WO2015096166A1 - 一种信号发送方法,信号检测方法和相关设备以及系统 - Google Patents

一种信号发送方法,信号检测方法和相关设备以及系统 Download PDF

Info

Publication number
WO2015096166A1
WO2015096166A1 PCT/CN2013/090798 CN2013090798W WO2015096166A1 WO 2015096166 A1 WO2015096166 A1 WO 2015096166A1 CN 2013090798 W CN2013090798 W CN 2013090798W WO 2015096166 A1 WO2015096166 A1 WO 2015096166A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
cell
user equipment
state
enters
Prior art date
Application number
PCT/CN2013/090798
Other languages
English (en)
French (fr)
Inventor
薛丽霞
马瑞泽⋅大卫
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380003488.7A priority Critical patent/CN105009661B/zh
Priority to PCT/CN2013/090798 priority patent/WO2015096166A1/zh
Priority to EP13900300.8A priority patent/EP3079418B1/en
Priority to BR112016015194-1A priority patent/BR112016015194B1/pt
Publication of WO2015096166A1 publication Critical patent/WO2015096166A1/zh
Priority to US15/195,610 priority patent/US10085203B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a signal sending method, a signal detecting method, and related devices and systems. Background technique
  • the user equipment In the current Long Term Evolution (LTE) system (such as Release 8-11), the user equipment (UE, User Equipment) detects the primary synchronization signal (PSS, Primary Synchronization Signal) and the secondary synchronization signal (SSS) sent by the base station.
  • PSS Primary Synchronization Signal
  • SSS secondary synchronization signal
  • Secondary Synchronization Signal synchronizes with the base station, and identifies the physical cell under the base station, then reads the system broadcast message sent by the base station, initiates random access to the base station, and finally establishes radio resource control with the base station (RRC, RadioResourceControl) ) connecting and communicating data with the base station.
  • RRC RadioResourceControl
  • the initial coarse synchronization is completed according to the PSS and the SSS sent by the base station, and the time-frequency tracking fine synchronization is a cell-specific reference signal (CRS, Cell- transmitted by the base station). Specific Reference Signal ) to complete.
  • CRS Cell-specific reference signal
  • Specific Reference Signal a cell-specific reference signal
  • the UE in the RRC connected state needs to perform necessary measurement and synchronization tracking. For example, the UE needs to measure channel state information through CRS or Channel State Information-Reference Signal (CSI-RS).
  • CSI-RS Channel State Information-Reference Signal
  • the CSI channel state information
  • the CSI is connected to the base station, so that the base station selects a suitable modulation and coding scheme according to the CSI measured by the UE to perform data scheduling for the UE; the UE performs synchronization tracking through the CRS to ensure data demodulation performance; To achieve wireless resource management through CRS.
  • the transmission periods of the PSS and the SSS are both 5 milliseconds (ie, ms), and each of the six orthogonal frequency frequencies of the six resource blocks of the carrier center is occupied each time the PSS or SSS is transmitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • CRS needs to be transmitted in each subframe, generally occupying 2 or 4 resource units of two OFDM symbols of one resource block, in particular, for a subsequently evolved LTE system, Non-backward compatible carriers or non-backward compatible transmission and usage modes are introduced, and the CRS must maintain a transmission period of at least 5 ms.
  • the UE in the RRC idle state does not need to perform CSI measurement, but also needs to perform necessary radio resource management (RRM, RadioResourceManagement) measurement, so that the UE can perform mobility requirements based on RRM, 'j, zone selection, and cell reselection.
  • RRM radio resource management
  • the base station is required to always transmit signals such as PSS, SSS and CRS with a small period.
  • signals such as PSS, SSS, and CRS with a small period are always transmitted in the cell.
  • the power efficiency of the cell is greatly reduced.
  • the transmission of short-period signals such as PSS, SSS and CRS, causes severe inter-cell interference and increased signal transmission load, thereby reducing system performance and transmission capacity.
  • one is a dynamic discontinuous transmission mechanism of a cell, that is, as long as the current subframe does not need a fixed transmission signal, the cell does not perform any signal transmission or reduce signal transmission in the current subframe;
  • One is a semi-static cell sleep mechanism, that is, according to the load and transmission amount of the service in the cell, and whether the cell has a serving UE or the like, it is determined that no signal transmission or reduced signal transmission is performed for a period of time.
  • the essence refers to not transmitting any signal or reducing signal transmission.
  • no signal transmission or reduced signal transmission state is unified. In the sleep state, the state corresponding to the sleep state (ie, the normal serving UE) is referred to as the active state.
  • the above two mechanisms have the following drawbacks:
  • the cell in the dormant state is only triggered by the current service, and the UE in the coverage area can still be aware of whether the new service has arrived and transmitted.
  • the cell When the cell has dynamic service or the UE enters the cell, the cell also The transmission of starting a new service cannot be implemented immediately, because the UE may not be aware of the change of the network status, and the cell needs to establish a constraint of interworking with the UE (ie, the UE can also be aware of the activation state of the cell), in the process, There are transition state changes and transition delays of the dormant state and the active state. This delay takes dozens, hundreds, or even thousands of subframes. Therefore, the cell in the dormant state cannot initiate the transmission of the service immediately due to the arrival of the service. It is bound to cause transmission delays, which will degrade the performance of the system and result in reduced service efficiency. Summary of the invention
  • the embodiments of the present invention provide a signal sending method, a signal detecting method, a related device, and a system, which are used to enable a UE to discover a state change of a cell in time.
  • An aspect of the present invention provides a signaling method, including:
  • the base station determines that the first cell enters or is ready to enter a dormant state
  • the use of the first cell The first device sends the first signal, and the first signal carries time information of the first cell entering the eye-open state, so that the user equipment determines that the first cell enters a dormant state according to the time information; and when the base station determines the first cell And transmitting, by the user equipment, the second signal to the user equipment in the first cell, to enable the user equipment to determine that the first cell enters an active state according to the second signal;
  • the second signal is any one of the following signals or a combination of any two or more of: a primary synchronization signal PSS; a secondary synchronization signal SSS; a cell-specific reference signal CRS; a channel state information reference signal CSI-RS.
  • Transmitting a first signal to the user equipment in the first cell where the first signal carries a start time point of the first cell entering a dormant state, so that the user equipment enters a sleep state according to the first cell It is determined that the first cell enters a sleep state from the start time point.
  • the user equipment in the first cell sends the first signal, including:
  • the sending, by the user equipment, the second signal to the user equipment in the first cell includes:
  • the sending manner of the second signal includes: a time-frequency resource location of the second signal and a sending period One or two.
  • the first signal and the second signal are different, and include any one of the following or any two or more The difference in combination:
  • the signal types of the first signal and the second signal are different;
  • the channel carried by the first signal is different from the channel carried by the second signal
  • the time-frequency resource position of the first signal is different from the time-frequency resource position of the second signal; the transmission period of the first signal is different from the transmission period of the second signal.
  • a second aspect of the present invention provides a signal detecting party, including:
  • the user equipment receives the first signal, where the first signal carries time information of the first cell entering the eye-open state;
  • the user equipment determines that the first cell enters a sleep state according to the foregoing time information.
  • the user equipment detects the second signal
  • the user equipment When detecting the second signal, the user equipment determines that the first cell enters an active state according to the second signal;
  • the second signal is any one of the following signals or a combination of any two or more of: a primary synchronization signal PSS; a secondary synchronization signal SSS; a cell-specific reference signal CRS; a channel state information reference signal CSI-RS.
  • the first signal carries the start time point of the first cell entering the dormant state.
  • the user equipment determines that the first cell enters the dormant state according to the first signal, and the method includes: the user equipment enters a dormant state according to the first cell.
  • the start time point determines that the first cell enters a sleep state from the start time point.
  • the first signal carries the at least one time period in which the first cell enters a dormant state.
  • the user equipment determines that the first cell enters a dormant state according to the first signal, and includes: the user equipment enters a dormant state according to the first cell.
  • a period of time period determines that the first cell is in a sleep state during the at least one period of time period.
  • the foregoing user equipment Receiving the first signal is specifically: receiving a discovery signal
  • the user equipment determines that the first cell enters an activation state according to a manner of sending the received discovery signal, where the sending manner of the discovery signal includes: Discover one or both of the time-frequency resource location and the transmission period of the signal.
  • the determining, by the user equipment, that the first cell enters an active state from a dormant state according to the second signal includes:
  • the user equipment determines that the first cell enters an active state according to the sending manner of the second signal, where the sending manner of the second signal includes: one or two of a time-frequency resource location and a sending period of the second signal. .
  • the method further includes:
  • the user equipment initiates detection of a control channel in the first cell, or reception or transmission of service data.
  • the foregoing method further includes:
  • the user equipment stops receiving or transmitting the service data in the first cell.
  • the first signal is different from the second signal, and includes any one of the following or a combination of any two of the above:
  • the signal types of the first signal and the second signal are different;
  • the channel carried by the first signal is different from the channel carried by the second signal
  • the time-frequency resource position of the first signal is different from the time-frequency resource position of the second signal; the transmission period of the first signal is different from the transmission period of the second signal.
  • a third aspect of the present invention provides a base station, including:
  • a first determining unit configured to determine that the first cell enters or is ready to enter a sleep state
  • a sending unit configured to send a first signal to the user equipment in the first cell when the first determining unit determines that the first cell enters or is ready to enter a dormant state, where the first signal carries the first cell to enter an eye-open state Time information;
  • a second determining unit configured to determine that the first cell enters an active state from a dormant state; the sending unit is further configured to: when the second determining unit determines that the first cell enters an active state from a dormant state, to the first cell The user equipment sends a second signal, so that the user equipment determines that the first cell enters an active state according to the second signal;
  • the second signal is any one of the following signals or a combination of any two or more of: a primary synchronization signal PSS; a secondary synchronization signal SSS; a cell-specific reference signal CRS; a channel state information reference signal CSI-RS.
  • the sending unit is further configured to: when the first signal carries the start time point of the first cell entering a dormant state, to enable the user equipment to enter a sleep state according to the start time of the first cell The point determines that the first cell enters a sleep state from the start time point.
  • the sending unit is further configured to: carry the at least one period of time in which the first cell enters a dormant state, in the first signal, to enable the user equipment to determine the first cell according to at least one period of time when the first cell enters a dormant state. It is in a sleep state during at least one of the above period periods.
  • the foregoing sending unit Specifically, the method is: sending a first signal to the user equipment in the first cell by sending a discovery signal to the user equipment in the first cell according to the sending manner of the predetermined discovery signal, where the sending manner of the foregoing discovery signal includes : One or both of the time-frequency resource location and the transmission period of the above-mentioned discovery signal.
  • the sending unit Specifically, the method is: sending, according to the predetermined sending manner of the foregoing second signal, the second signal to the user equipment in the first cell, where the sending manner of the second signal includes: a time-frequency resource location of the second signal One or both of the sending cycles.
  • a fourth aspect of the present invention provides a user equipment, including:
  • a receiving unit configured to receive a first signal, where the first signal carries time information that the first cell enters a state of a closed eye
  • a first determining unit configured to: when the receiving unit receives the first signal, determine, according to the time information, that the first cell enters a sleep state;
  • a first detecting unit configured to detect the second signal
  • a second determining unit configured to: when the first detecting unit detects the second signal, determine, according to the second signal, that the first cell enters an active state from a dormant state;
  • the second signal is any one of the following signals or a combination of any two or more of: a primary synchronization signal PSS; a secondary synchronization signal SSS; a cell-specific reference signal CRS; a channel state information reference signal CSI-RS.
  • the first signal carries a start time point when the first cell enters a sleep state;
  • the first determining unit is further configured to: determine, according to the starting time point that the first cell enters the dormant state, that the first cell enters a dormant state from the starting time point.
  • the first signal carries the at least one time period in which the first cell enters a dormant state; the first determining unit is further configured to: determine that the first cell is in the at least one according to at least one time period in which the first cell enters a dormant state Sleeping during the time period.
  • the receiving unit The first signal received is a discovery signal
  • the first determining unit is configured to: determine, according to the sending manner of the received discovery signal, that the first cell enters an active state, where the sending manner of the discovery signal includes: a time-frequency resource location of the discovery signal and a sending period One or two.
  • the foregoing user equipment further includes:
  • a second detecting unit configured to detect a sending manner of the second signal when the first detecting unit detects the second signal
  • the second determining unit is configured to determine, according to the sending manner of the second signal that is detected by the second detecting unit, that the first cell enters an active state, where the sending manner of the second signal includes: One or both of the time-frequency resource location and the transmission cycle.
  • the user equipment further includes:
  • a first service control unit configured to: when the second determining unit determines that the first cell enters an active state from a dormant state, initiate detection and reception of service data in the first cell.
  • the above user equipment further includes:
  • the second service control unit is configured to stop detecting and receiving the service data in the first cell when the first determining unit determines that the first cell enters a dormant state.
  • a fifth aspect of the present invention provides a base station, including: a transceiver device and a processor;
  • the processor is configured to: when the base station determines that the first cell enters or is ready to enter a dormant state, and controls the transceiver device to send a first signal to the user equipment in the first cell, where the first signal carries the first cell to enter Time information of the eye-opening state, so that the user equipment determines that the first cell enters a dormant state according to the time information; and when the first cell enters an active state from a dormant state, controlling the transceiver to the user in the first cell
  • the device sends a second signal, so that the user equipment determines that the first cell enters an active state according to the second signal;
  • the second signal is any one of the following signals or a combination of any two or more of: a primary synchronization signal PSS; a secondary synchronization signal SSS; a cell-specific reference signal CRS; a channel state information reference signal CSI-RS.
  • the processor is specifically configured to: send a first signal to a user equipment in a first cell, where the first signal carries the first cell to enter a sleep state. a start time point, so that the user equipment determines that the first cell enters a sleep state from the start time point according to a starting time point that the first cell enters a sleep state.
  • the processor is specifically configured to: send a first signal to a user equipment in a first cell, where the first signal carries the first cell to enter a sleep state. At least one period of time period, so that the user equipment determines that the first cell is in a sleep state during the at least one period of time according to at least one period of time when the first cell enters a sleep state.
  • the foregoing processor Specifically, the first signal is sent to the user equipment in the first cell by sending the foregoing discovery signal to the user equipment in the first cell according to a predetermined manner of sending the discovery signal, where the manner of sending the discovery signal is The method includes: one or two of a time-frequency resource location and a transmission period of the foregoing discovery signal.
  • the foregoing processor is specifically configured to: send, by using, a second signal to the user equipment in the first cell by: sending, according to the predetermined sending manner of the second signal, to the first cell
  • the user equipment sends the second signal, where the second signal is sent by: one or two of a time-frequency resource location and a transmission period of the second signal.
  • a sixth aspect of the present invention provides a user equipment, including: a transceiver device and a processor; wherein, the transceiver device is configured to: receive a first signal, where the first signal carries time information of the first cell entering an eye-open state;
  • the processor is configured to: determine, according to the foregoing time information, that the first cell enters a dormant state; and detect a second signal; and when detecting the second signal, determine, according to the second signal, that the first cell enters an active state from a sleep state;
  • the second signal is any one of the following signals or a combination of any two or more of: a primary synchronization signal PSS; a secondary synchronization signal SSS; a cell-specific reference signal CRS; a channel state information reference signal CSI-RS.
  • the first signal carries the start time point of the first cell entering the dormant state; the processor is further configured to: determine, according to the start time point of the first cell entering the dormant state, the first cell from the start time point Go to sleep.
  • the first signal carries the at least one time period in which the first cell enters a dormant state; the processor is further configured to: determine, according to the at least one time period of the first cell entering a dormant state, that the first cell is in the at least one time period It is in a dormant state.
  • the transceiver device The first signal received is a discovery signal
  • the processor is specifically configured to: determine, according to the sending manner of the discovery signal received by the transceiver, the first cell to enter an activation state, where the sending manner of the discovery signal includes: a time-frequency resource location of the discovery signal and a sending period One or two.
  • the processor is specifically configured to: obtain a sending manner of the second signal, and determine, according to the sending manner of the second signal, that the first cell enters an active state, where the sending manner of the second signal includes: One or both of the frequency resource location and the transmission period.
  • the processor is further configured to: when it is determined that the first cell enters an active state, initiate detection and reception of service data in the first cell.
  • the processor is further configured to: stop, when the first cell enters a dormant state, stop detecting and receiving service data in the first cell.
  • a seventh aspect of the present invention provides a communication system, comprising: any one of the foregoing base station according to the third aspect and the fifth aspect; and the user equipment of any of the above fourth aspect and the sixth aspect.
  • the first cell indicates to the UE that the first cell enters a dormant state
  • the second signal indicates to the UE that the first cell enters an active state from the dormant state, so that the UE can discover in time.
  • the state of the first cell changes, so that it is possible for the UE to perform a corresponding processing mechanism for the state change of the first cell in time, which is beneficial to improving system performance and cell service efficiency.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for transmitting a signal according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for detecting a signal according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an embodiment of a base station according to the present invention
  • schematic diagram 4 is a schematic structural diagram of another embodiment of a base station according to the present invention
  • FIG. 5 is a schematic structural diagram of an embodiment of a user equipment according to the present invention.
  • FIG. 6 is a schematic structural diagram of another embodiment of a user equipment according to the present invention.
  • FIG. 7 is a schematic structural diagram of still another embodiment of a user equipment according to the present invention.
  • FIG. 8 is a schematic structural diagram of an embodiment of a communication system according to the present invention. detailed description
  • Embodiments of the present invention provide a signal transmitting method, a signal detecting method, a related device, and a system.
  • the two cell states (i.e., the sleep state and the active state) mentioned in the embodiments of the present invention are first described.
  • the cell When the cell is in the dormant state, the cell does not transmit any signal or reduce the transmission of the signal.
  • the cell When the cell is in the active state, the cell normally serves the UE, that is, does not shield or reduce the transmission of the signal.
  • the mechanism for the cell sleep state in the embodiment of the present invention includes two modes:
  • Manner 1 It is a dynamic discontinuous transmission method of a cell. It can also be called dynamic cell dormancy. That is, as long as the current subframe has no signal to be fixedly transmitted, the cell can dynamically implement data and related information without scheduling any UE.
  • the control information enables the cell to transmit no signal in the current subframe.
  • the fixed transmission signal mainly includes any one of the following signals or a combination of any two or more, such as PSS, SSS, CRS, broadcast signal, paging signal, etc., which are predefined by the cell; Transmission signals, including CSI-RS, discovery reference signals (DRS, Discovery Reference Signal, Positioning Reference Signal (PRS), etc.) This method can enable discontinuous transmission of cells as much as possible by reducing the transmission of fixed signals.
  • CSI-RS which is mainly determined by the cell configuration, it can flexibly reduce its transmission; but as mentioned above, PSS, SSS, CRS and other signals, because these signals support cell synchronization and cell discovery of the UE, The signals of the process are measured, and therefore, the reduction of these signals is limited.
  • the transmission of CRS can be reduced to at least 5 ms. In this way, the CRS can be transmitted in one or more subframes together with the PSS and the SSS, and the CRS can not be transmitted in another subframe, and the cell can determine whether the dynamic is based on the transmission of other signals and services on the subframes. Enable sleep.
  • Manner 2 The method of sleeping in a semi-static cell, that is, the cell determines the mechanism for not transmitting in a period of time according to the load and the amount of traffic of the service, and whether there is a UE that needs to be served in the coverage area. During the time, the cell does not transmit any signals or reduce the transmission of signals.
  • non-transmission signals including: PSS, SSS, CRS, also include signals such as control channels and data channels, thereby completely shutting down the cell; the above-mentioned reduction of signal transmission means that only a few necessary signals are transmitted, such as It mainly supports the DRS of the UE's discovery and/or Radio Resource Management (RRM, RadioResourceManagement) measurement for the cell.
