WO2015097779A1 - Rack, anomaly detection device for rack, and method for same - Google Patents

Rack, anomaly detection device for rack, and method for same Download PDF

Info

Publication number
WO2015097779A1
WO2015097779A1 PCT/JP2013/084654 JP2013084654W WO2015097779A1 WO 2015097779 A1 WO2015097779 A1 WO 2015097779A1 JP 2013084654 W JP2013084654 W JP 2013084654W WO 2015097779 A1 WO2015097779 A1 WO 2015097779A1
Authority
WO
WIPO (PCT)
Prior art keywords
slide rail
rack
sensor
deformation
sensors
Prior art date
Application number
PCT/JP2013/084654
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 克哉
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/084654 priority Critical patent/WO2015097779A1/en
Publication of WO2015097779A1 publication Critical patent/WO2015097779A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1485Servers; Data center rooms, e.g. 19-inch computer racks
    • H05K7/1498Resource management, Optimisation arrangements, e.g. configuration, identification, tracking, physical location
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/183Internal mounting support structures, e.g. for printed circuit boards, internal connecting means

Definitions

  • the present invention relates to a rack on which electronic equipment is mounted, a rack abnormality detection device, and a method thereof.
  • Patent Document 1 discloses an electronic device system in which a large number of electronic devices are mounted on a rack.
  • this electronic device system is configured to identify the physical position of an abnormal electronic device from among a large number of electrical devices mounted on a rack by changing the display state of the light emitting element of the electronic device that has notified the abnormality.
  • This electronic device system is configured to identify the physical position of an abnormal electronic device from among a large number of electrical devices mounted on a rack by changing the display state of the light emitting element of the electronic device that has notified the abnormality. Have.
  • the slide rail of the rack may be deformed, causing an abnormality in the mounting state of the electronic device and the electronic device falling from the rack. There is. Therefore, it is desired to detect and notify that an abnormality has occurred in the mounting state of the electronic device.
  • the electronic device system described in Patent Document 1 is intended to identify an abnormality of the electronic device itself mounted on the rack, and about detecting an abnormality in the mounting state of the electronic device mounted on the rack. Not considered.
  • An object of the present invention is to detect the state of a rack on which electronic equipment is mounted.
  • the rack according to the present invention is preferably a rack in which electronic devices are mounted on slide rails provided on the left and right sides, and one or a plurality of first sensors disposed on the slide rails, and the first sensors. And a control unit that determines the deformation of the slide rail based on the detection data obtained by the above.
  • the slide rail is a rail having a predetermined width in the left-right direction, Arranging the plurality of first sensors in the width direction of the slide rail;
  • the control unit determines whether the deformation in the width direction of the slide rail is a linear deformation or a local deformation based on detection data of the plurality of first sensors.
  • the slide rail is a rail extending in the depth direction, Arranging the plurality of first sensors in the depth direction of the slide rail;
  • the control unit determines deformation of the slide rail in the depth direction based on detection data of the plurality of first sensors.
  • the slide rail is a rail extending in the depth direction
  • a second sensor is arranged on the back side of the slide rail
  • the control unit determines a mounting state of an electronic device that is inserted while being supported by the slide rail, based on detection data of the second sensor.
  • control unit predetermines a criterion for deformation of the slide rail based on detection data by the first sensor or the second sensor, and stores the criterion in the storage unit, The detection data detected by the first sensor or the second sensor is compared with the determination criterion, and control is performed so as to change the display on the display device according to the determination criterion.
  • the present invention is also grasped as a detection apparatus and a detection method for the state of the rack.
  • the present invention it is possible to detect the state of the rack, that is, the mounting state of the electronic device, by detecting the state of the slide rail on which the electronic device is mounted with the sensor.
  • the figure which shows the whole structure of a rack The perspective view which shows the structure of a slide rail.
  • the block diagram which shows the structure of a control unit.
  • the figure which shows the output graph of the Y-axis sensor of a normal state in a Y-axis direction The figure which shows the side view of a normal state in a Z-axis direction.
  • FIG. 1 shows an overall configuration diagram of a rack.
  • FIG. 2 shows a configuration example of the slide rail
  • FIG. 3 shows a mounting structure of the slide rail.
  • FIG. 3B is an enlarged view of a Y portion in FIG.
  • a plurality of electronic devices 9 such as blade servers can be mounted on the rack 1.
  • a pair of left and right slide rails 2 are arranged in multiple stages.
  • the front and rear ends of each slide rail 2 are fixed to the column 10 of the rack 1 with screws 39.
  • the electronic device 9 is mounted on the rack 1 by placing the lower portions on both sides of the electronic device 9 on a pair of left and right slide rails 2 and pushing it backward (in the direction of the arrow in FIG. 3A) from the near side.
  • the slide rail 2 has a mechanism for detecting an abnormality in the mounting state of the electronic device on the rack, which is characteristic of this embodiment.
  • 2A is a perspective view of the slide rail 2 as viewed from the inside of the rack
  • FIG. 2B is a perspective view of the slide rail 2 as viewed from the outside of the rack.
  • the front side of the slide rail 2 corresponds to the front surface of the rack 1.
  • the slide rail 2 has an outer rail 24 that can be expanded and contracted according to the dimension between the front and rear columns 10 of the rack 1 on which the electronic device 9 is mounted, and an L-shaped bracket 25 that is attached to the outer rail 24 and mounts the electronic device 9. And have.
  • the front and rear portions of the outer rail 24 are fixed to the column 10 of the rack 1 with screws 39.
  • a sensor mounting plate 23 in which a plurality of Y-axis sensors 6 for detecting displacement in the vertical direction (hereinafter referred to as Y direction) is arranged is fixed to the lower surface of the L-shaped metal fitting 25.
  • the Y-axis sensor 6 is, for example, a pressure sensor, and is arranged in two sets (reference numerals 261 and 262) in the rack width direction (hereinafter referred to as X direction) and four sets in the depth direction (hereinafter referred to as Z direction).
  • Gravity received from the electronic device 9 is detected at the sensor position. Cables 22 for transferring the detection signals of the sensors 26 to the control unit 28 are laid on the back side of the sensor mounting plate 23.
  • a Z-axis sensor 27 which is a pressure sensor, is attached to the rear of the L-shaped metal fitting 5, and detects the displacement of the electronic device 9 inserted on the slide rail 2 in the Z-axis direction.
  • the Y-axis sensor 26 and the Z-axis sensor 27 are connected to the control unit 28 via the cable 22.
  • the slide rail 2 shown in FIG. 2 is attached to the left column of the rack 1, but the slide rail 2 attached to the right column of the rack 1 also has a structure or contrast with that of FIG. It is understood that the sensor has an arrangement structure.
  • FIG. 4 shows the configuration of the control unit 28.
  • the control unit 28 uses a detection data (sensor output value) of the Y-axis sensor 26 and the Z-axis sensor 27 to determine an abnormality in the mounting state of the electronic device (control table for each sensor output state (see FIG. 5). ) And a sensor output data storage table for storing detection data (see FIG. 12)), a control unit 2802 for determining an abnormal mounting state based on the detection data of each sensor, and a control unit 2802 It has a display unit 29 such as an LED for informing the result of the abnormality determination by.
