WO2015093571A1 - Ultrasonic sensor - Google Patents

Ultrasonic sensor Download PDF

Info

Publication number
WO2015093571A1
WO2015093571A1 PCT/JP2014/083579 JP2014083579W WO2015093571A1 WO 2015093571 A1 WO2015093571 A1 WO 2015093571A1 JP 2014083579 W JP2014083579 W JP 2014083579W WO 2015093571 A1 WO2015093571 A1 WO 2015093571A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
ultrasonic sensor
bumper
rigid wall
flat substrate
Prior art date
Application number
PCT/JP2014/083579
Other languages
French (fr)
Japanese (ja)
Inventor
陽二 東
尚広 堀田
齊藤 直人
亨 羽田
田中 正吉
大矢 茂正
伊藤 智彦
鈴木 貴博
繁雄 小林
Original Assignee
日清紡ホールディングス株式会社
日本無線株式会社
上田日本無線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡ホールディングス株式会社, 日本無線株式会社, 上田日本無線株式会社 filed Critical 日清紡ホールディングス株式会社
Priority to JP2015553605A priority Critical patent/JPWO2015093571A1/en
Publication of WO2015093571A1 publication Critical patent/WO2015093571A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/932Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles for parking operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/937Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details
    • G01S2015/938Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details in the bumper area