  • RRM Radio Resource Management
  • one mode may respectively enable dynamic discontinuous transmission or a semi-static cell sleep mechanism according to the time-division configuration of the cell,
  • the mechanism is time-division multiplexed;
  • another method can adopt a selective method, for example, the cell can adopt a dynamic discontinuous transmission mechanism by default, and at the same time, initiate a semi-static cell sleep mechanism, but the semi-static cell sleep mechanism has a higher mechanism. priority.
  • the UE when the UE receives the signaling or the indication information of the mechanism of the semi-static cell dormancy, the UE assumes that the cell initiates a semi-static sleep mechanism, and the cell is in the time period when the cell indicated by the sleep mechanism enters the dormant state. Do not transmit any signals or reduce the transmission of signals (such as transmitting only DRS), so that the cell can reduce the transmission of signals to the greatest extent possible, reduce inter-cell interference and power consumption caused by unnecessary signal transmission, and improve transmission efficiency and system. performance.
  • the embodiments of the present invention provide a solution for optimizing and shortening the transition state change and the transition delay of the dormant state and the activation state, so that the service transmission can be started when the service arrives instantaneously, the service transmission delay is reduced, and the system performance and user experience are improved.
  • a signal sending method in the embodiment of the present invention includes:
  • the base station determines that the first cell enters or is ready to enter a dormant state, sending, by the base station, the first signal to the UE in the first cell.
  • the first signal carries time information of the first cell entering an eye-open state, so that the first signal
  • the UE determines, according to the foregoing time information, that the first cell enters a sleep state.
  • the base station to which the first cell belongs does not send any signal on the first cell or send some signals (such as DRS) as little as possible, in order to avoid not transmitting when the first cell is in the dormant state or Reducing the impact of transmitting some signals (such as PSS, SSS, CRS, etc.) on the UE.
  • some signals such as PSS, SSS, CRS, etc.
  • the base station sends a first signal to the UE, so that the UE learns by detecting the first signal.
  • a cell enters a dormant state, so that the UE performs a corresponding processing mechanism after learning that the first cell enters a dormant state, for example: stopping control channel PDCCH/EPDCCH reception and detection in the first cell, and/or receiving service data.
  • the base station when the first cell decides to enter or prepare to enter a dormant state, the base station sends a first signal to the UE, where the first signal carries a start time point when the first cell enters a dormant state, or The agreement is that when the UE detects the first signal, the first cell starts to enter a dormant state, so as to notify the UE that the first 'zone starts to enter a dormant state from a certain time, so that the UE stops in this period of time.
  • This method can flexibly support any time to enter the sleep state.
  • the base station sends a first signal to the UE, where the first signal carries the first cell, by using a parameter that defines a period of the at least one sleep state, when the first cell decides to enter or prepare to enter the sleep state. Entering a sleep period for at least one period of time, thereby notifying the UE that the sleep state of the first first cell starts from a certain specific time to a certain time end, and the parameter of the time period may specifically indicate a sleep state period. Or a plurality of situations in which the sleep state occurs periodically, etc., and are not limited herein.
  • the present invention is not limited to the above two manners to notify the UE that the first cell enters the dormant state.
  • the embodiment of the present invention may pre-configure the transmission of the first signal, for example, by enabling the time period.
  • the function of transmitting the first signal implicitly indicates that the first cell enters a dormant state during this period of time.
  • the UE detects the first signal within a period of time, it indicates that the first cell is in a dormant state during this period of time.
  • the first signal is a discovery signal, such as a DRS.
  • the UE may learn that the cell that sends the first signal enters the dormant state by detecting the first signal.
  • the current signal is also used to support cell synchronization, cell discovery and RRM measurement of the UE, and the discovery signal includes but is not limited to any one of the following signals or a combination of any one or more of the following: PSS, SSS, CRS, CSI-RS and PRS Wait.
  • the base station When the first cell enters the dormant state, the base station sends the discovery signal to the UE under the first cell according to the sending manner of the predetermined discovery signal, where the sending manner of the discovery signal includes: the time-frequency resource location of the discovery signal and One or both of the sending cycles.
  • the sending manner of the foregoing discovery signal may be predefined by the system or configured by configuration signaling, which is not limited herein.
  • the signal is found to be a combination of multiple signals, different functions may be implemented by different signal parts, for example, cell synchronization and discovery by PSS and/or SSS, by CRS or CSI-RS.
  • the RRM measurement indicates that the cell is in a dormant state by using other network-assisted information or by transmitting a discovery signal, including a period, a time-frequency resource location, and the like.
  • the PSS/SSS is 5 ms in the center of the entire system bandwidth.
  • the period is transmitted, when it is transmitted in the center 6 resource blocks different from the entire system bandwidth or in other periods, the cell can be considered to enter a sleep state.
  • the UE is based on a physical broadcast channel (PBCH, Physical Broadcast Channel) sent by the base station, or a Physical Control Format Indicator Channel (PCFICH), or a physical downlink control channel (PDCCH, in the common search space).
  • PBCH Physical Broadcast Channel
  • PCFICH Physical Control Format Indicator Channel
  • PDCCH physical downlink control channel
  • the first signal is acquired by any one of the Physical Downlink Control Channel or the Enhanced Physical Downlink Control Channel (EPDCCH).
  • the base station triggers the cell to enter the dormant state as soon as possible after detecting that there is no service transmission or no UE exists in the cell, so as to reduce unnecessary signal transmission as much as possible.
  • Inter-cell interference and power consumption such that the first signal is preferably a dynamic signaling that is sent in a cell-specific broadcast format, such as a bearer transmitted in a PBCH format in a Master Information Block (MIB).
  • MIB Master Information Block
  • the common cell-specific downlink control information (DCI, Downlink Control Information), in the PDCCH common search space (CSS, Common Search Space) or EPDCCH enhanced public search space (ECSS, Enhanced Common Search Space) ) internal transmission; can even be carried in PCFICH in Control Format Indicator (CFI, Control Format Indicator)
  • CFI Control Format Indicator
  • the status information of the existing redundant CFI may be used to specifically carry information such as the cell entering the dormant state.
  • the first signal may also be dynamic signaling of unicast transmission, MAC layer or RRC proprietary signaling. Considering that there is a potential old UE in the cell, it cannot support the dormant state of the cell, but the handover, the deactivation mechanism of the carrier, etc.
  • this method can also be adapted to the new UE (ie, the UE supporting the dormant state of the cell). For example, when the cell is in the dormant state, the UE can still be notified by the existing deactivation mechanism, so that the UE is enabled. The receiving and detecting of the control channel or the service data is not performed for at least a period of time.
  • the UE may be further notified by the first signal that the cell enters a dormant state, so that the UE distinguishes between the cell dormancy state and the deactivation state in the old mechanism. If the RRM measurement mechanism of the deactivation and the cell dormancy state is different, the UE may perform a corresponding RRM measurement mechanism according to a specific situation (such as whether the UE is currently in a deactivated state or a cell dormant state).
  • the first signal may be in a dynamic or semi-static manner.
  • the unicast or broadcast is sent to the UE in a certain period of time or is sent to the UE in an event-triggered manner, which is not limited herein.
  • the base station determines, when the first cell enters an active state from the dormant state, to send a second signal to the UE in the first cell, so that the UE determines that the first cell enters an active state according to the second signal.
  • the second signal is any one of the following signals or a combination of any two or more of the following:
  • PSS PSS, SSS, CRS and CSI-RS.
  • the foregoing second signal may further include: a signal carried on a channel such as a PCFICH, a PDCCH, and an EPDCCH, or a MAC, an RRC dedicated signaling, or the like.
  • a signal carried on a channel such as a PCFICH, a PDCCH, and an EPDCCH, or a MAC, an RRC dedicated signaling, or the like.
  • the UE is notified by the implicit indication manner that the first cell enters the active state from the dormant state (ie, the dormant state is terminated), that is, when the first cell decides to enter the active state from the dormant state, the base station sends a second signal to the UE. As long as the UE detects the second signal, it is considered that the first cell has terminated the sleep state.
  • the base station when the first cell enters an active state from the dormant state, the base station sends the second signal to the UE under the first cell according to the sending manner of the predetermined second signal, where the second signal is
  • the transmission mode of the number includes: one or two of a time-frequency resource location and a transmission period of the second signal.
  • each of the above-mentioned signals as a second signal or as part of the second signal needs to further determine a transmission mode such as a time-frequency resource position and a transmission period of the signal to perform with a normally transmitted signal.
  • the base station may configure the transmission period of the second signal by combining the delay of the transition from the dormant state to the active state of the first cell, and further, if the second signal is a combination of multiple signals, the UE needs to detect All signals included in the second signal can indicate the successful detection of the second signal.
  • the sending manner of the foregoing second signal may be predefined by the system, or may be pre-configured by using configuration signaling, which is not limited herein.
  • first signal and the second signal are different, and include any one of the following or a combination of any two or more, wherein the first signal and the second signal have different signal types;
  • the channel to be carried is different from the channel carried by the second signal;
  • the time-frequency resource location of the first signal is different from the time-frequency resource location of the second signal;
  • the transmission period of the first signal is different from the transmission period of the second signal.
  • the transmission period of the first signal is different from the transmission power of the second signal, and is not limited herein.
  • the first cell indicates to the UE that the first cell enters a dormant state
  • the second signal indicates to the UE that the first cell enters an active state from the dormant state, so that the UE can perceive the state in time.
  • the state of a cell so that the UE can perform a corresponding processing mechanism for the state change of the first cell in time. For example, when the UE learns that the first 'zone enters the active state from the dormant state, the UE initiates a control channel for the first cell.
  • the signal detection method in the embodiment of the present invention includes:
  • the UE receives the first signal, and determines that the first cell enters the dormant state according to the foregoing first signal.
  • the first signal carries the time information of the first cell entering the eye-open state, and the UE determines according to the time information.
  • the first cell enters a sleep state.
  • the base station when the first cell decides to enter a dormant state, the base station sends a message to the UE.
  • the first signal carries a start time point when the first cell enters a dormant state, or is agreed by a protocol, so that when the UE detects the first signal, the first cell starts to enter a dormant state, and the UE according to the UE The detected first signal determines that the first cell enters a sleep state from the start time point.
  • the UE stops receiving and detecting the control channel PDCCH/EPDCCH in the first cell, and/or receiving the service data, and limited detection, reception, and measurement of possible transmission signals, such as DRS, or Characterizes the signal of the active state, etc.
  • This method can flexibly support to enter the sleep state at any time.
  • the base station sends a first signal to the UE when the first cell decides to enter a dormant state, and the first signal carries the first cell to enter a dormant state.
  • the UE determines, according to the first signal, that the first cell is in a dormant state during the at least one period of time, and the parameter of the period of time may specifically indicate a sleep state period or a sleep state period. There are many cases of sexual appearance, etc., which are not limited here.
  • the first signal is a discovery signal, such as a DRS.
  • the discovery signal in addition to the UE being able to learn that the cell transmitting the first signal enters the dormant state by detecting the first signal, the discovery signal is further used to support cell synchronization, cell discovery, and RRM measurement of the UE, and the discovery signal includes It is not limited to any one of the following signals or a combination of any one or more of the following: PSS, SSS, CRS, CSI-RS, and PRS.
  • the base station When the first cell enters the dormant state, the base station sends the discovery signal to the UE under the first cell according to the sending manner of the predetermined discovery signal, where the sending manner of the discovery signal includes: the time-frequency resource location of the discovery signal and One or both of the sending cycles.
  • the sending manner of the foregoing discovery signal may be predefined by the system or configured by configuration signaling, which is not limited herein.
  • the signal is found to be a combination of multiple signals, different functions may be implemented by different signal parts, for example, cell synchronization and discovery by PSS and/or SSS, by CRS or CSI-RS.
  • the RRM measurement indicates that the cell is in a dormant state by using other network-assisted information or by transmitting a discovery signal, including a period, a time-frequency resource location, and the like.
  • the PSS/SSS is 5 ms in the center of the entire system bandwidth.
  • the cell Periodically transmitted, when the UE detects that it is within 6 resource blocks in the center different from the entire system bandwidth or When another period (different from the 5ms period) is transmitted, the cell can be considered to enter a sleep state.
  • the UE acquires the first signal according to any one of a PBCH, or a PCFICH, or a PDCCH or an EPDCCH sent by the base station, and may also be unicast or broadcast and sent to the UE in a certain periodic manner. Or the event is triggered to be sent to the UE; or the first signal is obtained according to the discovery signal, such as the DRS, and then the first cell is determined to enter a dormant state, which is not limited herein.
  • the base station triggers the cell to enter the dormant state as soon as possible after detecting that there is no service transmission or no UE exists in the cell, so as to reduce unnecessary signal transmission as much as possible.
  • the first signal is preferably dynamic signaling sent in a cell-specific broadcast format, such as the bearer transmitted in the MIB in the form of a PBCH, or carried in a public cell specific
  • the DCI is transmitted in the CSS of the PDCCH or the ECSS of the EPDCCH; it may even be transmitted in the CFI and sent by the PCFICH, and further, the state information of the existing redundant CFI may be used to specifically carry the information that the cell enters the dormant state, etc.
  • any method for notifying the UE to enter the dormant state by using the display signaling or the implicit signaling belongs to the scope of protection of the embodiment of the present invention.
  • the first signal may be dynamic, the MAC layer or the RRC. Proprietary signaling. Considering that there is a potential old UE in the cell, it cannot support the dormant state of the cell, but the handover, the deactivation mechanism of the carrier, etc. may be adopted to cause the old UEs to leave the cell, and the old UEs are not allowed to perform control channels or services for at least a period of time. The data is received and detected. At the same time, this method can also be adapted to the new UE (ie, the UE supporting the dormant state of the cell). For example, when the cell is in the dormant state, the UE can still be notified by the existing deactivation mechanism, so that the UE is enabled.
  • the new UE ie, the UE supporting the dormant state of the cell. For example, when the cell is in the dormant state, the UE can still be notified by the existing deactivation mechanism, so that the UE is enabled.
  • the receiving and detecting of the control channel or the service data is not performed for at least a period of time.
  • the UE may be further notified by the first signal that the cell enters a dormant state, so that the UE distinguishes between the cell dormancy state and the deactivation state in the old mechanism. If the RRM measurement mechanism of the deactivation and the cell dormancy state is different, the UE may perform a corresponding RRM measurement mechanism according to a specific situation (such as whether the UE is currently in a deactivated state or a cell sleep state).
  • the step 201 is optional, that is, the UE receives the first signal, and determines that the first cell enters a sleep state according to the foregoing first signal. That is, the UE may not receive the first signal, or if the UE does not successfully receive the first signal, the UE may directly perform other steps, such as detecting the second signal, when detecting the second signal, The UE determines, according to the foregoing second signal, that the first cell enters an active state from a sleep state.
  • the embodiment of the present invention is not limited to the specific embodiment. Set.
  • the UE detects the second signal.
  • the second signal is any one of the following signals or a combination of any two or more of the following: PSS, SSS, CRS, CSI-RS.
  • the foregoing second signal may further include: a signal carried on a channel such as a PCFICH, a PDCCH, and an EPDCCH, or a MAC, an RRC dedicated signaling, or the like.
  • a signal carried on a channel such as a PCFICH, a PDCCH, and an EPDCCH, or a MAC, an RRC dedicated signaling, or the like.
  • the UE in order to save the complexity of signal detection and processing by the UE, the UE starts detecting the second signal after determining that the first cell enters the sleep state. Further, in order to further save the complexity of detecting and processing the control channel (such as PDCCH/EPDCCH) and service data (such as PDSCH), the UE stops the control channel (such as PDCCH/ after the UE determines that the first cell enters the dormant state. EPDCCH) detection and reception, and/or processing of service data (such as PDSCH) detection and reception.
  • control channel such as PDCCH/EPDCCH
  • service data such as PDSCH
  • the UE may continue to detect the second signal, including detecting the second signal when the first cell does not receive the first signal, that is, if the first cell enters the dormant state, so that only the detection is needed. a second signal, and when detecting the second signal, the UE determines, according to the second signal, that the first cell is activated in at least a subframe in which the second signal is currently detected or in a period in which the second signal is sent, In this way, the discontinuous transmission mechanism of the first cell can be flexibly enabled, especially the dynamic discontinuous transmission mechanism at the ms level. This does not affect the implementation of the inventive solution.
  • the UE determines, according to the foregoing second signal, that the first cell enters an active state.
  • the UE when the UE detects the second signal, the UE will assume that the first cell is in an active state in the current subframe and subsequent subframes, and specifically, may be the current subframe and the second signal sent by the second signal.
  • the subframes included in the transmission period are all active, or the subframes included in the current subframe transmitted by the second signal until the UE detects the first signal are activated, or are predefined or configured by the system.
  • the subframes included in the period of time (or in the period) are all activated and the like, and are not limited herein.
  • the UE When the UE detects the second signal, it also implicitly determines that the sleep state of the first cell is terminated. The UE considers the sleep state of the first cell regardless of whether the sleep state of the first cell has reached the pre-agreed sleep termination time. Terminates the active state of entering normal communication if the UE is in the current second signal If the second signal is not detected, the UE will set the first cell to be in a dormant state in the current subframe and subsequent subframes, and the UE continues to detect whether the second cell exists in the first cell until the UE Before successfully detecting the second signal, the UE assumes that the first cell is in a dormant state, unless the sleep state of the first cell has a timing of terminating the configuration signaling and has reached the end of the sleep state.
  • the signals may be sent and sent in a cell-specific broadcast manner, so that when the first cell enters an active state from a dormant state, the base station sends the first cell to the first cell according to a predetermined second signal transmission manner.
  • the UE sends the foregoing second signal, and the UE in the first cell can obtain the information, so as to determine that the first cell enters an active state; in addition, the signals may also be sent and notified in a UE-specific unicast form, which may be adopted.
  • the CSI-RS signal may also be a signal carried on a channel such as a PDCCH or an EPDCCH, or a MAC, an RRC dedicated signaling, or the like, and may be similar to a UE-specific unicast mode (such as a MAC message) in a multi-carrier system. Let) activate and deactivate the secondary carrier. In this way, when the first cell enters the active state from the dormant state, the base station sends the second signal to the specific UE under the first cell according to the predetermined second signal sending manner, and the specific UE in the first cell can obtain the information. , thereby determining that the first cell enters an active state.
  • the base station When the first cell enters the active state from the dormant state, the base station sends the second signal to the UE under the first cell according to the predetermined second signal sending manner, and the UE further needs to detect the second signal.
  • each of the above-mentioned signals as a second signal or as part of the second signal needs to further determine a transmission mode such as a time-frequency resource position and a transmission period of the signal, so as to be performed with a normally transmitted signal.
  • the base station can flexibly configure the transmission period of the second signal by integrating the delay of the transition from the dormant state to the active state of the first cell, and further, if the second signal is a combination of multiple signals, the UE needs to detect the All signals included in the two signals indicate that the second signal is successfully detected.
  • the sending manner of the foregoing second signal may be predefined by the system, or may be pre-configured by using configuration signaling, which is not limited herein.
  • the UE when the UE determines that the first cell enters a dormant state, stopping The detecting and receiving of the service data in the first cell is performed, and when the UE determines that the first cell enters an active state from the dormant state, detecting and receiving the service data in the first cell is started. Further, when the UE determines that the first cell enters an active state from the dormant state, the UE also initiates detection and tracking of normal synchronization of the first cell, detection and reception of broadcast channels and system messages, detection and measurement of control channels, and measurement. Wait.
  • the first cell indicates to the UE that the first cell enters a dormant state
  • the second signal indicates to the UE that the first cell enters an active state from the dormant state, so that the UE can perceive the state in time.
  • the state of a cell so that the UE can perform a corresponding processing mechanism for the state change of the first cell in time. For example, the UE stops or starts detecting the service of the first 'area in time when learning the state of the first 'zone entry. And receiving, so that the first 'zone can start the transmission of the service immediately after entering the active state from the dormant state, thereby improving system performance and cell service efficiency.
  • the embodiment of the present invention further provides a base station, and the base station provided by the embodiment of the present invention is described below. Referring to FIG. 3, the base station 300 in the embodiment of the present invention includes:
  • the first determining unit 301 is configured to determine that the first 'zone enters or is ready to enter a dormant state.
  • the embodiment of the present invention provides a mechanism for two cell dormancy states, that is, a cell dynamic discontinuous transmission mechanism and a semi-static cell dormancy mechanism, for a cell
  • the dynamic discontinuous transmission mechanism as long as the current subframe has no signal to be fixedly transmitted, the cell can dynamically implement data for not scheduling any UE and related control information, that is, the first determining unit 301 does not have a signal to be fixedly transmitted in the current subframe.
