例であり、記録ユニットは行方向にNx =2記録画素、列方向にNy=1記録画素からなる長方形の形状であり、記録ユニット内の全記録画素の極性(オンピクセルあるいはオフピクセル)は、置換元の中間パタンと同一とする。図14(b)は、中間パタンと図14(a)で示した置換によって得られる拡大パタンを表している。拡大パタンは、中間パタンに対して、行方向にNx=2倍、列方向にNy=1倍の記録画素数を有する。また、拡大パタン内におけるオンピクセルおよびオフピクセルの連続数は、行方向に対してNx=2の整数倍、列方向にNy=1の整数倍のみであり、特に最小連続数は行方向にNx =2、列方向にNy =1となる。図14(b)に示したような拡大パタンをマーカーパタンとして用いると、例えば、特許文献2の技術の適用により、行方向にオンピクセルとオフピクセルの最小連続数が2となるような変調を掛ける一方で、空間フィルタ314の開口によって、行方向に1記録画素のオンピクセルとオフピクセルが繰り返されるパタンに対応する空間周波数成分が遮断される場合においても、マーカーパタン内に行方向に連続数1のパタンを含まないことにより検出性を確保できる効果が得られる。 FIG. 14 shows an example of an intermediate pattern and an enlarged pattern that has undergone an enlarged pattern generation step 1102, and FIG. 14 shows an example in which Nx = 2 times in the row direction and Ny = 1 times in the column direction. FIG. 14A shows an example of a recording unit for generating an intermediate pattern and an enlarged pattern. The recording unit is a rectangle composed of Nx = 2 recording pixels in the row direction and Ny = 1 recording pixel in the column direction. The polarity (on pixel or off pixel) of all the recording pixels in the recording unit is the same as the intermediate pattern of the replacement source. FIG. 14B shows an enlarged pattern obtained by the intermediate pattern and the replacement shown in FIG. The enlarged pattern has a recording pixel number that is Nx = 2 times in the row direction and Ny = 1 times in the column direction with respect to the intermediate pattern. Further, the continuous number of on-pixels and off-pixels in the enlargement pattern is an integer multiple of Nx = 2 in the row direction and only an integer multiple of Ny = 1 in the column direction. In particular, the minimum continuous number is Nx in the row direction. = 2 and Ny = 1 in the column direction. When the enlarged pattern as shown in FIG. 14B is used as the marker pattern, for example, by applying the technique of Patent Document 2, modulation is performed so that the minimum continuous number of on pixels and off pixels is 2 in the row direction. On the other hand, even when the spatial frequency component corresponding to the pattern in which the on-pixel and the off-pixel of one recording pixel are repeated in the row direction is blocked by the opening of the spatial filter 314, the continuous number in the row direction is included in the marker pattern. The effect of ensuring the detectability can be obtained by not including one pattern.
 図17は、中間パタンと、拡大パタン生成ステップ 1102を経た別の拡大パタンの例を表しており、図17では行方向にNx=2倍、列方向にNy=2倍とする例を示している。図17(a)は中間パタンの記録画素と、拡大パタンを生成する際の記録ユニットの例であり、記録ユニットは行方向にNx =2記録画素、列方向にNy=2記録画素からなる正方形の形状であり、記録ユニット内の全記録画素の極性(オンピクセルあるいはオフピクセル)は、置換元の中間パタンと同一とする。図17(b)は、中間パタンと図17(a)で示した置換によって得られる拡大パタンを表している。拡大パタンは、中間パタンに対して、行方向にNx=2倍、列方向にNy=2倍の記録画素数を有する。また、拡大パタン内におけるオンピクセルおよびオフピクセルの連続数は、行方向に対してNx=2の整数倍、列方向にNy=2の整数倍のみであり、特に最小連続数は行方向にNx =2、列方向にNy =2となる。図17(b)に示したような拡大パタンをマーカーパタンとして用いると、特許文献2の技術の適用により、行方向と列方向ともにオンピクセルとオフピクセルの最小連続数が2となるような変調を掛ける一方で、空間フィルタ314の開口によって、行方向と列方向に1記録画素のオンピクセルとオフピクセルが繰り返されるパタンに対応する空間周波数成分が遮断される場合においても、マーカーパタン内に連続数1のパタンを含まないことにより検出性を確保できる効果が得られる。 FIG. 17 shows an example of an intermediate pattern and another enlarged pattern that has undergone an enlarged pattern generation step 1102. FIG. 17 shows an example in which Nx = 2 times in the row direction and Ny = 2 times in the column direction. Yes. FIG. 17A shows an example of a recording unit for generating an intermediate pattern and an enlarged pattern. The recording unit is a square composed of Nx = 2 recording pixels in the row direction and Ny = 2 recording pixels in the column direction. The polarity (on pixel or off pixel) of all the recording pixels in the recording unit is the same as the intermediate pattern of the replacement source. FIG. 17B shows an enlarged pattern obtained by the intermediate pattern and the replacement shown in FIG. The enlarged pattern has a recording pixel number Nx = 2 times in the row direction and Ny = 2 times in the column direction with respect to the intermediate pattern. Further, the continuous number of on-pixels and off-pixels in the enlargement pattern is only an integer multiple of Nx = 2 in the row direction and only an integer multiple of Ny = 2 in the column direction. In particular, the minimum continuous number is Nx in the row direction. = 2 and Ny = 2 in the column direction. When an enlarged pattern as shown in FIG. 17 (b) is used as a marker pattern, modulation is performed such that the minimum continuous number of on-pixels and off-pixels is 2 in both the row direction and the column direction by applying the technique of Patent Document 2. On the other hand, even if the spatial frequency component corresponding to the pattern in which the on-pixel and the off-pixel of one recording pixel are repeated in the row direction and the column direction is blocked by the opening of the spatial filter 314, it is continuously included in the marker pattern. The effect of ensuring the detectability can be obtained by not including the pattern of Formula 1.
 より一般的には、図1の生成方法によって得られる拡大パタンをマーカーパタンとして用いると、特許文献2の技術の適用により、行方向にオンピクセルとオフピクセルの最小連続数がNx,列方向にNyとなるような変調を掛ける一方で、空間フィルタ314の開口によって、行方向に(Nx -1)記録画素および列方向に(Ny -1)記録画素のオンピクセルとオフピクセルが繰り返されるパタンに対応する空間周波数成分が遮断される場合においても、マーカーパタン内に行方向(Nx -1)、列方向に(Ny-1)以下の連続数のパタンを含まないことにより検出性を確保できる効果が得られる。 More generally, when the enlarged pattern obtained by the generation method of FIG. 1 is used as a marker pattern, the minimum continuous number of on-pixels and off-pixels in the row direction is Nx and the column direction is applied by applying the technique of Patent Document 2. While Ny modulation is applied, the spatial filter 314 has an opening that repeats the on pixel and the off pixel of the (NxN-1) recording pixel in the row direction and (Ny -1) recording pixel in the column direction. Even when the corresponding spatial frequency component is cut off, it is possible to ensure detectability by not including a continuous number of patterns less than (Nx-1) in the row direction and (Ny-1) in the column direction in the marker pattern. Is obtained.
 つづいて、このようにして得られる拡大パタン(マーカーパタンとして適用)の特徴について説明する。ここでは、理解を容易とするため、具体例として、Nx=2、Ny=1の例とNx=2、Ny=2の例を示した後、一般化した例について示す。 Next, the characteristics of the enlarged pattern (applied as a marker pattern) obtained in this way will be described. Here, for easy understanding, as a specific example, an example of Nx = 2 and Ny = 1 and an example of Nx = 2 and Ny = 2 are shown, and then a generalized example is shown.
 このようにして得られた拡大パタンは、各記録画素の行方向と列方向について、オンピクセルおよびオフピクセルの連続数が予め定めた整数Nx, Nyの倍数となるパタンのみによって構成され、境界から前記予め定めた整数Nx, Nyと同数の画素以内の距離の範囲に対応する外縁部を除いたマーカーパタン中心部と前記マーカーパタン中心部と行方向、列方向とも同一の画素数を有しつつ前記マーカーパタンの境界に内接するマーカーパタン内接部分領域の全てとの共分散値が0となる。 The enlarged pattern obtained in this way is composed only of patterns in which the continuous number of on-pixels and off-pixels is a multiple of predetermined integers Nx and Ny in the row direction and the column direction of each recording pixel. The marker pattern center excluding the outer edge corresponding to the range of distances within the same number of pixels as the predetermined integers Nx and Ny and the marker pattern center have the same number of pixels in the row direction and the column direction. The covariance value with all of the marker pattern inscribed partial areas inscribed in the marker pattern boundary is zero.