Definitions

  • the present invention relates to an ultrasonic sensor fixed to the surface of a flat substrate such as an automobile bumper.
  • the present invention also provides the position of an object existing in a space opposite to the ultrasonic sensor with respect to the flat substrate, which is configured by arranging and fixing an ultrasonic sensor on the surface of a flat substrate such as a bumper of an automobile. It also relates to a detection device for detection.
  • An ultrasonic sensor equipped with a piezoelectric vibrator is fixed to the bumper of the car in order to prevent contact between the car, which is likely to occur when the car is parked in a parking lot, and an object such as a person or an obstacle.
  • the ultrasonic signal transmitted from the piezoelectric vibrator is used to check for the presence of various objects or to measure their positions, and to emit a warning sound when an automobile approaches the object beyond a predetermined limit. Development of a system to inform the driver is in progress.
  • the ultrasonic sensor is fixed to the inner surface of the bumper, that is, the piezoelectric vibrator of the ultrasonic sensor is fixed to the inner surface of the bumper, the directivity of the ultrasonic signal transmitted from the piezoelectric vibrator through the bumper becomes narrower. There is a problem that it becomes unstable and it becomes difficult to accurately measure the position of the object existing in the space outside the bumper with high reliability. Therefore, there is a demand for an ultrasonic sensor that can transmit and receive an ultrasonic signal to a space on the opposite side of the bumper with a wide and appropriate directivity and high reliability even when the bumper is fixed to the inner surface of the bumper.
  • Patent Document 1 even when an ultrasonic sensor is accommodated in a housing and attached to the back surface of a vehicle bumper or a resin portion, ultrasonic waves are used as an ultrasonic sensor capable of ensuring good directivity.
  • a piezoelectric vibrator (ultrasonic vibrator) for transmitting and receiving and housing the piezoelectric vibrator, the piezoelectric vibrator being in contact with the inner surface of the bottom surface portion and being fixed, and the outer surface of the bottom surface portion being A housing that contacts the inner surface of the vehicle bumper or the resin portion, and the housing is in contact with the vehicle bumper or the resin portion and the piezoelectric vibrator at a part of a bottom surface portion of the housing.
  • an ultrasonic transmission portion made of a material having an acoustic impedance intermediate between the acoustic impedance of the piezoelectric vibrator and the acoustic impedance of the vehicle bumper or resin portion.
  • an ultrasonic sensor which is characterized in that through the ultrasonic transmission unit and said vehicle bumper or the resin portion is described.
  • an ultrasonic sensor provided with an ultrasonic element is used as an ultrasonic sensor mounting structure capable of improving design and ensuring predetermined directivity.
  • an ultrasonic sensor mounting structure that is mounted on the inner surface of a bumper and uses the wall member as a vibration transmission path, and the inner surface of the wall member is adjacent to the mounting portion of the ultrasonic sensor.
  • An annular groove is provided so as to surround the attachment site, and the relationship between the width W1 and depth D1 of the groove and the thickness T1 of the wall member is (D1 / T1) / (W1 / T1) 1 /
  • An ultrasonic sensor mounting structure that satisfies the formula 2 ⁇ 1 is described.
  • a groove is provided adjacent to the ultrasonic sensor mounting portion in the bumper, so that the rigidity of the groove forming portion in the bumper is the other portion of the bumper. It is described that it is possible to suppress the propagation of vibration to the outside of the groove portion because the groove portion forming portion of the bumper and the sensor mounting portion surrounded by the portion are likely to vibrate.
  • the piezoelectric vibrator built in the ultrasonic sensor is fixed in contact with a vehicle bumper or a casing that contacts the inner surface of the resin portion. According to the study of the present inventor, it was confirmed that in the piezoelectric vibrator built in the ultrasonic sensor with such a structure, the ultrasonic vibration generated from the piezoelectric vibrator directly propagates to the housing. . That is, propagation of the ultrasonic vibration generated from the piezoelectric vibrator to the bumper is not performed only through the ultrasonic transmission unit but also through the housing. Then, the ultrasonic vibration propagated through the casing then propagates to the bumper.
  • the ultrasonic vibration propagated to the bumper through these two paths causes a complicated vibration to be generated in the bumper including the mutual interference. Therefore, the ultrasonic vibration generated from the piezoelectric vibrator passes through the bumper and is influenced by the complicated vibration of the bumper when transmitted to the opposite side. For this reason, an ultrasonic signal pattern of a desired shape is transmitted to the space opposite to the ultrasonic sensor of the bumper, having a main lobe excellent in directivity and not accompanied by a noticeable side lobe. It becomes difficult.
  • the step of providing the groove on the bumper when the ultrasonic sensor is attached includes Since this is necessary, the installation work of the ultrasonic sensor becomes complicated. Further, the portion provided with the groove portion of the bumper has a problem that it is easily damaged because it is thin and has low mechanical strength. Further, the bumper processed in the thickness direction in this way tends to generate an unpredictable vibration due to the ultrasonic vibration applied from the ultrasonic sensor. Therefore, the ultrasonic vibration generated by the piezoelectric vibrator is When propagating to the opposite space, there is a tendency to become an ultrasonic signal with an abnormal pattern.
  • the ultrasonic sensor is fixed to the bumper through the bottom of a housing made of a conductive member such as aluminum. For this reason, the ultrasonic wave generated from the piezoelectric vibrator of the ultrasonic sensor propagates not only to the bumper but also to the surrounding housing, and the propagation efficiency of the ultrasonic vibration tends to decrease.
  • the object of the present invention is to fix the plate-like substrate easily on the surface of the flat substrate such as a bumper without lowering the mechanical strength of the flat substrate, and suitable for fixing to the flat substrate.
  • Ultrasonic signals with a wide directivity and pattern can be transmitted and received, so the position of an object in the space opposite to the ultrasonic sensor with respect to the flat substrate can be accurately and accurately determined. It is to provide an ultrasonic sensor capable of measuring.
  • the object of the present invention is also fixed to a flat substrate, and can accurately and accurately measure the position of an object existing in the space opposite to the ultrasonic sensor via the flat substrate. There is also providing a detection device.
  • the inventor fixes the bottom surface of the piezoelectric vibrator of the ultrasonic sensor or the bottom surface of the acoustic matching material layer to the surface of the flat substrate when the piezoelectric vibrator is provided with the acoustic matching material layer.
  • an ultrasonic signal is transmitted from the piezoelectric vibrator to the flat substrate by fixing and arranging a cylindrical rigid wall material around the lower part of the side surface of the ultrasonic vibrator via a gap, the ultrasonic wave
  • the present inventors have found that side lobes are less likely to occur in the signal pattern and that the range of the main lobe is reasonably wide, and the present invention has been completed based on this new knowledge.
  • the present invention includes a piezoelectric vibrator that is a columnar piezoelectric ceramic sintered body having an electrode layer on each of an upper surface and a lower surface, and may include an acoustic matching material layer below the piezoelectric vibrator.
  • An ultrasonic vibrator fixed to the surface of the flat substrate, a transmission circuit and a reception circuit electrically connected to each of the electrode layers of the ultrasonic vibration body, and each of the transmission circuit and the reception circuit
  • An arithmetic circuit that is electrically connected, and a cylinder that is disposed around the side surface of the ultrasonic vibrating body via a gap without being in contact with the ultrasonic vibrating body and is fixed to the surface of the flat substrate.
  • An ultrasonic sensor including a rigid wall material.
  • the cylindrical rigid wall material is formed from a resin material.
  • the cylindrical rigid wall material has a base portion with a relatively large wall thickness and an extension portion with a relatively small wall thickness extending upward from the base portion.
  • the upper surface of the cylindrical rigid wall material is opened, and the opening is covered with a lid.
  • At least a part of the ultrasonic vibrating body is accommodated in a cylindrical housing in a state where the side surface is covered with a buffer material, and the cylindrical housing is disposed inside the cylindrical rigid wall material.
  • the columnar piezoelectric ceramic sintered body is a porous columnar piezoelectric ceramic sintered body.
  • the flat substrate is an automobile bumper.
  • the present invention also includes a plate-like substrate, and a piezoelectric vibrator that is a columnar piezoelectric ceramic sintered body having electrode layers on each of the upper and lower surfaces, and an acoustic matching material layer is provided below the piezoelectric vibrator.
  • the ultrasonic vibration body fixed to the surface of the flat substrate at the bottom surface, the transmission circuit and the reception circuit electrically connected to each of the electrode layers of the ultrasonic vibration body, the transmission circuit and the reception Arithmetic circuits that are electrically connected to each of the circuits, and around the side surface of the ultrasonic vibration member, without being in contact with the ultrasonic vibration member, with a gap between them, on the surface of the flat substrate.
  • an apparatus for detecting the position of an object located in a space opposite to the ultrasonic sensor with respect to the flat substrate including an ultrasonic sensor including a cylindrical rigid wall member to be fixed.
  • the cylindrical rigid wall material is formed from a resin material.
  • the cylindrical rigid wall material has a base portion with a relatively large wall thickness and an extension portion with a relatively small wall thickness extending upward from the base portion.
  • the upper surface of the cylindrical rigid wall material is opened, and the opening is covered with a lid.
  • At least a part of the ultrasonic vibrating body is accommodated in a cylindrical housing in a state where the side surface is covered with a buffer material, and the cylindrical housing is disposed inside the cylindrical rigid wall material.
  • the columnar piezoelectric ceramic sintered body is a porous columnar piezoelectric ceramic sintered body.
  • the flat substrate is an automobile bumper.
  • the following three points can be considered as reasons for propagation.
  • a piezoelectric vibrator or a composite of a piezoelectric vibrator and an acoustic matching material layer (collectively referred to as an ultrasonic vibrator in this specification) directly contacts the surface of a planar substrate such as a bumper.
  • the propagation efficiency of the ultrasonic vibration is good. Further, it is possible to avoid complication of ultrasonic vibration due to the influence of peripheral members that cause other resonance.
  • the rigidity of the flat substrate in the area around the ultrasonic vibrator is increased. It is difficult to generate an ultrasonic signal having a complicated pattern due to the vibration of the flat substrate.
  • the ultrasonic sensor according to the present invention is suitable for a side lobe hardly generated in the space on the opposite side through the flat substrate, even when fixed to the surface of the flat substrate such as a bumper, and the range of the main lobe is suitably wide. Since an ultrasonic signal having a simple pattern is propagated, it is possible to transmit and receive the ultrasonic signal with high reliability with moderately wide directivity. Therefore, by using the detection device in which the ultrasonic sensor of the present invention is fixed to the surface of the flat substrate, the position of an object existing in a wide range of the space opposite to the ultrasonic sensor with respect to the flat substrate is accurately determined. It becomes possible to measure.
  • FIG. 3 is a cross-sectional view of an example of a detection device in which an ultrasonic sensor according to the present invention is fixed to the surface of a bumper, and a diagram schematically showing a connection state of an electric signal system (control device).
  • It is a chart figure which shows the directivity of the ultrasonic signal with the suitable breadth transmitted from the detection apparatus shown in FIG. (A) is sectional drawing which shows the example of another structure of the detection apparatus which fixed the ultrasonic sensor according to this invention to the surface of a bumper (however, illustration of an electric signal system is abbreviate
  • (A) is sectional drawing of an example of the detection apparatus which fixed the ultrasonic sensor which does not contain a cylindrical rigid wall material to the surface of a bumper
  • (b) is an ultrasonic wave transmitted from the detection apparatus of (a). It is a chart figure which shows the directivity (a side lobe is large) of a signal.
  • the ultrasonic sensor of the present invention may include a piezoelectric vibrator which is a columnar piezoelectric ceramic sintered body having electrode layers on each of an upper surface and a lower surface, and may include an acoustic matching material layer below the piezoelectric vibrator.
  • a piezoelectric vibrator fixed to the surface of the flat substrate at the bottom, a transmission circuit and a reception circuit electrically connected to each of the electrode layers of the ultrasonic vibration body, and a transmission circuit and a reception circuit, respectively Arranged around the side surface of the above-described ultrasonic vibration body and the electrically connected arithmetic circuit through the gap without being in contact with the ultrasonic vibration body, and fixed to the surface of the flat substrate.
  • the columnar piezoelectric ceramic sintered body is preferably a columnar shape or a polygonal columnar shape with a bottom surface of a square or more, and particularly preferably a columnar shape or a rectangular columnar shape with a bottom surface being a rectangle.
  • the thickness (height) may be smaller than the diameter of the lower surface, but the thickness (height) is preferably larger than the diameter of the lower surface, It is particularly preferable that the thickness ratio is in the range of 1.5 to 5 when the diameter of the lower surface is 1.
  • the columnar piezoelectric ceramic sintered body preferably has a height in the range of 10 to 30 mm.
  • Examples of the material of the columnar piezoelectric ceramic sintered body include lead zirconate titanate (PZT), lead titanate, lead zirconate and barium titanate.
  • the columnar piezoelectric ceramic sintered body may be porous or non-porous, but is preferably porous. In the porous columnar piezoelectric ceramic sintered body, pores having an average diameter in the range of 1 to 100 ⁇ m are dispersed, and the porosity is preferably in the range of 5 to 50% by volume.
  • the porous columnar piezoelectric ceramic sintered body is formed into a columnar shape by mixing a mixture containing piezoelectric ceramic powder, a binder, and a pore forming material into a columnar shape, and then the columnar molded body is heated to a temperature equal to or higher than the thermal decomposition temperature of the pore forming material. It can be produced by heating to temperature to decompose and remove the pore-forming material and to sinter the piezoelectric ceramic powder.
  • An example of the binder is polyvinyl alcohol.
  • the pore forming material is preferably a spherical resin material. Examples of the spherical resin material include polymethyl methacrylate and foamed polystyrene.
  • the columnar piezoelectric ceramic sintered body is preferably a piezoelectric vibrator polarized in the thickness direction. Examples of the material for the electrode layer include gold and silver.
  • the piezoelectric vibrator (also referred to as an ultrasonic vibrator) included in the ultrasonic sensor of the present invention may be directly fixed to the surface of the flat substrate at the bottom thereof, or the piezoelectric vibrator An acoustic matching material layer may be interposed between the substrate and the flat substrate.
  • the material of the acoustic matching material layer include a synthetic resin (eg, epoxy resin, urethane resin) and rubber (eg, hard rubber).
  • the side surface and top surface of the piezoelectric vibrator may be covered with a buffer material.
  • the buffer material include cork, bake material, resin (eg, epoxy resin) and rubber (eg, hard rubber).
  • the buffer material may disperse a substance that absorbs or reflects ultrasonic waves.
  • the piezoelectric vibrator may be accommodated in the cylindrical housing. Examples of the material of the cylindrical housing include metal (aluminum) and synthetic resin (eg, epoxy resin).
  • the cylindrical rigid wall material is arranged around the side surface of the ultrasonic vibration body (particularly, around the lower portion of the side surface) without being in direct contact with the ultrasonic vibration body. And fixed to the surface of the flat substrate.
  • This cylindrical rigid wall material absorbs Lamb waves generated in a flat substrate such as a bumper by ultrasonic vibration transmitted from a piezoelectric vibrator, and has the effect of confining it inside the cylindrical rigid wall material. It is considered that the ultrasonic vibration transmitted from the vibrator appears as an ultrasonic signal having a preferable pattern having a main lobe with a small side lobe and a suitable width in a space on the opposite side of the flat substrate.
  • the material of the cylindrical rigid wall material is preferably the same material as that of the flat substrate or a material having higher rigidity than the material of the flat substrate.
  • the material of the cylindrical rigid wall material include metals (eg, aluminum, stainless steel) and synthetic resins (eg, olefin resin).
  • the height of the cylindrical rigid wall material is preferably at least twice that of the flat substrate and is in the range of 2 to 50 times. It is particularly preferred.
  • the gap between the lower portion of the side surface of the ultrasonic vibrator and the cylindrical rigid wall material is generally 2 mm or less, preferably in the range of 0.01 to 2 mm, particularly preferably in the range of 0.1 to 1 mm.
  • the diameter (longest diameter) of the region of the flat substrate surrounded by the cylindrical rigid wall material may be 1 ⁇ 2 or less of the wavelength ⁇ of the vertical ultrasonic wave signal propagating through the flat substrate.
  • the ultrasonic sensor of the present invention and the detection device in which the ultrasonic sensor is fixed to the surface of the flat substrate will be described with reference to the accompanying drawings, taking as an example the case where the flat substrate is a bumper for an automobile.
  • FIG. 1 shows a cross-sectional view of an example of a detection device in which an ultrasonic sensor according to the present invention is fixed to the surface of a bumper.
  • the detection device includes a bumper 40 and an ultrasonic sensor 10 fixed to the surface of the bumper.
  • the ultrasonic sensor 10 includes a piezoelectric vibrator (also referred to as an ultrasonic vibrator) 14 that is a columnar piezoelectric ceramic sintered body 12 provided with electrode layers 13a and 13b on each of an upper surface and a lower surface, and a folded electrode layer 13c. .
  • a piezoelectric vibrator also referred to as an ultrasonic vibrator
  • an acoustic matching material layer 19 is provided below the piezoelectric vibrator 14, thereby constituting an ultrasonic vibrator, and the ultrasonic vibrator is formed of the acoustic matching material layer 19. It is fixed to the surface of the bumper 40 at the bottom.
  • a transmission circuit 28 and a reception circuit 29 are electrically connected to each of the electrode layers of the piezoelectric vibrator 14, and an arithmetic circuit 30 is electrically connected to each of the transmission circuit 28 and the reception circuit 29 via a lead wire 15. ing.
  • the electrical connection may be a wired connection via a lead wire, or may be a wireless connection.
  • an ultrasonic vibrator (comprised of a piezoelectric vibrator 14 and an acoustic matching material layer 19) is in contact with the periphery of the side surface of the acoustic matching material layer 19 provided at the lower part of the ultrasonic vibrator. Instead, the cylindrical rigid wall member 21 is disposed through the gap 25 and is fixed to the surface of the bumper 40.
  • the piezoelectric vibrator 14 is housed in a cylindrical housing 17 whose side surface and upper surface are covered with a buffer material 16 and whose upper part is closed and whose lower part is open.
  • the lower opening of the cylindrical housing 17 is closed by a bottom plate 18.
  • the cylindrical rigid wall member 21 disposed around the ultrasonic vibrator (piezoelectric vibrator 14 + acoustic matching material layer 19) with a gap is provided with an outer extension 22 and an inner extension 23 at the lower part. Yes.
  • the cylindrical rigid wall material 21 may be fixed to the surface of the bumper 40 by a method such as adhesion, or the cylindrical rigid wall material 21 may be formed integrally with the bumper 40.
  • the bottom surface of the cylindrical housing 17 that accommodates the piezoelectric vibrator 14 and the buffer material 16 is supported by the inner extension 23 of the cylindrical rigid wall material 21 via the bottom plate 18 and the annular flat metal material 24. ing.
  • the upper surface of the cylindrical housing 17 is fixed by a screw lid 26 that is detachably fixed to the upper portion of the cylindrical rigid wall member 21. That is, the cylindrical housing 17 that houses the piezoelectric vibrator 14 and the buffer material 16 is fixed in a state of being sandwiched between the inner extension 23 of the cylindrical rigid wall member 21 and the screw lid 26.
  • the reason why the annular flat metal member 24 is interposed between the inner extension 23 and the cylindrical housing 17 is to reinforce the rigidity of the inner extension 23.
  • the thickness of the acoustic matching material layer 19 is reduced, that is, the inner extension 23. It is preferable to reduce the thickness of the material (reducing the height). However, if the thickness of the inner extension 23 is reduced, the rigidity is lowered and the effect as a cylindrical rigid wall material is reduced. For this reason, the rigidity of the inner extension 23 is reinforced by interposing the annular flat metal member 24.
  • the control device 27 is electrically connected to each of the transmission circuit 28 and the reception circuit 29 that are electrically connected to each of the electrode layers 13 a and 13 c of the piezoelectric vibrator 14, and each of the transmission circuit 28 and the reception circuit 29.
  • the arithmetic circuit 30 is included.
  • the transmission circuit 28, the reception circuit 29, and the arithmetic circuit 30 are each electrically connected to a power source 31.
  • the position of an object such as a person or an obstacle present in the space opposite to the ultrasonic sensor 10 with respect to the bumper 40 can be measured as follows. First, when the arithmetic circuit 30 counts the time T 0 , the transmission circuit 28 transmits pulsed electric energy to the piezoelectric vibrator 14 of the ultrasonic vibrator. The piezoelectric vibrator 14 converts electrical energy into an ultrasonic signal. The ultrasonic wave generated by the piezoelectric vibrator 14 passes through the bumper 40 and is radiated to the outer surface of the bumper 40 as an ultrasonic signal. The emitted ultrasonic signal is reflected by the surface of the object existing in the outer space.
  • the reflected ultrasonic signal propagates again through the bumper 40 and reaches the piezoelectric vibrator 14.
  • the reflected ultrasonic signal is converted into electric energy by the piezoelectric vibrator 14.
  • the electric energy converted by the piezoelectric vibrator is then sent to the receiving circuit 29.
  • the receiving circuit 29 removes noise of the electric energy, and only the electric energy generated due to the ultrasonic signal reflected on the surface of the object. Is sent to the arithmetic circuit 30.
  • the arithmetic circuit 30 counts the time T 1 when the electric energy is received, and obtains the distance (m) between the bumper 40 and the object from the following equation (I).
  • Distance between bumper and object (m) ⁇ Propagation speed of ultrasonic wave in air (m / second) ⁇ (T 1 ⁇ T 0 ) ⁇ / 2 (1)
  • FIG. 2 is a chart showing the directivity of the ultrasonic signal transmitted from the detection apparatus shown in FIG.
  • the material and size of each part of a detection apparatus are as follows. Note that the solid line in FIG. 2 represents the pattern of the ultrasonic signal based on the actual measurement value, and the broken line represents the pattern of the ultrasonic signal based on the calculated value obtained by the simulation.
  • Piezoelectric vibrator (14) resonance frequency 62.5 kHz
  • the detection device according to the present invention is compared with the detection device in which the ultrasonic sensor not including the cylindrical rigid wall material shown in FIG. As a result, side lobes are less likely to occur, and the range of the main lobe is moderately widened.
  • the ultrasonic vibrator includes an acoustic matching material layer, and is fixed to the surface of the bumper 40 at the bottom surface of the acoustic matching material layer. (The ultrasonic transducer does not include an acoustic matching material layer), the piezoelectric transducer is fixed to the surface of the bumper 40 at the bottom surface.
  • An example in which the bottom surface of the piezoelectric vibrator 14 is fixed to the surface of the bumper 40 is shown in FIG.
  • the piezoelectric vibrator 14 is directly fixed to the surface of the bumper 40 at the bottom surface, and around the ultrasonic vibrator, the buffer material 16 and the gap are interposed, A cylindrical rigid wall member 21 is fixedly arranged.
  • the material and size of each part of the detection device are as follows.
  • Piezoelectric vibrator (14) same as the piezoelectric vibrator of the apparatus of FIG. 1
  • Buffer material (16) Same as the buffer material of the apparatus of FIG. 1
  • FIG. 3 is a chart showing the directivity of the pattern of the ultrasonic signal transmitted from the detection device of (a). Note that the data in FIG. 3B is based on calculated values obtained by simulation. From this chart, even when the piezoelectric vibrator 14 is fixed to the surface of the bumper 40 at its bottom without interposing the acoustic matching material layer, the ultrasonic wave not including the cylindrical rigid wall material shown in FIG. It can be seen that side lobes are less likely to occur compared to a detection device in which the sensor is fixed to the surface of the bumper.
  • FIG. 4A is a cross-sectional view of an example of a detection device in which an ultrasonic sensor not including a cylindrical rigid wall material is fixed to the surface of a bumper.
  • the piezoelectric vibrator 14 is directly fixed to the surface of the bumper 40 at the bottom surface, and a buffer material 16 is provided around the piezoelectric vibrator 14, but a cylindrical rigid wall is provided. No material is attached.
  • the rest of the configuration is the same as the configuration of the detection device in FIG.
  • FIG. 4 is a chart showing the directivity of the pattern of the ultrasonic signal transmitted from the detection device of (a). Note that the data in FIG. 4B is based on calculated values obtained by simulation. From this chart, it can be seen that in an ultrasonic sensor that does not include a cylindrical rigid wall material, a large side lobe is generated in the pattern of the ultrasonic signal that appears on the opposite side of the bumper.
  • the ultrasonic sensor of the present invention and the detection device in which the ultrasonic sensor is fixed to the surface of the flat substrate are described by taking the case where the flat substrate is a bumper for an automobile as an example.
  • the use of the ultrasonic sensor of the present invention is not limited to automobile bumpers.
  • the ultrasonic sensor of the present invention is fixed to the outside of the lid of the liquid tank, and the liquid level detection device of the liquid in the liquid tank, particularly corrosive gas (eg, hydrogen sulfide, sulfurous acid, nitrous acid, chlorine) is generated. It may be used as a liquid level detection device for liquid or liquid fuel such as gasoline.
  • the ultrasonic sensor of the present invention can be used as an intruder detection device by being fixed to the outer wall of a building or the inner surface of an indoor wall.
  • SYMBOLS 10 Ultrasonic sensor 12 Columnar piezoelectric ceramic sintered body 13a Upper surface electrode layer 13b Lower surface electrode layer 13c Folding electrode layer 14 Piezoelectric vibrator (ultrasonic vibrator) DESCRIPTION OF SYMBOLS 15 Lead wire 16 Buffer material 17 Cylindrical housing 18 Bottom plate 19 Acoustic matching material layer 20 Bottom surface 21 Cylindrical rigid wall material 22 Outer extension 23 Inner extension 24 Annular flat plate metal material 25 Gap 26 Screw lid 27 Control device 28 Transmission circuit 29 Receiving circuit 30 Arithmetic circuit 31 Power supply 40 Flat substrate (bumper)

