WO2015093383A1 - Piezoelectric sensor - Google Patents

Piezoelectric sensor Download PDF

Info

Publication number
WO2015093383A1
WO2015093383A1 PCT/JP2014/082808 JP2014082808W WO2015093383A1 WO 2015093383 A1 WO2015093383 A1 WO 2015093383A1 JP 2014082808 W JP2014082808 W JP 2014082808W WO 2015093383 A1 WO2015093383 A1 WO 2015093383A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
strain
piezoelectric
cushion
piezoelectric sensor
Prior art date
Application number
PCT/JP2014/082808
Other languages
French (fr)
Japanese (ja)
Inventor
河村秀樹
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015553505A priority Critical patent/JP6052431B2/en
Publication of WO2015093383A1 publication Critical patent/WO2015093383A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0028Force sensors associated with force applying means
    • G01L5/0038Force sensors associated with force applying means applying a pushing force
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1643Details related to the display arrangement, including those related to the mounting of the display in the housing the display being associated to a digitizer, e.g. laptops that can be used as penpads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/1694Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being a single or a set of motion sensors for pointer control or gesture input obtained by sensing movements of the portable computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Definitions

  • the present invention relates to a piezoelectric sensor that detects pressure.
  • the piezoelectric sensor is mounted on a multifunctional mobile terminal, for example, and is used to detect a press on the touch panel.
  • a piezoelectric sensor for detecting pressure.
  • This input device includes a rectangular flat touch panel and a striped piezoelectric element.
  • the piezoelectric element is provided on the back surface of the touch panel along the short side of the touch panel.
  • the touch panel When the operation surface of the touch panel is pressed, the touch panel bends.
  • the piezoelectric element bends according to the touch panel, a voltage corresponding to the pressure is generated in the piezoelectric element. Thereby, the press with respect to a touch panel is detectable.
  • the piezoelectric element is provided on the back surface of the touch panel.
  • the piezoelectric element may be arranged away from the touch panel due to design problems. In this case, since the bending of the touch panel due to the pressure is not transmitted well to the piezoelectric element, there is a possibility that the pressure on the touch panel cannot be accurately detected.
  • An object of the present invention is to provide a piezoelectric sensor capable of accurately detecting a press.
  • the piezoelectric sensor of the present invention includes a receiving plate, a strain detection plate, a piezoelectric film, a strain transmission member, and an elastic member.
  • the reception board accepts pushing.
  • the strain detection plate is arranged so as to be parallel to the receiving plate, and is distorted by pressing.
  • the piezoelectric film is attached to the main surface of the strain detection plate.
  • the strain transmitting member is disposed between the receiving plate and the strain detecting plate, and transmits the strain from the receiving plate to the strain detecting plate.
  • the elastic member is disposed on the side opposite to the receiving plate side with respect to the strain detection plate and supports the strain detection plate. When viewed from the direction perpendicular to the main surface of the strain detection plate, the elastic member overlaps at least a part of the strain transmission member and does not overlap the entire piezoelectric film.
  • a region overlapping the strain transmission member is referred to as a first region
  • a region overlapping the elastic member but not overlapping the strain transmission member is referred to as a second region.
  • the strain detection plate protrudes downward (in the direction opposite to the receiving plate side), and the upper surface of the strain detection plate shrinks.
  • the strain detection plate is deformed as follows. The strain detection plate is convex upward, and the upper surface of the strain detection plate extends. Alternatively, the strain detection plate protrudes downward, but the upper surface of the strain detection plate does not shrink much.
  • the piezoelectric film attached to the strain detection plate is also deformed in the same manner as the upper surface of the strain detection plate.
  • the strain detection plate since the strain detection plate is supported by the elastic member in the first region, the second region can be narrowed. In this case, since the distortion (shrinkage) of the piezoelectric film with respect to the pressing does not become small, the amount of charge that can be taken out from the piezoelectric film during the pressing does not decrease. As a result, pressing (pressing) can be detected with high accuracy.
  • the elastic member is disposed in the strain transmission member as viewed from the direction perpendicular to the main surface of the strain detection plate.
  • the area of the elastic member that overlaps the strain transmission member is larger than the area of the portion that does not overlap the strain transmission member.
  • the length of the elastic member is not more than 1.5 times the length of the strain transmitting member.
  • the “length” of the elastic member and the strain transmitting member is a length in a direction in which the piezoelectric film is contracted by pressing.
  • the piezoelectric film is formed from a chiral polymer.
  • the chiral polymer is polylactic acid.
  • Polylactic acid is L-type polylactic acid.
  • PVDF polyvinylidene fluoride
  • a change in operating temperature may affect the piezoelectric characteristics of the piezoelectric film.
  • polylactic acid does not have pyroelectricity, it is possible to accurately detect pressing by the piezoelectric film.
  • FIG. 1 is a cross-sectional view of the piezoelectric sensor according to the first embodiment, taken along the line AA.
  • FIG. 3 is a cross-sectional view of the sensor unit 16 along AA. It is sectional drawing explaining the press detection by the piezoelectric sensor which concerns on 1st Embodiment. It is AA sectional drawing of the piezoelectric sensor used as a comparative example. In the piezoelectric sensor of a comparative example, it is principal part sectional drawing which shows the state which the SUS board 15 bent by press.
  • FIG. 1 is a plan view of the piezoelectric sensor 10.
  • FIG. 2 is a cross-sectional view of the piezoelectric sensor 10 taken along the line AA.
  • the piezoelectric sensor 10 includes a box-shaped back housing 11, a rectangular flat glass plate 12, spacers 14 a and 14 b, a striped SUS (stainless steel) plate 15, a striped sensor unit 16, a columnar presser 17, A columnar cushion 21 and a circuit part (not shown) are provided.
  • the glass plate 12 corresponds to the reception plate of the present invention.
  • the SUS plate 15 corresponds to a strain detection plate of the present invention.
  • the pusher 17 corresponds to a strain transmission member of the present invention.
  • the cushion 21 corresponds to the elastic member of the present invention.
  • the back housing 11 is composed of a frame-shaped side surface and a rectangular bottom surface, and has a rectangular opening.
  • a rectangular parallelepiped casing 13 having a hollow portion is configured.
  • the longitudinal direction of the main surface of the housing 13 is referred to as the X direction
  • the short direction of the main surface of the housing 13 is referred to as the Y direction
  • the direction perpendicular to the main surface of the housing 13 is referred to as the Z direction.
  • the spacer 14 a is disposed in the vicinity of the first side surface parallel to the X direction among the side surfaces of the housing 13.
  • the spacer 14 b is disposed in the vicinity of the second side surface (side surface facing the first side surface) of the housing 13.
  • the spacers 14 a and 14 b are disposed at a substantially central portion in the X direction of the housing 13.
  • the SUS plate 15 is disposed inside the housing 13 so that its main surface is parallel to the main surface of the glass plate 12.
  • the SUS plate 15 is disposed at a substantially central portion of the housing 13 in the X direction.
  • the longitudinal direction of the SUS plate 15 is parallel to the Y direction. Both ends of the SUS plate 15 in the longitudinal direction are supported by spacers 14a and 14b, respectively. Spaces are formed between the SUS plate 15 and the glass plate 12 and between the SUS plate 15 and the bottom surface of the back side housing unit 11.
  • the sensor unit 16 is affixed to the main surface of the SUS plate 15 on the glass plate 12 side so that the longitudinal direction thereof is the Y direction.
  • the sensor unit 16 is affixed to substantially the entire surface of the SUS plate 15.
  • the circuit unit is disposed inside the housing 13 and is electrically connected to the sensor unit 16.
  • the pusher 17 is disposed between the glass plate 12 and the sensor unit 16 and is in contact with the glass plate 12 and the sensor unit 16.
  • the pusher 17 is shorter than the sensor unit 16 in the Y direction.
  • the pusher 17 is disposed at a substantially central portion of the SUS plate 15 in the Y direction.
  • the pusher 17 transmits strain from the glass plate 12 to the SUS plate 15.
  • the cushion 21 is disposed between the bottom surface of the back-side housing unit 11 and the SUS plate 15 and is in contact with the bottom surface of the back-side housing unit 11 and the SUS plate 15.
  • the cushion 21 is shorter than the sensor unit 16 in the Y direction.
  • the cushion 21 is disposed at a substantially central portion of the SUS plate 15 in the Y direction.
  • the cushion 21 is disposed at substantially the same position as the pusher 17 when viewed from the Z direction (in plan view), and has substantially the same shape and size as the pusher 17.
  • the cushion 21 overlaps with a part of the pusher 17 when viewed from the Z direction (direction perpendicular to the main surface of the SUS plate 15) and does not overlap the entire piezoelectric film 31 described later. Also, as viewed from the Z direction, the area of the portion of the cushion 21 that overlaps the pusher 17 is larger than the area of the portion that does not overlap the pusher 17.
  • the cushion 21 presses the SUS plate 15 against the pusher 17 via the sensor unit 16 so that the sensor unit 16, the pusher 17 and the glass plate 12 are connected. That is, the cushion 21 supports the SUS plate 15. Thereby, the press applied to the glass plate 12 can be transmitted to the SUS plate 15.
  • the SUS plate 15 bends.
  • the cushion 21 pushes the SUS plate 15 back. Thereby, when the glass plate 12 is no longer pressed, the SUS plate 15 can be returned to the original flat state.
  • FIG. 3 is a cross-sectional view of the sensor unit 16 taken along the line AA.
  • the sensor unit 16 includes a piezoelectric film 31, adhesive layers 32 and 33, flat plate electrodes 34 and 35, and base material layers 36 and 37.
  • a plate electrode 34 is attached to one main surface of the piezoelectric film 31 with an adhesive layer 32.
  • a flat plate electrode 35 is attached to the other main surface of the piezoelectric film 31 with an adhesive layer 33.
  • the plate electrodes 34 and 35 are electrically connected to a circuit unit (not shown).
  • a base material layer 36 is disposed on the main surface of the plate electrode 34 opposite to the piezoelectric film 31 side.
  • a base material layer 37 is disposed on the main surface of the plate electrode 35 opposite to the piezoelectric film 31 side.
  • the sensor unit 16 is affixed to the main surface of the SUS plate 15 by the affixing layer 38 so that the base material layer 36 side faces the SUS plate 15.
  • the piezoelectric film 31 is made of PLLA (L-type polylactic acid).
  • PLLA is a chiral polymer, and the main chain has a helical structure.
  • PLLA is uniaxially stretched and has piezoelectricity when the molecules are oriented.
  • the piezoelectric constant of uniaxially stretched PLLA belongs to a very high class among polymers.
  • PLLA generates piezoelectricity by molecular orientation processing such as stretching, and there is no need to perform poling processing like other polymers such as PVDF and piezoelectric ceramics. That is, the piezoelectricity of PLLA that does not belong to ferroelectrics is not expressed by the polarization of ions like ferroelectrics such as PVDF and PZT, but is derived from a helical structure that is a characteristic structure of molecules. is there. For this reason, the pyroelectricity generated in other ferroelectric piezoelectric materials does not occur in PLLA. Further, PVDF or the like shows a change in piezoelectric constant over time, and in some cases, the piezoelectric constant may be significantly reduced, but the piezoelectric constant of PLLA is extremely stable over time.
  • the PLLA Stretching direction of PLLA to take three axes, taking uniaxially and biaxially in a direction perpendicular to the three axial directions, the PLLA there is the piezoelectric constant of d 14 (piezoelectric constant shear).
  • the striped piezoelectric film 31 is cut so that the uniaxial direction is the thickness direction and the direction that forms an angle of 45 ° with respect to the triaxial direction (stretching direction) is the longitudinal direction. Thereby, when the piezoelectric film 31 expands and contracts in the longitudinal direction, the piezoelectric film 31 is polarized in the thickness direction.
  • the material of the adhesive layers 32, 33, 38 is an adhesive.
  • the characteristic of the pressure-sensitive adhesive is that, while the adhesive is changed from a liquid to a solid at the time of bonding, the wet state is always kept stable.
  • a pressure-sensitive adhesive as the material of the adhesive layers 32, 33, and 38, the thickness of the pressure-sensitive adhesive can be easily controlled as compared with the adhesive.
  • the plate electrodes 34 and 35 are made of a metal film such as a copper foil.
  • the material of the base material layers 36 and 37 is a resin such as polyimide.
  • FIG. 4 is a cross-sectional view for explaining detection of pressing (pushing) by the piezoelectric sensor 10.
  • the SUS plate 15 When the glass plate 12 is pushed in, the SUS plate 15 is pushed in via the pusher 17. Since the end portion of the SUS plate 15 is fixed by the spacers 14a and 14b, the SUS plate 15 bends so as to be convex in the pushed-in direction. Since the main surface of the SUS plate 15 on the glass plate 12 side contracts (distorts) in the longitudinal direction (Y direction), the sensor unit 16 attached to the main surface also contracts in the longitudinal direction. Since the piezoelectric film 31 (see FIG.
  • the piezoelectric film 31 is polarized in the thickness direction by the piezoelectric effect. Electric charges are induced in the plate electrodes 34 and 35 by the electric charges generated on both main surfaces of the piezoelectric film 31. The charges induced in the plate electrodes 34 and 35 are absorbed by a circuit unit (not shown). The circuit unit converts this flow of electric current (current) into a voltage. In this way, the pressure applied to the glass plate 12 can be detected as a voltage.
  • FIG. 5 is a cross-sectional view taken along the line AA of the piezoelectric sensor 40 as a comparative example.
  • the cushion 22 is provided so as to fill almost all the space between the bottom surface of the back-side housing unit 11 and the SUS plate 15.
  • the cushion 22 is in contact with the bottom surface of the back housing 11 and the SUS plate 15.
  • the cushion 22 includes the sensor unit 16 and the pusher 17 when viewed from the Z direction.
  • FIG. 6 is a cross-sectional view of the main part showing a state in which the SUS plate 15 is bent by pressing in the piezoelectric sensor 40 of the comparative example.
  • a region that overlaps the pusher 17 is referred to as a first region
  • a region that overlaps the cushion 22 (or the cushion 21) but does not overlap the pusher 17 is referred to as a second region.
  • the upper surface of the SUS plate 15 (main surface on the glass plate 12 side) is pressed by the pusher 17, while the lower surface (opposite side of the upper surface) of the SUS plate 15 by the cushion 22.
  • the main surface is pressed.
  • the pressing by the pusher 17 is applied only to the first region.
  • the pressure applied by the cushion 22 is applied to the first region and the second region.
  • the SUS plate 15 In the first region, the SUS plate 15 is convex downward (the direction opposite to the glass plate 12 side), and the upper surface of the SUS plate 15 is contracted in the longitudinal direction (Y direction).
  • the SUS plate 15 In the second region, since the SUS plate 15 is pushed back somewhat by the cushion 22, the SUS plate 15 is deformed as follows. The SUS plate 15 is convex upward, and the upper surface of the SUS plate 15 extends in the longitudinal direction. Or although the SUS board 15 becomes convex below, the upper surface of the SUS board 15 does not shrink so much in a longitudinal direction compared with the case where the cushion 22 is not provided.
  • the piezoelectric film 31 (see FIG. 3) affixed to the strain detection plate is also deformed in the same manner as the upper surface of the strain detection plate. For this reason, the piezoelectric film 31 is polarized as follows.
  • the polarization in the second region is opposite to the polarization in the first region.
  • the polarization in the second region is in the same direction as the polarization in the first region, but is smaller than that without the cushion 22.
  • the cushion 22 includes the sensor unit 16 when viewed from the Z direction. For this reason, since most of the piezoelectric film 31 is included in the second region, the polarization of the piezoelectric film 31 becomes small. As a result, the amount of charge that can be taken out by the circuit unit is reduced, so that the pressure cannot be accurately detected by the piezoelectric sensor 40 of the comparative example.
  • FIG. 7 is a cross-sectional view of the main part showing a state in which the SUS plate 15 is bent by pressing in the piezoelectric sensor 10 according to the first embodiment.
  • the cushion 21 is disposed at substantially the same position as the pusher 17 as viewed from the Z direction, and has substantially the same shape and size as the pusher 17. That is, the second region hardly occurs in the piezoelectric sensor 10. Therefore, the piezoelectric film 31 (see FIG. 3) contracts in the longitudinal direction at all portions and is polarized in the same direction at all portions. Further, the polarization of the piezoelectric film 31 is not hindered by the cushion 21. As a result, the polarization of the piezoelectric film 31 does not become small. Therefore, since the amount of charge that can be taken out by the circuit unit does not decrease, the piezoelectric sensor 10 according to the first embodiment can accurately detect the pressing.
  • FIG. 8 is a calculation result showing a change in the generated charge amount with respect to the cushion length.
  • the calculation result is obtained by changing the length of the cushion in the Y direction in the same configuration as in the first embodiment.
  • SUS plate 64.30 ⁇ 7.55
  • piezoelectric film (PLLA) 45.00 ⁇ 5.75
  • cushion ⁇ cushion length> ⁇ 6.25
  • pusher 6.00 X6.25.
  • the dimension of each member is represented by ⁇ length in the Y direction> ⁇ ⁇ length in the X direction>, and the unit is mm.
  • Each member is laminated so that the centers of the members overlap in plan view.
  • the cushion length is the length of the cushion in the Y direction. That is, the cushion length is the length of the cushion in the direction in which the piezoelectric film is contracted by pressing.
  • the amount of generated charge is the amount of charge generated in the piezoelectric film upon pressing.
  • the cushion length is 9 mm or less, that is, when the cushion length is 1.5 times or less the length of the pusher in the Y direction, the generated charge amount is almost equal to the generated charge amount when there is no cushion.
  • the cushion length becomes longer than 9 mm the generated charge amount tends to decrease.
  • the influence on the amount of generated charges by arranging the cushion can be made almost zero. .
  • the effect of the present invention becomes more remarkable as the area of the portion of the cushion that does not overlap the pusher is smaller in plan view.
  • FIG. 9 is a cross-sectional view taken along line AA showing a cushion according to another embodiment.
  • the cushion 23 is smaller than the pusher 17 when viewed from the Z direction.
  • the cushion 23 is disposed in the pusher 17 when viewed from the Z direction.
  • the cushion 24 is somewhat larger than the pusher 17 when viewed from the Z direction.
  • the cushion 24 includes a pusher 17 when viewed from the Z direction.
  • the position of the cushion 25 is somewhat shifted from the position of the pusher 17 when viewed from the Z direction. Most portions of the cushion 25 overlap with the pusher 17 when viewed from the Z direction.
  • the cushions 23 to 25 have no or almost no portion that does not overlap the pusher 17 when viewed from the Z direction. Therefore, the piezoelectric film 31 (see FIG. 3) contracts in the longitudinal direction at all portions and is polarized in the same direction at all portions. Further, the polarization of the piezoelectric film 31 is not hindered by the cushions 23-25. As a result, in the piezoelectric sensors according to other embodiments, as in the piezoelectric sensor 10, the amount of charge that can be extracted to the circuit unit does not decrease.
  • the piezoelectric sensor of this invention is not limited to this.
  • a panel in which a glass plate, a touch panel and a liquid crystal panel are stacked in layers may be used.
  • Piezoelectric sensor 11 Back side housing 12 ... Glass plate (reception plate) 13 ... Cases 14a, 14b ... Spacer 15 ... SUS plate (strain detection plate) 16 ... sensor 17 ... presser (strain transmitting member) 21-25 ... Cushion (elastic member) 31 ... Piezoelectric films 32, 33, 38 ... Adhesive layers 34, 35 ... Flat plate electrodes 36, 37 ... Base material layers

Abstract

A piezoelectric sensor (10) is provided with a glass plate (12), an SUS plate (15), a sensor unit (16), a pressing element (17), and a cushion (21). The glass plate (12) receives a pressing force. The SUS plate (15) is disposed so as to be parallel to the glass plate (12) and is strained by the pressing force. The sensor unit (16) has a piezoelectric film and is affixed to the main surface of the SUS plate (15). The pressing element (17) is disposed between the glass plate (12) and SUS plate (15) and transmits strain from the glass plate (12) to the SUS plate (15). The cushion (21) is disposed on the side of the SUS plate (15) opposite from the side facing the glass plate (12) and supports the SUS (15) plate. When viewed from a direction perpendicular to the main surface of the SUS plate (15), the cushion (21) overlaps with at least a portion of the pressing element (17) and does not overlap with the entirety of the sensor unit (16).

Description

圧電センサPiezoelectric sensor
 本発明は、押圧を検出する圧電センサに関する。 The present invention relates to a piezoelectric sensor that detects pressure.
 圧電センサは、例えば、多機能携帯端末に搭載され、タッチパネルに対する押圧を検出するために使用される。押圧を検出する圧電センサとして、特許文献1に記載の入力装置がある。この入力装置は、矩形平板状のタッチパネルおよびストライプ状の圧電素子を備える。圧電素子は、タッチパネルの短辺に沿って、タッチパネルの背面に設けられている。 The piezoelectric sensor is mounted on a multifunctional mobile terminal, for example, and is used to detect a press on the touch panel. There is an input device described in Patent Document 1 as a piezoelectric sensor for detecting pressure. This input device includes a rectangular flat touch panel and a striped piezoelectric element. The piezoelectric element is provided on the back surface of the touch panel along the short side of the touch panel.
 タッチパネルの操作面が押圧されると、タッチパネルが撓む。タッチパネルに従って圧電素子が撓むことにより、圧電素子に、押圧に応じた電圧が生じる。これにより、タッチパネルに対する押圧を検出することができる。 When the operation surface of the touch panel is pressed, the touch panel bends. When the piezoelectric element bends according to the touch panel, a voltage corresponding to the pressure is generated in the piezoelectric element. Thereby, the press with respect to a touch panel is detectable.
特開2012-203552号公報JP 2012-203552 A
 特許文献1に記載の入力装置では、上述のように、圧電素子がタッチパネルの裏面に設けられている。しかし、設計上の問題等から、タッチパネルから離して圧電素子を配置する場合がある。この場合、押圧によるタッチパネルの撓みが圧電素子に上手く伝わらないため、タッチパネルに対する押圧を精度良く検出できないおそれがある。 In the input device described in Patent Document 1, as described above, the piezoelectric element is provided on the back surface of the touch panel. However, the piezoelectric element may be arranged away from the touch panel due to design problems. In this case, since the bending of the touch panel due to the pressure is not transmitted well to the piezoelectric element, there is a possibility that the pressure on the touch panel cannot be accurately detected.
 本発明の目的は、押圧を精度良く検出することができる圧電センサを提供することにある。 An object of the present invention is to provide a piezoelectric sensor capable of accurately detecting a press.
(1)本発明の圧電センサは、受付板、ひずみ検出用板、圧電フィルム、ひずみ伝達部材および弾性部材を備える。受付板は押し込みを受け付ける。ひずみ検出用板は、受付板と平行になるように配置され、押し込みにより歪む。圧電フィルムはひずみ検出用板の主面に貼付される。ひずみ伝達部材は、受付板とひずみ検出用板との間に配置され、受付板からひずみ検出用板にひずみを伝達する。弾性部材は、ひずみ検出用板に対して受付板側と反対側に配置され、ひずみ検出用板を支持する。ひずみ検出用板の主面に垂直な方向から見て、弾性部材は、ひずみ伝達部材の少なくとも一部と重なり、圧電フィルムの全体には重ならない。 (1) The piezoelectric sensor of the present invention includes a receiving plate, a strain detection plate, a piezoelectric film, a strain transmission member, and an elastic member. The reception board accepts pushing. The strain detection plate is arranged so as to be parallel to the receiving plate, and is distorted by pressing. The piezoelectric film is attached to the main surface of the strain detection plate. The strain transmitting member is disposed between the receiving plate and the strain detecting plate, and transmits the strain from the receiving plate to the strain detecting plate. The elastic member is disposed on the side opposite to the receiving plate side with respect to the strain detection plate and supports the strain detection plate. When viewed from the direction perpendicular to the main surface of the strain detection plate, the elastic member overlaps at least a part of the strain transmission member and does not overlap the entire piezoelectric film.
 ひずみ検出用板の主面に垂直な方向から見て、ひずみ伝達部材に重なる領域を第1領域と称し、弾性部材に重なるがひずみ伝達部材に重ならない領域を第2領域と称する。押し込みの際、第1領域では、ひずみ検出用板は下方向(受付板側と反対側の方向)に凸となり、ひずみ検出用板の上面は縮む。一方、第2領域では、ひずみ検出用板が弾性部材により幾分押し戻されるため、ひずみ検出用板は次のように変形する。ひずみ検出用板は上方向に凸となり、ひずみ検出用板の上面は伸びる。または、ひずみ検出用板は下方向に凸となるが、ひずみ検出用板の上面はあまり縮まない。押し込みの際、ひずみ検出用板に貼付される圧電フィルムも、ひずみ検出用板の上面と同様に変形する。 When viewed from the direction perpendicular to the main surface of the strain detection plate, a region overlapping the strain transmission member is referred to as a first region, and a region overlapping the elastic member but not overlapping the strain transmission member is referred to as a second region. At the time of pushing, in the first region, the strain detection plate protrudes downward (in the direction opposite to the receiving plate side), and the upper surface of the strain detection plate shrinks. On the other hand, in the second region, since the strain detection plate is pushed back somewhat by the elastic member, the strain detection plate is deformed as follows. The strain detection plate is convex upward, and the upper surface of the strain detection plate extends. Alternatively, the strain detection plate protrudes downward, but the upper surface of the strain detection plate does not shrink much. At the time of pressing, the piezoelectric film attached to the strain detection plate is also deformed in the same manner as the upper surface of the strain detection plate.
 本構成では、第1領域の弾性部材でひずみ検出用板を支持するため、第2領域を狭くすることができる。この場合、押し込みに対する圧電フィルムのひずみ(縮み)が小さくならないので、押し込みの際に圧電フィルムから取り出せる電荷量は低下しない。この結果、押圧(押し込み)を精度良く検出することができる。 In this configuration, since the strain detection plate is supported by the elastic member in the first region, the second region can be narrowed. In this case, since the distortion (shrinkage) of the piezoelectric film with respect to the pressing does not become small, the amount of charge that can be taken out from the piezoelectric film during the pressing does not decrease. As a result, pressing (pressing) can be detected with high accuracy.
(2)ひずみ検出用板の主面に垂直な方向から見て、弾性部材はひずみ伝達部材内に配置される。 (2) The elastic member is disposed in the strain transmission member as viewed from the direction perpendicular to the main surface of the strain detection plate.
 この構成では、第2領域が生じないので、押し込みに対する圧電フィルムのひずみが小さくなることを防止できる。 In this configuration, since the second region does not occur, it is possible to prevent the distortion of the piezoelectric film with respect to pushing-in from being reduced.
(3)ひずみ検出用板の主面に垂直な方向から見て、弾性部材のうち、ひずみ伝達部材と重なる部分の面積は、ひずみ伝達部材と重ならない部分の面積に比べて大きい。 (3) When viewed from the direction perpendicular to the main surface of the strain detection plate, the area of the elastic member that overlaps the strain transmission member is larger than the area of the portion that does not overlap the strain transmission member.
 この構成では、第2領域に比べて第1領域が大きくなるので、押し込みに対する圧電フィルムのひずみが小さくなることを抑制できる。 In this configuration, since the first region is larger than the second region, it is possible to suppress the distortion of the piezoelectric film with respect to pressing.
(4)圧電センサを断面視したとき、弾性部材の長さはひずみ伝達部材の長さの1.5倍以下である。ここで、弾性部材およびひずみ伝達部材の「長さ」は、押し込みにより圧電フィルムが縮む方向における長さである。 (4) When the piezoelectric sensor is viewed in cross section, the length of the elastic member is not more than 1.5 times the length of the strain transmitting member. Here, the “length” of the elastic member and the strain transmitting member is a length in a direction in which the piezoelectric film is contracted by pressing.
 この構成では、弾性部材を配置することによる発生電荷量への影響をほぼ0にすることができる。 In this configuration, the influence on the generated charge amount due to the arrangement of the elastic member can be made almost zero.
(5)圧電フィルムはキラル高分子から形成される。 (5) The piezoelectric film is formed from a chiral polymer.
(6)キラル高分子はポリ乳酸である。 (6) The chiral polymer is polylactic acid.
(7)ポリ乳酸はL型ポリ乳酸である。 (7) Polylactic acid is L-type polylactic acid.
 例えば、圧電フィルムにPVDF(ポリフッ化ビニリデン)を用いた場合、使用温度の変化が圧電フィルムの圧電特性に影響を及ぼすおそれがある。しかし、この構成では、ポリ乳酸には焦電性がないので、圧電フィルムによる押圧の検出を精度良く行うことができる。 For example, when PVDF (polyvinylidene fluoride) is used for the piezoelectric film, a change in operating temperature may affect the piezoelectric characteristics of the piezoelectric film. However, in this configuration, since polylactic acid does not have pyroelectricity, it is possible to accurately detect pressing by the piezoelectric film.
 本発明によれば、押圧を精度良く検出することができる。 According to the present invention, it is possible to detect the press with high accuracy.
第1の実施形態に係る圧電センサの平面図である。It is a top view of the piezoelectric sensor which concerns on 1st Embodiment. 第1の実施形態に係る圧電センサのA-A断面図である。1 is a cross-sectional view of the piezoelectric sensor according to the first embodiment, taken along the line AA. センサ部16のA-A断面図である。FIG. 3 is a cross-sectional view of the sensor unit 16 along AA. 第1の実施形態に係る圧電センサによる押圧検知を説明する断面図である。It is sectional drawing explaining the press detection by the piezoelectric sensor which concerns on 1st Embodiment. 比較例となる圧電センサのA-A断面図である。It is AA sectional drawing of the piezoelectric sensor used as a comparative example. 比較例の圧電センサにおいて、押圧によりSUS板15が撓んだ状態を示す要部断面図である。In the piezoelectric sensor of a comparative example, it is principal part sectional drawing which shows the state which the SUS board 15 bent by press. 第1の実施形態に係る圧電センサにおいて、押圧によりSUS板15が撓んだ状態を示す要部断面図である。In the piezoelectric sensor which concerns on 1st Embodiment, it is principal part sectional drawing which shows the state which the SUS board 15 bent by press. クッション長さに対する発生電荷量の変化を示す計算結果である。It is a calculation result which shows the change of the generated electric charge amount with respect to cushion length. 他の実施形態に係るクッションを示すA-A断面図である。It is AA sectional drawing which shows the cushion which concerns on other embodiment.
《第1の実施形態》
 本発明の実施形態に係る圧電センサ10について説明する。圧電センサ10は、例えば、多機能携帯端末で利用される。図1は圧電センサ10の平面図である。図2は圧電センサ10のA-A断面図である。圧電センサ10は、箱状の裏側筐体部11、矩形平板状のガラス板12、スペーサ14a,14b、ストライプ状のSUS(ステンレス)板15、ストライプ状のセンサ部16、柱状の押し子17、柱状のクッション21および回路部(図示せず)を備える。
<< First Embodiment >>
A piezoelectric sensor 10 according to an embodiment of the present invention will be described. The piezoelectric sensor 10 is used in, for example, a multifunctional portable terminal. FIG. 1 is a plan view of the piezoelectric sensor 10. FIG. 2 is a cross-sectional view of the piezoelectric sensor 10 taken along the line AA. The piezoelectric sensor 10 includes a box-shaped back housing 11, a rectangular flat glass plate 12, spacers 14 a and 14 b, a striped SUS (stainless steel) plate 15, a striped sensor unit 16, a columnar presser 17, A columnar cushion 21 and a circuit part (not shown) are provided.
 ガラス板12は本発明の受付板に相当する。SUS板15は本発明のひずみ検出用板に相当する。押し子17は本発明のひずみ伝達部材に相当する。クッション21は本発明の弾性部材に相当する。 The glass plate 12 corresponds to the reception plate of the present invention. The SUS plate 15 corresponds to a strain detection plate of the present invention. The pusher 17 corresponds to a strain transmission member of the present invention. The cushion 21 corresponds to the elastic member of the present invention.
 裏側筐体部11は、枠状の側面および矩形状の底面から構成され、矩形状の開口部を有する。裏側筐体部11の開口部を塞ぐようにガラス板12が裏側筐体部11に当接することにより、中空部を有する直方体状の筐体13が構成される。以下では、筐体13の主面の長手方向をX方向と称し、筐体13の主面の短手方向をY方向と称し、筐体13の主面に垂直な方向をZ方向と称することがある。 The back housing 11 is composed of a frame-shaped side surface and a rectangular bottom surface, and has a rectangular opening. When the glass plate 12 abuts on the back-side casing 11 so as to close the opening of the back-side casing 11, a rectangular parallelepiped casing 13 having a hollow portion is configured. Hereinafter, the longitudinal direction of the main surface of the housing 13 is referred to as the X direction, the short direction of the main surface of the housing 13 is referred to as the Y direction, and the direction perpendicular to the main surface of the housing 13 is referred to as the Z direction. There is.
 スペーサ14aは筐体13の側面のうちX方向と平行な第1の側面付近に配置されている。スペーサ14bは筐体13の第2の側面(第1の側面に対向する側面)付近に配置されている。スペーサ14a,14bは筐体13のX方向の略中央部に配置されている。 The spacer 14 a is disposed in the vicinity of the first side surface parallel to the X direction among the side surfaces of the housing 13. The spacer 14 b is disposed in the vicinity of the second side surface (side surface facing the first side surface) of the housing 13. The spacers 14 a and 14 b are disposed at a substantially central portion in the X direction of the housing 13.
 SUS板15は、その主面がガラス板12の主面と平行になるように、筐体13の内部に配置されている。SUS板15は筐体13のX方向の略中央部に配置されている。SUS板15の長手方向はY方向に平行になっている。SUS板15の長手方向の両端は、それぞれ、スペーサ14a,14bで支持されている。SUS板15とガラス板12との間およびSUS板15と裏側筐体部11の底面との間にはスペースが形成されている。 The SUS plate 15 is disposed inside the housing 13 so that its main surface is parallel to the main surface of the glass plate 12. The SUS plate 15 is disposed at a substantially central portion of the housing 13 in the X direction. The longitudinal direction of the SUS plate 15 is parallel to the Y direction. Both ends of the SUS plate 15 in the longitudinal direction are supported by spacers 14a and 14b, respectively. Spaces are formed between the SUS plate 15 and the glass plate 12 and between the SUS plate 15 and the bottom surface of the back side housing unit 11.
 センサ部16は、その長手方向がY方向になるように、SUS板15の主面のうちガラス板12側の主面に貼付されている。センサ部16はSUS板15の略全面に貼付されている。回路部は、筐体13の内部に配置され、センサ部16に電気的に接続されている。 The sensor unit 16 is affixed to the main surface of the SUS plate 15 on the glass plate 12 side so that the longitudinal direction thereof is the Y direction. The sensor unit 16 is affixed to substantially the entire surface of the SUS plate 15. The circuit unit is disposed inside the housing 13 and is electrically connected to the sensor unit 16.
 押し子17は、ガラス板12とセンサ部16との間に配置され、ガラス板12およびセンサ部16に当接している。押し子17は、Y方向においてセンサ部16に比べて短くなっている。押し子17は、Y方向においてSUS板15の略中央部に配置されている。押し子17はガラス板12からSUS板15にひずみを伝達する。 The pusher 17 is disposed between the glass plate 12 and the sensor unit 16 and is in contact with the glass plate 12 and the sensor unit 16. The pusher 17 is shorter than the sensor unit 16 in the Y direction. The pusher 17 is disposed at a substantially central portion of the SUS plate 15 in the Y direction. The pusher 17 transmits strain from the glass plate 12 to the SUS plate 15.
 クッション21は、裏側筐体部11の底面とSUS板15との間に配置され、裏側筐体部11の底面およびSUS板15に当接している。クッション21は、Y方向においてセンサ部16に比べて短くなっている。クッション21は、Y方向においてSUS板15の略中央部に配置されている。クッション21は、Z方向から見て(平面視して)、押し子17とほぼ同一の位置に配置され、押し子17とほぼ同一の形状および大きさを有する。 The cushion 21 is disposed between the bottom surface of the back-side housing unit 11 and the SUS plate 15 and is in contact with the bottom surface of the back-side housing unit 11 and the SUS plate 15. The cushion 21 is shorter than the sensor unit 16 in the Y direction. The cushion 21 is disposed at a substantially central portion of the SUS plate 15 in the Y direction. The cushion 21 is disposed at substantially the same position as the pusher 17 when viewed from the Z direction (in plan view), and has substantially the same shape and size as the pusher 17.
 すなわち、クッション21は、Z方向(SUS板15の主面に垂直な方向)から見て、押し子17の一部と重なり、後述の圧電フィルム31の全体には重ならない。また、Z方向から見て、クッション21のうち、押し子17と重なる部分の面積は、押し子17と重ならない部分の面積に比べて大きい。 That is, the cushion 21 overlaps with a part of the pusher 17 when viewed from the Z direction (direction perpendicular to the main surface of the SUS plate 15) and does not overlap the entire piezoelectric film 31 described later. Also, as viewed from the Z direction, the area of the portion of the cushion 21 that overlaps the pusher 17 is larger than the area of the portion that does not overlap the pusher 17.
 クッション21は、センサ部16、押し子17およびガラス板12が連接するように、センサ部16を介してSUS板15を押し子17に押し当てる。すなわち、クッション21はSUS板15を支持している。これにより、ガラス板12にかかる押圧をSUS板15に伝えることができる。また、ガラス板12に押圧がかかるとSUS板15が撓むところ、ガラス板12に押圧がかからなくなったとき、クッション21はSUS板15を押し戻す。これにより、ガラス板12に押圧がかからなくなったとき、SUS板15を元の平らな状態に戻すことができる。 The cushion 21 presses the SUS plate 15 against the pusher 17 via the sensor unit 16 so that the sensor unit 16, the pusher 17 and the glass plate 12 are connected. That is, the cushion 21 supports the SUS plate 15. Thereby, the press applied to the glass plate 12 can be transmitted to the SUS plate 15. When the glass plate 12 is pressed, the SUS plate 15 bends. When the glass plate 12 is no longer pressed, the cushion 21 pushes the SUS plate 15 back. Thereby, when the glass plate 12 is no longer pressed, the SUS plate 15 can be returned to the original flat state.
 図3はセンサ部16のA-A断面図である。センサ部16は、圧電フィルム31、貼付層32,33、平板電極34,35および基材層36,37を備える。圧電フィルム31の一方の主面には平板電極34が貼付層32により貼付されている。圧電フィルム31の他方の主面には平板電極35が貼付層33により貼付されている。平板電極34,35は回路部(図示せず)に電気的に接続されている。平板電極34の主面のうち圧電フィルム31側と反対側の主面には、基材層36が配置されている。平板電極35の主面のうち圧電フィルム31側と反対側の主面には、基材層37が配置されている。センサ部16は、基材層36側がSUS板15に向くように、貼付層38によりSUS板15の主面に貼付されている。 FIG. 3 is a cross-sectional view of the sensor unit 16 taken along the line AA. The sensor unit 16 includes a piezoelectric film 31, adhesive layers 32 and 33, flat plate electrodes 34 and 35, and base material layers 36 and 37. A plate electrode 34 is attached to one main surface of the piezoelectric film 31 with an adhesive layer 32. A flat plate electrode 35 is attached to the other main surface of the piezoelectric film 31 with an adhesive layer 33. The plate electrodes 34 and 35 are electrically connected to a circuit unit (not shown). A base material layer 36 is disposed on the main surface of the plate electrode 34 opposite to the piezoelectric film 31 side. A base material layer 37 is disposed on the main surface of the plate electrode 35 opposite to the piezoelectric film 31 side. The sensor unit 16 is affixed to the main surface of the SUS plate 15 by the affixing layer 38 so that the base material layer 36 side faces the SUS plate 15.
 圧電フィルム31はPLLA(L型ポリ乳酸)から形成される。PLLAは、キラル高分子であり、主鎖が螺旋構造を有する。PLLAは、一軸延伸され、分子が配向すると、圧電性を有する。一軸延伸されたPLLAの圧電定数は、高分子中で非常に高い部類に属する。 The piezoelectric film 31 is made of PLLA (L-type polylactic acid). PLLA is a chiral polymer, and the main chain has a helical structure. PLLA is uniaxially stretched and has piezoelectricity when the molecules are oriented. The piezoelectric constant of uniaxially stretched PLLA belongs to a very high class among polymers.
 また、PLLAは、延伸等による分子の配向処理で圧電性を生じ、PVDF等の他のポリマーや圧電セラミックスのように、ポーリング処理を行う必要がない。すなわち、強誘電体に属さないPLLAの圧電性は、PVDFやPZT等の強誘電体のようにイオンの分極によって発現するものではなく、分子の特徴的な構造である螺旋構造に由来するものである。このため、PLLAには、他の強誘電性の圧電体で生じる焦電性が生じない。さらに、PVDF等は経時的に圧電定数の変動が見られ、場合によっては圧電定数が著しく低下する場合があるが、PLLAの圧電定数は経時的に極めて安定している。 In addition, PLLA generates piezoelectricity by molecular orientation processing such as stretching, and there is no need to perform poling processing like other polymers such as PVDF and piezoelectric ceramics. That is, the piezoelectricity of PLLA that does not belong to ferroelectrics is not expressed by the polarization of ions like ferroelectrics such as PVDF and PZT, but is derived from a helical structure that is a characteristic structure of molecules. is there. For this reason, the pyroelectricity generated in other ferroelectric piezoelectric materials does not occur in PLLA. Further, PVDF or the like shows a change in piezoelectric constant over time, and in some cases, the piezoelectric constant may be significantly reduced, but the piezoelectric constant of PLLA is extremely stable over time.
 PLLAの延伸方向に3軸をとり、3軸方向に垂直な方向に1軸および2軸をとると、PLLAにはd14の圧電定数(ずりの圧電定数)が存在する。1軸方向が厚み方向となり、3軸方向(延伸方向)に対して45°の角度をなす方向が長手方向となるように、ストライプ状の圧電フィルム31が切り出される。これにより、圧電フィルム31が長手方向に伸縮すると、圧電フィルム31は厚み方向に分極する。 Stretching direction of PLLA to take three axes, taking uniaxially and biaxially in a direction perpendicular to the three axial directions, the PLLA there is the piezoelectric constant of d 14 (piezoelectric constant shear). The striped piezoelectric film 31 is cut so that the uniaxial direction is the thickness direction and the direction that forms an angle of 45 ° with respect to the triaxial direction (stretching direction) is the longitudinal direction. Thereby, when the piezoelectric film 31 expands and contracts in the longitudinal direction, the piezoelectric film 31 is polarized in the thickness direction.
 貼付層32,33,38の材料は粘着剤である。粘着剤の特徴は、接着剤が接着時に液体から固体になるのに対して、常に濡れた状態を安定して保っていることである。貼付層32,33,38の材料に粘着剤を用いることにより、接着剤に比べて粘着剤の厚みを容易に制御することができる。平板電極34,35は銅箔等の金属膜からなる。基材層36,37の材料はポリイミド等の樹脂である。 The material of the adhesive layers 32, 33, 38 is an adhesive. The characteristic of the pressure-sensitive adhesive is that, while the adhesive is changed from a liquid to a solid at the time of bonding, the wet state is always kept stable. By using a pressure-sensitive adhesive as the material of the adhesive layers 32, 33, and 38, the thickness of the pressure-sensitive adhesive can be easily controlled as compared with the adhesive. The plate electrodes 34 and 35 are made of a metal film such as a copper foil. The material of the base material layers 36 and 37 is a resin such as polyimide.
 図4は、圧電センサ10による押圧(押し込み)検知を説明する断面図である。ガラス板12が押し込まれると、押し子17を介して、SUS板15が押し込まれる。SUS板15の端部がスペーサ14a,14bで固定されているため、SUS板15は押し込まれた方向に凸となるように撓む。SUS板15の主面のうちガラス板12側の主面が長手方向(Y方向)に縮む(歪む)ため、その主面に貼付されているセンサ部16も長手方向に縮む。センサ部16を構成する圧電フィルム31(図3参照)が長手方向に縮むため、上述のように、圧電効果により圧電フィルム31は厚み方向に分極する。圧電フィルム31の両主面に発生した電荷により、平板電極34,35に電荷が誘起される。平板電極34,35に誘起された電荷は、回路部(図示せず)に吸収される。回路部はこの電荷の流れ(電流)を電圧に変換する。このようにして、ガラス板12にかかる押圧を電圧として検出することができる。 FIG. 4 is a cross-sectional view for explaining detection of pressing (pushing) by the piezoelectric sensor 10. When the glass plate 12 is pushed in, the SUS plate 15 is pushed in via the pusher 17. Since the end portion of the SUS plate 15 is fixed by the spacers 14a and 14b, the SUS plate 15 bends so as to be convex in the pushed-in direction. Since the main surface of the SUS plate 15 on the glass plate 12 side contracts (distorts) in the longitudinal direction (Y direction), the sensor unit 16 attached to the main surface also contracts in the longitudinal direction. Since the piezoelectric film 31 (see FIG. 3) constituting the sensor unit 16 contracts in the longitudinal direction, as described above, the piezoelectric film 31 is polarized in the thickness direction by the piezoelectric effect. Electric charges are induced in the plate electrodes 34 and 35 by the electric charges generated on both main surfaces of the piezoelectric film 31. The charges induced in the plate electrodes 34 and 35 are absorbed by a circuit unit (not shown). The circuit unit converts this flow of electric current (current) into a voltage. In this way, the pressure applied to the glass plate 12 can be detected as a voltage.
 比較例となる圧電センサ40について説明する。圧電センサ40の構成は、クッションを除いて、第1の実施形態と同様である。図5は、比較例となる圧電センサ40のA-A断面図である。クッション22は、裏側筐体部11の底面とSUS板15との間のスペースをほぼ全て埋めるように設けられている。クッション22は裏側筐体部11の底面およびSUS板15に当接している。クッション22は、Z方向から見て、センサ部16および押し子17を含んでいる。 A piezoelectric sensor 40 as a comparative example will be described. The configuration of the piezoelectric sensor 40 is the same as that of the first embodiment except for the cushion. FIG. 5 is a cross-sectional view taken along the line AA of the piezoelectric sensor 40 as a comparative example. The cushion 22 is provided so as to fill almost all the space between the bottom surface of the back-side housing unit 11 and the SUS plate 15. The cushion 22 is in contact with the bottom surface of the back housing 11 and the SUS plate 15. The cushion 22 includes the sensor unit 16 and the pusher 17 when viewed from the Z direction.
 図6は、比較例の圧電センサ40において、押圧によりSUS板15が撓んだ状態を示す要部断面図である。上述のように、Z方向から見て、押し子17に重なる領域を第1領域と称し、クッション22(またはクッション21)に重なるが押し子17に重ならない領域を第2領域と称する。 FIG. 6 is a cross-sectional view of the main part showing a state in which the SUS plate 15 is bent by pressing in the piezoelectric sensor 40 of the comparative example. As described above, when viewed from the Z direction, a region that overlaps the pusher 17 is referred to as a first region, and a region that overlaps the cushion 22 (or the cushion 21) but does not overlap the pusher 17 is referred to as a second region.
 ガラス板12(図2参照)が押し込まれると、押し子17によりSUS板15の上面(ガラス板12側の主面)に押圧がかかる一方、クッション22によりSUS板15の下面(上面と反対側の主面)に押圧がかかる。押し子17による押圧は第1領域のみにかかる。クッション22による押圧は第1領域および第2領域にかかる。 When the glass plate 12 (see FIG. 2) is pushed in, the upper surface of the SUS plate 15 (main surface on the glass plate 12 side) is pressed by the pusher 17, while the lower surface (opposite side of the upper surface) of the SUS plate 15 by the cushion 22. The main surface) is pressed. The pressing by the pusher 17 is applied only to the first region. The pressure applied by the cushion 22 is applied to the first region and the second region.
 第1領域では、SUS板15は下方向(ガラス板12側と反対側の方向)に凸となり、SUS板15の上面は長手方向(Y方向)に縮む。一方、第2領域では、SUS板15がクッション22により幾分押し戻されるため、SUS板15は次のように変形する。SUS板15は上方向に凸となり、SUS板15の上面は長手方向に伸びる。または、SUS板15は下方向に凸となるが、SUS板15の上面は、クッション22がない場合に比べて長手方向にあまり縮まない。 In the first region, the SUS plate 15 is convex downward (the direction opposite to the glass plate 12 side), and the upper surface of the SUS plate 15 is contracted in the longitudinal direction (Y direction). On the other hand, in the second region, since the SUS plate 15 is pushed back somewhat by the cushion 22, the SUS plate 15 is deformed as follows. The SUS plate 15 is convex upward, and the upper surface of the SUS plate 15 extends in the longitudinal direction. Or although the SUS board 15 becomes convex below, the upper surface of the SUS board 15 does not shrink so much in a longitudinal direction compared with the case where the cushion 22 is not provided.
 ひずみ検出用板に貼付された圧電フィルム31(図3参照)も、ひずみ検出用板の上面と同様に変形する。このため、圧電フィルム31は次のように分極する。第2領域での分極は第1領域での分極と反対向きになる。または、第2領域での分極は、第1領域での分極と同一方向になるが、クッション22がない場合に比べて小さくなる。 The piezoelectric film 31 (see FIG. 3) affixed to the strain detection plate is also deformed in the same manner as the upper surface of the strain detection plate. For this reason, the piezoelectric film 31 is polarized as follows. The polarization in the second region is opposite to the polarization in the first region. Alternatively, the polarization in the second region is in the same direction as the polarization in the first region, but is smaller than that without the cushion 22.
 上述のように、Z方向から見て、クッション22はセンサ部16を含んでいる。このため、圧電フィルム31のほとんどが第2領域に含まれるので、圧電フィルム31の分極は小さくなる。この結果、回路部に取り出せる電荷量が低下するので、比較例の圧電センサ40では押圧を精度良く検出することができない。 As described above, the cushion 22 includes the sensor unit 16 when viewed from the Z direction. For this reason, since most of the piezoelectric film 31 is included in the second region, the polarization of the piezoelectric film 31 becomes small. As a result, the amount of charge that can be taken out by the circuit unit is reduced, so that the pressure cannot be accurately detected by the piezoelectric sensor 40 of the comparative example.
 図7は、第1の実施形態に係る圧電センサ10において、押圧によりSUS板15が撓んだ状態を示す要部断面図である。上述のように、クッション21は、Z方向から見て、押し子17とほぼ同一の位置に配置され、押し子17とほぼ同一の形状および大きさを有する。すなわち、圧電センサ10では第2領域がほとんど生じない。このため、圧電フィルム31(図3参照)は、全ての部分で長手方向に縮み、全ての部分で同一方向に分極する。また、圧電フィルム31の分極はクッション21により妨げられない。この結果、圧電フィルム31の分極は小さくならない。従って、回路部に取り出せる電荷量が低下しないので、第1の実施形態に係る圧電センサ10では押圧を精度良く検出することができる。 FIG. 7 is a cross-sectional view of the main part showing a state in which the SUS plate 15 is bent by pressing in the piezoelectric sensor 10 according to the first embodiment. As described above, the cushion 21 is disposed at substantially the same position as the pusher 17 as viewed from the Z direction, and has substantially the same shape and size as the pusher 17. That is, the second region hardly occurs in the piezoelectric sensor 10. Therefore, the piezoelectric film 31 (see FIG. 3) contracts in the longitudinal direction at all portions and is polarized in the same direction at all portions. Further, the polarization of the piezoelectric film 31 is not hindered by the cushion 21. As a result, the polarization of the piezoelectric film 31 does not become small. Therefore, since the amount of charge that can be taken out by the circuit unit does not decrease, the piezoelectric sensor 10 according to the first embodiment can accurately detect the pressing.
 図8は、クッション長さに対する発生電荷量の変化を示す計算結果である。計算結果は、第1の実施形態と同様の構成においてクッションのY方向の長さを変化させることにより得られたものである。各部材の寸法については、SUS板:64.30×7.55、圧電フィルム(PLLA):45.00×5.75、クッション:〈クッション長さ〉×6.25、押し子:6.00×6.25である。各部材の寸法は〈Y方向の長さ〉×〈X方向の長さ〉により表され、単位はmmである。各部材は、平面視で各部材の中心が重なるように積層されている。 FIG. 8 is a calculation result showing a change in the generated charge amount with respect to the cushion length. The calculation result is obtained by changing the length of the cushion in the Y direction in the same configuration as in the first embodiment. Regarding the dimensions of each member, SUS plate: 64.30 × 7.55, piezoelectric film (PLLA): 45.00 × 5.75, cushion: <cushion length> × 6.25, pusher: 6.00 X6.25. The dimension of each member is represented by <length in the Y direction> × <length in the X direction>, and the unit is mm. Each member is laminated so that the centers of the members overlap in plan view.
 クッション長さはクッションのY方向の長さである。すなわち、クッション長さは押し込みにより圧電フィルムが縮む方向におけるクッションの長さである。発生電荷量は、押し込みの際に圧電フィルムに発生する電荷量である。クッション長さが9mm以下の時、すなわち、クッション長さが押し子のY方向の長さの1.5倍以下の時の発生電荷量は、クッションが無い時の発生電荷量とほぼ等しい。クッション長さが9mmより長くなるにつれて、発生電荷量が減少する傾向が見られる。この結果からわかるように、クッション長さを押し子のY方向の長さの1.5倍以下にすることによって、クッションを配置することによる発生電荷量への影響をほぼ0にすることができる。 The cushion length is the length of the cushion in the Y direction. That is, the cushion length is the length of the cushion in the direction in which the piezoelectric film is contracted by pressing. The amount of generated charge is the amount of charge generated in the piezoelectric film upon pressing. When the cushion length is 9 mm or less, that is, when the cushion length is 1.5 times or less the length of the pusher in the Y direction, the generated charge amount is almost equal to the generated charge amount when there is no cushion. As the cushion length becomes longer than 9 mm, the generated charge amount tends to decrease. As can be seen from this result, by setting the cushion length to 1.5 times or less of the length of the pusher in the Y direction, the influence on the amount of generated charges by arranging the cushion can be made almost zero. .
 上述からわかるように、平面視して、クッションのうち押し子に重ならない部分の面積が小さいほど、本発明の効果は顕著になる。 As can be seen from the above, the effect of the present invention becomes more remarkable as the area of the portion of the cushion that does not overlap the pusher is smaller in plan view.
《他の実施形態》
 本発明の他の実施形態に係る圧電センサについて説明する。他の実施形態に係る圧電センサの構成は、クッションを除いて、第1の実施形態と同様である。図9は、他の実施形態に係るクッションを示すA-A断面図である。図9(A)に示すように、クッション23は、Z方向から見て、押し子17に比べて小さい。クッション23は、Z方向から見て、押し子17内に配置されている。図9(B)に示すように、クッション24は、Z方向から見て、押し子17に比べて幾分大きい。クッション24は、Z方向から見て、押し子17を含んでいる。図9(C)に示すように、クッション25の位置は、Z方向から見て、押し子17の位置から幾分ずれている。クッション25の殆どの部分は、Z方向から見て、押し子17と重なっている。
<< Other embodiments >>
A piezoelectric sensor according to another embodiment of the present invention will be described. The configuration of the piezoelectric sensor according to another embodiment is the same as that of the first embodiment except for the cushion. FIG. 9 is a cross-sectional view taken along line AA showing a cushion according to another embodiment. As shown in FIG. 9A, the cushion 23 is smaller than the pusher 17 when viewed from the Z direction. The cushion 23 is disposed in the pusher 17 when viewed from the Z direction. As shown in FIG. 9B, the cushion 24 is somewhat larger than the pusher 17 when viewed from the Z direction. The cushion 24 includes a pusher 17 when viewed from the Z direction. As shown in FIG. 9C, the position of the cushion 25 is somewhat shifted from the position of the pusher 17 when viewed from the Z direction. Most portions of the cushion 25 overlap with the pusher 17 when viewed from the Z direction.
 他の実施形態では、クッション23~25は、Z方向から見て、押し子17と重ならない部分を全くまたは殆ど有さない。このため、圧電フィルム31(図3参照)は、全ての部分で長手方向に縮み、全ての部分で同一方向に分極する。また、圧電フィルム31の分極はクッション23~25により妨げられない。この結果、他の実施形態に係る圧電センサでは、圧電センサ10と同様に、回路部に取り出せる電荷量が低下しない。 In other embodiments, the cushions 23 to 25 have no or almost no portion that does not overlap the pusher 17 when viewed from the Z direction. Therefore, the piezoelectric film 31 (see FIG. 3) contracts in the longitudinal direction at all portions and is polarized in the same direction at all portions. Further, the polarization of the piezoelectric film 31 is not hindered by the cushions 23-25. As a result, in the piezoelectric sensors according to other embodiments, as in the piezoelectric sensor 10, the amount of charge that can be extracted to the circuit unit does not decrease.
 なお、上述の実施形態ではガラス板が押し込まれていたが、本発明の圧電センサはこれに限定されない。ガラス板の代わりに、ガラス板、タッチパネルおよび液晶パネルが層状に重なったパネルを用いてもよい。 In addition, although the glass plate was pushed in in the above-mentioned embodiment, the piezoelectric sensor of this invention is not limited to this. Instead of the glass plate, a panel in which a glass plate, a touch panel and a liquid crystal panel are stacked in layers may be used.
10,40…圧電センサ
11…裏側筐体部
12…ガラス板(受付板)
13…筐体
14a,14b…スペーサ
15…SUS板(ひずみ検出用板)
16…センサ部
17…押し子(ひずみ伝達部材)
21~25…クッション(弾性部材)
31…圧電フィルム
32,33,38…貼付層
34,35…平板電極
36,37…基材層
10, 40 ... Piezoelectric sensor 11 ... Back side housing 12 ... Glass plate (reception plate)
13 ... Cases 14a, 14b ... Spacer 15 ... SUS plate (strain detection plate)
16 ... sensor 17 ... presser (strain transmitting member)
21-25 ... Cushion (elastic member)
31 ... Piezoelectric films 32, 33, 38 ... Adhesive layers 34, 35 ... Flat plate electrodes 36, 37 ... Base material layers

Claims (7)

  1.  押し込みを受け付ける受付板と、
     前記受付板と平行になるように配置され、前記押し込みにより歪むひずみ検出用板と、
     前記ひずみ検出用板の主面に貼付される圧電フィルムと、
     前記受付板と前記ひずみ検出用板との間に配置され、前記受付板から前記ひずみ検出用板にひずみを伝達するひずみ伝達部材と、
     前記ひずみ検出用板に対して前記受付板側と反対側に配置され、前記ひずみ検出用板を支持する弾性部材と、を備え、
     前記ひずみ検出用板の主面に垂直な方向から見て、前記弾性部材は、前記ひずみ伝達部材の少なくとも一部と重なり、前記圧電フィルムの全体には重ならない、圧電センサ。
    A reception board that accepts push-in,
    A strain detection plate disposed parallel to the receiving plate and distorted by the pushing,
    A piezoelectric film attached to the main surface of the strain detection plate;
    A strain transmitting member disposed between the receiving plate and the strain detecting plate, and transmitting strain from the receiving plate to the strain detecting plate;
    An elastic member disposed on the opposite side of the receiving plate side with respect to the strain detecting plate, and supporting the strain detecting plate;
    The piezoelectric sensor, wherein the elastic member overlaps at least a part of the strain transmission member and does not overlap the entire piezoelectric film when viewed from a direction perpendicular to the main surface of the strain detection plate.
  2.  前記ひずみ検出用板の主面に垂直な方向から見て、前記弾性部材は前記ひずみ伝達部材内に配置される、請求項1に記載の圧電センサ。 The piezoelectric sensor according to claim 1, wherein the elastic member is disposed in the strain transmitting member when viewed from a direction perpendicular to a main surface of the strain detecting plate.
  3.  前記ひずみ検出用板の主面に垂直な方向から見て、前記弾性部材のうち、前記ひずみ伝達部材と重なる部分の面積は、前記ひずみ伝達部材と重ならない部分の面積に比べて大きい、請求項1または2に記載の圧電センサ。 The area of the portion of the elastic member that overlaps with the strain transmission member is larger than the area of the portion that does not overlap with the strain transmission member, as viewed from a direction perpendicular to the main surface of the strain detection plate. 3. The piezoelectric sensor according to 1 or 2.
  4.  前記圧電センサを断面視したとき、前記弾性部材の長さは前記ひずみ伝達部材の長さの1.5倍以下である、請求項1ないし3のいずれか1項に記載の圧電センサ。 The piezoelectric sensor according to any one of claims 1 to 3, wherein when the piezoelectric sensor is viewed in cross section, the length of the elastic member is 1.5 times or less the length of the strain transmitting member.
  5.  前記圧電フィルムはキラル高分子から形成される、請求項1ないし4のいずれか1項に記載の圧電センサ。 The piezoelectric sensor according to any one of claims 1 to 4, wherein the piezoelectric film is formed of a chiral polymer.
  6.  前記キラル高分子はポリ乳酸である、請求項5に記載の圧電センサ。 The piezoelectric sensor according to claim 5, wherein the chiral polymer is polylactic acid.
  7.  前記ポリ乳酸はL型ポリ乳酸である、請求項6に記載の圧電センサ。 The piezoelectric sensor according to claim 6, wherein the polylactic acid is L-type polylactic acid.
PCT/JP2014/082808 2013-12-20 2014-12-11 Piezoelectric sensor WO2015093383A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015553505A JP6052431B2 (en) 2013-12-20 2014-12-11 Piezoelectric sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013263579 2013-12-20
JP2013-263579 2013-12-20

Publications (1)

Publication Number Publication Date
WO2015093383A1 true WO2015093383A1 (en) 2015-06-25

Family

ID=53402730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082808 WO2015093383A1 (en) 2013-12-20 2014-12-11 Piezoelectric sensor

Country Status (2)

Country Link
JP (1) JP6052431B2 (en)
WO (1) WO2015093383A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018084155A1 (en) * 2016-11-01 2019-07-18 株式会社村田製作所 Deformation detection device and gripping part

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130836A (en) * 1984-11-30 1986-06-18 Mitsubishi Petrochem Co Ltd Piezo-electric sensor
JPS61107115U (en) * 1984-12-20 1986-07-07
JPH0935570A (en) * 1995-07-21 1997-02-07 Yazaki Corp Switch device
JP2002292961A (en) * 2001-03-30 2002-10-09 Dainippon Printing Co Ltd Print system and printer
WO2013157508A1 (en) * 2012-04-17 2013-10-24 株式会社村田製作所 Pushing force sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243396A (en) * 2010-05-18 2011-12-01 Tokai Rika Co Ltd Input device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130836A (en) * 1984-11-30 1986-06-18 Mitsubishi Petrochem Co Ltd Piezo-electric sensor
JPS61107115U (en) * 1984-12-20 1986-07-07
JPH0935570A (en) * 1995-07-21 1997-02-07 Yazaki Corp Switch device
JP2002292961A (en) * 2001-03-30 2002-10-09 Dainippon Printing Co Ltd Print system and printer
WO2013157508A1 (en) * 2012-04-17 2013-10-24 株式会社村田製作所 Pushing force sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018084155A1 (en) * 2016-11-01 2019-07-18 株式会社村田製作所 Deformation detection device and gripping part

Also Published As

Publication number Publication date
JPWO2015093383A1 (en) 2017-03-16
JP6052431B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
WO2015080109A1 (en) Piezoelectric sensor and portable terminal
JP5950053B2 (en) Press detection sensor
JP6052437B2 (en) Piezoelectric sensor
JP6041978B2 (en) Displacement sensor, push-in amount detection sensor, and touch input device
JP6004123B2 (en) Method for manufacturing piezoelectric sensor
WO2016035682A1 (en) Touch type input device and electronic apparatus
JP6079931B2 (en) Press sensor
JP6126692B2 (en) Press detection sensor
JP6795097B2 (en) Press sensor and electronic device
JP6287166B2 (en) Inspection method of piezoelectric sensor
JP6052431B2 (en) Piezoelectric sensor
JP6052434B2 (en) Method for manufacturing piezoelectric sensor
JP6015867B2 (en) Press sensor
WO2015093357A1 (en) Operation input apparatus
JP6197962B2 (en) Touch input device and touch input detection method
JP6041060B2 (en) Press sensor
WO2015093356A1 (en) Method for manufacturing piezoelectric sensor
JP5994949B2 (en) Operation input device
WO2019244594A1 (en) Pressing force sensor and pressing force detection device
WO2020129346A1 (en) Pressure sensor and pressure detection device
CN107924244B (en) Operation detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873051

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553505

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873051

Country of ref document: EP

Kind code of ref document: A1