 また、前記マーカーパタン中心部と行方向、列方向とも同一の画素数を有し、マーカーパタン内に存在しつつ前記マーカーパタンの境界に内接しないマーカーパタン中間部分領域と、前記マーカーパタン中心部との共分散値は、前記マーカーパタン中心部に対する相対記録画素位置を(Nx', Ny')とおくと、(Nx-|Nx'|)(Ny-|Ny'|)/(Nx Ny)に比例した大きさとなる。 In addition, the marker pattern middle part region having the same number of pixels in both the row direction and the column direction as the marker pattern center part and existing in the marker pattern but not inscribed in the boundary of the marker pattern, and the marker pattern center part The covariance value with (Nx ′ |) Ny ′) is (Nx− | Nx ′ |) / (Ny− | Ny ′ |) / (Nx Ny) The size is proportional to.
 図15は、図14(b)で示したNx=2、Ny=1としたときの拡大パタンを例として、マーカーパタン中心部、マーカーパタン内接部分領域、マーカーパタン中間部分領域のそれぞれを示している。1601はマーカーパタン中心部、1602はマーカーパタン内接部分領域、1603はマーカーパタン中間部分領域である。これらの記録画素数は、マーカーパタンの画素数である行方向16、列方向8から、外縁部に相当するNx=2、Ny=1の2倍を減じた、行方向12、列方向6の記録画素数となる。図15(a)~(o)は拡大パタン内において存在しうる行方向12、列方向6記録画素の領域の位置関係のすべてを表しており、外縁に接する図15(a),(b),(c),(d),(f),(g),(i),(j),(l),(m),(n),(o)では、マーカーパタン内設部分領域1602、中心に存在する図15(h)ではマーカーパタン中心部1601、残りの図15(e),(k)ではマーカーパタン中間部分領域1603となる。また、図16はマーカーパタン中心部1601から行方向にNx記録画素、列方向にNy記録画素だけシフトした位置のパタンとの間の共分散値を表している。ここでの共分散値はNx‘=0、Ny’=0のパタン(つまりマーカーパタン中心部1601そのもの)との間の共分散値を1とするように正規化している。マーカーパタン中間部分領域1603に相当する(Nx‘,Ny’)=(-1,0)と(Nx‘,Ny’)=(1,0)
のパタンに対しては、共分散値が0.5となる。また、マーカーパタン内接部分領域1602に相当するNy’=±1かつ Nx’= -2,-1,0,1,2 の何れかの位置および(Nx‘,Ny’)=(-2,0)と(Nx‘,Ny’)=(2,0)の位置のパタンについては共分散値が0となる。
FIG. 15 shows each of the marker pattern center portion, the marker pattern inscribed partial region, and the marker pattern intermediate partial region, taking the enlarged pattern when Nx = 2 and Ny = 1 shown in FIG. 14B as an example. ing. Reference numeral 1601 denotes a marker pattern central part, 1602 denotes a marker pattern inscribed partial area, and 1603 denotes a marker pattern intermediate partial area. The number of recorded pixels in the row direction 12 and the column direction 6 is obtained by subtracting twice the Nx = 2 and Ny = 1 corresponding to the outer edge portion from the row direction 16 and the column direction 8 that are the number of pixels of the marker pattern. This is the number of recording pixels. FIGS. 15 (a) to 15 (o) show all the positional relationships of the area of the recording pixels in the row direction 12 and the column direction 6 that can exist in the enlarged pattern, and FIGS. 15 (a) and 15 (b) in contact with the outer edge. , (C), (d), (f), (g), (i), (j), (l), (m), (n), (o), the marker pattern internal partial area 1602, In FIG. 15H existing at the center, the marker pattern central portion 1601 is formed, and in the remaining FIGS. 15E and 15K, the marker pattern intermediate portion region 1603 is formed. FIG. 16 shows a covariance value between the marker pattern central portion 1601 and a pattern at a position shifted by Nx recording pixels in the row direction and Ny recording pixels in the column direction. Here, the covariance value is normalized so that the covariance value between the pattern of Nx ′ = 0 and Ny ′ = 0 (that is, the marker pattern central portion 1601 itself) is 1. (Nx ′, Ny ′) = (− 1, 0) and (Nx ′, Ny ′) = (1, 0) corresponding to the marker pattern intermediate partial area 1603
The covariance value is 0.5 for this pattern. Further, Ny ′ = ± 1 corresponding to the marker pattern inscribed partial region 1602 and any position of Nx ′ = − 2, −1, 0, 1, 2 and (Nx ′, Ny ′) = (− 2, The covariance value is 0 for the patterns at the positions (0) and (Nx ′, Ny ′) = (2, 0).
 図18は、Nx=2、Ny=2としたときの拡大パタンを例として、マーカーパタン中心部、マーカーパタン内接部分領域、マーカーパタン中間部分領域のそれぞれを示している。1901はマーカーパタン中心部、1902はマーカーパタン内接部分領域、1903はマーカーパタン中間部分領域である。これらの記録画素数は、マーカーパタンの画素数である行方向16、列方向16から、外縁部に相当するNx=2、Ny=2の2倍を減じた、行方向12、列方向12の記録画素数となる。図18(a)~(y)は拡大パタン内において存在しうる行方向12、列方向12記録画素の領域の位置関係のすべてを表しており、外縁に接する図18(a),(b),(c),(d),(e),(f),(j),(k),(o),(p),(t),(u),(v),(w),(x),(y)では、マーカーパタン内設部分領域1902、中心に存在する図18(m)ではマーカーパタン中心部1901、残りの図18(g),(h),(i),(l),(n),(q),(r),(s)ではマーカーパタン中間部分領域1903となる。また、図19はマーカーパタン中心部1901から行方向にNx記録画素、列方向にNy記録画素だけシフトした位置のパタンとの間の共分散値を表している。ここでの共分散値はNx‘=0、Ny’=0のパタン(つまりマーカーパタン中心部1901そのもの)との間の共分散値を1とするように正規化している。マーカーパタン中間部分領域1903に相当する(Nx‘,Ny’)=(-1,0)、(Nx‘,Ny’)=(1,0)、(Nx‘,Ny’)=(0, -1)、(Nx‘,Ny’)=(0, 1)、(Nx‘,Ny’)=(-1,0)、(Nx‘,Ny’)=(1,0)のパタンに対しては、共分散値が0.5となり、(Nx‘,Ny’)=(-1,1)、(Nx‘,Ny’)=(1,1)、(Nx‘,Ny’)=(1, -1)、 (Nx‘,Ny’)=(-1,-1)のパタンに対しては、共分散値が0.25となる。また、マーカーパタン内接部分領域1902に相当するNx’=±2またはNy’=±2の位置のパタンについては共分散値が0となる。 FIG. 18 shows each of the marker pattern center portion, the marker pattern inscribed partial region, and the marker pattern intermediate partial region, taking the enlarged pattern when Nx = 2 and Ny = 2 as an example. Reference numeral 1901 denotes a marker pattern central portion, 1902 denotes a marker pattern inscribed partial area, and 1903 denotes a marker pattern middle partial area. The number of recorded pixels in the row direction 12 and the column direction 12 is obtained by subtracting twice the Nx = 2 and Ny = 2 corresponding to the outer edge from the row direction 16 and the column direction 16 that are the number of pixels of the marker pattern. This is the number of recording pixels. FIGS. 18 (a) to (y) show all the positional relationships of the recording pixels in the row direction 12 and the column direction 12 that can exist in the enlarged pattern. FIGS. 18 (a) and 18 (b) are in contact with the outer edge. , (C), (d), (e), (f), (j), (k), (o), (p), (t), (u), (v), (w), ( In (x) and (y), the marker pattern internal partial region 1902, in FIG. 18 (m) existing at the center, the marker pattern central portion 1901, and the remaining FIG. 18 (g), (h), (i), (l ), (N), (q), (r), and (s), the marker pattern intermediate partial region 1903 is obtained. FIG. 19 shows a covariance value between the marker pattern center portion 1901 and the pattern at a position shifted by Nx recording pixels in the row direction and Ny recording pixels in the column direction. The covariance value here is normalized so that the covariance value between the pattern of Nx ′ = 0 and Ny ′ = 0 (that is, the marker pattern central portion 1901 itself) is 1. (Nx ′, Ny ′) = (− 1,0), (Nx ′, Ny ′) = (1,0), (Nx ′, Ny ′) = (0, −) corresponding to the marker pattern intermediate partial region 1903 1), (Nx ′, Ny ′) = (0, 1), (Nx ′, Ny ′) = (− 1,0), (Nx ′, Ny ′) = (1,0) Has a covariance value of 0.5, and (Nx ′, Ny ′) = (− 1, 1), (Nx ′, Ny ′) = (1, 1), (Nx ′, Ny ′) = (1 , -1) and (Nx ', Ny') = (-1, -1), the covariance value is 0.25. The covariance value is 0 for the pattern at the position of Nx ′ = ± 2 or Ny ′ = ± 2 corresponding to the marker pattern inscribed partial region 1902.