Abstract

This ultrasonic sensor contains the following: an ultrasonic transducer, the underside of which is affixed to the surface of a flat plate-shaped base, that contains a piezoelectric transducer element, said piezoelectric transducer element consisting of a piezoelectric sintered-ceramic column with electrode layers provided on the top and bottom surfaces thereof, and may be provided with an acoustic-matching-material layer at the bottom of the piezoelectric transducer element; a transmission circuit and a reception circuit electrically connected to the respective electrode layers on the piezoelectric transducer element; computation circuits electrically connected to said transmission circuit and reception circuit, respectively; and a rigid tubular wall material that is affixed to the surface of the flat plate-shaped base and laid out so as to surround the ultrasonic transducer without contacting same and with a gap therebetween. Said ultrasonic sensor is easy to affix to the surface of a flat plate-shaped base such as a bumper on a vehicle without reducing the mechanical strength of said flat plate-shaped base, can stably transmit and receive ultrasonic signals to and from a space on the opposite side of the flat plate-shaped base through said flat plate-shaped base with a suitable degree of directionality, and can precisely measure the position of an object in the space on the side of the flat plate-shaped base opposite the ultrasonic sensor.

Description

超音波センサUltrasonic sensor
 本発明は、自動車のバンパのような平板状基体の表面に固定する超音波センサに関する。本発明はまた、自動車のバンパのような平板状基体の表面に超音波センサを配置固定して構成した、平板状基体に対して超音波センサと反対側の空間内に存在する物体の位置を検知するための検知装置にも関する。 The present invention relates to an ultrasonic sensor fixed to the surface of a flat substrate such as an automobile bumper. The present invention also provides the position of an object existing in a space opposite to the ultrasonic sensor with respect to the flat substrate, which is configured by arranging and fixing an ultrasonic sensor on the surface of a flat substrate such as a bumper of an automobile. It also relates to a detection device for detection.
 自動車を駐車場にて駐車する際などの場合に発生しやすい自動車と人もしくは障害物などの物体との接触を未然に防ぐために、自動車のバンパに圧電振動子を備えた超音波センサを固定して、その圧電振動子から送信された超音波信号によって各種物体の有無の確認あるいはその位置の測定を行い、自動車がその物体に予め定められた限度を超えて近づいた場合に警告音を発して運転者に知らせるシステムの開発が進んでいる。 An ultrasonic sensor equipped with a piezoelectric vibrator is fixed to the bumper of the car in order to prevent contact between the car, which is likely to occur when the car is parked in a parking lot, and an object such as a person or an obstacle. The ultrasonic signal transmitted from the piezoelectric vibrator is used to check for the presence of various objects or to measure their positions, and to emit a warning sound when an automobile approaches the object beyond a predetermined limit. Development of a system to inform the driver is in progress.
 自動車のバンパに超音波センサを取り付けるための代表的な方法としては、バンパに貫通孔を設けてその貫通孔に超音波センサを固定する方法と、バンパの内側表面(自動車の車体に対面する側の表面)に超音波センサを固定する方法とが知られている。バンパの内側表面に超音波センサを固定する後者の固定方法はバンパに貫通孔を設ける方法と比較すると、貫通孔を設ける工程が不要となるため超音波センサの取り付け作業が容易になり、また自動車の外部から超音波センサが見えにくいことから自動車の外観が損なわれないとの利点がある。しかし、超音波センサをバンパの内側表面に固定する、すなわち超音波センサの圧電振動子をバンパの内側表面に固定すると、圧電振動子からバンパを通して送信される超音波信号の指向性が狭くなったり、不安定となったりして、バンパの外側の空間に存在する物体の位置を精度よく、かつ高い信頼性にて測定するのが難しくなるという問題がある。このため、バンパの内側表面に固定した場合でも、バンパを通して超音波信号を広い適度な指向性で、高い信頼性をもってバンパの反対側の空間に送受信できる超音波センサが望まれている。 As a typical method for attaching an ultrasonic sensor to a bumper of an automobile, there is a method of providing a through hole in the bumper and fixing the ultrasonic sensor to the through hole, and an inner surface of the bumper (the side facing the automobile body) And a method of fixing an ultrasonic sensor to the surface). The latter fixing method of fixing the ultrasonic sensor to the inner surface of the bumper makes it easier to install the ultrasonic sensor because the step of providing the through hole is not necessary compared to the method of providing the through hole in the bumper. Since the ultrasonic sensor is difficult to see from the outside, there is an advantage that the appearance of the automobile is not impaired. However, if the ultrasonic sensor is fixed to the inner surface of the bumper, that is, the piezoelectric vibrator of the ultrasonic sensor is fixed to the inner surface of the bumper, the directivity of the ultrasonic signal transmitted from the piezoelectric vibrator through the bumper becomes narrower. There is a problem that it becomes unstable and it becomes difficult to accurately measure the position of the object existing in the space outside the bumper with high reliability. Therefore, there is a demand for an ultrasonic sensor that can transmit and receive an ultrasonic signal to a space on the opposite side of the bumper with a wide and appropriate directivity and high reliability even when the bumper is fixed to the inner surface of the bumper.
 特許文献1には、超音波センサをハウジング内に収容して、車両用バンパや樹脂部分の裏面に取り付けた場合でも、良好な指向性を確保することが可能な超音波センサとして、超音波を送受信する圧電振動子(超音波振動子)と、該圧電振動子を収容するものであって、当該圧電振動子を底面部の内面に接触させて固定するとともに、当該底面部の外面が、前記車両用バンパあるいは樹脂部分の内面に当接する筐体とを有し、該筐体の底面部の一部に、前記車両用バンパあるいは樹脂部分及び前記圧電振動子と接触するように、前記筐体の材質とは異なる材質であって、前記圧電振動子の音響インピーダンスと前記車両用バンパあるいは樹脂部分の音響インピーダンスとの中間の音響インピーダンスを有する材質からなる超音波伝達部を形成し、前記超音波の送受信を、前記超音波伝達部及び前記車両用バンパあるいは樹脂部分を介して行うことを特徴とする超音波センサが記載されている。 In Patent Document 1, even when an ultrasonic sensor is accommodated in a housing and attached to the back surface of a vehicle bumper or a resin portion, ultrasonic waves are used as an ultrasonic sensor capable of ensuring good directivity. A piezoelectric vibrator (ultrasonic vibrator) for transmitting and receiving and housing the piezoelectric vibrator, the piezoelectric vibrator being in contact with the inner surface of the bottom surface portion and being fixed, and the outer surface of the bottom surface portion being A housing that contacts the inner surface of the vehicle bumper or the resin portion, and the housing is in contact with the vehicle bumper or the resin portion and the piezoelectric vibrator at a part of a bottom surface portion of the housing. And forming an ultrasonic transmission portion made of a material having an acoustic impedance intermediate between the acoustic impedance of the piezoelectric vibrator and the acoustic impedance of the vehicle bumper or resin portion. And the transmission and reception of ultrasonic waves, an ultrasonic sensor which is characterized in that through the ultrasonic transmission unit and said vehicle bumper or the resin portion is described.
 特許文献2には、意匠性を向上し、且つ、所定の指向性を確保することができる超音波センサの取り付け構造として、超音波素子を備える超音波センサを、車両における樹脂製の壁部材(例、バンパ)の内面に取り付けてなり、前記壁部材を振動の伝達経路とする超音波センサの取り付け構造であって、前記壁部材の内面には、前記超音波センサの取り付け部位に隣接して前記取り付け部位を取り囲むように環状の溝部が設けられ、前記溝部の幅W1,深さD1と、前記壁部材の厚さT1との関係が、(D1/T1)/(W1/T1)1/2≦1の式を満たしている超音波センサの取り付け構造が記載されている。
 この文献には、上記の超音波センサの取り付け構造では、バンパにおける超音波センサの取り付け部位に隣接して溝部が設けられており、これにより、バンパにおける溝部形成部位の剛性がバンパの他の部位よりも低くなっていて、バンパにおける溝部形成部位と該部位に囲まれたセンサ取り付け部位が振動しやすくなるため、溝部よりも外側への振動の伝播を抑制することができると記載されている。
In Patent Document 2, an ultrasonic sensor provided with an ultrasonic element is used as an ultrasonic sensor mounting structure capable of improving design and ensuring predetermined directivity. For example, an ultrasonic sensor mounting structure that is mounted on the inner surface of a bumper and uses the wall member as a vibration transmission path, and the inner surface of the wall member is adjacent to the mounting portion of the ultrasonic sensor. An annular groove is provided so as to surround the attachment site, and the relationship between the width W1 and depth D1 of the groove and the thickness T1 of the wall member is (D1 / T1) / (W1 / T1) 1 / An ultrasonic sensor mounting structure that satisfies the formula 2 ≦ 1 is described.
In this document, in the above-described ultrasonic sensor mounting structure, a groove is provided adjacent to the ultrasonic sensor mounting portion in the bumper, so that the rigidity of the groove forming portion in the bumper is the other portion of the bumper. It is described that it is possible to suppress the propagation of vibration to the outside of the groove portion because the groove portion forming portion of the bumper and the sensor mounting portion surrounded by the portion are likely to vibrate.
特開2007-142967号公報JP 2007-142967 A 特開2010-14496号公報JP 2010-14496 A
 本願発明の発明者は、自動車のバンパのような平板状基体の表面に固定する超音波センサに関する開発研究を進めるに際して、上記の各特許文献に開示されている超音波センサの構造とその超音波センサとしての性能を検討した。その結果、それぞれの特許文献に開示されている超音波センサを自動車のバンパのような平板状基体の表面に固定して使用した場合には、以下に述べるような問題点があることを見いだした。 When the inventor of the present invention advances development research on an ultrasonic sensor fixed to the surface of a flat substrate such as a bumper of an automobile, the structure of the ultrasonic sensor disclosed in each of the above patent documents and the ultrasonic wave thereof are disclosed. The performance as a sensor was examined. As a result, when the ultrasonic sensor disclosed in each patent document is used while being fixed to the surface of a flat substrate such as a bumper of an automobile, it has been found that there are the following problems. .
 特許文献1に記載されている超音波センサでは、超音波センサに内蔵される圧電振動子が、車両用バンパあるいは樹脂部分の内面に当接する筐体に接触した状態で固定されている。本願発明者の検討によると、このような構造にて超音波センサに内蔵されている圧電振動子では、その圧電振動子から発生する超音波振動が筐体へも直接伝播することが確認された。すなわち、圧電振動子から発生する超音波振動のバンパへの伝播は超音波伝達部を介してのみ行われるのでは無く、筐体を介しても行われる。そして、この筐体を介して伝播した超音波振動は、次いでバンパにも伝播する。これらの二通りの経路を介してバンパに伝播した超音波振動は、互いの干渉をも含めて、バンパに複雑な振動の発生をもたらす。従って、圧電振動子から発生した超音波振動は、バンパを通過し、その反対側に送信される際にバンパの複雑な振動の影響を受けることになる。このため、バンパの超音波センサとは反対側の空間に対して、指向性に優れたメインローブを持ち、目立ったサイドローブの発生を伴わないような所望の形状の超音波信号パターンを送信することが困難となる。 In the ultrasonic sensor described in Patent Document 1, the piezoelectric vibrator built in the ultrasonic sensor is fixed in contact with a vehicle bumper or a casing that contacts the inner surface of the resin portion. According to the study of the present inventor, it was confirmed that in the piezoelectric vibrator built in the ultrasonic sensor with such a structure, the ultrasonic vibration generated from the piezoelectric vibrator directly propagates to the housing. . That is, propagation of the ultrasonic vibration generated from the piezoelectric vibrator to the bumper is not performed only through the ultrasonic transmission unit but also through the housing. Then, the ultrasonic vibration propagated through the casing then propagates to the bumper. The ultrasonic vibration propagated to the bumper through these two paths causes a complicated vibration to be generated in the bumper including the mutual interference. Therefore, the ultrasonic vibration generated from the piezoelectric vibrator passes through the bumper and is influenced by the complicated vibration of the bumper when transmitted to the opposite side. For this reason, an ultrasonic signal pattern of a desired shape is transmitted to the space opposite to the ultrasonic sensor of the bumper, having a main lobe excellent in directivity and not accompanied by a noticeable side lobe. It becomes difficult.
 特許文献2に記載されている超音波センサの固定方法、すなわち超音波センサの取り付け部位を取り囲むように、バンパに環状の溝部を設ける方法では、超音波センサの取り付け時にバンパに溝部を設ける工程が必要となるため、超音波センサの取り付け作業が煩雑になる。またバンパの溝部を設けた部分は肉厚が薄く機械的強度が低くなるため、破損し易くなるという問題がある。さらに、このように厚み方向に加工したバンパでは、超音波センサから付与される超音波振動により、予測ができない振動を発生する傾向があり、従って、圧電振動子が発生した超音波振動がバンパの反対側の空間に伝播する際に、異常なパターンの超音波信号となる傾向がある。さらにまた、特許文献2に記載された超音波センサの取り付け構造では、超音波センサのバンパへの固定は、アルミニウムなどの導電性部材からなるハウジングの底部を介して行われている。このため、超音波センサの圧電振動子から発生する超音波はバンパのみならず、周囲のハウジングにも伝播し、超音波振動の伝播効率が低下しやすくなる。 In the method of fixing the ultrasonic sensor described in Patent Document 2, that is, the method of providing an annular groove on the bumper so as to surround the attachment site of the ultrasonic sensor, the step of providing the groove on the bumper when the ultrasonic sensor is attached includes Since this is necessary, the installation work of the ultrasonic sensor becomes complicated. Further, the portion provided with the groove portion of the bumper has a problem that it is easily damaged because it is thin and has low mechanical strength. Further, the bumper processed in the thickness direction in this way tends to generate an unpredictable vibration due to the ultrasonic vibration applied from the ultrasonic sensor. Therefore, the ultrasonic vibration generated by the piezoelectric vibrator is When propagating to the opposite space, there is a tendency to become an ultrasonic signal with an abnormal pattern. Furthermore, in the ultrasonic sensor mounting structure described in Patent Document 2, the ultrasonic sensor is fixed to the bumper through the bottom of a housing made of a conductive member such as aluminum. For this reason, the ultrasonic wave generated from the piezoelectric vibrator of the ultrasonic sensor propagates not only to the bumper but also to the surrounding housing, and the propagation efficiency of the ultrasonic vibration tends to decrease.
 従って、本発明の目的は、バンパなどの平板状基体の表面に容易に、かつ平板状基体の機械的強度を低下させることなく固定することができ、かつ平板状基体に固定しても、好適な広がりを持つ指向性とパターンの超音波信号を送受信することができ、このため平板状基体に対して超音波センサと反対側の空間内に存在する物体の位置を高い信頼性にて精度よく測定することができる超音波センサを提供することにある。本発明の目的はまた、平板状基体に固定されていて、平板状基体を介して超音波センサと反対側の空間内に存在する物体の位置を高い信頼性にて精度よく測定することができる検知装置を提供することにもある。 Therefore, the object of the present invention is to fix the plate-like substrate easily on the surface of the flat substrate such as a bumper without lowering the mechanical strength of the flat substrate, and suitable for fixing to the flat substrate. Ultrasonic signals with a wide directivity and pattern can be transmitted and received, so the position of an object in the space opposite to the ultrasonic sensor with respect to the flat substrate can be accurately and accurately determined. It is to provide an ultrasonic sensor capable of measuring. The object of the present invention is also fixed to a flat substrate, and can accurately and accurately measure the position of an object existing in the space opposite to the ultrasonic sensor via the flat substrate. There is also providing a detection device.
 本発明者は、超音波センサの圧電振動子の底面、あるいは圧電振動子に音響整合材料層が備えられている場合には、その音響整合材料層の底面、を平板状基体の表面に固定し、その超音波振動体の側面の下部の周囲に間隙を介して、筒状剛性壁材を固定配置することによって、圧電振動子から平板状基体に超音波信号を送信したときに、その超音波信号のパターンにはサイドローブが発生しにくくなり、メインローブの範囲が適度に広くなることを見出して、この新たな知見に基づき、本発明を完成させた。 The inventor fixes the bottom surface of the piezoelectric vibrator of the ultrasonic sensor or the bottom surface of the acoustic matching material layer to the surface of the flat substrate when the piezoelectric vibrator is provided with the acoustic matching material layer. When an ultrasonic signal is transmitted from the piezoelectric vibrator to the flat substrate by fixing and arranging a cylindrical rigid wall material around the lower part of the side surface of the ultrasonic vibrator via a gap, the ultrasonic wave The present inventors have found that side lobes are less likely to occur in the signal pattern and that the range of the main lobe is reasonably wide, and the present invention has been completed based on this new knowledge.
 従って、本発明は、上面と下面のそれぞれに電極層を備えた柱状圧電セラミック焼結体である圧電振動子を含み、該圧電振動子の下部に音響整合材料層を備えていてもよい、底面にて平板状基体の表面に固定される超音波振動体、該超音波振動体の電極層の各々に電気的に接続している送信回路と受信回路、該送信回路と該受信回路の各々に電気的に接続している演算回路、そして上記超音波振動体の側面の周囲に、該超音波振動体と接触することなく、間隙を介して配置され、平板状基体の表面に固定される筒状剛性壁材を含む超音波センサにある。 Therefore, the present invention includes a piezoelectric vibrator that is a columnar piezoelectric ceramic sintered body having an electrode layer on each of an upper surface and a lower surface, and may include an acoustic matching material layer below the piezoelectric vibrator. An ultrasonic vibrator fixed to the surface of the flat substrate, a transmission circuit and a reception circuit electrically connected to each of the electrode layers of the ultrasonic vibration body, and each of the transmission circuit and the reception circuit An arithmetic circuit that is electrically connected, and a cylinder that is disposed around the side surface of the ultrasonic vibrating body via a gap without being in contact with the ultrasonic vibrating body and is fixed to the surface of the flat substrate. An ultrasonic sensor including a rigid wall material.
 本発明の超音波センサの好ましい態様は、次の通りである。
(1)筒状剛性壁材が樹脂材料から形成されている。
(2)筒状剛性壁材が相対的に壁厚が大きい基部と該基部から上側に延びる相対的に壁厚が小さい延長部を有する。
(3)筒状剛性壁材の上面が開口し、その開口が蓋体により覆われている。
(4)超音波振動体の少なくとも一部がその側面を緩衝材で覆われた状態にて筒状ハウジングに収容され、この筒状ハウジングが筒状剛性壁材の内側に配置されている。
(5)柱状圧電セラミック焼結体が多孔質柱状圧電セラミック焼結体である。
(6)平板状基体が自動車のバンパである。
Preferred embodiments of the ultrasonic sensor of the present invention are as follows.
(1) The cylindrical rigid wall material is formed from a resin material.
(2) The cylindrical rigid wall material has a base portion with a relatively large wall thickness and an extension portion with a relatively small wall thickness extending upward from the base portion.
(3) The upper surface of the cylindrical rigid wall material is opened, and the opening is covered with a lid.
(4) At least a part of the ultrasonic vibrating body is accommodated in a cylindrical housing in a state where the side surface is covered with a buffer material, and the cylindrical housing is disposed inside the cylindrical rigid wall material.
(5) The columnar piezoelectric ceramic sintered body is a porous columnar piezoelectric ceramic sintered body.
(6) The flat substrate is an automobile bumper.
 本発明はまた、平板状基体、そして上面と下面のそれぞれに電極層を備えた柱状圧電セラミック焼結体である圧電振動子を含み、該圧電振動子の下部に音響整合材料層を備えていてもよい、底面にて平板状基体の表面に固定される超音波振動体、該超音波振動体の電極層の各々に電気的に接続している送信回路と受信回路、該送信回路と該受信回路の各々に電気的に接続している演算回路、そして上記超音波振動体の側面の周囲に、該超音波振動体と接触することなく、間隙を介して配置され、平板状基体の表面に固定される筒状剛性壁材を含む超音波センサを含む、平板状基体に対して超音波センサと反対側の空間内に位置する物体の位置の検知装置にもある。 The present invention also includes a plate-like substrate, and a piezoelectric vibrator that is a columnar piezoelectric ceramic sintered body having electrode layers on each of the upper and lower surfaces, and an acoustic matching material layer is provided below the piezoelectric vibrator. The ultrasonic vibration body fixed to the surface of the flat substrate at the bottom surface, the transmission circuit and the reception circuit electrically connected to each of the electrode layers of the ultrasonic vibration body, the transmission circuit and the reception Arithmetic circuits that are electrically connected to each of the circuits, and around the side surface of the ultrasonic vibration member, without being in contact with the ultrasonic vibration member, with a gap between them, on the surface of the flat substrate. There is also an apparatus for detecting the position of an object located in a space opposite to the ultrasonic sensor with respect to the flat substrate, including an ultrasonic sensor including a cylindrical rigid wall member to be fixed.
 本発明の検知装置の好ましい態様は、次の通りである。
(1)筒状剛性壁材が樹脂材料から形成されている。
(2)筒状剛性壁材が相対的に壁厚が大きい基部と該基部から上側に延びる相対的に壁厚が小さい延長部を有する。
(3)筒状剛性壁材の上面が開口し、その開口が蓋体により覆われている。
(4)超音波振動体の少なくとも一部がその側面を緩衝材で覆われた状態にて筒状ハウジングに収容され、この筒状ハウジングが筒状剛性壁材の内側に配置されている。
(5)柱状圧電セラミック焼結体が多孔質柱状圧電セラミック焼結体である。
(6)平板状基体が自動車のバンパである。
Preferred embodiments of the detection device of the present invention are as follows.
(1) The cylindrical rigid wall material is formed from a resin material.
(2) The cylindrical rigid wall material has a base portion with a relatively large wall thickness and an extension portion with a relatively small wall thickness extending upward from the base portion.
(3) The upper surface of the cylindrical rigid wall material is opened, and the opening is covered with a lid.
(4) At least a part of the ultrasonic vibrating body is accommodated in a cylindrical housing in a state where the side surface is covered with a buffer material, and the cylindrical housing is disposed inside the cylindrical rigid wall material.
(5) The columnar piezoelectric ceramic sintered body is a porous columnar piezoelectric ceramic sintered body.
(6) The flat substrate is an automobile bumper.
 本発明の超音波センサと検知装置において、バンパなどの平面状基体の反対側の空間に対して、メインローブの範囲が適度に広く、かつサイドローブの発生が抑制されるパターンの超音波信号が伝播する理由としては、下記の三点が考えられる。
 第一に、圧電振動子、あるいは圧電振動子と音響整合材料層との複合体(本明細書では、これらをまとめて超音波振動体という)が、バンパなどの平面状基体の表面に直接接触した状態で固定されていることにより、圧電振動子から発生する超音波振動は、直接あるいは音響整合材料層を介してバンパなどの平面状基体に伝播するため、その超音波振動の伝播効率が良く、また他の共振を起こすような周辺部材の影響による超音波振動の複雑化を回避することができる。
 第二に、超音波振動体の周囲に、超音波振動体と接触することなく、バンパなどの平板状基体に固定されている筒状剛性壁材により、平板状基体内をその表面に沿って伝搬する一般にラム波と呼ばれる横波の、筒状剛性壁材の固定位置を越えての平板状基体内の伝播を抑制することが可能となる。
 第三に、平板状基体の表面に筒状剛性壁材を固定配置することによって超音波振動体の周囲の領域における平板状基体の剛性が高くなるため、平板状基体に伝播した超音波振動が平板状基体の振動によって複雑なパターンの超音波信号となりにくい。
In the ultrasonic sensor and the detection device of the present invention, an ultrasonic signal having a pattern in which the range of the main lobe is moderately wide and the occurrence of side lobes is suppressed with respect to the space on the opposite side of the planar substrate such as a bumper. The following three points can be considered as reasons for propagation.
First, a piezoelectric vibrator or a composite of a piezoelectric vibrator and an acoustic matching material layer (collectively referred to as an ultrasonic vibrator in this specification) directly contacts the surface of a planar substrate such as a bumper. Since the ultrasonic vibration generated from the piezoelectric vibrator propagates to a planar substrate such as a bumper directly or through an acoustic matching material layer, the propagation efficiency of the ultrasonic vibration is good. Further, it is possible to avoid complication of ultrasonic vibration due to the influence of peripheral members that cause other resonance.
Second, a cylindrical rigid wall material fixed to a flat substrate such as a bumper around the ultrasonic vibration member without contacting the ultrasonic vibration member, along the surface of the flat substrate. Propagation of a transverse wave, generally called a lamb wave, that propagates in the flat substrate beyond the fixing position of the cylindrical rigid wall material can be suppressed.
Thirdly, by fixing the cylindrical rigid wall material on the surface of the flat substrate, the rigidity of the flat substrate in the area around the ultrasonic vibrator is increased. It is difficult to generate an ultrasonic signal having a complicated pattern due to the vibration of the flat substrate.
 本発明の超音波センサは、バンパなどの平板状基体の表面に固定した場合でも、平板状基体を通して、その反対側の空間に、サイドローブが発生しにくく、メインローブの範囲が適度に広い好適なパターンの超音波信号を伝播するため、超音波信号を適度に広い指向性にて高い信頼性にて送受信できる。従って、本発明の超音波センサを平板状基体の表面に固定した検知装置を用いることにより、平板状基体に対して超音波センサと反対側の空間の広い範囲に存在する物体の位置を精度よく測定することが可能となる。 The ultrasonic sensor according to the present invention is suitable for a side lobe hardly generated in the space on the opposite side through the flat substrate, even when fixed to the surface of the flat substrate such as a bumper, and the range of the main lobe is suitably wide. Since an ultrasonic signal having a simple pattern is propagated, it is possible to transmit and receive the ultrasonic signal with high reliability with moderately wide directivity. Therefore, by using the detection device in which the ultrasonic sensor of the present invention is fixed to the surface of the flat substrate, the position of an object existing in a wide range of the space opposite to the ultrasonic sensor with respect to the flat substrate is accurately determined. It becomes possible to measure.
本発明に従う超音波センサをバンパの表面に固定した検知装置の一例の断面図および電気信号系統(制御装置)の接続状態を概略的に表す図である。FIG. 3 is a cross-sectional view of an example of a detection device in which an ultrasonic sensor according to the present invention is fixed to the surface of a bumper, and a diagram schematically showing a connection state of an electric signal system (control device). 図1に示した検知装置から送信される好適な広がりを持った超音波信号の指向性を示すチャート図である。It is a chart figure which shows the directivity of the ultrasonic signal with the suitable breadth transmitted from the detection apparatus shown in FIG. (a)は、本発明に従う超音波センサをバンパの表面に固定した検知装置の別の構成の例を示す断面図(但し、電気信号系統の図示は省略してある)であり、(b)は、(a)の検知装置から送信される超音波信号の指向性を示すチャート図である。(A) is sectional drawing which shows the example of another structure of the detection apparatus which fixed the ultrasonic sensor according to this invention to the surface of a bumper (however, illustration of an electric signal system is abbreviate | omitted), (b) These are chart figures which show the directivity of the ultrasonic signal transmitted from the detection apparatus of (a). (a)は、筒状剛性壁材を含まない超音波センサをバンパの表面に固定した検知装置の一例の断面図であり、(b)は、(a)の検知装置から送信される超音波信号の指向性(サイドローブが大きい)を示すチャート図である。(A) is sectional drawing of an example of the detection apparatus which fixed the ultrasonic sensor which does not contain a cylindrical rigid wall material to the surface of a bumper, (b) is an ultrasonic wave transmitted from the detection apparatus of (a). It is a chart figure which shows the directivity (a side lobe is large) of a signal.
 本発明の超音波センサは、上面と下面のそれぞれに電極層を備えた柱状圧電セラミック焼結体である圧電振動子を含み、その圧電振動子の下部に音響整合材料層を備えていてもよい、底面にて平板状基体の表面に固定される超音波振動体、その超音波振動体の電極層の各々に電気的に接続している送信回路と受信回路、送信回路と受信回路の各々に電気的に接続している演算回路、そして上記の超音波振動体の側面の周囲に、該超音波振動体と接触することなく、間隙を介して配置され、平板状基体の表面に固定される筒状剛性壁材を含む。 The ultrasonic sensor of the present invention may include a piezoelectric vibrator which is a columnar piezoelectric ceramic sintered body having electrode layers on each of an upper surface and a lower surface, and may include an acoustic matching material layer below the piezoelectric vibrator. , An ultrasonic vibrator fixed to the surface of the flat substrate at the bottom, a transmission circuit and a reception circuit electrically connected to each of the electrode layers of the ultrasonic vibration body, and a transmission circuit and a reception circuit, respectively Arranged around the side surface of the above-described ultrasonic vibration body and the electrically connected arithmetic circuit through the gap without being in contact with the ultrasonic vibration body, and fixed to the surface of the flat substrate. Includes cylindrical rigid wall material.
 上記の柱状圧電セラミック焼結体は、円柱状あるいは底面が四角以上の多角形の柱状であることが好ましく、円柱状あるいは底面が長方形の四角柱状であることが特に好ましい。柱状圧電セラミック焼結体が円柱状である場合には、下面の直径よりも厚さ(高さ)が小さくてもよいが、下面の直径よりも厚さ(高さ)が大きい方が好ましく、下面の直径を1としたときの厚さの比が1.5~5の範囲にあることが特に好ましい。柱状圧電セラミック焼結体は、高さが10~30mmの範囲にあることが好ましい。 The columnar piezoelectric ceramic sintered body is preferably a columnar shape or a polygonal columnar shape with a bottom surface of a square or more, and particularly preferably a columnar shape or a rectangular columnar shape with a bottom surface being a rectangle. When the columnar piezoelectric ceramic sintered body is cylindrical, the thickness (height) may be smaller than the diameter of the lower surface, but the thickness (height) is preferably larger than the diameter of the lower surface, It is particularly preferable that the thickness ratio is in the range of 1.5 to 5 when the diameter of the lower surface is 1. The columnar piezoelectric ceramic sintered body preferably has a height in the range of 10 to 30 mm.
 柱状圧電セラミック焼結体の材料の例としては、チタン酸ジルコン酸鉛(PZT)、チタン酸鉛、ジルコン酸鉛及びチタン酸バリウムを挙げることができる。柱状圧電セラミック焼結体は、多孔質であっても、多孔質でなくてもかまわないが、多孔質であることが好ましい。多孔質柱状圧電セラミック焼結体は、平均直径が1~100μmの範囲にある気孔が分散されていて、空隙率が5~50体積%の範囲にあることが好ましい。多孔質柱状圧電セラミック焼結体は、圧電セラミック粉末とバインダと気孔形成材料とを含む混合物を柱状に成形して柱状成形体を作成し、次いで柱状成形体を気孔形成材料の加熱分解温度以上の温度に加熱して、気孔形成材料を分解除去すると共に、圧電セラミック粉末を焼結させることによって製造することができる。バインダの例としてはポリビニルアルコールを挙げることができる。気孔形成材料は球状樹脂材料であることが好ましい。球状樹脂材料の例としては、ポリメチルメタクリレート及び発砲ポリスチロールを挙げることができる。柱状圧電セラミック焼結体は、厚さ方向に分極された圧電振動子であることが好ましい。電極層の材料の例としては、金及び銀を挙げることができる。 Examples of the material of the columnar piezoelectric ceramic sintered body include lead zirconate titanate (PZT), lead titanate, lead zirconate and barium titanate. The columnar piezoelectric ceramic sintered body may be porous or non-porous, but is preferably porous. In the porous columnar piezoelectric ceramic sintered body, pores having an average diameter in the range of 1 to 100 μm are dispersed, and the porosity is preferably in the range of 5 to 50% by volume. The porous columnar piezoelectric ceramic sintered body is formed into a columnar shape by mixing a mixture containing piezoelectric ceramic powder, a binder, and a pore forming material into a columnar shape, and then the columnar molded body is heated to a temperature equal to or higher than the thermal decomposition temperature of the pore forming material. It can be produced by heating to temperature to decompose and remove the pore-forming material and to sinter the piezoelectric ceramic powder. An example of the binder is polyvinyl alcohol. The pore forming material is preferably a spherical resin material. Examples of the spherical resin material include polymethyl methacrylate and foamed polystyrene. The columnar piezoelectric ceramic sintered body is preferably a piezoelectric vibrator polarized in the thickness direction. Examples of the material for the electrode layer include gold and silver.
 前述のように、本発明の超音波センサに含まれる圧電振動子(超音波振動子とも云う)は、その底部にて直接、平板状基体の表面に固定されていてもよく、あるいは圧電振動子と平板状基体との間に音響整合材料層を介在させてもよい。音響整合材料層の材料の例としては、合成樹脂(例、エポキシ樹脂、ウレタン樹脂)及びゴム(例、硬質ゴム)を挙げることができる。 As described above, the piezoelectric vibrator (also referred to as an ultrasonic vibrator) included in the ultrasonic sensor of the present invention may be directly fixed to the surface of the flat substrate at the bottom thereof, or the piezoelectric vibrator An acoustic matching material layer may be interposed between the substrate and the flat substrate. Examples of the material of the acoustic matching material layer include a synthetic resin (eg, epoxy resin, urethane resin) and rubber (eg, hard rubber).
 圧電振動子の側面及び上面は緩衝材で覆われていてもよい。緩衝材の例としては、コルク、ベーク材、樹脂(例、エポキシ樹脂)及びゴム(例、硬質ゴム)を挙げることができる。緩衝材は、超音波を吸収もしくは反射する物質を分散させてもよい。圧電振動子は筒体ハウジングに収容されていてもよい。筒体ハウジングの材料の例としては、金属(アルミニウム)及び合成樹脂(例、エポキシ樹脂)を挙げることができる。 The side surface and top surface of the piezoelectric vibrator may be covered with a buffer material. Examples of the buffer material include cork, bake material, resin (eg, epoxy resin) and rubber (eg, hard rubber). The buffer material may disperse a substance that absorbs or reflects ultrasonic waves. The piezoelectric vibrator may be accommodated in the cylindrical housing. Examples of the material of the cylindrical housing include metal (aluminum) and synthetic resin (eg, epoxy resin).
 本発明の超音波センサでは、筒状剛性壁材が、超音波振動体の側面の周囲(特に側面下部の周囲)に超音波振動体と直接接触すること無く,間隙を介して配置されていて、平板状基体の表面に固定される。この筒状剛性壁材は、圧電振動子から送信された超音波振動によりバンパなどの平板状基体に発生するラム波を吸収し、筒状剛性壁材の内部に閉じ込める効果をもたらし、これにより圧電振動子から送信された超音波振動は、平板状基体の反対側の空間にて、サイドローブが少なく、かつ好適な広さのメインローブをもつ好ましいパターンの超音波信号として現れると考えられる。 In the ultrasonic sensor according to the present invention, the cylindrical rigid wall material is arranged around the side surface of the ultrasonic vibration body (particularly, around the lower portion of the side surface) without being in direct contact with the ultrasonic vibration body. And fixed to the surface of the flat substrate. This cylindrical rigid wall material absorbs Lamb waves generated in a flat substrate such as a bumper by ultrasonic vibration transmitted from a piezoelectric vibrator, and has the effect of confining it inside the cylindrical rigid wall material. It is considered that the ultrasonic vibration transmitted from the vibrator appears as an ultrasonic signal having a preferable pattern having a main lobe with a small side lobe and a suitable width in a space on the opposite side of the flat substrate.
 筒状剛性壁材の材料は、平板状基体の材料と同じ材料であるか、平板状基体の材料よりも剛性が高い材料であることが好ましい。筒状剛性壁材の材料の例としては、金属(例、アルミニウム、ステンレススチール)及び合成樹脂(例、オレフィン樹脂)を挙げることができる。筒状剛性壁材の材料が平板状基体の材料と同じ材料である場合、筒状剛性壁材の高さは平板状基体の2倍以上であることが好ましく、2~50倍の範囲にあることが特に好ましい。超音波振動体の側面下部と筒状剛性壁材との間隙は、一般に2mm以下、好ましくは0.01~2mmの範囲、特に好ましくは0.1~1mmの範囲である。 The material of the cylindrical rigid wall material is preferably the same material as that of the flat substrate or a material having higher rigidity than the material of the flat substrate. Examples of the material of the cylindrical rigid wall material include metals (eg, aluminum, stainless steel) and synthetic resins (eg, olefin resin). When the material of the cylindrical rigid wall material is the same material as the material of the flat substrate, the height of the cylindrical rigid wall material is preferably at least twice that of the flat substrate and is in the range of 2 to 50 times. It is particularly preferred. The gap between the lower portion of the side surface of the ultrasonic vibrator and the cylindrical rigid wall material is generally 2 mm or less, preferably in the range of 0.01 to 2 mm, particularly preferably in the range of 0.1 to 1 mm.
 筒状剛性壁材で囲まれている平板状基体の領域の直径(最長径)は、平板状基体内を伝播するたて波超音波信号の波長λの1/2以下であってもよい。例えば、平板状基体内の超音波の伝播速度が2000m/秒で、超音波信号の周波数が60kHzである場合、筒状剛性壁材で囲まれている平板状基体の領域の直径(最長径)は16.5mm[=(2000×1000)/(60×1000)×1/2]以下である。 The diameter (longest diameter) of the region of the flat substrate surrounded by the cylindrical rigid wall material may be ½ or less of the wavelength λ of the vertical ultrasonic wave signal propagating through the flat substrate. For example, when the ultrasonic wave propagation speed in the flat substrate is 2000 m / sec and the frequency of the ultrasonic signal is 60 kHz, the diameter (longest diameter) of the region of the flat substrate surrounded by the cylindrical rigid wall material Is 16.5 mm or less (= (2000 × 1000) / (60 × 1000) × 1/2).
 次に、本発明の超音波センサそしてその超音波センサを平板状基体の表面に固定した検知装置について、平板状基体が自動車用のバンパである場合を例にとって添付図面を参照しながら説明する。 Next, the ultrasonic sensor of the present invention and the detection device in which the ultrasonic sensor is fixed to the surface of the flat substrate will be described with reference to the accompanying drawings, taking as an example the case where the flat substrate is a bumper for an automobile.
 図1は、本発明に従う超音波センサをバンパの表面に固定した検知装置の一例の断面図を示す。図1において、検知装置は、バンパ40とそのバンパの表面に固定された超音波センサ10とを含む。超音波センサ10は、上面と下面のそれぞれに電極層13a、13b、そしてさらに折返電極層13cを備えた柱状圧電セラミック焼結体12である圧電振動子(超音波振動子ともいう)14を含む。この図1の超音波センサでは、圧電振動子14の下部に音響整合材料層19が備えられていて、これにより超音波振動体を構成しており、超音波振動体は音響整合材料層19の底面にてバンパ40の表面に固定されている。圧電振動子14の電極層の各々には、送信回路28と受信回路29が電気的に接続され、送信回路28と受信回路29の各々には演算回路30がリード線15により電気的に接続している。なお、この電気的な接続は、リード線を介する有線接続であってもよいが、無線接続であってもよい。図1において、超音波振動体の下部に備えられている音響整合材料層19側面の周囲には、超音波振動体(圧電振動子14と音響整合材料層19とから構成されている)と接触することなく、間隙25を介して筒状剛性壁材21が配置されていて、バンパ40の表面に固定されている。 FIG. 1 shows a cross-sectional view of an example of a detection device in which an ultrasonic sensor according to the present invention is fixed to the surface of a bumper. In FIG. 1, the detection device includes a bumper 40 and an ultrasonic sensor 10 fixed to the surface of the bumper. The ultrasonic sensor 10 includes a piezoelectric vibrator (also referred to as an ultrasonic vibrator) 14 that is a columnar piezoelectric ceramic sintered body 12 provided with electrode layers 13a and 13b on each of an upper surface and a lower surface, and a folded electrode layer 13c. . In the ultrasonic sensor of FIG. 1, an acoustic matching material layer 19 is provided below the piezoelectric vibrator 14, thereby constituting an ultrasonic vibrator, and the ultrasonic vibrator is formed of the acoustic matching material layer 19. It is fixed to the surface of the bumper 40 at the bottom. A transmission circuit 28 and a reception circuit 29 are electrically connected to each of the electrode layers of the piezoelectric vibrator 14, and an arithmetic circuit 30 is electrically connected to each of the transmission circuit 28 and the reception circuit 29 via a lead wire 15. ing. The electrical connection may be a wired connection via a lead wire, or may be a wireless connection. In FIG. 1, an ultrasonic vibrator (comprised of a piezoelectric vibrator 14 and an acoustic matching material layer 19) is in contact with the periphery of the side surface of the acoustic matching material layer 19 provided at the lower part of the ultrasonic vibrator. Instead, the cylindrical rigid wall member 21 is disposed through the gap 25 and is fixed to the surface of the bumper 40.
 図1において、圧電振動子14は、側面及び上面が緩衝材16で覆われ、上部が閉じて下部が開口した筒状ハウジング17に収容されている。筒状ハウジング17の下部の開口は底板18で閉じられている。 1, the piezoelectric vibrator 14 is housed in a cylindrical housing 17 whose side surface and upper surface are covered with a buffer material 16 and whose upper part is closed and whose lower part is open. The lower opening of the cylindrical housing 17 is closed by a bottom plate 18.
 超音波振動体(圧電振動子14+音響整合材料層19)の周囲に間隙を介して配置されている筒状剛性壁材21は、下部に外側延長部22と内側延長部23とが備えられている。筒状剛性壁材21はバンパ40の表面に接着などの方法によって固定してもよいし、筒状剛性壁材21をバンパ40と一体的に成形してもよい。 The cylindrical rigid wall member 21 disposed around the ultrasonic vibrator (piezoelectric vibrator 14 + acoustic matching material layer 19) with a gap is provided with an outer extension 22 and an inner extension 23 at the lower part. Yes. The cylindrical rigid wall material 21 may be fixed to the surface of the bumper 40 by a method such as adhesion, or the cylindrical rigid wall material 21 may be formed integrally with the bumper 40.
 図1において、圧電振動子14と緩衝材16とを収容した筒状ハウジング17の底面は、底板18と環状平板状金属材24を介して筒状剛性壁材21の内側延長部23に支持されている。筒状ハウジング17の上面は、筒状剛性壁材21の上部に着脱可能に固定されたねじ蓋26により固定されている。すなわち、圧電振動子14と緩衝材16とを収容している筒状ハウジング17は筒状剛性壁材21の内側延長部23とねじ蓋26とに挟まれた状態で固定されている。内側延長部23と筒体ハウジング17との間に環状平板状金属材24を介在させるのは、内側延長部23の剛性を補強するためである。すなわち、音響整合材料層19を介在させた場合、その音響整合材料層19内での超音波信号の減衰を抑えるためには、音響整合材料層19の厚さを薄くする、すなわち内側延長部23の厚さを薄く(高さを低く)する方が好ましい。しかし、内側延長部23は、その厚さを薄くすると、剛性が低下して筒状剛性壁材としての効果が低減する。このため環状平板状金属材24を介在させて、内側延長部23の剛性を補強している。 In FIG. 1, the bottom surface of the cylindrical housing 17 that accommodates the piezoelectric vibrator 14 and the buffer material 16 is supported by the inner extension 23 of the cylindrical rigid wall material 21 via the bottom plate 18 and the annular flat metal material 24. ing. The upper surface of the cylindrical housing 17 is fixed by a screw lid 26 that is detachably fixed to the upper portion of the cylindrical rigid wall member 21. That is, the cylindrical housing 17 that houses the piezoelectric vibrator 14 and the buffer material 16 is fixed in a state of being sandwiched between the inner extension 23 of the cylindrical rigid wall member 21 and the screw lid 26. The reason why the annular flat metal member 24 is interposed between the inner extension 23 and the cylindrical housing 17 is to reinforce the rigidity of the inner extension 23. That is, when the acoustic matching material layer 19 is interposed, in order to suppress attenuation of the ultrasonic signal in the acoustic matching material layer 19, the thickness of the acoustic matching material layer 19 is reduced, that is, the inner extension 23. It is preferable to reduce the thickness of the material (reducing the height). However, if the thickness of the inner extension 23 is reduced, the rigidity is lowered and the effect as a cylindrical rigid wall material is reduced. For this reason, the rigidity of the inner extension 23 is reinforced by interposing the annular flat metal member 24.
 制御装置27は、圧電振動子14の電極層13a、13cの各々に電気的に接続している送信回路28と受信回路29、そして送信回路28と受信回路29の各々に電気的に接続している演算回路30を含む。送信回路28、受信回路29及び演算回路30はそれぞれ電源31に電気的に接続している。 The control device 27 is electrically connected to each of the transmission circuit 28 and the reception circuit 29 that are electrically connected to each of the electrode layers 13 a and 13 c of the piezoelectric vibrator 14, and each of the transmission circuit 28 and the reception circuit 29. The arithmetic circuit 30 is included. The transmission circuit 28, the reception circuit 29, and the arithmetic circuit 30 are each electrically connected to a power source 31.
 図1の検知装置では、次のようにしてバンパ40に対して超音波センサ10と反対側の空間内に存在する人もしくは障害物などの物体の位置を測定することができる。
 先ず、演算回路30が時間T0をカウントしたときに、送信回路28はパルス状の電気エネルギーを、超音波振動体の圧電振動子14に発信する。圧電振動子14は、電気エネルギーを超音波信号に変換する。圧電振動子14にて発生した超音波はバンパ40を通過して、バンパ40の外側表面に超音波信号として放射される。放射された超音波信号は、その外側空間に存在する物体の表面で反射する。反射された超音波信号は再びバンパ40を伝播して圧電振動子14に到達する。反射された超音波信号は圧電振動子14にて電気エネルギーに変換される。圧電振動子にて変換された電気エネルギーは次いで受信回路29に送られ、受信回路29は電気エネルギーのノイズを除去して、物体の表面で反射した超音波信号に起因して発生した電気エネルギーのみを演算回路30に送る。演算回路30は電気エネルギーを受けた時間T1をカウントし、下記の式(I)より、バンパ40と物体との距離(m)を求める。

 バンパと物体との距離(m)={空気中の超音波の伝播速度(m/秒)×(T1-T0)}/2・・・・(I)
In the detection apparatus of FIG. 1, the position of an object such as a person or an obstacle present in the space opposite to the ultrasonic sensor 10 with respect to the bumper 40 can be measured as follows.
First, when the arithmetic circuit 30 counts the time T 0 , the transmission circuit 28 transmits pulsed electric energy to the piezoelectric vibrator 14 of the ultrasonic vibrator. The piezoelectric vibrator 14 converts electrical energy into an ultrasonic signal. The ultrasonic wave generated by the piezoelectric vibrator 14 passes through the bumper 40 and is radiated to the outer surface of the bumper 40 as an ultrasonic signal. The emitted ultrasonic signal is reflected by the surface of the object existing in the outer space. The reflected ultrasonic signal propagates again through the bumper 40 and reaches the piezoelectric vibrator 14. The reflected ultrasonic signal is converted into electric energy by the piezoelectric vibrator 14. The electric energy converted by the piezoelectric vibrator is then sent to the receiving circuit 29. The receiving circuit 29 removes noise of the electric energy, and only the electric energy generated due to the ultrasonic signal reflected on the surface of the object. Is sent to the arithmetic circuit 30. The arithmetic circuit 30 counts the time T 1 when the electric energy is received, and obtains the distance (m) between the bumper 40 and the object from the following equation (I).

Distance between bumper and object (m) = {Propagation speed of ultrasonic wave in air (m / second) × (T 1 −T 0 )} / 2 (1)
 図2は、図1に示した検知装置から送信される超音波信号の指向性を示すチャート図である。なお、検知装置の各部の材料及びサイズは下記のとおりである。なお、図2中の実線は実測値に基づく超音波信号のパターンを表し、破線はシミュレーションで得られた計算値に基づく超音波信号のパターンを表す。 FIG. 2 is a chart showing the directivity of the ultrasonic signal transmitted from the detection apparatus shown in FIG. In addition, the material and size of each part of a detection apparatus are as follows. Note that the solid line in FIG. 2 represents the pattern of the ultrasonic signal based on the actual measurement value, and the broken line represents the pattern of the ultrasonic signal based on the calculated value obtained by the simulation.
 圧電振動子(14):共振周波数62.5kHz
 柱状圧電セラミック焼結体(12):多孔質円柱状チタン酸ジルコニウム焼結体(空隙率27体積%、気孔の平均直径:30μm)、直径6.4mm、高さ17mm
 上側電極層(13a)、下側電極層(13b)、折返電極層(13c):焼付銀製、厚さ10μm
 緩衝材(16):コルク製、幅3.8mm
 筒状ハウジング(17):アルミニウム製、厚さ1mm
 底板(18):エポキシ樹脂製、厚さ0.6mm
 音響整合材料層(19):ポリウレタン製、厚さ3.0mm
 筒状剛性壁材(21):ポリプロピレン製、幅(W1)2.5mm
 外側延長部(22):高さ6.6mm、幅(W2)4.9mm
 内側延長部(23):高さ1.5mm、幅(W3)5.8mm
 環状平板状金属材(24):ステンレススチール製、厚さ1mm
 音響整合材料層19と内側延長部23との間隙(25):0.5mm
 バンパ(40):ポリプロピレン製、厚さ2.6mm、超音波の伝播速度2000m/秒
Piezoelectric vibrator (14): resonance frequency 62.5 kHz
Columnar piezoelectric ceramic sintered body (12): Porous cylindrical zirconium titanate sintered body (porosity 27 volume%, average diameter of pores: 30 μm), diameter 6.4 mm, height 17 mm
Upper electrode layer (13a), lower electrode layer (13b), folded electrode layer (13c): made of baked silver, thickness 10 μm
Buffer material (16): made of cork, width 3.8 mm
Cylindrical housing (17): made of aluminum, thickness 1mm
Bottom plate (18): epoxy resin, thickness 0.6mm
Acoustic matching material layer (19): made of polyurethane, thickness 3.0 mm
Cylindrical rigid wall material (21): made of polypropylene, width (W 1 ) 2.5 mm
Outer extension portion (22): height 6.6 mm, a width (W 2) 4.9 mm
Inner extension (23): height 1.5 mm, width (W 3 ) 5.8 mm
Annular flat metal material (24): Made of stainless steel, 1 mm thick
Gap (25) between the acoustic matching material layer 19 and the inner extension 23: 0.5 mm
Bumper (40): made of polypropylene, thickness 2.6 mm, ultrasonic wave propagation speed 2000 m / sec
 図2のチャート図から、本発明に従う検知装置は、実測値と計算値ともに、後述の図4に示す筒状剛性壁材を含まない超音波センサをバンパの表面に固定した検知装置と比較して、サイドローブが発生しにくくなり、メインローブの範囲が適度に広くなることが分かる。 From the chart of FIG. 2, the detection device according to the present invention is compared with the detection device in which the ultrasonic sensor not including the cylindrical rigid wall material shown in FIG. As a result, side lobes are less likely to occur, and the range of the main lobe is moderately widened.
 なお、図1の検知装置では、超音波振動体が音響整合材料層を含み、その音響整合材料層の底面にてバンパ40の表面に固定されているが、超音波振動体が音響整合材料層を含まない(超音波振動子が音響整合材料層を備えていない)場合には、圧電振動子は、その底面にてバンパ40の表面に固定される。圧電振動子14の底面にてバンパ40の表面に固定されている例を図3に示す。 In the detection apparatus of FIG. 1, the ultrasonic vibrator includes an acoustic matching material layer, and is fixed to the surface of the bumper 40 at the bottom surface of the acoustic matching material layer. (The ultrasonic transducer does not include an acoustic matching material layer), the piezoelectric transducer is fixed to the surface of the bumper 40 at the bottom surface. An example in which the bottom surface of the piezoelectric vibrator 14 is fixed to the surface of the bumper 40 is shown in FIG.
 図3の(a)の検知装置において、圧電振動子14は、その底面にて直接バンパ40の表面に固定されていて、超音波振動体の周囲には、緩衝材16と間隙を介して、筒状剛性壁材21が固定配置されている。図3において、検知装置の各部の材料及びサイズは下記のとおりである。 In the detection device of FIG. 3A, the piezoelectric vibrator 14 is directly fixed to the surface of the bumper 40 at the bottom surface, and around the ultrasonic vibrator, the buffer material 16 and the gap are interposed, A cylindrical rigid wall member 21 is fixedly arranged. In FIG. 3, the material and size of each part of the detection device are as follows.
 圧電振動子(14):図1の装置の圧電振動子と同一
 緩衝材(16):図1の装置の緩衝材と同じ
 筒状剛性壁材(21):ポリプロピレン製、幅7.78mm、高さ6.57mm
 緩衝材(16)と筒状剛性壁材(21)との間隙:0.366mm
 バンパ(40):図1の装置のバンパと同じ
Piezoelectric vibrator (14): same as the piezoelectric vibrator of the apparatus of FIG. 1 Buffer material (16): Same as the buffer material of the apparatus of FIG. 1 Cylindrical rigid wall material (21): made of polypropylene, width 7.78 mm, high 6.57mm
Gap between the buffer material (16) and the cylindrical rigid wall material (21): 0.366 mm
Bumper (40): Same as the bumper of the device of FIG.
 図3の(b)は、(a)の検知装置から送信される超音波信号のパターンの指向性を示すチャート図である。なお、図3(b)のデータはシミュレーションで得られた計算値に基づく。このチャート図から、音響整合材料層を介在させずに、圧電振動子14をその底面にてバンパ40の表面に固定した場合でも、後述の図4に示す筒状剛性壁材を含まない超音波センサをバンパの表面に固定した検知装置と比較して、サイドローブが発生しにくくなることが分かる。 (B) of FIG. 3 is a chart showing the directivity of the pattern of the ultrasonic signal transmitted from the detection device of (a). Note that the data in FIG. 3B is based on calculated values obtained by simulation. From this chart, even when the piezoelectric vibrator 14 is fixed to the surface of the bumper 40 at its bottom without interposing the acoustic matching material layer, the ultrasonic wave not including the cylindrical rigid wall material shown in FIG. It can be seen that side lobes are less likely to occur compared to a detection device in which the sensor is fixed to the surface of the bumper.
 図4の(a)は、筒状剛性壁材を含まない超音波センサをバンパの表面に固定した検知装置の一例の断面図である。図4の(a)の検知装置では、圧電振動子14は、その底面にて直接バンパ40の表面に固定されていて、その周囲には緩衝材16が備えられているが、筒状剛性壁材が付設されていない。そして、それ以外の構成は、図3(a)の検知装置の構成と同じである。 FIG. 4A is a cross-sectional view of an example of a detection device in which an ultrasonic sensor not including a cylindrical rigid wall material is fixed to the surface of a bumper. In the detection device of FIG. 4A, the piezoelectric vibrator 14 is directly fixed to the surface of the bumper 40 at the bottom surface, and a buffer material 16 is provided around the piezoelectric vibrator 14, but a cylindrical rigid wall is provided. No material is attached. The rest of the configuration is the same as the configuration of the detection device in FIG.
 図4の(b)は、(a)の検知装置から送信される超音波信号のパターンの指向性を示すチャート図である。なお、図4(b)のデータはシミュレーションで得られた計算値に基づく。このチャート図から、筒状剛性壁材を含まない超音波センサでは、バンパの反対側に現れる超音波信号のパターンでは、大きなサイドローブが発生することが分かる。 (B) of FIG. 4 is a chart showing the directivity of the pattern of the ultrasonic signal transmitted from the detection device of (a). Note that the data in FIG. 4B is based on calculated values obtained by simulation. From this chart, it can be seen that in an ultrasonic sensor that does not include a cylindrical rigid wall material, a large side lobe is generated in the pattern of the ultrasonic signal that appears on the opposite side of the bumper.
 これまでの説明では、本発明の超音波センサ及びその超音波センサを平板状基体の表面に固定した検知装置を、平板状基体が自動車用のバンパである場合を例にとった説明としたが、本発明の超音波センサの使用は、自動車のバンパのみに限られるのではない。たとえば、本発明の超音波センサを液体タンクの蓋の外側に固定して、液体タンク内の液体の液面検知装置、特に腐食性ガス(例、硫化水素、亜硫酸、亜硝酸、塩素)が発生する液体あるいはガソリンなどの液体燃料の液面検知装置として使用してもよい。また、本発明の超音波センサを建物の外壁や室内の壁の内側面に固定して侵入者の検知装置として使用することもできる。 In the description so far, the ultrasonic sensor of the present invention and the detection device in which the ultrasonic sensor is fixed to the surface of the flat substrate are described by taking the case where the flat substrate is a bumper for an automobile as an example. The use of the ultrasonic sensor of the present invention is not limited to automobile bumpers. For example, the ultrasonic sensor of the present invention is fixed to the outside of the lid of the liquid tank, and the liquid level detection device of the liquid in the liquid tank, particularly corrosive gas (eg, hydrogen sulfide, sulfurous acid, nitrous acid, chlorine) is generated. It may be used as a liquid level detection device for liquid or liquid fuel such as gasoline. Further, the ultrasonic sensor of the present invention can be used as an intruder detection device by being fixed to the outer wall of a building or the inner surface of an indoor wall.
 10 超音波センサ
 12 柱状圧電セラミック焼結体
 13a 上面電極層
 13b 下面電極層
 13c 折返電極層
 14 圧電振動子(超音波振動子)
 15 リード線
 16 緩衝材
 17 筒状ハウジング
 18 底板
 19 音響整合材料層
 20 底面
 21 筒状剛性壁材
 22 外側延長部
 23 内側延長部
 24 環状平板状金属材
 25 間隙
 26 ねじ蓋
 27 制御装置
 28 送信回路
 29 受信回路
 30 演算回路
 31 電源
 40 平板状基体(バンパ)
DESCRIPTION OF SYMBOLS 10 Ultrasonic sensor 12 Columnar piezoelectric ceramic sintered body 13a Upper surface electrode layer 13b Lower surface electrode layer 13c Folding electrode layer 14 Piezoelectric vibrator (ultrasonic vibrator)
DESCRIPTION OF SYMBOLS 15 Lead wire 16 Buffer material 17 Cylindrical housing 18 Bottom plate 19 Acoustic matching material layer 20 Bottom surface 21 Cylindrical rigid wall material 22 Outer extension 23 Inner extension 24 Annular flat plate metal material 25 Gap 26 Screw lid 27 Control device 28 Transmission circuit 29 Receiving circuit 30 Arithmetic circuit 31 Power supply 40 Flat substrate (bumper)

Claims (14)

  1.  上面と下面のそれぞれに電極層を備えた柱状圧電セラミック焼結体である圧電振動子を含み、該圧電振動子の下部に音響整合材料層を備えていてもよい、底面にて平板状基体の表面に固定される超音波振動体、上記圧電振動子の電極層の各々に電気的に接続している送信回路と受信回路、該送信回路と該受信回路の各々に電気的に接続している演算回路、そして上記超音波振動体の側面の周囲に、該超音波振動体と接触することなく、間隙を介して配置されて、平板状基体の表面に固定される筒状剛性壁材を含む超音波センサ。 A piezoelectric vibrator which is a columnar piezoelectric ceramic sintered body having electrode layers on each of the upper surface and the lower surface may be included, and an acoustic matching material layer may be provided below the piezoelectric vibrator. An ultrasonic vibrator fixed on the surface, a transmission circuit and a reception circuit electrically connected to each of the electrode layers of the piezoelectric vibrator, and an electric connection to each of the transmission circuit and the reception circuit An arithmetic circuit and a cylindrical rigid wall member that is disposed around the side surface of the ultrasonic vibrating body via a gap without being in contact with the ultrasonic vibrating body and fixed to the surface of the flat substrate. Ultrasonic sensor.
  2.  前記筒状剛性壁材が樹脂材料から形成されている請求項1に記載の超音波センサ。 The ultrasonic sensor according to claim 1, wherein the cylindrical rigid wall material is formed of a resin material.
  3.  前記筒状剛性壁材が相対的に壁厚が大きい基部と該基部から上側に延びる相対的に壁厚が小さい延長部を有する請求項1もしくは2に記載の超音波センサ。 The ultrasonic sensor according to claim 1 or 2, wherein the cylindrical rigid wall member has a base portion having a relatively large wall thickness and an extension portion extending upward from the base portion and having a relatively small wall thickness.
  4.  前記筒状剛性壁材の上面が開口し、その開口が蓋体により覆われている請求項1乃至3のいずれかに記載の超音波センサ。 The ultrasonic sensor according to any one of claims 1 to 3, wherein an upper surface of the cylindrical rigid wall member is opened, and the opening is covered with a lid.
  5.  前記超音波振動体の少なくとも一部がその側面を緩衝材で覆われた状態にて筒状ハウジングに収容され、この筒状ハウジングが筒状剛性壁材の内側に配置されている請求項1乃至4のいずれかに記載の超音波センサ。 The at least one part of the said ultrasonic vibrating body is accommodated in a cylindrical housing in the state which the side surface was covered with the buffer material, This cylindrical housing is arrange | positioned inside a cylindrical rigid wall material. 4. The ultrasonic sensor according to any one of 4 above.
  6.  前記柱状圧電セラミック焼結体が多孔質柱状圧電セラミック焼結体である請求項1乃至5のいずれかに記載の超音波センサ。 The ultrasonic sensor according to any one of claims 1 to 5, wherein the columnar piezoelectric ceramic sintered body is a porous columnar piezoelectric ceramic sintered body.
  7.  前記平板状基体が自動車のバンパである請求項1乃至6のいずれかに記載の超音波センサ。 The ultrasonic sensor according to any one of claims 1 to 6, wherein the flat substrate is an automobile bumper.
  8.  平板状基体、該平板状基体の表面に固定されている、上面と下面のそれぞれに電極層を備えた柱状圧電セラミック焼結体である圧電振動子を含み、該圧電振動子の下部に音響整合材料層を備えていてもよい、底面にて平板状基体の表面に固定される超音波振動体、上記圧電振動子の電極層の各々に電気的に接続している送信回路と受信回路、該送信回路と該受信回路の各々に電気的に接続している演算回路、そして上記超音波振動体の側面の周囲に、該超音波振動体と接触することなく、間隙を介して配置され、平板状基体の表面に固定される筒状剛性壁材を含む超音波センサを含む、平板状基体に対して超音波センサと反対側の空間内に位置する物体の位置の検知装置。 A flat substrate, and a piezoelectric vibrator that is fixed to the surface of the flat substrate and is a columnar piezoelectric ceramic sintered body with electrode layers on each of the upper surface and the lower surface, acoustically matched to the lower portion of the piezoelectric vibrator An ultrasonic vibration body that may be provided with a material layer, fixed to the surface of the flat substrate at the bottom, a transmission circuit and a reception circuit electrically connected to each of the electrode layers of the piezoelectric vibrator, An arithmetic circuit electrically connected to each of the transmission circuit and the reception circuit, and a flat plate disposed around the side surface of the ultrasonic vibration member via a gap without contacting the ultrasonic vibration member. An apparatus for detecting the position of an object located in a space opposite to an ultrasonic sensor with respect to a flat substrate, including an ultrasonic sensor including a cylindrical rigid wall member fixed to the surface of the substrate.
  9.  前記筒状剛性壁材が樹脂材料から形成されている請求項8に記載の検知装置。 The detection device according to claim 8, wherein the cylindrical rigid wall material is formed of a resin material.
  10.  前記筒状剛性壁材が相対的に壁厚が大きい基部と該基部から上側に延びる相対的に壁厚が小さい延長部を有する請求項8もしくは9に記載の検知装置。 10. The detection device according to claim 8, wherein the cylindrical rigid wall member has a base portion having a relatively large wall thickness and an extension portion extending upward from the base portion and having a relatively small wall thickness.
  11.  前記筒状剛性壁材の上面が開口し、その開口が蓋体により覆われている請求項8乃至10のいずれかに記載の検知装置。 The detection device according to any one of claims 8 to 10, wherein an upper surface of the cylindrical rigid wall member is opened, and the opening is covered with a lid.
  12.  前記超音波振動体の少なくとも一部がその側面を緩衝材で覆われた状態にて筒状ハウジングに収容され、この筒状ハウジングが筒状剛性壁材の内側に配置されている請求項8乃至11のいずれかに記載の検知装置。 The at least part of the ultrasonic vibrating body is accommodated in a cylindrical housing with its side surface covered with a cushioning material, and the cylindrical housing is disposed inside the cylindrical rigid wall material. The detection device according to any one of 11.
  13.  前記柱状圧電セラミック焼結体が多孔質柱状圧電セラミック焼結体である請求項8至12のいずれかに記載の検知装置。 13. The detection device according to claim 8, wherein the columnar piezoelectric ceramic sintered body is a porous columnar piezoelectric ceramic sintered body.
  14.  前記平板状基体が自動車のバンパである請求項8乃至13のいずれかに記載の検知装置。 The detection device according to claim 8, wherein the flat substrate is a bumper of an automobile.
PCT/JP2014/083579 2013-12-18 2014-12-18 Ultrasonic sensor WO2015093571A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015553605A JPWO2015093571A1 (en) 2013-12-18 2014-12-18 Ultrasonic sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013261734 2013-12-18
JP2013-261734 2013-12-18

Publications (1)

Publication Number Publication Date
WO2015093571A1 true WO2015093571A1 (en) 2015-06-25

Family

ID=53402913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083579 WO2015093571A1 (en) 2013-12-18 2014-12-18 Ultrasonic sensor

Country Status (2)

Country Link
JP (1) JPWO2015093571A1 (en)
WO (1) WO2015093571A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106914398A (en) * 2015-11-30 2017-07-04 精工爱普生株式会社 Piezoelectric element, ultrasonic module and electronic equipment
FR3074119A1 (en) * 2017-11-24 2019-05-31 Compagnie Plastic Omnium FIXING SYSTEM FOR AN OBSTACLE DETECTION SENSOR WITH DEFORMABLE PART
JP2019100881A (en) * 2017-12-04 2019-06-24 新日本無線株式会社 Ultrasonic sensor and vehicle control system
JP2021504691A (en) * 2017-11-22 2021-02-15 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー Assemblies and devices for automatic vehicles with ultrasonic sensors and damping elements with reinforcing elements
CN114223217A (en) * 2019-08-09 2022-03-22 株式会社电装 Ultrasonic sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09500448A (en) * 1993-07-09 1997-01-14 ジーイーシー マルコニ リミテッド Acoustic transmitter and receiver
JP2007142967A (en) * 2005-11-21 2007-06-07 Denso Corp Ultrasonic sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09500448A (en) * 1993-07-09 1997-01-14 ジーイーシー マルコニ リミテッド Acoustic transmitter and receiver
JP2007142967A (en) * 2005-11-21 2007-06-07 Denso Corp Ultrasonic sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106914398A (en) * 2015-11-30 2017-07-04 精工爱普生株式会社 Piezoelectric element, ultrasonic module and electronic equipment
CN106914398B (en) * 2015-11-30 2020-04-28 精工爱普生株式会社 Piezoelectric component, ultrasonic component and electronic device
JP2021504691A (en) * 2017-11-22 2021-02-15 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー Assemblies and devices for automatic vehicles with ultrasonic sensors and damping elements with reinforcing elements
JP7170041B2 (en) 2017-11-22 2022-11-11 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー Assembly and device for motor vehicles with ultrasonic sensors and damping elements with stiffening elements
FR3074119A1 (en) * 2017-11-24 2019-05-31 Compagnie Plastic Omnium FIXING SYSTEM FOR AN OBSTACLE DETECTION SENSOR WITH DEFORMABLE PART
WO2019101969A1 (en) * 2017-11-24 2019-05-31 Compagnie Plastic Omnium System for securing an obstacle-detection sensor with a deformable portion
JP2019100881A (en) * 2017-12-04 2019-06-24 新日本無線株式会社 Ultrasonic sensor and vehicle control system
CN110007308A (en) * 2017-12-04 2019-07-12 新日本无线株式会社 Ultrasonic sensor and vehicle control system
CN114223217A (en) * 2019-08-09 2022-03-22 株式会社电装 Ultrasonic sensor
CN114223217B (en) * 2019-08-09 2024-04-09 株式会社电装 Ultrasonic sensor

Also Published As

Publication number Publication date
JPWO2015093571A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
WO2015093571A1 (en) Ultrasonic sensor
JP4468262B2 (en) Obstacle detection device
US20070144261A1 (en) Ultrasonic sensor
JP2007147319A (en) Obstacle detection device
WO2007069609A1 (en) Ultrasonic transducer
US11162829B2 (en) Multilayer body that includes piezoelectric body
JP4544285B2 (en) Ultrasonic sensor
JP2009058298A (en) Ultrasonic sensor
WO2016175327A1 (en) Ultrasonic sensor
JP2007000121A (en) Apparatus for threatening small animal
JP2007212349A (en) Obstacle detection device
JP2004104521A (en) Ultrasonic sensor
JP2008232801A (en) Ultrasonic transducer and ultrasonic level gage
JP2002209294A (en) Ultrasonic sensor, electronic unit provided with the same and vehicle rear sonar
JPWO2005009075A1 (en) Ultrasonic transducer
JP5330807B2 (en) Ultrasonic transducer
JP6032512B1 (en) Laminate, ultrasonic transducer and ultrasonic flowmeter
JP4494493B2 (en) Ultrasonic sensor
JP2009257978A (en) Ultrasonic sensor
JP5276352B2 (en) Ultrasonic transducer
JP2014027516A (en) Ultrasound transducer
JP2009141451A (en) Ultrasonic wave transceiver
JP6162451B2 (en) Ultrasonic sensor
JP4498312B2 (en) Water level detector and equipment
WO2020153099A1 (en) Ultrasound sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553605

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14872271

Country of ref document: EP

Kind code of ref document: A1