  • the first cell can be in a dormant state.
  • the first determining unit 301 may determine, according to the load and the transmission amount of the service in the first cell, and whether there is a UE that needs to be served in the coverage of the first cell, etc., determining that the first cell is in a period of time. Go to sleep.
  • the second determining unit 302 is configured to determine that the first cell enters an active state from the dormant state. For the discontinuous transmission mechanism of the cell dynamic, when the first cell is in a dormant state, the second determining is performed as long as the current subframe has a fixed transmitting signal. Unit 302 can confirm that the first cell has entered an active state from a sleep state. For the semi-static cell dormancy mechanism, the second determining unit 302 may determine, according to the load and the transmission amount of the service in the first cell, and whether there is a UE that needs to be served in the coverage of the first cell, etc., to determine that the first cell enters from the dormant state. Activation status.
  • the sending unit 303 is configured to: when the first determining unit 301 determines that the first cell enters or prepares When the user enters the dormant state, the first signal is sent to the UE in the first cell, where the first signal carries the time information of the first cell entering the eye-open state, so that the UE determines the first message according to the first signal.
  • the second determining unit 302 determines that the first cell enters an active state from the dormant state, the second cell sends a second signal to the UE under the first cell, so that the first cell enters an active state according to the UE. .
  • the second signal is any one of the following signals or a combination of any two or more of the following: PSS, SSS, CRS, CSI-RS.
  • the foregoing second signal may further include: a signal carried on a channel such as a PCFICH, a PDCCH, and an EPDCCH, or a MAC, an RRC dedicated signaling, or the like.
  • a signal carried on a channel such as a PCFICH, a PDCCH, and an EPDCCH, or a MAC, an RRC dedicated signaling, or the like.
  • the sending unit 303 sends a first signal to the UE, where the first signal carries the first time of the start time of the first cell entering the dormant state.
  • the signal or, by agreement, is such that when the UE detects the first signal, the first cell is considered to enter a dormant state, thereby notifying the UE that the first cell starts to enter a dormant state at a certain time, so that the UE is here.
  • the control channel PDCCH/EPDCCH reception and detection in the first cell and/or the reception of service data are stopped during the period, and the signals that may be transmitted, such as DRS, are limited, detected, received, and measured. This method can flexibly support any time to enter the sleep state.
  • the sending unit 303 sends a first signal to the UE, when the first cell decides to enter or prepare to enter the sleep state, by using a parameter that defines a period of the at least one sleep state. At least one period of time in which the cell enters the dormant state, to notify the UE that the sleep state of the specific first cell starts from a certain specific time to a certain time end, and the parameter of the time period may specifically indicate a sleep state period.
  • the situation, or the multiple occurrences of the dormant state periodically, etc., are not limited herein.
  • the first signal is a discovery signal, such as a DRS.
  • the discovery signal in addition to the UE being able to learn that the cell transmitting the first signal enters the dormant state by detecting the first signal, the discovery signal is further used to support cell synchronization, cell discovery, and RRM measurement of the UE, and the discovery signal includes It is not limited to any one of the following signals or a combination of any one or more of the following: PSS, SSS, CRS, CSI-RS, and PRS.
  • the base station When the first cell enters a dormant state, the base station sends the discovery signal to the UE under the first cell according to a predetermined manner of sending the discovery signal, where the discovery signal is
  • the sending manner includes: one or two of a time-frequency resource location and a sending period of the foregoing discovery signal.
  • the sending manner of the foregoing discovery signal may be predefined by the system or configured by configuration signaling, which is not limited herein.
  • the signal is found to be a combination of multiple signals, different functions may be implemented by different signal parts, for example, cell synchronization and discovery by PSS and/or SSS, by CRS or CSI-RS.
  • the RRM measurement indicates that the cell is in a dormant state by using other network-assisted information or by transmitting a discovery signal, including a period, a time-frequency resource location, and the like.
  • the PSS/SSS is 5 ms in the center of the entire system bandwidth.
  • the period is transmitted, when it is transmitted in the center 6 resource blocks different from the entire system bandwidth or in other periods, the cell can be considered to enter a sleep state.
  • the foregoing second signal is any one of the following signals or a combination of any two or more: PSS, SSS, CRS, and CSI-RS, and the second signal may also be on a channel such as PCFICH, PDCCH, and EPDCCH.
  • each of the above-mentioned signals as a second signal or as part of the second signal needs to further determine a transmission mode such as a time-frequency resource position and a transmission period of the signal to perform with a normally transmitted signal.
  • the base station may configure the transmission period of the second signal by combining the delay of the transition from the dormant state to the active state of the first cell, and further, if the second signal is a combination of multiple signals, the UE needs to detect All signals included in the second signal can indicate the successful detection of the second signal.
  • the sending manner of the foregoing second signal may be predefined by the system, or may be pre-configured by using configuration signaling, which is not limited herein.
  • the base station in the embodiment of the present invention may be used as the base station in the foregoing method embodiment, and may be used to implement all the technical solutions in the foregoing method embodiments, and the functions of the respective functional modules may be in accordance with the foregoing method embodiments.
  • the specific implementation of the method may be referred to the related description in the foregoing embodiments, and details are not described herein again.
  • the first signal is used to indicate the first to the UE.
  • the cell enters a dormant state, and indicates to the UE that the first cell enters an active state from the dormant state by using the second signal, so that the UE can timely sense the state of the first cell, so that the UE performs a corresponding processing mechanism for the state change of the first cell in time.
  • the UE stops or initiates detection and reception of the service of the first cell in time when the UE enters the state of the first zone, so that the first cell can initiate the transmission of the service immediately after entering the active state from the dormant state.
  • the embodiment of the present invention further provides another base station. Referring to FIG. 4, the base station 400 in the embodiment of the present invention includes: a transceiver device 401 and a processor 402;
  • the processor 402 is configured to: when the base station 400 determines that the first cell enters or is ready to enter a dormant state, the control transceiver 401 sends a first signal to the UE in the first cell, where the first signal carries the foregoing Time information of a cell entering a dormant state, so that the UE determines that the first cell enters a dormant state according to the time information; and when the first cell enters an active state from a dormant state, the control transceiver device 401 is configured to be in the first cell. The UE sends a second signal to determine that the first cell enters an active state according to the UE.
  • the second signal is any one of the following signals or a combination of any two or more of the following:
  • PSS PSS, SSS, CRS, CSI-RS.
  • the foregoing second signal may further include: a signal carried on a channel such as a PCFICH, a PDCCH, and an EPDCCH, or a MAC, an RRC dedicated signaling, or the like.
  • a signal carried on a channel such as a PCFICH, a PDCCH, and an EPDCCH, or a MAC, an RRC dedicated signaling, or the like.
  • the processor 402 controls the transceiver device 401 to send the first signal to the UE in the first cell
  • the first signal carries the start time point of the first cell entering the sleep state
  • the UE is notified that the first cell enters the dormant state from a certain time, or is agreed by the protocol, so that when the UE detects the first signal, the first cell starts to enter a dormant state, so that the UE is in the time period.
  • the control channel PDCCH/EPDCCH reception and detection in the first cell, and/or the reception of service data are stopped, and the signals that may be transmitted, such as DRS, are limitedly detected, received, and measured. This method can flexibly support sleep at any time.
  • the processor 402 controls the transceiver 401 to send the first signal to the UE under the first cell
  • the processor carries the foregoing signal in the first signal by defining a parameter of the period of the at least one sleep state.
  • First letter of at least one period of time in which the first cell enters a sleep state No. to notify the UE that the specific first cell sleep state starts from a certain time to a certain time end, and the parameter of the time period may specifically indicate a sleep state period, or the sleep state periodically occurs. Many times, etc., there is no limit here.
  • the first signal is a discovery signal, such as a DRS.
  • the discovery signal in addition to the UE being able to learn that the cell transmitting the first signal enters the dormant state by detecting the first signal, the discovery signal is further used to support cell synchronization, cell discovery, and RRM measurement of the UE, and the discovery signal includes It is not limited to any one of the following signals or a combination of any one or more of the following: PSS, SSS, CRS, CSI-RS, and PRS.
  • the base station When the first cell enters the dormant state, the base station sends the discovery signal to the UE under the first cell according to the sending manner of the predetermined discovery signal, where the sending manner of the discovery signal includes: the time-frequency resource location of the discovery signal and One or both of the sending cycles.
  • the manner in which the foregoing discovery signal is sent may be pre-defined by the system or configured by configuration signaling, which is not limited herein.
  • the signal is found to be a combination of multiple signals, different functions may be implemented by different signal parts, for example, cell synchronization and discovery by PSS and/or SSS, by CRS or CSI-RS.
  • the RRM measurement indicates that the cell is in a dormant state by using other network-assisted information or by transmitting a discovery signal, including a period, a time-frequency resource location, and the like.
  • the PSS/SSS is 5 ms in the center of the entire system bandwidth.
  • the period is transmitted, when it is transmitted in the center 6 resource blocks different from the entire system bandwidth or in other periods, the cell can be considered to enter a sleep state.
  • the base station when the first cell enters an active state from the dormant state, the base station sends the second signal to the UE in the first cell according to the sending manner of the predetermined second signal, where the sending manner of the second signal includes : one or both of the time-frequency resource location and the transmission period of the second signal.
  • each of the above-mentioned signals as a second signal or as part of the second signal needs to further determine a transmission mode such as a time-frequency resource position and a transmission period of the signal to perform with a normally transmitted signal.
  • the base station may configure the transmission period of the second signal by combining the delay of the transition from the dormant state to the active state of the first cell, and further, if the second signal is a combination of multiple signals, the UE needs to detect To all the signals included in the second signal It can indicate that the second signal is successfully detected.
  • the sending manner of the foregoing second signal may be pre-defined by the system, or may be pre-configured by using configuration signaling, which is not limited herein.
  • the base station in the embodiment of the present invention may be used as the base station in the foregoing method embodiment, and may be used to implement all the technical solutions in the foregoing method embodiments, and the functions of the respective functional modules may be in accordance with the foregoing method embodiments.
  • the specific implementation of the method may be referred to the related description in the foregoing embodiments, and details are not described herein again.
  • the first cell indicates to the UE that the first cell enters a dormant state
  • the second signal indicates to the UE that the first cell enters an active state from the dormant state, so that the UE can perceive the state in time.
  • the state of a cell so that the UE can perform a corresponding processing mechanism for the state change of the first cell in time.
  • the UE stops or starts detecting the service of the first cell in time when learning the state of the first 'zone entry.
  • Receiving, so that the first cell can initiate the transmission of the service immediately after entering the active state from the dormant state, thereby improving system performance and cell service efficiency.
  • the embodiment of the present invention further provides another user equipment. Referring to FIG. 5, the user equipment 500 in the embodiment of the present invention includes:
  • the receiving unit 501 is configured to receive the first signal, where the first signal carries the time information that the first cell enters the eye-open state;
  • the first determining unit 502 is configured to: when the receiving unit 501 receives the first signal, determine, according to the foregoing time information, that the first cell enters a sleep state;
  • the first detecting unit 503 is configured to detect the second signal
  • the second determining unit 504 is configured to: when the first detecting unit 503 detects the second signal, determine, according to the second signal, that the first cell enters an active state;
  • the second signal is any one of the following signals or a combination of any two or more of the following:
  • PSS PSS; SSS; CRS; CSI-RS.
  • the first signal carries a start time point that the first cell enters a dormant state; the first determining unit 502 is further configured to: determine, according to the first signal, that the first cell enters from the start time point Sleep state. Or, by agreement, when the receiving unit 501 receives the first signal, the first determining unit 502 determines that the first cell starts to enter a sleep state.
  • the foregoing first signal carries at least one time period in which the first cell enters a dormant state.
  • the first determining unit 502 is further configured to: determine, according to the foregoing first signal, that the first cell is in a dormant state during the at least one period of time period.
  • the first signal is a discovery signal, such as a DRS.
  • the discovery signal is also used to support cell synchronization of the UE, cell discovery, RRM measurement, and discovery signal. These include, but are not limited to, any one of the following signals or a combination of any one or more of the following: PSS, SSS, CRS, CSI-RS, and PRS.
  • the base station When the first cell enters the dormant state, the base station sends the discovery signal to the user equipment 500 according to the manner of sending the predetermined discovery signal, where the manner of transmitting the discovery signal includes: the time-frequency resource location of the discovery signal and the sending period.
  • the sending manner of the foregoing discovery signal may be predefined by the system or configured by the configuration signaling, which is not limited herein.
  • the signal is found to be a combination of multiple signals, different functions may be implemented by different signal parts, for example, cell synchronization and discovery by PSS and/or SSS, by CRS or CSI-RS.
  • the RRM measurement indicates that the cell is in a dormant state by using other network-assisted information or by transmitting a discovery signal, including a period, a time-frequency resource location, and the like.
  • the PSS/SSS is 5 ms in the center of the entire system bandwidth.
  • the UE may be considered to enter a sleep state.
  • the foregoing second signal is sent and notified in a cell-specific broadcast manner, so that when the first cell enters an active state from a dormant state, the base station sends the first cell to the first cell according to a predetermined second signal transmission manner.
  • the UE sends the foregoing second signal, and the UE in the first cell can obtain the information, so as to determine that the first cell enters an active state; in addition, the signals may also be sent and notified in a UE-specific unicast form, and may pass
  • the CSI-RS signal may also be a signal carried on a channel such as a PDCCH and an EPDCCH, or a MAC, an RRC dedicated signaling, etc., and may be similar to a UE-specific unicast mode (such as a MAC message) in a multi-carrier system. Let) activate and deactivate the secondary carrier.
  • the base station when the first cell enters the active state from the dormant state, the base station sends the second signal to the specific UE under the first cell according to the predetermined second signal sending manner, and the specific UE in the first cell.
  • This information can be obtained to determine that the first cell is in an active state.
  • the user equipment 600 further includes: a second detecting unit 505, configured to detect the second when the first detecting unit 503 detects the second signal.
  • the second determining unit 504 is configured to: determine, according to the sending manner of the second signal that is detected by the second detecting unit 505, that the first cell enters an active state, where the sending manner of the second signal includes: One or two of a time-frequency resource location and a transmission period of the second signal.
  • the user equipment further includes:
  • a first service control unit configured to: when the second determining unit 504 determines that the first cell enters an active state from a dormant state, initiate detection and reception of service data in the first cell;
  • the user equipment further includes:
  • the second service control unit is configured to stop detecting and receiving the service data in the first cell when the first determining unit 502 determines that the first cell enters a dormant state.
  • the user equipment in the embodiment of the present invention may be used as the user equipment in the foregoing method embodiment, and may be used to implement all the technical solutions in the foregoing method embodiments, and the functions of the various functional modules may be according to the foregoing method embodiments.
  • the functions of the various functional modules may be according to the foregoing method embodiments.
  • the first cell indicates to the UE that the first cell enters a dormant state
  • the second signal indicates to the UE that the first cell enters an active state from the dormant state, so that the UE can perceive the state in time.
  • the state of a cell so that the UE can perform a corresponding processing mechanism for the state change of the first cell in time.
  • the UE stops or starts detecting the service of the first cell in time when learning the state of the first 'zone entry.
  • Receiving, so that the first cell can initiate the transmission of the service immediately after entering the active state from the dormant state, thereby improving system performance and cell service efficiency.
  • the user equipment 700 in the embodiment of the present invention includes:
  • the transceiver 701, the memory 702, and the processor 703 (the number of the processors 703 of the user equipment 700 may be one or more, and FIG. 7 is an example of a processor).
  • the transceiver 701, the memory 702, and the processor 703 may be connected by a bus or other means, as shown in FIG.
  • the memory 702 is used for storing the slave transceiver 701 input data, and may also store information such as necessary files processed by the processor 702;
  • the transceiver 701 may include a port that the user equipment 700 communicates with other devices, and may further include an output device externally connected to the user device 700, such as a display and a keyboard.
  • the port that communicates with other devices in the transceiver device 701 in this embodiment may be an antenna.
  • the processor 703 performs the following steps:
  • Receiving a first signal where the first signal carries time information of the first cell entering an eye-open state; determining, according to the time information, that the first cell enters a sleep state; detecting a second signal; when detecting the second signal, Determining, according to the second signal, that the first cell enters an active state from a sleep state.
  • the second signal is any one of the following signals or a combination of any two or more of the following: PSS, SSS, CRS, CSI-RS.
  • the first signal carries a start time point that the first cell enters a sleep state; the processor 703 is further configured to: determine, according to the first signal, that the first cell enters a sleep state from the start time point Or, by agreement, when the user equipment 700 receives the first signal, the processor 703 determines that the first cell starts to enter a sleep state.
  • the first signal carries the at least one period of time in which the first cell enters a dormant state; the processor 703 is further configured to: determine, according to the first signal, that the first cell is in a dormant state during the at least one period of time period .
  • the first signal is a discovery signal, such as a DRS.
  • the discovery signal is further used to support cell synchronization of the UE, cell discovery, RRM measurement, and discovery signal. These include, but are not limited to, any one of the following signals or a combination of any one or more of the following: PSS, SSS, CRS, CSI-RS, and PRS.
  • the base station When the first cell enters a dormant state, the base station sends the discovery signal to the user equipment 700 according to a predetermined manner of sending the discovery signal, where the manner of transmitting the discovery signal includes: a time-frequency resource location of the discovery signal and a transmission period.
  • the sending manner of the foregoing discovery signal may be predefined by the system or configured by the configuration signaling, which is not limited herein.
  • the signal is found to be a combination of multiple signals, different functions can be implemented by different signal parts, for example, PSS and/or SSS to implement cell synchronization and discovery.
  • RRM measurement is performed by CRS or CSI-RS, and the cell is instructed to sleep by other network-assisted information or by means of discovery signal transmission, including periodicity, time-frequency resource location, and the like.
  • the PSS/SSS is 5 ms in the center of the entire system bandwidth.
  • the UE may be considered to enter a sleep state.
  • the foregoing second signal is sent and notified in a cell-specific broadcast manner, so that when the first cell enters an active state from a dormant state, the base station sends the first cell to the first cell according to a predetermined second signal transmission manner.
  • the UE sends the foregoing second signal, and the UE in the first cell can obtain the information, so as to determine that the first cell enters an active state; in addition, the signals may also be sent and notified in a UE-specific unicast form, and may pass
  • the CSI-RS signal may also be a signal carried on a channel such as a PDCCH and an EPDCCH, or a MAC, an RRC dedicated signaling, etc., and may be similar to a UE-specific unicast mode (such as a MAC message) in a multi-carrier system. Let) activate and deactivate the secondary carrier.
  • the base station when the first cell enters the active state from the dormant state, the base station sends the second signal to the specific UE under the first cell according to the predetermined second signal sending manner, and the specific UE in the first cell can obtain the information. , thereby determining that the first cell enters an active state.
  • the processor 703 is further configured to: when detecting the second signal, detect a sending manner of the second signal, and determine, according to the detected sending manner of the second signal, that the first cell enters an active state, where The sending manner of the two signals includes: one or two of a time-frequency resource position and a sending period of the second signal.
  • the user equipment in the embodiment of the present invention may be used as the user equipment in the foregoing method embodiment, and may be used to implement all the technical solutions in the foregoing method embodiments, and the functions of the various functional modules may be according to the foregoing method embodiments.
  • the functions of the various functional modules may be according to the foregoing method embodiments.
  • the first cell indicates to the UE that the first cell enters a dormant state
  • the second signal indicates to the UE that the first cell enters an active state from the dormant state, so that the UE can perceive the state in time.
  • the state of a cell so that the UE can perform a corresponding processing mechanism for the state change of the first cell in time.
  • the UE stops or starts detecting the service of the first cell in time when learning the state of the first 'zone entry.
  • the embodiment of the present invention further provides a communication system, as shown in FIG. 8, including: at least one base station 801 and at least one user equipment 802 under the base station 801;
  • the base station 801 can be any base station as shown in FIG. 3 and FIG. 4;
  • User equipment 802 can be any of the user equipments shown in Figures 5-7.
  • the disclosed apparatus and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the components displayed by the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种信号发送方法,信号检测方法和相关装置以及系统,其中,一种信号发送方法包括:当基站确定第一小区进入或准备进入休眠状态时,向所述第一小区下的用户设备发送第一信号,所述第一信号携带所述第一小区进入休眠状态的时间信息,以使所述用户设备根据所述时间信息确定所述第一小区进入休眠状态;当所述基站确定所述第一小区从休眠状态进入激活状态时,向所述第一小区下的用户设备发送第二信号,以使所述用户设备根据所述第二信号确定所述第一小区进入激活状态,本发明提供的技术方案能够使得UE能够及时地发现小区的状态变化。

Description

一种信号发送方法, 信号检测方法和相关设备以及系统 技术领域
本发明实施例涉及通讯领域, 尤其涉及一种信号发送方法,信号检测方法 和相关装置以及系统。 背景技术
当前的长期演进 ( LTE, Long Term Evolution ) 系统(比如版本 8-11 ) 中, 用户设备( UE, User Equipment )通过检测基站发送的主同步信号( PSS , Primary Synchronization Signal )和辅同步信号 ( SSS, Secondary Synchronization Signal ) 与基站进行同步, 并识别该基站下的物理小区,之后读取基站发送的系统广播 消息, 向该基站发起随机接入, 最终可以与该基站建立无线资源控制 (RRC, RadioResourceControl )连接并与该基站进行数据通信。 其中, 上述同步又分 为初始粗同步和时频跟踪精同步, 初始粗同步是根据基站发送的 PSS和 SSS来 完成,时频跟踪精同步是通过基站发送的小区特定参考信号( CRS , Cell-specific Reference Signal ) 来完成。 处于 RRC连接态的 UE为了与基站进行数据通信, 需要做必要的测量和同步跟踪, 比如 UE要通过 CRS或信道状态信息参考信号 ( CSI-RS, Channel State Information-Reference Signal )测量信道状态信息( CSI, channel state information )并上 4艮给基站, 以便基站根据 UE测量的 CSI选择合适 的调制编码方式为该 UE做数据调度; UE要通过 CRS做同步跟踪来保证数据的 解调性能; UE还要通过 CRS实现无线资源管理。
为了保证上述测量和同步需求, 在当前 LTE系统中, PSS和 SSS的发送周 期均为 5毫秒(即 ms ) , 每一次发送 PSS或 SSS时占用载波中心的 6个资源块的 两个正交频分复用 ( OFDM, Orthogonal Frequency Division Multiplexing )符号; CRS需要在每个子帧发送, 一般占用一个资源块的两个 OFDM符号中的 2或 4个 资源单元, 特别地, 对于后续演进的 LTE系统, 会引入非后向兼容的载波或非 后向兼容的传输和使用方式, CRS至少要保持发送周期为 5ms。此外,处于 RRC 空闲态的 UE虽然不需要进行 CSI测量,但也需要做必要的无线资源管理( RRM, RadioResourceManagement )测量, 以便 UE根据 RRM进行 ' j、区选择和小区重选 来满足移动性需求。 由上可见, 在当前 LTE系统中, 需要基站一直发送周期较小的 PSS, SSS 和 CRS等信号。 然而, 当某个小区覆盖范围内的 UE数量较少或者有业务传 输的 UE个数较少或者没有 UE存在时,在该小区内一直发送周期较小的 PSS , SSS和 CRS等信号, 将会较大降低该小区的功率效率, 同时, 这些周期较短 的信号, 如 PSS, SSS和 CRS等的发送会造成小区间干扰严重和信号传输的 负载增加, 进而降低系统的性能和传输容量。
基于上述情况, 目前引入两种机制, 一种为小区动态不连续传输机制, 即 只要当前子帧没有需要固定发送的信号,小区在当前子帧不进行任何信号的传 输或者减少信号的传输; 另一种为半静态小区休眠机制, 即根据小区中业务的 负载和传输量, 以及该小区是否有服务的 UE等情况, 决定一段时间内不进行 任何信号的传输或者减少信号的传输。无论是小区动态不连续传输机制还是半 静态小区休眠机制, 本质都是指不进行任何信号的传输或者是减少信号的传 输,这里将不进行任何信号的传输或者是减少信号的传输的状态统一称为休眠 状态, 将与休眠状态对应 (即正常服务 UE ) 的状态称为激活状态。 上述两种 机制存在如下弊端:
假设处于休眠状态的小区仅受当前业务触发关闭,且仍可以感知其覆盖范 围内的 UE是否有新业务达到并进行传输, 当该小区有动态业务到达或是 UE 进入小区等情况, 该小区也无法即刻实现启动新业务的传输, 因为 UE可能还 没有意识到网络状态的变化, 小区需要建立与 UE互联互通的约束(即让 UE 也可以意识到小区的激活状态), 在此过程中, 会存在休眠状态和激活状态的 过渡状态变化和转换延迟, 这个延迟要花上几十、 几百甚至是几千个子帧, 因 此, 处于休眠状态的小区不能由于业务的到达即刻启动业务的传输, 这样势必 会造成传输延迟, 从而降低系统的性能, 造成服务效率降低。 发明内容
本发明实施例提供了一种信号发送方法,信号检测方法和相关装置以及系 统, 用于使得 UE能够及时地发现小区的状态变化。
为解决上述技术问题, 提供以下技术方案:
本发明一方面提供一种信号发送方法, 包括:
当基站确定第一小区进入或准备进入休眠状态时,向上述第一小区下的用 户设备发送第一信号,上述第一信号携带上述第一小区进入休眼状态的时间信 息, 以使上述用户设备根据上述时间信息确定上述第一小区进入休眠状态; 当上述基站确定上述第一小区从休眠状态进入激活状态时,向上述第一小 区下的用户设备发送第二信号,以使上述用户设备根据上述第二信号确定上述 第一小区进入激活状态;
其中, 上述第二信号为如下信号中的任意一种或是任意两种以上的组合: 主同步信号 PSS; 辅同步信号 SSS; 小区特定参考信号 CRS; 信道状态信 息参考信号 CSI-RS。
基于本发明第一方面, 在第一种可能的实现方式中,
上述向第一小区下的用户设备发送第一信号,上述第一信号携带上述第一 小区进入休眠状态的时间信息, 包括:
向第一小区下的用户设备发送第一信号,上述第一信号中携带上述第一小 区进入休眠状态的起始时间点,以使上述用户设备根据上述第一小区进入休眠 状态的起始时间点确定上述第一小区从上述起始时间点起进入休眠状态。
基于本发明第一方面, 在第二种可能的实现方式中,
上述向上述第一小区下的用户设备发送第一信号,上述第一信号携带上述 第一小区进入休眠状态的时间信息, 包括:
向第一小区下的用户设备发送第一信号,上述第一信号中携带上述第一小 区进入休眠状态的至少一个时段周期,以使上述用户设备根据上述第一小区进 入休眠状态的至少一个时段周期确定上述第一小区在上述至少一个时段周期 内处于休眠状态。
基于本发明第一方面,或者本发明第一方面的第一种可能的实现方式, 或 者本发明第一方面的第二种可能的实现方式,在第三种可能的实现方式中, 上 述向上述第一小区下的用户设备发送第一信号, 包括:
根据预定的发现信号的发送方式向上述第一小区下的用户设备发送发现 信号, 其中, 上述发现信号的发送方式包括: 上述发现信号的时频资源位置和 发送周期中的一种或两种。
基于本发明第一方面,或者本发明第一方面的第一种可能的实现方式, 或 者本发明第一方面的第二种可能的实现方式,或者本发明第一方面的第三种可 能的实现方式,在第四种可能的实现方式中, 上述向上述第一小区下的用户设 备发送第二信号, 包括:
根据预定的上述第二信号的发送方式向上述第一小区下的用户设备发送 上述第二信号, 其中, 上述第二信号的发送方式包括: 上述第二信号的时频资 源位置和发送周期中的一种或两种。
基于本发明第一方面,或者本发明第一方面的第一种可能的实现方式, 或 者本发明第一方面的第二种可能的实现方式,或者本发明第一方面的第三种可 能的实现方式,或者本发明第一方面的第四种可能的实现方式, 在第五种可能 的实现方式中, 上述第一信号和上述第二信号不同,且包括如下任意一种或是 任意两种以上组合的不同:
上述第一信号和上述第二信号的信号类型不同;
上述第一信号承载的信道与上述第二信号承载的信道不同;
上述第一信号的时频资源位置和上述第二信号的时频资源位置不同; 上述第一信号的发送周期和上述第二信号的发送周期不同。
本发明第二方面提供一种信号检测方, 包括:
用户设备接收第一信号,上述第一信号携带上述第一小区进入休眼状态的 时间信息;
上述用户设备 ^据上述时间信息确定第一小区进入休眠状态;
上述用户设备检测第二信号;
当检测到上述第二信号时,上述用户设备根据上述第二信号确定上述第一 小区进入激活状态;
其中, 上述第二信号为如下信号中的任意一种或是任意两种以上的组合: 主同步信号 PSS; 辅同步信号 SSS; 小区特定参考信号 CRS; 信道状态信 息参考信号 CSI-RS。
基于本发明第二方面, 在第一种可能的实现方式中,
上述第一信号中携带上述第一小区进入休眠状态的起始时间点; 上述用户设备根据上述第一信号确定第一小区进入休眠状态, 包括: 上述用户设备根据上述第一小区进入休眠状态的起始时间点确定上述第 一小区从上述起始时间点起进入休眠状态。 基于本发明第二方面, 在第二种可能的实现方式中,
上述第一信号中携带上述第一小区进入休眠状态的至少一个时段周期; 上述用户设备根据上述第一信号确定第一小区进入休眠状态, 包括: 上述用户设备根据上述第一小区进入休眠状态的至少一个时段周期确定 上述第一小区在上述至少一个时段周期内处于休眠状态。
基于本发明第二方面,或者本发明第二方面的第一种可能的实现方式, 或 者本发明第二方面的第二种可能的实现方式,在第三种可能的实现方式中, 上 述用户设备接收第一信号具体为: 接收发现信号;
上述用户设备根据上述第一信号确定第一小区进入休眠状态, 包括: 上述用户设备根据接收到的发现信号的发送方式确定上述第一小区进入 激活状态, 其中, 上述发现信号的发送方式包括: 上述发现信号的时频资源位 置和发送周期中的一种或两种。
基于本发明第二方面,或者本发明第二方面的第一种可能的实现方式, 或 者本发明第二方面的第二种可能的实现方式,或者本发明第二方面的第三种可 能的实现方式,在第四种可能的实现方式中, 上述用户设备根据上述第二信号 确定上述第一小区从休眠状态进入激活状态, 包括:
检测上述第二信号的发送方式;
上述用户设备根据上述第二信号的发送方式确定上述第一小区进入激活 状态, 其中, 上述第二信号的发送方式包括: 上述第二信号的时频资源位置和 发送周期中的一种或两种。
基于本发明第二方面,或者本发明第二方面的第一种可能的实现方式, 或 者本发明第二方面的第二种可能的实现方式,或者本发明第二方面的第三种可 能的实现方式,或者本发明第二方面的第四种可能的实现方式, 在第五种可能 的实现方式中, 上述方法还包括:
若确定上述第一小区进入激活状态, 则, 上述用户设备启动对上述第一小 区中的控制信道的检测, 或业务数据的接收或发送。
基于本发明第二方面,或者本发明第二方面的第一种可能的实现方式, 或 者本发明第二方面的第二种可能的实现方式,或者本发明第二方面的第三种可 能的实现方式,或者本发明第二方面的第四种可能的实现方式, 在第六种可能 的实现方式中, 上述方法还包括:
若确定上述第一小区进入休眠状态, 则, 上述用户设备停止对上述第一小 区中的业务数据的接收或发送。
基于本发明第二方面,或者本发明第二方面的第一种可能的实现方式, 或 者本发明第二方面的第二种可能的实现方式,或者本发明第二方面的第三种可 能的实现方式,或者本发明第二方面的第四种可能的实现方式, 或者本发明第 二方面的第五种可能的实现方式,或者本发明第二方面的第六种可能的实现方 式, 在第七种可能的实现方式中,
上述第一信号和上述第二信号不同,且包括如下任意一种或是任意两种以 上组合的不同:
上述第一信号和上述第二信号的信号类型不同;
上述第一信号承载的信道与上述第二信号承载的信道不同;
上述第一信号的时频资源位置和上述第二信号的时频资源位置不同; 上述第一信号的发送周期和上述第二信号的发送周期不同。
本发明第三方面提供一种基站, 包括:
第一确定单元, 用于确定第一小区进入或准备进入休眠状态;
发送单元,用于当上述第一确定单元确定第一小区进入或准备进入休眠状 态时, 向上述第一小区下的用户设备发送第一信号, 上述第一信号携带上述第 一小区进入休眼状态的时间信息;
第二确定单元, 用于确定上述第一小区从休眠状态进入激活状态; 上述发送单元还用于:当上述第二确定单元确定上述第一小区从休眠状态 进入激活状态时, 向上述第一小区下的用户设备发送第二信号, 以使上述用户 设备根据上述第二信号确定上述第一小区进入激活状态;
其中, 上述第二信号为如下信号中的任意一种或是任意两种以上的组合: 主同步信号 PSS; 辅同步信号 SSS; 小区特定参考信号 CRS; 信道状态信 息参考信号 CSI-RS。
基于本发明第三方面, 在第一种可能的实现方式中,
上述发送单元还用于:在上述第一信号中携带上述第一小区进入休眠状态 的起始时间点,以使上述用户设备根据上述第一小区进入休眠状态的起始时间 点确定上述第一小区从上述起始时间点起进入休眠状态。
基于本发明第三方面, 在第二种可能的实现方式中,
上述发送单元还用于:在上述第一信号中携带上述第一小区进入休眠状态 的至少一个时段周期,以使上述用户设备根据上述第一小区进入休眠状态的至 少一个时段周期确定上述第一小区在上述至少一个时段周期内处于休眠状态。
基于本发明第三方面,或者本发明第三方面的第一种可能的实现方式, 或 者本发明第三方面的第二种可能的实现方式, 在第三种可能的实现方式中, 上述发送单元具体用于通过如下方式向上述第一小区下的用户设备发送 第一信号:根据预定的发现信号的发送方式向上述第一小区下的用户设备发送 发现信号, 其中, 上述发现信号的发送方式包括: 上述发现信号的时频资源位 置和发送周期中的一种或两种。
基于本发明第三方面,或者本发明第三方面的第一种可能的实现方式, 或 者本发明第三方面的第二种可能的实现方式, 在第四种可能的实现方式中, 上述发送单元具体用于:根据预定的上述第二信号的发送方式向上述第一 小区下的用户设备发送上述第二信号, 其中, 上述第二信号的发送方式包括: 上述第二信号的时频资源位置和发送周期中的一种或两种。
本发明第四方面提供一种用户设备, 包括:
接收单元, 用于接收第一信号, 上述第一信号携带上述第一小区进入休眼 状态的时间信息;
第一确定单元, 用于当上述接收单元接收上述第一信号时,根据上述时间 信息确定第一小区进入休眠状态;
第一检测单元, 用于检测第二信号;
第二确定单元, 用于当上述第一检测单元检测到上述第二信号时,根据上 述第二信号确定上述第一小区从休眠状态进入激活状态;
其中, 上述第二信号为如下信号中的任意一种或是任意两种以上的组合: 主同步信号 PSS; 辅同步信号 SSS; 小区特定参考信号 CRS; 信道状态信 息参考信号 CSI-RS。
基于本发明第四方面, 在第一种可能的实现方式中,
上述第一信号中携带上述第一小区进入休眠状态的起始时间点; 上述第一确定单元还用于:根据上述第一小区进入休眠状态的起始时间点 确定上述第一小区从上述起始时间点起进入休眠状态。
基于本发明第四方面, 在第二种可能的实现方式中,
上述第一信号中携带上述第一小区进入休眠状态的至少一个时段周期; 上述第一确定单元还用于:根据上述第一小区进入休眠状态的至少一个时 段周期确定上述第一小区在上述至少一个时段周期内处于休眠状态。
基于本发明第四方面,或者本发明第四方面的第一种可能的实现方式, 或 者本发明第四方面的第二种可能的实现方式, 在第三种可能的实现方式中, 上述接收单元接收的第一信号为发现信号;
上述第一确定单元具体用于:根据接收到的发现信号的发送方式确定上述 第一小区进入激活状态, 其中, 上述发现信号的发送方式包括: 上述发现信号 的时频资源位置和发送周期中的一种或两种。
基于本发明第四方面,或者本发明第四方面的第一种可能的实现方式, 或 者本发明第四方面的第二种可能的实现方式,或者本发明第四方面的第三种可 能的实现方式, 在第四种可能的实现方式中, 上述用户设备还包括:
第二检测单元, 用于当上述第一检测单元检测到第二信号时,检测上述第 二信号的发送方式;
上述第二确定单元具体用于:根据上述第二检测单元检测出的上述第二信 号的发送方式确定上述第一小区进入激活状态, 其中, 上述第二信号的发送方 式包括: 上述第二信号的时频资源位置和发送周期中的一种或两种。
基于本发明第四方面,或者本发明第四方面的第一种可能的实现方式, 或 者本发明第四方面的第二种可能的实现方式,或者本发明第四方面的第三种可 能的实现方式,或者本发明第四方面的第四种可能的实现方式, 在第五种可能 的实现方式中, 上述用户设备还包括:
第一业务控制单元,用于当上述第二确定单元确定上述第一小区从休眠状 态进入激活状态时, 启动对上述第一小区中的业务数据的检测和接收。
基于本发明第四方面,或者本发明第四方面的第一种可能的实现方式, 或 者本发明第四方面的第二种可能的实现方式,或者本发明第四方面的第三种可 能的实现方式,或者本发明第四方面的第四种可能的实现方式, 在第六种可能 的实现方式中,
上述用户设备还包括:
第二业务控制单元,用于当上述第一确定单元确定上述第一小区进入休眠 状态时, 停止对上述第一小区中的业务数据的检测和接收。
本发明第五方面提供一种基站, 包括: 收发装置和处理器;
其中, 上述处理器用于: 当上述基站确定第一小区进入或准备进入休眠状 态时,控制上述收发装置向上述第一小区下的用户设备发送第一信号, 上述第 一信号携带上述第一小区进入休眼状态的时间信息,以使上述用户设备根据上 述时间信息确定上述第一小区进入休眠状态;当上述第一小区从休眠状态进入 激活状态时, 控制上述收发装置向上述第一小区下的用户设备发送第二信号, 以使上述用户设备根据上述第二信号确定上述第一小区进入激活状态;
其中, 上述第二信号为如下信号中的任意一种或是任意两种以上的组合: 主同步信号 PSS; 辅同步信号 SSS; 小区特定参考信号 CRS; 信道状态信 息参考信号 CSI-RS。
基于本发明第五方面,在第一种可能的实现方式中,上述处理器具体用于: 向第一小区下的用户设备发送第一信号,上述第一信号中携带上述第一小区进 入休眠状态的起始时间点,以使上述用户设备根据上述第一小区进入休眠状态 的起始时间点确定上述第一小区从上述起始时间点起进入休眠状态。
基于本发明第五方面,在第二种可能的实现方式中,上述处理器具体用于: 向第一小区下的用户设备发送第一信号,上述第一信号中携带上述第一小区进 入休眠状态的至少一个时段周期,以使上述用户设备根据上述第一小区进入休 眠状态的至少一个时段周期确定上述第一小区在上述至少一个时段周期内处 于休眠状态。
基于本发明第五方面,或者本发明第五方面的第一种可能的实现方式, 或 者本发明第五方面的第二种可能的实现方式,在第三种可能的实现方式中, 上 述处理器具体用于通过如下方式向上述第一小区下的用户设备发送第一信号: 根据预定的发现信号的发送方式向上述第一小区下的用户设备发送上述发现 信号, 其中, 上述发现信号的发送方式包括: 上述发现信号的时频资源位置和 发送周期中的一种或两种。 基于本发明第五方面,或者本发明第五方面的第一种可能的实现方式, 或 者本发明第五方面的第二种可能的实现方式,或者本发明第五方面的第三种可 能的实现方式,在第四种可能的实现方式中, 上述处理器具体用于通过如下方 式向上述第一小区下的用户设备发送第二信号:根据预定的上述第二信号的发 送方式向上述第一小区下的用户设备发送上述第二信号, 其中, 上述第二信号 的发送方式包括: 上述第二信号的时频资源位置和发送周期中的一种或两种。
本发明第六方面提供一种用户设备, 包括: 收发装置和处理器; 其中, 上述收发装置用于: 接收第一信号, 上述第一信号携带上述第一小 区进入休眼状态的时间信息;
上述处理器用于: 根据上述时间信息确定第一小区进入休眠状态;检测第 二信号; 当检测到上述第二信号时,根据上述第二信号确定上述第一小区从休 眠状态进入激活状态;
其中, 上述第二信号为如下信号中的任意一种或是任意两种以上的组合: 主同步信号 PSS; 辅同步信号 SSS; 小区特定参考信号 CRS; 信道状态信 息参考信号 CSI-RS。
基于本发明第六方面, 在第一种可能的实现方式中,
上述第一信号中携带上述第一小区进入休眠状态的起始时间点; 上述处理器还用于:根据上述第一小区进入休眠状态的起始时间点确定上 述第一小区从上述起始时间点起进入休眠状态。
基于本发明第六方面, 在第二种可能的实现方式中,
上述第一信号中携带上述第一小区进入休眠状态的至少一个时段周期; 上述处理器还用于:根据上述第一小区进入休眠状态的至少一个时段周期 确定上述第一小区在上述至少一个时段周期内处于休眠状态。
基于本发明第六方面,或者本发明第六方面的第一种可能的实现方式, 或 者本发明第六方面的第二种可能的实现方式,在第三种可能的实现方式中, 上 述收发装置接收的第一信号为发现信号;
上述处理器具体用于:根据上述收发装置接收到的发现信号的发送方式确 定上述第一小区进入激活状态, 其中, 上述发现信号的发送方式包括: 上述发 现信号的时频资源位置和发送周期中的一种或两种。 基于本发明第六方面,或者本发明第六方面的第一种可能的实现方式, 或 者本发明第六方面的第二种可能的实现方式,或者本发明第六方面的第三种可 能的实现方式, 在第四种可能的实现方式中,
上述处理器具体用于: 获取上述第二信号的发送方式,根据上述第二信号 的发送方式确定上述第一小区进入激活状态, 其中, 上述第二信号的发送方式 包括: 上述第二信号的时频资源位置和发送周期中的一种或两种。
基于本发明第六方面,或者本发明第六方面的第一种可能的实现方式, 或 者本发明第六方面的第二种可能的实现方式,或者本发明第六方面的第三种可 能的实现方式,或者本发明第六方面的第四种可能的实现方式, 在第五种可能 的实现方式中,
上述处理器还用于: 当确定上述第一小区进入激活状态时, 启动对上述第 一小区中的业务数据的检测和接收。
基于本发明第六方面,或者本发明第六方面的第一种可能的实现方式, 或 者本发明第六方面的第二种可能的实现方式,或者本发明第六方面的第三种可 能的实现方式,或者本发明第六方面的第四种可能的实现方式, 在第六种可能 的实现方式中,
上述处理器还用于: 当确定上述第一小区进入休眠状态时,停止对上述第 一小区中的业务数据的检测和接收。
本发明第七方面提供一种通讯系统, 包括: 上述第三方面和上述第五方面 上述的任一基站; 以及, 上述第四方面和上述第六方面上述的任一用户设备。
由上述技术方案可以看出,本发明实施例中通过第一信号向 UE指示第一 小区进入休眠状态,通过第二信号向该 UE指示第一小区从休眠状态进入激活 状态, 使得 UE能够及时发现第一小区的状态变化, 从而使得 UE及时针对第 一小区的状态变化执行相应的处理机制成为可能,有利于提升系统性能和小区 服务效率。 附图说明
图 1为本发明提供的一种信号发送方法一个实施例流程示意图; 图 2为本发明提供的一种信号检测方法一个实施例流程示意图; 图 3为本发明提供的一种基站一个实施例结构示意图; 图 4为本发明提供的一种基站另一个实施例结构示意图;
图 5为本发明提供的一种用户设备一个实施例结构示意图;
图 6为本发明提供的一种用户设备另一个实施例结构示意图;
图 7为本发明提供的一种用户设备再一个实施例结构示意图;
图 8为本发明提供的一种通讯系统一个实施例结构示意图。 具体实施方式
本发明实施例提供了一种信号发送方法,信号检测方法和相关装置以及系 统。
为使得本发明的发明目的、 特征、 优点能够更加的明显和易懂, 下面将结 合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而非全部实施例。 基 于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获 得的各个其他实施例, 都属于本发明保护的范围。
首先对本发明实施例中提及的两种小区状态(即休眠状态和激活状态)进 行说明。 当小区处于休眠状态时, 小区不进行任何信号的传输或是减少信号的 传输, 当小区处于激活状态时, 小区正常服务 UE, 即不屏蔽或减少信号的传 输。 本发明实施例中的小区休眠状态的机制包括两种方式:
方式一: 是一种小区动态的不连续传输的方法,也可以称之为动态的小区 休眠, 即, 只要当前子帧没有要固定发送的信号, 小区可以动态实现不调度任 何 UE的数据及相关的控制信息, 实现小区在当前子帧内不进行任何信号的传 输。 其中, 上述固定发送的信号, 主要包括如下信号中的任意一种或任意两种 以上的组合, 如小区预定义发送的 PSS , SSS, CRS, 广播信号, 寻呼信号等; 或是小区之前配置的传输信号, 包括 CSI-RS, 发现参考信号(DRS, Discovery Reference Signal, 定位参考信号 ( PRS , Positioning reference signal )等。 这 种方式可以通过减少固定信号的发送来尽可能使能小区不连续传输,对于诸如 CSI-RS等, 主要由小区配置决定的, 可以灵活的减少其传输; 但如前面所提到 的 PSS, SSS, CRS等信号, 由于这些信号是支持 UE的小区同步和小区发现, 测量等过程的信号, 因此, 这些信号的减少是受限制的, 潜在的, 对于新 UE 的非后向兼容的传输和使用方式, CRS的传输至少可以减少到发送周期为 5ms , 这样, CRS可以与 PSS , SSS同在一个或是多个子帧内进行传输, 在另外子帧 内可以不传输 CRS,进而小区可以在这些子帧上根据其他信号及业务的传输情 况来决定是否动态使能休眠状态。
方式二: 半静态小区休眠的方法, 即, 小区根据其业务的负载和传输量, 以及其覆盖范围内是否有需要服务的 UE等情况, 决定在一段时间内不进行传 输的机制,在这段时间内,该小区不进行任何信号的传输或是减少信号的传输。 对于上述不进行传输的信号包括: PSS , SSS , CRS , 也包括控制信道和数据 信道等信号, 以此实现彻底关闭该小区; 上述减少信号的传输意味着只是传输 很少的必要的信号,如主要支持 UE对该小区的发现和 /或无线资源管理( RRM, RadioResourceManagement )测量的 DRS。
进一步,针对上述动态的不连续传输和半静态小区休眠的两种机制, 一种 方式可以根据小区的分时配置来分别使能具体采用动态的不连续传输,或半静 态小区休眠的机制,两种机制是时分复用的;另一种方式可以采用选择的方法, 如小区可以默认采用动态的不连续传输机制, 同时启动半静态小区休眠的机 制, 但半静态小区休眠的机制具有较高的优先级。 即, 当 UE收到半静态小区 休眠的机制的信令或是指示信息时, UE就假设小区启动了半静态的休眠机制, 在上述休眠机制所指示的小区进入休眠状态的时间段内,小区不传输任何信号 或是减少信号的传输(比如仅传输 DRS ), 这样, 小区可以最大可能的降低信 号的传输, 减少不必要信号传输带来的小区之间干扰和功率消耗,提升传输效 率和系统性能。
本发明实施例提供优化和缩短休眠状态和激活状态的过渡状态变化和转 换延迟的方案,以使得业务即刻到达时即可启动业务传输,减少业务传输时延, 提升系统性能和用户体验。
下面以一实施例对本发明中的信号发送方法进行描述,本发明实施例主要 以基站作为执行主体进行描述,请参阅图 1 ,本发明实施例中的信号发送方法, 包括:
101、 当基站确定第一小区进入或准备进入休眠状态时, 向上述第一小区 下的 UE发送第一信号;
其中, 上述第一信号携带上述第一小区进入休眼状态的时间信息, 以使该 UE根据上述时间信息确定上述第一小区进入休眠状态。
如果第一小区处于休眠状态,那么第一小区所属基站不在第一小区上发送 任何信号或是尽量少的发送某些信号 (比如 DRS ), 为了避免由于第一小区在 休眠状态时不传输或是减少传输一些信号 (如 PSS, SSS, CRS等)对 UE造成 的影响, 当第一小区进入或准备进入休眠状态时, 基站向该 UE发送第一信号, 使得该 UE通过检测第一信号获知第一小区进入休眠状态, 以便 UE在获知第一 小区进入休眠状态后执行相应的处理机制, 例如: 停止对上述第一小区中的控 制信道 PDCCH/EPDCCH接收和检测, 和 /或业务数据的接收。
在一种实现方式中, 当第一小区决定进入或准备进入休眠状态时,基站向 UE发送第一信号, 上述第一信号携带上述第一小区进入休眠状态的起始时间 点, 或者, 通过协议约定, 使得当 UE检测到该第一信号时, 即认为第一小区 开始进入休眠状态, 以此通知 UE第一' 区从某一个特定时间开始进入休眠状 态,这样 UE在这段时间内停止对上述第一'〗、区中的控制信道 PDCCH/EPDCCH 接收和检测, 和 /或业务数据的接收, 受限的检测、 接收和测量可能传输的信 号, 比如 DRS, 或是表征激活态的信号等。 这种方式可以灵活的支持任一时间 进入休眠状态。
在另一种实现方式中,通过定义至少一个休眠状态的时段周期的参数, 当 第一小区决定进入或准备进入休眠状态时, 基站向 UE发送第一信号, 上述第 一信号携带上述第一小区进入休眠状态的至少一个时段周期, 以此通知 UE具 体的第一小区的休眠状态从某一个特定时间开始到某一个特定时间结束,这种 时段周期的参数可以具体指示一个休眠状态周期的情况,或是休眠状态周期性 出现的多次情况等等, 此处不作限定。
值得说明的是, 本发明不局限于通过上述两种方式来通知 UE第一小区进 入休眠状态, 例如, 本发明实施例可以对第一信号的发送进行预定义配置, 比 如通过使能一段时间内传输第一信号的功能来隐式指示第一小区在这段时间 内进入休眠状态, 当 UE在一段时间内检测到第一信号, 则表示第一小区在这 段时间内处于休眠状态。
可选的, 上述第一信号为发现信号, 如 DRS。 在本发明实施例中, 除了 UE可以通过检测到第一信号获知发送其第一信号的小区进入休眠状态外, 发 现信号还用于支持 UE的小区同步, 小区发现和 RRM测量, 发现信号包括但不 限于如下信号中的任意一种或是任意一种以上的组合: PSS , SSS, CRS, CSI-RS 和 PRS等。 当上述第一小区进入休眠状态时, 基站根据预定的发现信号的发送 方式向第一小区下的 UE发送上述发现信号, 其中, 上述发现信号的发送方式 包括: 上述发现信号的时频资源位置和发送周期中的一种或两种。 可选的, 上 述发现信号的发送方式可以是系统预定义或者由配置信令配置, 此处不作限 定。
需要说明的是, 若发现信号为多种信号的组合情况时, 不同功能可以通过 不同的信号部分来实现, 比如, 通过 PSS和 /或 SSS来实现小区同步和发现, 通 过 CRS或 CSI-RS进行 RRM测量, 通过其他网络辅助的信息或是通过发现信号 的发送方式, 包括周期、 时频资源位置等来指示小区进行休眠状态。 具体的, 比如通过 PSS和 /或 SSS的周期或是频域位置区分, 现有小区处于正常通信状态 时(即激活状态) , PSS/SSS是在整个系统带宽的中心 6个资源块内以 5ms周期 进行传输的, 当其在不同于整个系统带宽的中心 6个资源块内或是其他周期进 行传输时, 可以认为该小区进入休眠状态。
可选地, UE才艮据基站发送的物理广播信道 ( PBCH, Physical Broadcast Channel ),或物理控制格式指示信道( PCFICH, Physical Control Format Indicator Channel ) , 或公共搜索空间中物理下行控制信道( PDCCH, Physical Downlink Control Channel )或增强的物理下行控制信道 ( EPDCCH, Enhanced Physical Downlink Control Channel ) 中的任何一种信道获取上述第一信号。
具体的, 考虑到小区进入休眠状态是小区特定的行为,基站在感知到该小 区内没有业务传输或是没有 UE存在的情况下,尽快触发该小区进入休眠状态, 以尽可能减少不必要信号传输带来的小区之间干扰和功率消耗, 这样, 上述第 一信号优选为以小区特定的广播形式发送的动态信令, 比如承载在主信息块 ( MIB , Master information block ) 中以 PBCH形式进行发送, 或是承载在公 共的小区特定的下行控制信息 (DCI, Downlink Control Information ) 中, 在 PDCCH的公共搜索空间 (CSS , Common Search Space )或是 EPDCCH的增 强公共搜索空间 (ECSS, Enhanced Common Search Space ) 内传输; 甚至也 可以承载在控制格式指示( CFI , Control Format Indicator )中以 PCFICH发送, 进一步的可以用现有冗余的 CFI 的状态信息具体承载小区进入休眠状态的信 息等。 进一步的, 第一信号也可以是单播传输的动态信令, MAC层或是 RRC 专有信令。 考虑到小区中潜在存在老 UE, 其不能支持小区的休眠状态, 但可 以采用切换, 载波的去激活机制等使得这些老 UE离开这个小区, 至少一段时 间内使得这些老 UE不进行控制信道或业务数据的接收和检测, 同时, 这个方 式也可以适合新的 UE (即支持小区的休眠状态的 UE ), 比如, 当小区进行休 眠状态, 仍可以通过现有的去激活机制通知 UE, 使得这个 UE至少一段时间 内不进行控制信道或业务数据的接收和检测, 同时, 也可以进一步通过第一信 号通知 UE该小区进入休眠状态, 以便于 UE区分小区休眠状态与老机制中的 去激活状态。 如果去激活和小区休眠状态的 RRM测量机制不同, 这时 UE可 以根据具体的情况(如当前是本 UE去激活状态还是小区休眠状态), 执行相 应的 RRM测量机制等。
综上,无论任何的以显示信令或是隐性信令通知 UE小区进入休眠状态的 方法均属于本发明实施例保护的范围, 具体的, 第一信号可以采用动态的或是 半静态的方式, 也可以是单播的或是广播的以某一特定周期的方式发送给 UE 或是以事件触发的方式发送给 UE, 此处不作限定。
102、 当上述基站确定上述第一小区从休眠状态进入激活状态时, 向上述 第一小区下的 UE发送第二信号, 以使上述 UE根据上述第二信号确定上述第 一小区进入激活状态;
其中, 上述第二信号为如下信号中的任意一种或是任意两种以上的组合:
PSS , SSS, CRS和 CSI-RS。
进一步, 上述第二信号还可以包括: PCFICH、 PDCCH和 EPDCCH等信 道上承载的信号, 或是 MAC, RRC专有信令等。
本发明实施例中通过隐性的指示方式通知 UE第一小区从休眠状态进入激 活状态 (即终止休眠状态) , 即当第一小区决定从休眠状态进入激活状态时, 基站向 UE发送第二信号, 只要 UE检测到第二信号便认为上述第一小区已终止 休眠状态。
可选地, 当上述第一小区从休眠状态进入激活状态时,基站根据预定的第 二信号的发送方式向第一小区下的 UE发送上述第二信号, 其中, 上述第二信 号的发送方式包括: 上述第二信号的时频资源位置和发送周期中的一种或两 种。
需要说明的是,上述几种信号中的每种信号作为第二信号或是作为第二信 号的一部分都需要进一步确定信号的时频资源位置和发送周期等发送方式,以 与正常发送的信号进行区分, 具体的,基站可以综合第一小区从休眠状态到激 活状态转化的延迟灵活配置第二信号的发送周期, 进一步需要说明的是, 若第 二信号为多种信号的组合, 则 UE需要检测到第二信号所包括的所有信号, 才 能表明成功检测到第二信号。可选的, 上述第二信号的发送方式可以由系统预 定义, 或者也可以通过配置信令预先配置, 此处不作限定。
需要说明的是, 上述第一信号和上述第二信号不同,且包括如下任意一种 或是任意两种以上组合的不同, 上述第一信号和上述第二信号的信号类型不 同; 上述第一信号承载的信道与上述第二信号承载的信道不同; 上述第一信号 的时频资源位置和上述第二信号的时频资源位置不同;上述第一信号的发送周 期和上述第二信号的发送周期不同;上述第一信号的发送周期和上述第二信号 的发送功率不同等, 此处不作限定。
由上述技术方案可以看出,本发明实施例中通过第一信号向 UE指示第一 小区进入休眠状态,通过第二信号向 UE指示第一小区从休眠状态进入激活状 态, 使得 UE能够及时感知第一小区的状态, 从而使得 UE及时针对第一小区 的状态变化执行相应地处理机制成为可能, 例如, UE在获知第一' 区从休眠 状态进入激活状态时, 启动对第一小区的控制信道, 和 /或业务数据的检测和 接收,使得第一小区在从休眠状态进入激活状态后也相应的能够即刻启动业务 的传输, 提升了系统性能和小区服务效率。 下面以一实施例对本发明中的信号检测方法进行描述,本发明实施例主要 以 UE作为执行主体进行描述,请参阅图 2,本发明实施例中的信号检测方法, 包括:
201、 UE接收第一信号, 根据上述第一信号确定第一小区进入休眠状态; 本发明实施例中,上述第一信号携带上述第一小区进入休眼状态的时间信 息 ,UE根据上述时间信息确定上述第一小区进入休眠状态。
在一种实现方式中, 当第一小区决定进入休眠状态时, 基站向 UE发送第 一信号, 上述第一信号携带上述第一小区进入休眠状态的起始时间点, 或者, 通过协议约定, 使得当 UE检测到该第一信号时, 即认为第一小区开始进入休 眠状态, UE根据检测到的第一信号确定上述第一小区从上述起始时间点起进 入休眠状态。 这样 UE在这段时间内停止对上述第一小区中的控制信道 PDCCH/EPDCCH接收和检测, 和 /或业务数据的接收, 受限的检测、 接收和测 量可能传输的信号, 比如 DRS, 或是表征激活态的信号等。 这种方式可以灵活 的支持任一时间进入休眠状态。
在另一种实现方式中,通过定义至少一个休眠状态的时段周期的参数, 当 第一小区决定进入休眠状态时, 基站向 UE发送第一信号, 上述第一信号携带 上述第一小区进入休眠状态的至少一个时段周期, 则 UE根据上述第一信号确 定上述第一小区在上述至少一个时段周期内处于休眠状态,这种时段周期的参 数可以具体指示一个休眠状态周期的情况,或是休眠状态周期性出现的多次情 况等等, 此处不作限定。
可选的, 上述第一信号为发现信号, 如 DRS。 在本发明实施例中, 除了 UE可以通过检测到第一信号获知发送其第一信号的小区进入休眠状态外, 发 现信号还用于支持 UE的小区同步, 小区发现和 RRM测量, 发现信号包括但不 限于如下信号中的任意一种或是任意一种以上的组合: PSS , SSS, CRS, CSI-RS 和 PRS等。 当上述第一小区进入休眠状态时, 基站根据预定的发现信号的发送 方式向第一小区下的 UE发送上述发现信号, 其中, 上述发现信号的发送方式 包括: 上述发现信号的时频资源位置和发送周期中的一种或两种。 可选的, 上 述发现信号的发送方式可以是系统预定义或者由配置信令配置, 此处不作限 定。
需要说明的是, 若发现信号为多种信号的组合情况时, 不同功能可以通过 不同的信号部分来实现, 比如, 通过 PSS和 /或 SSS来实现小区同步和发现, 通 过 CRS或 CSI-RS进行 RRM测量, 通过其他网络辅助的信息或是通过发现信号 的发送方式, 包括周期、 时频资源位置等来指示小区进行休眠状态。 具体的, 比如通过 PSS和 /或 SSS的周期或是频域位置区分, 现有小区处于正常通信状态 时(即激活状态) , PSS/SSS是在整个系统带宽的中心 6个资源块内以 5ms周期 进行传输的, 当 UE检测到其在不同于整个系统带宽的中心 6个资源块内或是以 其他周期 (不同于 5ms周期)进行传输时, 可以认为该小区进入休眠状态。 可选地, UE根据基站发送的 PBCH,或 PCFICH,或 PDCCH或 EPDCCH 中的任何一种信道获取上述第一信号,也可以是单播的或是广播的以某一特定 周期的方式发送给 UE或是以事件触发的方式发送给 UE;或是根据发现信号, 如 DRS获取第一信号, 进而确定第一小区进入休眠状态, 此处不作限定。
具体的, 考虑到小区进入休眠状态是小区特定的行为,基站在感知到该小 区内没有业务传输或是没有 UE存在的情况下,尽快触发该小区进入休眠状态, 以尽可能减少不必要信号传输带来的小区之间干扰和功率消耗, 这样, 上述第 一信号优选为以小区特定的广播形式发送的动态信令, 比如承载在 MIB中以 PBCH形式进行发送, 或是承载在公共的小区特定的 DCI中, 在 PDCCH的 CSS或是 EPDCCH的 ECSS内传输; 甚至也可以承载在 CFI中以 PCFICH发 送,进一步的可以用现有冗余的 CFI的状态信息具体承载小区进入休眠状态的 信息等, 综上, 无论任何的以显示信令或是隐性信令通知 UE小区进入休眠状 态的方法均属于本发明实施例保护的范围,具体的,第一信号可以采用动态的, MAC层或是 RRC专有信令。 考虑到小区中潜在存在老 UE, 其不能支持小区 的休眠状态, 但可以采用切换, 载波的去激活机制等使得这些老 UE离开这个 小区, 至少一段时间内使得这些老 UE不进行控制信道或业务数据的接收和检 测, 同时, 这个方式也可以适合新的 UE (即支持小区的休眠状态的 UE ), 比 如, 当小区进行休眠状态, 仍可以通过现有的去激活机制通知 UE, 使得这个 UE至少一段时间内不进行控制信道或业务数据的接收和检测, 同时, 也可以 进一步通过第一信号通知 UE该小区进入休眠状态, 以便于 UE区分小区休眠 状态与老机制中的去激活状态。 如果去激活和小区休眠状态的 RRM测量机制 不同, 这时 UE可以根据具体的情况(如当前是本 UE去激活状态还是小区休 眠状态 ) , 执行相应的 RRM测量机制等。
需要说明的是, 步骤 201是可选实施的, 即 UE接收第一信号, 根据上述 第一信号确定第一小区进入休眠状态。 也就是说, UE可以不接收第一信号, 或是在 UE没有成功接收到第一信号的情况下, UE可以直接执行其他步骤, 如对第二信号进行检测, 当检测到第二信号时, UE根据上述第二信号确定上 述第一小区从休眠状态进入激活状态。 具体的实施方式, 本发明实施例不作限 定。
202、 UE对第二信号进行检测;
其中, 上述第二信号为如下信号中的任意一种或是任意两种以上的组合: PSS , SSS, CRS, CSI-RS。
进一步, 上述第二信号还可以包括: PCFICH、 PDCCH和 EPDCCH等信 道上承载的信号, 或是 MAC, RRC专有信令等。
在本发明实施例中, 为了节省 UE对信号检测和处理的复杂度, UE在确 定第一小区进入休眠状态以后才开始对第二信号进行检测。进一步的, 为了进 一步节省 UE对控制信道(如 PDCCH/EPDCCH )和业务数据 (如 PDSCH )检 测和处理的复杂度, UE在确定第一小区进入休眠状态以后, UE停止对控制信 道(如 PDCCH/EPDCCH )检测和接收, 和 /或业务数据 (如 PDSCH )检测和 接收等处理。
当然, UE也可以持续对第二信号进行检测, 包括在没有收到第一信号, 即也不能确定如上第一小区进入休眠状态的情况下也进行对第二信号的检测, 这样, 仅需要检测第二信号, 并当检测到第二信号时, UE根据上述第二信号 确定上述第一小区至少在当前检测到第二信号的子帧内或是在第二信号发送 的周期内是激活状态, 这样可以灵活使能第一小区的不连续传输机制, 尤其是 动态的以 ms级别的进行不连续传输机制。 这不影响本发明方案的实施。
203、 当检测到第二信号时, UE根据上述第二信号确定上述第一小区进入 激活状态;
具体的, 当 UE检测到第二信号时, UE将假设第一小区在当前子帧及后 续的子帧内都处于激活状态, 具体的, 可以是第二信号发送的当前子帧及第二 信号发送周期内包括的子帧都是激活状态,或是从第二信号发送的当前子帧直 至 UE检测第一信号的时间段内包括的子帧都是激活状态,或是系统预定义或 是配置的一段时间内 (或是周期内)包括的子帧都是激活状态等等, 具体此处 不做限定。
当 UE检测到第二信号时, 还隐式确定了第一小区的休眠状态终止, 无论 第一小区的休眠状态是否已达到预先约定的休眠终止的时刻,该 UE都会认为 第一小区的休眠状态终止进入正常通信的激活状态,如果 UE在当前第二信号 可能发送的时刻没有检测到第二信号, UE将 4叚设第一小区在当前子帧及后续 的一些子帧上仍处于休眠状态, UE仍继续检测第一小区是否存在第二信号, 直到 UE成功检测到第二信号之前, UE都会假设第一小区处于休眠状态, 除 非第一小区的休眠状态有终止时刻配置信令的且已经到达休眠状态终止的时 刻。
可选的, 这些信号可以是以小区特定的广播形式的发送和通知, 这样, 当 上述第一小区从休眠状态进入激活状态时,基站根据预定的第二信号的发送方 式向第一小区下的 UE发送上述第二信号, 第一小区下的 UE均可以获取这个 信息, 以此确定第一小区进入激活状态; 另外, 这些信号也可以是以 UE特定 的单播形式的发送和通知, 可以通过 CSI-RS 信号, 也可以为 PDCCH 和 EPDCCH等信道上承载的信号, 或是 MAC, RRC专有信令等, 具体的可以是 类似在多载波系统中, UE特定的单播方式(如 MAC信令 )激活和去激活辅 载波。 这样, 当上述第一小区从休眠状态进入激活状态时, 基站根据预定的第 二信号的发送方式向第一小区下的特定 UE发送上述第二信号, 第一小区下的 特定 UE可以获取这个信息, 以此确定第一小区进入激活状态。
当上述第一小区从休眠状态进入激活状态时,基站根据预定的第二信号的 发送方式向第一小区下的 UE发送上述第二信号, 则 UE在检测到上述第二信 号时,还需要进一步获取上述第二信号的发送方式, 进而根据上述第二信号的 发送方式确定上述第一小区进入激活状态, 其中, 上述第二信号的发送方式包 括:上述第二信号的时频资源位置和发送周期中的一种或两种。需要说明的是, 上述几种信号中的每种信号作为第二信号或是作为第二信号的一部分都需要 进一步确定信号的时频资源位置和发送周期等发送方式,以与正常发送的信号 进行区分, 尤其这些信号在正常激活状态下也会发送时, 需要进一步明确这些 信号的作用, 以区分是否是第二信号。 具体的, 基站可以综合第一小区从休眠 状态到激活状态转化的延迟灵活配置第二信号的发送周期,进一步需要说明的 是, 若第二信号为多种信号的组合, 则 UE需要检测到第二信号所包括的所有 信号, 才能表明成功检测到第二信号。 可选的, 上述第二信号的发送方式可以 由系统预定义, 或者也可以通过配置信令预先配置, 此处不作限定。
可选地, 本发明实施例中, 当 UE确定上述第一小区进入休眠状态时, 停 止对上述第一小区中的业务数据的检测和接收, 当 UE确定上述第一小区从休 眠状态进入激活状态时, 启动对上述第一小区中的业务数据的检测和接收。进 一步地, 当 UE确定上述第一小区从休眠状态进入激活状态时, UE还会启动 对第一小区正常的同步的检测和跟踪, 广播信道和系统消息的检测和接收,控 制信道的检测以及测量等。
由上述技术方案可以看出,本发明实施例中通过第一信号向 UE指示第一 小区进入休眠状态,通过第二信号向 UE指示第一小区从休眠状态进入激活状 态, 使得 UE能够及时感知第一小区的状态, 从而使得 UE及时针对第一小区 的状态变化执行相应地处理机制成为可能, 例如, UE在获知第一' 区进入的 状态时及时停止或启动对第一' 区的业务的检测和接收,从而使得第一' 区在 从休眠状态进入激活状态后能够即刻启动业务的传输,提升了系统性能和小区 服务效率。 本发明实施例还提供了一种基站,下面对本发明实施例提供的基站进行描 述, 请参见图 3 , 本发明实施例中的基站 300, 包括:
第一确定单元 301 , 用于确定第一' 区进入或准备进入休眠状态; 本发明实施例提供两种小区休眠状态的机制,即小区动态的不连续传输机 制和半静态小区休眠机制,对于小区动态的不连续传输机制, 只要当前子帧没 有要固定发送的信号, 小区可以动态实现不调度任何 UE的数据及相关的控制 信息, 即第一确定单元 301在当前子帧没有要固定发送的信号时,确定第一小 区可以休眠状态。对于半静态小区休眠机制, 第一确定单元 301可以根据第一 小区内的业务的负载和传输量, 以及第一小区覆盖范围内是否有需要服务的 UE等情况, 确定第一小区在一段时间内进入休眠状态。
第二确定单元 302, 用于确定第一小区从休眠状态进入激活状态; 对于小区动态的不连续传输机制, 当第一小区处于休眠状态时, 只要当前 子帧存在固定发送的信号,第二确定单元 302可以确第一小区从休眠状态进入 激活状态。对于半静态小区休眠机制, 第二确定单元 302可以根据第一小区内 的业务的负载和传输量, 以及第一小区覆盖范围内是否有需要服务的 UE等情 况, 确定第一小区从休眠状态进入激活状态。
发送单元 303 , 用于: 当第一确定单元 301确定上述第一小区进入或准备 进入休眠状态时, 向上述第一小区下的 UE发送第一信号, 其中, 上述第一信 号携带上述第一小区进入休眼状态的时间信息, 以使该 UE根据上述第一信号 确定上述第一小区进入休眠状态;当第二确定单元 302确定上述第一小区从休 眠状态进入激活状态时, 向上述第一小区下的 UE发送第二信号, 以使根据该 UE确定上述第一小区进入激活状态。
在本发明实施例中,上述第二信号为如下信号中的任意一种或是任意两种 以上的组合: PSS , SSS, CRS , CSI-RS。
进一步, 上述第二信号还可以包括: PCFICH、 PDCCH和 EPDCCH等信 道上承载的信号, 或是 MAC, RRC专有信令等。
在一种实现方式中, 当第一小区决定进入或准备进入休眠状态时,发送单 元 303向 UE发送第一信号,上述第一信号携带上述第一小区进入休眠状态的 起始时间点的第一信号, 或者, 通过协议约定, 使得当 UE检测到该第一信号 时, 即认为第一小区开始进入休眠状态, 以此通知 UE第一小区从某一个特定 时间开始进入休眠状态,这样 UE在这段时间内停止对上述第一小区中的控制 信道 PDCCH/EPDCCH接收和检测, 和 /或业务数据的接收, 受限的检测、 接 收和测量可能传输的信号, 比如 DRS等。 这种方式可以灵活的支持任一时间 进入休眠状态。
在另一种实现方式中, 通过定义至少一个休眠状态的时段周期的参数, 当 第一小区决定进入或准备进入休眠状态时,发送单元 303向 UE发送第一信号, 上述第一信号携带上述第一小区进入休眠状态的至少一个时段周期,以此通知 UE 具体的第一小区的休眠状态从某一个特定时间开始到某一个特定时间结 束, 这种时段周期的参数可以具体指示一个休眠状态周期的情况,或是休眠状 态周期性出现的多次情况等等, 此处不作限定。
可选的, 上述第一信号为发现信号, 如 DRS。 在本发明实施例中, 除了 UE可以通过检测到第一信号获知发送其第一信号的小区进入休眠状态外, 发 现信号还用于支持 UE的小区同步, 小区发现和 RRM测量, 发现信号包括但 不限于如下信号中的任意一种或是任意一种以上的组合: PSS , SSS , CRS , CSI-RS和 PRS等。 当上述第一小区进入休眠状态时, 基站根据预定的发现信 号的发送方式向第一小区下的 UE发送上述发现信号, 其中, 上述发现信号的 发送方式包括: 上述发现信号的时频资源位置和发送周期中的一种或两种。可 选的, 上述发现信号的发送方式可以是系统预定义或者由配置信令配置, 此处 不作限定。
需要说明的是, 若发现信号为多种信号的组合情况时, 不同功能可以通过 不同的信号部分来实现, 比如, 通过 PSS和 /或 SSS来实现小区同步和发现, 通过 CRS或 CSI-RS进行 RRM测量, 通过其他网络辅助的信息或是通过发现 信号的发送方式, 包括周期、 时频资源位置等来指示小区进行休眠状态。 具体 的, 比如通过 PSS和 /或 SSS的周期或是频域位置区分, 现有小区处于正常通 信状态时 (即激活状态), PSS/SSS是在整个系统带宽的中心 6个资源块内以 5ms周期进行传输的, 当其在不同于整个系统带宽的中心 6个资源块内或是其 他周期进行传输时, 可以认为该小区进入休眠状态。
可选的, 上述第二信号为如下信号中的任意一种或是任意两种以上的组 合: PSS , SSS , CRS和 CSI-RS , 进一步第二信号也可以为 PCFICH、 PDCCH 和 EPDCCH等信道上承载的信号, 当上述第一小区从休眠状态进入激活状态 时,基站根据预定的第二信号的发送方式向第一小区下的 UE发送上述第二信 号, 其中, 上述第二信号的发送方式包括: 上述第二信号的时频资源位置和发 送周期中的一种或两种。
需要说明的是,上述几种信号中的每种信号作为第二信号或是作为第二信 号的一部分都需要进一步确定信号的时频资源位置和发送周期等发送方式,以 与正常发送的信号进行区分, 具体的,基站可以综合第一小区从休眠状态到激 活状态转化的延迟灵活配置第二信号的发送周期, 进一步需要说明的是, 若第 二信号为多种信号的组合, 则 UE需要检测到第二信号所包括的所有信号, 才 能表明成功检测到第二信号。可选的, 上述第二信号的发送方式可以由系统预 定义, 或者也可以通过配置信令预先配置, 此处不作限定。
需要说明的是, 本发明实施例中的基站可以如上述方法实施例中的基站, 可以用于实现上述方法实施例中的全部技术方案,其各个功能模块的功能可以 根据上述方法实施例中的方法具体实现,其具体实现过程可参照上述实施例中 的相关描述, 此处不再赘述。
由上述技术方案可以看出,本发明实施例中通过第一信号向 UE指示第一 小区进入休眠状态,通过第二信号向 UE指示第一小区从休眠状态进入激活状 态, 使得 UE能够及时感知第一小区的状态, 从而使得 UE及时针对第一小区 的状态变化执行相应地处理机制成为可能, 例如, UE在获知第一' 区进入的 状态时及时停止或启动对第一小区的业务的检测和接收,从而使得第一小区在 从休眠状态进入激活状态后能够即刻启动业务的传输,提升了系统性能和小区 服务效率。 本发明实施例还提供另一种基站, 下面对本发明请参阅图 4, 本发明实施 例中的基站 400包括: 收发装置 401和处理器 402;
其中, 处理器 402用于: 当基站 400确定第一小区进入或准备进入休眠状 态时, 控制收发装置 401向上述第一小区下的 UE发送第一信号, 其中, 上述 第一信号中携带上述第一小区进入休眠状态的时间信息, 以使该 UE根据上述 时间信息确定上述第一小区进入休眠状态;当上述第一小区从休眠状态进入激 活状态时, 控制收发装置 401向上述第一小区下的 UE发送第二信号, 以使根 据该 UE确定上述第一小区进入激活状态。
其中, 上述第二信号为如下信号中的任意一种或是任意两种以上的组合:
PSS , SSS, CRS, CSI-RS。
进一步, 上述第二信号还可以包括: PCFICH、 PDCCH和 EPDCCH等信 道上承载的信号, 或是 MAC, RRC专有信令等。
在一种实现方式中,当处理器 402控制收发装置 401向上述第一小区下的 UE发送第一信号时, 在上述第一信号中携带上述第一小区进入休眠状态的起 始时间点,以此通知 UE第一小区从某一个特定时间开始进入休眠状态,或者, 通过协议约定, 使得当 UE检测到该第一信号时, 即认为第一小区开始进入休 眠状态, 这样 UE 在这段时间内停止对上述第一小区中的控制信道 PDCCH/EPDCCH接收和检测, 和 /或业务数据的接收, 受限的检测、接收和测 量可能传输的信号, 比如 DRS等。 这种方式可以灵活的支持任一时间进入休 眠状态。
在另一种实现方式中, 通过定义至少一个休眠状态的时段周期的参数, 当 处理器 402控制收发装置 401向上述第一小区下的 UE发送第一信号时,在上 述第一信号中携带上述第一小区进入休眠状态的至少一个时段周期的第一信 号,以此通知 UE具体的第一小区的休眠状态从某一个特定时间开始到某一个 特定时间结束, 这种时段周期的参数可以具体指示一个休眠状态周期的情况, 或是休眠状态周期性出现的多次情况等等, 此处不作限定。
可选的, 上述第一信号为发现信号, 如 DRS。 在本发明实施例中, 除了 UE可以通过检测到第一信号获知发送其第一信号的小区进入休眠状态外, 发 现信号还用于支持 UE的小区同步, 小区发现和 RRM测量, 发现信号包括但 不限于如下信号中的任意一种或是任意一种以上的组合: PSS , SSS , CRS , CSI-RS和 PRS等。 当上述第一小区进入休眠状态时, 基站根据预定的发现信 号的发送方式向第一小区下的 UE发送上述发现信号, 其中, 上述发现信号的 发送方式包括: 上述发现信号的时频资源位置和发送周期中的一种或两种。可 选的, 上述发现信号的发送方式可以是系统预定义或者由配置信令配置, 此处 不作限定。
需要说明的是, 若发现信号为多种信号的组合情况时, 不同功能可以通过 不同的信号部分来实现, 比如, 通过 PSS和 /或 SSS来实现小区同步和发现, 通过 CRS或 CSI-RS进行 RRM测量, 通过其他网络辅助的信息或是通过发现 信号的发送方式, 包括周期、 时频资源位置等来指示小区进行休眠状态。 具体 的, 比如通过 PSS和 /或 SSS的周期或是频域位置区分, 现有小区处于正常通 信状态时 (即激活状态), PSS/SSS是在整个系统带宽的中心 6个资源块内以 5ms周期进行传输的, 当其在不同于整个系统带宽的中心 6个资源块内或是其 他周期进行传输时, 可以认为该小区进入休眠状态。
可选的, 当上述第一小区从休眠状态进入激活状态时,基站根据预定的第 二信号的发送方式向第一小区下的 UE发送上述第二信号, 其中, 上述第二信 号的发送方式包括: 上述第二信号的时频资源位置和发送周期中的一种或两 种。
需要说明的是,上述几种信号中的每种信号作为第二信号或是作为第二信 号的一部分都需要进一步确定信号的时频资源位置和发送周期等发送方式,以 与正常发送的信号进行区分, 具体的,基站可以综合第一小区从休眠状态到激 活状态转化的延迟灵活配置第二信号的发送周期, 进一步需要说明的是, 若第 二信号为多种信号的组合, 则 UE需要检测到第二信号所包括的所有信号, 才 能表明成功检测到第二信号。可选的, 上述第二信号的发送方式可以由系统预 定义, 或者也可以通过配置信令预先配置, 此处不作限定。
需要说明的是, 本发明实施例中的基站可以如上述方法实施例中的基站, 可以用于实现上述方法实施例中的全部技术方案,其各个功能模块的功能可以 根据上述方法实施例中的方法具体实现,其具体实现过程可参照上述实施例中 的相关描述, 此处不再赘述。
由上述技术方案可以看出,本发明实施例中通过第一信号向 UE指示第一 小区进入休眠状态,通过第二信号向 UE指示第一小区从休眠状态进入激活状 态, 使得 UE能够及时感知第一小区的状态, 从而使得 UE及时针对第一小区 的状态变化执行相应地处理机制成为可能, 例如, UE在获知第一' 区进入的 状态时及时停止或启动对第一小区的业务的检测和接收,从而使得第一小区在 从休眠状态进入激活状态后能够即刻启动业务的传输,提升了系统性能和小区 服务效率。 本发明实施例还提供另一种用户设备, 下面对本发明请参阅图 5 , 本发明 实施例中的用户设备 500包括:
接收单元 501 , 用于接收第一信号, 其中, 上述第一信号携带上述第一小 区进入休眼状态的时间信息;
第一确定单元 502, 用于当接收单元 501接收上述第一信号时, 根据上述 时间信息确定第一小区进入休眠状态;
第一检测单元 503 , 用于检测第二信号;
第二确定单元 504, 用于当第一检测单元 503检测到上述第二信号时, 根 据上述第二信号确定上述第一小区进入激活状态;
其中, 上述第二信号为如下信号中的任意一种或是任意两种以上的组合:
PSS; SSS; CRS; CSI-RS。
可选地, 上述第一信号中携带上述第一小区进入休眠状态的起始时间点; 第一确定单元 502还用于:根据上述第一信号确定上述第一小区从上述起始时 间点起进入休眠状态。 或者, 通过协议约定, 使得当接收单元 501接收到该第 一信号时, 第一确定单元 502即确定第一小区开始进入休眠状态。
可选地,上述第一信号中携带上述第一小区进入休眠状态的至少一个时段 周期; 第一确定单元 502还用于: 根据上述第一信号确定上述第一小区在上述 至少一个时段周期内处于休眠状态。
可选的, 上述第一信号为发现信号, 如 DRS。 在本发明实施例中, 除了 用户设备 500 可以通过检测到第一信号获知发送其第一信号的小区进入休眠 状态外, 发现信号还用于支持 UE的小区同步, 小区发现和 RRM测量, 发现 信号包括但不限于如下信号中的任意一种或是任意一种以上的组合: PSS , SSS , CRS, CSI-RS和 PRS等。 当上述第一小区进入休眠状态时, 基站根据 预定的发现信号的发送方式向用户设备 500发送上述发现信号, 其中, 上述发 现信号的发送方式包括:上述发现信号的时频资源位置和发送周期中的一种或 两种。可选的, 上述发现信号的发送方式可以是系统预定义或者由配置信令配 置, 此处不作限定。
需要说明的是, 若发现信号为多种信号的组合情况时, 不同功能可以通过 不同的信号部分来实现, 比如, 通过 PSS和 /或 SSS来实现小区同步和发现, 通过 CRS或 CSI-RS进行 RRM测量, 通过其他网络辅助的信息或是通过发现 信号的发送方式, 包括周期、 时频资源位置等来指示小区进行休眠状态。 具体 的, 比如通过 PSS和 /或 SSS的周期或是频域位置区分, 现有小区处于正常通 信状态时 (即激活状态), PSS/SSS是在整个系统带宽的中心 6个资源块内以 5ms周期进行传输的, 当 UE检测到其在不同于整个系统带宽的中心 6个资源 块内或是以其他周期 (不同于 5ms 周期)进行传输时, 可以认为该小区进入 休眠状态。
可选的, 上述第二信号以小区特定的广播形式的发送和通知, 这样, 当上 述第一小区从休眠状态进入激活状态时,基站根据预定的第二信号的发送方式 向第一小区下的 UE发送上述第二信号, 第一小区下的 UE均可以获取这个信 息, 以此确定第一小区进入激活状态; 另外, 这些信号也可以是以 UE特定的 单播形式的发送和通知,可以通过 CSI-RS信号,也可以为 PDCCH和 EPDCCH 等信道上承载的信号, 或是 MAC, RRC专有信令等, 具体的可以是类似在多 载波系统中, UE特定的单播方式(如 MAC信令)激活和去激活辅载波。 这 样, 当上述第一小区从休眠状态进入激活状态时,基站根据预定的第二信号的 发送方式向第一小区下的特定 UE发送上述第二信号, 第一小区下的特定 UE 可以获取这个信息, 以此确定第一小区进入激活状态。 具体地, 在图 5所示实 施例的基础上, 如图 6所示用户设备 600还包括: 第二检测单元 505 , 用于当 第一检测单元 503检测到第二信号时,检测上述第二信号的发送方式, 第二确 定单元 504具体用于:根据第二检测单元 505检测出的上述第二信号的发送方 式确定上述第一小区进入激活状态, 其中, 上述第二信号的发送方式包括: 上 述第二信号的时频资源位置和发送周期中的一种或两种。
可选地, 在图 5所示用户设备的基础上, 用户设备还包括:
第一业务控制单元,用于当第二确定单元 504确定上述第一小区从休眠状 态进入激活状态时, 启动对上述第一小区中的业务数据的检测和接收;
可选地, 在图 5所示用户设备的基础上, 用户设备还包括:
第二业务控制单元,用于当第一确定单元 502确定上述第一小区进入休眠 状态时, 停止对上述第一小区中的业务数据的检测和接收。
需要说明的是,本发明实施例中的用户设备可以如上述方法实施例中的用 户设备, 可以用于实现上述方法实施例中的全部技术方案, 其各个功能模块的 功能可以根据上述方法实施例中的方法具体实现,其具体实现过程可参照上述 实施例中的相关描述, 此处不再赘述。
由上述技术方案可以看出,本发明实施例中通过第一信号向 UE指示第一 小区进入休眠状态,通过第二信号向 UE指示第一小区从休眠状态进入激活状 态, 使得 UE能够及时感知第一小区的状态, 从而使得 UE及时针对第一小区 的状态变化执行相应地处理机制成为可能, 例如, UE在获知第一' 区进入的 状态时及时停止或启动对第一小区的业务的检测和接收,从而使得第一小区在 从休眠状态进入激活状态后能够即刻启动业务的传输,提升了系统性能和小区 服务效率。 下面对本发明实施中的另一种用户设备进行描述,请参阅图 7本发明实施 例中的用户设备 700包括:
收发装置 701、 存储器 702以及处理器 703 (用户设备 700的处理器 703 的数量可以是一个或者多个, 图 7—个处理器为例)。 在本发明的一些实施例 中,收发装置 701、存储器 702以及处理器 703可以通过总线或其它方式连接, 如图 7所示是以通过总线连接为例。其中,存储器 702中用来储存从收发装置 701输入的数据, 且还可以储存处理器 702处理数据的必要文件等信息; 收发 装置 701可以包括用户设备 700与其他设备通信的端口,且还可以包括用户设 备 700外接的输出设备比如显示器、键盘、 鼠标和打印机等, 在本实施例中收 发装置 701中与其他设备通信的端口可以为天线。
其中, 处理器 703执行如下步骤:
接收第一信号, 其中, 上述第一信号中携带上述第一小区进入休眼状态的 时间信息; 根据上述时间信息确定第一小区进入休眠状态; 检测第二信号; 当 检测到第二信号时,根据上述第二信号确定上述第一小区从休眠状态进入激活 状态。
在本发明实施例中,上述第二信号为如下信号中的任意一种或是任意两种 以上的组合: PSS , SSS, CRS , CSI-RS。
可选地, 上述第一信号中携带上述第一小区进入休眠状态的起始时间点; 处理器 703还用于:根据上述第一信号确定上述第一小区从上述起始时间点起 进入休眠状态; 或者, 通过协议约定, 使得当用户设备 700接收该第一信号 时, 处理器 703即确定第一小区开始进入休眠状态。
可选地,上述第一信号中携带上述第一小区进入休眠状态的至少一个时段 周期; 处理器 703还用于: 根据上述第一信号确定上述第一小区在上述至少一 个时段周期内处于休眠状态。
可选的, 上述第一信号为发现信号, 如 DRS。 在本发明实施例中, 除了 用户设备 700 可以通过检测到第一信号获知发送其第一信号的小区进入休眠 状态外, 发现信号还用于支持 UE的小区同步, 小区发现和 RRM测量, 发现 信号包括但不限于如下信号中的任意一种或是任意一种以上的组合: PSS , SSS , CRS, CSI-RS和 PRS等。 当上述第一小区进入休眠状态时, 基站根据 预定的发现信号的发送方式向用户设备 700发送上述发现信号, 其中, 上述发 现信号的发送方式包括:上述发现信号的时频资源位置和发送周期中的一种或 两种。可选的, 上述发现信号的发送方式可以是系统预定义或者由配置信令配 置, 此处不作限定。
需要说明的是, 若发现信号为多种信号的组合情况时, 不同功能可以通过 不同的信号部分来实现, 比如, 通过 PSS和 /或 SSS来实现小区同步和发现, 通过 CRS或 CSI-RS进行 RRM测量, 通过其他网络辅助的信息或是通过发现 信号的发送方式, 包括周期、 时频资源位置等来指示小区进行休眠状态。 具体 的, 比如通过 PSS和 /或 SSS的周期或是频域位置区分, 现有小区处于正常通 信状态时 (即激活状态), PSS/SSS是在整个系统带宽的中心 6个资源块内以 5ms周期进行传输的, 当 UE检测到其在不同于整个系统带宽的中心 6个资源 块内或是以其他周期 (不同于 5ms 周期)进行传输时, 可以认为该小区进入 休眠状态。
可选的, 上述第二信号以小区特定的广播形式的发送和通知, 这样, 当上 述第一小区从休眠状态进入激活状态时,基站根据预定的第二信号的发送方式 向第一小区下的 UE发送上述第二信号, 第一小区下的 UE均可以获取这个信 息, 以此确定第一小区进入激活状态; 另外, 这些信号也可以是以 UE特定的 单播形式的发送和通知,可以通过 CSI-RS信号,也可以为 PDCCH和 EPDCCH 等信道上承载的信号, 或是 MAC, RRC专有信令等, 具体的可以是类似在多 载波系统中, UE特定的单播方式(如 MAC信令)激活和去激活辅载波。 这 样, 当上述第一小区从休眠状态进入激活状态时,基站根据预定的第二信号的 发送方式向第一小区下的特定 UE发送上述第二信号, 第一小区下的特定 UE 可以获取这个信息, 以此确定第一小区进入激活状态。具体地处理器 703还用 于: 当检测到第二信号时, 检测上述第二信号的发送方式, 根据检测出的上述 第二信号的发送方式确定上述第一小区进入激活状态, 其中, 上述第二信号的 发送方式包括: 上述第二信号的时频资源位置和发送周期中的一种或两种。
需要说明的是,本发明实施例中的用户设备可以如上述方法实施例中的用 户设备, 可以用于实现上述方法实施例中的全部技术方案, 其各个功能模块的 功能可以根据上述方法实施例中的方法具体实现,其具体实现过程可参照上述 实施例中的相关描述, 此处不再赘述。
由上述技术方案可以看出,本发明实施例中通过第一信号向 UE指示第一 小区进入休眠状态,通过第二信号向 UE指示第一小区从休眠状态进入激活状 态, 使得 UE能够及时感知第一小区的状态, 从而使得 UE及时针对第一小区 的状态变化执行相应地处理机制成为可能, 例如, UE在获知第一' 区进入的 状态时及时停止或启动对第一小区的业务的检测和接收,从而使得第一小区在 从休眠状态进入激活状态后能够即刻启动业务的传输,提升了系统性能和小区 服务效率。 本发明实施例还提供一种通讯系统, 如图 8 所示, 包括: 至少一个基站 801和基站 801下的至少一个用户设备 802;
其中, 基站 801可以如图 3和图 4中所示的任一基站;
用户设备 802可以如图 5~图 7中所示的任一用户设备。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的装置和方法, 可 以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性的, 例 如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划 分方式, 例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特 征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直接耦合 或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信连接, 可以是 电性, 机械或其它的形式。 单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者 也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部 单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元 中。上述集成的单元既可以采用硬件的形式实现, 也可以采用软件功能单元的 形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发 明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全 部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储 介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器, 或者网络设备等 )执行本发明各个实施例所述方法的全部或部分步骤。 而前述 的存储介质包括: U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可以 存储程序代码的介质。
需要说明的是, 对于前述的各方法实施例, 为了筒便描述, 故将其都表述 为一系列的动作组合,但是本领域技术人员应该知悉, 本发明并不受所描述的 动作顺序的限制,因为依据本发明,某些步骤可以采用其它顺序或者同时进行。 其次, 本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施 例, 所涉及的动作和模块并不一定都是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重, 某个实施例中没有详 述的部分, 可以参见其它实施例的相关描述。
以上对本发明所提供的一种信号发送方法,信号检测方法和相关装置以及 系统, 对于本领域的一般技术人员, 依据本发明实施例的思想, 在具体实施方 式及应用范围上均会有改变之处, 综上, 本说明书内容不应理解为对本发明的 限制。

Claims

权 利 要 求
1、 一种信号发送方法, 其特征在于, 包括:
当基站确定第一小区进入或准备进入休眠状态时,向所述第一小区下的用 户设备发送第一信号,所述第一信号携带所述第一小区进入休眼状态的时间信 息, 以使所述用户设备根据所述时间信息确定所述第一小区进入休眠状态; 当所述基站确定所述第一小区从休眠状态进入激活状态时,向所述第一小 区下的用户设备发送第二信号,以使所述用户设备根据所述第二信号确定所述 第一小区进入激活状态;
其中, 所述第二信号为如下信号中的任意一种或是任意两种以上的组合: 主同步信号 PSS; 辅同步信号 SSS; 小区特定参考信号 CRS; 信道状态信 息参考信号 CSI-RS。
2、 根据权利要求 1所述的方法, 其特征在于,
所述向第一小区下的用户设备发送第一信号,所述第一信号携带所述第一 小区进入休眠状态的时间信息, 包括:
向第一小区下的用户设备发送第一信号,所述第一信号中携带所述第一小 区进入休眠状态的起始时间点,以使所述用户设备根据所述第一小区进入休眠 状态的起始时间点确定所述第一小区从所述起始时间点起进入休眠状态。
3、 根据权利要求 1所述的方法, 其特征在于,
所述向所述第一小区下的用户设备发送第一信号,所述第一信号携带所述 第一小区进入休眠状态的时间信息, 包括:
向第一小区下的用户设备发送第一信号,所述第一信号中携带所述第一小 区进入休眠状态的至少一个时段周期,以使所述用户设备根据所述第一小区进 入休眠状态的至少一个时段周期确定所述第一' 区在所述至少一个时段周期 内处于休眠状态。
4、 根据权利要求 1至 3任一项所述的方法, 其特征在于,
所述向所述第一小区下的用户设备发送第一信号, 包括:
根据预定的发现信号的发送方式向所述第一小区下的用户设备发送发现 信号, 其中, 所述发现信号的发送方式包括: 所述发现信号的时频资源位置和 发送周期中的一种或两种。
5、 根据权利要求 1至 4任一项所述的方法, 其特征在于,
所述向所述第一小区下的用户设备发送第二信号, 包括:
根据预定的所述第二信号的发送方式向所述第一小区下的用户设备发送 所述第二信号, 其中, 所述第二信号的发送方式包括: 所述第二信号的时频资 源位置和发送周期中的一种或两种。
6、 根据权利要求 1至 5任一项所述的方法, 其特征在于, 所述第一信号 和所述第二信号不同, 且包括如下任意一种或是任意两种以上组合的不同: 所述第一信号和所述第二信号的信号类型不同;
所述第一信号承载的信道与所述第二信号承载的信道不同;
所述第一信号的时频资源位置和所述第二信号的时频资源位置不同; 所述第一信号的发送周期和所述第二信号的发送周期不同。
7、 一种信号检测方法, 其特征在于, 包括:
用户设备接收第一信号,所述第一信号携带所述第一小区进入休眼状态的 时间信息;
所述用户设备 ^据所述时间信息确定第一小区进入休眠状态;
所述用户设备检测第二信号;
当检测到所述第二信号时,所述用户设备根据所述第二信号确定所述第一 小区进入激活状态;
其中, 所述第二信号为如下信号中的任意一种或是任意两种以上的组合: 主同步信号 PSS; 辅同步信号 SSS; 小区特定参考信号 CRS; 信道状态信 息参考信号 CSI-RS。
8、 根据权利要求 7所述的方法, 其特征在于, 所述第一信号中携带所述 第一小区进入休眠状态的起始时间点;
所述用户设备根据所述第一信号确定第一小区进入休眠状态, 包括: 所述用户设备根据所述第一' 区进入休眠状态的起始时间点确定所述第 一小区从所述起始时间点起进入休眠状态。
9、 根据权利要求 7所述的方法, 其特征在于, 所述第一信号中携带所述 第一小区进入休眠状态的至少一个时段周期;
所述用户设备根据所述第一信号确定第一小区进入休眠状态, 包括: 所述用户设备根据所述第一小区进入休眠状态的至少一个时段周期确定 所述第一小区在所述至少一个时段周期内处于休眠状态。
10、 根据权利要求 7至 9任一项所述的方法, 其特征在于,
所述用户设备接收第一信号具体为: 接收发现信号;
所述用户设备根据所述第一信号确定第一小区进入休眠状态, 包括: 所述用户设备根据接收到的发现信号的发送方式确定所述第一小区进入 激活状态, 其中, 所述发现信号的发送方式包括: 所述发现信号的时频资源位 置和发送周期中的一种或两种。
11、 根据权利要求 7至 10任一项所述的方法, 其特征在于,
所述用户设备根据所述第二信号确定所述第一小区从休眠状态进入激活 状态, 包括:
检测所述第二信号的发送方式;
所述用户设备根据所述第二信号的发送方式确定所述第一小区进入激活 状态, 其中, 所述第二信号的发送方式包括: 所述第二信号的时频资源位置和 发送周期中的一种或两种。
12、 根据权利要求 7至 11任一项所述的方法, 其特征在于,
所述方法还包括:
若确定所述第一小区进入激活状态, 则, 所述用户设备启动对所述第一小 区中的控制信道的检测, 或业务数据的接收或发送。
13、 根据权利要求 7至 11任一项所述的方法, 其特征在于,
所述方法还包括:
若确定所述第一小区进入休眠状态, 则, 所述用户设备停止对所述第一小 区中的业务数据的接收或发送。
14、 根据权利要求 7至 13任一项所述的方法, 其特征在于, 所述第一信 号和所述第二信号不同, 且包括如下任意一种或是任意两种以上组合的不同: 所述第一信号和所述第二信号的信号类型不同;
所述第一信号承载的信道与所述第二信号承载的信道不同;
所述第一信号的时频资源位置和所述第二信号的时频资源位置不同; 所述第一信号的发送周期和所述第二信号的发送周期不同。
15、 一种基站, 其特征在于, 包括:
第一确定单元, 用于确定第一小区进入或准备进入休眠状态;
发送单元,用于当所述第一确定单元确定第一小区进入或准备进入休眠状 态时, 向所述第一小区下的用户设备发送第一信号, 所述第一信号携带所述第 一小区进入休眼状态的时间信息;
第二确定单元, 用于确定所述第一小区从休眠状态进入激活状态; 所述发送单元还用于:当所述第二确定单元确定所述第一小区从休眠状态 进入激活状态时, 向所述第一小区下的用户设备发送第二信号, 以使所述用户 设备根据所述第二信号确定所述第一小区进入激活状态;
其中, 所述第二信号为如下信号中的任意一种或是任意两种以上的组合: 主同步信号 PSS; 辅同步信号 SSS; 小区特定参考信号 CRS; 信道状态信 息参考信号 CSI-RS。
16、 根据权利要求 15所述的基站, 其特征在于,
所述发送单元还用于:在所述第一信号中携带所述第一小区进入休眠状态 的起始时间点,以使所述用户设备根据所述第一小区进入休眠状态的起始时间 点确定所述第一' 区从所述起始时间点起进入休眠状态。
17、 根据权利要求 15所述的基站, 其特征在于,
所述发送单元还用于:在所述第一信号中携带所述第一小区进入休眠状态 的至少一个时段周期,以使所述用户设备根据所述第一小区进入休眠状态的至 少一个时段周期确定所述第一小区在所述至少一个时段周期内处于休眠状态。
18、 根据权利要求 15至 17任一项所述的基站, 其特征在于,
所述发送单元具体用于通过如下方式向所述第一小区下的用户设备发送 第一信号:根据预定的发现信号的发送方式向所述第一小区下的用户设备发送 发现信号, 其中, 所述发现信号的发送方式包括: 所述发现信号的时频资源位 置和发送周期中的一种或两种。
19、 根据权利要求 15至 17任一项所述的基站, 其特征在于,
所述发送单元具体用于:根据预定的所述第二信号的发送方式向所述第一 小区下的用户设备发送所述第二信号, 其中, 所述第二信号的发送方式包括: 所述第二信号的时频资源位置和发送周期中的一种或两种。
20、 一种用户设备, 其特征在于, 包括:
接收单元, 用于接收第一信号, 所述第一信号携带所述第一小区进入休眼 状态的时间信息;
第一确定单元, 用于当所述接收单元接收所述第一信号时,根据所述时间 信息确定第一小区进入休眠状态;
第一检测单元, 用于检测第二信号;
第二确定单元, 用于当所述第一检测单元检测到所述第二信号时,根据所 述第二信号确定所述第一小区从休眠状态进入激活状态;
其中, 所述第二信号为如下信号中的任意一种或是任意两种以上的组合: 主同步信号 PSS; 辅同步信号 SSS; 小区特定参考信号 CRS; 信道状态信 息参考信号 CSI-RS。
21、 根据权利要求 20所述的用户设备, 其特征在于,
所述第一信号中携带所述第一小区进入休眠状态的起始时间点; 所述第一确定单元还用于:根据所述第一小区进入休眠状态的起始时间点 确定所述第一小区从所述起始时间点起进入休眠状态。
22、 根据权利要求 20所述的用户设备, 其特征在于,
所述第一信号中携带所述第一小区进入休眠状态的至少一个时段周期; 所述第一确定单元还用于:根据所述第一小区进入休眠状态的至少一个时 段周期确定所述第一小区在所述至少一个时段周期内处于休眠状态。
23、 根据权利要求 20至 22任一项所述的用户设备, 其特征在于, 所述接收单元接收的第一信号为发现信号;
所述第一确定单元具体用于:根据接收到的发现信号的发送方式确定所述 第一小区进入激活状态, 其中, 所述发现信号的发送方式包括: 所述发现信号 的时频资源位置和发送周期中的一种或两种。
24、 根据权利要求 20至 23任一项所述的用户设备, 其特征在于, 所述用户设备还包括:
第二检测单元, 用于当所述第一检测单元检测到第二信号时,检测所述第 二信号的发送方式;
所述第二确定单元具体用于:根据所述第二检测单元检测出的所述第二信 号的发送方式确定所述第一小区进入激活状态, 其中, 所述第二信号的发送方 式包括: 所述第二信号的时频资源位置和发送周期中的一种或两种。
25、 根据权利要求 20至 24任一项所述的用户设备, 其特征在于, 所述用户设备还包括:
第一业务控制单元,用于当所述第二确定单元确定所述第一小区从休眠状 态进入激活状态时, 启动对所述第一小区中的业务数据的检测和接收。
26、 根据权利要求 20至 24任一项所述的用户设备, 其特征在于, 所述用户设备还包括:
第二业务控制单元,用于当所述第一确定单元确定所述第一小区进入休眠 状态时, 停止对所述第一小区中的业务数据的检测和接收。
27、 一种基站, 其特征在于, 包括: 收发装置和处理器;
其中, 所述处理器用于: 当所述基站确定第一小区进入或准备进入休眠状 态时,控制所述收发装置向所述第一小区下的用户设备发送第一信号, 所述第 一信号携带所述第一小区进入休眼状态的时间信息,以使所述用户设备根据所 述时间信息确定所述第一小区进入休眠状态;当所述第一小区从休眠状态进入 激活状态时, 控制所述收发装置向所述第一小区下的用户设备发送第二信号, 以使所述用户设备根据所述第二信号确定所述第一小区进入激活状态;
其中, 所述第二信号为如下信号中的任意一种或是任意两种以上的组合: 主同步信号 PSS; 辅同步信号 SSS; 小区特定参考信号 CRS; 信道状态信 息参考信号 CSI-RS。
28、 根据权利要求 27所述的基站, 其特征在于,
所述处理器具体用于: 向第一小区下的用户设备发送第一信号, 所述第一 信号中携带所述第一小区进入休眠状态的起始时间点,以使所述用户设备根据 所述第一' 区进入休眠状态的起始时间点确定所述第一' 区从所述起始时间 点起进入休眠状态。
29、 根据权利要求 27所述的基站, 其特征在于,
所述处理器具体用于: 向第一小区下的用户设备发送第一信号, 所述第一 信号中携带所述第一小区进入休眠状态的至少一个时段周期,以使所述用户设 备根据所述第一小区进入休眠状态的至少一个时段周期确定所述第一小区在 所述至少一个时段周期内处于休眠状态。
30、 根据根据权利要求 27至 29任一项所述的基站, 其特征在于, 所述处理器具体用于通过如下方式向所述第一小区下的用户设备发送第 一信号:根据预定的发现信号的发送方式向所述第一小区下的用户设备发送所 述发现信号, 其中, 所述发现信号的发送方式包括: 所述发现信号的时频资源 位置和发送周期中的一种或两种。
31、 根据权利要求 27至 30任一项所述的基站, 其特征在于,
所述处理器具体用于通过如下方式向所述第一小区下的用户设备发送第 二信号:根据预定的所述第二信号的发送方式向所述第一小区下的用户设备发 送所述第二信号, 其中, 所述第二信号的发送方式包括: 所述第二信号的时频 资源位置和发送周期中的一种或两种。
32、 一种用户设备, 其特征在于, 包括: 收发装置和处理器;
其中, 所述收发装置用于: 接收第一信号, 所述第一信号携带所述第一小 区进入休眼状态的时间信息;
所述处理器用于: 根据所述时间信息确定第一小区进入休眠状态;检测第 二信号; 当检测到所述第二信号时,根据所述第二信号确定所述第一小区从休 眠状态进入激活状态;
其中, 所述第二信号为如下信号中的任意一种或是任意两种以上的组合: 主同步信号 PSS; 辅同步信号 SSS; 小区特定参考信号 CRS; 信道状态信 息参考信号 CSI-RS。
33、 根据权利要求 32所述的用户设备, 其特征在于,
所述第一信号中携带所述第一小区进入休眠状态的起始时间点; 所述处理器还用于:根据所述第一小区进入休眠状态的起始时间点确定所 述第一小区从所述起始时间点起进入休眠状态。
34、 根据权利要求 32所述的用户设备, 其特征在于,
所述第一信号中携带所述第一小区进入休眠状态的至少一个时段周期; 所述处理器还用于:根据所述第一小区进入休眠状态的至少一个时段周期 确定所述第一小区在所述至少一个时段周期内处于休眠状态。
35、 根据权利要求 32至 34任一项所述的用户设备, 其特征在于, 所述收发装置接收的第一信号为发现信号;
所述处理器具体用于:根据所述收发装置接收到的发现信号的发送方式确 定所述第一小区进入激活状态, 其中, 所述发现信号的发送方式包括: 所述发 现信号的时频资源位置和发送周期中的一种或两种。
36、 根据权利要求 32至 35任一项所述的用户设备, 其特征在于, 所述处理器具体用于: 获取所述第二信号的发送方式,根据所述第二信号 的发送方式确定所述第一小区进入激活状态, 其中, 所述第二信号的发送方式 包括: 所述第二信号的时频资源位置和发送周期中的一种或两种。
37、 根据权利要求 32至 36任一项所述的用户设备, 其特征在于, 所述处理器还用于: 当确定所述第一小区进入激活状态时, 启动对所述第 一小区中的业务数据的检测和接收。
38、 根据权利要求 32至 36任一项所述的用户设备, 其特征在于, 所述处理器还用于: 当确定所述第一小区进入休眠状态时,停止对所述第 一小区中的业务数据的检测和接收。
39、 一种通讯系统, 其特征在于, 包括:
如权利要求 15至 19中任一项或者权利要求 27至 31中任一项所述的基站; 以及,
如权利要求 20至 26中任一项或者权利要求 32至 38中任一项所述的用户 设备。
PCT/CN2013/090798 2013-12-28 2013-12-28 一种信号发送方法,信号检测方法和相关设备以及系统 WO2015096166A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380003488.7A CN105009661B (zh) 2013-12-28 2013-12-28 一种信号发送方法,信号检测方法和相关设备以及系统
PCT/CN2013/090798 WO2015096166A1 (zh) 2013-12-28 2013-12-28 一种信号发送方法,信号检测方法和相关设备以及系统
EP13900300.8A EP3079418B1 (en) 2013-12-28 2013-12-28 Signal sending method, signal detection method and relevant device and system
BR112016015194-1A BR112016015194B1 (pt) 2013-12-28 2013-12-28 Método de envio de sinal, método de detecção de sinal, estação base, e equipamento de usuário
US15/195,610 US10085203B2 (en) 2013-12-28 2016-06-28 Signal sending method, signal detection method, related apparatus, and system for identifying dormant and active states of a cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/090798 WO2015096166A1 (zh) 2013-12-28 2013-12-28 一种信号发送方法,信号检测方法和相关设备以及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/195,610 Continuation US10085203B2 (en) 2013-12-28 2016-06-28 Signal sending method, signal detection method, related apparatus, and system for identifying dormant and active states of a cell

Publications (1)

Publication Number Publication Date
WO2015096166A1 true WO2015096166A1 (zh) 2015-07-02

Family

ID=53477423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090798 WO2015096166A1 (zh) 2013-12-28 2013-12-28 一种信号发送方法,信号检测方法和相关设备以及系统

Country Status (5)

Country Link
US (1) US10085203B2 (zh)
EP (1) EP3079418B1 (zh)
CN (1) CN105009661B (zh)
BR (1) BR112016015194B1 (zh)
WO (1) WO2015096166A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024017322A1 (zh) * 2022-07-22 2024-01-25 维沃移动通信有限公司 传输处理方法、装置、终端及网络侧设备

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9961660B2 (en) * 2012-08-08 2018-05-01 Nokia Solutions And Networks Oy Reactivating cells to improve positioning accuracy
CN108811010B (zh) * 2017-05-05 2023-10-03 华为技术有限公司 移动性测量方法、csi-rs资源配置方法及设备
US10512048B2 (en) * 2017-07-24 2019-12-17 Ceva D.S.P Ltd. System and method for radio cell synchronization
CN114025365B (zh) 2017-08-11 2024-04-12 华为技术有限公司 一种辅小区激活方法、接入网设备、通信装置以及系统
CN110536380A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 状态确定、指示方法、通信设备、系统及存储介质
US11234189B2 (en) * 2018-11-12 2022-01-25 Qualcomm Incorporated Fifth generation (5G) new radio (NR) network power savings
CN111263425B (zh) * 2018-11-30 2021-09-14 深圳市海思半导体有限公司 接收同步信号的方法与设备
EP4032345A1 (en) * 2019-09-19 2022-07-27 Telefonaktiebolaget LM Ericsson (publ) Radio network node, user equipment and methods performed in a wireless communication network
US20210153116A1 (en) * 2019-11-18 2021-05-20 Qualcomm Incorporated Configuration for secondary cell dormancy indications
CN113923750A (zh) * 2020-07-10 2022-01-11 华为技术有限公司 接入小区的方法和装置
US11722911B2 (en) * 2020-07-23 2023-08-08 Qualcomm Incorporated Coverage enhancement indication via wake-up signaling
WO2023197175A1 (en) * 2022-04-12 2023-10-19 Nec Corporation Method, device and computer readable medium for communications
WO2023221107A1 (en) * 2022-05-20 2023-11-23 Lenovo (Beijing) Limited State transition of an energy saving network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102421172A (zh) * 2010-09-28 2012-04-18 上海贝尔股份有限公司 基站、用户设备及节约基站能耗的方法
CN102685862A (zh) * 2009-03-12 2012-09-19 华为技术有限公司 节能激活的方法和激活装置
CN102821445A (zh) * 2009-03-12 2012-12-12 华为技术有限公司 基站节能的方法和设备
WO2013174771A1 (en) * 2012-05-21 2013-11-28 Nokia Siemens Networks Oy A method and apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8687545B2 (en) * 2008-08-11 2014-04-01 Qualcomm Incorporated Anchor carrier in a multiple carrier wireless communication system
US9107056B2 (en) * 2012-04-18 2015-08-11 Qualcomm Incorporated Small cell activation procedure
JP6099064B2 (ja) * 2012-11-06 2017-03-22 ノキア ソリューションズ アンド ネットワークス オサケユキチュア 低アクティブモードでセル又はネットワークからタイミング情報を受け取るための方法及び装置
EP2982180A1 (en) * 2013-04-03 2016-02-10 Interdigital Patent Holdings, Inc. Cell detection, identification, and measurements for small cell deployments

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102685862A (zh) * 2009-03-12 2012-09-19 华为技术有限公司 节能激活的方法和激活装置
CN102821445A (zh) * 2009-03-12 2012-12-12 华为技术有限公司 基站节能的方法和设备
CN102421172A (zh) * 2010-09-28 2012-04-18 上海贝尔股份有限公司 基站、用户设备及节约基站能耗的方法
WO2013174771A1 (en) * 2012-05-21 2013-11-28 Nokia Siemens Networks Oy A method and apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3079418A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024017322A1 (zh) * 2022-07-22 2024-01-25 维沃移动通信有限公司 传输处理方法、装置、终端及网络侧设备

Also Published As

Publication number Publication date
BR112016015194B1 (pt) 2022-10-04
BR112016015194A2 (zh) 2017-08-08
EP3079418A4 (en) 2016-11-23
CN105009661A (zh) 2015-10-28
US10085203B2 (en) 2018-09-25
CN105009661B (zh) 2019-12-06
EP3079418B1 (en) 2018-08-15
US20160309398A1 (en) 2016-10-20
EP3079418A1 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
WO2015096166A1 (zh) 一种信号发送方法,信号检测方法和相关设备以及系统
EP2523515B1 (en) Method and device for carrier management in carrier aggregation system
KR101984848B1 (ko) Lte 라이센스 지원형 액세스 동작에서의 drx 핸들링
EP3079430B1 (en) Method and device for activating secondary cell, communication system, base station, and user equipment
CN113647170A (zh) 用于快速服务小区激活的方法和装置
JP2022502946A (ja) 異なるスケジューリング遅延の仮説間での移行
JP7292410B2 (ja) Rrc_idle/inactiveにおける新無線(nr)ユーザ装置(ue)の電力を節約するための拡張されたページングオケージョン(po)モニタリング
CN111183667B (zh) 无线电网络节点、无线装置以及其中执行的方法
EP2918117A1 (en) Method and apparatus for receiving timing information from a cell or network a less active mode
JP2016536846A (ja) 情報伝送方法、基地局、およびユーザ機器
WO2013123894A1 (zh) 一种确定同步小区的方法和设备
WO2011072543A1 (zh) 一种系统消息更新的方法和系统
WO2016134539A1 (zh) 一种频带共享的方法、装置以及系统
WO2015123870A1 (zh) 使用无线资源的控制方法、装置、网元及终端
CN116671188A (zh) 侧链通信的非连续接收
WO2014153698A1 (zh) 省电方法、用户设备及基站
WO2015169001A1 (zh) 一种数据调度方法及装置
WO2023216837A1 (zh) 数据传输方法及装置
CN114009099B (zh) 在RRC_Idle/Inactive中用于新空口(NR)用户设备(UE)功率节省的增强的寻呼时机(PO)监测
CN115696528B (zh) 一种5g nr系统的物理层调度方法及系统
TW202408274A (zh) 節能網路中之wtru行動及胞元重選
KR20190083612A (ko) 세컨더리 셀 상태 제어 방법 및 장치
WO2015168896A1 (zh) 测量报告的发送方法、装置以及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013900300

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013900300

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016015194

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016015194

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160628