 図20(a)は、より一般的な形態として、ひとつの記録ユニットの記録画素数を行方向にNx記録画素、列方向にNy記録画素とした場合における, 中間パタンの記録画素 と拡大パタンの記録ユニットとの関係を表しており、前述のように、記録ユニットは中間パタンの各記録画と同一の極性を有し、列方向にNy記録画素、行方向にNx記録画素のサイズを有する。この置換によって、得られる拡大パターン(マーカーパタンとして適用される)は、もとの中間パタンに対して、列方向にNy倍、行方向にNx倍の記録画素数を有する。また、マーカーパタン中心部は、拡大パタンに対して、行方向に2Nx記録画素、列方向に2Ny記録画素だけ小さい記録画素数を有する。図20(b)はこのときの拡大パタンについて、マーカーパタン中心部1901から行方向にNx記録画素、列方向にNy記録画素だけシフトした位置のパタンとの間の共分散値を表している。ここでの共分散値はNx‘=0、Ny’=0のパタン(つまりマーカーパタン中心部1901そのもの)との間の共分散値を1とするように正規化している。マーカーパタン内接部分領域に相当するNx’=±NxまたはNy’=±Nyの位置のパタンについては共分散値が0となる。また、マーカーパタン中間部分領域に相当する位置のパタンについては、マーカーパタン中心部との相対位置(Nx', Ny')によって共分散値が変わり、その値は (Nx-|Nx'|)(Ny-|Ny'|)/{Nx Ny)のように行方向の相対距離と列方向の相対距離の積に比例した値となる。 FIG. 20 (a) shows, as a more general form, when the number of recording pixels of one recording unit is Nx recording pixels in the row direction and Ny recording pixels in the column direction, the recording pixel の of the intermediate pattern and the enlarged pattern As described above, the recording unit has the same polarity as each recording image of the intermediate pattern, and has a size of Ny recording pixels in the column direction and Nx recording pixels in the row direction. By this replacement, the obtained enlarged pattern (applied as a marker pattern) has the number of recording pixels Ny times in the column direction and Nx times in the row direction with respect to the original intermediate pattern. The center portion of the marker pattern has a smaller number of recording pixels by 2Nx recording pixels in the row direction and 2Ny recording pixels in the column direction than the enlarged pattern. FIG. 20B shows the covariance value between the pattern at the position shifted from the marker pattern central portion 1901 by Nx recording pixels in the row direction and Ny recording pixels in the column direction. The covariance value here is normalized so that the covariance value between the pattern of Nx ′ = 0 and Ny ′ = 0 (that is, the marker pattern central portion 1901 itself) is 1. The covariance value is 0 for the pattern at the position of Nx ′ = ± Nx or Ny ′ = ± Ny corresponding to the marker pattern inscribed partial region. In addition, the covariance value of the pattern at the position corresponding to the marker pattern intermediate partial region changes depending on the relative position (Nx ′, Ny ′) with respect to the marker pattern center, and the value is (Nx− | Nx ′ |) ( Ny− | Ny ′ |) / {Nx Ny), which is a value proportional to the product of the relative distance in the row direction and the relative distance in the column direction.
 以上に述べた本実施例の拡大パタンをマーカーパタンとして採用すれば、再生時において、マーカーパタン中心部の記録画素領域に相当する検出像を模した再生画素数の基準検出パタンを設け、基準パタンとの共分散値のピークとなる検出像上の再生画素領域位置と、その周辺かつマーカーパタンの記録画素領域に相当する範囲内に存在する再生画素領域に対して取得した共分散値から重心と類似の演算を用いることで、マーカーパタンの外側の記録パタンの影響の小さいサブピクセル位置検出を可能とする効果が得られる。また、特に特許文献2の技術の適用により行方向と列方向とのオンピクセルとオフピクセルの最小連続数がそれぞれNx, Nyとなるような変調を掛ける一方で、空間フィルタ314の開口によって、行方向と列方向に1記録画素のオンピクセルとオフピクセルが繰り返されるパタンに対応する空間周波数成分が遮断される場合においても、マーカーパタン内に行方向に連続数Nx-1以下となるパタンや列方向に連続数Ny-1以下となる画素間干渉が大きいパタンを含まないことにより検出性を確保できる効果が得られる。 If the enlarged pattern of the present embodiment described above is adopted as a marker pattern, a reference detection pattern having a reproduction pixel number that imitates a detection image corresponding to the recording pixel area at the center of the marker pattern is provided during reproduction. And the center of gravity from the covariance value acquired for the reproduction pixel area located in the vicinity and the area corresponding to the recording pixel area of the marker pattern. By using a similar calculation, it is possible to obtain an effect of enabling sub-pixel position detection with a small influence of the recording pattern outside the marker pattern. In particular, by applying the technique of Patent Document 2, modulation is performed such that the minimum continuous numbers of on-pixels and off-pixels in the row direction and the column direction become Nx and Ny, respectively, while the spatial filter 314 opens the row. Even when the spatial frequency component corresponding to the pattern in which the on-pixel and the off-pixel of one recording pixel are repeated in the direction and the column direction is cut off, the pattern or column that is not more than Nx−1 in the row direction in the marker pattern The effect of ensuring the detectability can be obtained by not including a pattern with a large inter-pixel interference that is equal to or less than the continuous number Ny−1 in the direction.
 本実施例では、実施例1で述べたマーカーパタンを用いて、データページの再生時に再生画素のサブピクセル位置を検出する方法について説明する。本実施例のサブピクセル位置検出を実施例1記載のマーカーパタンを用いて行うことによって、画素間干渉が大きい再生条件において共分散ピーク位置をその隣接位置と誤判別が発生しても正しくサブピクセル位置を求めることができる効果が得られる。 In the present embodiment, a method for detecting the sub-pixel position of the reproduction pixel at the time of reproducing the data page using the marker pattern described in the first embodiment will be described. By performing the subpixel position detection of the present embodiment using the marker pattern described in the first embodiment, the subpixel is correctly detected even if the covariance peak position is misidentified as the adjacent position under the reproduction condition where the inter-pixel interference is large. The effect that the position can be obtained is obtained.
 サブピクセル位置の検出は、図11に示す流れに従って行われる。図11において、1101は部分検出像を取得するステップ、1102は基準検出パタン生成ステップ、1103は共分散値計算ステップ、1104は画素単位位置判別ステップ、1105はサブピクセル位置判別ステップをそれぞれ表す。 The subpixel position is detected according to the flow shown in FIG. In FIG. 11, reference numeral 1101 denotes a step of acquiring a partial detection image, 1102 denotes a reference detection pattern generation step, 1103 denotes a covariance value calculation step, 1104 denotes a pixel unit position determination step, and 1105 denotes a subpixel position determination step.
 部分検出像を取得するステップ1101では、光検出器325で検出したページデータから、マーカーパタンを一つだけ含む部位の部分検出像を取得する。光検出器325の画素面上に結像されるデータページの位置のずれが生じる場合においてもマーカーパタンが内部に存在するためには、ある程度大きい再生画素領域が必要となるが、一方で、この部分検出像内に複数のマーカーパタンが存在することがない程度に再生画素領域を小さくする必要がある。また、この部分検出像が大きいほど処理の演算量が大きくなるので、部分検出像の大きさは、検出位置のずれを見込んだ必要最小の範囲とするべきである。 In step 1101 of acquiring a partial detection image, a partial detection image of a part including only one marker pattern is acquired from page data detected by the photodetector 325. Even in the case where the position of the data page imaged on the pixel surface of the photodetector 325 shifts, a certainly large reproduction pixel area is necessary for the marker pattern to exist inside. It is necessary to reduce the reproduction pixel area to such an extent that a plurality of marker patterns do not exist in the partial detection image. Further, the larger the partial detection image, the larger the calculation amount of processing. Therefore, the size of the partial detection image should be within the minimum necessary range that allows for the detection position shift.