  • the control unit 2802 is a CPU (processor) on which a program is executed.
  • the abnormal state can be identified by the difference in the color of the display 29. The determination of the abnormal state and the color difference are defined in advance in the control table for each sensor output state.
  • FIG. 5 shows a configuration example of a control table for each sensor output state (hereinafter simply referred to as a control table).
  • This control table is prepared in the storage unit 2801 in advance.
  • the deformation of the L-shaped metal fitting 25 is detected by the plurality of Y-axis sensors 26 arranged on the sensor mounting plate 23, and then, an abnormality in mounting the electronic device 9 is determined. Further, the Z-axis sensor 27 detects an abnormality in the insertion state of the electronic device 9.
  • the control table includes a determination criterion corresponding to the deformation state of the rail and the insertion state of the electronic device 9 with respect to the detection data by the Y-axis sensor 26 and the Z-axis sensor 27, and the display state of the display unit 29 corresponding to the determination criterion. Is registered in advance.
  • the control unit 2802 controls the display state of the display device 29 with reference to the control table for the detection data of the sensors 26 and 27. The determination is made based on a comparison result between the detection data of the Y-axis sensor and the Z-axis sensor and a predetermined threshold ( ⁇ (81) in FIG. 8, ⁇ (102) in FIG. 10).
  • the control table includes seven determination reference patterns (in accordance with the states of data detected by the two Y-axis sensors (a (n), b (n)) 26 and the Z-axis sensor 27 ( PTN1 to PTN7) are prepared.
  • the display on the display 29 is switched according to each judgment reference pattern.
  • a (n) indicates the detection data of the sensor on the Y-axis sensor 261 side (that is, the side far from the outer rail 24)
  • b (n) indicates the sensor on the Y-axis sensor 262 side (that is, the side closer to the outer rail 24).
  • the detection data is shown.
  • the detection data is represented by a voltage value, and is represented by the relationship of the output voltage corresponding to the pressure applied to the Y-axis sensor or the Z-axis sensor, as shown in FIGS.
  • FIG. 12 shows a sensor output data storage table (hereinafter simply referred to as a storage table).
  • a storage table detection data acquired from the Y-axis sensor 26 and the Z-axis sensor 27 arranged in two rows and four groups (a total of eight) is stored as time T1 to T6 elapses.
  • Van (Py) represents a sensor output value at the pressure Py in the Y-axis sensor an.
  • N 1, 2, 3, 4)
  • (y y0, y1, y2)
  • Vbn (Py) represents a sensor output value at the pressure Py in the Y-axis sensor bn.
  • (N 1, 2, 3, 4)
  • (y y0, y1, y2)
  • Vz (Pk) represents a sensor output value at the pressure Pk in the Z-axis sensor z.
  • the threshold values of each sensor are ⁇ a1 to ⁇ a4, ⁇ b1 to ⁇ b4, and ⁇ z.
  • the sensor output value of the Y-axis sensor bn with Van (Py0) ⁇ Van (Py1) ⁇ an ⁇ Van (Py2), (n 1,2,3,4) Vbn (Py0) ⁇ Vbn (Py1) ⁇ bn ⁇ Vbn (Py2), Vz (Pz0) ⁇ Vz (Pz1) ⁇ z ⁇ Vz (Pz2).
  • T1 is PTN7 (no device installed)
  • T2 is PTN2 (device depth direction abnormality)
  • T3 is PTN1 (no abnormality, device normal installation)
  • T4 is rail twisting in the depth direction
  • sensor row number 1 is PTN3 (rail local)
  • Sensor row numbers 2 to 4 are PTN1 (no abnormality)
  • T5 is PTN3 (rail local deformation)
  • T6 is PTN5 (rail deformation).
  • the control unit 2802 of the control unit 28 stores the output values (detection data) from the Y-axis sensor 26 and the Z-axis sensor 27 in the sensor output data storage table (storage table) in the storage unit 2801 and also outputs the sensor output state.
  • the display is controlled according to which one corresponds to the threshold value determined as a criterion of the separate control table and each output value.
  • the control unit 2802 stores the obtained output value of each sensor in the storage table and updates the table (S601).
  • the control unit 2802 outputs the output values a (n) and b (n) from the Y-axis sensor 26, the output value z from the Z-axis sensor 27, a predetermined threshold value ⁇ (81 in FIG. 8), and ⁇ (102 in FIG. 10) is compared (S602) to determine whether or not the output value exceeds the threshold (S603 to S607).
  • FIG. 7 shows a state where the L-shaped metal fitting 5 is not deformed and the electronic device 9 is normally mounted in the Y direction.
  • FIG. 8 shows the relationship between the pressure applied to the L-shaped bracket 25 and the output values an and bn of the Y-axis sensors 261 and 262.
  • the output value of each pressure sensor is Vx (88).
  • the output value Ix (82) is deformed in the Y direction within the normal range due to its own weight.
  • FIG. 9 shows a state in which the electronic device 9 is normally mounted in the Z direction
  • FIG. 10 shows a relationship between the pressure value and the output value of the Z-axis sensor 27.
  • Z-1 a constant pressure value
  • Iz the output value at that time
  • the state of the output value Vz when the pressure value in the Z direction is 0 indicates that the electronic device is not yet mounted or the electronic device is not normally mounted.
  • the state is determined together with the output value of the Y-axis sensor 26.
  • FIG. 11A shows a state in which the L-shaped metal fitting 25 on which the electronic device 9 is mounted is linearly deformed with the L-shaped bent portion P as a refraction point.
  • the portion of the slide rail corresponding to the sensor 261 is lower than the refraction point P by h.
  • a load is applied to both the Y-axis sensors a (n) 261 and b (n) 262, the pressure value increases, and the sensor output values both exceed the threshold value ⁇ (81). It becomes.
  • FIG. 11 (B) shows a state in which the L-shaped metal fitting 25 is locally deformed at the refraction point P.
  • FIG. 11 (B) shows a state in which the L-shaped metal fitting 25 is locally deformed at the refraction point P.
  • the detected value of the Y-axis sensor b (n) 262 located inside the L-shaped bent portion Q from the refraction point P does not exceed the threshold value ⁇ (81) because the displacement is small.
  • the detected value of the outer Y-axis sensor a (n) 261 increases greatly, and the output value exceeds the threshold value ⁇ (81).
  • the determination criterion of the control table (FIG. 5) is PTN3 or PTN4. This determination is performed together with the determination in the Z direction as in the case of linear deformation (FIGS. 11A and 13).
  • the electronic device 9 When the electronic device 9 is normally mounted with respect to the Z direction, it becomes PTN3, and when it is not normally mounted, it becomes PTN4.
  • the slide rail (L-shaped bracket) on which the electronic device is mounted is deformed.
  • the slide rail By detecting the deformation state of the rail, and thus the mounting state of the electronic device, it can be displayed in a different color depending on the abnormal state to notify the administrator or the like.
  • the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made.
  • the arrangement location and the number of Y-axis sensors and Z-axis sensors are not limited to the above embodiment.
  • the Y-axis sensors are arranged on the mounting plate 23 of the L-shaped bracket 25 in two rows in the X direction and four places in the Z direction, but the arrangement is not limited thereto.
  • the Z-axis sensor is disposed on the rear side of the rack, but is not limited to this.
  • control table shown in FIG. 5 sets seven different determination criteria according to the detection results of the Y-axis sensor and the Z-axis sensor, but the alternative example is not limited to this.
  • the determination criterion may be relaxed to be less than seven determination criteria.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

A rack (1) which mounts an electronic apparatus (9) comprises: one or a plurality of sensors (6) placed on slide rails (2) disposed on left and right sides; and a control unit (28) which, on the basis of detection data by the sensors (6), assesses deformation of the slide rails (2). As a result, if the rack (1) receives significant external force by way of an earthquake, transport, or the like, deformation of the slide rails (2) in which the electronic apparatus (9) is mounted is detected.

Description

ラック、ラックの異常検出装置及びその方法Rack, rack abnormality detection device and method thereof
 本発明は、電子機器が搭載されるラック、ラックの異常検出装置及びその方法に関する。 The present invention relates to a rack on which electronic equipment is mounted, a rack abnormality detection device, and a method thereof.
 コンピュータやストレージ装置はブレードサーバやハードディスク装置等の多数の電子機器がラックに搭載して構成されている。例えば、特許文献1には、多数の電子機器をラックに搭載した電子機器システムが開示されている。とりわけ、この電子機器システムは、異常通知した電子機器の発光素子の表示状態を変更することで、ラックに搭載された多数の電気機器の中からから異常な電子機器の物理位置を特定する構成を有している。 Computers and storage devices are configured with a large number of electronic devices such as blade servers and hard disk devices mounted in a rack. For example, Patent Document 1 discloses an electronic device system in which a large number of electronic devices are mounted on a rack. In particular, this electronic device system is configured to identify the physical position of an abnormal electronic device from among a large number of electrical devices mounted on a rack by changing the display state of the light emitting element of the electronic device that has notified the abnormality. Have.
特開2009-238066号公報JP 2009-238066 A
 電子機器を搭載するラックが例えば地震や輸送、振動等により大きな外力を受けた場合、ラックのスライドレールが変形して電子機器の搭載状態に異常が発生して、電子機器がラックから落下する恐れがある。そのため、電子機器の搭載状態に異常が発生したことを検出して通知することが望まれている。 If the rack in which the electronic device is mounted is subjected to a large external force, such as due to an earthquake, transportation, or vibration, the slide rail of the rack may be deformed, causing an abnormality in the mounting state of the electronic device and the electronic device falling from the rack. There is. Therefore, it is desired to detect and notify that an abnormality has occurred in the mounting state of the electronic device.
 因みに、特許文献1に記載の電子機器システムはラックに搭載された電子機器それ自体の異常を特定することを趣旨としており、ラックに搭載された電子機器の搭載状態の異常を検知することについては配慮されていない。 Incidentally, the electronic device system described in Patent Document 1 is intended to identify an abnormality of the electronic device itself mounted on the rack, and about detecting an abnormality in the mounting state of the electronic device mounted on the rack. Not considered.
 本発明の目的は、電子機器が搭載されるラックの状態を検知することにある。 An object of the present invention is to detect the state of a rack on which electronic equipment is mounted.
 本発明に係るラックは、好ましくは、左右に設けられたスライドレールに電子機器を搭載するラックであって、該スライドレールに配置された1又は複数の第1のセンサと、該第1のセンサによる検知データを基に該スライドレールの変形を判定する制御ユニットと、を有するラックとして構成される。 The rack according to the present invention is preferably a rack in which electronic devices are mounted on slide rails provided on the left and right sides, and one or a plurality of first sensors disposed on the slide rails, and the first sensors. And a control unit that determines the deformation of the slide rail based on the detection data obtained by the above.
 好ましい例によれば、前記スライドレールは左右方向に所定の幅を持ったレールであり、
前記複数の第1のセンサを該スライドレールの幅方向に配置し、
前記制御部は、該複数の第1のセンサの検知データを基に、該スライドレールの幅方向の変形が直線的な変形又は局所的な変形を判定する。
According to a preferred example, the slide rail is a rail having a predetermined width in the left-right direction,
Arranging the plurality of first sensors in the width direction of the slide rail;
The control unit determines whether the deformation in the width direction of the slide rail is a linear deformation or a local deformation based on detection data of the plurality of first sensors.
 また好ましくは、前記スライドレールは奥行方向に延伸したレールであり、
前記複数の第1のセンサを該スライドレールの奥行方向に配置し、
前記制御部は、該複数の第1のセンサの検知データを基に、該スライドレールの奥行方向の変形を判定する。
Preferably, the slide rail is a rail extending in the depth direction,
Arranging the plurality of first sensors in the depth direction of the slide rail;
The control unit determines deformation of the slide rail in the depth direction based on detection data of the plurality of first sensors.
 また好ましくは、前記スライドレールは奥行方向に延伸したレールであり、
該スライドレールの奥側に第2のセンサを配置し、
前記制御部は、該第2のセンサの検知データを基に、該スライドレールに支持されて挿入される電子機器の搭載状態を判定する。
Preferably, the slide rail is a rail extending in the depth direction,
A second sensor is arranged on the back side of the slide rail,
The control unit determines a mounting state of an electronic device that is inserted while being supported by the slide rail, based on detection data of the second sensor.
 更に好ましくは、前記制御ユニットは、前記第1のセンサ又は前記第2のセンサによる検知データに基づくスライドレールの変形の判定基準を予め定めて、該判定基準を記憶部に記憶し、
前記第1のセンサ又は前記第2のセンサで検知された検知データを該判定基準に照らし、該判定基準に応じて表示器の表示を変えるように制御する。
本発明はまた上記ラックの状態の検出装置及び検出方法としても把握される。
More preferably, the control unit predetermines a criterion for deformation of the slide rail based on detection data by the first sensor or the second sensor, and stores the criterion in the storage unit,
The detection data detected by the first sensor or the second sensor is compared with the determination criterion, and control is performed so as to change the display on the display device according to the determination criterion.
The present invention is also grasped as a detection apparatus and a detection method for the state of the rack.
 本発明によれば、電子機器が搭載されるスライドレールの状態をセンサで検知することで、ラックの状態即ち電子機器の搭載状態を検出することが可能となる。 According to the present invention, it is possible to detect the state of the rack, that is, the mounting state of the electronic device, by detecting the state of the slide rail on which the electronic device is mounted with the sensor.
ラックの全体構成を示す図。The figure which shows the whole structure of a rack. スライドレールの構成を示す斜視図。The perspective view which shows the structure of a slide rail. スライドレールのラックへの実装構造を示す図。The figure which shows the mounting structure to the rack of a slide rail. 制御ユニットの構成を示すブロック図。The block diagram which shows the structure of a control unit. センサ出力状態別管理テーブルを示す図。The figure which shows the management table classified by sensor output state. 制御ユニットの制御動作を示すフローチャート図。The flowchart figure which shows the control action of a control unit. Y軸方向において正常な状態のL字型金具の様子を示す図。The figure which shows the mode of the L-shaped metal fitting of a normal state in the Y-axis direction. Y軸方向において正常な状態のY軸センサの出力グラフを示す図。The figure which shows the output graph of the Y-axis sensor of a normal state in a Y-axis direction. Z軸方向において正常な状態の側面図を示す図。The figure which shows the side view of a normal state in a Z-axis direction. Z軸方向において正常な状態のZ軸センサの出力グラフを示す図。The figure which shows the output graph of the Z-axis sensor of a normal state in a Z-axis direction. L字型金具が変形した状態を示す図。The figure which shows the state which the L-shaped metal fitting deform | transformed. センサ出力データ格納テーブルを示す図。The figure which shows a sensor output data storage table. Y軸方向において異常な状態のY軸センサの出力グラフを示す図。The figure which shows the output graph of the Y-axis sensor in an abnormal state in the Y-axis direction. Z軸方向において異常な状態の側面図を示す図。The figure which shows the side view of an abnormal state in a Z-axis direction. Z軸方向において異常な状態のZ軸センサの出力グラフを示す図。The figure which shows the output graph of the Z-axis sensor of an abnormal state in a Z-axis direction.
 以下、図面を参照して、本発明の好ましい実施例について説明する。
図1は、ラックの全体構成図を示す。また、図2はスライドレールの構成例を示し、図3はスライドレールの実装構造を示す。図3(B)は図3(A)のY部の拡大図である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an overall configuration diagram of a rack. FIG. 2 shows a configuration example of the slide rail, and FIG. 3 shows a mounting structure of the slide rail. FIG. 3B is an enlarged view of a Y portion in FIG.
 ラック1には複数のブレードサーバ等の電子機器9が搭載可能である。ラック1には左右1対のスライドレール2が多段にわたって配置される。各スライドレール2は、その前後端がネジ39によってラック1の支柱10に固定されている。
ラック1への電子機器9の搭載は、左右1対のスライドレール2に電子機器9の両側下部を載せて手前側から後方(図3(A)の矢印方向)へ押し込むことで行われる。
A plurality of electronic devices 9 such as blade servers can be mounted on the rack 1. In the rack 1, a pair of left and right slide rails 2 are arranged in multiple stages. The front and rear ends of each slide rail 2 are fixed to the column 10 of the rack 1 with screws 39.
The electronic device 9 is mounted on the rack 1 by placing the lower portions on both sides of the electronic device 9 on a pair of left and right slide rails 2 and pushing it backward (in the direction of the arrow in FIG. 3A) from the near side.
 スライドレール2は本実施例に特徴的な、ラックへの電子機器の搭載状態の異常を検出する機構を備えている。図2を参照するに、(A)はスライドレール2をラックの内側から見た斜視図、(B)はスライドレール2をラックの外側から見た斜視図である。スライドレール2の前側がラック1の前面に相当する。 The slide rail 2 has a mechanism for detecting an abnormality in the mounting state of the electronic device on the rack, which is characteristic of this embodiment. 2A is a perspective view of the slide rail 2 as viewed from the inside of the rack, and FIG. 2B is a perspective view of the slide rail 2 as viewed from the outside of the rack. The front side of the slide rail 2 corresponds to the front surface of the rack 1.
 スライドレール2は、電子機器9を搭載するラック1の前後の支柱10間の寸法に応じて伸縮自在なアウターレール24と、アウターレール24に取り付けられ、電子機器9を搭載するL字型金具25とを有する。アウターレール24の前後の部分が、ラック1の支柱10にネジ39で固定される。 The slide rail 2 has an outer rail 24 that can be expanded and contracted according to the dimension between the front and rear columns 10 of the rack 1 on which the electronic device 9 is mounted, and an L-shaped bracket 25 that is attached to the outer rail 24 and mounts the electronic device 9. And have. The front and rear portions of the outer rail 24 are fixed to the column 10 of the rack 1 with screws 39.
 L字型金具25の下面には、垂直方向(以下Y方向という)変位を検出する複数のY軸センサ6が配置されたセンサ取付板23が固定されている。Y軸センサ6は例えば圧力センサであり、ラック幅方向(以下X方向とする)に2個ずつ(符号261,262)、かつ奥行方向(以下Z方向という)に4組配置されており、各センサの位置において電子機器9から受ける重力を検知する。センサ取付板23の裏側には各センサ26の検知信号を制御ユニット28へ転送するケーブル22が敷設している。 A sensor mounting plate 23 in which a plurality of Y-axis sensors 6 for detecting displacement in the vertical direction (hereinafter referred to as Y direction) is arranged is fixed to the lower surface of the L-shaped metal fitting 25. The Y-axis sensor 6 is, for example, a pressure sensor, and is arranged in two sets (reference numerals 261 and 262) in the rack width direction (hereinafter referred to as X direction) and four sets in the depth direction (hereinafter referred to as Z direction). Gravity received from the electronic device 9 is detected at the sensor position. Cables 22 for transferring the detection signals of the sensors 26 to the control unit 28 are laid on the back side of the sensor mounting plate 23.
 L字型金具5の後方には、圧力センサであるZ軸センサ27が取り付けられ、スライドレール2上を挿入される電子機器9のZ軸方向の変位を検知する。Y軸センサ26及びZ軸センサ27は、ケーブル22を介して制御ユニット28に接続される。 A Z-axis sensor 27, which is a pressure sensor, is attached to the rear of the L-shaped metal fitting 5, and detects the displacement of the electronic device 9 inserted on the slide rail 2 in the Z-axis direction. The Y-axis sensor 26 and the Z-axis sensor 27 are connected to the control unit 28 via the cable 22.
 なお、図2に示すスライドレール2は、ラック1の左側の支柱に取り付けられるものであるが、ラック1の右側の支柱に取り付けられるスライドレール2も、図2のものとは対照的な構造ないしセンサの配置構造を有していることが理解される。 The slide rail 2 shown in FIG. 2 is attached to the left column of the rack 1, but the slide rail 2 attached to the right column of the rack 1 also has a structure or contrast with that of FIG. It is understood that the sensor has an arrangement structure.
 図4は制御ユニット28の構成を示す。
制御ユニット28は、Y軸センサ26及びZ軸センサ27の検知データ(センサ出力値)を用いて、電子機器の搭載状態の異常を判定するためのテーブル(センサ出力状態別制御テーブル(図5参照)や検知データを格納するセンサ出力データ格納テーブル(図12参照))、を記憶する記憶部2801と、各センサの検知データを基に搭載状態の異常を判定する制御部2802と、制御部2802による異常の判定の結果を知らせるLEDのような表示部29を有して構成される。ここで、制御部2802はプログラムが実行されるCPU(プロセッサ)である。異常状態は表示器29の点灯する色の違いによって識別できる。異常状態の判定と色の違いは、センサ出力状態別制御テーブルに予め規定される。
FIG. 4 shows the configuration of the control unit 28.
The control unit 28 uses a detection data (sensor output value) of the Y-axis sensor 26 and the Z-axis sensor 27 to determine an abnormality in the mounting state of the electronic device (control table for each sensor output state (see FIG. 5). ) And a sensor output data storage table for storing detection data (see FIG. 12)), a control unit 2802 for determining an abnormal mounting state based on the detection data of each sensor, and a control unit 2802 It has a display unit 29 such as an LED for informing the result of the abnormality determination by. Here, the control unit 2802 is a CPU (processor) on which a program is executed. The abnormal state can be identified by the difference in the color of the display 29. The determination of the abnormal state and the color difference are defined in advance in the control table for each sensor output state.
 図5は、センサ出力状態別制御テーブル(以下単に制御テーブルという)の構成例を示す。この制御テーブルは記憶部2801内に予め用意される。本実施例では、センサ取付板23に配置された複数のY軸センサ26によってL字型金具25の変形を検知し、引いては電子機器9の搭載の異常を判定する。また、Z軸センサ27によって電子機器9の挿入状態の異常を検知する。 FIG. 5 shows a configuration example of a control table for each sensor output state (hereinafter simply referred to as a control table). This control table is prepared in the storage unit 2801 in advance. In the present embodiment, the deformation of the L-shaped metal fitting 25 is detected by the plurality of Y-axis sensors 26 arranged on the sensor mounting plate 23, and then, an abnormality in mounting the electronic device 9 is determined. Further, the Z-axis sensor 27 detects an abnormality in the insertion state of the electronic device 9.
 そのために、制御テーブルは、Y軸センサ26及びZ軸センサ27による検知データに対する、レールの変形状態や電子機器9の挿入状態に対応する判定基準と、判定基準に対応した表示器29の表示状態を予め登録する。制御部2802は、各センサ26,27の検知データについて、制御テーブルを参照して表示器29の表示状態を制御するものである。判定は、Y軸センサ及びZ軸センサの検知データと予め定めた閾値(図8のα(81)、図10のβ(102))との比較結果に基づいて判断する。 For this purpose, the control table includes a determination criterion corresponding to the deformation state of the rail and the insertion state of the electronic device 9 with respect to the detection data by the Y-axis sensor 26 and the Z-axis sensor 27, and the display state of the display unit 29 corresponding to the determination criterion. Is registered in advance. The control unit 2802 controls the display state of the display device 29 with reference to the control table for the detection data of the sensors 26 and 27. The determination is made based on a comparison result between the detection data of the Y-axis sensor and the Z-axis sensor and a predetermined threshold (α (81) in FIG. 8, β (102) in FIG. 10).
 より具体的には、制御テーブルは、2列のY軸センサ(a(n), b(n))26と、Z軸センサ27による検知データの状態に応じて、7つの判定基準のパターン(PTN1~PTN7)を用意する。各判定基準パターンに応じて表示器29の表示が切り変わる。なお、a(n)はY軸センサ261側(即ちアウターレール24から遠い方)のセンサの検知データを示し、b(n)はY軸センサ262側(即ちアウターレール24に近い方)のセンサの検知データを示す。検知データは電圧値で表され、図8及び図10に示すように、Y軸センサ又はZ軸センサに加わる圧力に対応する出力電圧の関係で表される。 More specifically, the control table includes seven determination reference patterns (in accordance with the states of data detected by the two Y-axis sensors (a (n), b (n)) 26 and the Z-axis sensor 27 ( PTN1 to PTN7) are prepared. The display on the display 29 is switched according to each judgment reference pattern. Note that a (n) indicates the detection data of the sensor on the Y-axis sensor 261 side (that is, the side far from the outer rail 24), and b (n) indicates the sensor on the Y-axis sensor 262 side (that is, the side closer to the outer rail 24). The detection data is shown. The detection data is represented by a voltage value, and is represented by the relationship of the output voltage corresponding to the pressure applied to the Y-axis sensor or the Z-axis sensor, as shown in FIGS.
 図12はセンサ出力データ格納テーブル(以下単に格納テーブルという)を示す。図示の格納テーブルは、2列4組(合計8個)に配置されたY軸センサ26及びZ軸センサ27から取得された検知データが、時間T1~T6の経過と共に格納される。 FIG. 12 shows a sensor output data storage table (hereinafter simply referred to as a storage table). In the illustrated storage table, detection data acquired from the Y-axis sensor 26 and the Z-axis sensor 27 arranged in two rows and four groups (a total of eight) is stored as time T1 to T6 elapses.
 ここで、Van(Py)は、Y軸センサanにおける圧力Pyのときのセンサ出力値を示す。(n=1, 2, 3, 4)(y=y0, y1, y2)
Vbn(Py)は、Y軸センサbnにおける圧力Pyのときのセンサ出力値を示す。(n=1, 2, 3, 4)(y=y0, y1, y2)
Vz(Pk)は、Z軸センサzにおける圧力Pkのときのセンサ出力値を示す。(k=z0, z1, z2)
各センサの閾値は、αa1~αa4, αb1~αb4, αzとする。
Y軸センサanのセンサ出力値の大小について、Van(Py0)<Van(Py1)<αan<Van(Py2)、 (n=1,2,3,4) である
Y軸センサbnのセンサ出力値の大小について、Vbn(Py0)<Vbn(Py1)<αbn<Vbn(Py2)、 (n=1,2,3,4) である
Z軸センサzのセンサ出力値の大小について、Vz(Pz0)<Vz(Pz1)<αz<Vz(Pz2)である。
Here, Van (Py) represents a sensor output value at the pressure Py in the Y-axis sensor an. (N = 1, 2, 3, 4) (y = y0, y1, y2)
Vbn (Py) represents a sensor output value at the pressure Py in the Y-axis sensor bn. (N = 1, 2, 3, 4) (y = y0, y1, y2)
Vz (Pk) represents a sensor output value at the pressure Pk in the Z-axis sensor z. (k = z0, z1, z2)
The threshold values of each sensor are αa1 to αa4, αb1 to αb4, and αz.
The sensor output value of the Y-axis sensor bn with Van (Py0) <Van (Py1) <αan <Van (Py2), (n = 1,2,3,4) Vbn (Py0) <Vbn (Py1) <αbn <Vbn (Py2), Vz (Pz0) <Vz (Pz1) <αz <Vz (Pz2).
 図示の格納テーブルの各Tn(Time1~6)は検知データの結果を示す。T1はPTN7(装置搭載なし)、T2はPTN2(装置奥行方向異常)、T3はPTN1(異常なし、装置正常搭載)、T4は奥行き方向においてレールのねじれ発生、センサ列番号1はPTN3(レール局所的変形)、センサ列番号2~4はPTN1(異常なし)、T5はPTN3(レール局所的変形)、T6はPTN5(レール変形)、を示す。 Each Tn (Time 1 to 6) in the illustrated storage table indicates the result of the detection data. T1 is PTN7 (no device installed), T2 is PTN2 (device depth direction abnormality), T3 is PTN1 (no abnormality, device normal installation), T4 is rail twisting in the depth direction, sensor row number 1 is PTN3 (rail local) Sensor row numbers 2 to 4 are PTN1 (no abnormality), T5 is PTN3 (rail local deformation), and T6 is PTN5 (rail deformation).
 次に、図6を参照して、制御ユニットによる制御動作について説明する。
制御ユニット28の制御部2802は、Y軸センサ26とZ軸センサ27からの出力値(検知データ)を、記憶部2801内のセンサ出力データ格納テーブル(格納テーブル)に格納すると共に、センサ出力状態別制御テーブルの判定基準として予め定めた閾値と各出力値と比較してその結果が何れに該当するかで、表示器を制御する。
Next, a control operation by the control unit will be described with reference to FIG.
The control unit 2802 of the control unit 28 stores the output values (detection data) from the Y-axis sensor 26 and the Z-axis sensor 27 in the sensor output data storage table (storage table) in the storage unit 2801 and also outputs the sensor output state. The display is controlled according to which one corresponds to the threshold value determined as a criterion of the separate control table and each output value.
 制御部2802は、取得した各センサの出力値を格納テーブルへ格納してテーブルを更新する(S601)。そして、制御部2802は、Y軸センサ26からの出力値a(n)とb(n)及びZ軸センサ27からの出力値zと、それぞれ予め定められた閾値α(図8の81)及びβ(図10の102)とを比較して(S602)、出力値が閾値を超えているか否かを判定する(S603~S607)。 The control unit 2802 stores the obtained output value of each sensor in the storage table and updates the table (S601). The control unit 2802 outputs the output values a (n) and b (n) from the Y-axis sensor 26, the output value z from the Z-axis sensor 27, a predetermined threshold value α (81 in FIG. 8), and β (102 in FIG. 10) is compared (S602) to determine whether or not the output value exceeds the threshold (S603 to S607).
 比較判定の結果、出力値が閾値を超えているものが無い場合は、さらにY軸センサ26からの出力値a(n)及びb(n)が圧力ゼロのときのY軸センサ26の出力値であるVx(図8の83)であるかどうかを判定し、YESであれば装置が搭載されていない状態であるPTN7の処理を実行する(S606)。NOであれば正常に搭載されている状態であるPTN1の制御を実行する(S606)。 As a result of the comparison determination, if there is no output value exceeding the threshold value, the output value of the Y-axis sensor 26 when the output values a (n) and b (n) from the Y-axis sensor 26 are zero pressure. Is determined to be Vx (83 in FIG. 8), and if YES, the process of PTN7 in which no device is mounted is executed (S606). If NO, the control of PTN1 that is normally mounted is executed (S606).
 一方、上記閾値との比較で閾値を超えている場合は、それぞれS603~S607の制御(PTN6,PTN2,PTN4,PTN5,PTN3)を実行する。 On the other hand, if the threshold value is exceeded in comparison with the threshold value, the control of S603 to S607 (PTN6, PTN2, PTN4, PTN5, PTN3) is executed.
 次に、図7~図15を参照して、Y軸センサ26及びZ軸センサ27の出力値とL字型金具25の変形について説明する。 Next, the output values of the Y-axis sensor 26 and the Z-axis sensor 27 and the deformation of the L-shaped bracket 25 will be described with reference to FIGS.
 図7はL字型金具5に変形が発生しておらず、電子機器9がY方向に正常に搭載された状態を示している。図8は、L字型金具25に加わる圧力とY軸センサ261,262の出力値an, bnとの関係を示す。
上述の通り、各センサ261,262への圧力が0、つまり電子機器9がラック1に搭載されていない場合の各圧力センサの出力値はVx(88)となる。電子機器がラックに搭載された場合には、その自重により正常な範囲内でY方向へ変形した状態の出力値Ix(82)となる。
FIG. 7 shows a state where the L-shaped metal fitting 5 is not deformed and the electronic device 9 is normally mounted in the Y direction. FIG. 8 shows the relationship between the pressure applied to the L-shaped bracket 25 and the output values an and bn of the Y- axis sensors 261 and 262.
As described above, when the pressure to each sensor 261, 262 is 0, that is, when the electronic device 9 is not mounted on the rack 1, the output value of each pressure sensor is Vx (88). When the electronic device is mounted on the rack, the output value Ix (82) is deformed in the Y direction within the normal range due to its own weight.
 図9は電子機器9がZ方向に正常に搭載された状態を示し、図10はZ軸センサ27の圧力値-出力値の関係を示す。Z方向においては、電子機器9がZ方向の所定の位置に搭載されている際は、一定の圧力値(Z-1)が発生した状態となっており、その際の出力値はIz(101)となる。Z方向の圧力値が0のときの出力値Vzの状態では、電子機器が未だ搭載されていないか、又は電子機器が正常に搭載されていない状態を示す。いずれの状態かはY軸センサ26の出力値と併せて判定する。 9 shows a state in which the electronic device 9 is normally mounted in the Z direction, and FIG. 10 shows a relationship between the pressure value and the output value of the Z-axis sensor 27. In the Z direction, when the electronic device 9 is mounted at a predetermined position in the Z direction, a constant pressure value (Z-1) is generated, and the output value at that time is Iz (101 ) The state of the output value Vz when the pressure value in the Z direction is 0 indicates that the electronic device is not yet mounted or the electronic device is not normally mounted. The state is determined together with the output value of the Y-axis sensor 26.
 図11(A)は、電子機器9を搭載したL字型金具25がL字曲げ部Pを屈折点として直線的に変形した状態を示す。スライドレールのセンサ261に対応する部分が屈折点Pに比べてhだけ下がっている。
この場合、図13で示すように、Y軸センサa(n)261及びb(n)262ともに荷重がかかり、圧力値が増加し、センサの出力値がともに閾値α(81)を超えた状態となる。これは、センサ出力状態別管理テーブル(図5)に示す異常判断の基準によれば、PTN5もしくはPTN6となる。PTN5かPTN6かの判定はZ方向の判定と併せて行う。
FIG. 11A shows a state in which the L-shaped metal fitting 25 on which the electronic device 9 is mounted is linearly deformed with the L-shaped bent portion P as a refraction point. The portion of the slide rail corresponding to the sensor 261 is lower than the refraction point P by h.
In this case, as shown in FIG. 13, a load is applied to both the Y-axis sensors a (n) 261 and b (n) 262, the pressure value increases, and the sensor output values both exceed the threshold value α (81). It becomes. This is PTN5 or PTN6 according to the abnormality determination criteria shown in the sensor output state management table (FIG. 5). The determination of PTN5 or PTN6 is performed together with the determination in the Z direction.
 ここで、図14及び図15を参照して、Z方向に対して電子機器9が正常に搭載されていない状態について示す。図14の例では、スライドレール2上を挿入する電子機器9の挿入状態が不十分で、間隔gだけ隙間が生じている。この場合、図15に示すように、Z方向の圧力が低下するので、Z軸センサ27が検出する出力電圧も低下して、その出力値が閾値β(102)を下回る値となる。このとき、L字型金具25が直線的に変形した状態と併せて、判定結果はPTN6となる。なお、この場合Z方向に配置された4組のY軸センサはZ方向の配置位置によらず同じ場合とする(a(1)=a(2)=・・・a(n)=b(n)も同様)。 Here, with reference to FIG. 14 and FIG. 15, a state where the electronic device 9 is not normally mounted in the Z direction will be described. In the example of FIG. 14, the insertion state of the electronic device 9 inserted on the slide rail 2 is insufficient, and a gap is generated by the interval g. In this case, as shown in FIG. 15, since the pressure in the Z direction decreases, the output voltage detected by the Z-axis sensor 27 also decreases, and the output value falls below the threshold value β (102). At this time, together with the state in which the L-shaped metal fitting 25 is linearly deformed, the determination result is PTN6. In this case, the four sets of Y-axis sensors arranged in the Z direction are the same regardless of the arrangement position in the Z direction (a (1) = a (2) =... A (n) = b ( The same applies to n).
 図11(B)は、L字型金具25が屈折点Pで局所的に変形した状態を示す。この場合、屈折点PよりL字曲げ部Qの内側にあるY軸センサb(n)262の検出値は変位量が少ないため、閾値α(81)を越えない。しかし、外側にあるY軸センサa(n)261の検出値は大きく増加して、その出力値が閾値α(81)を超えた状態となる。この場合、制御テーブル(図5)の判定基準はPTN3もしくはPTN4となる。この判定は直線的変形の場合(図11(A)、図13)と同様に、Z方向の判定と併せて行う。Z方向に対して電子機器9が正常に搭載されている場合はPTN3、それが正常に搭載されていない場合はPTN4となる。また、電子機器が搭載されていない状態であるPTN7は格納テーブル(図12)のTime1となる。 FIG. 11 (B) shows a state in which the L-shaped metal fitting 25 is locally deformed at the refraction point P. FIG. In this case, the detected value of the Y-axis sensor b (n) 262 located inside the L-shaped bent portion Q from the refraction point P does not exceed the threshold value α (81) because the displacement is small. However, the detected value of the outer Y-axis sensor a (n) 261 increases greatly, and the output value exceeds the threshold value α (81). In this case, the determination criterion of the control table (FIG. 5) is PTN3 or PTN4. This determination is performed together with the determination in the Z direction as in the case of linear deformation (FIGS. 11A and 13). When the electronic device 9 is normally mounted with respect to the Z direction, it becomes PTN3, and when it is not normally mounted, it becomes PTN4. Moreover, PTN7 in a state where no electronic device is mounted becomes Time1 of the storage table (FIG. 12).
 以上のように本実施例によれば、ラックに搭載された電子機器が地震や輸送・振動等の外力により、電子機器が搭載されているスライドレール(L字型金具)が変形した場合、スライドレールの変形状態、引いては電子機器の搭載状態を検知することで、異常状態に応じて異なる色で表示して管理者等に知らせることができる。 As described above, according to this embodiment, when an electronic device mounted on a rack is deformed by an external force such as an earthquake, transportation or vibration, the slide rail (L-shaped bracket) on which the electronic device is mounted is deformed. By detecting the deformation state of the rail, and thus the mounting state of the electronic device, it can be displayed in a different color depending on the abnormal state to notify the administrator or the like.
 なお、本発明は上記実施例に限定されずに種々変形、代替して実施し得る。例えば、Y軸センサ及びZ軸センサの配置場所や配置個数は、上記実施例に限定されない。図2に示す例では、Y軸センサはL字型金具25の取付け板23上にX方向2列、Z方向に4ヶ所に亘って配置されているが、それらの配置に限定されない。例えば、スライドレールの幅方向の変形を主に検知したい場合には、その幅方向に複数のセンサを配置することで実現できる。また、例えば、スライドレールの奥行方向の変形を主に検知したい場合には、その奥行方向に複数のセンサを配置することで実現できる。
また図2に示す例では、Z軸センサはラックの後側に配置されているが、これに限定されない。
The present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made. For example, the arrangement location and the number of Y-axis sensors and Z-axis sensors are not limited to the above embodiment. In the example shown in FIG. 2, the Y-axis sensors are arranged on the mounting plate 23 of the L-shaped bracket 25 in two rows in the X direction and four places in the Z direction, but the arrangement is not limited thereto. For example, when it is desired to mainly detect deformation in the width direction of the slide rail, it can be realized by arranging a plurality of sensors in the width direction. For example, when it is desired to mainly detect deformation in the depth direction of the slide rail, it can be realized by arranging a plurality of sensors in the depth direction.
In the example shown in FIG. 2, the Z-axis sensor is disposed on the rear side of the rack, but is not limited to this.
 また上記実施例では、図5に示す制御テーブルは、Y軸センサ及びZ軸センサの検知結果に応じて7つの異なる判定基準を設定しているが、代替例ではこれに限定されない。例えば、異常の許容範囲によっては判定基準を緩めて7つ未満の判定基準としてもよい。 In the above embodiment, the control table shown in FIG. 5 sets seven different determination criteria according to the detection results of the Y-axis sensor and the Z-axis sensor, but the alternative example is not limited to this. For example, depending on the allowable range of abnormality, the determination criterion may be relaxed to be less than seven determination criteria.
1:ラック      10:支柱      9:電子機器
2:スライドレール  24:アウターレール 25:L字型金具
26:Y軸センサ   27:Z軸センサ
28:制御ユニット  2801:記憶部   2802:制御部
29:表示器
1: rack 10: support 9: electronic device 2: slide rail 24: outer rail 25: L-shaped bracket 26: Y-axis sensor 27: Z-axis sensor 28: control unit 2801: storage unit 2802: control unit 29: display

Claims (13)

  1.  左右に設けられたスライドレールに電子機器を搭載するラックであって、
    該スライドレールに配置された1又は複数の第1のセンサと、
    該第1のセンサによる検知データを基に該スライドレールの変形を判定する制御ユニットと、
    を有するラック。
    A rack for mounting electronic devices on slide rails provided on the left and right,
    One or more first sensors disposed on the slide rail;
    A control unit for determining deformation of the slide rail based on the detection data by the first sensor;
    Rack with.
  2. 前記スライドレールは左右方向に所定の幅を持ったレールであり、
    前記複数の第1のセンサを該スライドレールの幅方向に配置し、
    前記制御部は、該複数の第1のセンサの検知データを基に、該スライドレールの幅方向の変形が直線的な変形又は局所的な変形を判定する
    請求項1に記載のラック。
    The slide rail is a rail having a predetermined width in the left-right direction,
    Arranging the plurality of first sensors in the width direction of the slide rail;
    The rack according to claim 1, wherein the control unit determines whether the deformation in the width direction of the slide rail is a linear deformation or a local deformation based on detection data of the plurality of first sensors.
  3. 前記スライドレールは奥行方向に延伸したレールであり、
    前記複数の第1のセンサを該スライドレールの奥行方向に配置し、
    前記制御部は、該複数の第1のセンサの検知データを基に、該スライドレールの奥行方向の変形を判定する
    請求項1又は2に記載のラック。
    The slide rail is a rail extending in the depth direction,
    Arranging the plurality of first sensors in the depth direction of the slide rail;
    The rack according to claim 1 or 2, wherein the control unit determines deformation of the slide rail in a depth direction based on detection data of the plurality of first sensors.
  4. 前記スライドレールは奥行方向に延伸したレールであり、
    該スライドレールの奥側に第2のセンサを配置し、
    前記制御部は、該第2のセンサの検知データを基に、該スライドレールに支持されて挿入される電子機器の搭載状態を判定する
    請求項1乃至3のいずれかの項に記載のラック。
    The slide rail is a rail extending in the depth direction,
    A second sensor is arranged on the back side of the slide rail,
    The rack according to any one of claims 1 to 3, wherein the control unit determines a mounting state of an electronic device that is inserted by being supported by the slide rail, based on detection data of the second sensor.
  5. 前記制御ユニットは、前記第1のセンサ又は前記第2のセンサによる検知データに基づくスライドレールの変形の判定基準を予め定めて、該判定基準を記憶部に記憶し、
    前記第1のセンサ又は前記第2のセンサで検知された検知データを該判定基準に照らし、該判定基準に応じて表示器の表示を変えるように制御する
    請求項1乃至4のいずれかの項に記載のラック。
    The control unit predetermines a determination criterion for deformation of the slide rail based on detection data by the first sensor or the second sensor, and stores the determination criterion in a storage unit,
    The detection data detected by the first sensor or the second sensor is controlled based on the determination criterion, and the display of the display is changed according to the determination criterion. Rack as described in.
  6.  左右に設けられたスライドレールに電子機器を搭載するラックの状態を検出する検出装置であって、
    該スライドレールに配置された1又は複数の第1のセンサと、
    該第1のセンサによる検知データを基に該スライドレールの変形を判定する制御ユニットと、
    を有するラックの異常検出装置。
    A detection device that detects a state of a rack in which electronic devices are mounted on slide rails provided on the left and right,
    One or more first sensors disposed on the slide rail;
    A control unit for determining deformation of the slide rail based on the detection data by the first sensor;
    An apparatus for detecting an abnormality of a rack.
  7. 前記スライドレールは左右方向に所定の幅を持ったレールであり、
    前記複数の第1のセンサを該スライドレールの幅方向に配置し、
    前記制御部は、該複数の第1のセンサの検知データを基に、該スライドレールの幅方向の変形が直線的な変形又は局所的な変形を判定する
    請求項6に記載のラックの異常検出装置。
    The slide rail is a rail having a predetermined width in the left-right direction,
    Arranging the plurality of first sensors in the width direction of the slide rail;
    The rack abnormality detection according to claim 6, wherein the control unit determines whether the deformation in the width direction of the slide rail is linear deformation or local deformation based on detection data of the plurality of first sensors. apparatus.
  8. 前記スライドレールは奥行方向に延伸したレールであり、
    前記複数の第1のセンサを該スライドレールの奥行方向に配置し、
    前記制御部は、該複数の第1のセンサの検知データを基に、該スライドレールの奥行方向の変形を判定する
    請求項6又は7に記載のラックの異常検出装置。
    The slide rail is a rail extending in the depth direction,
    Arranging the plurality of first sensors in the depth direction of the slide rail;
    The rack abnormality detection device according to claim 6 or 7, wherein the control unit determines deformation of the slide rail in the depth direction based on detection data of the plurality of first sensors.
  9. 前記スライドレールは奥行方向に延伸したレールであり、
    該スライドレールの奥側に第2のセンサを配置し、
    前記制御部は、該第2のセンサの検知データを基に、該スライドレールに支持されて挿入される電子機器の搭載状態を判定する
    請求項6乃至8のいずれかの項に記載のラックの異常検出装置。
    The slide rail is a rail extending in the depth direction,
    A second sensor is arranged on the back side of the slide rail,
    The rack according to any one of claims 6 to 8, wherein the control unit determines a mounting state of an electronic device to be inserted while being supported by the slide rail based on detection data of the second sensor. Anomaly detection device.
  10. 前記制御ユニットは、前記第1のセンサ又は前記第2のセンサによる検知データに基づくスライドレールの変形の判定基準を予め定めて、該判定基準を記憶部に記憶し、
    前記第1のセンサ又は前記第2のセンサで検知された検知データを該判定基準に照らし、該判定基準に応じて表示器の表示を変えるように制御する
    請求項6乃至9のいずれかの項に記載のラックの異常検出装置。
    The control unit predetermines a determination criterion for deformation of the slide rail based on detection data by the first sensor or the second sensor, and stores the determination criterion in a storage unit,
    The detection data detected by the first sensor or the second sensor is lit against the determination criterion, and control is performed so as to change the display of the display according to the determination criterion. The rack abnormality detection device according to claim 1.
  11.  左右に設けられたスライドレールに電子機器を搭載するラックの状態を検出する検出方法であって、
    該スライドレールに配置された1又は複数の第1のセンサから検知データを取得するステップと、
    該第1のセンサによる検知データを基に該スライドレールの変形を判定するステップと、
    を有するラックの異常検出方法。
    A detection method for detecting a state of a rack in which electronic devices are mounted on slide rails provided on the left and right,
    Obtaining detection data from one or more first sensors disposed on the slide rail;
    Determining the deformation of the slide rail based on the detection data by the first sensor;
    A method for detecting an abnormality in a rack.
  12. 前記スライドレールは左右方向に所定の幅を持ったレールであり、
    前記複数の第1のセンサは該スライドレールの幅方向に配置され、
    該複数の第1のセンサの検知データを基に、該スライドレールの幅方向の変形が直線的な変形又は局所的な変形を判定する
    請求項11に記載のラックの異常検出方法。
    The slide rail is a rail having a predetermined width in the left-right direction,
    The plurality of first sensors are arranged in the width direction of the slide rail,
    The rack abnormality detection method according to claim 11, wherein the deformation in the width direction of the slide rail is determined as linear deformation or local deformation based on detection data of the plurality of first sensors.
  13. 前記スライドレールは奥行方向に延伸したレールであり、
    前記複数の第1のセンサは該スライドレールの奥行方向に配置され、
    前記制御部は、該複数の第1のセンサの検知データを基に、該スライドレールの奥行方向の変形を判定する
    請求項11又は12に記載のラックの異常検出方法。
    The slide rail is a rail extending in the depth direction,
    The plurality of first sensors are arranged in the depth direction of the slide rail,
    The rack abnormality detection method according to claim 11 or 12, wherein the control unit determines deformation of the slide rail in the depth direction based on detection data of the plurality of first sensors.
PCT/JP2013/084654 2013-12-25 2013-12-25 Rack, anomaly detection device for rack, and method for same WO2015097779A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/084654 WO2015097779A1 (en) 2013-12-25 2013-12-25 Rack, anomaly detection device for rack, and method for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/084654 WO2015097779A1 (en) 2013-12-25 2013-12-25 Rack, anomaly detection device for rack, and method for same

Publications (1)

Publication Number Publication Date
WO2015097779A1 true WO2015097779A1 (en) 2015-07-02

Family

ID=53477721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084654 WO2015097779A1 (en) 2013-12-25 2013-12-25 Rack, anomaly detection device for rack, and method for same

Country Status (1)

Country Link
WO (1) WO2015097779A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240008210A1 (en) * 2022-07-01 2024-01-04 Dell Products L.P. Information handling system rack adaptable depth

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145247A (en) * 1991-11-19 1993-06-11 Nec Data Terminal Ltd Stopper for slide rail
JPH07162174A (en) * 1993-12-03 1995-06-23 Nec Eng Ltd Communication equipment installing frame
JP2000514603A (en) * 1996-07-12 2000-10-31 ノーテル・ネットワークス・コーポレーション Equipment rack
JP2010087028A (en) * 2008-09-29 2010-04-15 Shindengen Electric Mfg Co Ltd Electronic equipment device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145247A (en) * 1991-11-19 1993-06-11 Nec Data Terminal Ltd Stopper for slide rail
JPH07162174A (en) * 1993-12-03 1995-06-23 Nec Eng Ltd Communication equipment installing frame
JP2000514603A (en) * 1996-07-12 2000-10-31 ノーテル・ネットワークス・コーポレーション Equipment rack
JP2010087028A (en) * 2008-09-29 2010-04-15 Shindengen Electric Mfg Co Ltd Electronic equipment device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240008210A1 (en) * 2022-07-01 2024-01-04 Dell Products L.P. Information handling system rack adaptable depth
US11985786B2 (en) * 2022-07-01 2024-05-14 Dell Products L.P. Information handling system rack adaptable depth

Similar Documents

Publication Publication Date Title
EP3066905B1 (en) Improved rack mounting kit for telecommunications equipment and rack cross brace
US20120071076A1 (en) Container data center and heat dissipation system
US20140055934A1 (en) Server
RU2016141945A (en) MEMS-ACCELEROMETER UNIT RESISTANT TO MECHANICAL SHOCKS AND METHOD, DEVICE AND SYSTEM RELATED TO IT
JP2011049772A5 (en) Electronic device and imaging device
WO2015097779A1 (en) Rack, anomaly detection device for rack, and method for same
JP2014228471A5 (en)
US8123186B2 (en) Ruggedized mounting assembly and method for stabilizing one or more computer racks
US7848109B2 (en) Assembly and method for ruggedizing computer racks and/or electronic cage assemblies
JP5699781B2 (en) Fan failure notification device and method thereof
JP4904305B2 (en) Equipment mounting structure to server rack
US8978900B2 (en) Bulk rail bracket
WO2021095566A1 (en) Current detection device
CN103906396A (en) Equipment cabinet
JP6503851B2 (en) Electronic device enclosure
US20130163194A1 (en) Cabinet with cooling system
JP5866263B2 (en) Rack anti-seismic device
JP6915896B2 (en) Storage device and abnormal storage device identification method
US20160273903A1 (en) Height measurement to verify position of equipment in a data center rack
JP5013612B2 (en) Equipment mounting support
JP6650759B2 (en) Cooling system, air conditioning control device and air conditioning control method
GB2483756A (en) Positioning device for rack equipment mounted providing additional support at the rear of the equipment
JP5867689B2 (en) Electronic device storage case connection structure
US20110026221A1 (en) Fan for computer element in the service position
JP2017009386A (en) Weight measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP