WO2015093884A1 - Multilayered composite material using nanofibrilated cellulose and thermoplastic matrix polymer - Google Patents

Multilayered composite material using nanofibrilated cellulose and thermoplastic matrix polymer Download PDF

Info

Publication number
WO2015093884A1
WO2015093884A1 PCT/KR2014/012556 KR2014012556W WO2015093884A1 WO 2015093884 A1 WO2015093884 A1 WO 2015093884A1 KR 2014012556 W KR2014012556 W KR 2014012556W WO 2015093884 A1 WO2015093884 A1 WO 2015093884A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix polymer
thermoplastic matrix
composite material
sheet
sheet layer
Prior art date
Application number
PCT/KR2014/012556
Other languages
French (fr)
Korean (ko)
Inventor
임대영
김기영
이진아
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140183422A external-priority patent/KR101677099B1/en
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to US15/106,147 priority Critical patent/US10093066B2/en
Publication of WO2015093884A1 publication Critical patent/WO2015093884A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength

Definitions

  • the present invention relates to a multilayer composite material using nanofibrillated cellulose and a thermoplastic matrix polymer, and a method of manufacturing the same.
  • nanocomposites reinforced with nano-sized raw materials exhibit excellent physical properties compared to conventional composites (RA Vaia, Polymer Nanocomposites Open a New Dimension for Plastics and Composites, The AMPTIAC Newsletter, 2002, 6, 17-24), Increasing strength or simultaneously increasing strength and modulus have been reported (MMO Seydibeyoglu et al., Composites Science and Technology, 2008, 68, 908-914). This increase in strength is known to be caused by a defect between the increased specific surface area and the reduced interface compared to composites reinforced with micro-sized raw materials (M. Sternitzke et al., Journal of the American Ceramic Society, 1998). , 81, 41-48).
  • cellulose is the most abundant natural polymer among the organic compounds present in nature, and can be obtained from renewable materials. Unlike petroleum-based polymers, which are used in the past, they are decomposed in soil during disposal. Biodegradable properties. Recently, as the environmental problems are seriously raised, the necessity of eco-friendly polymer materials has increased. Accordingly, active development of raw materials and products of cellulose to replace petroleum-based functional polymers has been actively conducted (G. Siqueira et al., Polymer, 2010, 2, 728-765).
  • the nanostructured fibrillated cellulose has a high modulus of 150-200 GPa and a high strength of 5 GPa as a reinforcing material of the composite material. It is superior to the physical properties of Kevlar fiber, one of the superfibers, and is nano-sized (10 to 100 nm thick) compared to ordinary carbon fiber and glass fiber, and has a small coefficient of thermal expansion (0.1 ppm K -1 ). Possible, light weight, low energy consumption, good processability.
  • glass fiber is a key material of the composite material industry. It can be a very likely material to replace.
  • Composites made of 100% cellulose nanofibers having this advantage have been reported to have better physical properties than ordinary steel or magnesium alloys.
  • the composite material is composed of only 100% cellulose, it is known that a long time drying and compression process is required due to the characteristics of the manufacturing process, and that the composite material can be manufactured only in the form of sheet.
  • this material has a drawback that it cannot be molded to have various forms due to the absence of thermoplastics (Marielle Henriksson et al., 2008; Istva ⁇ n Siro et al., 2010).
  • thermoplastic and thermosetting plastic composites reinforced with cellulose nanofibers have been identified as a new generation of high-performance, environmentally friendly materials that exceed the limits of existing glass fiber reinforced composites.
  • cellulose nanofiber composites having high performance and high performance are used in the fields of industrial materials such as electrical and electronics, transportation equipment (automotive, aerospace, ships, etc.), civil engineering, architecture, and environment. It is possible to expand the application of core materials to special fields such as defense and medical prosthetics.
  • thermoplastic composites using cellulose nanofibers is still in its infancy.
  • the present inventors have completed the invention related to the multilayered composite material using nanofibrillated cellulose and thermoplastic matrix polymers having physical properties of glass fibers or more.
  • the present invention is to provide a multi-layer composite material using a nanofibrillated cellulose (NC) and a thermoplastic matrix polymer, which can replace the glass fiber reinforced composite material.
  • NC nanofibrillated cellulose
  • thermoplastic matrix polymer thermoplastic matrix polymer
  • a first aspect of the present invention provides a semiconductor device comprising: a first sheet layer formed from a solution containing nanofibrillated cellulose and a first thermoplastic matrix polymer; And
  • thermoplastic matrix polymer By thermally compressing a multilayer sheet including a second sheet layer formed from a second thermoplastic matrix polymer-containing solution, the first thermoplastic matrix polymer and the second thermoplastic matrix polymer are thermally melted with each other, and nanofibers are formed between the thermally melted polymers. It provides a composite material in which the berylated cellulose is inserted.
  • a second aspect of the present invention is directed to a method for manufacturing a semiconductor device comprising: at least one first sheet layer prepared by drying and pressing a nanofibrillated cellulose and a first thermoplastic matrix polymer-containing solution; And a first step of preparing a multilayer composite material in which at least one of the second sheet layers containing the second thermoplastic matrix polymer is laminated.
  • the at least one first sheet layer and the second sheet layer are laminated alternately, to provide a method of manufacturing a multilayer composite material.
  • a third aspect of the present invention provides a reinforced molding to which the multilayered composite material of the first aspect is applied.
  • multilayer composite material means a material in which a plurality of layers having different components are laminated. Specifically, in the present invention, one or more first and second sheet layers may be alternately stacked.
  • thermoplastic matrix polymer of the present invention may be used as long as it is a material having excellent compatibility such as nanofibrillated cellulose and interfacial affinity as a thermoplastic polymer, and is preferably a polyamide (PA) resin.
  • the polyamide resin is a synthetic polymer in which the structural units constituting the main chain are connected by an amide group, and specific examples thereof include Polyamide 6 and Polyamide 6,6.
  • the first thermoplastic matrix polymer and the second thermoplastic matrix polymer of the present invention may be the same or different.
  • the fiber length of the polyamide resin is preferably 0.1 mm to 3.0 mm.
  • the long fiber length causes difficulty in dispersion when mixed with water, and when the fiber length is shorter than 0.1 mm, the shape stability of the manufactured sheet is insufficient.
  • Fineness is preferably 0.1 to 5.0 denier.
  • the nanofibrillated cellulose of the present invention may have a diameter of 10 to 100 nm.
  • the second sheet layer formed from the second thermoplastic matrix polymer of the present invention may be a hot melt web, a meltblown nonwoven or a film, and morphological analysis suggests a meltblown nonwoven.
  • the conditions of the thermal pressing is 100 ⁇ 200 °C when the second sheet layer is a hot melt web, when the melt-blown nonwoven fabric or film It may be 170 ⁇ 270 °C.
  • thermocompression may be performed in a pressure range of 4 to 100MPa.
  • thermocompression temperature range is a temperature at which the thermoplastic matrix polymer can be selectively melted and at the same time nanofibrillated. Preference is given to a range below the brittleness temperature at which cellulose does not embrittle.
  • the second thermoplastic matrix polymer When the second sheet layer formed from the solution containing the second thermoplastic matrix polymer is laminated on the first sheet layer formed from the solution containing the nanofibrillated cellulose and the first thermoplastic matrix polymer and thermally compressed, the second thermoplastic matrix polymer is heated. It is melted by compression to fill the pores inside the first sheet layer, and serves to connect the internal fibers with each other.
  • the reinforcement effect due to nanofibrillated cellulose embedded in the sheet containing the thermoplastic matrix polymer constitutes a mesh network connected by hydrogen bonding or entanglement. Interactions between nano-sized configurations are more effective and allow for better dispersion in the matrix.
  • the multilayer composite material of the present invention may have a tensile strength of 20 to 80 MPa. This is because the multilayer composite material prepared by thermocompressing the first sheet layer containing only the nanofibrillated cellulose without the thermoplastic matrix polymer and the second sheet layer formed from the solution containing the thermoplastic matrix polymer (see FIG. 1B) is weak. Compared to having 8 ⁇ 10 MPa tensile strength, it is very excellent in strength.
  • the first sheet layer is formed from a solution containing nanofibrillated cellulose and a first thermoplastic matrix polymer.
  • pulp is dispersed in a solvent, subjected to mechanical beating, and a nanofibrillated cellulose suspension is prepared using a homogenizer.
  • thermoplastic matrix polymer is mixed with the nanofibrillated cellulose suspension to form a sheet-shaped composite material through a wet web formation and a drying process.
  • the pulp which is a raw material used to prepare the nanofibrillated cellulose of the present invention, may be soda pulp (AP), semichemical pulp, kraft pulp, and the like, and particularly, but is not limited to bleached sulfurous pulp. .
  • a solvent for dispersing cellulose water is preferable, but is not limited thereto. Since the cellulose nanofibers are hydrophilic, there is a problem that can not be evenly dispersed when using a hydrophobic solvent.
  • the nanofibrillated cellulose and the first thermoplastic matrix polymer are preferably 3: 7 to 5: 5 by solid weight ratio.
  • the weight ratio is smaller than 3: 7 (eg 2: 8)
  • the particles may be separated and layered with the solvent (water) by the density difference between the nanofibrillated cellulose and the first thermoplastic matrix polymer after dispersion.
  • the weight ratio is greater than 5: 5 (eg 6: 4)
  • drainage may not be good and curling of the sheet may occur severely during drying. This is because the solvent (water) molecules remaining between the nanofibrillated cellulose serve as an adhesive for connecting the fibers to form a hydrogen bonding network.
  • the nanofibrillated cellulose and the first thermoplastic matrix polymer are about 4: 6 by weight of solids.
  • the wet web forming and drying process is a process of selectively removing the solvent from the mixture of the nanofibrillated cellulose suspension and the thermoplastic matrix polymer to obtain a uniform sheet-like fibrous structure, and then manufacturing the sheet into a sheet by pressing rolls.
  • the wet web formation is a process of preventing curling and increasing density of the manufactured sheet by applying a pressure at a high temperature before drying the manufactured sheet.
  • the pressurization may be performed using a hot press, but is not limited thereto.
  • the pressing step Through the pressing step, the volume of voids between the nanofibrillated cellulose and the thermoplastic matrix polymer fiber generated during the wet nonwoven process is reduced, and the interface wettability is improved. At this time, the higher the temperature and pressure of the pressing step is preferable.
  • the drying in the drying step is preferably such that the moisture content of the sheet is less than 1%.
  • the drying is preferably performed at 0.5 to 30 hours at 30 to 100 °C under atmospheric pressure. In one embodiment the drying is carried out at 80 ° C. for 24 hours under atmospheric pressure.
  • the drying temperature and time affect the moisture content of the final sheet, and at high temperatures of 100 ° C. or higher, the sheet may be warped due to rapid drying or have an undesirable effect on the physical properties.
  • a temperature of 150 ° C. to 250 ° C. and a pressure of 2 MPa to 300 MPa may be further added.
  • a pressure of 4.8 MPa is further applied at 210 ° C. Due to the temperature and pressure, the thermoplastic matrix polymer fibers are melted and impregnated, and the impregnated thermoplastic matrix polymer fibers together with the nanofibrillated cellulose fibers form a nanofiber composite.
  • Representative processes of high temperature and high pressure molding to apply the temperature and pressure include, but are not limited to, a calender process and a press process.
  • the multi-layered composite material formed of the nanofibrillated cellulose of the present invention can be used as an environmentally friendly, next-generation high-performance new material that can replace the existing glass fiber reinforced composite material and can be manufactured as a reinforced molded article.
  • multi-layered composite materials with high performance and high performance are used in the fields of industrial materials such as electrical and electronic equipment, transportation equipment (automobiles, aerospace, ships, etc.), civil engineering, construction, and environment, and defense and medical industries that require lightweight and high strength products. It is possible to expand the application of core materials to special fields such as prosthetics.
  • the multi-layered composite material of the present invention is characterized in that a first sheet layer composed of nanofibrillated cellulose and a first thermoplastic matrix polymer is thermally compressed with a second sheet layer formed from a solution containing a second thermoplastic matrix polymer, thereby forming a first thermoplastic matrix polymer.
  • the second thermoplastic matrix polymer may be thermally melted with each other, and nanofibrillated cellulose may be inserted between the thermally melted polymers. Therefore, the multilayer composite material of the present invention has a high density, shows excellent tensile modulus, flexural modulus, and fracture characteristics, and has an effect of superior strength than conventional glass fibers.
  • the interlayer bonding force is excellent and may serve as an adhesive layer.
  • FIG. 1A and 1B illustrate a multilayer composite material formed by laminating or thermocompressing a sheet composed of nanofibrillated cellulose and a meltblown nonwoven fabric, which is an adhesive layer, by a conventional method
  • FIG. 1C illustrates an embodiment of the present invention.
  • the schematic diagram shows a multilayered composite material formed by thermocompression bonding of an NC / first thermoplastic matrix polymer and a second thermoplastic matrix polymer as an adhesive layer.
  • Figure 2 shows a process chart for manufacturing a multi-layer composite material in the form of a sheet through a wet web forming and drying process using a nanofibrillated cellulose and a thermoplastic matrix polymer.
  • FIG. 3 illustrates the structure of a multilayer composite composed of an NC / PA composite and an adhesive layer (hot melt web, meltblown nonwoven and film) in accordance with one embodiment of the present invention.
  • Figure 4 shows the observation surface and cross section of the NC / PA multilayer composite material of Example 2 by scanning electron microscopy.
  • FIG. 5 is a graph showing the tensile modulus of elasticity of the NC / PA composite material according to the adhesive layer, thermal compression pressure and NC content.
  • Figure 6 is a graph showing the flexural modulus of the NC / PA multilayer composite material according to the adhesive layer, thermal compression pressure and NC content.
  • FIG. 7 is a graph showing fracture characteristics of PA6,6 sheet, NC / PA6 and NC / PA6,6 composite materials.
  • FIG. 10 is a graph showing the impact characteristics of the NC / PA / NY and NC / PA / AB composite materials.
  • a pulp dispersion having a fiber length of 1.0 mm was dispersed in water and dissociated through a mechanical beating process for 30 minutes in a pulper to prepare a pulp dispersion.
  • a pulp dispersion of 0.2% by weight was prepared based on the weight of the pulp solids contained in the pulp dispersion prepared above, stirred for 30 minutes, and then fibrillated using a homogenizer.
  • nozzle diameter 250 mu m, pressure 70 MPa Three nozzles of different diameters were passed through the high pressure homogenizer sequentially in the order of diameter size as follows. 1) 5 times: nozzle diameter 250 mu m, pressure 70 MPa, 2) 5 times: nozzle diameter 200 mu m, pressure 240 MPa, 3) 5 times: nozzle diameter 150 mu m, pressure 310 MPa.
  • the cellulose dispersion was passed five times for each nozzle to prepare a nano-sized fibrillated cellulose (nanofibrillated cellulose, NC) suspension through a total of 15 homogenizing processes.
  • NC nano-sized fibrillated cellulose
  • NC suspension and two kinds of polyamide (Polyamide, PA) fibers were mixed in a solid weight ratio of about 4: 6, and the wet web was formed and dried in the order shown in FIG. 2.
  • NC / PA composites in sheet form were prepared.
  • the fiber length of the used PA fiber was 1.0 mm
  • the fineness of the pressure of 3.4 MPa in hot plate press NC / PA6 sheet manufactured by a wet web forming process using a stainless steel screen mesh of 1,000 scales
  • a roll calendar was used at a rate of 4.8 MPa at 210 ° C. and passed at a rate of 0.5 m / min.
  • a PA6 hot melt web, a meltblown nonwoven fabric or a film is laminated in a 1 to 5 layer structure between the NC / PA6 sheet layers prepared in Example 1, as shown in FIG. By thermal compression.
  • the weights of the PA6 hot melt webs, meltblown nonwovens and films used at this time were 17, 100 and 175 g / m 2 .
  • Table 1 shows the materials, thermocompression conditions, NC content, and sample names of the NC / PA multilayer composite material prepared in 1 to 5 layers. Scanning Electron Microscope (SEM) (SU8000, Hitachi, Japan) was used to analyze the surface and cross section of the NC / PA multilayer composite material.
  • Tensile modulus of the composite material was evaluated using a universal strength tester (H100KS, Tinius Olsen, UK) in accordance with ASTM D638-03, a speed of 1.0mm / min and a load cell of 2.5kN was used.
  • Figure 5 shows the tensile modulus of the NC / PA composite material according to the adhesive layer and thermal compression pressure and NC content. That is, the NC / PA6 and NC / PA6,6 composite material prepared by the method of Example 1, which was prepared using PA6 or PA6,6 as polyamide fibers, and a second thermoplastic mattress polymer layer (adhesive layer or second sheet layer) Tensile modulus of the multilayer composite material of Example 2 prepared using PA hot melt web (L), PA melt blown nonwoven fabric (M) or PA film (F) was measured.
  • the NC / PA6,6-S composite material is manufactured by thermally compressing three NC / PC6,6 sheets without using a mattress as in Example 2.
  • the tensile modulus of the NC / PA6 and NC / PA6,6 composites was in the range of 1 to 2 MPa and 3 to 12 MPa, depending on the NC content, whereas the tensile modulus of the PA6,6 sheet was 0.8 MPa.
  • Tensile tensile modulus of NC / PA6,6 multilayer composites was higher than that of NC / PA6 composites.
  • Tensile modulus of NC / PA composites increased with increasing NC content.
  • the multilayer composite material having a high tensile modulus was produced when the thermocompression was performed at a pressure of 87MPa compared to the NC / PA multilayer composite material thermally compressed at a pressure of 4.8MPa.
  • the flexural modulus of the composite material was evaluated under the same conditions as the tensile modulus by the evaluation method of ASTM D790-03.
  • Figure 6 shows the flexural modulus of the NC / PA multilayer composite material according to the adhesive layer and thermal compression pressure and NC content.
  • the flexural modulus of the composite material thermally compressed at 87MPa was higher than that of the adhesive layer, and the flexural modulus of the sample using PA meltblown nonwoven fabric as the adhesive layer was higher than that of the PA hot melt web and PA film. Similar to the sample used. When the same NC content and thermocompression pressure were applied, the samples using the PA film as the adhesive layer of the NC / PA multilayer composite showed higher flexural modulus than the samples using the PA hot melt web.
  • the flexural modulus of NC / PA6,6 multilayer composites was higher than that of NC / PA6 multilayer composites regardless of the type of adhesive layer.
  • NC / PA composites were evaluated using an electrodynamic test system (Acumen 1, MTS system, USA) in accordance with ASTM D671-71.
  • the load cell used was 3 kN and 10 6 cycles at a frequency of 20 Hz. cycle).
  • NC / PA composite material with increased tensile modulus, flexural modulus, and service life could be manufactured by using NC as a reinforcing material in PA.
  • NC and the method of manufacturing NC / PA sheet using a high pressure homogenizer are the same as those shown in Example 1, and were prepared by the manufacturing method of FIG.
  • the prepared NC / PA sheet was adhered to a polyamide (PA) panel (sample name: NY) and an acrylonitrile butadiene styrene (ABS) panel (sample name: AB), respectively, to NC / PA / NY and NC / PA / AB composites were prepared.
  • PA polyamide
  • ABS acrylonitrile butadiene styrene
  • PA6 hot-melt web (sample name: L, 17 g / m) as adhesive layer for thermocompression bonding between NC / PA sheet and NY or NC / PA sheet and AB to produce NC / PA / NY and NC / PA / AB composites 2 ), a meltblown nonwoven fabric (sample name: M, 100 g / m 2 ) and a film (sample name: F, 175 g / m 2 ) were used.
  • NC / PA / NY and NC / PA / AB composite materials and the independent NY panel (sample name: NY-N) and AB panel (sample name: AB-N), which did not adhere the NC / PA sheet, and the adhesive layer, were Tensile, flexural, fracture, and impact characteristics of the samples (sample name: S) thermo-compressed without using the NC / PA sheet itself were compared.
  • thermal compression between the composite material and the adhesive layer was performed at 210 ° C./40 sec for sample names NY-S, NY-F, and NY-M, and 130 ° C. for sample names NY-L and AB-L. It was performed at 60 second condition.
  • Figure 8 shows the tensile strength and tensile modulus of the NC / PA / NY and NC / PA / AB composite materials.
  • Tensile strength and tensile modulus were increased by bonding NC / PA sheets to NY or AB panels.
  • Tensile strength and tensile modulus of NC / PA / NY composites increased up to 158% and 126%, respectively, compared to NY panels.
  • tensile strength of NC / PA / AB composites increased by 130% and 126%, respectively, compared to AB panels.
  • the flexural modulus of the prepared composite material was evaluated under the same conditions as the tensile modulus by the evaluation method of ASTM D790-03.
  • Figure 9 shows the flexural strength and flexural modulus of the NC / PA / NY and NC / PA / AB composite materials. Flexural strength and flexural modulus were increased by adhering NC / PA sheets to PA and AB panels. In particular, flexural strength and flexural modulus of NC / PA / AB composites were increased by 292% and 160%, respectively.
  • NC / PA / NY and NC / PA / AB composites were evaluated using an electrodynamic test system (Acumen 1, MTS system, USA) according to ASTM D671-71, where the load cell was 3 kN. Tests were made for 10 6 cycles at a frequency of 10 Hz.
  • Table 2 shows the fracture characteristics of the NC / PA / NY and NC / PA / AB composite materials.
  • the 10 6 cycles were tested at 70, 50, and 30% of the maximum flexural load. The 70% force resulted in the greatest breaking cycle of the AB-L sample with NC / PA / AB bonded to PA hot melt film. At 50% force, the maximum breaking cycle was greatest in the NY-F sample with NC / PA / NY bonded with PA film. In addition, at 30% force all samples passed the 10 6 cycle test. In the NY and AB panels to which the NC / PA sheet was bonded, the number of breaking cycles increased significantly regardless of the type of the adhesive layer.
  • the impact properties of the manufactured composite materials were tested by dropping a ball with a diameter of 50 mm at a height of 1,520 mm by a steel ball drop test machine using the Gardner impact test method (falling weight) according to ASTM D 5420. .
  • Figure 10 shows the impact characteristics of the NC / PA / NY and NC / PA / AB composite materials.
  • NY panels showed better shock absorption characteristics than AB panels, and the impact absorption characteristics were improved by adhesion of NC / PA sheets.

Abstract

The present invention relates to a multilayered composite material prepared by thermocompressing a multilayered sheet, comprising: a first sheet layer formed from a solution containing a nanofibrilated cellulose and a first thermoplastic matrix polymer; and a second sheet layer formed from a solution containing a second thermoplastic matrix polymer, wherein the mulilayered composite material of the present invention has a high strength and high elastic modulus.

Description

나노피브릴화 셀룰로오스 및 열가소성 매트릭스 고분자를 이용한 다층 복합재료 Multi-layered Composite Using Nanofibrillated Cellulose and Thermoplastic Matrix Polymer
본 발명은 나노피브릴화 셀룰로오스 및 열가소성 매트릭스 고분자를 이용한 다층 복합재료 및 그의 제조방법에 관한 것이다. The present invention relates to a multilayer composite material using nanofibrillated cellulose and a thermoplastic matrix polymer, and a method of manufacturing the same.
나노(nano) 재료를 활용한 기술은 다양한 산업분야에 적용되고 있으며, 범용 고분자에 이러한 나노 기술을 적용하면 물리적, 화학적 및 열적 특성을 개선할 수 있다고 알려져 있다. Technology using nano materials has been applied to various industrial fields, and it is known that the application of these nano technologies to general purpose polymers can improve physical, chemical and thermal properties.
특히, 나노 크기의 원료로 보강된 나노 복합재료는 일반적인 복합재료에 비해 우수한 물성을 나타내며(R. A. Vaia, Polymer Nanocomposites Open a New Dimension for Plastics and Composites, The AMPTIAC Newsletter, 2002, 6, 17-24), 강도가 증가하거나 강도와 탄성률이 동시에 증가한 연구 결과도 보고되었다(M. M. O. Seydibeyoglu et al., Composites Science and Technology, 2008, 68, 908-914). 이러한 강도 증가는 마이크로(micro) 크기의 원료로 보강된 복합재료에 비해 증가한 비표면적과 감소한 계면 사이의 결점에 의해 나타나는 현상으로 알려져 있다(M. Sternitzke et al., Journal of the American Ceramic Society, 1998, 81, 41-48).In particular, nanocomposites reinforced with nano-sized raw materials exhibit excellent physical properties compared to conventional composites (RA Vaia, Polymer Nanocomposites Open a New Dimension for Plastics and Composites, The AMPTIAC Newsletter, 2002, 6, 17-24), Increasing strength or simultaneously increasing strength and modulus have been reported (MMO Seydibeyoglu et al., Composites Science and Technology, 2008, 68, 908-914). This increase in strength is known to be caused by a defect between the increased specific surface area and the reduced interface compared to composites reinforced with micro-sized raw materials (M. Sternitzke et al., Journal of the American Ceramic Society, 1998). , 81, 41-48).
한편, 셀룰로오스(cellulose)는 자연계에 존재하는 유기 화합물 중 가장 풍부하게 존재하는 천연 고분자이고, 재생 가능한 재료로부터 얻을 수 있을 뿐만 아니라, 기존에 사용되던 석유 기반의 고분자와 달리 폐기시 토양 중에서 분해되어 자연으로 돌아가는 생분해성 특성이 있다. 최근, 환경 문제가 심각하게 대두됨에 따라 친환경 고분자 재료의 필요성이 증가하였고, 이에 석유 기반의 기능성 고분자를 대체하기 위한 셀룰로오스의 원료 및 제품개발이 활발히 진행되고 있다(G. Siqueira et al., Polymer, 2010, 2, 728-765).On the other hand, cellulose is the most abundant natural polymer among the organic compounds present in nature, and can be obtained from renewable materials. Unlike petroleum-based polymers, which are used in the past, they are decomposed in soil during disposal. Biodegradable properties. Recently, as the environmental problems are seriously raised, the necessity of eco-friendly polymer materials has increased. Accordingly, active development of raw materials and products of cellulose to replace petroleum-based functional polymers has been actively conducted (G. Siqueira et al., Polymer, 2010, 2, 728-765).
특히, 나노 구조의 피브릴화된 셀룰로오스는 복합재료의 보강재로서 150∼200 GPa의 고탄성률 및 5 GPa 수준의 고강도를 가진다. 이는 슈퍼섬유의 하나인 케블라 섬유의 물성보다 우수하며, 일반 탄소섬유와 유리섬유에 비해서 나노사이즈이고 (두께 10∼100 nm), 열팽창계수는 작고 (0.1 ppm K-1), 경제적이면서, 재사용이 가능하고, 가볍고 에너지 소비가 적으며, 공정성이 우수하다. 따라서 셀룰로오스 나노 섬유의 높은 결정성, 인강 장도, 탄성률 등 우수한 특성과 적절한 제조공정을 통해 섬유의 직경(나노 사이즈)과 섬유의 종횡비(L/D)를 조절한다면 복합재료 산업의 핵심소재인 유리섬유를 대체할 가능성이 매우 큰 소재가 될 수 있다. In particular, the nanostructured fibrillated cellulose has a high modulus of 150-200 GPa and a high strength of 5 GPa as a reinforcing material of the composite material. It is superior to the physical properties of Kevlar fiber, one of the superfibers, and is nano-sized (10 to 100 nm thick) compared to ordinary carbon fiber and glass fiber, and has a small coefficient of thermal expansion (0.1 ppm K -1 ). Possible, light weight, low energy consumption, good processability. Therefore, if the fiber's diameter (nano size) and fiber's aspect ratio (L / D) are controlled through excellent properties such as high crystallinity, toughness, and elastic modulus of cellulose nanofibers and appropriate manufacturing processes, glass fiber is a key material of the composite material industry. It can be a very likely material to replace.
이러한 장점을 갖는 100% 셀룰로오스 나노섬유로 제조된 복합재료는 보통강 또는 마그네슘 합금보다도 우수한 물성을 가진 것으로 보고되어 있다. 하지만 이 복합재료의 경우 100% 셀룰로오스만으로 이루어져 있기 때문에, 제조공정 특성상 장시간의 건조 및 압축(compression) 공정이 요구되고, 형상 측면에서 시트 형태로만 제조할 수 있음이 알려져 있다. 또한, 이 소재는 열가소성이 없어 다양한 형태를 갖도록 성형할 수 없는 단점이 있다(Marielle Henriksson et al.,2008; Istva´n Siro et al.,2010). Composites made of 100% cellulose nanofibers having this advantage have been reported to have better physical properties than ordinary steel or magnesium alloys. However, since the composite material is composed of only 100% cellulose, it is known that a long time drying and compression process is required due to the characteristics of the manufacturing process, and that the composite material can be manufactured only in the form of sheet. In addition, this material has a drawback that it cannot be molded to have various forms due to the absence of thermoplastics (Marielle Henriksson et al., 2008; Istva´n Siro et al., 2010).
따라서, 이러한 셀룰로오스 나노섬유로 보강한 열가소성 및 열경화성 플라스틱 복합재료는 기존 유리섬유 강화 복합재료의 한계를 넘는 친환경적인 차세대 고성능 신소재로서의 가능성이 확인되고 있다. 현대의 산업 발전에 따라 제품의 경량화와 고강도화가 요구됨에 따라서 고성능과 고기능을 갖는 셀룰로오스 나노 섬유 복합체는 전기전자, 수송기기(자동차, 우주항공, 선박 등), 토목, 건축, 환경 등의 산업재 분야와 방위산업 및 의료산업의 보철기구 등의 특수 분야에 핵심소재의 용도로 적용확대가 가능하다.Therefore, the thermoplastic and thermosetting plastic composites reinforced with cellulose nanofibers have been identified as a new generation of high-performance, environmentally friendly materials that exceed the limits of existing glass fiber reinforced composites. As the development of modern industry demands to reduce the weight and strength of the product, cellulose nanofiber composites having high performance and high performance are used in the fields of industrial materials such as electrical and electronics, transportation equipment (automotive, aerospace, ships, etc.), civil engineering, architecture, and environment. It is possible to expand the application of core materials to special fields such as defense and medical prosthetics.
또한, 21세기는 환경 문제와 에너지, 자원 문제를 해결하기 위한 방법으로 복합재료 분야에 나노기술이 융합된 그린 나노 복합체에 대한 연구개발이 지속적으로 추진되고 있다. 셀룰로오스 나노 섬유 복합체는 기존 소재의 한계를 뛰어 넘어 지속가능한 차세대 신소재로서 친환경성과 경제성을 갖는 고성능 복합재료로 자리매김할 가능성이 매우 클 것이다. 이러한 다양하고 우수한 물성을 갖는 그린 복합체는 궁극적으로 기존의 재료에서는 얻을 수 없는 고강도, 고탄성률의 기계적 성능과 전기적, 열적 전도성, 낮은 열팽창계수 등과 같은 다기능성을 갖는 첨단소재를 얻을 수 있는 원천기술을 제공한다. In addition, in the 21st century, research and development on green nanocomposites in which nanotechnology is fused to the composite material field is continuously being pursued as a way to solve environmental problems, energy and resource problems. Cellulose nanofiber composites will go beyond the limitations of existing materials, and as a next-generation sustainable new material, it will be very likely to become a high-performance composite material with eco-friendliness and economy. The green composite with various and excellent properties ultimately provides a source technology for obtaining advanced materials having high strength, high modulus mechanical performance and multi-functionality such as electrical, thermal conductivity, and low coefficient of thermal expansion, which are not obtained with conventional materials. to provide.
그러나 아직까지 셀룰로오스 나노섬유를 이용한 열가소성 복합체에 대한 연구 개발은 아직 초기 단계에 있다.However, research and development on thermoplastic composites using cellulose nanofibers is still in its infancy.
이에 본 발명자들은, 유리섬유 이상의 물리적인 성질을 갖는 나노피브릴화 셀룰로오스 및 열가소성 매트릭스 고분자를 이용한 다층형 복합재료 관련 발명을 완성하였다. Accordingly, the present inventors have completed the invention related to the multilayered composite material using nanofibrillated cellulose and thermoplastic matrix polymers having physical properties of glass fibers or more.
본 발명은 유리섬유 강화 복합재료를 대체할 수 있는, 나노피브릴화 셀룰로오스(nanofibrillated cellulose, NC) 및 열가소성 매트릭스 고분자를 이용한 다층 복합재료를 제공하고자 한다. The present invention is to provide a multi-layer composite material using a nanofibrillated cellulose (NC) and a thermoplastic matrix polymer, which can replace the glass fiber reinforced composite material.
본 발명의 제1 양태는 나노피브릴화 셀룰로오스 및 제1 열가소성 매트릭스 고분자를 함유하는 용액으로부터 형성된 제1 시트층; 및A first aspect of the present invention provides a semiconductor device comprising: a first sheet layer formed from a solution containing nanofibrillated cellulose and a first thermoplastic matrix polymer; And
제2 열가소성 매트릭스 고분자 함유 용액으로부터 형성된 제2 시트층을 포함하는 다층 시트를 열 압착시켜, 제1 열가소성 매트릭스 고분자와 제2 열가소성 매트릭스 고분자가 서로 열 용융되고, 상기 열 용융된 고분자들 사이에 나노피브릴화 셀룰로오스가 삽입되어 있는 복합재료를 제공한다.By thermally compressing a multilayer sheet including a second sheet layer formed from a second thermoplastic matrix polymer-containing solution, the first thermoplastic matrix polymer and the second thermoplastic matrix polymer are thermally melted with each other, and nanofibers are formed between the thermally melted polymers. It provides a composite material in which the berylated cellulose is inserted.
본 발명의 제2 양태는 나노피브릴화 셀룰로오스 및 제1 열가소성 매트릭스 고분자 함유 용액을 건조 및 압착하여 제조한 제1 시트층의 하나 이상; 및 제2 열가소성 매트릭스 고분자를 함유하는 제2 시트층의 하나 이상을 적층한 다층 복합재료를 준비하는 제1 단계; 및A second aspect of the present invention is directed to a method for manufacturing a semiconductor device comprising: at least one first sheet layer prepared by drying and pressing a nanofibrillated cellulose and a first thermoplastic matrix polymer-containing solution; And a first step of preparing a multilayer composite material in which at least one of the second sheet layers containing the second thermoplastic matrix polymer is laminated. And
압력을 가해 나노피브릴화 셀룰로오스의 취성(brittleness) 온도 미만에서 제1 열가소성 매트릭스 고분자와 제2 열가소성 매트릭스 고분자를 열 용융시키는 제2단계를 포함하며,Applying a pressure to thermally melt the first thermoplastic matrix polymer and the second thermoplastic matrix polymer below the brittleness temperature of the nanofibrillated cellulose,
상기 하나 이상의 제1 시트층과 제2 시트층은 교대로 적층되는 것인, 다층 복합재료를 제조하는 방법을 제공한다. The at least one first sheet layer and the second sheet layer are laminated alternately, to provide a method of manufacturing a multilayer composite material.
본 발명의 제3 양태는 상기 제1 양태의 다층 복합재료가 적용된 강화 성형물을 제공한다. A third aspect of the present invention provides a reinforced molding to which the multilayered composite material of the first aspect is applied.
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 명세서에서 사용하는 용어 "다층 복합재료"란, 성분이 상이한 복수의 층이 적층된 재료를 의미한다. 구체적으로, 본 발명에서는 제1 시트층 및 제2 시트층이 하나 이상 각각 교대로 적층될 수 있다. The term "multilayer composite material" as used herein means a material in which a plurality of layers having different components are laminated. Specifically, in the present invention, one or more first and second sheet layers may be alternately stacked.
본 발명의 열가소성 매트릭스 고분자는 열가소성 고분자로서 나노피브릴화 셀룰로오스와 계면 친화력 등의 상용성이 우수한 소재이면 제한없이 사용될 수 있으며, 바람직하게는 폴리아미드(polyamide, PA) 수지이다. 폴리아미드 수지는 주쇄를 이루는 구조 단위가 아미드기에 의해 연결된 합성 고분자이며, 구체적으로 Polyamide 6, Polyamide 6,6 등이 있다. 본 발명의 제1 열가소성 매트릭스 고분자 및 제2 열가소성 매트릭스 고분자는 동일하거나 상이할 수 있다.The thermoplastic matrix polymer of the present invention may be used as long as it is a material having excellent compatibility such as nanofibrillated cellulose and interfacial affinity as a thermoplastic polymer, and is preferably a polyamide (PA) resin. The polyamide resin is a synthetic polymer in which the structural units constituting the main chain are connected by an amide group, and specific examples thereof include Polyamide 6 and Polyamide 6,6. The first thermoplastic matrix polymer and the second thermoplastic matrix polymer of the present invention may be the same or different.
상기 폴리아미드 수지의 섬유장은 0.1 mm 내지 3.0 mm 가 바람직하다. 섬유장이 3.0 mm 보다 길어지는 경우, 긴 섬유장 때문에 물과 혼합시 분산의 어려움이 생기며, 섬유장이 0.1 mm 보다 짧아지는 경우, 제조된 시트의 형태 안정성이 부족하다. 섬도(fineness)는 바람직하게는 0.1 내지 5.0 데니어(denier)이다.The fiber length of the polyamide resin is preferably 0.1 mm to 3.0 mm. When the fiber length is longer than 3.0 mm, the long fiber length causes difficulty in dispersion when mixed with water, and when the fiber length is shorter than 0.1 mm, the shape stability of the manufactured sheet is insufficient. Fineness is preferably 0.1 to 5.0 denier.
본 발명의 나노피브릴화 셀룰로오스의 직경은 10 내지 100nm일 수 있다. The nanofibrillated cellulose of the present invention may have a diameter of 10 to 100 nm.
본 발명의 제2 열가소성 매트릭스 고분자로부터 형성된 제2 시트층은 핫멜트 웹, 멜트블로운 부직포 또는 필름일 수 있으며, 형태적(morphological) 분석에 의하면 멜트블로운 부직포가 바람직하다.The second sheet layer formed from the second thermoplastic matrix polymer of the present invention may be a hot melt web, a meltblown nonwoven or a film, and morphological analysis suggests a meltblown nonwoven.
본 발명의 제1 시트층 위에 제 2 시트층을 열 압착하여 다층 시트를 제조하는 단계에서, 열 압착의 조건은 제2 시트층이 핫멜트 웹인 경우 100~200℃, 멜트블로운 부직포 또는 필름인 경우 170~270℃일 수 있다.In the step of producing a multilayer sheet by thermal pressing the second sheet layer on the first sheet layer of the present invention, the conditions of the thermal pressing is 100 ~ 200 ℃ when the second sheet layer is a hot melt web, when the melt-blown nonwoven fabric or film It may be 170 ~ 270 ℃.
또한, 상기 열 압착은 4 내지 100MPa의 압력 범위에서 수행될 수 있다.In addition, the thermocompression may be performed in a pressure range of 4 to 100MPa.
상기 열 압착을 통해서 제1 시트층의 제1 열가소성 매트릭스 고분자와 제2 시트층의 제2 열가소성 매트릭스 고분자가 서로 열 용융되며, 상기 열 용융된 고분자들 사이로 나노피브릴화 셀룰로오스가 삽입이 된다. 이에, 시트 층 사이의 결합력이 증대되며 인장강도가 증대된다. 상기 온도 범위를 초과하는 경우에는 나노피브릴화 셀룰로오스 섬유 또한 취화되어 섬유 구조가 파괴되는 문제가 있으므로, 열 압착의 온도 범위는 열 가소성 매트릭스 고분자가 선택적으로 용융할 수 있는 온도이면서 동시에 나노피브릴화 셀룰로오스가 취화되지 않는 취성(brittleness) 온도 미만의 범위가 바람직하다.Through the thermal compression, the first thermoplastic matrix polymer of the first sheet layer and the second thermoplastic matrix polymer of the second sheet layer are thermally melted with each other, and nanofibrillated cellulose is inserted between the thermally melted polymers. As a result, the bonding force between the sheet layers is increased and the tensile strength is increased. If the temperature range is exceeded, the nanofibrillated cellulose fibers are also embrittled and the fiber structure is destroyed. Thus, the thermocompression temperature range is a temperature at which the thermoplastic matrix polymer can be selectively melted and at the same time nanofibrillated. Preference is given to a range below the brittleness temperature at which cellulose does not embrittle.
나노피브릴화 셀룰로오스 및 제1 열가소성 매트릭스 고분자를 함유하는 용액으로부터 형성된 제1 시트층 상에 제2 열가소성 매트릭스 고분자 함유 용액으로부터 형성된 제2 시트층을 적층하고 열 압착하면, 제2 열가소성 매트릭스 고분자가 열 압착에 의하여 용융되어 제1 시트층 내부의 공간(pore)을 채우고, 내부 섬유(fiber)들을 서로 연결시키는 역할을 한다. When the second sheet layer formed from the solution containing the second thermoplastic matrix polymer is laminated on the first sheet layer formed from the solution containing the nanofibrillated cellulose and the first thermoplastic matrix polymer and thermally compressed, the second thermoplastic matrix polymer is heated. It is melted by compression to fill the pores inside the first sheet layer, and serves to connect the internal fibers with each other.
마이크로피브릴화 셀룰로오스로만 형성된 시트와 비교하였을 때, 열가소성 매트릭스 고분자를 함유하는 시트에 삽입된 나노피브릴화 셀룰로오스로 인한 보강(reinforcement) 효과는 수소 결합 또는 엉김(entanglement)으로 연결된 그물형 네트워크를 구성하는 나노-크기의 구성 간의 상호작용으로 인해서 보다 더 효과적이며, 매트릭스 내에서 보다 우수한 분산이 가능하다. Compared to sheets formed only of microfibrillated cellulose, the reinforcement effect due to nanofibrillated cellulose embedded in the sheet containing the thermoplastic matrix polymer constitutes a mesh network connected by hydrogen bonding or entanglement. Interactions between nano-sized configurations are more effective and allow for better dispersion in the matrix.
본 발명의 다층 복합재료는 20 내지 80 MPa 인장강도를 가질 수 있다. 이는, 열가소성 매트릭스 고분자를 포함하지 않고 나노피브릴화 셀룰로오스만을 포함하는 제1 시트층, 및 열가소성 매트릭스 고분자 함유 용액으로부터 형성된 제2 시트층을 열 압착하여 제조한 다층 복합재료(도 1b 참조)가 약 8~10 MPa 인장강도를 갖는 것과 비교하여, 강도 면에서 매우 우수하다. The multilayer composite material of the present invention may have a tensile strength of 20 to 80 MPa. This is because the multilayer composite material prepared by thermocompressing the first sheet layer containing only the nanofibrillated cellulose without the thermoplastic matrix polymer and the second sheet layer formed from the solution containing the thermoplastic matrix polymer (see FIG. 1B) is weak. Compared to having 8 ~ 10 MPa tensile strength, it is very excellent in strength.
본 발명에서 제1 시트층은 나노피브릴화 셀룰로오스 및 제1 열가소성 매트릭스 고분자를 함유하는 용액으로부터 형성된다. 먼저, 펄프(pulp)를 용매에 분산시키고 기계적 고해과정을 거치고, 호모게나이저를 사용하여 나노피브릴화된 셀룰로오스 현탁액을 제조한다. 다음, 나노피브릴화된 셀룰로오스 현탁액에 열가소성 매트릭스 고분자를 혼합하여 습식 웹 형성 및 건조공정을 통해서 시트 형태의 복합재료를 형성한다. In the present invention, the first sheet layer is formed from a solution containing nanofibrillated cellulose and a first thermoplastic matrix polymer. First, pulp is dispersed in a solvent, subjected to mechanical beating, and a nanofibrillated cellulose suspension is prepared using a homogenizer. Next, the thermoplastic matrix polymer is mixed with the nanofibrillated cellulose suspension to form a sheet-shaped composite material through a wet web formation and a drying process.
본 발명의 나노피브릴화 셀룰로오스를 제조하기 위해 사용되는 원료인 펄프(pulp)는 소다 펄프(AP), 세미케미컬 펄프, 크래프트 펄프 등일 수 있으며, 특히 표백된 아황산 펄프가 바람직하나 이에 제한되지는 않는다. The pulp, which is a raw material used to prepare the nanofibrillated cellulose of the present invention, may be soda pulp (AP), semichemical pulp, kraft pulp, and the like, and particularly, but is not limited to bleached sulfurous pulp. .
또한, 셀룰로오스를 분산시키는 용매로는 물이 바람직하나, 이에 제한되는 것은 아니다. 셀룰로오스 나노 섬유가 친수성이므로, 소수성 용매를 사용하는 경우에는 골고루 분산될 수 없는 문제가 있다.In addition, as a solvent for dispersing cellulose, water is preferable, but is not limited thereto. Since the cellulose nanofibers are hydrophilic, there is a problem that can not be evenly dispersed when using a hydrophobic solvent.
나노피브릴화 셀룰로오스 및 제1 열가소성 매트릭스 고분자는 고형분 중량비로 3:7 내지 5:5인 것이 바람직하다. 상기 중량비가 3:7보다 작은 경우(예를 들어 2:8), 분산 후 나노피브릴화 셀룰로오스와 제1 열가소성 매트릭스 고분자 사이의 밀도 차이에 의하여 용매(물)와 층을 이루며 분리될 수 있다. 상기 중량비가 5:5보다 큰 경우(예를 들어 6:4), 배수가 잘 되지 않으며 건조 시 시트의 컬링 현상이 심하게 발생할 수 있다. 이는 나노피브릴화 셀룰로오스 사이에 잔류한 용매(물) 분자가 섬유를 연결하는 접착제와 같은 역할을 하여 수소 결합 네트워크를 형성하기 때문이다. 일 실시형태에서, 상기 나노피브릴화 셀룰로오스 및 제1 열가소성 매트릭스 고분자는 고형분 중량비로 약 4:6이다. The nanofibrillated cellulose and the first thermoplastic matrix polymer are preferably 3: 7 to 5: 5 by solid weight ratio. When the weight ratio is smaller than 3: 7 (eg 2: 8), the particles may be separated and layered with the solvent (water) by the density difference between the nanofibrillated cellulose and the first thermoplastic matrix polymer after dispersion. When the weight ratio is greater than 5: 5 (eg 6: 4), drainage may not be good and curling of the sheet may occur severely during drying. This is because the solvent (water) molecules remaining between the nanofibrillated cellulose serve as an adhesive for connecting the fibers to form a hydrogen bonding network. In one embodiment, the nanofibrillated cellulose and the first thermoplastic matrix polymer are about 4: 6 by weight of solids.
상기 습식 웹 형성 및 건조공정은 나노피브릴화 셀룰로오스 현탁액 및 열가소성 매트릭스 고분자의 혼합물에서 용매를 선택적으로 제거하여 균일한 시트상의 섬유 구조체를 얻은 후, 압착롤에 의해 시트상으로 제조하는 공정이다. The wet web forming and drying process is a process of selectively removing the solvent from the mixture of the nanofibrillated cellulose suspension and the thermoplastic matrix polymer to obtain a uniform sheet-like fibrous structure, and then manufacturing the sheet into a sheet by pressing rolls.
상기 습식 웹 형성이란 제조된 시트를 건조하기 전, 고온상태에서 압력을 가하여 제조된 시트의 컬링을 방지하고 밀도를 증가시키는 공정이다. 상기 가압은 핫프레스를 이용하여 수행될 수 있으나 이에 제한되지 않는다. 상기 압착 단계를 통해 습식 부직포 공정 중에 발생하는 나노피브릴화 셀룰로오스와 열가소성 매트릭스 고분자 섬유 사이의 공극의 부피가 감소하며, 계면 젖음성이 향상된다. 이때 압착단계의 온도와 압력은 높을수록 바람직하다. The wet web formation is a process of preventing curling and increasing density of the manufactured sheet by applying a pressure at a high temperature before drying the manufactured sheet. The pressurization may be performed using a hot press, but is not limited thereto. Through the pressing step, the volume of voids between the nanofibrillated cellulose and the thermoplastic matrix polymer fiber generated during the wet nonwoven process is reduced, and the interface wettability is improved. At this time, the higher the temperature and pressure of the pressing step is preferable.
또한, 상기 건조공정에서 건조는 시트의 수분 함량이 1% 미만이 되게 하는 것이 바람직하다. 상기 건조는 대기압 하에서, 30 내지 100 ℃에서 0.5시간 내지 30시간으로 수행되는 것이 바람직하다. 일 실시형태에서 상기 건조는 대기압 하에서 80℃에서 24시간 동안 수행된다. 건조 온도와 시간은 최종 시트의 수분 함량에 영향을 미치게 되며, 100℃ 이상의 고온에서는 급격한 건조로 인해 시트가 뒤틀리거나 물성에 바람직하지 않은 영향을 미칠 수 있다. In addition, the drying in the drying step is preferably such that the moisture content of the sheet is less than 1%. The drying is preferably performed at 0.5 to 30 hours at 30 to 100 ℃ under atmospheric pressure. In one embodiment the drying is carried out at 80 ° C. for 24 hours under atmospheric pressure. The drying temperature and time affect the moisture content of the final sheet, and at high temperatures of 100 ° C. or higher, the sheet may be warped due to rapid drying or have an undesirable effect on the physical properties.
상기 습식 웹 형성 및 건조공정을 통해서 형성된 시트에 결합력을 부여하기 위해서, 150 ℃ 내지 250 ℃의 온도, 및 2 MPa 내지 300 MPa의 압력을 추가로 더 가할 수 있다. 일 실시형태에서, 추가로 210℃에서 4.8 MPa의 압력을 적용한다. 상기 온도와 압력으로 인해 열가소성 매트릭스 고분자 섬유는 용융되어 함침되고, 함침으로 인해 열가소성 매트릭스 고분자 섬유는 나노피브릴화 셀룰로오스 섬유와 함께 나노 섬유 복합체를 형성한다. 상기 온도와 압력을 가하는 고온, 고압 성형의 대표적인 공정은 캘린더(calender) 공정과 프레스 공정이 있지만 이에 제한되지 않는다.In order to impart a bonding force to the sheet formed through the wet web forming and drying process, a temperature of 150 ° C. to 250 ° C. and a pressure of 2 MPa to 300 MPa may be further added. In one embodiment, a pressure of 4.8 MPa is further applied at 210 ° C. Due to the temperature and pressure, the thermoplastic matrix polymer fibers are melted and impregnated, and the impregnated thermoplastic matrix polymer fibers together with the nanofibrillated cellulose fibers form a nanofiber composite. Representative processes of high temperature and high pressure molding to apply the temperature and pressure include, but are not limited to, a calender process and a press process.
본 발명의 나노피브릴화 셀룰로오스로 형성된 다층 복합재료는 기존 유리섬유 강화 복합재료를 대체하는, 친환경적인 차세대 고성능 신소재로 사용이 가능하며 강화 성형품으로 제조될 수 있다. 즉, 고성능과 고기능을 갖는 다층 복합재료는 제품의 경량화와 고강도화가 요구되는 전기전자, 수송기기(자동차, 우주항공, 선박 등), 토목, 건축, 환경 등의 산업재 분야와 방위산업 및 의료산업의 보철기구 등의 특수 분야에 핵심소재의 용도로 적용 확대가 가능하다.The multi-layered composite material formed of the nanofibrillated cellulose of the present invention can be used as an environmentally friendly, next-generation high-performance new material that can replace the existing glass fiber reinforced composite material and can be manufactured as a reinforced molded article. In other words, multi-layered composite materials with high performance and high performance are used in the fields of industrial materials such as electrical and electronic equipment, transportation equipment (automobiles, aerospace, ships, etc.), civil engineering, construction, and environment, and defense and medical industries that require lightweight and high strength products. It is possible to expand the application of core materials to special fields such as prosthetics.
본 발명의 다층 복합재료는, 나노피브릴화 셀룰로오스 및 제1 열가소성 매트릭스 고분자로 구성된 제1 시트층이 제2 열가소성 매트릭스 고분자 함유 용액으로부터 형성된 제2 시트층과 열 압착됨으로써, 제1 열가소성 매트릭스 고분자와 제2 열가소성 매트릭스 고분자가 서로 열 용융되고, 상기 열 용융된 고분자들 사이 사이에 나노피브릴화 셀룰로오스가 삽입될 수 있다. 따라서, 본 발명의 다층 복합재료는 밀도가 높고 우수한 인장탄성률, 굴곡탄성률 및 파단특성을 나타내며, 강도가 기존의 유리섬유보다도 더 우수한 효과가 있다. The multi-layered composite material of the present invention is characterized in that a first sheet layer composed of nanofibrillated cellulose and a first thermoplastic matrix polymer is thermally compressed with a second sheet layer formed from a solution containing a second thermoplastic matrix polymer, thereby forming a first thermoplastic matrix polymer. The second thermoplastic matrix polymer may be thermally melted with each other, and nanofibrillated cellulose may be inserted between the thermally melted polymers. Therefore, the multilayer composite material of the present invention has a high density, shows excellent tensile modulus, flexural modulus, and fracture characteristics, and has an effect of superior strength than conventional glass fibers.
또한, 제1 시트층의 제1 열가소성 매트릭스 고분자와 제2 시트층의 제2 열가소성 매트릭스 고분자가 서로 열 용융되므로, 층간 결합력이 우수하여 접착층으로서도 역할할 수 있다. In addition, since the first thermoplastic matrix polymer of the first sheet layer and the second thermoplastic matrix polymer of the second sheet layer are thermally melted with each other, the interlayer bonding force is excellent and may serve as an adhesive layer.
도 1a 및 1b는 나노피브릴화 셀룰로오스로 구성된 시트와 접착층인 멜트블로운 부직포를 통상의 방법으로 적층하거나 열 압착하여 형성된 다층형 복합재료를 나타낸 것이며, 도 1c는 본 발명의 일 실시형태에 따라 NC/제1 열가소성 매트릭스 고분자와 접착층인 제2 열가소성 매트릭스 고분자를 열 압착하여 형성된 다층형 복합재료를 도식하여 나타낸 것이다.1A and 1B illustrate a multilayer composite material formed by laminating or thermocompressing a sheet composed of nanofibrillated cellulose and a meltblown nonwoven fabric, which is an adhesive layer, by a conventional method, and FIG. 1C illustrates an embodiment of the present invention. The schematic diagram shows a multilayered composite material formed by thermocompression bonding of an NC / first thermoplastic matrix polymer and a second thermoplastic matrix polymer as an adhesive layer.
도 2는 나노피브릴화 셀룰로오스 및 열가소성 매트릭스 고분자를 이용하여 습식 웹 형성 및 건조 공정을 통해서 시트 형태의 다층 복합재료를 제조하는 공정도를 나타낸 것이다.Figure 2 shows a process chart for manufacturing a multi-layer composite material in the form of a sheet through a wet web forming and drying process using a nanofibrillated cellulose and a thermoplastic matrix polymer.
도 3은 본 발명의 일 실시형태에 따라 NC/PA 복합재료와 접착층(핫멜트 웹, 멜트블로운 부직포 및 필름)으로 이루어진 다층 복합재료의 구조를 나타낸 것이다.FIG. 3 illustrates the structure of a multilayer composite composed of an NC / PA composite and an adhesive layer (hot melt web, meltblown nonwoven and film) in accordance with one embodiment of the present invention.
도 4는 실시예 2의 NC/PA 다층 복합재료의 표면과 단면을 주사전자현미경으로 관찰하여 이를 나타낸 것이다.Figure 4 shows the observation surface and cross section of the NC / PA multilayer composite material of Example 2 by scanning electron microscopy.
도 5는 접착층, 열 압착 압력 및 NC 함량에 따른 NC/PA 복합재료의 인장탄성률을 보여주는 그래프이다.5 is a graph showing the tensile modulus of elasticity of the NC / PA composite material according to the adhesive layer, thermal compression pressure and NC content.
도 6는 접착층, 열 압착 압력 및 NC 함량에 따른 NC/PA 다층 복합재료의 굴곡탄성률을 보여주는 그래프이다.Figure 6 is a graph showing the flexural modulus of the NC / PA multilayer composite material according to the adhesive layer, thermal compression pressure and NC content.
도 7은 PA6,6 시트, NC/PA6 및 NC/PA6,6 복합재료의 파단특성을 보여주는 그래프이다.7 is a graph showing fracture characteristics of PA6,6 sheet, NC / PA6 and NC / PA6,6 composite materials.
도 8은 NC/PA/NY 및 NC/PA/AB 복합재료의 인장강도 및 인장탄성률을 보여주는 그래프이다.8 is a graph showing the tensile strength and tensile modulus of the NC / PA / NY and NC / PA / AB composite materials.
도 9은 NC/PA/NY 및 NC/PA/AB 복합재료의 굴곡강도 및 굴곡탄성률을 보여주는 그래프이다.9 is a graph showing the flexural strength and flexural modulus of the NC / PA / NY and NC / PA / AB composite materials.
도 10는 NC/PA/NY 및 NC/PA/AB 복합재료의 충격특성을 보여주는 그래프이다.10 is a graph showing the impact characteristics of the NC / PA / NY and NC / PA / AB composite materials.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 단, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. However, the following Examples and Experimental Examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
실시예 1: 나노피브릴화 셀룰로오스 및 열가소성 매트릭스 고분자를 함유하는 복합재료(NC/PA)의 제조Example 1 Preparation of Composites (NC / PA) Containing Nanofibrillated Cellulose and Thermoplastic Matrix Polymers
먼저, 섬유장이 1.0mm인 활엽수 펄프(pulp)를 물에 분산하여 펄퍼(pulper)에서 30분 동안 기계적 고해과정을 거쳐 해리시켜 펄프 분산액을 제조하였다. 상기 제조된 펄프 분산액 중에 함유된 펄프 고형분의 무게를 기준으로 0.2 중량%의 펄프 분산액을 제조하고 30분 교반 한 후 호모게나이저를 사용하여 피브릴화하였다.First, a pulp dispersion having a fiber length of 1.0 mm was dispersed in water and dissociated through a mechanical beating process for 30 minutes in a pulper to prepare a pulp dispersion. A pulp dispersion of 0.2% by weight was prepared based on the weight of the pulp solids contained in the pulp dispersion prepared above, stirred for 30 minutes, and then fibrillated using a homogenizer.
고압 호모게나이저를 통해 직경이 다른 세 개의 노즐을 직경 크기의 순서로 순차적으로 다음과 같이 통과시켰다. 1) 5회: 노즐직경 250 ㎛, 압력 70 MPa, 2) 5회: 노즐직경 200 ㎛, 압력 240 MPa, 3) 5회: 노즐직경 150 ㎛, 압력 310 MPa. 상기와 같이, 셀룰로오스 분산액을 각 노즐 당 5회씩 통과시켜 총 15회의 호모게나이징 공정을 거쳐 나노 크기로 피브릴화된 셀룰로오스(nanofibrillated cellulose, NC) 현탁액을 제조하였다. Three nozzles of different diameters were passed through the high pressure homogenizer sequentially in the order of diameter size as follows. 1) 5 times: nozzle diameter 250 mu m, pressure 70 MPa, 2) 5 times: nozzle diameter 200 mu m, pressure 240 MPa, 3) 5 times: nozzle diameter 150 mu m, pressure 310 MPa. As described above, the cellulose dispersion was passed five times for each nozzle to prepare a nano-sized fibrillated cellulose (nanofibrillated cellulose, NC) suspension through a total of 15 homogenizing processes.
상기 제조된 NC 현탁액과 두 종류의 폴리아미드(Polyamide, PA) 섬유(PA6 또는 PA6,6)를 약 4:6의 고형분 중량비로 혼합하여 습식 웹 형성 및 건조공정을 통해 도 2에 도시한 순서대로 시트 형태의 NC/PA 복합재료를 제조하였다. 이때, 사용한 PA 섬유의 섬유장은 1.0mm였고, 섬도는 1,000 눈금의 스테인리스 스틸 스크린 메쉬(stainless steel screen mesh)를 이용하여 습식 웹 형성 공정을 통해 제조한 NC/PA6 시트를 열판 프레스에서 3.4 MPa의 압력과 80℃의 온도로 2시간 동안 건조한 후 오븐에서 동일한 온도로 24시간 건조하였다. 건조된 NC/PA6 시트에 결합력을 부여하기 위해 롤 캘린더(roll calendar)를 사용하여 210℃에서 4.8 MPa의 압력을 적용하여 0.5 m/min의 속도로 통과시켰다. The NC suspension and two kinds of polyamide (Polyamide, PA) fibers (PA6 or PA6,6) were mixed in a solid weight ratio of about 4: 6, and the wet web was formed and dried in the order shown in FIG. 2. NC / PA composites in sheet form were prepared. At this time, the fiber length of the used PA fiber was 1.0 mm, the fineness of the pressure of 3.4 MPa in hot plate press NC / PA6 sheet manufactured by a wet web forming process using a stainless steel screen mesh of 1,000 scales After drying for 2 hours at a temperature of 80 ℃ and dried in the oven at the same temperature for 24 hours. To impart bonding force to the dried NC / PA6 sheet, a roll calendar was used at a rate of 4.8 MPa at 210 ° C. and passed at a rate of 0.5 m / min.
실시예 2: 나노피브릴화 셀룰로오스 및 열가소성 매트릭스 고분자를 함유하는 복합재료(NC/PA)를 이용한 다층 복합재료의 제조Example 2 Preparation of Multilayer Composites Using Composite Materials (NC / PA) Containing Nanofibrillated Cellulose and Thermoplastic Matrix Polymers
다층 구조의 복합재료를 제조하기 위해, 도 3에 도시된 바와 같이 상기 실시예 1에서 제조된 NC/PA6 시트층 사이 사이에 PA6 핫멜트 웹, 멜트블로운 부직포 또는 필름을 1~5층 구조로 적층하여 열 압착하였다. 이때 사용한 PA6 핫멜트 웹, 멜트블로운 부직포 및 필름의 중량은 17, 100 및 175g/m2 이었다. 하기 표 1은 1~5층으로 제조한 NC/PA 다층 복합재료의 소재, 열 압착 조건, NC 함량 및 시료명을 나타낸다. NC/PA 다층 복합재료의 표면과 단면을 분석하기 위해 주사전자현미경 (Scanning Electron Microscope, SEM) (SU8000, Hitachi, Japan)을 사용하여 관찰하였으며 이를 도 4에 나타내었다.In order to manufacture a multi-layered composite material, as shown in FIG. 3, a PA6 hot melt web, a meltblown nonwoven fabric or a film is laminated in a 1 to 5 layer structure between the NC / PA6 sheet layers prepared in Example 1, as shown in FIG. By thermal compression. The weights of the PA6 hot melt webs, meltblown nonwovens and films used at this time were 17, 100 and 175 g / m 2 . Table 1 shows the materials, thermocompression conditions, NC content, and sample names of the NC / PA multilayer composite material prepared in 1 to 5 layers. Scanning Electron Microscope (SEM) (SU8000, Hitachi, Japan) was used to analyze the surface and cross section of the NC / PA multilayer composite material.
표 1
매트릭스 또는 접착층 열 압착 조건 층수 NC 함량 (wt.%) 총 두께(㎛) 시료명
- - 1 40.0 40 N1
PA 핫멜트 웹 150℃/60초 2 38.0 160 L2
3 37.4 280 L3
4 37.1 400 L4
5 37.0 490 L5
PA 멜트블로운 부직포 210~230℃/60초 2 34.7 260 M2
3 33.3 420 M3
4 32.6 620 M4
5 32.2 830 M5
PA 필름 210~230℃/120초 2 38.0 170 F2
3 37.4 290 F3
4 37.1 400 F4
5 37.0 540 F5
- 190℃/600초 예열 후 240℃/1,200초(87MPa) 3 40.0 100 S3
Table 1
Matrix or adhesive layer Thermocompression conditions Floor NC content (wt.%) Total thickness (㎛) Sample name
- - One 40.0 40 N1
PA Hot Melt Web 150 ° C / 60 seconds 2 38.0 160 L2
3 37.4 280 L3
4 37.1 400 L4
5 37.0 490 L5
PA Meltblown Nonwovens 210 ~ 230 ℃ / 60 seconds 2 34.7 260 M2
3 33.3 420 M3
4 32.6 620 M4
5 32.2 830 M5
PA film 210 ~ 230 ℃ / 120 seconds 2 38.0 170 F2
3 37.4 290 F3
4 37.1 400 F4
5 37.0 540 F5
- 240 ° C / 1,200s (87MPa) after 190 ° C / 600s warm up 3 40.0 100 S3
실험예 1: NC/PA 복합재료 및 이를 이용한 다층 복합재료의 물리적 특성Experimental Example 1: Physical Properties of NC / PA Composites and Multilayer Composites Using the Same
(1) 인장탄성률 (1) Tensile modulus
복합재료의 인장탄성률은 ASTM D638-03에 의거하여 만능강도시험기 (H100KS, Tinius Olsen, UK)를 사용하여 평가하였고, 이때 1.0mm/min의 속도와 2.5kN의 로드셀(load cell)이 사용되었다. Tensile modulus of the composite material was evaluated using a universal strength tester (H100KS, Tinius Olsen, UK) in accordance with ASTM D638-03, a speed of 1.0mm / min and a load cell of 2.5kN was used.
도 5는 접착층과 열 압착 압력 및 NC 함량에 따른 NC/PA 복합재료의 인장탄성률을 보여준다. 즉, 폴리아미드 섬유로 PA6 또는 PA6,6을 사용하여 제조된 실시예 1의 방법으로 제조된 NC/PA6 및 NC/PA6,6 복합재료와, 제2 열가소성 매트리스 고분자층(접착층 또는 제2 시트층)으로 PA 핫멜트 웹(L), PA 멜트블로운 부직포(M) 또는 PA 필름(F)을 사용하여 제조된 상기 실시예 2의 다층 복합재료의 인장탄성률을 측정하였다. 도 5에서 NC/PA6,6-S 복합재료는 상기 실시예 2와 같이 매트리스를 사용하지 않고 3개의 NC/PC6,6 시트를 열 압착하여 제조된 것이다. Figure 5 shows the tensile modulus of the NC / PA composite material according to the adhesive layer and thermal compression pressure and NC content. That is, the NC / PA6 and NC / PA6,6 composite material prepared by the method of Example 1, which was prepared using PA6 or PA6,6 as polyamide fibers, and a second thermoplastic mattress polymer layer (adhesive layer or second sheet layer) Tensile modulus of the multilayer composite material of Example 2 prepared using PA hot melt web (L), PA melt blown nonwoven fabric (M) or PA film (F) was measured. In FIG. 5, the NC / PA6,6-S composite material is manufactured by thermally compressing three NC / PC6,6 sheets without using a mattress as in Example 2.
PA6,6 시트의 인장탄성률이 0.8MPa였던 것에 비해 NC/PA6 및 NC/PA6,6 복합재료의 인장탄성률은 NC의 함량에 따라 1~2MPa 및 3~12MPa의 범위의 값을 나타냈다. NC/PA6,6 다층 복합재료의 인장 인장탄성률이 NC/PA6 복합재료에 비해 높았고, NC 함량이 증가함에 따라 NC/PA 복합재료의 인장탄성률이 증가하였다. 또한, 4.8MPa의 압력으로 열 압착한 NC/PA 다층 복합재료에 비해 87MPa의 압력으로 열 압착한 경우 높은 인장탄성률을 갖는 다층형 복합재료가 제조됨을 확인하였다.The tensile modulus of the NC / PA6 and NC / PA6,6 composites was in the range of 1 to 2 MPa and 3 to 12 MPa, depending on the NC content, whereas the tensile modulus of the PA6,6 sheet was 0.8 MPa. Tensile tensile modulus of NC / PA6,6 multilayer composites was higher than that of NC / PA6 composites. Tensile modulus of NC / PA composites increased with increasing NC content. In addition, it was confirmed that the multilayer composite material having a high tensile modulus was produced when the thermocompression was performed at a pressure of 87MPa compared to the NC / PA multilayer composite material thermally compressed at a pressure of 4.8MPa.
(2) 굴곡탄성률 (2) Flexural modulus
복합재료의 굴곡탄성률은 ASTM D790-03의 평가법으로 인장탄성률과 동일한 조건에서 평가하였다. The flexural modulus of the composite material was evaluated under the same conditions as the tensile modulus by the evaluation method of ASTM D790-03.
도 6은 접착층과 열 압착 압력 및 NC 함량에 따른 NC/PA 다층 복합재료의 굴곡탄성률을 보여준다. 87MPa의 압력으로 열 압착한 복합재료의 굴곡탄성률이 접착층을 사용한 시료에 비해 높게 나타났고, PA 멜트블로운 부직포를 접착층으로 사용한 시료의 굴곡탄성률은 낮은 NC 함량에도 불구하고 PA 핫멜트 웹과 PA 필름을 사용한 시료와 유사하였다. 동일한 NC 함량과 열 압착 압력을 적용할 때 NC/PA 다층 복합재료의 접착층으로 PA 필름을 사용한 시료가 PA 핫멜트 웹을 사용한 시료에 비해 높은 굴곡탄성률을 나타냈다. NC/PA6,6 다층 복합재료의 굴곡탄성률은 접착층의 종류에 상관없이 NC/PA6 다층 복합재료에 비해 높은 값을 가졌다. Figure 6 shows the flexural modulus of the NC / PA multilayer composite material according to the adhesive layer and thermal compression pressure and NC content. The flexural modulus of the composite material thermally compressed at 87MPa was higher than that of the adhesive layer, and the flexural modulus of the sample using PA meltblown nonwoven fabric as the adhesive layer was higher than that of the PA hot melt web and PA film. Similar to the sample used. When the same NC content and thermocompression pressure were applied, the samples using the PA film as the adhesive layer of the NC / PA multilayer composite showed higher flexural modulus than the samples using the PA hot melt web. The flexural modulus of NC / PA6,6 multilayer composites was higher than that of NC / PA6 multilayer composites regardless of the type of adhesive layer.
(3) 파단특성(3) breaking characteristics
NC/PA 복합재료의 파단특성은 ASTM D671-71에 의거하여 Electrodynamic test system(Acumen 1, MTS system, USA)을 사용하여 평가하였고, 이때 사용된 로드셀은 3kN이었고, 20Hz의 주파수에서 106 사이클(cycle) 동안 시험하였다. The fracture characteristics of NC / PA composites were evaluated using an electrodynamic test system (Acumen 1, MTS system, USA) in accordance with ASTM D671-71. The load cell used was 3 kN and 10 6 cycles at a frequency of 20 Hz. cycle).
도 7은 PA6,6 시트, NC/PA6 및 NC/PA6,6 복합재료의 파단특성을 보여준다. 3kN의 로드셀을 사용하여 20Hz로 106회 반복 실험을 수행한 결과 반복 횟수 증가에 따른 NC/PA6,6 복합재료의 파단응력 감소가 NC/PA6 복합재료 및 PA6,6시트에 비해 적게 발생함을 확인하였다. 이는 NC의 보강효과에 의해 NC/PA 복합재료의 사용수명의 증가를 의미하는 결과이다. 또한, NC/PA 복합재료의 초기 파단응력 값은 NC의 보강효과에 의해 PA6,6시트에 비해 높게 나타났다.7 shows the fracture characteristics of PA6,6 sheets, NC / PA6 and NC / PA6,6 composites. As a result of performing 10 6 repetition experiments at 20Hz using a 3kN load cell, the break stress reduction of NC / PA6,6 composite material was less than that of NC / PA6 composite material and PA6,6 sheet. Confirmed. This results in an increase in the service life of the NC / PA composite material due to the NC reinforcing effect. In addition, the initial stress at break of NC / PA composites was higher than that of PA6,6 sheet due to NC reinforcement effect.
따라서, PA에 NC를 보강재로 사용하여 인장탄성률, 굴곡탄성률 및 사용수명이 증가된 NC/PA 복합재료를 제조할 수 있음을 확인하였다. Therefore, it was confirmed that NC / PA composite material with increased tensile modulus, flexural modulus, and service life could be manufactured by using NC as a reinforcing material in PA.
실험예 2: NC/PA 복합재료 및 열가소성 패널을 이용한 다층형 복합재료의 물리적 특성Experimental Example 2: Physical Properties of Multi-layered Composites Using NC / PA Composites and Thermoplastic Panels
고압 호모게나이저를 사용하여 NC를 제조하는 방법 및 NC/PA시트를 제조하는 방법은 실시예 1에 나타낸 것과 동일하고, 도 2의 제조방법으로 제조하였다. 제조된 NC/PA시트를 폴리아미드(Polyamide, PA) 패널(시료명: NY)과 아크릴로니트릴 부타디엔 스타이렌(Acrylonitrile butadiene styrene, ABS) 패널(시료명: AB)에 각각 접착하여 NC/PA/NY 및 NC/PA/AB 복합재료를 제조하였다. NC/PA 시트 및 NY, 또는 NC/PA시트 및 AB 사이를 열 압착하여 NC/PA/NY 및 NC/PA/AB 복합재료를 제조하기 위해, 접착층으로 PA6 핫멜트 웹(시료명: L, 17g/m2), 멜트블로운 부직포(시료명: M, 100g/m2) 및 필름(시료명: F, 175g/m2)을 사용하였다.The method of manufacturing NC and the method of manufacturing NC / PA sheet using a high pressure homogenizer are the same as those shown in Example 1, and were prepared by the manufacturing method of FIG. The prepared NC / PA sheet was adhered to a polyamide (PA) panel (sample name: NY) and an acrylonitrile butadiene styrene (ABS) panel (sample name: AB), respectively, to NC / PA / NY and NC / PA / AB composites were prepared. PA6 hot-melt web (sample name: L, 17 g / m) as adhesive layer for thermocompression bonding between NC / PA sheet and NY or NC / PA sheet and AB to produce NC / PA / NY and NC / PA / AB composites 2 ), a meltblown nonwoven fabric (sample name: M, 100 g / m 2 ) and a film (sample name: F, 175 g / m 2 ) were used.
제조된 NC/PA/NY 및 NC/PA/AB 복합재료와, NC/PA시트를 접착하지 않은 단독의 NY 패널(시료명: NY-N) 및 AB 패널(시료명: AB-N), 및 접착층을 사용하지 않고 NC/PA시트 자체를 열 압착한 시료(시료명: S)의 인장특성, 굴곡특성, 파괴특성 및 충격특성을 비교하였다. The manufactured NC / PA / NY and NC / PA / AB composite materials, and the independent NY panel (sample name: NY-N) and AB panel (sample name: AB-N), which did not adhere the NC / PA sheet, and the adhesive layer, were Tensile, flexural, fracture, and impact characteristics of the samples (sample name: S) thermo-compressed without using the NC / PA sheet itself were compared.
상기 다층형 복합재료의 제조에서 복합재료와 접착층 간의 열 압착은 시료명 NY-S, NY-F 및 NY-M은 210℃/40초 조건으로 하였고, 시료명 NY-L 및 AB-L은 130℃/60초 조건에서 수행하였다. In the production of the multilayered composite material, thermal compression between the composite material and the adhesive layer was performed at 210 ° C./40 sec for sample names NY-S, NY-F, and NY-M, and 130 ° C. for sample names NY-L and AB-L. It was performed at 60 second condition.
(1) 인장강도와 인장탄성률(1) Tensile strength and tensile modulus
NC/PA/NY 및 NC/PA/AB 복합재료의 인장특성은 ASTM D638-03에 의거하여 만능강도시험기 (H100KS, Tinius Olsen, UK)를 사용하여 평가하였고, 이때 1.0mm/min의 속도와 50kN의 로드셀이 사용되었다. Tensile properties of NC / PA / NY and NC / PA / AB composites were evaluated using a universal strength tester (H100KS, Tinius Olsen, UK) according to ASTM D638-03, with a speed of 1.0 mm / min and 50 kN. The load cell of was used.
도 8은 NC/PA/NY 및 NC/PA/AB 복합재료의 인장강도 및 인장탄성률을 나타낸 것이다. NC/PA 시트를 NY 또는 AB 패널에 접착함으로써 인장강도와 인장탄성률이 증가하였다. NC/PA/NY 복합재료의 인장강도와 인장탄성률은 NY 패널에 비해 최대 각각 158%와 126% 증가하였다. 또한, NC/PA/AB 복합재료의 인장강도는 AB 패널에 비해 각각 130%와 126% 증가하였다. 특히, PA 핫멜트 웹을 접착층으로 사용하여 열 압착한 NY 패널의 인장탄성률이 PA 필름 또는 PA 멜트블로운 부직포로 접착한 복합재료의 인장탄성률에 비해 크게 증가함을 확인하였다.Figure 8 shows the tensile strength and tensile modulus of the NC / PA / NY and NC / PA / AB composite materials. Tensile strength and tensile modulus were increased by bonding NC / PA sheets to NY or AB panels. Tensile strength and tensile modulus of NC / PA / NY composites increased up to 158% and 126%, respectively, compared to NY panels. In addition, tensile strength of NC / PA / AB composites increased by 130% and 126%, respectively, compared to AB panels. In particular, it was confirmed that the tensile modulus of the NY panel thermocompression-bonded using the PA hot melt web as the adhesive layer was significantly increased compared to the tensile modulus of the composite material bonded with the PA film or PA melt blown nonwoven fabric.
(2) 굴곡강도와 굴곡탄성률(2) flexural strength and flexural modulus
제조한 복합재료의 굴곡탄성률은 ASTM D790-03의 평가법으로 인장탄성률과 동일한 조건에서 평가하였다. The flexural modulus of the prepared composite material was evaluated under the same conditions as the tensile modulus by the evaluation method of ASTM D790-03.
도 9은 NC/PA/NY 및 NC/PA/AB 복합재료의 굴곡강도 및 굴곡탄성률을 나타낸 것이다. PA 및 AB 패널에 NC/PA시트를 접착함으로써 굴곡강도 및 굴곡탄성률이 증가하였고, 특히 NC/PA/AB 복합재료의 굴곡강도와 굴곡탄성률은 AB 패널에 비해 각각 292% 및 160% 증가하였다. Figure 9 shows the flexural strength and flexural modulus of the NC / PA / NY and NC / PA / AB composite materials. Flexural strength and flexural modulus were increased by adhering NC / PA sheets to PA and AB panels. In particular, flexural strength and flexural modulus of NC / PA / AB composites were increased by 292% and 160%, respectively.
(3) 파단특성 (3) breaking characteristics
NC/PA/NY 및 NC/PA/AB 복합재료의 파단특성은 ASTM D671-71에 의거하여 Electrodynamic test system(Acumen 1, MTS system, USA)을 사용하여 평가하였고, 이때 사용된 로드셀은 3kN이었고, 10Hz의 주파수에서 106 사이클 동안 시험하였다. The fracture characteristics of the NC / PA / NY and NC / PA / AB composites were evaluated using an electrodynamic test system (Acumen 1, MTS system, USA) according to ASTM D671-71, where the load cell was 3 kN. Tests were made for 10 6 cycles at a frequency of 10 Hz.
하기 표 2는 NC/PA/NY 및 NC/PA/AB 복합재료의 파단특성을 나타낸 것이다. 최대 굴곡하중의 70, 50 및 30%의 힘으로 106 사이클을 시험한 결과, 70%의 힘에서는 NC/PA/AB를 PA 핫멜트 필름으로 접착시킨 AB-L시료의 파단 사이클이 가장 크게 나타났고, 50%의 힘에서는 NC/PA/NY를 PA 필름으로 접착시킨 NY-F 시료에서 최대 파단사이클이 가장 크게 증가하였다. 또한, 30%의 힘에서는 모든 시료가 106 사이클 시험을 통과하였다. NC/PA 시트를 접착한 NY 및 AB 패널에서 접착층의 종류와 상관없이 파단사이클 수가 크게 증가하는 결과를 확인하였다.Table 2 below shows the fracture characteristics of the NC / PA / NY and NC / PA / AB composite materials. The 10 6 cycles were tested at 70, 50, and 30% of the maximum flexural load.The 70% force resulted in the greatest breaking cycle of the AB-L sample with NC / PA / AB bonded to PA hot melt film. At 50% force, the maximum breaking cycle was greatest in the NY-F sample with NC / PA / NY bonded with PA film. In addition, at 30% force all samples passed the 10 6 cycle test. In the NY and AB panels to which the NC / PA sheet was bonded, the number of breaking cycles increased significantly regardless of the type of the adhesive layer.
표 2
Figure PCTKR2014012556-appb-T000001
TABLE 2
Figure PCTKR2014012556-appb-T000001
(4) 충격특성(4) impact characteristics
제조된 복합재료의 충격특성은 ASTM D 5420에 의거하여 가드너 충격시험법 (Gardner impact test method, Falling weight)을 사용하여 Steel ball drop test machine에 의해 지름 50mm인 볼을 1,520mm 높이에서 떨어뜨려 시험하였다. The impact properties of the manufactured composite materials were tested by dropping a ball with a diameter of 50 mm at a height of 1,520 mm by a steel ball drop test machine using the Gardner impact test method (falling weight) according to ASTM D 5420. .
도 10는 NC/PA/NY 및 NC/PA/AB 복합재료의 충격특성을 나타낸 것이다. NY패널이 AB패널에 비해 우수한 충격흡수 특성을 보였고, NC/PA시트의 접착으로 충격흡수 특성이 개선됨을 확인하였다.Figure 10 shows the impact characteristics of the NC / PA / NY and NC / PA / AB composite materials. NY panels showed better shock absorption characteristics than AB panels, and the impact absorption characteristics were improved by adhesion of NC / PA sheets.
따라서, NY 및 AB패널에 NC/PA시트를 접착함으로써 인장, 굴곡, 파단 및 충격특성이 개선됨을 확인하였다. Therefore, it was confirmed that tensile, flexural, fracture, and impact characteristics were improved by adhering NC / PA sheets to NY and AB panels.

Claims (11)

  1. 나노피브릴화 셀룰로오스 및 제1 열가소성 매트릭스 고분자를 함유하는 용액으로부터 형성된 제1 시트층; 및A first sheet layer formed from a solution containing nanofibrillated cellulose and a first thermoplastic matrix polymer; And
    제2 열가소성 매트릭스 고분자 함유 용액으로부터 형성된 제2 시트층을 포함하는 다층 시트를 열 압착시켜, 제1 열가소성 매트릭스 고분자와 제2 열가소성 매트릭스 고분자가 서로 열 용융되고, 상기 열 용융된 고분자들 사이에 나노피브릴화 셀룰로오스가 삽입되어 있는 것이 특징인 다층 복합재료.By thermally compressing a multilayer sheet including a second sheet layer formed from a second thermoplastic matrix polymer-containing solution, the first thermoplastic matrix polymer and the second thermoplastic matrix polymer are thermally melted with each other, and nanofibers are formed between the thermally melted polymers. Multilayer composite material characterized by the insertion of a beryl cellulose.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 열가소성 매트릭스 고분자 및 제2 열가소성 매트릭스 고분자는 폴리아미드(polyamide) 수지인 것인, 다층 복합재료.Wherein the first thermoplastic matrix polymer and the second thermoplastic matrix polymer are polyamide resins.
  3. 제2항에 있어서, The method of claim 2,
    상기 폴리아미드 수지는 Polyamide 6 또는 Polyamide 6,6인 것인, 다층 복합재료.The polyamide resin is Polyamide 6 or Polyamide 6,6, multilayer composite material.
  4. 제1항에 있어서, The method of claim 1,
    상기 제1 시트층은 나노피브릴화 셀룰로오스의 현탁액과 제1 열가소성 매트릭스 고분자를 3:7 내지 5:5의 고형분 중량비로 혼합하여 제조되는 것인, 다층 복합재료. The first sheet layer is prepared by mixing a suspension of nanofibrillated cellulose and the first thermoplastic matrix polymer in a solid weight ratio of 3: 7 to 5: 5.
  5. 제1항에 있어서, The method of claim 1,
    상기 제2 시트층은 핫멜트 웹, 멜트블로운 부직포 또는 필름인, 다층 복합재료.And the second sheet layer is a hot melt web, meltblown nonwoven or film.
  6. 제5항에 있어서, The method of claim 5,
    상기 열 압착은 상기 제2 시트층이 핫멜트 웹인 경우 100~200℃, 멜트블로운 부직포 또는 필름인 경우 170~270 ℃에서 수행되는 것인, 다층 복합재료. The thermal pressing is performed at 100 to 200 ° C. when the second sheet layer is a hot melt web, and 170 to 270 ° C. when a meltblown nonwoven or film.
  7. 제1항에 있어서,The method of claim 1,
    상기 열 압착은 4 내지 100MPa의 압력 범위에서 수행되는 것인, 다층 복합재료.The thermal compression is to be carried out in a pressure range of 4 to 100MPa, multilayer composite material.
  8. 제1항에 있어서, The method of claim 1,
    상기 다층 복합재료는 20 내지 80 MPa 인장강도를 갖는 것인, 다층 복합재료.Wherein said multilayer composite material has a tensile strength of 20 to 80 MPa.
  9. 나노피브릴화 셀룰로오스 및 제1 열가소성 매트릭스 고분자 함유 용액을 건조 및 압착하여 제조한 제1 시트층의 하나 이상; 및 제2 열가소성 매트릭스 고분자를 함유하는 제2 시트층의 하나 이상을 적층한 다층 복합재료를 준비하는 제1 단계; 및At least one first sheet layer prepared by drying and pressing nanofibrillated cellulose and a first thermoplastic matrix polymer-containing solution; And a first step of preparing a multilayer composite material in which at least one of the second sheet layers containing the second thermoplastic matrix polymer is laminated. And
    압력을 가해 나노피브릴화 셀룰로오스의 취성(brittleness) 온도 미만에서 제1 열가소성 매트릭스 고분자와 제2 열가소성 매트릭스 고분자를 열 용융시키는 제2단계를 포함하며,Applying a pressure to thermally melt the first thermoplastic matrix polymer and the second thermoplastic matrix polymer below the brittleness temperature of the nanofibrillated cellulose,
    상기 하나 이상의 제1 시트층과 제2 시트층은 교대로 적층되는 것인, 다층 복합재료를 제조하는 방법.Wherein said at least one first sheet layer and said second sheet layer are laminated alternately.
  10. 제9항에 있어서,The method of claim 9,
    상기 제1 열가소성 매트릭스 고분자와 제2 열가소성 매트릭스 고분자는 동일 또는 상이한 폴리아미드 수지인, 다층 복합재료를 제조하는 방법.Wherein the first thermoplastic matrix polymer and the second thermoplastic matrix polymer are the same or different polyamide resins.
  11. 제1항 내지 제8항 중 어느 한 항에 따른 다층 복합재료가 적용된 강화 성형품.The reinforced molded article to which the multilayered composite material according to any one of claims 1 to 8 is applied.
PCT/KR2014/012556 2013-12-19 2014-12-19 Multilayered composite material using nanofibrilated cellulose and thermoplastic matrix polymer WO2015093884A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/106,147 US10093066B2 (en) 2013-12-19 2014-12-19 Multilayered composite material using nanofibrillated cellulose and thermoplastic matrix polymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130159710 2013-12-19
KR10-2013-0159710 2013-12-19
KR10-2014-0183422 2014-12-18
KR1020140183422A KR101677099B1 (en) 2013-12-19 2014-12-18 multi-layered composite using nanofibrillated cellulose and thermoplastic matrix polymer

Publications (1)

Publication Number Publication Date
WO2015093884A1 true WO2015093884A1 (en) 2015-06-25

Family

ID=53403137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012556 WO2015093884A1 (en) 2013-12-19 2014-12-19 Multilayered composite material using nanofibrilated cellulose and thermoplastic matrix polymer

Country Status (1)

Country Link
WO (1) WO2015093884A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108505211A (en) * 2017-02-27 2018-09-07 东丽纤维研究所(中国)有限公司 A kind of film cloth used for cosmetic

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060116883A (en) * 2005-05-11 2006-11-15 중앙특수제지(주) Paper for enveloping a plate in battery and a method for manufacturing the paper
KR20110039901A (en) * 2009-10-12 2011-04-20 현대자동차주식회사 Nylon-4 composites
JP2011202101A (en) * 2010-03-26 2011-10-13 Toppan Printing Co Ltd Sheet, and method for manufacturing the same
JP2013099940A (en) * 2011-10-13 2013-05-23 Daio Paper Corp Porous three-layer laminate sheet and method for manufacturing same, and separator for electricity storage element comprising three-layer laminate sheet
US20130171439A1 (en) * 2010-09-07 2013-07-04 Oded Shoseyov Cellulose-based composite materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060116883A (en) * 2005-05-11 2006-11-15 중앙특수제지(주) Paper for enveloping a plate in battery and a method for manufacturing the paper
KR20110039901A (en) * 2009-10-12 2011-04-20 현대자동차주식회사 Nylon-4 composites
JP2011202101A (en) * 2010-03-26 2011-10-13 Toppan Printing Co Ltd Sheet, and method for manufacturing the same
US20130171439A1 (en) * 2010-09-07 2013-07-04 Oded Shoseyov Cellulose-based composite materials
JP2013099940A (en) * 2011-10-13 2013-05-23 Daio Paper Corp Porous three-layer laminate sheet and method for manufacturing same, and separator for electricity storage element comprising three-layer laminate sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108505211A (en) * 2017-02-27 2018-09-07 东丽纤维研究所(中国)有限公司 A kind of film cloth used for cosmetic

Similar Documents

Publication Publication Date Title
KR101677099B1 (en) multi-layered composite using nanofibrillated cellulose and thermoplastic matrix polymer
Yang et al. Toward improved performances of para-aramid (PPTA) paper-based nanomaterials via aramid nanofibers (ANFs) and ANFs-film
WO2018080045A1 (en) Carbon fiber prepreg or carbon fiber-reinforced plastic, and interior and exterior material comprising same
JP6120415B2 (en) Structural core
WO2012008740A2 (en) Thermoplastic organic fiber, method for preparing the same, fiber composite board using the same and method for preparing the board
KR102083054B1 (en) Flame-retardant nonwoven fabric, molded article, and composite laminate
BRPI0509409B1 (en) aramid paper and aramid paper production process
EP1354095B1 (en) Non-woven sheet of aramid floc
JP2013511411A (en) Honeycomb core made from carbon fiber paper and articles made therefrom
WO2015016518A1 (en) Continuous fiber reinforced resin composite material and molded article thereof
Huang et al. High-performance para-aramid paper strengthened by ultrafine fiber pulp of polyphenylene sulfide
TW201545866A (en) Preform, sheet material, and integrated sheet material
EP2979855B1 (en) Laminate and method for producing same
CN111691069B (en) Puncture-resistant fiber composite membrane and preparation method thereof
JP2013511629A (en) Collapsible core based on carbon fiber paper and articles made therefrom
KR20110089346A (en) Processes for making sheet structures having improved compression performance
WO2015093884A1 (en) Multilayered composite material using nanofibrilated cellulose and thermoplastic matrix polymer
JP5779893B2 (en) Laminate made of nonwoven fabric and film
Zhang et al. Aramid nanofiber-based functional composite materials: Preparations, applications and perspectives
TWI763889B (en) Fiber-reinforced body and components using the same
WO2019009539A2 (en) Non-woven fabric improved in weight reduction and sound absorption and method for manufacturing same
CN116964270A (en) Multi-layer refractory sheet
Yang et al. Highly Improved Microstructure and Properties of Poly (p-phenylene terephthalamide) Paper-based Materials via Hot Calendering Process
JPH11285094A (en) Speaker diaphragm
JP2012192564A (en) Composite material laminated plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870809

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15106147

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14870809

Country of ref document: EP

Kind code of ref document: A1