 基準検出パタン生成ステップ1102では、後段で行う共分散演算に用いる基準検出パタンを生成する。基準検出パタンは、マーカーパタン中心部の記録画素領域に相当する検出像を模したパタンであり、その再生画素数は、行方向に対して1/αx倍程度、列方向に対して1/αy倍程度だけマーカーパタン中心部の記録画素数より大きくする(αx, αyはそれぞれ行方向と列方向における記録画素間隔に対する再生画素間隔の比であり、オーバーサンプリング比の逆数)。たとえば、記録画素間隔に対して行方向にαx=3/4倍, 列方向にαy=3/4倍の再生画素間隔となる光検出器325を用いてデータページを検出する装置で、図15に示した行方向に12記録画素、列方向に8記録画素のマーカーパタン中心部1601を有するマーカーパタンを用いてサブピクセル検出を行うときには、基準検出パタンの再生画素数は行方向16、列方向8とする。より具体的には、図21(a)で示されるような強度分布のマーカーパタン検出像が光検出器325の画素面上に結像されるものと計算されるので、これに対応して図21(b)に示すような基準検出パタンを設ける。また、基準検出パタンの作成時には、記録画素間隔と再生画素間隔の違いや空間光変調器312の1記録画素のオンピクセルに対する再生時の光検出器325の画素面上に照射される信号光306の広がりを考慮し、多値の輝度をもつパタンとする。なお、基準検出パタン生成ステップ1102は共分散値計算ステップ1103よりも前に行われている必要があるが、データページの検出ごとに行うのではなく、予め装置の外に設けたシミュレータ等によって作成しておいたパタンをメモリ802等に格納しておいてもよい。 In a reference detection pattern generation step 1102, a reference detection pattern used for a covariance calculation performed in a later stage is generated. The reference detection pattern is a pattern simulating a detection image corresponding to the recording pixel area at the center of the marker pattern, and the number of reproduced pixels is about 1 / αx times in the row direction and 1 / αy in the column direction. The number of recording pixels at the center of the marker pattern is set to be about twice as large (αx and αy are the ratio of the reproduction pixel interval to the recording pixel interval in the row direction and the column direction, respectively, and the reciprocal of the oversampling ratio). For example, an apparatus for detecting a data page using a photodetector 325 having a reproduction pixel interval of αx = 3/4 times in the row direction and αy = 3/4 times in the column direction with respect to the recording pixel interval, as shown in FIG. When the sub-pixel detection is performed using the marker pattern having the marker pattern central portion 1601 of 12 recording pixels in the row direction and 8 recording pixels in the column direction, the number of reproduced pixels of the reference detection pattern is 16 in the row direction and the column direction. Eight. More specifically, since it is calculated that a marker pattern detection image having an intensity distribution as shown in FIG. 21A is formed on the pixel surface of the photodetector 325, a corresponding figure is obtained. A reference detection pattern as shown in 21 (b) is provided. Further, when the reference detection pattern is created, the signal light 306 irradiated on the pixel surface of the photodetector 325 at the time of reproduction with respect to the difference between the recording pixel interval and the reproduction pixel interval or the on-pixel of one recording pixel of the spatial light modulator 312. The pattern with multi-valued luminance is taken into consideration. The reference detection pattern generation step 1102 needs to be performed before the covariance value calculation step 1103, but is not performed every time a data page is detected, but is created by a simulator or the like provided outside the apparatus in advance. The stored pattern may be stored in the memory 802 or the like.
 共分散値計算ステップ1103では、部分検出像を取得するステップ1101で取得した
部分検出像の範囲内に含まれる、基準検出パタン生成ステップ1102で求めた基準検出パタンと同一サイズの全ての検出像部分領域に対して共分散値を求める。画素単位位置判別ステップ1104では、共分散値計算ステップ1103において求めた共分散値のうち、最大となるのものと、それに対応した検出像部分領域の位置から、再生画素単位でのマーカーパタンの位置を判別する。サブピクセル位置判別ステップ1105では、画素単位位置判別ステップ1104で判別した共分散値が最大となる検出像部分領域の外側に対して、行方向にNx/αxを超えない整数N1だけの再生画素、列方向にNy/αyを超えない整数N2だけの再生画素だけ拡大した領域内に含まれる前記検出像部分領域に対して前記共分散値演算ステップで求めた共分散値に基づいて、サブピクセル位置を判別する。共分散値からのサブピクセル位置判別には、数1または数2の演算が適用できる。
In the covariance value calculation step 1103, all detection image portions having the same size as the reference detection pattern obtained in the reference detection pattern generation step 1102 included in the range of the partial detection image acquired in step 1101 of acquiring the partial detection image. Find the covariance value for the region. In the pixel unit position determination step 1104, the position of the marker pattern in the reproduction pixel unit from the maximum covariance value obtained in the covariance value calculation step 1103 and the corresponding position of the detected image partial region. Is determined. In the sub-pixel position determining step 1105, the reproduction pixels of only the integer N1 that does not exceed Nx / αx in the row direction with respect to the outside of the detected image partial region where the covariance value determined in the pixel unit position determining step 1104 is maximum. Based on the covariance value obtained in the covariance value calculation step with respect to the detected image partial region included in the region enlarged by the reproduction pixel of the integer N2 not exceeding Ny / αy in the column direction, the subpixel position Is determined. The calculation of Equation 1 or Equation 2 can be applied to the subpixel position determination from the covariance value.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 これらにおいて、Δxは行方向における、サブピクセル位置、Δyは列方向におけるサブピクセル位置であり、画素単位位置判別ステップ1104で求めた再生画素(整数)単位での位置と、実際に生じる再生画素よりも細かい精度での位置との差分を表す。N1はNx/αxを超えない整数、N2はNy/αyを超えない整数、βxは行方向のスケールファクタ、βyは列方向のスケールファクタをそれぞれ表す。また、前記共分散値が最大となる前記検出像部分領域よりも行方向にp再生画素、列方向にq再生画素だけ位置をずらした前記検出像部分領域に対する共分散値をCov[p][q]と表記した。数1では画素単位位置判別ステップ1104で判別した共分散値が最大となる検出像部分領域の外側に対して、行方向に±N1再生画素、列方向に±N2ずらした範囲の検出像部分領域すべてとの共分散値を用いて演算を行っている。数2では、数1の処理を簡略化し、画素単位位置判別ステップ1104で判別した共分散値が最大となる検出像部分領域を中心として、列方向には同一の再生画素位置に固定し、行方向に±N1再生画素ずらした範囲の共分散値を用いて行方向のサブピクセル位置を判別するとともに、行方向には同一の再生画素位置に固定し、列方向に±N2再生画素ずらした範囲の共分散値を用いて列方向のサブピクセル位置を判別する。数1と数2のいずれを適用しても本技術の効果は得られるので、演算処理の負荷量と、サブピクセル位置検出精度を勘案して選択するとよい。 In these, Δx is a sub-pixel position in the row direction, Δy is a sub-pixel position in the column direction, and is based on the position in the reproduction pixel (integer) unit obtained in the pixel unit position determination step 1104 and the actually generated reproduction pixel. Represents the difference from the position with fine accuracy. N1 is an integer not exceeding Nx / αx, N2 is an integer not exceeding Ny / αy, βx is a scale factor in the row direction, and βy is a scale factor in the column direction. Further, the covariance value for the detection image partial area shifted by p reproduction pixels in the row direction and q reproduction pixels in the column direction from the detection image partial area where the covariance value is maximum is represented by Cov [p] [ q]. In Equation 1, the detection image partial area in a range shifted by ± N1 reproduction pixels in the row direction and ± N2 in the column direction with respect to the outside of the detection image partial area where the covariance value determined in the pixel unit position determination step 1104 is maximum. The calculation is performed using the covariance value with all. In Equation 2, the processing of Equation 1 is simplified, and the same reproduction pixel position is fixed in the column direction around the detected image partial region where the covariance value determined in the pixel unit position determination step 1104 is the maximum. The sub-pixel position in the row direction is determined using the covariance value in the range shifted by ± N1 playback pixels in the direction, fixed to the same playback pixel position in the row direction, and the range shifted by ± N2 playback pixels in the column direction The sub-pixel position in the column direction is determined using the covariance value. Since the effect of the present technology can be obtained by applying either Equation 1 or Equation 2, it is preferable that the selection is made in consideration of the amount of calculation processing load and subpixel position detection accuracy.
 以上に述べた本方式よるサブピクセル位置検出方法の特性の一例を図22(a)、図22(b)に示す。これらは、列方向に対して、1記録画素のオンピクセルとオフピクセルの繰り返しパタンに相当数する空間周波数の約1.1倍の空間周波数以上を制限するように空間フィルタ314の開口サイズを定める一方で、行方向には1記録画素のオンピクセルとオフピクセルの繰り返しパタンに相当数する空間周波数の約0.55倍の空間周波数以上を制限するように空間フィルタ314の開口サイズを定め、行方向に対する画素間干渉量を増大させた条件を模したシミュレーションによって得た。ここで、本方式のマーカーパタンは図14、図15に示した、記録ユニットサイズNx=2記録画素、Ny=1記録画素のものを適用した。また、比較のために示した従来法の特性のプロットには、図14の中間パタンをマーカーパタンとして適用した。このパタンは特許文献1に記載のマーカーパタンに要求される共分散条件を満たす。また、再生時は記録画素間隔に対して行方向にαx=3/4倍, 列方向にαy=3/4倍の再生画素間隔となる光検出器325を用いてデータページを検出することを想定し、これに対応して基準検出パタンの再生画素数は行方向16、列方向8とした。さらに、共分散値が最大となる検出像部分領域の外側に対して、行方向に±2再生画素、列方向に±1ずらした範囲の検出像部分領域の共分散値を用いてサブピクセル位置を求める演算を行った。 An example of the characteristics of the sub-pixel position detection method according to the present method described above is shown in FIGS. 22 (a) and 22 (b). These determine the aperture size of the spatial filter 314 so as to limit a spatial frequency of about 1.1 times the spatial frequency corresponding to the repetition pattern of on-pixel and off-pixel of one recording pixel in the column direction. On the other hand, in the row direction, the aperture size of the spatial filter 314 is determined so as to limit the spatial frequency of about 0.55 times the spatial frequency corresponding to the repeated pattern of on-pixel and off-pixel of one recording pixel. This was obtained by simulation simulating the condition that increased the amount of inter-pixel interference with respect to the direction. Here, as the marker pattern of this system, the recording unit size Nx = 2 recording pixels and Ny = 1 recording pixels shown in FIGS. 14 and 15 was applied. Further, the intermediate pattern of FIG. 14 was applied as a marker pattern to the plot of the characteristic of the conventional method shown for comparison. This pattern satisfies the covariance condition required for the marker pattern described in Patent Document 1. Also, at the time of reproduction, a data page is detected by using a photodetector 325 having a reproduction pixel interval of αx = 3/4 times in the row direction and αy = 3/4 times in the column direction with respect to the recording pixel interval. Assuming that the number of reproduced pixels of the reference detection pattern is 16 in the row direction and 8 in the column direction. Furthermore, the outside of the detection image partial area where the covariance value is maximum, the sub-pixel position using the covariance value of the detection image partial area in the range shifted ± 2 pixels in the row direction and ± 1 in the column direction The operation for obtaining was performed.
 図22(a)は基準検出パタンと同一の像が光検出器325の再生画素で検出される位置を基準として、行方向に受光像と再生画素との相対位置をシフトさせたときの、印加シフト量と、検出シフト量との関係を表している。また、図22(b)はこのときの検出誤差量(検出シフト量と印加シフト量の差)を表している。ここで、画素単位位置判別ステップ1104において求める、再生画素単位でのマーカーパタン位置において正しく最大の共分散値が検出できることが期待できる場合であれば、印加シフト量が0.5再生画素以内の範囲において検出シフト量の精度が確保できていればよい。しかし、本実施例のように画素間干渉が大きい場合においては、共分散値が最大となる基準検出パタンと同一の像が光検出器325の再生画素で検出される位置と、その近傍での共分散値とが接近し、隣接位置に対して検出した共分散値が最大となるおそれがある。このような場合においては、さらに1再生画素分の印加シフト量を加えた、1.5再生画素以内の範囲において検出シフト量の精度の確保が要求される。なお、スケールファクタβxは、シフト量0から1.5再生ピクセルの範囲における平均検出誤差量が最小となるように与えた。このとき、図22(a)に示したように、本方式によれば、従来方式と比較して線形性の良いサブピクセル位置検出特性が得られ、図22(b)に示したように、従来方式においては-0.18再生画素から0.47再生画素の範囲の検出誤差量が見られるのに対し、本方式においてはその1/3から1/4程度の-0.06再生画素から0.12再生画素の範囲の検出誤差量に低減される結果が得られた。なお、列方向のシフト量を0再生画素とした場合と0.5再生画素とした場合のそれぞれについて評価したが、大きな差異はみられなかった。なお、ここで示した記録ユニットサイズ(Nx=2、Ny=1)よりも大きくすれば同等以上の効果が得られるが、データページ内に閉めるマーカーパタンの占有率が大きくなるので、記録ユニット単位のオンピクセルパタンとオフピクセルパタンの繰り返し空間周波数が、空間フィルタ314の開口によって遮断されない最小限度のサイズとなるように記録ユニットサイズを定めると良い。 FIG. 22A shows an application when the relative position between the received light image and the reproduction pixel is shifted in the row direction with reference to the position where the same image as the reference detection pattern is detected by the reproduction pixel of the photodetector 325. The relationship between the shift amount and the detected shift amount is shown. FIG. 22B shows the detection error amount (difference between the detection shift amount and the applied shift amount) at this time. Here, if it can be expected that the maximum covariance value can be correctly detected at the marker pattern position in the reproduction pixel unit obtained in the pixel unit position determination step 1104, the applied shift amount is within the range of 0.5 reproduction pixels. As long as the accuracy of the detected shift amount can be ensured. However, in the case where the inter-pixel interference is large as in the present embodiment, the position where the same image as the reference detection pattern having the maximum covariance value is detected by the reproduction pixel of the photodetector 325 and the vicinity thereof are detected. There is a possibility that the covariance value approaches and the covariance value detected for the adjacent position is maximized. In such a case, it is required to ensure the accuracy of the detection shift amount within the range of 1.5 reproduction pixels, to which the applied shift amount for one reproduction pixel is further added. The scale factor βx is given so that the average detection error amount in the range of the shift amount 0 to 1.5 reproduction pixels is minimized. At this time, as shown in FIG. 22A, according to this method, sub-pixel position detection characteristics with better linearity than the conventional method can be obtained, and as shown in FIG. In the conventional method, a detection error amount in the range of -0.18 reproduction pixel to 0.47 reproduction pixel is seen, whereas in this method, from about-1/6 to 1/4 of -0.06 reproduction pixel. As a result, the detection error amount in the range of 0.12 reproduced pixels was reduced. Note that evaluation was made for each of the case where the shift amount in the column direction was 0 reproduction pixels and 0.5 reproduction pixels, but no significant difference was observed. If the recording unit size is larger than the recording unit size (Nx = 2, Ny = 1) shown here, the same or higher effect can be obtained. However, since the occupation rate of the marker pattern to be closed in the data page increases, The recording unit size may be determined so that the repeated spatial frequency of the on-pixel pattern and the off-pixel pattern has a minimum size that is not blocked by the opening of the spatial filter 314.
 この結果によって示されるように、実施例1記載のマーカーパタンを用いた本実施例のサブピクセル検出方法によれば、画素間干渉が大きい再生条件において共分散ピーク位置をその隣接位置と誤判別が発生しても正しくサブピクセル位置を求めることができる効果を得ることができる。 As shown by this result, according to the sub-pixel detection method of the present embodiment using the marker pattern described in the first embodiment, the covariance peak position is misidentified as the adjacent position under the reproduction condition where the inter-pixel interference is large. Even if it occurs, it is possible to obtain the effect of correctly obtaining the subpixel position.
 また、本発明は角度多重方式だけでなく、シフト多重方式などの他の方式に適用することが出来ることは言うまでも無い。さらには2次元データページがホログラムとして記録されている必要は無く、他の形態で記録されていてもよい。 Needless to say, the present invention can be applied not only to the angle multiplexing method but also to other methods such as a shift multiplexing method. Furthermore, the two-dimensional data page need not be recorded as a hologram, and may be recorded in another form.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積手段で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them by, for example, an integration means. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
1…光情報記録媒体、10…光情報記録再生装置、11…ピックアップ、
12…再生用参照光光学系、13…ディスクCure光学系、
14…ディスク回転角度検出用光学系、
81…アクセス制御部、
82…光源駆動部、83…サーボ信号生成部、
84…サーボ制御部、85…信号処理部、86…信号生成部、
87…シャッタ制御部、88…ディスク回転モータ制御部、
89…コントローラ、90…入出力制御部、91…外部制御装置、
101…中間パタン生成ステップ、
102…拡大パタン生成ステップ、
103…中間パタン候補更新ステップ、
104…中間パタン中心部取得ステップ、
105…内接部分領域取得ステップ、
106…共分散値計算ステップ、
107…共分散条件判定ステップ、
108…行方向拡大ステップ、
109…列方向拡大ステップ、
301…光源、303…シャッタ、306…信号光、307…参照光、
308…ビームエキスパンダ、309…フェーズ(位相)マスク、
310…リレーレンズ、311…PBSプリズム、
312…空間光変調器、313…リレーレンズ、314…空間フィルタ、
315…対物レンズ、316…偏光方向変換素子、320…アクチュエータ、
321…レンズ、322…レンズ、323…アクチュエータ、
324…ミラー、325…光検出器
501…光源、502…コリメートレンズ、503…シャッタ、504…光学素子、
505…PBSプリズム、506…信号光、507…PBSプリズム、508…空間光変調器、
509…アングルフィルタ、510…対物レンズ、511…対物レンズアクチュエータ、
512…参照光、513…ミラー、514…ミラー、515…レンズ、
516…ガルバノミラー、517…アクチュエータ、518…光検出器、
519…偏光方向変換素子、520…駆動方向、521…光学ブロック
1101…部分検出像を取得するステップ、
1102…基準検出パタン生成ステップ、
1103…共分散値計算ステップ、
1104…画素単位位置判別ステップ、
1105…サブピクセル位置判別ステップ、
1401…中間パタン中心部、
1402…内接部分領域、
1601…マーカーパタン中心部、
1602…マーカーパタン内接部分領域、
1603…マーカーパタン中間部分領域、
1901…マーカーパタン中心部、
1902…マーカーパタン内接部分領域、
1903…マーカーパタン中間部分領域
DESCRIPTION OF SYMBOLS 1 ... Optical information recording medium, 10 ... Optical information recording / reproducing apparatus, 11 ... Pickup,
12 ... Reference light optical system for reproduction, 13 ... Disc Cure optical system,
14: Optical system for detecting the disk rotation angle,
81 ... access control unit,
82: Light source drive unit, 83: Servo signal generation unit,
84 ... Servo control unit, 85 ... Signal processing unit, 86 ... Signal generation unit,
87: shutter control unit, 88 ... disk rotation motor control unit,
89 ... Controller, 90 ... Input / output control unit, 91 ... External control device,
101 ... Intermediate pattern generation step,
102 ... Expansion pattern generation step,
103 ... Intermediate pattern candidate update step,
104 ... Intermediate pattern center acquisition step,
105 ... inscribed partial region acquisition step,
106 ... covariance value calculation step,
107 ... covariance condition determination step,
108 ... row direction enlargement step,
109 ... Column direction enlargement step,
301: Light source, 303: Shutter, 306: Signal light, 307: Reference light,
308 ... Beam expander, 309 ... Phase mask,
310 ... Relay lens, 311 ... PBS prism,
312 ... Spatial light modulator, 313 ... Relay lens, 314 ... Spatial filter,
315: Objective lens, 316: Polarization direction conversion element, 320 ... Actuator,
321 ... Lens, 322 ... Lens, 323 ... Actuator,
324 ... Mirror, 325 ... Photodetector 501 ... Light source, 502 ... Collimating lens, 503 ... Shutter, 504 ... Optical element,
505 ... PBS prism, 506 ... signal light, 507 ... PBS prism, 508 ... spatial light modulator,
509 ... Angle filter, 510 ... Objective lens, 511 ... Objective lens actuator,
512 ... Reference light, 513 ... Mirror, 514 ... Mirror, 515 ... Lens,
516 ... Galvano mirror, 517 ... Actuator, 518 ... Photo detector,
519: Polarization direction conversion element, 520: Driving direction, 521: Optical block 1101 ... Step of acquiring a partial detection image,
1102 ... reference detection pattern generation step,
1103 ... Covariance value calculation step,
1104: Pixel unit position determining step,
1105 ... Subpixel position determination step,
1401 ... middle pattern center,
1402 ... inscribed partial area,
1601 ... Marker pattern center,
1602 ... Marker pattern inscribed partial area,
1603 ... Marker pattern middle partial area,
1901 ... Marker pattern center,
1902: Marker pattern inscribed partial area,
1903: Marker pattern middle part area

Claims (13)

  1.  二次元データページに記録されるマーカーパタンの生成方法であって、
     前記マーカーパタンを生成するための中間パタンを生成する中間パタン生成ステップと、
     前記生成された中間パタンを拡大したパタンを生成する拡大パタン生成ステップと、
     を備え、
     前記中間パタン生成ステップでは、前記中間パタンが、境界と接する画素からなる外縁部を除いた中間パタン中心部と、前記中間パタンの境界に内接する部分領域と、の共分散値が0となるように中間パタンを生成し、
     前記拡大パタン生成ステップでは、前記中間パタンの各記録画素を、該各記録画素と同一極性の記録画素を行方向と列方向の少なくとも一方に複数の記録画素数だけ並べた記録ユニットに置換することを特徴とする、マーカーパタン生成方法。
    A method for generating a marker pattern recorded on a two-dimensional data page,
    An intermediate pattern generating step for generating an intermediate pattern for generating the marker pattern;
    An enlarged pattern generating step for generating a pattern obtained by enlarging the generated intermediate pattern;
    With
    In the intermediate pattern generation step, the intermediate pattern has a covariance value of 0 between the central portion of the intermediate pattern excluding the outer edge portion composed of pixels in contact with the boundary and the partial region inscribed in the boundary of the intermediate pattern. Generate an intermediate pattern,
    In the enlarged pattern generation step, each recording pixel of the intermediate pattern is replaced with a recording unit in which recording pixels having the same polarity as each recording pixel are arranged in at least one of the row direction and the column direction by a plurality of recording pixels. A marker pattern generation method characterized by the above.
  2.  請求項1に記載のマーカーパタン生成方法であって、
     前記二次元データページは二次元的に配置された再生画素を有する光検出器によって再生され、
     前記記録ユニットの行方向の記録画素数と列方向の記録画素数とが異なり、
     前記光検出器上に結像する前記二次元データページの検出像における記録画素間の間隔の大きさに比して、前記光検出器上に単一の記録画素に対応して結像する検出像の大きさが大きい方向において、前記記録ユニットの記録画素数を複数並べることを特徴とするマーカーパタン生成方法。
    It is a marker pattern production | generation method of Claim 1, Comprising:
    The two-dimensional data page is reproduced by a photodetector having reproduction pixels arranged two-dimensionally,
    The number of recording pixels in the row direction and the number of recording pixels in the column direction of the recording unit are different,
    Detection that forms an image on the photodetector corresponding to a single recording pixel as compared to the size of the interval between the recording pixels in the detection image of the two-dimensional data page imaged on the photodetector. A marker pattern generation method, wherein a plurality of recording pixels of the recording unit are arranged in a direction in which an image size is large.
  3.  請求項1に記載のマーカーパタン生成方法であって、
     前記二次元データページは、記録画素の行方向と列方向の少なくとも一方についてオンピクセルとオフピクセルが少なくとも2よりも大きい自然数だけ連続するパタンが記録されており、    
     前記記録ユニットは、行方向と列方向に対して、各々の方向の最小の連続数以上の記録画素数を有することを特徴とする、マーカーパタン生成方法。
    It is a marker pattern production | generation method of Claim 1, Comprising:
    In the two-dimensional data page, a pattern in which an on-pixel and an off-pixel are continuous by at least one of a natural number greater than 2 is recorded in at least one of a row direction and a column direction of a recording pixel,
    The marker pattern generation method according to claim 1, wherein the recording unit has a recording pixel number equal to or greater than a minimum continuous number in each direction in the row direction and the column direction.
  4.  二次元的に配置された再生画素を有する光検出器によって再生され、二次元的に配置された記録画素により構成された二次元データページが記録された情報記録媒体であって、
     前記二次元データページの予め定めた位置にマーカーパタンが配置され、
     前記マーカーパタンは、各記録画素の行方向と列方向について、オンピクセルおよびオフピクセルの連続数が各々の方向に対して一定の整数Nx,Nyの記録画素数の同一極性の記録画素からなる記録ユニットによって構成され、
     前記記録ユニットを該記録ユニット画素と同一極性の単一記録画素に置換して得られる中間パタンが、前記中間パタンの外縁部を除いた中間パタン中心部と、該中間パタン中心部と同一の二次元画素配置を有した前記中間パタンの境界に内接する部分領域との共分散値が0となる、二次元データページが記録されたことを特徴とする、情報記録媒体。
    An information recording medium on which a two-dimensional data page, which is reproduced by a photodetector having two-dimensionally arranged reproduction pixels and is composed of two-dimensionally arranged recording pixels, is recorded,
    A marker pattern is arranged at a predetermined position on the two-dimensional data page,
    The marker pattern is a recording composed of recording pixels having the same polarity with the number of recording pixels of integers Nx and Ny in which the number of consecutive on pixels and off pixels is constant in each direction in the row direction and the column direction of each recording pixel. Composed of units,
    An intermediate pattern obtained by replacing the recording unit with a single recording pixel having the same polarity as the recording unit pixel includes an intermediate pattern central portion excluding an outer edge portion of the intermediate pattern, and an intermediate pattern central portion that is the same as the intermediate pattern central portion. An information recording medium on which a two-dimensional data page having a covariance value of 0 with a partial area inscribed in a boundary of the intermediate pattern having a two-dimensional pixel arrangement is recorded.
  5.  請求項4に記載の情報記録媒体であって、
     前記記録ユニットの行方向の記録画素数と列方向の記録画素数とが異なり、
     前記光検出器上に結像する前記二次元データページの検出像における記録画素間の間隔の大きさに比して、前記光検出器上に単一の記録画素に対応して結像する検出像の大きさが大きい方向において、前記記録ユニットの記録画素数が複数並べられていることを特徴とする情報記録媒体。
    An information recording medium according to claim 4, wherein
    The number of recording pixels in the row direction and the number of recording pixels in the column direction of the recording unit are different,
    Detection that forms an image on the photodetector corresponding to a single recording pixel as compared to the size of the interval between the recording pixels in the detection image of the two-dimensional data page imaged on the photodetector. An information recording medium, wherein a plurality of recording pixels of the recording unit are arranged in a direction in which an image size is large.
  6.  請求項4に記載の情報記録媒体であって、
     前記二次元データページは、記録画素の行方向と列方向の少なくとも一方についてオンピクセルとオフピクセルが少なくとも2よりも大きい数を最小連続数とするようにデータパタンが記録されており、前記整数Nx,Nyが各々の方向の前記最小連続数以上の画素数を有することを特徴とする、情報記録媒体。
    An information recording medium according to claim 4, wherein
    In the two-dimensional data page, a data pattern is recorded such that the number of on-pixels and off-pixels is at least greater than 2 in at least one of the row direction and the column direction of the recorded pixels, and the integer Nx , Ny has a number of pixels equal to or greater than the minimum continuous number in each direction.
  7.  請求項4に記載の情報記録媒体を再生する情報記録媒体再生装置であって、
     前記光検出器を有するピックアップと、
     前記ピックアップからの二次元データページの検出像に基づいて信号を再生する信号処理部と、
     基準検出パタンを格納するメモリと、
     前記メモリに格納された前記検出像と前記基準検出パタンとを読み出して、前記検出像の前記光検出器上の位置を検出する画像位置検出部 と、
     前記検出像のうち、前記マーカーパタンを含む領域を前記メモリから取得する探索領域パタン取得部と、
     前記基準検出パタンを前記メモリから取得する基準パタン取得部と、
     前記探索領域パタン取得部で取得した領域内に含まれる、前記基準検出パタンと同一の再生画素数の領域を有する部分領域に対して、前記基準検出パタンとの共分散値を計算する共分散演算部と
     前記共分散演算部で求めた共分散値が最大となる部分領域を判別し、ピクセル単位でのマーカー検出位置を求める共分散ピーク位置判別部と、
     前記共分散ピーク位置判別部で判別したピークとなる部分領域位置に対して行方向にNx/αxを超えない整数N1だけの再生画素、列方向にNy/αyを超えない整数N2だけの再生画素だけ拡大した領域内に含まれる前記検出像部分領域に対して、前記共分散値演算部で求めた共分散値に基づいて、サブピクセル位置を判別するサブピクセル位置判別部と、
     を具備することを特徴とする、情報記録媒体再生装置。
    An information recording medium reproducing device for reproducing the information recording medium according to claim 4,
    A pickup having the photodetector;
    A signal processing unit for reproducing a signal based on a detection image of a two-dimensional data page from the pickup;
    A memory for storing a reference detection pattern;
    An image position detection unit that reads out the detection image and the reference detection pattern stored in the memory and detects a position of the detection image on the photodetector;
    A search area pattern acquisition unit that acquires an area including the marker pattern from the memory in the detection image;
    A reference pattern acquisition unit for acquiring the reference detection pattern from the memory;
    Covariance calculation for calculating a covariance value with the reference detection pattern for a partial region having the same number of reproduced pixels as the reference detection pattern included in the region acquired by the search region pattern acquisition unit A covariance peak position determination unit that determines a partial region where the covariance value obtained by the covariance calculation unit is maximized, and obtains a marker detection position in pixel units;
    Reproduction pixels of only integer N1 that do not exceed Nx / αx in the row direction and reproduction pixels of integer N2 that do not exceed Ny / αy in the column direction with respect to the partial region position that is the peak determined by the covariance peak position determination unit A sub-pixel position determination unit that determines a sub-pixel position based on the covariance value obtained by the covariance value calculation unit for the detection image partial region included in the region that is enlarged only;
    An information recording medium reproducing apparatus comprising:
  8.  請求項7に記載の情報記録媒体再生装置であって、
     前記サブピクセル位置判別部は、
      Nx/αxを超えない整数N1と、
      Ny/αyを超えない整数N2と、
      行方向のスケールファクタβxと、
      列方向のスケールファクタβyと、
      前記共分散値が最大となる前記検出像部分領域よりも行方向にp個の再生画素、列方向にq個の再生画素だけ位置をずらした前記検出増部分領域に対する前記共分散値Cov[p][q]と、
     を用いて表される数1に従って、サブピクセル位置を検出する、
    Figure JPOXMLDOC01-appb-M000001
     ことを特徴とする、請求項7記載の情報記録媒体再生装置。
    The information recording medium reproducing device according to claim 7,
    The sub-pixel position determination unit
    An integer N1 not exceeding Nx / αx;
    An integer N2 not exceeding Ny / αy;
    The scale factor βx in the row direction,
    Scale factor βy in the column direction,
    The covariance value Cov [p for the detection increase partial area shifted by p reproduction pixels in the row direction and q reproduction pixels in the column direction from the detection image partial area where the covariance value is maximum. ] [q]
    Sub-pixel position is detected according to the number 1 expressed using
    Figure JPOXMLDOC01-appb-M000001
    8. The information recording medium playback device according to claim 7, wherein
  9.  請求項7に記載の情報記録媒体再生装置であって、
     前記サブピクセル位置判別部は、
      Nx/αxを超えない整数N1と、
      Ny/αyを超えない整数N2と、
      行方向のスケールファクタβxと、
      列方向のスケールファクタβyと、
      前記共分散値が最大となる前記検出像部分領域よりも行方向にp個の再生画素、列方向にq個の再生画素だけ位置をずらした前記検出増部分領域に対する前記共分散値Cov[p][q]と、
     を用いて表される数2に従って、サブピクセル位置を検出する、
    Figure JPOXMLDOC01-appb-M000002
     ことを特徴とする、請求項7記載の情報記録媒体再生装置。
    The information recording medium reproducing device according to claim 7,
    The sub-pixel position determination unit
    An integer N1 not exceeding Nx / αx;
    An integer N2 not exceeding Ny / αy;
    The scale factor βx in the row direction,
    Scale factor βy in the column direction,
    The covariance value Cov [p for the detection increase partial area shifted by p reproduction pixels in the row direction and q reproduction pixels in the column direction from the detection image partial area where the covariance value is maximum. ] [q]
    Sub-pixel position is detected according to the number 2 expressed using
    Figure JPOXMLDOC01-appb-M000002
    8. The information recording medium playback device according to claim 7, wherein
  10.  光検出器を用いてマーカーパタンを含む二次元データページを再生する情報再生方法であって、
     前記マーカーパタンは、各記録画素の行方向と列方向について、オンピクセルおよびオフピクセルの連続数が各々の方向に対して一定の整数Nx,Nyの記録画素数の同一極性の記録画素からなる記録ユニットによって構成され、
     前記記録ユニットを該記録ユニット内部の画素と同一極性の単一記録画素に置換して得られる中間パタンが、前記中間パタンの外縁部を除いた中間パタン中心部と、該中間パタン中心部と同一の二次元画素配置を有した前記中間パタンの境界に内接する部分領域との共分散値が0となるように、前記二次元データページが構成され、
     前記マーカーパタンを含む部分の部分検出像を取得するステップと、
     基準検出パタンを生成する基準検出パタン生成ステップと、
     前記部分検出像の範囲内に含まれる前記基準検出パタンと同一サイズの検出像部分領域に対して共分散値を求める共分散値演算ステップと
     前記共分散値が最大となる前記検出像部分領域を判別して画素単位での位置を判別する画素単位位置判別ステップと、
     前記画素単位位置判別ステップで判別した前記共分散値が最大となる前記検出像部分領域の外側に対して、行方向にNx/αxを超えない整数N1だけの再生画素、列方向にNy/αyを超えない整数N2だけの再生画素だけ拡大した領域内に含まれる前記検出像部分領域に対して前記共分散値演算ステップで求めた共分散値に基づいて、サブピクセル位置を判別するサブピクセル位置検出ステップと,
     を有することを特徴とする情報再生方法。
    An information reproduction method for reproducing a two-dimensional data page including a marker pattern using a photodetector,
    The marker pattern is a recording composed of recording pixels having the same polarity with the number of recording pixels of integers Nx and Ny in which the number of consecutive on pixels and off pixels is constant in each direction in the row direction and the column direction of each recording pixel. Composed of units,
    An intermediate pattern obtained by replacing the recording unit with a single recording pixel having the same polarity as the pixel inside the recording unit is the same as the intermediate pattern central portion excluding the outer edge of the intermediate pattern, and the intermediate pattern central portion. The two-dimensional data page is configured such that a covariance value with a partial area inscribed in the boundary of the intermediate pattern having the two-dimensional pixel arrangement is 0,
    Obtaining a partial detection image of a portion including the marker pattern;
    A reference detection pattern generation step for generating a reference detection pattern;
    A covariance value calculating step for obtaining a covariance value for a detection image partial area having the same size as the reference detection pattern included in the range of the partial detection image; and the detection image partial area having the maximum covariance value. A pixel unit position determination step for determining and determining a position in pixel units;
    With respect to the outside of the detected image partial area where the covariance value determined in the pixel unit position determining step is maximum, the reproduction pixels of integer N1 not exceeding Nx / αx in the row direction and Ny / αy in the column direction A sub-pixel position for determining a sub-pixel position based on the covariance value obtained in the covariance value calculation step for the detected image partial area included in the area enlarged by the reproduction pixel of the integer N2 not exceeding N2. Detection step,
    An information reproducing method characterized by comprising:
  11.  請求項9に記載の情報再生方法であって、
     前記サブピクセル位置検出ステップでは、
      Nx/αxを超えない整数N1と、
      Ny/αyを超えない整数N2と、
      行方向のスケールファクタβxと、
      列方向のスケールファクタβyと、
      前記共分散値が最大となる前記検出像部分領域よりも行方向にp個の再生画素、列方向にq個の再生画素だけ位置をずらした前記検出増部分領域に対する前記共分散値Cov[p][q]とを用いて表される数1に従って、サブピクセル位置を検出する、
    Figure JPOXMLDOC01-appb-M000003
     ことを特徴とする情報記録媒体再生方法。
    The information reproduction method according to claim 9,
    In the sub-pixel position detecting step,
    An integer N1 not exceeding Nx / αx;
    An integer N2 not exceeding Ny / αy;
    The scale factor βx in the row direction,
    Scale factor βy in the column direction,
    The covariance value Cov [p for the detection increase partial area shifted by p reproduction pixels in the row direction and q reproduction pixels in the column direction from the detection image partial area where the covariance value is maximum. ] [q] to detect the sub-pixel position according to the number 1 expressed by
    Figure JPOXMLDOC01-appb-M000003
    An information recording medium reproducing method characterized by the above.
  12.  請求項9に記載の情報再生方法であって、
     前記サブピクセル位置検出ステップは
      Nx/αxを超えない整数N1と、
      Ny/αyを超えない整数N2と、
      行方向のスケールファクタβxと、
      列方向のスケールファクタβyと、
      前記共分散値が最大となる前記検出像部分領域よりも行方向にp個の再生画素、列方向にq個の再生画素位置をずらした前記検出増部分領域に対する前記共分散値Cov[p][q]とを用いて数2に従ってサブピクセル位置を検出する、
    Figure JPOXMLDOC01-appb-M000004
     ことを特徴とする、
    請求項9記載の情報記録媒体再生方法。
    The information reproduction method according to claim 9,
    The sub-pixel position detecting step includes an integer N1 not exceeding Nx / αx,
    An integer N2 not exceeding Ny / αy;
    The scale factor βx in the row direction,
    Scale factor βy in the column direction,
    The covariance value Cov [p] for the detection increase partial region in which p reproduction pixels are shifted in the row direction and q reproduction pixel positions are shifted in the column direction from the detection image partial region where the covariance value is maximum. sub-pixel position is detected according to Equation 2 using [q].
    Figure JPOXMLDOC01-appb-M000004
    It is characterized by
    The information recording medium reproducing method according to claim 9.
  13.  二次元データページに記録されるマーカーパタンの生成方法であって、
     前記マーカーパタンは、マーカーパタン中心部と、該マーカーパタン中心部を除く前記マーカーパタンの境界に内接する部分領域と、を有し、
     少なくとも1方向において、記録画素の最小連接長がNピクセル(N:2以上の自然数)となるようにマーカーパタンを構成するステップと、
     前記マーカーパタン中心部と、前記マーカーパタン中心部から前記1方向にNピクセル分ずれたマーカーパタンとの共分散値がゼロとなり、前記マーカーパタン中心部と前記マーカーパタン中心部からピクセルのずれが無い場合のマーカーパタンとの共分散値が最大となるようにマーカーパタンを生成するステップと、
     ことを特徴とするマーカーパタンの生成方法。
    A method for generating a marker pattern recorded on a two-dimensional data page,
    The marker pattern has a marker pattern center portion and a partial region inscribed in a boundary of the marker pattern excluding the marker pattern center portion,
    Configuring the marker pattern so that the minimum connection length of the recording pixels is N pixels (N: a natural number of 2 or more) in at least one direction;
    The covariance between the marker pattern center and the marker pattern shifted by N pixels in the one direction from the marker pattern center is zero, and there is no pixel shift from the marker pattern center and the marker pattern center. Generating a marker pattern so that the covariance value with the marker pattern of the case is maximized;
    A marker pattern generation method characterized by the above.
PCT/JP2013/085031 2013-12-27 2013-12-27 Marker pattern generation method, information recording medium, information reconstruction method, and information recording medium reconstruction device WO2015097837A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/085031 WO2015097837A1 (en) 2013-12-27 2013-12-27 Marker pattern generation method, information recording medium, information reconstruction method, and information recording medium reconstruction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/085031 WO2015097837A1 (en) 2013-12-27 2013-12-27 Marker pattern generation method, information recording medium, information reconstruction method, and information recording medium reconstruction device

Publications (1)

Publication Number Publication Date
WO2015097837A1 true WO2015097837A1 (en) 2015-07-02

Family

ID=53477772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085031 WO2015097837A1 (en) 2013-12-27 2013-12-27 Marker pattern generation method, information recording medium, information reconstruction method, and information recording medium reconstruction device

Country Status (1)

Country Link
WO (1) WO2015097837A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093254A1 (en) * 2005-03-03 2006-09-08 Pioneer Corporation Template matching processing device and method, hologram reproduction device and method, and computer program
JP2008536158A (en) * 2005-02-28 2008-09-04 インフェイズ テクノロジーズ インコーポレイテッド Data pixel processing in holographic data storage systems.
JP2010003358A (en) * 2008-06-20 2010-01-07 Hitachi Ltd Optical information recording apparatus, optical information recording method, optical information recording/reproducing apparatus, and optical information recording/reproducing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536158A (en) * 2005-02-28 2008-09-04 インフェイズ テクノロジーズ インコーポレイテッド Data pixel processing in holographic data storage systems.
WO2006093254A1 (en) * 2005-03-03 2006-09-08 Pioneer Corporation Template matching processing device and method, hologram reproduction device and method, and computer program
JP2010003358A (en) * 2008-06-20 2010-01-07 Hitachi Ltd Optical information recording apparatus, optical information recording method, optical information recording/reproducing apparatus, and optical information recording/reproducing method

Similar Documents

Publication Publication Date Title
US9076464B2 (en) Optical information recording apparatus, optical information recording method, optical information reproducing apparatus and optical information reproducing method
JP5802616B2 (en) Optical information recording / reproducing apparatus and optical information recording / reproducing method
US20130128714A1 (en) Optical information recording apparatus, optical information reproducing apparatus, optical information recording/reproducing apparatus, optical information recording method, optical information reproducing method and optical information recording/reproducing method
US8699311B2 (en) Optical information recording/reproducing apparatus, optical information reproducing apparatus, optical information recording/reproducing method and optical information reproducing method
US9013972B2 (en) Optical information recording and reproducing method and device
JP2007156801A (en) Optical information recording method and reproduction method
WO2015097837A1 (en) Marker pattern generation method, information recording medium, information reconstruction method, and information recording medium reconstruction device
WO2015162653A1 (en) Light information device and light information processing method
WO2015083247A1 (en) Optical information recording device and optical information recording method
WO2015011745A1 (en) Optical information recording medium, optical information recording method and optical information playback method
JP2015060613A (en) Optical information recording device and optical information recording method
WO2016199231A1 (en) Optical information reproduction device and optical information reproduction method
JP6078634B2 (en) Optical information reproducing apparatus and optical information recording / reproducing apparatus
WO2016163312A1 (en) Optical information reproduction device and optical information reproduction method
JP6040225B2 (en) Optical information reproduction device
CN107077871B (en) Optical information recording/reproducing device, optical information reproducing device, and optical information reproducing method
WO2017094130A1 (en) Optical information recording/reproducing device and optical information recording/reproducing method
JP2017168166A (en) Optical information reproduction device and optical information reproduction method
JP2015146221A (en) Optical information reproducing apparatus and optical information reproducing method
JP2014026707A (en) Optical information recording and reproducing device and optical information recording medium
WO2016139765A1 (en) Optical information recording device and optical information recording method
WO2016009546A1 (en) Optical information recording/playback device, optical information playback device, and optical information playback method
WO2016135941A1 (en) Method for determining volume of recorded information and optical information recording and reproducing device using same
WO2016020994A1 (en) Otical information recording device and optical information reproduction device
WO2016009547A1 (en) Signal quality evaluation device, signal quality evaluation method, and information recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP