WO2015093049A1 - Method for forming light receiving layer, method for producing organic photoelectric conversion element, organic material for film formation, organic photoelectric conversion element obtained using same, and photosensor - Google Patents

Method for forming light receiving layer, method for producing organic photoelectric conversion element, organic material for film formation, organic photoelectric conversion element obtained using same, and photosensor Download PDF

Info

Publication number
WO2015093049A1
WO2015093049A1 PCT/JP2014/006282 JP2014006282W WO2015093049A1 WO 2015093049 A1 WO2015093049 A1 WO 2015093049A1 JP 2014006282 W JP2014006282 W JP 2014006282W WO 2015093049 A1 WO2015093049 A1 WO 2015093049A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
ring
group
organic
receiving layer
Prior art date
Application number
PCT/JP2014/006282
Other languages
French (fr)
Japanese (ja)
Inventor
光正 濱野
巧 中村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020167012843A priority Critical patent/KR101869620B1/en
Publication of WO2015093049A1 publication Critical patent/WO2015093049A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for forming a light receiving layer of an organic photoelectric conversion element by dry film formation, and a method for manufacturing an organic photoelectric conversion element using the same.
  • the present invention also relates to an organic material for film formation used for dry film formation of a light-receiving layer of an organic photoelectric conversion element, an organic photoelectric conversion element obtained using the same, and an optical sensor.
  • Image sensors such as CCD sensors and CMOS sensors are widely known as image sensors used in digital cameras, mobile phone cameras, endoscope cameras, and the like.
  • These elements include a photoelectric conversion element including a light receiving layer including a photoelectric conversion layer between a pair of electrodes.
  • the photoelectric conversion element is an element that generates a charge in a photoelectric conversion layer in accordance with light incident from the transparent electrode side having light transparency among a pair of electrodes, and reads the generated charge as a signal charge from the electrode.
  • a photoelectric conversion element used for an image pickup element is required to satisfy a high level in various performances such as an S / N ratio of photocurrent / dark current, response speed, and afterimage current.
  • the applicant of the present invention provides a mixed layer (bulk hetero layer) of a p-type organic semiconductor and an n-type semiconductor such as fullerene or a fullerene derivative as an organic photoelectric conversion layer capable of obtaining good photoelectric conversion efficiency.
  • a mixed layer bulk hetero layer of a p-type organic semiconductor and an n-type semiconductor such as fullerene or a fullerene derivative as an organic photoelectric conversion layer capable of obtaining good photoelectric conversion efficiency.
  • the bulk hetero layer can be produced, for example, by co-evaporation (vacuum deposition) of a p-type organic semiconductor material and an n-type organic semiconductor material.
  • co-evaporation vacuum deposition
  • a film having a desired composition is formed by arranging a plurality of evaporation sources and controlling the speed and the like.
  • Patent Document 1 an organic photoelectric conversion element having high photoelectric conversion efficiency and a good S / N ratio of photocurrent / dark current can be provided. Moreover, in patent document 2, sufficient sensitivity and heat resistance are obtained by providing a mixed layer in at least one of the electron blocking layers, and high-speed response can be realized.
  • the afterimage current is evaluated by the ratio of the current after a certain period of time after turning off the light to the current at the time of incident light.
  • the afterimage current required for an image sensor is required to be on the order of 0.1%, preferably on the order of 0.01%, at a rate of 0.1 second after the light is turned off with respect to the current at the time of light incidence. ing.
  • the approach toward low afterimage current can be tried from various aspects such as the constituent material and layer structure of the light receiving layer, the structure of the image sensor, etc., but even if these structures are the same, the afterimage current The value has been confirmed to vary, and the cause is urgently needed.
  • the present invention has been made in view of the above circumstances, and in a light receiving layer forming method for an organic photoelectric conversion element for use in an optical sensor, a light receiving layer forming method capable of stably producing an organic photoelectric conversion element with a small afterimage current. Is intended to provide.
  • the light receiving layer forming method of the present invention comprises: In the light receiving layer forming method of forming a light receiving layer of an organic photoelectric conversion element used for an optical sensor by dry film formation, Prepare at least one organic material for film formation composed of powders having a fluorescence quantum yield of 0.2 or more composed of organic substances constituting the light receiving layer, Dry film formation is carried out using a vaporization source made of this organic material for film formation.
  • the organic material for film formation of the present invention is used for dry film formation of a light receiving layer of an organic photoelectric conversion element,
  • the light-receiving layer is made of a powder having a fluorescence quantum yield of 0.2 or more.
  • the expression “consisting of A” means that it contains only A and inevitable impurities.
  • a vaporization source made of a film-forming organic material means a vaporization source that does not contain any film-forming organic material and inevitable impurities.
  • the “constituent organic substance” means all organic substances excluding inevitable impurities and substances unintentionally contained in the organic material for film formation among the organic substances contained in the organic material for film formation. Means.
  • the fluorescence quantum yield means the absolute fluorescence quantum yield.
  • the dry film formation in this specification does not include chemical vapor deposition.
  • the fluorescence quantum yield of the granular material made of the organic material constituting the light receiving layer is 0.2 or more and 0.4 or less.
  • the constituent organic substance is preferably a p-type organic semiconductor material, and preferably has at least one amine moiety represented by the following formula (A) or one or more carbonyl group moieties represented by the following formula (B).
  • R 30 to R 31 each independently represents an alkyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl which may have a substituent.
  • R 32 represents an arylene linking group which may have a substituent or a heteroarylene linking group which may have a substituent, and R 30 to R 32 are connected to each other to form a ring. You may do it.
  • Y 1 is a ring containing two or more carbon atoms, and a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. And this may have a substituent, and the substituents may combine as much as possible to form a ring.
  • a p-type organic semiconductor material represented by the following formula (C) is more preferable.
  • Z 4 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • L 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group, D 1 represents an atomic group, and n represents an integer of 0 or more.
  • the dry film forming method is preferably a resistance heating vapor deposition method.
  • the light receiving layer is preferably a photoelectric conversion layer.
  • the method for producing an organic photoelectric conversion element of the present invention is a method for producing an organic photoelectric conversion element having a pair of electrodes and a light receiving layer including at least a photoelectric conversion layer sandwiched between the electrodes.
  • the film is formed by the light receiving layer forming method.
  • the organic photoelectric conversion element of the present invention is an organic photoelectric conversion element having a pair of electrodes and a light receiving layer including at least a photoelectric conversion layer sandwiched between the electrodes, and the light receiving layer includes the organic material for film formation of the present invention. It is formed by dry film formation.
  • An optical sensor according to the present invention includes a plurality of the above-described organic photoelectric conversion elements according to the present invention and a circuit board on which a signal readout circuit for reading a signal corresponding to a charge generated in the photoelectric conversion layer of the photoelectric conversion element is formed. Therefore, it is suitable as an image sensor.
  • the light-receiving layer of the organic photoelectric conversion element used for the optical sensor is dry-formed using a granular material having a fluorescence quantum yield of 0.2 or more, which is made of organic substances constituting the light-receiving layer, as a vaporization source.
  • a vaporization source containing such powder particles, an organic photoelectric conversion element having a low afterimage current can be stably produced.
  • the afterimage current characteristics when used as an element can be estimated simply and at low cost without preparing a photoelectric conversion element by measuring the fluorescent particle yield of the powder sample of the vaporization source material.
  • Schematic perspective view (vacuum heating vapor deposition) showing vapor deposition method of light receiving layer 1 is a schematic cross-sectional schematic diagram illustrating an embodiment of an image sensor according to the present invention The figure which shows the relationship between the afterimage current value of the organic photoelectric conversion element of an Example and a comparative example, and the fluorescence quantum yield of the organic material for film-forming of a light receiving layer
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the photoelectric conversion element of this embodiment.
  • the scale of each part is appropriately changed and shown for easy visual recognition.
  • the organic photoelectric conversion element 1 (photoelectric conversion element 1) is sandwiched between a substrate 10, a pair of electrodes (a lower electrode 20 and an upper electrode 40) formed on the substrate 10.
  • the light receiving layer 30 and the sealing layer 50 formed on the upper electrode 40 are provided.
  • the light receiving layer 30 may be a layer including at least the photoelectric conversion layer 32, but in this embodiment, the electron blocking layer 31 is provided between the lower electrode 20 and the photoelectric conversion layer 32.
  • the light receiving layer 30 may be a layer including a layer other than the photoelectric conversion layer 32 and the electron blocking layer 31 (for example, a hole blocking layer).
  • the electron blocking layer 31 included in the light receiving layer 30 suppresses the injection of electrons from the lower electrode 20 (hereinafter referred to as the electrode 20) into the photoelectric conversion layer 32, and the electrons generated in the photoelectric conversion layer 32 are on the electrode 20 side. It is a layer for inhibiting the flow.
  • the electron blocking layer 31 includes an organic material, an inorganic material, or both.
  • the upper electrode 40 (hereinafter referred to as electrode 40) is an electrode that collects electrons out of the charges generated in the photoelectric conversion layer 32.
  • the upper electrode 40 is made of a conductive material (for example, ITO) that is sufficiently transparent to light having a wavelength with which the photoelectric conversion layer 32 has sensitivity in order to make light incident on the photoelectric conversion layer 32.
  • the photoelectric conversion element 1 configured as described above uses the electrode 40 as a light incident side electrode. When light enters from above the electrode 40, the light passes through the electrode 40 and enters the photoelectric conversion layer 32. A charge is generated. Holes of the generated charges move to the electrode 20. By converting the holes transferred to the electrode 20 into a voltage signal corresponding to the amount of the holes and reading out the light, the light can be converted into a voltage signal and extracted.
  • a bias voltage may be applied so as to collect electrons at the electrode 20 and collect holes at the electrode 40.
  • a hole blocking layer may be provided instead of the electron blocking layer 31.
  • the hole blocking layer suppresses injection of holes from the electrode 20 into the photoelectric conversion layer 32, and an organic material for inhibiting holes generated in the photoelectric conversion layer 32 from flowing toward the electrode 20 side. It may be a layer composed of In either case, the portion sandwiched between the electrode 20 and the electrode 40 becomes the light receiving layer 30.
  • a dry film-forming method using a film-forming organic material 60 made of an organic material constituting the light-receiving layer is preferably used for forming the light-receiving layer of the organic photoelectric conversion element. It is done. In dry film formation, film formation is performed using a film formation material including a constituent material such as an evaporation source or a sputtering target as a vaporization source.
  • the present inventors paid attention to the material of the vaporization source used for forming the light-receiving layer, and intensively studied the relationship between the physical properties of the vaporization source and the afterimage current. As a result, it was found that there is a characteristic correlation between the afterimage current and the fluorescent particle yield in the granular material of the organic material for film formation contained in the light-receiving layer vaporization source.
  • the fluorescence quantum yield is a value represented by the ratio of the number of emitted photons to the number of photons absorbed by the substance, and the closer the fluorescence quantum yield is to 1, the better the fluorescence emission efficiency.
  • the fluorescence quantum yield does not become 1 due to a transition from the excited state to the ground state to another excited level, thermal deactivation, reabsorption, quenching due to a small amount of impurities, and the like.
  • the inventor used the film-forming organic material 60 included in the vaporization source of the light-receiving layer 30 to have a good afterimage current characteristic by using a material having a fluorescence quantum yield of 0.2 or more at the time of the granular material.
  • the organic photoelectric conversion element 1 is formed by dry film formation using the organic material 60 for film formation in which the light receiving layer 30 is made of a granular material having a fluorescent quantum yield of 0.2 or more made of organic substances constituting the light receiving layer 30. It will be.
  • the film-forming organic material 60 a high-purity film-forming organic material having a HPLC (high performance liquid chromatography) purity of 95% or more, preferably 98% or more is usually used.
  • HPLC high performance liquid chromatography
  • the present inventor said that there is a trace amount of a substance that quenches fluorescence in the granular material of the organic material for film formation, and the content of the substance varies among the high-purity organic materials for film formation conventionally used. Inferred, by removing the substance that quenches fluorescence, that is, by making the fluorescence quantum yield 0.2 or more, mixing of the substance that quenches fluorescence is suppressed, and organic photoelectric conversion with excellent afterimage current characteristics We believe that the device has been successfully manufactured stably.
  • the method of setting the fluorescence quantum yield of the film-forming organic material 60 that is a granular material to 0.2 or more is, for example, melting a high-purity film-forming organic material.
  • the material is completely dissolved in a solvent that does not promote the decomposition of the material, and is filtered with suction through a membrane filter having a pore size of 0.1 ⁇ m to 1 ⁇ m, and the filtrate is concentrated under reduced pressure to remove the solvent.
  • the above-described fluorescence quenching substance removing method may be performed after a normal purification process of the synthesized organic matter.
  • the comparative example is an example using a film-forming organic material that has been subjected to a purification step for obtaining a conventional high-purity film-forming organic material.
  • the light-receiving layer 30 formed using the film-forming organic material 60 may be a photoelectric conversion layer 32, an electron blocking layer 31, or a hole blocking layer (not shown). Preferably there is.
  • Examples of the organic substance constituting the light receiving layer 30 include a p-type organic semiconductor material and an n-type organic semiconductor material.
  • the organic material for film formation according to the present embodiment may be used as the p-type organic semiconductor material. preferable. Materials suitable for the p-type organic semiconductor material and the n-type organic semiconductor material, the electron blocking layer, the hole blocking layer, and the like constituting the light receiving layer 30 will be described later.
  • the particle size of the organic material 60 for film formation made of powder particles is not particularly limited, but the average particle size is preferably 50 ⁇ m or more and 800 ⁇ m or less.
  • an average particle diameter means the average particle diameter represented by D50%.
  • the “average particle diameter represented by D50%” is a particle diameter when a plurality of particles are divided into two from a certain particle diameter so that the larger side and the smaller side are equivalent.
  • the average particle diameter represented by D50% is determined by reading the value of 50% of the passing percentage or cumulative percentage from the particle size curve.
  • the sample is sieved and the percentage by weight of the sample is checked to see how many ⁇ m the sieve has passed, and the horizontal axis represents the opening diameter and the vertical axis represents the passing percentage.
  • a cumulative distribution measurement method using a laser diffraction particle size analyzer If the powder is ground with a mortar and the average particle size is significantly smaller than 20 ⁇ m, in addition to quenching due to trace impurities, suppression of reabsorption due to finer powder and quenching due to structural defects In addition, the value of the fluorescence quantum yield may change.
  • the bulk density of the organic material 60 for film formation made of a granular material is preferably 0.3 g / ml or more.
  • Bulk density means loosely packed bulk density, where powder is loosely packed in a volume-measurable container, and the mass of the powder is the volume of the powder including the void volume between the particles, and the mass of the powder is divided. It is the value. Specifically, using a volume meter or the like, a powder sample is gently put into a measurement container through a sieve having a mesh opening of 1 mm so as not to change the properties of the sample, and obtained from the mass and volume of the powder in the container by calculation. .
  • the organic material for high-purity film formation may contain a solvent that remains undetectable by HPLC. Since this solvent affects characteristics such as photoelectric conversion efficiency, S / N ratio of photocurrent / dark current, and response speed, it is preferable to carry out a solvent removal step in which the residual solvent is 3 mol% or less.
  • the type of residual solvent is not limited, although the amount of influence is large or small.
  • the solvent include water, alcohols, ethers, ketones, sulfoxides, carbonates, amides, carboxylic acids, esters, nitriles, halogens, aromatics and the like. More specifically, when two or more types of solvents are contained, the total content of the two or more types is preferably 3 mol% or less.
  • solvents that may remain include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butyl alcohol, ethylene glycol, propylene glycol, glycerin, dimethyl ether, diethyl ether, 1,2-dimethoxyethane.
  • Removal of residual solvent includes sublimation purification, recrystallization purification, column chromatography purification, reslurry (dispersion in solvent), vacuum drying method, reprecipitation purification, liquid separation, washing with water, solvent, filtration, filtration, ion exchange resin
  • Examples include chromatography, activated carbon, diatomaceous earth, ion exchange resin, resin, adsorption by inorganic porous material (zeolite), air drying, heat drying method, freeze drying and the like.
  • the organic material for film formation does not contain any metal such as Al, Fe, Cu, Zn, Zr, Ca, Mg, Cr, Ni, Mo, Mn, Na, Si, B, and K. It is preferable that halogen elements such as F, Cl, Br, and I are not included. The halogen element content is more preferably less than 100 ppm. In addition, it is preferable to perform a solvent removal process and a metal removal process before implementing a fluorescence-quenching substance removal process or simultaneously.
  • the organic material 60 for film formation is made of a granular material having a fluorescence quantum yield of 0.2 or more made of the organic material constituting the light-receiving layer 30 (for example, the photoelectric conversion layer 32), it depends on the vaporization source mode of the dry film formation. Then, it may be used as it is in the state of a granular material, or may be formed into a target form. Although it does not restrict
  • the physical vapor deposition method is mainly used for the dry film formation of the light receiving layer material of the organic photoelectric conversion element.
  • Examples of physical vapor deposition include resistance heating vapor deposition, sputtering, electron beam vapor deposition, ion plating, molecular beam epitaxy, ion beam deposition, and pulsed laser deposition.
  • the form of the vaporization source differs depending on the film forming method.
  • resistance heating vapor deposition, electron beam vapor deposition, or the like uses a constituent organic powder or solid as a vaporization source as it is.
  • a flat or cylindrical bulk target material is used as a vaporization source.
  • a dry film forming method a method in which the film forming organic material 60 can be used as it is as a vaporization source is preferable, and a resistance heating vapor deposition method is more preferable.
  • FIG. 2 shows an example of a schematic diagram showing the state of resistance heating vapor deposition.
  • the light-receiving layer is normally vapor-deposited with a substrate holder 90 provided above the opening of the vapor deposition cell 71 installed in the vapor deposition chamber 91, and with the substrate B installed in the holder 90.
  • a film-forming organic material (vapor deposition material) 60 is installed in the vapor deposition cell 71 having a heating function, and since the inside of the vapor deposition chamber 91 has a high degree of vacuum, the vapor deposition material evaporated from the vapor deposition cell 71 has an opening portion. The film is emitted from the substrate and travels straight and is formed on the substrate B.
  • the deposition cell 71 and the substrate B are separated by 10 cm or more if possible.
  • the evaporated deposition material is incident on the substrate surface while spreading in a substantially conical shape at an incident angle of 0 ° to ⁇ .
  • the organic material 60 for film formation is installed as a vapor deposition source such as a boat type, a basket type, a hairpin type, or a crucible type, and is not particularly limited.
  • the film formation rate is preferably 0.2 to 12 cm / s from the viewpoint of productivity.
  • the film formation temperature may be any temperature within the range of the film formation rate (evaporation rate), and is preferably in the range of 150 to 750 ° C.
  • the afterimage current is evaluated in the form in which the organic material for film formation 60 is used for the photoelectric conversion layer 32 constituting the light receiving layer 30.
  • it can be preferably applied to the electron blocking layer 31 and the hole blocking layer (not shown).
  • the organic material 60 for film formation is mainly composed of constituent organic substances of the light receiving layer 30 of the organic photoelectric conversion element 1 used in the optical sensor.
  • the configuration of the photoelectric conversion element 1 shown in FIG. 1 will be described.
  • the light receiving layer 30 such as the photoelectric conversion layer 32 and the electron blocking layer 31 which are organic layers is formed by the dry film formation method using the organic material 60 for film formation described above.
  • the organic photoelectric conversion element 1 with little afterimage current can be manufactured stably.
  • Substrate and electrode> There is no restriction
  • the lower electrode 20 is an electrode for collecting holes out of charges generated in the photoelectric conversion layer 32.
  • the lower electrode 20 is not particularly limited as long as it has good conductivity. However, depending on the application, there are cases where transparency is provided, and conversely, a case where a material that does not have transparency and reflects light is used. is there.
  • conductive metal oxides such as tin oxide (ATO, FTO) doped with antimony or fluorine, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), Metals such as gold, silver, chromium, nickel, titanium, tungsten, and aluminum, and conductive compounds such as oxides and nitrides of these metals (for example, titanium nitride (TiN)), and these metals and conductivity Examples include mixtures or laminates with metal oxides, inorganic conductive materials such as copper iodide and copper sulfide, organic conductive materials such as polyaniline, polythiophene, and polypyrrole, and laminates of these with ITO or titanium nitride. .
  • ATO tin oxide
  • FTO tin oxide
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • Metals such as gold, silver, chromium, nickel, titanium, tungsten
  • the upper electrode 40 is an electrode that collects electrons out of the charges generated in the photoelectric conversion layer 32.
  • the upper electrode 40 is not particularly limited as long as it is a conductive material that is sufficiently transparent to light having a wavelength with which the photoelectric conversion layer 32 has sensitivity in order to allow light to enter the photoelectric conversion layer 32.
  • conductive metal oxides such as tin oxide (ATO, FTO) doped with antimony or fluorine, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), Metal thin films such as gold, silver, chromium and nickel, and mixtures or laminates of these metals and conductive metal oxides, inorganic conductive materials such as copper iodide and copper sulfide, organic materials such as polyaniline, polythiophene and polypyrrole Examples thereof include conductive materials and laminates of these with ITO. Among these, conductive metal oxides are preferable from the viewpoint of high conductivity and transparency.
  • the method for forming the electrode is not particularly limited, and can be appropriately selected in consideration of appropriateness with the electrode material. Specifically, it can be formed by a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD method.
  • the electrode material When the electrode material is ITO, it can be formed by a method such as an electron beam method, a sputtering method, a resistance heating vapor deposition method, a chemical reaction method (sol-gel method or the like), or a dispersion of indium tin oxide. Furthermore, UV-ozone treatment, plasma treatment, or the like can be performed on a film formed using ITO. When the electrode material is TiN, various methods including a reactive sputtering method can be used, and further, UV-ozone treatment, plasma treatment, and the like can be performed.
  • the upper electrode 40 is formed on the organic photoelectric conversion layer 32, it is preferable that the upper electrode 40 be formed by a method that does not deteriorate the characteristics of the organic photoelectric conversion layer 32. Therefore, the upper electrode 40 is preferably formed plasma-free.
  • plasma free means that no plasma is generated during the deposition of the upper electrode 40, or that the distance from the plasma generation source to the substrate is 2 cm or more, preferably 10 cm or more, more preferably 20 cm or more. It means a state in which the plasma that reaches is reduced.
  • Examples of apparatuses that do not generate plasma during the formation of the upper electrode 40 include an electron beam vapor deposition apparatus (EB vapor deposition apparatus) and a pulse laser vapor deposition apparatus.
  • EB vapor deposition apparatus electron beam vapor deposition apparatus
  • pulse laser vapor deposition apparatus pulse laser vapor deposition apparatus.
  • EB deposition equipment or pulse laser deposition equipment “Surveillance of Transparent Conductive Films” supervised by Yutaka Sawada (published by CMC, 1999); ), "Transparent conductive film technology” by the Japan Society for the Promotion of Science (Ohm Co., 1999), and the references attached thereto, etc. can be used.
  • an EB vapor deposition method a method of forming a transparent electrode film using an EB vapor deposition apparatus is referred to as an EB vapor deposition method
  • a method of forming a transparent electrode film using a pulse laser vapor deposition apparatus is referred to as a pulse laser vapor deposition method.
  • a plasma-free film forming apparatus For an apparatus that can realize a state in which the distance from the plasma generation source to the substrate is 2 cm or more and the arrival of plasma to the substrate is reduced (hereinafter referred to as a plasma-free film forming apparatus), for example, an opposed target sputtering Equipment, arc plasma deposition, etc. are considered, and these are supervised by Yutaka Sawada "New development of transparent conductive film” (published by CMC, 1999) and Yutaka Sawada "New development of transparent conductive film II” (published by CMC) 2002), “Transparent conductive film technology” (Ohm Co., 1999) by the Japan Society for the Promotion of Science, and references and the like attached thereto can be used.
  • the upper electrode 40 When a transparent conductive film such as TCO (transparent conductive glass) is used as the upper electrode 40, a DC short circuit or an increase in leakage current may occur.
  • TCO transparent conductive glass
  • a dense film such as TCO
  • conduction between the lower electrode 20 on the opposite side is increased.
  • an increase in leakage current hardly occurs.
  • the thickness of the upper electrode 40 is 1/5 or less, preferably 1/10 or less of the thickness of the photoelectric conversion layer 32.
  • the sheet resistance is preferably 100 to 10,000 ⁇ / ⁇ .
  • the increase in light transmittance is very preferable because it increases the light absorption in the photoelectric conversion layer 32 and increases the photoelectric conversion ability.
  • the thickness of the upper electrode 40 is preferably 5 to 100 nm, and more preferably 5 to 20 nm. preferable.
  • the light receiving layer 30 is an organic layer including at least the photoelectric conversion layer 32, and includes an organic layer formed by a dry film forming method using the film forming organic material 60.
  • the light receiving layer 30 includes an electron blocking layer 31 and a photoelectric conversion layer 32, and either or both of these are formed by a dry film forming method using the film forming organic material 60. ing.
  • the light receiving layer 30 can be formed by a dry film forming method or a wet film forming method.
  • the dry film formation method is preferable in that a uniform film formation is easy and impurities are not easily mixed, and that film thickness control and lamination on different materials are easy.
  • the dry film formation method include a physical vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, an MBE (molecular beam epitaxy) method, or a CVD method such as plasma polymerization.
  • a vacuum deposition method is preferred, and in the case of forming a film by the vacuum deposition method, the production conditions such as the degree of vacuum and the deposition temperature can be set according to conventional methods.
  • the decomposition temperature is higher than the vapor deposition possible temperature because thermal decomposition during vapor deposition can be suppressed.
  • the degree of vacuum at the time of formation is preferably 1 ⁇ 10 ⁇ 3 Pa or less in consideration of preventing deterioration of element characteristics at the time of forming the light-receiving layer. ⁇ 4 Pa or less is more preferable, and 1 ⁇ 10 ⁇ 4 Pa or less is particularly preferable.
  • the thickness of the light receiving layer 30 is preferably 10 nm or more and 1000 nm or less, more preferably 50 nm or more and 800 nm or less, and particularly preferably 100 nm or more and 600 nm or less. By setting it to 10 nm or more, a suitable dark current suppressing effect is obtained, and by setting it to 1000 nm or less, suitable photoelectric conversion efficiency is obtained.
  • the photoelectric conversion layer 32 receives light and generates an electric charge according to the amount of light, and includes an organic photoelectric conversion material.
  • the photoelectric conversion element 1 of the present embodiment has a configuration in which a photoelectric conversion layer 32 includes a mixed layer (bulk hetero layer) in which a p-type organic semiconductor (p-type organic compound) and an n-type organic semiconductor are mixed.
  • This mixed layer is preferably formed by co-evaporation of the organic material 60 for forming a p-type organic semiconductor material and the organic material 60 for forming an n-type organic semiconductor material.
  • the mixed layer refers to a layer in which a plurality of materials are mixed or dispersed.
  • the mixed layer is a layer formed by co-evaporating a p-type organic semiconductor and an n-type organic semiconductor. .
  • fullerene or a fullerene derivative is not particularly limited, and fullerene C 60 , fullerene C 70 , fullerene C 76 , fullerene C 78 , fullerene C 80 , fullerene C 82 , fullerene C 84 , fullerene C 90 , fullerene C 96 , fullerene C 240 , Fullerene C 540 , mixed fullerene, fullerene nanotubes and the like.
  • the fullerene derivative means a compound having a substituent added thereto.
  • the substituent for the fullerene derivative is preferably an alkyl group, an aryl group, or a heterocyclic group.
  • the alkyl group is more preferably an alkyl group having 1 to 12 carbon atoms, and the aryl group and the heterocyclic group are preferably a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, fluorene ring, triphenylene ring, naphthacene ring.
  • substituents may further have a substituent, and the substituents may be bonded as much as possible to form a ring.
  • substituents may be bonded as much as possible to form a ring.
  • you may have a some substituent and they may be the same or different.
  • a plurality of substituents may be combined as much as possible to form a ring.
  • the photoelectric conversion layer 32 contains fullerene or a fullerene derivative
  • charges generated by photoelectric conversion can be quickly transported to the lower electrode 20 or the upper electrode 40 via the fullerene molecule or fullerene derivative molecule.
  • fullerene molecules or fullerene derivative molecules are connected to form an electron path, the electron transport property is improved, and the high-speed response of the organic photoelectric conversion element can be realized.
  • the fullerene or fullerene derivative is preferably contained in the photoelectric conversion layer 32 by 40% or more.
  • the p-type organic semiconductor is reduced, the junction interface is reduced, and the exciton dissociation efficiency is lowered.
  • the ratio of fullerene or fullerene derivative in the photoelectric conversion layer 32 is too large, the amount of the p-type organic semiconductor decreases and the amount of incident light absorbed decreases. As a result, the photoelectric conversion efficiency is reduced, so that the fullerene or fullerene derivative contained in the photoelectric conversion layer 32 preferably has a composition of 85% or less.
  • the p-type organic semiconductor is preferably a compound represented by the following general formula. It is preferable that the constituent organic substance has at least one amine moiety represented by the following formula (A) or one represented by the following formula (B) carbonyl group.
  • R 30 to R 31 each independently represents an alkyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl which may have a substituent.
  • R 32 represents an arylene linking group which may have a substituent or a heteroarylene linking group which may have a substituent, and R 30 to R 32 are connected to each other to form a ring.
  • Y 1 is a ring containing two or more carbon atoms, and is a 5-membered ring, a 6-membered ring, or at least one of a 5-membered ring and a 6-membered ring. (This represents a condensed ring that may have a substituent, and the substituents may be combined to form a ring as much as possible.)
  • the p-type organic semiconductor is preferably a compound represented by the following general formula (C).
  • Z 4 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • L 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group, D 1 represents an atomic group, and n represents an integer of 0 or more.
  • Z 4 is a ring containing at least two carbon atoms, and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • a condensed ring containing at least one of a 5-membered ring, a 6-membered ring, and a 5-membered ring and a 6-membered ring those usually used as an acidic nucleus in a merocyanine dye are preferable. Specific examples thereof include the following: Is mentioned.
  • (A) 1,3-dicarbonyl nucleus for example, 1,3-indandione nucleus, 1,3-cyclohexanedione, 5,5-dimethyl-1,3-cyclohexanedione, 1,3-dioxane-4,6- Zeon etc.
  • (B) pyrazolinone nucleus for example 1-phenyl-2-pyrazolin-5-one, 3-methyl-1-phenyl-2-pyrazolin-5-one, 1- (2-benzothiazoyl) -3-methyl-2 -Pyrazolin-5-one and the like.
  • (C) isoxazolinone nucleus for example, 3-phenyl-2-isoxazolin-5-one, 3-methyl-2-isoxazolin-5-one and the like.
  • (D) Oxindole nucleus For example, 1-alkyl-2,3-dihydro-2-oxindole and the like.
  • Examples of the derivatives include 1-alkyl compounds such as 1-methyl and 1-ethyl, 1,3-dialkyl compounds such as 1,3-dimethyl, 1,3-diethyl and 1,3-dibutyl, 1,3-diphenyl, 1,3-diaryl compounds such as 1,3-di (p-chlorophenyl) and 1,3-di (p-ethoxycarbonylphenyl), 1-alkyl-1-aryl compounds such as 1-ethyl-3-phenyl, Examples include 1,3-di (2-pyridyl) 1,3-diheterocyclic substituents and the like.
  • (F) 2-thio-2,4-thiazolidinedione nucleus for example, rhodanine and its derivatives.
  • the derivatives include 3-alkylrhodanine such as 3-methylrhodanine, 3-ethylrhodanine and 3-allylrhodanine, 3-arylrhodanine such as 3-phenylrhodanine, and 3- (2-pyridyl) rhodanine. And the like.
  • (J) 2,4-thiazolidinedione nucleus: for example, 2,4-thiazolidinedione, 3-ethyl-2,4-thiazolidinedione, 3-phenyl-2,4-thiazolidinedione and the like.
  • (M) 2-thio-2,4-imidazolidinedione (2-thiohydantoin) nucleus for example, 2-thio-2,4-imidazolidinedione, 3-ethyl-2-thio-2,4-imidazolidinedione etc.
  • (N) 2-imidazolin-5-one nucleus for example, 2-propylmercapto-2-imidazolin-5-one and the like.
  • (O) 3,5-pyrazolidinedione nucleus for example, 1,2-diphenyl-3,5-pyrazolidinedione, 1,2-dimethyl-3,5-pyrazolidinedione and the like.
  • (P) Benzothiophen-3-one nucleus for example, benzothiophen-3-one, oxobenzothiophen-3-one, dioxobenzothiophen-3-one and the like.
  • (Q) Indanone nucleus for example, 1-indanone, 3-phenyl-1-indanone, 3-methyl-1-indanone, 3,3-diphenyl-1-indanone, 3,3-dimethyl-1-indanone, etc.
  • L 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group. Substituted methine groups may combine to form a ring (eg, a 6-membered ring such as a benzene ring).
  • the substituent of the substituted methine group includes the substituent W.
  • the substituent W will be described later.
  • n represents an integer of 0 or more, preferably represents an integer of 0 to 3, more preferably 0 to 2.
  • D 1 represents an atomic group.
  • a triarylamine compound a benzidine compound, a pyrazoline compound, a styrylamine compound, a hydrazone compound, a triphenylmethane compound, a carbazole compound, or the like.
  • the p-type organic semiconductor is preferably a compound represented by the following general formula (1).
  • L 2 and L 3 each independently represent an unsubstituted methine group or a substituted methine group.
  • N represents an integer of 0 to 2.
  • Ar 1 may have a divalent substituent.
  • a substituted methine group, a substituted methine group, or a group represented by the following general formula (3) is represented.
  • Z 1 is a ring containing a carbon atom bonded to L 1 and a carbonyl group adjacent to the carbon atom, and is a 5-membered ring, a 6-membered ring, or a 5-membered ring or a 6-membered ring.
  • Z 2 is a ring containing X, and represents a 5-membered ring, a 6-membered ring, a 7-membered ring, or a condensed ring containing at least one of a 5-membered ring, a 6-membered ring, and a 7-membered ring.
  • L 4 to L 6 each independently represents an unsubstituted methine group or a substituted methine group.
  • R 6 and R 7 each independently represents a hydrogen atom or a substituent, and adjacent ones may be bonded to each other to form a ring.
  • k represents an integer of 0-2. * In the general formula (2) represents a bonding position bonded to L 1, and * in the general formula (3) represents a bonding position bonded to L 2 or Ar 1 .
  • Z 1 in the general formula (2) is a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • a ring what is normally used as an acidic nucleus with a merocyanine dye is preferable, and specific examples thereof include the following.
  • the ring represented by Z 1 is preferably a 1,3-dicarbonyl nucleus, a pyrazolinone nucleus, a 2,4,6-triketohexahydropyrimidine nucleus (including a thioketone body, for example, a barbituric acid nucleus, a 2-thiobarbituric acid nucleus), 2-thio-2,4-thiazolidinedione nucleus, 2-thio-2,4-oxazolidinedione nucleus, 2-thio-2,5-thiazolidinedione nucleus, 2,4-thiazolidinedione nucleus, 2,4-imidazolidine Dione nucleus, 2-thio-2,4-imidazolidinedione nucleus, 2-imidazolin-5-one nucleus, 3,5-pyrazolidinedione nucleus, benzothiophen-3-one nucleus, and indanone nucleus are more preferable.
  • Is a 1,3-dicarbonyl nucleus, 2,4,6-triketohexahydropyrimidine nucleus (including thioketones, such as barbituric acid nucleus, 2-thiobarbituric acid Nucleus), 3,5-pyrazolidinedione nucleus, benzothiophen-3-one nucleus, indanone nucleus, more preferably 1,3-dicarbonyl nucleus, 2,4,6-triketohexahydropyrimidine nucleus (
  • a thioketone body is also included, for example, a barbituric acid nucleus, a 2-thiobarbituric acid nucleus, and a 1,3-indandione nucleus, a barbituric acid nucleus, a 2-thiobarbituric acid nucleus, and derivatives thereof are particularly preferable.
  • Z 1 What is preferable as a ring represented by Z 1 is represented by the following formula.
  • Z 3 is a ring containing a carbon atom bonded to L 1 and two carbonyl groups adjacent to the carbon atom, and is a 5-membered ring, a 6-membered ring, or a 5-membered ring and a 6-membered ring.
  • a condensed ring containing at least one of them is represented. * Represents a bonding position for coupling with L 1.
  • Z 3 can be selected from the ring represented by Z 1 above, preferably 1,3-dicarbonyl nucleus, 2,4,6-triketohexahydropyrimidine nucleus (including thioketone body), particularly preferably Is a 1,3-indandione nucleus, a barbituric acid nucleus, a 2-thiobarbituric acid nucleus and derivatives thereof.
  • the ring represented by Z 1 is a 1,3-indandione nucleus, it is preferably a group represented by the following general formula (5).
  • R 2 to R 5 each independently represents a hydrogen atom or a substituent, and adjacent ones may be bonded to each other to form a ring. * Represents a bonding position for coupling with L 1.
  • K in the general formula (3) represents an integer of 0 to 2, preferably 0 or 1, more preferably 0.
  • X is preferably O, S, or N—R 10 .
  • a preferable ring represented by Z 2 is represented by the following formula (6).
  • X represents O, S, or N—R 10 .
  • R 10 represents a hydrogen atom or a substituent.
  • R 1 , R 6 and R 7 each independently represent a hydrogen atom or a substituent, and adjacent ones may be bonded to each other to form a ring.
  • m represents an integer of 1 to 3. When m is 2 or more, the plurality of R 1 may be the same or different. * Represents a bonding position bonded to L 2 or Ar 1 .
  • the arylene group represented by Ar 1 is preferably an arylene group having 6 to 30 carbon atoms, and more preferably an arylene group having 6 to 18 carbon atoms.
  • the arylene group may have a substituent, and is preferably an arylene group having 6 to 18 carbon atoms which may have an alkyl group having 1 to 4 carbon atoms. Examples include a phenylene group, a naphthylene group, a methylphenylene group, a dimethylphenylene group, and the like, and a phenylene group and a naphthylene group are preferable.
  • the aryl groups represented by Ar 2 and Ar 3 are each independently preferably an aryl group having 6 to 30 carbon atoms, and more preferably an aryl group having 6 to 18 carbon atoms.
  • the aryl group may have a substituent, preferably an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 18 carbon atoms which may have an aryl group having 6 to 18 carbon atoms. is there.
  • a phenyl group, a naphthyl group, a tolyl group, an anthryl group, a dimethylphenyl group, a biphenyl group etc. are mentioned, A phenyl group and a naphthyl group are preferable.
  • the alkyl group represented by Ar 2 and Ar 3 is preferably an alkyl group having 1 to 6 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms. Examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a t-butyl group. A methyl group or an ethyl group is preferable, and a methyl group is more preferable.
  • the heteroarylene group represented by Ar 1 and the heteroaryl groups represented by Ar 2 and Ar 3 are each independently preferably a heteroaryl group having 3 to 30 carbon atoms, more preferably a heteroaryl group having 3 to 18 carbon atoms. It is a group.
  • the heteroaryl group may have a substituent, preferably an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 18 carbon atoms, and a heteroaryl having 3 to 18 carbon atoms It is a group.
  • the heteroarylene group represented by Ar 1 , the heteroaryl group represented by Ar 2 , and Ar 3 may have a condensed ring structure, such as a furan ring, a thiophene ring, a selenophene ring, a silole ring, a pyridine ring, a pyrazine ring, or a pyrimidine ring.
  • a condensed ring structure such as a furan ring, a thiophene ring, a selenophene ring, a silole ring, a pyridine ring, a pyrazine ring, or a pyrimidine ring.
  • An oxazole ring, a thiazole ring, a triazole ring, an oxadiazole ring, and a ring combination selected from the thiadiazole ring (which may be the same) are preferable, and a quinoline ring, an isoquinoline ring, a benzothiophene ring, a dibenzothiophene ring, A thienothiophene ring, a bithienobenzene ring, and a bithienothiophene ring are preferable.
  • Ar 1 , Ar 2 , Ar 3 , R 1 , R 2 to R 7 , R 10 may be adjacent to each other to form a ring.
  • the ring is preferably a ring formed of a hetero atom, an alkylene group, an aromatic ring, or the like.
  • an aryl group for example, Ar 1 , Ar 2 , Ar 3 in the general formula (1)
  • Ar 1 , Ar 2 , Ar 3 in the general formula (1) is linked via a single bond or a linking group, so that together with a nitrogen atom (N in the general formula (1))
  • N nitrogen atom
  • linking group examples include a hetero atom (eg, —O—, —S—, etc.), an alkylene group (eg, methylene group, ethylene group, etc.), and a group consisting of a combination thereof, —S—, A methylene group is preferred.
  • a ring formed by a nitrogen atom (for example, N in the general formula (1)), an alkylene group (for example, a methylene group) and an aryl group (for example, Ar 1 , Ar 2 or Ar 3 in the general formula (1)) is preferable.
  • the ring may further have a substituent, and examples of the substituent include an alkyl group (preferably an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group). They may be connected to each other to further form a ring (for example, a benzene ring).
  • R 3 and R 4 are preferably connected to each other to form a ring, and the ring is preferably a benzene ring.
  • adjacent ones of the plurality of R 1 can be connected to each other to form a ring, and the ring is preferably a benzene ring.
  • the substituent W or the substituent in the case where Ar 1 , Ar 2 , Ar 3 has a substituent, and the substituents of R 1 , R 2 to R 7 , R 10 include a halogen atom, an alkyl group (cycloalkyl Group, bicycloalkyl group and tricycloalkyl group), substituted alkyl group, alkenyl group (including cycloalkenyl group and bicycloalkenyl group), alkynyl group, aryl group, substituted aryl group, heterocyclic group (with heterocyclic group and Cyano group, hydroxy group, nitro group, carboxy group, alkoxy group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyl group, aryloxycarbonyl group, amino Group (including anilino group), ammonio group, acylamino group, aminocarbonylamino , Alkoxycarbony
  • R 1 , R 2 to R 7 , and R 10 are particularly alkyl groups, substituted alkyl groups, aryl groups, substituted aryl groups, heteroaryl groups, cyano groups, nitro groups, alkoxy groups, aryloxy groups, amino groups.
  • Group, an alkylthio group, an alkenyl group, or a halogen atom is preferred.
  • substituent W or Ar 1 , Ar 2 , Ar 3 has a substituent, each independently a halogen atom, alkyl group, aryl group, heterocyclic group, hydroxy group, nitro group, alkoxy group, aryloxy group, hetero A ring oxy group, amino group, alkylthio group, arylthio group, alkenyl group, cyano group or heterocyclic thio group is preferred.
  • R 1 is more preferably an alkyl group or an aryl group.
  • R 6 and R 7 are more preferably a cyano group.
  • Examples of the substituent of the substituted alkyl group or the substituted aryl group include the substituents listed above.
  • An alkyl group preferably an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group
  • an aryl group carbon
  • An aryl group of 6 to 18 and more preferably a phenyl group is preferable.
  • L 1 , L 2 , L 3 , L 4 , L 5 , and L 6 each independently represent an unsubstituted methine group or a substituted methine group
  • the substituent of the substituted methine group is an alkyl group, an aryl group, or a heterocyclic ring
  • a 6-membered ring (for example, benzene ring etc.) is mentioned as a ring.
  • the substituents of L 1 or L 3 and Ar 1 may be bonded to form a ring.
  • the substituents of L 6 and R 7 may be bonded to each other to form a ring.
  • the alkyl group represented by R 1 , R 2 to R 7 , and R 10 is preferably an alkyl group having 1 to 6 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms. Examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a t-butyl group.
  • R 2 to R 7 are preferably a methyl group or an ethyl group, and more preferably a methyl group.
  • R 1 is preferably a methyl group, an ethyl group or a t-butyl group, more preferably a methyl group or a t-butyl group.
  • n is preferably 0 or 1.
  • the aryl groups represented by R 1 , R 2 to R 7 and R 10 are each independently preferably an aryl group having 6 to 30 carbon atoms, and more preferably an aryl group having 6 to 18 carbon atoms.
  • the aryl group may have a substituent, preferably an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 18 carbon atoms which may have an aryl group having 6 to 18 carbon atoms. is there.
  • Examples include a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, a methylphenyl group, a dimethylphenyl group, a biphenyl group, and the like, and a phenyl group, a naphthyl group, or an anthracenyl group is preferable.
  • the heteroaryl groups represented by R 1 , R 2 to R 7 and R 10 are each independently preferably a heteroaryl group having 3 to 30 carbon atoms, more preferably a heteroaryl group having 3 to 18 carbon atoms. is there.
  • the heteroaryl group may have a substituent, preferably an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 18 carbon atoms, and a heteroaryl having 3 to 18 carbon atoms It is a group.
  • the heteroaryl group represented by R 1 , R 2 to R 7 is preferably a heteroaryl group comprising a 5-membered, 6-membered or 7-membered ring or a condensed ring thereof.
  • hetero atom contained in the heteroaryl group examples include an oxygen atom, a sulfur atom, and a nitrogen atom.
  • ring constituting the heteroaryl group include a furan ring, a thiophene ring, a pyrrole ring, a pyrroline ring, a pyrrolidine ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an imidazole ring, an imidazoline ring, and an imidazolidine.
  • benzofuran ring isobenzofuran ring, benzothiophene ring, indole ring, indoline ring, isoindole ring, benzoxazole ring, benzothiazole ring, indazole ring, benzimidazole ring, quinoline ring, isoquinoline ring, cinnoline ring, Phthalazine ring, quinazoline ring, quinoxaline ring, dibenzofuran ring, carbazole ring, xanthene ring, acridine ring, phenanthridine ring, phenanthroline ring, phenazine ring, phenoxazine ring, thianthrene ring, thienothiophene ring, indolizine ring, quinolidine ring, A quinuclidine ring, a naphthyridine ring, a pur
  • M represents an integer of 1 to 3, preferably 1 or 2, and more preferably 1.
  • organic p-type semiconductor materials containing the site represented by formula (A) or (B) the following compounds are preferred. Of these compounds, compound 1, compound 2, compound 4, compound 5, and compound 6 are particularly preferred.
  • Electron blocking layer 31 included in the light receiving layer 30 suppresses the injection of electrons from the lower electrode 20 into the photoelectric conversion layer 32 and inhibits the electrons generated in the photoelectric conversion layer 32 from flowing to the electrode 20 side.
  • the electron blocking layer 31 includes an organic material, an inorganic material, or both.
  • the electron blocking layer 31 may be composed of a plurality of layers. By doing in this way, an interface is formed between each layer which comprises the electron blocking layer 31, and a discontinuity arises in the intermediate level which exists in each layer. As a result, it becomes difficult for the charge to move through the intermediate level and the like, so that the electron blocking effect can be enhanced.
  • the layers constituting the electron blocking layer 31 are made of the same material, the intermediate levels existing in the layers may be exactly the same. Therefore, in order to further enhance the electron blocking effect, the materials constituting the layers are different. It is preferable to make it.
  • An electron donating organic material can be used for the electron blocking layer 31.
  • TPD N, N′-bis (3
  • Polyphyrin compounds triazole derivatives, oxa Zazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, fluorene derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, silazane derivatives, etc.
  • polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, and derivatives thereof can be used. Even if it is not, it is possible to use a compound having sufficient hole transportability.
  • Ea represents the electron affinity of the material
  • Ip represents the ionization potential of the material.
  • EB in EB-1, 2,... Stands for “electronic blocking”.
  • An inorganic material can also be used as the electron blocking layer 31.
  • an inorganic material has a dielectric constant larger than that of an organic material, when it is used for the electron blocking layer 31, a large voltage is applied to the photoelectric conversion layer 32, and the photoelectric conversion efficiency can be increased.
  • Materials that can be the electron blocking layer 31 include calcium oxide, chromium oxide, chromium oxide copper, manganese oxide, cobalt oxide, nickel oxide, copper oxide, gallium copper oxide, strontium copper oxide, niobium oxide, molybdenum oxide, indium copper oxide, Examples include indium silver oxide and iridium oxide.
  • the layer adjacent to the photoelectric conversion layer 32 among the plurality of layers is preferably a layer made of the same material as the p-type organic semiconductor contained in the photoelectric conversion layer 32.
  • the same p-type organic semiconductor for the electron blocking layer 31 it is possible to suppress the formation of intermediate levels at the interface between the photoelectric conversion layer 32 and the adjacent layer, and to further suppress the dark current.
  • the layer can be a layer made of an inorganic material, or in the case of a plurality of layers, one or more layers can be a layer made of an inorganic material. it can.
  • the hole blocking layer suppresses injection of holes from the lower electrode 20 into the photoelectric conversion layer 32, and inhibits holes generated in the photoelectric conversion layer 32 from flowing toward the lower electrode 20 side.
  • a layer formed of an organic material may be used. By making the hole blocking layer into a plurality of layers, the hole blocking effect can be enhanced.
  • electrons or holes collected by the upper electrode 40 may be converted into a voltage signal corresponding to the amount and taken out to the outside.
  • an electron blocking layer or a hole blocking layer may be provided between the upper electrode 40 and the photoelectric conversion layer 32. In either case, the portion sandwiched between the lower electrode 20 and the upper electrode 40 becomes the light receiving layer 30.
  • An electron-accepting organic material can be used for the hole blocking layer.
  • electron accepting materials include oxadiazole derivatives such as 1,3-bis (4-tert-butylphenyl-1,3,4-oxadiazolyl) phenylene (OXD-7), anthraquinodimethane derivatives, and diphenylquinone derivatives.
  • OXD-7 1,3-bis (4-tert-butylphenyl-1,3,4-oxadiazolyl) phenylene
  • anthraquinodimethane derivatives anthraquinodimethane derivatives
  • diphenylquinone derivatives diphenylquinone derivatives.
  • Bathocuproine, bathophenanthroline, and derivatives thereof triazole compounds, tris (8-hydroxyquinolinato) aluminum complexes, bis (4-methyl-8-quinolinato) aluminum complexes, distyrylarylene derivatives, silole compounds, etc. Can do.
  • a porphyrin compound or a styryl compound such as DCM (4-dicyanomethylene-2-methyl-6- (4- (dimethylaminostyryl))-4H pyran) or a 4H pyran compound can be used.
  • the p-type organic semiconductor (compound) constituting the photoelectric conversion layer 32 is a donor organic semiconductor (compound), which is mainly represented by a hole-transporting organic compound and refers to an organic compound having a property of easily donating electrons. . More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Therefore, any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound.
  • the hole blocking layer is also preferably formed using the organic material 60 for film formation.
  • the sealing layer 50 is a layer for preventing a factor that degrades an organic material such as water and oxygen from entering the light receiving layer containing the organic material.
  • the sealing layer 50 is formed so as to cover the lower electrode 20, the electron blocking layer 31, the photoelectric conversion layer 32, and the upper electrode 40.
  • the photoelectric conversion layer 32 since incident light reaches the photoelectric conversion layer 32 through the sealing layer 50, the photoelectric conversion layer 32 has sufficient sensitivity to light having a wavelength with which the photoelectric conversion layer 32 has sensitivity. It must be transparent.
  • the sealing layer 50 include ceramics such as dense metal oxide, metal nitride, and metal nitride oxide that do not allow water molecules to permeate, diamond-like carbon (DLC), and the like. Conventionally, aluminum oxide, silicon oxide, Silicon nitride, silicon nitride oxide, a laminated film thereof, a laminated film of them and an organic polymer, or the like is used.
  • the sealing layer 50 can be composed of a thin film made of a single material, but by providing a separate function for each layer in a multi-layer structure, the stress relaxation of the entire sealing layer 50 and dust generation during the manufacturing process Such effects as the suppression of defects such as cracks and pinholes caused by the above, and the optimization of material development can be expected.
  • the sealing layer 50 is formed by laminating a “sealing auxiliary layer” having a function that is difficult to achieve on the layer that serves the original purpose of preventing the penetration of deterioration factors such as water molecules.
  • a two-layer structure can be formed. Although it is possible to have three or more layers, it is preferable that the number of layers is as small as possible in consideration of manufacturing costs.
  • the formation method of the sealing layer 50 is not particularly limited, and is preferably formed by a method that does not deteriorate the performance and film quality of the already formed photoelectric conversion layer 32 and the like as much as possible.
  • the film is generally formed by various vacuum film formation techniques, but the conventional sealing layer is a thin film at a step due to a structure on the substrate surface, minute defects on the substrate surface, particles adhering to the substrate surface, and the like. Is difficult to grow (because the step becomes a shadow), the film thickness is significantly thinner than the flat part. For this reason, the step portion becomes a path through which the deterioration factor penetrates.
  • the degree of vacuum when forming the sealing layer is preferably 1 ⁇ 10 3 Pa or less, and more preferably 5 ⁇ 10 2 Pa or less.
  • the atomic layer deposition (ALD) method is a kind of CVD method, and adsorption / reaction of organometallic compound molecules, metal halide molecules, and metal hydride molecules, which are thin film materials, onto the substrate surface and unreacted groups contained therein Is a technique for forming a thin film by alternately repeating decomposition.
  • ALD atomic layer deposition
  • the step portion which was difficult with the conventional thin film formation method, is completely covered (the thickness of the thin film grown on the step portion is the same as the thickness of the thin film grown on the flat portion), that is, the step coverage is very high. Excellent. For this reason, steps due to structures on the substrate surface, minute defects on the substrate surface, particles adhering to the substrate surface, and the like can be completely covered, and such a step portion does not become an intrusion path for a deterioration factor of the photoelectric conversion material.
  • the sealing layer 50 is formed by the atomic layer deposition method, the required sealing layer thickness can be effectively reduced as compared with the prior art.
  • the sealing layer 50 is formed by the atomic layer deposition method, a material corresponding to the ceramics preferable for the sealing layer 50 described above can be selected as appropriate.
  • the photoelectric conversion layer of the present invention uses an organic photoelectric conversion material, it is limited to a material capable of growing a thin film at a relatively low temperature so that the organic photoelectric conversion material does not deteriorate.
  • a dense aluminum oxide thin film can be formed at less than 200 ° C. at which the organic photoelectric conversion material does not deteriorate.
  • an aluminum oxide thin film can be formed even at about 100 ° C.
  • Silicon oxide and titanium oxide are also preferable because a dense thin film can be formed at less than 200 ° C., similarly to aluminum oxide, by appropriately selecting materials.
  • the thin film formed by the atomic layer deposition method can achieve a high-quality thin film formation at a low temperature that is unmatched in terms of step coverage and denseness.
  • the physical properties of the thin film material may be deteriorated by chemicals used in the photolithography process. For example, since an aluminum oxide thin film formed by atomic layer deposition is amorphous, the surface is eroded by an alkaline solution such as a developer or a stripping solution.
  • thin films formed by CVD such as atomic layer deposition
  • CVD chemical vapor deposition
  • atomic layer deposition often have tensile stresses with very large internal stress, such as processes that repeat intermittent heating and cooling, such as semiconductor manufacturing processes, Due to storage / use in a high temperature / high humidity atmosphere for a period, deterioration of the thin film itself may occur.
  • the sealing layer 50 formed by the atomic layer deposition method it is preferable to form a sealing auxiliary layer that has excellent chemical resistance and can cancel the internal stress of the sealing layer 50.
  • auxiliary sealing layer examples include any of ceramics such as metal oxide, metal nitride, and metal nitride oxide that are excellent in chemical resistance formed by physical vapor deposition (PVD) such as sputtering. Or a layer containing one of them. Ceramics formed by a PVD method such as sputtering often has a large compressive stress, and can cancel the tensile stress of the sealing layer 50 formed by an atomic layer deposition method.
  • PVD physical vapor deposition
  • the sealing layer 50 formed by the atomic layer deposition method preferably includes any of aluminum oxide, silicon oxide, and titanium oxide.
  • the sealing auxiliary layer includes aluminum oxide, silicon oxide, silicon nitride, and silicon nitride oxide.
  • a sputtered film containing any one of the above is preferable.
  • the thickness of the sealing layer 50 is preferably 0.05 ⁇ m or more and 0.5 ⁇ m or less.
  • the photoelectric conversion element 1 is configured.
  • FIG. 3 is a schematic cross-sectional view showing a schematic configuration of an image sensor for explaining an embodiment of the present invention.
  • This imaging device is used by being mounted on an imaging device such as a digital camera or a digital video camera, an imaging module such as an electronic endoscope or a mobile phone, or the like.
  • the image pickup device 100 is a circuit board on which a plurality of organic photoelectric conversion elements 1 configured as shown in FIG. 1 and a readout circuit that reads out signals corresponding to charges generated in the photoelectric conversion layer of each organic photoelectric conversion element are formed. And a plurality of organic photoelectric conversion elements are arranged one-dimensionally or two-dimensionally on the same surface above the circuit board.
  • the image sensor 100 includes a substrate 101, an insulating layer 102, a connection electrode 103, a pixel electrode 104, a connection portion 105, a connection portion 106, a light receiving layer 107, a counter electrode 108, a buffer layer 109, a sealing layer.
  • a stop layer 110, a color filter (CF) 111, a partition wall 112, a light shielding layer 113, a protective layer 114, a counter electrode voltage supply unit 115, and a readout circuit 116 are provided.
  • the pixel electrode 104 has the same function as the lower electrode 20 of the organic photoelectric conversion element 1 shown in FIG.
  • the counter electrode 108 has the same function as the upper electrode 40 of the organic photoelectric conversion element 1 shown in FIG.
  • the light receiving layer 107 has the same configuration as the light receiving layer 30 provided between the lower electrode 20 and the upper electrode 40 of the organic photoelectric conversion element 1 shown in FIG.
  • the sealing layer 110 has the same function as the sealing layer 50 of the organic photoelectric conversion element 1 shown in FIG.
  • the pixel electrode 104, a part of the counter electrode 108 facing the pixel electrode 104, the light receiving layer 107 sandwiched between the electrodes, and the buffer layer 109 and the part of the sealing layer 110 facing the pixel electrode 104 are subjected to organic photoelectric conversion.
  • the element is configured.
  • the substrate 101 is a glass substrate or a semiconductor substrate such as Si.
  • An insulating layer 102 is formed on the substrate 101.
  • a plurality of pixel electrodes 104 and a plurality of connection electrodes 103 are formed on the surface of the insulating layer 102.
  • the light receiving layer 107 is a layer common to all the organic photoelectric conversion elements provided on the plurality of pixel electrodes 104 so as to cover them.
  • the counter electrode 108 is one electrode provided on the light receiving layer 107 and common to all the organic photoelectric conversion elements.
  • the counter electrode 108 is formed up to the connection electrode 103 disposed outside the light receiving layer 107 and is electrically connected to the connection electrode 103.
  • connection part 106 is embedded in the insulating layer 102 and is a plug or the like for electrically connecting the connection electrode 103 and the counter electrode voltage supply part 115.
  • the counter electrode voltage supply unit 115 is formed on the substrate 101 and applies a predetermined voltage to the counter electrode 108 via the connection unit 106 and the connection electrode 103.
  • the power supply voltage is boosted by a booster circuit such as a charge pump to supply the predetermined voltage.
  • the readout circuit 116 is provided on the substrate 101 corresponding to each of the plurality of pixel electrodes 104, and reads out a signal corresponding to the charge collected by the corresponding pixel electrode 104.
  • the reading circuit 116 is configured by, for example, a CCD, a MOS circuit, or a TFT circuit, and is shielded from light by a light shielding layer (not shown) disposed in the insulating layer 102.
  • the readout circuit 116 is electrically connected to the corresponding pixel electrode 104 via the connection unit 105.
  • the buffer layer 109 is formed on the counter electrode 108 so as to cover the counter electrode 108.
  • the sealing layer 110 is formed on the buffer layer 109 so as to cover the buffer layer 109.
  • the color filter 111 is formed at a position facing each pixel electrode 104 on the sealing layer 110.
  • the partition wall 112 is provided between the color filters 111 and is for improving the light transmission efficiency of the color filter 111.
  • the light shielding layer 113 is formed in a region other than the region where the color filter 111 and the partition 112 are provided on the sealing layer 110, and prevents light from entering the light receiving layer 107 formed outside the effective pixel region.
  • the protective layer 114 is formed on the color filter 111, the partition 112, and the light shielding layer 113, and protects the entire image sensor 100.
  • the imaging device 100 when light is incident, the light is incident on the light receiving layer 107, and charges are generated here. Holes in the generated charges are collected by the pixel electrode 104, and a voltage signal corresponding to the amount is output to the outside of the image sensor 100 by the readout circuit 116.
  • the manufacturing method of the image sensor 100 is as follows.
  • connection portions 105 and 106, the plurality of connection electrodes 103, the plurality of pixel electrodes 104, and the insulating layer 102 are formed on the circuit substrate on which the counter electrode voltage supply portion 115 and the readout circuit 116 are formed.
  • the plurality of pixel electrodes 104 are arranged on the surface of the insulating layer 102 in a square lattice pattern, for example.
  • a light receiving layer 107, a counter electrode 108, a buffer layer 109, and a sealing layer 110 are sequentially formed on the plurality of pixel electrodes 104.
  • the formation method of the light receiving layer 107, the counter electrode 108, and the sealing layer 110 is as described in the description of the photoelectric conversion element 1.
  • the buffer layer 109 is formed by, for example, resistance heating vapor deposition.
  • the protective layer 114 is formed, and the imaging element 100 is completed.
  • the imaging element and the photoelectric conversion element suitable as the imaging element the aspect including the light receiving layer formed using the organic material for film formation of the present invention has been described.
  • the organic material for film formation of the present invention has been described.
  • 60 can also be preferably used for forming a light emitting layer in an organic electroluminescent device and a photoelectric conversion device suitable as an organic electroluminescent device.
  • the obtained compound 1 (crude body) is purified.
  • purification was repeated or a plurality of purification methods were combined to obtain compounds 1 having different fluorescence quantum yield values.
  • Example of purification method The obtained compound was dispersed in a solvent (a small amount of chloroform) and washed. Alternatively, it was dissolved in a solvent (a small amount of chloroform) and recrystallized with ethanol. Alternatively, sublimation purification was performed.
  • Compound 2c was obtained by dissolving compound 2b, palladium acetate, tri (t-butyl) phosphine, cesium carbonate, and bromobenzene in xylene and reacting at boiling point reflux for 7 hours under a nitrogen atmosphere. Add 70% toluene solution of bis (2-methoxyethoxy) aluminum sodium dihydrogen hydride (SMEAH) in THF under nitrogen atmosphere and cool to 0 ° C. N-methylpiperazine is added dropwise and stirred for 30 minutes to prepare a reducing agent solution. The reducing agent solution was added dropwise to a THF solution of compound 2c at ⁇ 40 ° C. in a nitrogen atmosphere. The reaction solution was stirred at ⁇ 20 ° C.
  • SMEAH bis (2-methoxyethoxy) aluminum sodium dihydrogen hydride
  • compound 2d was quenched with dilute hydrochloric acid to obtain compound 2d.
  • compound 2d and benzoindanedione were dissolved in THF solvent, refluxed for 3 hours, allowed to cool, and then suction filtered to obtain compound 2.
  • Compound 8 was synthesized according to the steps shown in the following reaction formula.
  • Compound 1 was synthesized in the same manner except that 1b was changed to 3b and benzoindandione was changed to indandione.
  • Compound 3b was synthesized as follows.
  • Compound 3a was dissolved in dehydrated N, N-dimethylformamide, and trifluoromethanesulfonic anhydride was added dropwise thereto. The mixture was heated to 90 ° C. under a nitrogen atmosphere and stirred for 1 hour to obtain Compound 3b.
  • Compound 3a was prepared according to Org. Lett. 2009, 11, 1-4. It was synthesized by the method described in 1.
  • Compound 10 An organic material for film formation of Compound 10 was synthesized.
  • Compound 2 was synthesized in the same manner except that benzoindandione was changed to 4,7-difluoro-1,3-indandione.
  • Compound 11 An organic material for film formation of Compound 11 was synthesized.
  • Compound 8 was synthesized in the same manner except that indandione was changed to 5,6-dichloro-1,3-indandione.
  • fullerene C 60 is an n-type material, shown in Table 1 together with the values of the fluorescence quantum yield.
  • a glass substrate was prepared, and an amorphous ITO lower electrode (thickness: 30 nm) was formed on the substrate by a sputtering method, and then the above-mentioned EB-3 was deposited by resistance heating vapor deposition (100 nm thickness) as an electron blocking layer. .
  • Compound 1 fluorescence quantum yield is described in Table 1) and fullerene (C 60 ) were prepared as film-forming organic materials for photoelectric conversion layers, respectively, and resistance heating vapor deposition was performed on the electron blocking layer. Co-evaporation was performed to form a film thickness of 500 nm.
  • Vacuum deposition of the electron blocking layer and the photoelectric conversion layer was all performed at a vacuum degree of 4 ⁇ 10 ⁇ 4 Pa or less. Moreover, the HPLC purity of each material used was 99.5% or more, and the volume ratio of fullerene and compound 1 in the formed photoelectric conversion layer was 2: 1 (in terms of film thickness).
  • an amorphous ITO upper electrode (10 nm thick) was formed on the photoelectric conversion layer by a sputtering method to obtain the photoelectric conversion element of the present invention.
  • a SiO film was formed as a sealing layer by heating vapor deposition, and an Al 2 O 3 layer was further formed by ALCVD to obtain a photoelectric conversion element.
  • FIG. 4 the relationship between the fluorescence quantum yield of the powder obtained based on the result of Table 1 and the afterimage current value of a photoelectric conversion element is shown. As shown in FIG. 4, it was confirmed that the afterimage current value of the photoelectric conversion element was rapidly increased with the fluorescence quantum yield of 0.2 as a boundary. Further, it was confirmed that the afterimage current value did not change even when the average particle diameter of the powder was less than 20 ⁇ m.
  • the organic material for film formation and the film forming method using the same of the present invention are applied to an organic imaging device mounted on a digital camera, a camera for a mobile phone, an endoscope camera, an organic EL display, an organic EL illumination, or the like. It can be preferably applied to film formation of an organic layer of an organic photoelectric conversion element used for an organic light emitting element to be mounted, an organic thin film transistor mounted on an electronic paper or a wireless tag, an optical sensor, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

[Problem] To provide: a method for forming a light receiving layer, which enables stable production of an organic photoelectric conversion element having excellent after-image current characteristics; a method for producing an organic photoelectric conversion element; an organic material for film formation; an organic photoelectric conversion element which is obtained using this organic material for film formation; and a photosensor. [Solution] A method for forming a light receiving layer (30) of an organic photoelectric conversion element (1) that is used in a photosensor by means of a dry film-forming process. In this method, an organic material (60) for film formation, which is formed of an organic material that constitutes the light receiving layer (30) and is composed of a particulate material having a fluorescence quantum yield of 0.2 or more, is prepared, and then a dry film-forming process is carried out using a vaporization source that contains the organic material (60) for film formation.

Description

受光層形成方法及び有機光電変換素子の製造方法、成膜用有機材料及びそれを用いて得られた有機光電変換素子、光センサ。Light-receiving layer forming method, organic photoelectric conversion element manufacturing method, film-forming organic material, organic photoelectric conversion element and optical sensor obtained using the same.
 本発明は有機光電変換素子の受光層を乾式成膜によって形成する方法、及びそれを用いた有機光電変換素子の製造方法に関する。本発明はまた、有機光電変換素子の受光層の乾式成膜に用いられる成膜用有機材料及びそれを用いて得られる有機光電変換素子、光センサに関する。 The present invention relates to a method for forming a light receiving layer of an organic photoelectric conversion element by dry film formation, and a method for manufacturing an organic photoelectric conversion element using the same. The present invention also relates to an organic material for film formation used for dry film formation of a light-receiving layer of an organic photoelectric conversion element, an organic photoelectric conversion element obtained using the same, and an optical sensor.
 デジタルカメラ、携帯電話用カメラ、内視鏡用カメラ等に利用されているイメージセンサとして、CCDセンサやCMOSセンサなどの撮像素子が広く知られている。これらの素子には、一対の電極間に光電変換層を含む受光層を備えた光電変換素子が備えられている。光電変換素子は、一対の電極のうち光透過性を有する透明電極側から入射した光に応じて光電変換層で電荷を生成し、生成された電荷を電極から信号電荷として読み出す素子である。 Image sensors such as CCD sensors and CMOS sensors are widely known as image sensors used in digital cameras, mobile phone cameras, endoscope cameras, and the like. These elements include a photoelectric conversion element including a light receiving layer including a photoelectric conversion layer between a pair of electrodes. The photoelectric conversion element is an element that generates a charge in a photoelectric conversion layer in accordance with light incident from the transparent electrode side having light transparency among a pair of electrodes, and reads the generated charge as a signal charge from the electrode.
 撮像素子用途においても、軽量化、大面積化、高いフレキシブル性、印刷プロセスによる製造が可能などの優れた特徴を有する有機光電変換素子の適用が本出願人らによって提案されている。撮像素子に用いられる光電変換素子には、光電流/暗電流のS/N比、応答速度、残像電流等様々な性能において高い水準を満足することが求められる。 Applicants have proposed the application of organic photoelectric conversion elements having excellent characteristics that can be manufactured by a printing process in terms of light weight, large area, high flexibility, and printing process. A photoelectric conversion element used for an image pickup element is required to satisfy a high level in various performances such as an S / N ratio of photocurrent / dark current, response speed, and afterimage current.
 本出願人は、有機光電変換素子において、良好な光電変換効率が得られる有機光電変換層として、p型有機半導体とフラーレン又はフラーレン誘導体等のn型半導体との混合層(バルクへテロ層)を提案している(特許文献1~2等)。 In the organic photoelectric conversion element, the applicant of the present invention provides a mixed layer (bulk hetero layer) of a p-type organic semiconductor and an n-type semiconductor such as fullerene or a fullerene derivative as an organic photoelectric conversion layer capable of obtaining good photoelectric conversion efficiency. (Patent Documents 1 and 2 etc.)
 バルクヘテロ層は、例えば、p型有機半導体材料とn型有機半導体材料とを共蒸着(真空蒸着)により製造することができる。共蒸着では、複数の蒸着源を配してその速度等をコントロールすることによりその所望の組成の膜を形成する。 The bulk hetero layer can be produced, for example, by co-evaporation (vacuum deposition) of a p-type organic semiconductor material and an n-type organic semiconductor material. In the co-evaporation, a film having a desired composition is formed by arranging a plurality of evaporation sources and controlling the speed and the like.
 特許文献1によれば、光電変換効率が高く、光電流/暗電流のS/N比の良好な有機光電変換素子を提供することができる。また、特許文献2では、電子ブロッキング層の少なくとも1層に混合層を設けることにより、十分な感度と耐熱性が得られ、高速応答性を実現することができる。 According to Patent Document 1, an organic photoelectric conversion element having high photoelectric conversion efficiency and a good S / N ratio of photocurrent / dark current can be provided. Moreover, in patent document 2, sufficient sensitivity and heat resistance are obtained by providing a mixed layer in at least one of the electron blocking layers, and high-speed response can be realized.
特開2007-123707号公報JP 2007-123707 A 特開2012-94660号公報JP 2012-94660 A
 上記した撮像素子に用いられる光電変換素子において求められる性能のひとつに、低残像電流化がある。残像電流は、光入射時の電流に対する、光をオフしてから一定時間後の電流の割合で評価される。現在、撮像素子として要求される残像電流は、光入射時の電流に対する光をオフしてから0.1秒の電流の割合で、0.1%オーダー、好ましくは0.01%オーダーが求められている。 One of the performances required for the photoelectric conversion element used in the above-described imaging element is a low afterimage current. The afterimage current is evaluated by the ratio of the current after a certain period of time after turning off the light to the current at the time of incident light. Currently, the afterimage current required for an image sensor is required to be on the order of 0.1%, preferably on the order of 0.01%, at a rate of 0.1 second after the light is turned off with respect to the current at the time of light incidence. ing.
 低残像電流化に向けたアプローチは、受光層の構成物質や層構成、撮像素子の構成など、多方面からそれぞれ試みることができるが、これらの構成を同一とした場合であっても、残像電流値はばらつくことが確認されており、その原因解明が急務である。 The approach toward low afterimage current can be tried from various aspects such as the constituent material and layer structure of the light receiving layer, the structure of the image sensor, etc., but even if these structures are the same, the afterimage current The value has been confirmed to vary, and the cause is urgently needed.
 本発明は上記事情に鑑みてなされたものであり、光センサ用途の有機光電変換素子の受光層形成方法において、残像電流の少ない有機光電変換素子を安定して製造することができる受光層形成方法を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and in a light receiving layer forming method for an organic photoelectric conversion element for use in an optical sensor, a light receiving layer forming method capable of stably producing an organic photoelectric conversion element with a small afterimage current. Is intended to provide.
 本発明の受光層形成方法は、
 光センサに用いられる有機光電変換素子の受光層を乾式成膜にて成膜する受光層形成方法において、
 受光層の構成有機物からなる蛍光量子収率が0.2以上の粉粒体からなる成膜用有機材料を少なくとも1種用意し、
 この成膜用有機材料からなる気化源を用いて乾式成膜を実施するものである。
The light receiving layer forming method of the present invention comprises:
In the light receiving layer forming method of forming a light receiving layer of an organic photoelectric conversion element used for an optical sensor by dry film formation,
Prepare at least one organic material for film formation composed of powders having a fluorescence quantum yield of 0.2 or more composed of organic substances constituting the light receiving layer,
Dry film formation is carried out using a vaporization source made of this organic material for film formation.
 また、本発明の成膜用有機材料は、有機光電変換素子の受光層の乾式成膜に用いられ、
 受光層の構成有機物からなる蛍光量子収率が0.2以上の粉粒体からなるものである。
Further, the organic material for film formation of the present invention is used for dry film formation of a light receiving layer of an organic photoelectric conversion element,
The light-receiving layer is made of a powder having a fluorescence quantum yield of 0.2 or more.
 本明細書において、「Aからなる」との表現は、A及び不可避不純物以外含まないことを意味する。例えば、「成膜用有機材料からなる気化源」とは、成膜用有機材料及び不可避不純物以外含まない気化源を意味する。
 また、本明細書において、「構成有機物」とは、成膜用有機材料中に含まれる有機物のうち、不可避不純物及び成膜用有機材料中に意図せずに含まれた物質を除く全ての有機物を意味する。
In this specification, the expression “consisting of A” means that it contains only A and inevitable impurities. For example, “a vaporization source made of a film-forming organic material” means a vaporization source that does not contain any film-forming organic material and inevitable impurities.
Further, in this specification, the “constituent organic substance” means all organic substances excluding inevitable impurities and substances unintentionally contained in the organic material for film formation among the organic substances contained in the organic material for film formation. Means.
 本明細書において、蛍光量子収率とは絶対蛍光量子収率を意味する。また、本明細書における乾式成膜には、化学気相成長法は含まないものとする。 In this specification, the fluorescence quantum yield means the absolute fluorescence quantum yield. The dry film formation in this specification does not include chemical vapor deposition.
 受光層の構成有機物からなる粉粒体の蛍光量子収率は、0.2以上0.4以下であることが好ましい。構成有機物は、p型有機半導体材料であることが好ましく、下記式(A)アミン部位、または、下記式(B)カルボニル基部位を1つ以上有することが好ましい。
Figure JPOXMLDOC01-appb-C000001
(式(A)中、R30~R31は、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。R32は、置換基を有してもよいアリーレン連結基または置換基を有してもよいヘテロアリーレン連結基を表す。R30~R32は、それぞれ互いに連結して環を形成してもよい。)
Figure JPOXMLDOC01-appb-C000002
(式(B)中、Yは、2つ以上の炭素原子を含む環であって、5員環、6員環、又は、5員環及び6員環の少なくともいずれかを含む縮合環を表し、これは置換基を有してもよい。また、置換基は可能な限り結合して環を形成してもよい。)
It is preferable that the fluorescence quantum yield of the granular material made of the organic material constituting the light receiving layer is 0.2 or more and 0.4 or less. The constituent organic substance is preferably a p-type organic semiconductor material, and preferably has at least one amine moiety represented by the following formula (A) or one or more carbonyl group moieties represented by the following formula (B).
Figure JPOXMLDOC01-appb-C000001
(In the formula (A), R 30 to R 31 each independently represents an alkyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl which may have a substituent. R 32 represents an arylene linking group which may have a substituent or a heteroarylene linking group which may have a substituent, and R 30 to R 32 are connected to each other to form a ring. You may do it.)
Figure JPOXMLDOC01-appb-C000002
(In formula (B), Y 1 is a ring containing two or more carbon atoms, and a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. And this may have a substituent, and the substituents may combine as much as possible to form a ring.)
 また、構成有機物としては、下記式(C)で表されるp型有機半導体材料がより好ましい。
Figure JPOXMLDOC01-appb-C000003
 (式(C)中、Zは少なくとも2つの炭素原子を含む環であって、5員環、6員環、又は、5員環及び6員環の少なくともいずれかを含む縮合環を表す。L、L、及びLはそれぞれ独立に無置換メチン基、又は置換メチン基を表す。Dは原子群を表す。nは0以上の整数を表す。)
Moreover, as a constituent organic substance, a p-type organic semiconductor material represented by the following formula (C) is more preferable.
Figure JPOXMLDOC01-appb-C000003
(In the formula (C), Z 4 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. L 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group, D 1 represents an atomic group, and n represents an integer of 0 or more.
 乾式成膜法は抵抗加熱蒸着法であることが好ましい。また、受光層は光電変換層であることが好ましい。 The dry film forming method is preferably a resistance heating vapor deposition method. The light receiving layer is preferably a photoelectric conversion layer.
 本発明の有機光電変換素子の製造方法は、一対の電極と、これらに挟持された少なくとも光電変換層を含む受光層を有する有機光電変換素子の製造方法であって、受光層を上記本発明の受光層形成方法により成膜するものである。 The method for producing an organic photoelectric conversion element of the present invention is a method for producing an organic photoelectric conversion element having a pair of electrodes and a light receiving layer including at least a photoelectric conversion layer sandwiched between the electrodes. The film is formed by the light receiving layer forming method.
 本発明の有機光電変換素子は、一対の電極と、これらに挟持された少なくとも光電変換層を含む受光層を有する有機光電変換素子であって、受光層が上記本発明の成膜用有機材料を用いて乾式成膜されてなるものである。 The organic photoelectric conversion element of the present invention is an organic photoelectric conversion element having a pair of electrodes and a light receiving layer including at least a photoelectric conversion layer sandwiched between the electrodes, and the light receiving layer includes the organic material for film formation of the present invention. It is formed by dry film formation.
 本発明の光センサは、複数の、上記本発明の有機光電変換素子と、この光電変換素子の光電変換層で発生した電荷に応じた信号を読み出す信号読出し回路が形成された回路基板とを備えるものであり、撮像素子として好適である。 An optical sensor according to the present invention includes a plurality of the above-described organic photoelectric conversion elements according to the present invention and a circuit board on which a signal readout circuit for reading a signal corresponding to a charge generated in the photoelectric conversion layer of the photoelectric conversion element is formed. Therefore, it is suitable as an image sensor.
 本発明では、光センサに用いられる有機光電変換素子の受光層を、受光層の構成有機物からなる、蛍光量子収率が0.2以上の粉粒体を気化源として用いて乾式成膜する。かかる粉粒体を含む気化源を用いて受光層を形成することにより、残像電流の低い有機光電変換素子を安定して製造することができる。本発明によれば、粉粒体の蛍光量子収率の値を測定するという簡便な方法で、受光層の乾式成膜に好適な気化源の材料選択を実施することができ、また、光電変換素子とした時の残像電流特性を、気化源材料の粉粒体サンプルの蛍光粒子収率測定により、光電変換素子を作製せずとも、簡便かつ低コストに見積もることができる。 In the present invention, the light-receiving layer of the organic photoelectric conversion element used for the optical sensor is dry-formed using a granular material having a fluorescence quantum yield of 0.2 or more, which is made of organic substances constituting the light-receiving layer, as a vaporization source. By forming the light-receiving layer using a vaporization source containing such powder particles, an organic photoelectric conversion element having a low afterimage current can be stably produced. According to the present invention, it is possible to carry out material selection as a vaporization source suitable for dry film formation of the light receiving layer by a simple method of measuring the value of the fluorescence quantum yield of the granular material, and photoelectric conversion. The afterimage current characteristics when used as an element can be estimated simply and at low cost without preparing a photoelectric conversion element by measuring the fluorescent particle yield of the powder sample of the vaporization source material.
本発明の有機光電変換素子の一実施形態示す概略構成断面模式図Schematic cross-sectional schematic diagram showing an embodiment of the organic photoelectric conversion device of the present invention 受光層の蒸着方法を示す模式斜視図(真空加熱蒸着)Schematic perspective view (vacuum heating vapor deposition) showing vapor deposition method of light receiving layer 本発明の撮像素子の一実施形態示す概略構成断面模式図1 is a schematic cross-sectional schematic diagram illustrating an embodiment of an image sensor according to the present invention 実施例及び比較例の有機光電変換素子の残像電流値と受光層の成膜用有機材料の蛍光量子収率との関係を示す図The figure which shows the relationship between the afterimage current value of the organic photoelectric conversion element of an Example and a comparative example, and the fluorescence quantum yield of the organic material for film-forming of a light receiving layer
 「成膜用有機材料、受光層形成方法、光電変換素子」
図面を参照して、本発明にかかる一実施形態の光電変換素子について説明する。図1は、本実施形態の光電変換素子の構成を示す概略断面図である。本明細書の図面において、視認しやすくするため、各部の縮尺は適宜変更して示してある。
"Organic materials for film formation, light-receiving layer formation method, photoelectric conversion element"
With reference to drawings, the photoelectric conversion element of one Embodiment concerning this invention is demonstrated. FIG. 1 is a schematic cross-sectional view showing the configuration of the photoelectric conversion element of this embodiment. In the drawings of this specification, the scale of each part is appropriately changed and shown for easy visual recognition.
 図1に示されるように、有機光電変換素子1(光電変換素子1)は、基板10と、基板10上に形成された一対の電極(下部電極20と上部電極40)と、これらに挟持された受光層30と、上部電極40上に形成された封止層50とを備える。
 受光層30は、光電変換層32を少なくとも含む層であればよいが、本実施形態では、下部電極20と光電変換層32との間に電子ブロッキング層31を備えている。受光層30は、光電変換層32、電子ブロッキング層31以外の層(例えば正孔ブロッキング層)を含む層であってもよい。
As shown in FIG. 1, the organic photoelectric conversion element 1 (photoelectric conversion element 1) is sandwiched between a substrate 10, a pair of electrodes (a lower electrode 20 and an upper electrode 40) formed on the substrate 10. The light receiving layer 30 and the sealing layer 50 formed on the upper electrode 40 are provided.
The light receiving layer 30 may be a layer including at least the photoelectric conversion layer 32, but in this embodiment, the electron blocking layer 31 is provided between the lower electrode 20 and the photoelectric conversion layer 32. The light receiving layer 30 may be a layer including a layer other than the photoelectric conversion layer 32 and the electron blocking layer 31 (for example, a hole blocking layer).
 受光層30に含まれる電子ブロッキング層31は、下部電極20(以下電極20とする)から光電変換層32に電子が注入されるのを抑制し、光電変換層32で発生した電子が電極20側に流れるのを阻害するための層である。電子ブロッキング層31は、有機材料又は無機材料、あるいはその両方を含んで構成されている。 The electron blocking layer 31 included in the light receiving layer 30 suppresses the injection of electrons from the lower electrode 20 (hereinafter referred to as the electrode 20) into the photoelectric conversion layer 32, and the electrons generated in the photoelectric conversion layer 32 are on the electrode 20 side. It is a layer for inhibiting the flow. The electron blocking layer 31 includes an organic material, an inorganic material, or both.
 上部電極40(以下電極40とする)は、光電変換層32で発生した電荷のうちの電子を捕集する電極である。上部電極40は、光電変換層32に光を入射させるために、光電変換層32が感度を持つ波長の光に対して十分に透明な導電性材料(例えばITO)を用いる。電極40及び電極20間にバイアス電圧を印加することで、光電変換層32で発生した電荷のうち、正孔を電極20に、電子を電極40に移動させることができる。 The upper electrode 40 (hereinafter referred to as electrode 40) is an electrode that collects electrons out of the charges generated in the photoelectric conversion layer 32. The upper electrode 40 is made of a conductive material (for example, ITO) that is sufficiently transparent to light having a wavelength with which the photoelectric conversion layer 32 has sensitivity in order to make light incident on the photoelectric conversion layer 32. By applying a bias voltage between the electrode 40 and the electrode 20, among the charges generated in the photoelectric conversion layer 32, holes can be moved to the electrode 20 and electrons can be moved to the electrode 40.
 このように構成された光電変換素子1は、電極40を光入射側の電極としており、電極40上方から光が入射すると、この光が電極40を透過して光電変換層32に入射し、ここで電荷が発生する。発生した電荷のうちの正孔は電極20に移動する。電極20に移動した正孔を、その量に応じた電圧信号に変換して読み出すことで、光を電圧信号に変換して取り出すことができる。 The photoelectric conversion element 1 configured as described above uses the electrode 40 as a light incident side electrode. When light enters from above the electrode 40, the light passes through the electrode 40 and enters the photoelectric conversion layer 32. A charge is generated. Holes of the generated charges move to the electrode 20. By converting the holes transferred to the electrode 20 into a voltage signal corresponding to the amount of the holes and reading out the light, the light can be converted into a voltage signal and extracted.
 また、電極20において電子を捕集し、電極40において正孔を捕集するようにバイアス電圧を印加してもよい。この場合には、電子ブロッキング層31の代わりに正孔ブロッキング層を設ければよい。正孔ブロッキング層は、電極20から光電変換層32に正孔が注入されるのを抑制し、光電変換層32で発生した正孔が電極20側に流れてしまうのを阻害するための有機材料で構成された層とすればよい。いずれの場合も、電極20と電極40で挟まれた部分が受光層30となる。 Alternatively, a bias voltage may be applied so as to collect electrons at the electrode 20 and collect holes at the electrode 40. In this case, a hole blocking layer may be provided instead of the electron blocking layer 31. The hole blocking layer suppresses injection of holes from the electrode 20 into the photoelectric conversion layer 32, and an organic material for inhibiting holes generated in the photoelectric conversion layer 32 from flowing toward the electrode 20 side. It may be a layer composed of In either case, the portion sandwiched between the electrode 20 and the electrode 40 becomes the light receiving layer 30.
 「発明が解決しようとする課題」の項目において記載したように、受光層の材料や層構成、撮像素子の構成などを同一とした場合であっても、撮像素子の残像電流値はばらつくことが確認されている。特許文献1や2にも記載されているように、有機光電変換素子の受光層の成膜には、受光層の構成有機物からなる成膜用有機材料60を用いた乾式成膜法が好ましく用いられる。乾式成膜では、蒸着源やスパッタターゲット等、構成物質を含む成膜用材料を気化源として用いて成膜を行う。 As described in the section “Problems to be Solved by the Invention”, even if the material and layer configuration of the light receiving layer and the configuration of the image sensor are the same, the afterimage current value of the image sensor may vary. It has been confirmed. As described in Patent Documents 1 and 2, a dry film-forming method using a film-forming organic material 60 made of an organic material constituting the light-receiving layer is preferably used for forming the light-receiving layer of the organic photoelectric conversion element. It is done. In dry film formation, film formation is performed using a film formation material including a constituent material such as an evaporation source or a sputtering target as a vaporization source.
 そこで、本発明者は、受光層成膜に用いる気化源の材料に着目し、気化源の物性と残像電流との関係について鋭意検討を行った。その結果、残像電流と、受光層気化源に含まれる成膜用有機材料の粉粒体時の蛍光粒子収率とに特徴的な相関があることを見出した。 Therefore, the present inventors paid attention to the material of the vaporization source used for forming the light-receiving layer, and intensively studied the relationship between the physical properties of the vaporization source and the afterimage current. As a result, it was found that there is a characteristic correlation between the afterimage current and the fluorescent particle yield in the granular material of the organic material for film formation contained in the light-receiving layer vaporization source.
 蛍光量子収率は、物質に吸収された光子数に対する放出された光子数の割合で表される値であり、蛍光量子収率が1に近づくほど、蛍光の発光効率が良いことを意味する。蛍光量子収率は、励起状態から基底状態に戻るまでに他励起準位への遷移、また、熱失活や再吸収、微量不純物による消光などで1になることはない。本発明者は、受光層30の気化源に含まれる成膜用有機材料60として、粉粒体時の蛍光量子収率が0.2以上のものを用いることで、残像電流特性の良好な、すなわち、低残像電流な有機光電変換素子を製造可能であること、しかも、0.2を境として格段に残像電流特性が向上することを見出した(後記実施例及び比較例、図4を参照。)。これは、通常検出が難しい微量不純物量の差による消光量の影響で、蛍光量子収率が変動するものと考えている。 The fluorescence quantum yield is a value represented by the ratio of the number of emitted photons to the number of photons absorbed by the substance, and the closer the fluorescence quantum yield is to 1, the better the fluorescence emission efficiency. The fluorescence quantum yield does not become 1 due to a transition from the excited state to the ground state to another excited level, thermal deactivation, reabsorption, quenching due to a small amount of impurities, and the like. The inventor used the film-forming organic material 60 included in the vaporization source of the light-receiving layer 30 to have a good afterimage current characteristic by using a material having a fluorescence quantum yield of 0.2 or more at the time of the granular material. That is, it has been found that an organic photoelectric conversion element having a low afterimage current can be produced, and that the afterimage current characteristics are markedly improved with 0.2 as a boundary (see Examples and Comparative Examples described later, FIG. 4). ). This is considered that the fluorescence quantum yield fluctuates due to the influence of the extinction amount due to the difference in the amount of trace impurities that is usually difficult to detect.
 すなわち、有機光電変換素子1は、受光層30が受光層30の構成有機物からなる蛍光量子収率が0.2以上の粉粒体からなる成膜用有機材料60を用いて乾式成膜されてなるものである。 That is, the organic photoelectric conversion element 1 is formed by dry film formation using the organic material 60 for film formation in which the light receiving layer 30 is made of a granular material having a fluorescent quantum yield of 0.2 or more made of organic substances constituting the light receiving layer 30. It will be.
 上記したように、成膜用有機材料60の蛍光量子収率は高いほど好ましいので、下限値である0.2以上であれば、低残像電流値を維持できる。後記実施例では、図4に示されるように、蛍光量子収率が0.395まで(0.4以下)の残像電流値を計測し、低残像電流値が達成されることを確認している。 As described above, the higher the fluorescence quantum yield of the organic material 60 for film formation, the better. Therefore, when the lower limit value is 0.2 or more, a low afterimage current value can be maintained. In the examples described later, as shown in FIG. 4, afterimage current values of fluorescence quantum yields up to 0.395 (0.4 or less) are measured, and it is confirmed that low afterimage current values are achieved. .
 成膜用有機材料60としては、通常HPLC(高速液体クロマトグラフィ-)純度95%以上、好ましくは98%以上の高純度成膜用有機材料が使用される。本発明者は、成膜用有機材料の粉粒体内には蛍光を消光させる微量な物質が存在し、その物質の含有量は従来用いている高純度成膜用有機材料においてばらつきがあるものと推察しており、蛍光を消光させる物質を除去する、すなわち、蛍光量子収率を0.2以上とすることにより、蛍光を消光させる物質の混入を抑制し、残像電流特性の優れた有機光電変換素子を安定して製造することに成功したものと考えている。 As the film-forming organic material 60, a high-purity film-forming organic material having a HPLC (high performance liquid chromatography) purity of 95% or more, preferably 98% or more is usually used. The present inventor said that there is a trace amount of a substance that quenches fluorescence in the granular material of the organic material for film formation, and the content of the substance varies among the high-purity organic materials for film formation conventionally used. Inferred, by removing the substance that quenches fluorescence, that is, by making the fluorescence quantum yield 0.2 or more, mixing of the substance that quenches fluorescence is suppressed, and organic photoelectric conversion with excellent afterimage current characteristics We believe that the device has been successfully manufactured stably.
 粉粒体である成膜用有機材料60の蛍光量子収率を0.2以上とする方法(以下、蛍光消光物質除去工程とする。)は、例えば、高純度成膜用有機材料を、融解時に材料の分解が促進されない溶媒に完全に溶解させ、孔径0.1μm~1μmのメンブレンフィルタで吸引濾過し、濾液を減圧濃縮により溶媒を除去する方法が挙げられる。その他にも、昇華精製、再結晶精製、カラムクロマトグラフィー精製、リスラリー(溶媒中分散)、真空乾燥法、再沈殿精製、分液、水,溶媒による洗浄、ろ過、ろ別、イオン交換樹脂クロマトグラフィー、活性炭,珪藻土,イオン交換樹脂,樹脂,無機多孔質(ゼオライト)による吸着、風乾、加熱乾燥法、フリーズドライ等が挙げられる。これらの方法を繰り返す、または複数の方法を組み合わせることにより、徐々に成膜用有機材料60の蛍光量子収率を高めることができる。 The method of setting the fluorescence quantum yield of the film-forming organic material 60 that is a granular material to 0.2 or more (hereinafter referred to as a fluorescence quenching substance removing step) is, for example, melting a high-purity film-forming organic material. In some cases, the material is completely dissolved in a solvent that does not promote the decomposition of the material, and is filtered with suction through a membrane filter having a pore size of 0.1 μm to 1 μm, and the filtrate is concentrated under reduced pressure to remove the solvent. In addition, sublimation purification, recrystallization purification, column chromatography purification, reslurry (dispersion in solvent), vacuum drying method, reprecipitation purification, liquid separation, washing with water, solvent, filtration, filtration, ion exchange resin chromatography Adsorption by activated carbon, diatomaceous earth, ion exchange resin, resin, inorganic porous material (zeolite), air drying, heat drying method, freeze drying and the like. By repeating these methods or combining a plurality of methods, the fluorescence quantum yield of the organic material 60 for film formation can be gradually increased.
 成膜用有機材料を合成する場合は、合成された有機物の通常の精製工程後に、上記蛍光消光物質除去方法を実施すればよい。 When synthesizing an organic material for film formation, the above-described fluorescence quenching substance removing method may be performed after a normal purification process of the synthesized organic matter.
 現在、有機光電変換素子の乾式成膜材料としては、HPLC純度が99%以上の高純度成膜用有機材料を用いることが一般的である。上記のような蛍光消光物質除去工程を実施した後に使用するという報告はない。後記実施例、比較例に記載されているように、この蛍光消光物質除去工程を実施することにより、確実に蛍光量子収率は変化しており、すなわち、粉粒体としての物性値が異なる物質になっている(比較例は、従来の高純度成膜用有機材料とするための精製工程まで実施した成膜用有機材料を用いた例である。)。このことは、蛍光量子収率0.2以上の成膜用有機材料60自体が新規の物質であることを示している。 At present, as a dry film-forming material for an organic photoelectric conversion element, it is common to use a high-purity film-forming organic material having an HPLC purity of 99% or more. There is no report of using it after implementing the fluorescence quenching substance removal process as described above. As described in Examples and Comparative Examples below, by performing this fluorescence quenching substance removing step, the fluorescence quantum yield is surely changed, that is, substances having different physical property values as granular materials. (The comparative example is an example using a film-forming organic material that has been subjected to a purification step for obtaining a conventional high-purity film-forming organic material.) This indicates that the film-forming organic material 60 itself having a fluorescence quantum yield of 0.2 or more is a novel substance.
 成膜用有機材料60を用いて成膜する受光層30としては、光電変換層32でも、電子ブロッキング層31でも、図示していない正孔ブロッキング層であってもよいが、光電変換層32であることが好ましい。 The light-receiving layer 30 formed using the film-forming organic material 60 may be a photoelectric conversion layer 32, an electron blocking layer 31, or a hole blocking layer (not shown). Preferably there is.
 受光層30を構成する有機物には、p型有機半導体材料及びn型有機半導体材料が挙げられるが、p型有機半導体材料として本実施形態の成膜用有機材料60を用いて成膜することが好ましい。受光層30を構成するp型有機半導体材料及びn型有機半導体材料、電子ブロッキング層、正孔ブロッキング層等に好適な材料については後記する。 Examples of the organic substance constituting the light receiving layer 30 include a p-type organic semiconductor material and an n-type organic semiconductor material. The organic material for film formation according to the present embodiment may be used as the p-type organic semiconductor material. preferable. Materials suitable for the p-type organic semiconductor material and the n-type organic semiconductor material, the electron blocking layer, the hole blocking layer, and the like constituting the light receiving layer 30 will be described later.
 粉粒体からなる成膜用有機材料60の粒径は特に制限されないが、平均粒径が50μm以上800μm以下であることが好ましい。本明細書において、平均粒径とは、D50%で表される平均粒径を意味する。「D50%で表される平均粒径」とは、複数の粒子をある粒子径から2つに分けた時、大きい側と小さい側とが等量となる時の粒径である。本発明において、D50%で表される平均粒径は、粒度曲線から通過百分率もしくは累積百分率の50%の値を読み取ることにより決定する。粒度曲線の作成は、特に制限はないが、例えば試料をふるいにかけて、試料の重量百分率で目開き何μmふるいを何%通過したか調べ、横軸に目開き径、縦軸に通過百分率をプロットする方法やレーザー回折粒度分析計用いて累積分布測定を行う方法等が挙げられる。粉粒体を乳鉢などですりつぶし、平均粒径を20μm未満と著しく小さくした場合は、微量不純物による消光に加えて、粉粒体の微細化に伴う再吸収の抑制や構造欠陥による消光などが影響し、蛍光量子収率の値が変化する可能性がある。 The particle size of the organic material 60 for film formation made of powder particles is not particularly limited, but the average particle size is preferably 50 μm or more and 800 μm or less. In this specification, an average particle diameter means the average particle diameter represented by D50%. The “average particle diameter represented by D50%” is a particle diameter when a plurality of particles are divided into two from a certain particle diameter so that the larger side and the smaller side are equivalent. In the present invention, the average particle diameter represented by D50% is determined by reading the value of 50% of the passing percentage or cumulative percentage from the particle size curve. There are no particular restrictions on the creation of the particle size curve, but for example, the sample is sieved and the percentage by weight of the sample is checked to see how many μm the sieve has passed, and the horizontal axis represents the opening diameter and the vertical axis represents the passing percentage. And a cumulative distribution measurement method using a laser diffraction particle size analyzer. If the powder is ground with a mortar and the average particle size is significantly smaller than 20 μm, in addition to quenching due to trace impurities, suppression of reabsorption due to finer powder and quenching due to structural defects In addition, the value of the fluorescence quantum yield may change.
 また、粉粒体からなる成膜用有機材料60のかさ密度は、0.3g/ml以上であることが好ましい。かさ密度は、疎充填かさ密度を意味し、容積計測可能な容器に粉体を疎充填し,粉体の質量を粒子間の空隙容積も含めた粉体の体積で,粉体の質量を除した値である。具体的には、ボリュメーター等を用い、目開き1mmのふるいを通し、試料の性質を変化させないよう静かに計測容器に粉体試料を入れ、容器内の粉体の質量と体積から計算により求める。 Moreover, the bulk density of the organic material 60 for film formation made of a granular material is preferably 0.3 g / ml or more. Bulk density means loosely packed bulk density, where powder is loosely packed in a volume-measurable container, and the mass of the powder is the volume of the powder including the void volume between the particles, and the mass of the powder is divided. It is the value. Specifically, using a volume meter or the like, a powder sample is gently put into a measurement container through a sieve having a mesh opening of 1 mm so as not to change the properties of the sample, and obtained from the mass and volume of the powder in the container by calculation. .
 また、高純度成膜用有機材料は、HPLCにより検出できずに残留する溶媒を含むことがある。この溶媒は、光電変換効率や、光電流/暗電流のS/N比等の特性及び応答速度に影響を及ぼすことから、残留溶媒を3mol%以下とする溶媒除去工程を実施することが好ましい。 In addition, the organic material for high-purity film formation may contain a solvent that remains undetectable by HPLC. Since this solvent affects characteristics such as photoelectric conversion efficiency, S / N ratio of photocurrent / dark current, and response speed, it is preferable to carry out a solvent removal step in which the residual solvent is 3 mol% or less.
 残留溶媒の種類についても、影響量に大小はあるもののその種類は限定されない。溶媒としては、例えば、水、アルコール類、エーテル類、ケトン類、スルホキシド類、カーボネート類、アミド類、カルボン酸類、エステル類、二トリル類、ハロゲン類、芳香族類などが挙げられる。更に詳しくは、溶媒が2種類以上含まれる場合は、2種類以上の合計含量が3mol%以下とすることが好ましい。 The type of residual solvent is not limited, although the amount of influence is large or small. Examples of the solvent include water, alcohols, ethers, ketones, sulfoxides, carbonates, amides, carboxylic acids, esters, nitriles, halogens, aromatics and the like. More specifically, when two or more types of solvents are contained, the total content of the two or more types is preferably 3 mol% or less.
 残留する可能性のある溶媒の具体例としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、t-ブチルアルコール、エチレングリコール、プロピレングリコール、グリセリン、ジメチルエーテル、ジエチルエーテル、1,2-ジメトキシエタン、ジグリム、トリグリム、オリゴエチレンオキサイド、オリゴプロピレンオキサイド、ポリエチレンオキサイド、ポリプロピレンオキサイド、アニソール、ジフェニルエーテル、THF(テトラヒドロフラン)、ジオキサン、1,3-ジオキソラン、アセトン、MEK(メチルエチルケトン)、シクロヘキサノン、シクロペンタノン、ジメチルスルホキシド、ジメチルスルホン、スルホラン、ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン、酢酸、酢酸エチル、アセトニトリル、ベンゾニトリル、ベンゼン、o-,m-,p-キシレン、トルエン、o-,m-,p-TMB(トリメチルベンゼン)、クロロベンゼン、o-,m-,p-ジクロロベンゼン、ニトロベンゼン、クロロホルム、塩化メチレンなどがあるが上記溶媒に限定されない。 Specific examples of solvents that may remain include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butyl alcohol, ethylene glycol, propylene glycol, glycerin, dimethyl ether, diethyl ether, 1,2-dimethoxyethane. , Diglyme, triglyme, oligoethylene oxide, oligopropylene oxide, polyethylene oxide, polypropylene oxide, anisole, diphenyl ether, THF (tetrahydrofuran), dioxane, 1,3-dioxolane, acetone, MEK (methyl ethyl ketone), cyclohexanone, cyclopentanone, dimethyl Sulfoxide, dimethyl sulfone, sulfolane, dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene Len carbonate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone, acetic acid, ethyl acetate, acetonitrile, benzonitrile, benzene, o-, m-, p-xylene, toluene , O-, m-, p-TMB (trimethylbenzene), chlorobenzene, o-, m-, p-dichlorobenzene, nitrobenzene, chloroform, methylene chloride, etc., but are not limited to the above solvents.
 残留溶媒の除去は、昇華精製、再結晶精製、カラムクロマトグラフィー精製、リスラリー(溶媒中分散)、真空乾燥法、再沈殿精製、分液、水,溶媒による洗浄、ろ過、ろ別、イオン交換樹脂クロマトグラフィー、活性炭,珪藻土,イオン交換樹脂,樹脂,無機多孔質(ゼオライト)による吸着、風乾、加熱乾燥法、フリーズドライ等が挙げられる。 Removal of residual solvent includes sublimation purification, recrystallization purification, column chromatography purification, reslurry (dispersion in solvent), vacuum drying method, reprecipitation purification, liquid separation, washing with water, solvent, filtration, filtration, ion exchange resin Examples include chromatography, activated carbon, diatomaceous earth, ion exchange resin, resin, adsorption by inorganic porous material (zeolite), air drying, heat drying method, freeze drying and the like.
 なお、市販の高純度成膜用有機材料としては、金属含有量が10ppm以下のものは多くない。従って、成膜用有機材料が市販されているようなものの場合は、市販の成膜用有機材料に対し、金属含有量が10ppm未満となるように金属除去工程をほどこすことが好ましい。成膜用有機材料60には、Al,Fe,Cu,Zn,Zr,Ca,Mg,Cr,Ni,Mo,Mn,Na,Si,B,K等の金属をとりわけ含まないことが好ましく、また、F,Cl,Br、I等のハロゲン元素も含まないことが好ましい。ハロゲン元素の含有量は100ppm未満であることがより好ましい。なお、溶媒除去工程や、金属除去工程は、蛍光消光物質除去工程を実施する前または、実施すると同時に行うことが好ましい。 It should be noted that commercially available organic materials for high-purity film formation are not many with a metal content of 10 ppm or less. Therefore, in the case where the organic material for film formation is commercially available, it is preferable to perform the metal removal step with respect to the commercially available organic material for film formation so that the metal content is less than 10 ppm. It is preferable that the organic material 60 for film formation does not contain any metal such as Al, Fe, Cu, Zn, Zr, Ca, Mg, Cr, Ni, Mo, Mn, Na, Si, B, and K. It is preferable that halogen elements such as F, Cl, Br, and I are not included. The halogen element content is more preferably less than 100 ppm. In addition, it is preferable to perform a solvent removal process and a metal removal process before implementing a fluorescence-quenching substance removal process or simultaneously.
 成膜用有機材料60は、受光層30(例えば光電変換層32)の構成有機物からなる蛍光量子収率が0.2以上の粉粒体からなるので、乾式成膜の気化源の態様に応じて、粉粒体の状態でそのまま用いてもよいし、ターゲットの態様に成形して用いてもよい。ターゲットへの成型方法としては特に制限されないが、固化成形焼結法、ホットプレス法、熱間等方圧プレス、熱間押出法等が挙げられる。 Since the organic material 60 for film formation is made of a granular material having a fluorescence quantum yield of 0.2 or more made of the organic material constituting the light-receiving layer 30 (for example, the photoelectric conversion layer 32), it depends on the vaporization source mode of the dry film formation. Then, it may be used as it is in the state of a granular material, or may be formed into a target form. Although it does not restrict | limit especially as a shaping | molding method to a target, A solidification sintering method, a hot press method, a hot isostatic press, a hot extrusion method etc. are mentioned.
 有機光電変換素子の受光層材料の乾式成膜は、主に物理蒸着法が用いられる。物理蒸着法としては、抵抗加熱蒸着、スパッタ法、電子ビーム蒸着、イオンプレーティング、分子線エピタキシー、イオンビーム堆積法、パルスレーザー堆積法等が挙げられる。これらの乾式成膜法は、成膜方法によって、気化源の態様が異なる。例えば、抵抗加熱蒸着や電子線蒸着等は、成膜する構成有機物の粉末や固形物をそのまま気化源として用いる。また、スパッタ法やパルスレーザ堆積法の場合は平型や円筒型のバルク状のターゲット材を気化源として用いる。乾式成膜の方法としては、成膜用有機材料60をそのまま気化源として用いることが可能な方法が好ましく、抵抗加熱蒸着法がより好ましい。 The physical vapor deposition method is mainly used for the dry film formation of the light receiving layer material of the organic photoelectric conversion element. Examples of physical vapor deposition include resistance heating vapor deposition, sputtering, electron beam vapor deposition, ion plating, molecular beam epitaxy, ion beam deposition, and pulsed laser deposition. In these dry film forming methods, the form of the vaporization source differs depending on the film forming method. For example, resistance heating vapor deposition, electron beam vapor deposition, or the like uses a constituent organic powder or solid as a vaporization source as it is. In the case of sputtering or pulse laser deposition, a flat or cylindrical bulk target material is used as a vaporization source. As a dry film forming method, a method in which the film forming organic material 60 can be used as it is as a vaporization source is preferable, and a resistance heating vapor deposition method is more preferable.
 図2に抵抗加熱蒸着の成膜の様子を示す模式図の一例を示す。図2に示すように、通常、受光層の蒸着は、蒸着室91内に設置された蒸着セル71の開口部の上方に、基板ホルダ90を備え、該ホルダ90に基板Bを設置した状態で行う。加熱機能を有する蒸着セル71内には、成膜用有機材料(蒸着材料)60が設置されており、蒸着室91内部は真空度が高いため、蒸着セル71から蒸発した蒸着材料は、開口部から出射されて直進し、基板B上に成膜される。蒸着セル71の開口部の開口径を調整することにより、蒸発した蒸着材料の最大出射角度θを調整することができる。 FIG. 2 shows an example of a schematic diagram showing the state of resistance heating vapor deposition. As shown in FIG. 2, the light-receiving layer is normally vapor-deposited with a substrate holder 90 provided above the opening of the vapor deposition cell 71 installed in the vapor deposition chamber 91, and with the substrate B installed in the holder 90. Do. In the vapor deposition cell 71 having a heating function, a film-forming organic material (vapor deposition material) 60 is installed, and since the inside of the vapor deposition chamber 91 has a high degree of vacuum, the vapor deposition material evaporated from the vapor deposition cell 71 has an opening portion. The film is emitted from the substrate and travels straight and is formed on the substrate B. By adjusting the opening diameter of the opening of the vapor deposition cell 71, the maximum emission angle θ of the evaporated vapor deposition material can be adjusted.
 蒸着セル71と基板Bとは、できれば10cm以上離間されていることが好ましい。蒸発した蒸着原料は、基板面に対し0°~θの入射角でほぼ円錐状に広がって入射されることとなる。 It is preferable that the deposition cell 71 and the substrate B are separated by 10 cm or more if possible. The evaporated deposition material is incident on the substrate surface while spreading in a substantially conical shape at an incident angle of 0 ° to θ.
 成膜用有機材料60は、ボート型、バスケット型、ヘアピン型、るつぼ型などの形状の蒸着源として設置されており、特に限定されない。 The organic material 60 for film formation is installed as a vapor deposition source such as a boat type, a basket type, a hairpin type, or a crucible type, and is not particularly limited.
 抵抗加熱蒸着法で成膜する場合、成膜速度は、生産性の観点から、0.2~12Å/sであることが好ましい。また、成膜温度は上記成膜速度(蒸着速度)の範囲に入る温度であればよく、150~750℃の範囲であることが好ましい。 When the film is formed by the resistance heating vapor deposition method, the film formation rate is preferably 0.2 to 12 cm / s from the viewpoint of productivity. The film formation temperature may be any temperature within the range of the film formation rate (evaporation rate), and is preferably in the range of 150 to 750 ° C.
 後記実施例では、光電変換素子の素子特性への影響が大きいことから、成膜用有機材料60を、受光層30を構成する光電変換層32に用いた態様において残像電流を評価した結果について示してあるが,電子ブロッキング層31や、図示していない正孔ブロッキング層にも好ましく適用することができる。 In Examples described later, since the influence on the element characteristics of the photoelectric conversion element is large, the afterimage current is evaluated in the form in which the organic material for film formation 60 is used for the photoelectric conversion layer 32 constituting the light receiving layer 30. However, it can be preferably applied to the electron blocking layer 31 and the hole blocking layer (not shown).
 成膜用有機材料60は、光センサに用いられる有機光電変換素子1の受光層30の構成有機物を主成分とするものである。 The organic material 60 for film formation is mainly composed of constituent organic substances of the light receiving layer 30 of the organic photoelectric conversion element 1 used in the optical sensor.
 以下に、図1に示される光電変換素子1の構成について説明する。上記したように、以下に示す構成において、上記した成膜用有機材料60を用いた乾式成膜法により、有機層である光電変換層32及び電子ブロッキング層31等の受光層30を成膜することにより、残像電流の少ない有機光電変換素子1を安定して製造することができる。 Hereinafter, the configuration of the photoelectric conversion element 1 shown in FIG. 1 will be described. As described above, in the configuration described below, the light receiving layer 30 such as the photoelectric conversion layer 32 and the electron blocking layer 31 which are organic layers is formed by the dry film formation method using the organic material 60 for film formation described above. Thereby, the organic photoelectric conversion element 1 with little afterimage current can be manufactured stably.
 <基板及び電極>
基板10としては特に制限なく、シリコン基板、ガラス基板等を用いることができる。
<Substrate and electrode>
There is no restriction | limiting in particular as the board | substrate 10, A silicon substrate, a glass substrate, etc. can be used.
 下部電極20は、光電変換層32で発生した電荷のうちの正孔を捕集するための電極である。下部電極20としては、導電性が良好であれば特に制限されないが、用途に応じて、透明性を持たせる場合と、逆に透明を持たせず光を反射させるような材料を用いる場合等がある。具体的には、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル、チタン、タングステン、アルミ等の金属及びこれらの金属の酸化物や窒化物などの導電性化合物(一例として窒化チタン(TiN)を挙げる)、更にこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITO又は窒化チタンとの積層物などが挙げられる。 The lower electrode 20 is an electrode for collecting holes out of charges generated in the photoelectric conversion layer 32. The lower electrode 20 is not particularly limited as long as it has good conductivity. However, depending on the application, there are cases where transparency is provided, and conversely, a case where a material that does not have transparency and reflects light is used. is there. Specifically, conductive metal oxides such as tin oxide (ATO, FTO) doped with antimony or fluorine, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), Metals such as gold, silver, chromium, nickel, titanium, tungsten, and aluminum, and conductive compounds such as oxides and nitrides of these metals (for example, titanium nitride (TiN)), and these metals and conductivity Examples include mixtures or laminates with metal oxides, inorganic conductive materials such as copper iodide and copper sulfide, organic conductive materials such as polyaniline, polythiophene, and polypyrrole, and laminates of these with ITO or titanium nitride. .
 上部電極40は、光電変換層32で発生した電荷のうちの電子を捕集する電極である。上部電極40は、光電変換層32に光を入射させるために、光電変換層32が感度を持つ波長の光に対して十分に透明な導電性材料であれば特に制限されない。具体的には、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属薄膜、更にこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITOとの積層物などが挙げられる。この中で好ましいのは、高導電性、透明性等の点から、導電性金属酸化物である。 The upper electrode 40 is an electrode that collects electrons out of the charges generated in the photoelectric conversion layer 32. The upper electrode 40 is not particularly limited as long as it is a conductive material that is sufficiently transparent to light having a wavelength with which the photoelectric conversion layer 32 has sensitivity in order to allow light to enter the photoelectric conversion layer 32. Specifically, conductive metal oxides such as tin oxide (ATO, FTO) doped with antimony or fluorine, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), Metal thin films such as gold, silver, chromium and nickel, and mixtures or laminates of these metals and conductive metal oxides, inorganic conductive materials such as copper iodide and copper sulfide, organic materials such as polyaniline, polythiophene and polypyrrole Examples thereof include conductive materials and laminates of these with ITO. Among these, conductive metal oxides are preferable from the viewpoint of high conductivity and transparency.
 上記電極を形成する方法は特に限定されず、電極材料との適正を考慮して適宜選択することができる。具体的には、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等により形成することができる。 The method for forming the electrode is not particularly limited, and can be appropriately selected in consideration of appropriateness with the electrode material. Specifically, it can be formed by a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD method.
 電極の材料がITOの場合、電子ビーム法、スパッタリング法、抵抗加熱蒸着法、化学反応法(ゾルーゲル法など)、酸化インジウムスズの分散物の塗布などの方法で形成することができる。更に、ITOを用いて作製された膜に、UV-オゾン処理、プラズマ処理などを施すことができる。電極の材料がTiNの場合、反応性スパッタリング法をはじめとする各種の方法が用いられ、更にUV-オゾン処理、プラズマ処理などを施すことができる。 When the electrode material is ITO, it can be formed by a method such as an electron beam method, a sputtering method, a resistance heating vapor deposition method, a chemical reaction method (sol-gel method or the like), or a dispersion of indium tin oxide. Furthermore, UV-ozone treatment, plasma treatment, or the like can be performed on a film formed using ITO. When the electrode material is TiN, various methods including a reactive sputtering method can be used, and further, UV-ozone treatment, plasma treatment, and the like can be performed.
 上部電極40は有機光電変換層32上に成膜するため、有機光電変換層32の特性を劣化させることのない方法で成膜される事が好ましいことから、プラズマフリーで作製することが好ましい。ここで、プラズマフリーとは、上部電極40の成膜中にプラズマが発生しないか、又はプラズマ発生源から基体までの距離が2cm以上、好ましくは10cm以上、更に好ましくは20cm以上であり、基体に到達するプラズマが減ずるような状態を意味する。 Since the upper electrode 40 is formed on the organic photoelectric conversion layer 32, it is preferable that the upper electrode 40 be formed by a method that does not deteriorate the characteristics of the organic photoelectric conversion layer 32. Therefore, the upper electrode 40 is preferably formed plasma-free. Here, plasma free means that no plasma is generated during the deposition of the upper electrode 40, or that the distance from the plasma generation source to the substrate is 2 cm or more, preferably 10 cm or more, more preferably 20 cm or more. It means a state in which the plasma that reaches is reduced.
 上部電極40の成膜中にプラズマが発生しない装置としては、例えば、電子線蒸着装置(EB蒸着装置)やパルスレーザー蒸着装置がある。EB蒸着装置又はパルスレーザー蒸着装置については、沢田豊監修「透明導電膜の新展開」(シーエムシー刊、1999年)、沢田豊監修「透明導電膜の新展開II」(シーエムシー刊、2002年)、日本学術振興会著「透明導電膜の技術」(オーム社、1999年)、及びそれらに付記されている参考文献等に記載されているような装置を用いることができる。以下では、EB蒸着装置を用いて透明電極膜の成膜を行う方法をEB蒸着法と言い、パルスレーザー蒸着装置を用いて透明電極膜の成膜を行う方法をパルスレーザー蒸着法と言う。 Examples of apparatuses that do not generate plasma during the formation of the upper electrode 40 include an electron beam vapor deposition apparatus (EB vapor deposition apparatus) and a pulse laser vapor deposition apparatus. Regarding EB deposition equipment or pulse laser deposition equipment, “Surveillance of Transparent Conductive Films” supervised by Yutaka Sawada (published by CMC, 1999); ), "Transparent conductive film technology" by the Japan Society for the Promotion of Science (Ohm Co., 1999), and the references attached thereto, etc. can be used. Hereinafter, a method of forming a transparent electrode film using an EB vapor deposition apparatus is referred to as an EB vapor deposition method, and a method of forming a transparent electrode film using a pulse laser vapor deposition apparatus is referred to as a pulse laser vapor deposition method.
 プラズマ発生源から基体への距離が2cm以上であって基体へのプラズマの到達が減ずるような状態を実現できる装置(以下、プラズマフリーである成膜装置という)については、例えば、対向ターゲット式スパッタ装置やアークプラズマ蒸着法などが考えられ、それらについては沢田豊監修「透明導電膜の新展開」(シーエムシー刊、1999年)、沢田豊監修「透明導電膜の新展開II」(シーエムシー刊、2002年)、日本学術振興会著「透明導電膜の技術」(オーム社、1999年)、及びそれらに付記されている参考文献等に記載されているような装置を用いることができる。 For an apparatus that can realize a state in which the distance from the plasma generation source to the substrate is 2 cm or more and the arrival of plasma to the substrate is reduced (hereinafter referred to as a plasma-free film forming apparatus), for example, an opposed target sputtering Equipment, arc plasma deposition, etc. are considered, and these are supervised by Yutaka Sawada "New development of transparent conductive film" (published by CMC, 1999) and Yutaka Sawada "New development of transparent conductive film II" (published by CMC) 2002), “Transparent conductive film technology” (Ohm Co., 1999) by the Japan Society for the Promotion of Science, and references and the like attached thereto can be used.
 TCO(透明導電ガラス)などの透明導電膜を上部電極40とした場合、DCショート、あるいはリーク電流増大が生じる場合がある。この原因の一つは、光電変換層32に導入される微細なクラックがTCOなどの緻密な膜によってカバレッジされ、反対側の下部電極20との間の導通が増すためと考えられる。そのため、Alなど膜質が比較して劣る電極の場合、リーク電流の増大は生じにくい。上部電極40の膜厚を、光電変換層32の膜厚(すなわち、クラックの深さ)に対して制御する事により、リーク電流の増大を大きく抑制できる。上部電極40の厚みは、光電変換層32厚みの1/5以下、好ましくは1/10以下であるようにする事が望ましい。 When a transparent conductive film such as TCO (transparent conductive glass) is used as the upper electrode 40, a DC short circuit or an increase in leakage current may occur. One reason for this is thought to be that fine cracks introduced into the photoelectric conversion layer 32 are covered with a dense film such as TCO, and conduction between the lower electrode 20 on the opposite side is increased. For this reason, in the case of an electrode having a poor film quality such as Al, an increase in leakage current hardly occurs. By controlling the film thickness of the upper electrode 40 with respect to the film thickness of the photoelectric conversion layer 32 (that is, the depth of cracks), an increase in leakage current can be largely suppressed. It is desirable that the thickness of the upper electrode 40 is 1/5 or less, preferably 1/10 or less of the thickness of the photoelectric conversion layer 32.
 通常、導電性膜をある範囲より薄くすると、急激な抵抗値の増加をもたらすが、本実施形態に係る光電変換素子を組み込んだ固体撮像素子では、シート抵抗は、好ましくは100~10000Ω/□でよく、薄膜化できる膜厚の範囲の自由度は大きい。また、上部電極40は厚みが薄いほど吸収する光の量は少なくなり、一般に光透過率が増す。光透過率の増加は、光電変換層32での光吸収を増大させ、光電変換能を増大させるため、非常に好ましい。薄膜化に伴う、リーク電流の抑制、薄膜の抵抗値の増大、透過率の増加を考慮すると、上部電極40の膜厚は、5~100nmであることが好ましく、5~20nmである事がより好ましい。 Usually, when the conductive film is made thinner than a certain range, the resistance value is rapidly increased. However, in the solid-state imaging device incorporating the photoelectric conversion device according to this embodiment, the sheet resistance is preferably 100 to 10,000 Ω / □. Well, there is a large degree of freedom in the range of film thickness that can be made thin. Further, the thinner the upper electrode 40 is, the less light is absorbed, and the light transmittance is generally increased. The increase in light transmittance is very preferable because it increases the light absorption in the photoelectric conversion layer 32 and increases the photoelectric conversion ability. Considering the suppression of leakage current, the increase in the resistance value of the thin film, and the increase in transmittance due to the thinning, the thickness of the upper electrode 40 is preferably 5 to 100 nm, and more preferably 5 to 20 nm. preferable.
 上部電極40と下部電極20間にバイアス電圧を印加することで、光電変換層32で発生した電荷のうち、正孔を下部電極20に、電子を上部電極40に移動させることができる。 By applying a bias voltage between the upper electrode 40 and the lower electrode 20, among the charges generated in the photoelectric conversion layer 32, holes can be moved to the lower electrode 20 and electrons can be moved to the upper electrode 40.
 <受光層>
受光層30は、少なくとも光電変換層32を含む有機層であり、成膜用有機材料60を用いて、乾式成膜法により成膜された有機層を含む。本実施形態では、受光層30は、電子ブロッキング層31と光電変換層32とにより構成されており、これらのいずれか又は両方が成膜用有機材料60を用いて乾式成膜法により成膜されている。より画素欠陥の混入及びそのばらつきを抑制するためには、受光層30に含まれる有機層ができるだけ多くの層が成膜用有機材料60を用いて成膜されることが好ましい。
<Light receiving layer>
The light receiving layer 30 is an organic layer including at least the photoelectric conversion layer 32, and includes an organic layer formed by a dry film forming method using the film forming organic material 60. In the present embodiment, the light receiving layer 30 includes an electron blocking layer 31 and a photoelectric conversion layer 32, and either or both of these are formed by a dry film forming method using the film forming organic material 60. ing. In order to further suppress the incorporation of pixel defects and variations thereof, it is preferable that as many layers as possible of the organic layers included in the light receiving layer 30 are formed using the organic material 60 for film formation.
 受光層30は、乾式成膜法又は湿式成膜法により形成することができる。乾式成膜法は、均一な膜形成が容易であり不純物が混入し難い点、また、膜厚コントロールや異種材料に積層が容易である点で好ましい。 The light receiving layer 30 can be formed by a dry film forming method or a wet film forming method. The dry film formation method is preferable in that a uniform film formation is easy and impurities are not easily mixed, and that film thickness control and lamination on different materials are easy.
 乾式成膜法の具体的な例としては、真空蒸着法、スパッタリング法、イオンプレーティング法、MBE(分子線エピタキシー)法等の物理気相成長法あるいはプラズマ重合等のCVD法が挙げられる。好ましくは真空蒸着法であり、真空蒸着法により成膜する場合、真空度、蒸着温度等の製造条件は常法に従って設定することができる。蒸着法により、受光層30を形成する場合は、蒸着可能温度よりも、分解温度が大きいほど、蒸着時の熱分解が抑制できるので好ましい。 Specific examples of the dry film formation method include a physical vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, an MBE (molecular beam epitaxy) method, or a CVD method such as plasma polymerization. A vacuum deposition method is preferred, and in the case of forming a film by the vacuum deposition method, the production conditions such as the degree of vacuum and the deposition temperature can be set according to conventional methods. When the light receiving layer 30 is formed by the vapor deposition method, it is preferable that the decomposition temperature is higher than the vapor deposition possible temperature because thermal decomposition during vapor deposition can be suppressed.
 受光層30を乾式成膜法により形成する場合、形成時の真空度は、受光層形成時の素子特性の劣化を防止することを考慮すると、1×10-3Pa以下が好ましく、4×10-4Pa以下がさらに好ましく、1×10-4Pa以下が特に好ましい。 When the light-receiving layer 30 is formed by a dry film forming method, the degree of vacuum at the time of formation is preferably 1 × 10 −3 Pa or less in consideration of preventing deterioration of element characteristics at the time of forming the light-receiving layer. −4 Pa or less is more preferable, and 1 × 10 −4 Pa or less is particularly preferable.
 受光層30の厚みは、10nm以上1000nm以下が好ましく、さらに好ましくは50nm以上800nm以下、特に好ましくは100nm以上600nm以下である。10nm以上とすることにより、好適な暗電流抑制効果が得られ、1000nm以下とすることにより、好適な光電変換効率が得られる。 The thickness of the light receiving layer 30 is preferably 10 nm or more and 1000 nm or less, more preferably 50 nm or more and 800 nm or less, and particularly preferably 100 nm or more and 600 nm or less. By setting it to 10 nm or more, a suitable dark current suppressing effect is obtained, and by setting it to 1000 nm or less, suitable photoelectric conversion efficiency is obtained.
 <<光電変換層>>
光電変換層32は、光を受光し、その光量に応じた電荷を発生するものであり、有機の光電変換材料を含んで構成されている。
<< Photoelectric conversion layer >>
The photoelectric conversion layer 32 receives light and generates an electric charge according to the amount of light, and includes an organic photoelectric conversion material.
 本実施形態の光電変換素子1は、光電変換層32に、p型有機半導体(p型有機化合物)と、n型有機半導体とを混合した混合層(バルクへテロ層)を備えた構成としている。この混合層は、p型有機半導体材料の成膜用有機材料60と、n型有機半導体材料の成膜用有機材料60との共蒸着により成膜されたものであることが好ましい。 The photoelectric conversion element 1 of the present embodiment has a configuration in which a photoelectric conversion layer 32 includes a mixed layer (bulk hetero layer) in which a p-type organic semiconductor (p-type organic compound) and an n-type organic semiconductor are mixed. . This mixed layer is preferably formed by co-evaporation of the organic material 60 for forming a p-type organic semiconductor material and the organic material 60 for forming an n-type organic semiconductor material.
 ここで、混合層とは、複数の材料が混ざり合った又は分散した層のことをいい、本実施形態では、p型有機半導体とn型有機半導体を共蒸着することで形成される層である。 Here, the mixed layer refers to a layer in which a plurality of materials are mixed or dispersed. In this embodiment, the mixed layer is a layer formed by co-evaporating a p-type organic semiconductor and an n-type organic semiconductor. .
 光電変換層32を構成するn型有機半導体(化合物)としては特に制限されないが、フラーレンまたはフラーレン誘導体であることが好ましい。フラーレンまたはフラーレン誘導体としては特に限定されず、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC80、フラーレンC82、フラーレンC84、フラーレンC90、フラーレンC96、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ等が挙げられる。以下に代表的なフラーレンの骨格を示す。
Figure JPOXMLDOC01-appb-C000004
 また、フラーレン誘導体とはこれらに置換基が付加された化合物のことを表す。フラーレン誘導体の置換基として好ましくは、アルキル基、アリール基、又は複素環基である。アルキル基として更に好ましくは、炭素数1~12までのアルキル基であり、アリール基、及び複素環基として好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フルオレン環、トリフェニレン環、ナフタセン環、ビフェニル環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イソベンゾフラン環、ベンズイミダゾール環、イミダゾピリジン環、キノリジン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キノキサゾリン環、イソキノリン環、カルバゾール環、フェナントリジン環、アクリジン環、フェナントロリン環、チアントレン環、クロメン環、キサンテン環、フェノキサチイン環、フェノチアジン環、またはフェナジン環であり、さらに好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピリジン環、イミダゾール環、オキサゾール環、またはチアゾール環であり、特に好ましくはベンゼン環、ナフタレン環、またはピリジン環である。これらはさらに置換基を有していてもよく、その置換基は可能な限り結合して環を形成してもよい。なお、複数の置換基を有しても良く、それらは同一であっても異なっていても良い。また、複数の置換基は可能な限り結合して環を形成してもよい。
Although it does not restrict | limit especially as an n-type organic semiconductor (compound) which comprises the photoelectric converting layer 32, It is preferable that it is a fullerene or a fullerene derivative. The fullerene or fullerene derivative is not particularly limited, and fullerene C 60 , fullerene C 70 , fullerene C 76 , fullerene C 78 , fullerene C 80 , fullerene C 82 , fullerene C 84 , fullerene C 90 , fullerene C 96 , fullerene C 240 , Fullerene C 540 , mixed fullerene, fullerene nanotubes and the like. A typical fullerene skeleton is shown below.
Figure JPOXMLDOC01-appb-C000004
The fullerene derivative means a compound having a substituent added thereto. The substituent for the fullerene derivative is preferably an alkyl group, an aryl group, or a heterocyclic group. The alkyl group is more preferably an alkyl group having 1 to 12 carbon atoms, and the aryl group and the heterocyclic group are preferably a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, fluorene ring, triphenylene ring, naphthacene ring. , Biphenyl ring, pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, indolizine ring, indole ring, benzofuran ring, benzothiophene ring, isobenzofuran Ring, benzimidazole ring, imidazopyridine ring, quinolidine ring, quinoline ring, phthalazine ring, naphthyridine ring, quinoxaline ring, quinoxazoline ring, isoquinoline ring, carbazole ring, phenanthridine ring, acridine ring, phenanthroline , Thianthrene ring, chromene ring, xanthene ring, phenoxathiin ring, phenothiazine ring, or phenazine ring, more preferably a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, pyridine ring, imidazole ring, oxazole ring, or A thiazole ring, particularly preferably a benzene ring, a naphthalene ring, or a pyridine ring. These may further have a substituent, and the substituents may be bonded as much as possible to form a ring. In addition, you may have a some substituent and they may be the same or different. A plurality of substituents may be combined as much as possible to form a ring.
 光電変換層32がフラーレン又はフラーレン誘導体を含むことで、フラーレン分子またはフラーレン誘導体分子を経由して、光電変換により発生した電荷を下部電極20又は上部電極40まで早く輸送できる。フラーレン分子またはフラーレン誘導体分子が連なった状態になって電子の経路が形成されていると、電子輸送性が向上して有機光電変換素子の高速応答性が実現可能となる。このためにはフラーレン又はフラーレン誘導体が光電変換層32に40%以上含まれていることが好ましい。もっとも、フラーレン又はフラーレン誘導体が多すぎるとp型有機半導体が少なくなって接合界面が小さくなり励起子解離効率が低下してしまう。 When the photoelectric conversion layer 32 contains fullerene or a fullerene derivative, charges generated by photoelectric conversion can be quickly transported to the lower electrode 20 or the upper electrode 40 via the fullerene molecule or fullerene derivative molecule. When fullerene molecules or fullerene derivative molecules are connected to form an electron path, the electron transport property is improved, and the high-speed response of the organic photoelectric conversion element can be realized. For this purpose, the fullerene or fullerene derivative is preferably contained in the photoelectric conversion layer 32 by 40% or more. However, when there are too many fullerenes or fullerene derivatives, the p-type organic semiconductor is reduced, the junction interface is reduced, and the exciton dissociation efficiency is lowered.
 光電変換層32内のフラーレン又はフラーレン誘導体の比率が大きすぎると該p型有機半導体が少なくなって入射光の吸収量が低下する。これにより光電変換効率が減少するので、光電変換層32に含まれるフラーレン又はフラーレン誘導体は85%以下の組成であることが好ましい。 If the ratio of fullerene or fullerene derivative in the photoelectric conversion layer 32 is too large, the amount of the p-type organic semiconductor decreases and the amount of incident light absorbed decreases. As a result, the photoelectric conversion efficiency is reduced, so that the fullerene or fullerene derivative contained in the photoelectric conversion layer 32 preferably has a composition of 85% or less.
 本発明の効果を顕著に発現させるために、p型有機半導体は下記一般式で表される化合物であることが好ましい。構成有機物が、下記式(A)アミン部位、または、下記式(B)カルボニル基部位を1つ以上有することが好ましい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
(式(A)中、R30~R31は、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。R32は、置換基を有してもよいアリーレン連結基または置換基を有してもよいヘテロアリーレン連結基を表す。R30~R32は、それぞれ互いに連結して環を形成してもよい。式(B)中、Yは、2つ以上の炭素原子を含む環であって、5員環、6員環、又は、5員環及び6員環の少なくともいずれかを含む縮合環を表し、これは置換基を有してもよい。また、置換基は可能な限り結合して環を形成してもよい。)
In order to express the effect of the present invention remarkably, the p-type organic semiconductor is preferably a compound represented by the following general formula. It is preferable that the constituent organic substance has at least one amine moiety represented by the following formula (A) or one represented by the following formula (B) carbonyl group.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
(In the formula (A), R 30 to R 31 each independently represents an alkyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl which may have a substituent. R 32 represents an arylene linking group which may have a substituent or a heteroarylene linking group which may have a substituent, and R 30 to R 32 are connected to each other to form a ring. In formula (B), Y 1 is a ring containing two or more carbon atoms, and is a 5-membered ring, a 6-membered ring, or at least one of a 5-membered ring and a 6-membered ring. (This represents a condensed ring that may have a substituent, and the substituents may be combined to form a ring as much as possible.)
 さらに、本発明の効果を顕著に発現させるために、p型有機半導体は下記一般式(C)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
 (式(C)中、Zは少なくとも2つの炭素原子を含む環であって、5員環、6員環、又は、5員環及び6員環の少なくともいずれかを含む縮合環を表す。L、L、及びLはそれぞれ独立に無置換メチン基、又は置換メチン基を表す。Dは原子群を表す。nは0以上の整数を表す。)
 Zは少なくとも2つの炭素原子を含む環であって、5員環、6員環、又は、5員環及び6員環の少なくともいずれかを含む縮合環を表す。5員環、6員環、又は、5員環及び6員環の少なくともいずれかを含む縮合環としては、通常メロシアニン色素で酸性核として用いられるものが好ましく、その具体例としては例えば以下のものが挙げられる。
(a)1,3-ジカルボニル核:例えば1,3-インダンジオン核、1,3-シクロヘキサンジオン、5,5-ジメチル-1,3-シクロヘキサンジオン、1,3-ジオキサン-4,6-ジオン等。
(b)ピラゾリノン核:例えば1-フェニル-2-ピラゾリン-5-オン、3-メチル-1-フェニル-2-ピラゾリン-5-オン、1-(2-ベンゾチアゾイル)-3-メチル-2-ピラゾリン-5-オン等。
(c)イソオキサゾリノン核:例えば3-フェニル-2-イソオキサゾリン-5-オン、3-メチル-2-イソオキサゾリン-5-オン等。
(d)オキシインドール核:例えば1-アルキル-2,3-ジヒドロ-2-オキシインドール等。
(e)2,4,6-トリケトヘキサヒドロピリミジン核:例えばバルビツル酸又は2-チオバルビツル酸及びその誘導体等。誘導体としては例えば1-メチル、1-エチル等の1-アルキル体、1,3-ジメチル、1,3-ジエチル、1,3-ジブチル等の1,3-ジアルキル体、1,3-ジフェニル、1,3-ジ(p-クロロフェニル)、1,3-ジ(p-エトキシカルボニルフェニル)等の1,3-ジアリール体、1-エチル-3-フェニル等の1-アルキル-1-アリール体、1,3-ジ(2―ピリジル)等の1,3位ジヘテロ環置換体等が挙げられる。
(f)2-チオ-2,4-チアゾリジンジオン核:例えばローダニン及びその誘導体等。誘導体としては例えば3-メチルローダニン、3-エチルローダニン、3-アリルローダニン等の3-アルキルローダニン、3-フェニルローダニン等の3-アリールローダニン、3-(2-ピリジル)ローダニン等の3位ヘテロ環置換ローダニン等が挙げられる。
(g)2-チオ-2,4-オキサゾリジンジオン(2-チオ-2,4-(3H,5H)-オキサゾールジオン核:例えば3-エチル-2-チオ-2,4-オキサゾリジンジオン等。
(h)チアナフテノン核:例えば3(2H)-チアナフテノン-1,1-ジオキサイド等。
(i)2-チオ-2,5-チアゾリジンジオン核:例えば3-エチル-2-チオ-2,5-チアゾリジンジオン等。
(j)2,4-チアゾリジンジオン核:例えば2,4-チアゾリジンジオン、3-エチル-2,4-チアゾリジンジオン、3-フェニル-2,4-チアゾリジンジオン等。
(k)チアゾリン-4-オン核:例えば4-チアゾリノン、2-エチル-4-チアゾリノン等。
(l)2,4-イミダゾリジンジオン(ヒダントイン)核:例えば2,4-イミダゾリジンジオン、3-エチル-2,4-イミダゾリジンジオン等。
(m)2-チオ-2,4-イミダゾリジンジオン(2-チオヒダントイン)核:例えば2-チオ-2,4-イミダゾリジンジオン、3-エチル-2-チオ-2,4-イミダゾリジンジオン等。
(n)2-イミダゾリン-5-オン核:例えば2-プロピルメルカプト-2-イミダゾリン-5-オン等。
(o)3,5-ピラゾリジンジオン核:例えば1,2-ジフェニル-3,5-ピラゾリジンジオン、1,2-ジメチル-3,5-ピラゾリジンジオン等。
(p)ベンゾチオフェン-3-オン核:例えばベンゾチオフェン-3-オン、オキソベンゾチオフェンー3-オン、ジオキソベンゾチオフェンー3-オン等。
(q)インダノン核:例えば1-インダノン、3-フェニル-1-インダノン、3-メチル-1-インダノン、3,3-ジフェニル-1-インダノン、3,3-ジメチル-1-インダノン等。
(r)ベンゾフラン-3-(2H)-オン核:例えば、ベンゾフラン-3-(2H)-オン等。
(s)2,2-ジヒドロフェナレン-1,3-ジオン核等。
 これらはさらに置換基Wを有していてもよく、さらに他の環が縮環していてもよい。
 L、L、及びLはそれぞれ独立に、無置換メチン基、又は置換メチン基を表す。置換メチン基同士が結合して環(例、6員環例えばベンゼン環)を形成してもよい。置換メチン基の置換基は置換基Wが挙げられる。
置換基Wは後述する。
 nは0以上の整数を表し、好ましくは0~3の整数を表し、より好ましくは0~2である。
は原子群を表す。例えば、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物等を用いることが好ましい。
Furthermore, in order to express the effect of the present invention remarkably, the p-type organic semiconductor is preferably a compound represented by the following general formula (C).
Figure JPOXMLDOC01-appb-C000007
(In the formula (C), Z 4 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. L 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group, D 1 represents an atomic group, and n represents an integer of 0 or more.
Z 4 is a ring containing at least two carbon atoms, and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. As a condensed ring containing at least one of a 5-membered ring, a 6-membered ring, and a 5-membered ring and a 6-membered ring, those usually used as an acidic nucleus in a merocyanine dye are preferable. Specific examples thereof include the following: Is mentioned.
(A) 1,3-dicarbonyl nucleus: for example, 1,3-indandione nucleus, 1,3-cyclohexanedione, 5,5-dimethyl-1,3-cyclohexanedione, 1,3-dioxane-4,6- Zeon etc.
(B) pyrazolinone nucleus: for example 1-phenyl-2-pyrazolin-5-one, 3-methyl-1-phenyl-2-pyrazolin-5-one, 1- (2-benzothiazoyl) -3-methyl-2 -Pyrazolin-5-one and the like.
(C) isoxazolinone nucleus: for example, 3-phenyl-2-isoxazolin-5-one, 3-methyl-2-isoxazolin-5-one and the like.
(D) Oxindole nucleus: For example, 1-alkyl-2,3-dihydro-2-oxindole and the like.
(E) 2,4,6-triketohexahydropyrimidine nucleus: for example, barbituric acid or 2-thiobarbituric acid and derivatives thereof. Examples of the derivatives include 1-alkyl compounds such as 1-methyl and 1-ethyl, 1,3-dialkyl compounds such as 1,3-dimethyl, 1,3-diethyl and 1,3-dibutyl, 1,3-diphenyl, 1,3-diaryl compounds such as 1,3-di (p-chlorophenyl) and 1,3-di (p-ethoxycarbonylphenyl), 1-alkyl-1-aryl compounds such as 1-ethyl-3-phenyl, Examples include 1,3-di (2-pyridyl) 1,3-diheterocyclic substituents and the like.
(F) 2-thio-2,4-thiazolidinedione nucleus: for example, rhodanine and its derivatives. Examples of the derivatives include 3-alkylrhodanine such as 3-methylrhodanine, 3-ethylrhodanine and 3-allylrhodanine, 3-arylrhodanine such as 3-phenylrhodanine, and 3- (2-pyridyl) rhodanine. And the like.
(G) 2-thio-2,4-oxazolidinedione (2-thio-2,4- (3H, 5H) -oxazoledione nucleus: for example, 3-ethyl-2-thio-2,4-oxazolidinedione and the like.
(H) Tianaphthenone nucleus: For example, 3 (2H) -thianaphthenone-1,1-dioxide and the like.
(I) 2-thio-2,5-thiazolidinedione nucleus: for example, 3-ethyl-2-thio-2,5-thiazolidinedione and the like.
(J) 2,4-thiazolidinedione nucleus: for example, 2,4-thiazolidinedione, 3-ethyl-2,4-thiazolidinedione, 3-phenyl-2,4-thiazolidinedione and the like.
(K) Thiazolin-4-one nucleus: for example, 4-thiazolinone, 2-ethyl-4-thiazolinone, etc.
(L) 2,4-imidazolidinedione (hydantoin) nucleus: for example, 2,4-imidazolidinedione, 3-ethyl-2,4-imidazolidinedione, etc.
(M) 2-thio-2,4-imidazolidinedione (2-thiohydantoin) nucleus: for example, 2-thio-2,4-imidazolidinedione, 3-ethyl-2-thio-2,4-imidazolidinedione etc.
(N) 2-imidazolin-5-one nucleus: for example, 2-propylmercapto-2-imidazolin-5-one and the like.
(O) 3,5-pyrazolidinedione nucleus: for example, 1,2-diphenyl-3,5-pyrazolidinedione, 1,2-dimethyl-3,5-pyrazolidinedione and the like.
(P) Benzothiophen-3-one nucleus: for example, benzothiophen-3-one, oxobenzothiophen-3-one, dioxobenzothiophen-3-one and the like.
(Q) Indanone nucleus: for example, 1-indanone, 3-phenyl-1-indanone, 3-methyl-1-indanone, 3,3-diphenyl-1-indanone, 3,3-dimethyl-1-indanone, etc.
(R) Benzofuran-3- (2H) -one nucleus: for example, benzofuran-3- (2H) -one and the like.
(S) 2,2-dihydrophenalene-1,3-dione nucleus and the like.
These may further have a substituent W, and another ring may be condensed.
L 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group. Substituted methine groups may combine to form a ring (eg, a 6-membered ring such as a benzene ring). The substituent of the substituted methine group includes the substituent W.
The substituent W will be described later.
n represents an integer of 0 or more, preferably represents an integer of 0 to 3, more preferably 0 to 2.
D 1 represents an atomic group. For example, it is preferable to use a triarylamine compound, a benzidine compound, a pyrazoline compound, a styrylamine compound, a hydrazone compound, a triphenylmethane compound, a carbazole compound, or the like.
 さらに、本発明の効果を顕著に発現させるために、p型有機半導体は下記一般式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
(式中、L、Lは、それぞれ独立に無置換メチン基若しくは置換メチン基を表す。nは0~2の整数を表す。Arは、2価の置換基を有してもよいアリーレン基または置換基を有してもよいヘテロアリーレン基を表す。Ar、Arは、それぞれ独立に、置換アリール基、無置換アリール基、置換アルキル基、無置換アルキル基、置換へテロアリール基、又は無置換ヘテロアリール基を表す。Ar、Ar、Arのうち隣接するものは互いに連結して環を形成しても良い。Lは、下記一般式(2)と結合する無置換メチン基若しくは置換メチン基、又は、下記一般式(3)で表される基を表す。
Figure JPOXMLDOC01-appb-C000009
  式中、Zは、Lと結合する炭素原子と該炭素原子に隣接するカルボニル基を含む環であって、5員環、6員環、又は、5員環及び6員環の少なくともいずれかを含む縮合環を表す。Xはヘテロ原子を表す。Zは、Xを含む環であって、5員環、6員環、7員環、又は、5員環及び6員環及び7員環の少なくともいずれかを含む縮合環を表す。L~Lは、それぞれ独立に無置換メチン基若しくは置換メチン基を表す。R、Rはそれぞれ独立に、水素原子又は置換基を表し、隣接するものが互いに結合して環を形成してもよい。kは0~2の整数を表す。一般式(2)中の*はLに結合する結合位置を表し、一般式(3)中の*はL又はArに結合する結合位置を表す。
Furthermore, in order to express the effect of the present invention remarkably, the p-type organic semiconductor is preferably a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000008
(Wherein L 2 and L 3 each independently represent an unsubstituted methine group or a substituted methine group. N represents an integer of 0 to 2. Ar 1 may have a divalent substituent. An arylene group or a heteroarylene group which may have a substituent, Ar 2 and Ar 3 each independently represent a substituted aryl group, an unsubstituted aryl group, a substituted alkyl group, an unsubstituted alkyl group, or a substituted heteroaryl group; Or an unsubstituted heteroaryl group, adjacent ones of Ar 1 , Ar 2 , and Ar 3 may be linked to each other to form a ring, and L 1 is a compound that is bonded to the following general formula (2). A substituted methine group, a substituted methine group, or a group represented by the following general formula (3) is represented.
Figure JPOXMLDOC01-appb-C000009
In the formula, Z 1 is a ring containing a carbon atom bonded to L 1 and a carbonyl group adjacent to the carbon atom, and is a 5-membered ring, a 6-membered ring, or a 5-membered ring or a 6-membered ring. Represents a condensed ring containing X represents a hetero atom. Z 2 is a ring containing X, and represents a 5-membered ring, a 6-membered ring, a 7-membered ring, or a condensed ring containing at least one of a 5-membered ring, a 6-membered ring, and a 7-membered ring. L 4 to L 6 each independently represents an unsubstituted methine group or a substituted methine group. R 6 and R 7 each independently represents a hydrogen atom or a substituent, and adjacent ones may be bonded to each other to form a ring. k represents an integer of 0-2. * In the general formula (2) represents a bonding position bonded to L 1, and * in the general formula (3) represents a bonding position bonded to L 2 or Ar 1 .
 一般式(2)のZは、少なくとも2つの炭素原子を含む環であって、5員環、6員環、又は、5員環及び6員環の少なくともいずれかを含む縮合環を表す。このような環としては、通常メロシアニン色素で酸性核として用いられるものが好ましく、その具体例としては例えば以下のものが挙げられる。 Z 1 in the general formula (2) is a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. As such a ring, what is normally used as an acidic nucleus with a merocyanine dye is preferable, and specific examples thereof include the following.
 Zが表す環として好ましくは、1,3-ジカルボニル核、ピラゾリノン核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含み、例えばバルビツル酸核、2-チオバルビツル酸核)、2-チオ-2,4-チアゾリジンジオン核、2-チオ-2,4-オキサゾリジンジオン核、2-チオ-2,5-チアゾリジンジオン核、2,4-チアゾリジンジオン核、2,4-イミダゾリジンジオン核、2-チオ-2,4-イミダゾリジンジオン核、2-イミダゾリン-5-オン核、3,5-ピラゾリジンジオン核、ベンゾチオフェン-3-オン核、インダノン核であり、より好ましくは1,3-ジカルボニル核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含み、例えばバルビツル酸核、2-チオバルビツル酸核)、3,5-ピラゾリジンジオン核、ベンゾチオフェン-3-オン核、インダノン核であり、さらに好ましくは1,3-ジカルボニル核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含み、例えばバルビツル酸核、2-チオバルビツル酸核)であり、特に好ましくは1,3-インダンジオン核、バルビツル酸核、2-チオバルビツル酸核及びそれらの誘導体である。 The ring represented by Z 1 is preferably a 1,3-dicarbonyl nucleus, a pyrazolinone nucleus, a 2,4,6-triketohexahydropyrimidine nucleus (including a thioketone body, for example, a barbituric acid nucleus, a 2-thiobarbituric acid nucleus), 2-thio-2,4-thiazolidinedione nucleus, 2-thio-2,4-oxazolidinedione nucleus, 2-thio-2,5-thiazolidinedione nucleus, 2,4-thiazolidinedione nucleus, 2,4-imidazolidine Dione nucleus, 2-thio-2,4-imidazolidinedione nucleus, 2-imidazolin-5-one nucleus, 3,5-pyrazolidinedione nucleus, benzothiophen-3-one nucleus, and indanone nucleus are more preferable. Is a 1,3-dicarbonyl nucleus, 2,4,6-triketohexahydropyrimidine nucleus (including thioketones, such as barbituric acid nucleus, 2-thiobarbituric acid Nucleus), 3,5-pyrazolidinedione nucleus, benzothiophen-3-one nucleus, indanone nucleus, more preferably 1,3-dicarbonyl nucleus, 2,4,6-triketohexahydropyrimidine nucleus ( A thioketone body is also included, for example, a barbituric acid nucleus, a 2-thiobarbituric acid nucleus, and a 1,3-indandione nucleus, a barbituric acid nucleus, a 2-thiobarbituric acid nucleus, and derivatives thereof are particularly preferable.
 Zが表す環として好ましいものは下記の式で表される。
Figure JPOXMLDOC01-appb-C000010
 式中、Zは、Lと結合する炭素原子と該炭素原子に隣接する2つのカルボニル基を含む環であって、5員環、6員環、又は、5員環及び6員環の少なくともいずれかを含む縮合環を表す。*はLと結合する結合位置を示す。Zとしては上記Zが表す環中から選ぶことができ、好ましくは1,3-ジカルボニル核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含む)であり、特に好ましくは1,3-インダンジオン核、バルビツル酸核、2-チオバルビツル酸核及びそれらの誘導体である。
What is preferable as a ring represented by Z 1 is represented by the following formula.
Figure JPOXMLDOC01-appb-C000010
In the formula, Z 3 is a ring containing a carbon atom bonded to L 1 and two carbonyl groups adjacent to the carbon atom, and is a 5-membered ring, a 6-membered ring, or a 5-membered ring and a 6-membered ring. A condensed ring containing at least one of them is represented. * Represents a bonding position for coupling with L 1. Z 3 can be selected from the ring represented by Z 1 above, preferably 1,3-dicarbonyl nucleus, 2,4,6-triketohexahydropyrimidine nucleus (including thioketone body), particularly preferably Is a 1,3-indandione nucleus, a barbituric acid nucleus, a 2-thiobarbituric acid nucleus and derivatives thereof.
 Zが表す環が1,3-インダンジオン核の場合、下記一般式(5)で示される基である場合が好ましい。
Figure JPOXMLDOC01-appb-C000011
 式中、R~Rはそれぞれ独立に、水素原子又は置換基を表し、隣接するものが互いに結合して環を形成してもよい。*はLと結合する結合位置を示す。
When the ring represented by Z 1 is a 1,3-indandione nucleus, it is preferably a group represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000011
In the formula, R 2 to R 5 each independently represents a hydrogen atom or a substituent, and adjacent ones may be bonded to each other to form a ring. * Represents a bonding position for coupling with L 1.
 一般式(3)のkは0~2の整数を表し、好ましくは0又は1、より好ましく0である。XはO、S、N-R10が好ましい。Zが表す環として好ましいものは下記の式(6)で表される。
Figure JPOXMLDOC01-appb-C000012
 式中、XはO、S、N-R10を表す。R10は水素原子又は置換基を表す。式中、R、R、Rはそれぞれ独立に、水素原子又は置換基を表し、隣接するものが互いに結合して環を形成してもよい。mは1~3の整数を表す。mが2以上のとき複数のRは同じでも異なっていてもよい。*はL又はArに結合する結合位置を表す。
K in the general formula (3) represents an integer of 0 to 2, preferably 0 or 1, more preferably 0. X is preferably O, S, or N—R 10 . A preferable ring represented by Z 2 is represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000012
In the formula, X represents O, S, or N—R 10 . R 10 represents a hydrogen atom or a substituent. In the formula, R 1 , R 6 and R 7 each independently represent a hydrogen atom or a substituent, and adjacent ones may be bonded to each other to form a ring. m represents an integer of 1 to 3. When m is 2 or more, the plurality of R 1 may be the same or different. * Represents a bonding position bonded to L 2 or Ar 1 .
 Arが表すアリーレン基としては、好ましくは炭素数6~30のアリーレン基であり、より好ましくは炭素数6~18のアリーレン基である。該アリーレン基は、置換基を有していてもよく、好ましくは炭素数1~4のアルキル基を有していてもよい炭素数6~18のアリーレン基である。例えば、フェニレン基、ナフチレン基、メチルフェニレン基、ジメチルフェニレン基等が挙げられ、フェニレン基、ナフチレン基が好ましい。 The arylene group represented by Ar 1 is preferably an arylene group having 6 to 30 carbon atoms, and more preferably an arylene group having 6 to 18 carbon atoms. The arylene group may have a substituent, and is preferably an arylene group having 6 to 18 carbon atoms which may have an alkyl group having 1 to 4 carbon atoms. Examples include a phenylene group, a naphthylene group, a methylphenylene group, a dimethylphenylene group, and the like, and a phenylene group and a naphthylene group are preferable.
 Ar、Arが表すアリール基としては、それぞれ独立に、好ましくは炭素数6~30のアリール基であり、より好ましくは炭素数6~18のアリール基である。該アリール基は、置換基を有していてもよく、好ましくは炭素数1~4のアルキル基又は炭素数6~18のアリール基を有していてもよい炭素数6~18のアリール基である。例えば、フェニル基、ナフチル基、トリル基、アンスリル基、ジメチルフェニル基、ビフェニル基等が挙げられ、フェニル基、ナフチル基が好ましい。 The aryl groups represented by Ar 2 and Ar 3 are each independently preferably an aryl group having 6 to 30 carbon atoms, and more preferably an aryl group having 6 to 18 carbon atoms. The aryl group may have a substituent, preferably an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 18 carbon atoms which may have an aryl group having 6 to 18 carbon atoms. is there. For example, a phenyl group, a naphthyl group, a tolyl group, an anthryl group, a dimethylphenyl group, a biphenyl group etc. are mentioned, A phenyl group and a naphthyl group are preferable.
 Ar、Arが表すアルキル基としては、好ましくは炭素数1~6のアルキル基であり、より好ましくは炭素数1~4のアルキル基である。例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基が挙げられ、メチル基又はエチル基が好ましく、メチル基がより好ましい。 The alkyl group represented by Ar 2 and Ar 3 is preferably an alkyl group having 1 to 6 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms. Examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a t-butyl group. A methyl group or an ethyl group is preferable, and a methyl group is more preferable.
 Arが表すヘテロアリーレン基、Ar、Arが表すヘテロアリール基としては、それぞれ独立に、好ましくは炭素数3~30のヘテロアリール基であり、より好ましくは炭素数3~18のヘテロアリール基である。該ヘテロアリール基は、置換基を有していてもよく、好ましくは炭素数1~4のアルキル基又は炭素数6~18のアリール基を有していてもよい炭素数3~18のヘテロアリール基である。また、Arが表すヘテロアリーレン基、Ar、Arが表すヘテロアリール基は縮環構造であってもよく、フラン環、チオフェン環、セレノフェン環、シロール環、ピリジン環、ピラジン環、ピリミジン環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環からから選ばれる環の組み合わせ(同一でも良い)の縮環構造が好ましく、キノリン環、イソキノリン環、ベンゾチオフェン環、ジベンゾチオフェン環、チエノチオフェン環、ビチエノベンゼン環、ビチエノチオフェン環が好ましい。 The heteroarylene group represented by Ar 1 and the heteroaryl groups represented by Ar 2 and Ar 3 are each independently preferably a heteroaryl group having 3 to 30 carbon atoms, more preferably a heteroaryl group having 3 to 18 carbon atoms. It is a group. The heteroaryl group may have a substituent, preferably an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 18 carbon atoms, and a heteroaryl having 3 to 18 carbon atoms It is a group. The heteroarylene group represented by Ar 1 , the heteroaryl group represented by Ar 2 , and Ar 3 may have a condensed ring structure, such as a furan ring, a thiophene ring, a selenophene ring, a silole ring, a pyridine ring, a pyrazine ring, or a pyrimidine ring. , An oxazole ring, a thiazole ring, a triazole ring, an oxadiazole ring, and a ring combination selected from the thiadiazole ring (which may be the same) are preferable, and a quinoline ring, an isoquinoline ring, a benzothiophene ring, a dibenzothiophene ring, A thienothiophene ring, a bithienobenzene ring, and a bithienothiophene ring are preferable.
 Ar、Ar、Ar、R、R~R、R10のうち隣接するものは互いに連結して環を形成しても良い。さらに、該環は、ヘテロ原子、アルキレン基、及び芳香族環等で形成される環が好ましい。例えば、アリール基(例えば、一般式(1)のAr、Ar、Ar)の2つが単結合又は連結基を介して連結することで、窒素原子(一般式(1)のN)とともに形成される環が挙げられる。該連結基しては、ヘテロ原子(例えば、-O-、-S-など)、アルキレン基(例えば、メチレン基、エチレン基など)、及びこれらの組み合わせからなる基が挙げられ、-S-、メチレン基が好ましい。窒素原子(例えば、一般式(1)のN)、アルキレン基(例えば、メチレン基)及びアリール基(例えば、一般式(1)のAr、Ar又はAr)で形成される環が好ましい。該環は更に置換基を有していてもよく、該置換基としては、アルキル基(好ましくは炭素数1~4のアルキル基、より好ましくはメチル基)が挙げられ、複数の該置換基が互いに連結して更に環(例えば、ベンゼン環など)を形成してもよい。 Ar 1 , Ar 2 , Ar 3 , R 1 , R 2 to R 7 , R 10 may be adjacent to each other to form a ring. Furthermore, the ring is preferably a ring formed of a hetero atom, an alkylene group, an aromatic ring, or the like. For example, an aryl group (for example, Ar 1 , Ar 2 , Ar 3 in the general formula (1)) is linked via a single bond or a linking group, so that together with a nitrogen atom (N in the general formula (1)) Examples include the ring that is formed. Examples of the linking group include a hetero atom (eg, —O—, —S—, etc.), an alkylene group (eg, methylene group, ethylene group, etc.), and a group consisting of a combination thereof, —S—, A methylene group is preferred. A ring formed by a nitrogen atom (for example, N in the general formula (1)), an alkylene group (for example, a methylene group) and an aryl group (for example, Ar 1 , Ar 2 or Ar 3 in the general formula (1)) is preferable. . The ring may further have a substituent, and examples of the substituent include an alkyl group (preferably an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group). They may be connected to each other to further form a ring (for example, a benzene ring).
 また、R及びRが互いに連結して環を形成していることも好ましく、該環としてはベンゼン環が好ましい。 R 3 and R 4 are preferably connected to each other to form a ring, and the ring is preferably a benzene ring.
 更にまた、Rについては、複数ある場合(mが2以上)に該複数のRのうち隣接するものは互いに連結して環を形成することができ、該環としてはベンゼン環が好ましい。 Furthermore, when there are a plurality of R 1 (m is 2 or more), adjacent ones of the plurality of R 1 can be connected to each other to form a ring, and the ring is preferably a benzene ring.
 置換基Wまたは、Ar、Ar、Arが置換基を有する場合の当該置換基、及び、R、R~R、R10の置換基としてはハロゲン原子、アルキル基(シクロアルキル基、ビシクロアルキル基、トリシクロアルキル基を含む)、置換アルキル基、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基、アリール基、置換アリール基、複素環基(ヘテロ環基といっても良い)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル及びアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル及びアリールスルフィニル基、アルキル及びアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリール及びヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH))、ホスファト基(-OPO(OH))、スルファト基(-OSOH)、その他の公知の置換基が挙げられる。R、R~R、R10の置換基としては、特にアルキル基、置換アルキル基、アリール基、置換アリール基、へテロアリール基、シアノ基、ニトロ基、アルコキシ基、アリールオキシ基、アミノ基、アルキルチオ基、アルケニル基、又はハロゲン原子が好ましい。 The substituent W or the substituent in the case where Ar 1 , Ar 2 , Ar 3 has a substituent, and the substituents of R 1 , R 2 to R 7 , R 10 include a halogen atom, an alkyl group (cycloalkyl Group, bicycloalkyl group and tricycloalkyl group), substituted alkyl group, alkenyl group (including cycloalkenyl group and bicycloalkenyl group), alkynyl group, aryl group, substituted aryl group, heterocyclic group (with heterocyclic group and Cyano group, hydroxy group, nitro group, carboxy group, alkoxy group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyl group, aryloxycarbonyl group, amino Group (including anilino group), ammonio group, acylamino group, aminocarbonylamino , Alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group, alkyl and arylsulfonylamino group, mercapto group, alkylthio group, arylthio group, heterocyclic thio group, sulfamoyl group, sulfo group, alkyl and arylsulfinyl group Alkyl and arylsulfonyl groups, acyl groups, aryloxycarbonyl groups, alkoxycarbonyl groups, carbamoyl groups, aryl and heterocyclic azo groups, imide groups, phosphino groups, phosphinyl groups, phosphinyloxy groups, phosphinylamino groups, Phosphono group, silyl group, hydrazino group, ureido group, boronic acid group (—B (OH) 2 ), phosphato group (—OPO (OH) 2 ), sulfato group (—OSO 3 H), other known substituents Is mentioned. The substituents for R 1 , R 2 to R 7 , and R 10 are particularly alkyl groups, substituted alkyl groups, aryl groups, substituted aryl groups, heteroaryl groups, cyano groups, nitro groups, alkoxy groups, aryloxy groups, amino groups. Group, an alkylthio group, an alkenyl group, or a halogen atom is preferred.
 置換基Wまたは、Ar、Ar、Arが置換基を有する場合、それぞれ独立にハロゲン原子、アルキル基、アリール基、複素環基、ヒドロキシ基、ニトロ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アミノ基、アルキルチオ基、アリールチオ基、アルケニル基、シアノ基又はヘテロ環チオ基が好ましい。
としてはアルキル基、アリール基がより好ましい。R及びRとしては、シアノ基がより好ましい。
When the substituent W or Ar 1 , Ar 2 , Ar 3 has a substituent, each independently a halogen atom, alkyl group, aryl group, heterocyclic group, hydroxy group, nitro group, alkoxy group, aryloxy group, hetero A ring oxy group, amino group, alkylthio group, arylthio group, alkenyl group, cyano group or heterocyclic thio group is preferred.
R 1 is more preferably an alkyl group or an aryl group. R 6 and R 7 are more preferably a cyano group.
 上記置換アルキル基や置換アリール基が有する置換基としては、上記で列挙した置換基が挙げられ、アルキル基(好ましくは炭素数1~4のアルキル基、より好ましくはメチル基)やアリール基(炭素数6~18のアリール基、より好ましくはフェニル基)が好ましい。 Examples of the substituent of the substituted alkyl group or the substituted aryl group include the substituents listed above. An alkyl group (preferably an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group) or an aryl group (carbon An aryl group of 6 to 18 and more preferably a phenyl group) is preferable.
 L、L、L、L、L、Lは、それぞれ独立に無置換メチン基又は置換メチン基を表す場合、該置換メチン基の置換基はアルキル基、アリール基、複素環基、アルケニル基、アルコキシ基又はアリールオキシ基を表し、置換基同士が結合して環を形成してもよい。環としては6員環(例えば、ベンゼン環等)が挙げられる。また、L又はLとArの置換基同士が結合して環を形成してもよい。また、LとRの置換基同士が結合して環を形成してもよい。 When L 1 , L 2 , L 3 , L 4 , L 5 , and L 6 each independently represent an unsubstituted methine group or a substituted methine group, the substituent of the substituted methine group is an alkyl group, an aryl group, or a heterocyclic ring Represents a group, an alkenyl group, an alkoxy group or an aryloxy group, and the substituents may be bonded to each other to form a ring. A 6-membered ring (for example, benzene ring etc.) is mentioned as a ring. Moreover, the substituents of L 1 or L 3 and Ar 1 may be bonded to form a ring. Further, the substituents of L 6 and R 7 may be bonded to each other to form a ring.
 R、R~R、R10が表すアルキル基としては、好ましくは炭素数1~6のアルキル基であり、より好ましくは炭素数1~4のアルキル基である。例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基が挙げられる。R~Rとしては、メチル基又はエチル基が好ましく、メチル基がより好ましい。Rとしては、メチル基、エチル基又はt-ブチル基が好ましく、メチル基、又はt-ブチル基がより好ましい。nは0又は1が好ましい。 The alkyl group represented by R 1 , R 2 to R 7 , and R 10 is preferably an alkyl group having 1 to 6 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms. Examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a t-butyl group. R 2 to R 7 are preferably a methyl group or an ethyl group, and more preferably a methyl group. R 1 is preferably a methyl group, an ethyl group or a t-butyl group, more preferably a methyl group or a t-butyl group. n is preferably 0 or 1.
 R、R~R、R10が表すアリール基としては、それぞれ独立に、好ましくは炭素数6~30のアリール基であり、より好ましくは炭素数6~18のアリール基である。該アリール基は、置換基を有していてもよく、好ましくは炭素数1~4のアルキル基又は炭素数6~18のアリール基を有していてもよい炭素数6~18のアリール基である。例えば、フェニル基、ナフチル基、アントラセニル基、ピレニル基、フェナントレニル基、メチルフェニル基、ジメチルフェニル基、ビフェニル基等が挙げられ、フェニル基、ナフチル基、又はアントラセニル基が好ましい。 The aryl groups represented by R 1 , R 2 to R 7 and R 10 are each independently preferably an aryl group having 6 to 30 carbon atoms, and more preferably an aryl group having 6 to 18 carbon atoms. The aryl group may have a substituent, preferably an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 18 carbon atoms which may have an aryl group having 6 to 18 carbon atoms. is there. Examples include a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, a methylphenyl group, a dimethylphenyl group, a biphenyl group, and the like, and a phenyl group, a naphthyl group, or an anthracenyl group is preferable.
 R、R~R、R10が表すヘテロアリール基としては、それぞれ独立に、好ましくは炭素数3~30のヘテロアリール基であり、より好ましくは炭素数3~18のヘテロアリール基である。該ヘテロアリール基は、置換基を有していてもよく、好ましくは炭素数1~4のアルキル基又は炭素数6~18のアリール基を有していてもよい炭素数3~18のヘテロアリール基である。また、R、R~Rが表すヘテロアリール基は5員、6員又は7員の環又はその縮合環からなるヘテロアリール基が好ましい。ヘテロアリール基に含まれるヘテロ原子としては、酸素原子、硫黄原子、窒素原子挙げられる。ヘテロアリール基を構成する環の具体例としては、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、ピラゾリジン環、トリアゾール環、フラザン環、テトラゾール環、ピラン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環、トリアジン環等が挙げられる。 The heteroaryl groups represented by R 1 , R 2 to R 7 and R 10 are each independently preferably a heteroaryl group having 3 to 30 carbon atoms, more preferably a heteroaryl group having 3 to 18 carbon atoms. is there. The heteroaryl group may have a substituent, preferably an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 18 carbon atoms, and a heteroaryl having 3 to 18 carbon atoms It is a group. The heteroaryl group represented by R 1 , R 2 to R 7 is preferably a heteroaryl group comprising a 5-membered, 6-membered or 7-membered ring or a condensed ring thereof. Examples of the hetero atom contained in the heteroaryl group include an oxygen atom, a sulfur atom, and a nitrogen atom. Specific examples of the ring constituting the heteroaryl group include a furan ring, a thiophene ring, a pyrrole ring, a pyrroline ring, a pyrrolidine ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an imidazole ring, an imidazoline ring, and an imidazolidine. Ring, pyrazole ring, pyrazoline ring, pyrazolidine ring, triazole ring, furazane ring, tetrazole ring, pyran ring, thiine ring, pyridine ring, piperidine ring, oxazine ring, morpholine ring, thiazine ring, pyridazine ring, pyrimidine ring, pyrazine ring, Examples include a piperazine ring and a triazine ring.
 縮合環としては、ベンゾフラン環、イソベンゾフラン環、ベンゾチオフェン環、インドール環、インドリン環、イソインドール環、ベンゾオキサゾール環、ベンゾチアゾール環、インダゾール環、ベンゾイミダゾール環、キノリン環、イソキノリン環、シンノリン環、フタラジン環、キナゾリン環、キノキサリン環、ジベンゾフラン環、カルバゾール環、キサンテン環、アクリジン環、フェナントリジン環、フェナントロリン環、フェナジン環、フェノキサジン環、チアントレン環、チエノチオフェン環、インドリジン環、キノリジン環、キヌクリジン環、ナフチリジン環、プリン環、プテリジン環等が挙げられる。 As the condensed ring, benzofuran ring, isobenzofuran ring, benzothiophene ring, indole ring, indoline ring, isoindole ring, benzoxazole ring, benzothiazole ring, indazole ring, benzimidazole ring, quinoline ring, isoquinoline ring, cinnoline ring, Phthalazine ring, quinazoline ring, quinoxaline ring, dibenzofuran ring, carbazole ring, xanthene ring, acridine ring, phenanthridine ring, phenanthroline ring, phenazine ring, phenoxazine ring, thianthrene ring, thienothiophene ring, indolizine ring, quinolidine ring, A quinuclidine ring, a naphthyridine ring, a purine ring, a pteridine ring, etc. are mentioned.
 mは1~3の整数を表し、好ましくは1又は2、より好ましく1である。 M represents an integer of 1 to 3, preferably 1 or 2, and more preferably 1.
 一般式(A)または(B)で表される部位を含む有機p型半導体材料の中で、以下に示す化合物が好ましい。かかる化合物の中で、特に、化合物1、化合物2、化合物4、化合物5、化合物6が好ましく例示される。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Of the organic p-type semiconductor materials containing the site represented by formula (A) or (B), the following compounds are preferred. Of these compounds, compound 1, compound 2, compound 4, compound 5, and compound 6 are particularly preferred.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 <<電子ブロッキング層>>
受光層30に含まれる電子ブロッキング層31は、下部電極20から光電変換層32に電子が注入されるのを抑制し、光電変換層32で発生した電子が電極20側に流れるのを阻害するための層である。電子ブロッキング層31は、有機材料又は無機材料、あるいはその両方を含んで構成されている。
<< Electron blocking layer >>
The electron blocking layer 31 included in the light receiving layer 30 suppresses the injection of electrons from the lower electrode 20 into the photoelectric conversion layer 32 and inhibits the electrons generated in the photoelectric conversion layer 32 from flowing to the electrode 20 side. Of layers. The electron blocking layer 31 includes an organic material, an inorganic material, or both.
 電子ブロッキング層31は、複数層で構成してあってもよい。このようにすることで、電子ブロッキング層31を構成する各層の間に界面ができ、各層に存在する中間準位に不連続性が生じる。この結果、中間準位等を介した電荷の移動がしにくくなるため電子ブロッキング効果を高めることができる。但し、電子ブロッキング層31を構成する各層が同一材料であると、各層に存在する中間準位が全く同じとなる場合も有り得るため、電子ブロッキング効果を更に高めるために、各層を構成する材料を異なるものにすることが好ましい。 The electron blocking layer 31 may be composed of a plurality of layers. By doing in this way, an interface is formed between each layer which comprises the electron blocking layer 31, and a discontinuity arises in the intermediate level which exists in each layer. As a result, it becomes difficult for the charge to move through the intermediate level and the like, so that the electron blocking effect can be enhanced. However, if the layers constituting the electron blocking layer 31 are made of the same material, the intermediate levels existing in the layers may be exactly the same. Therefore, in order to further enhance the electron blocking effect, the materials constituting the layers are different. It is preferable to make it.
 電子ブロッキング層31には、電子供与性有機材料を用いることができる。具体的には、低分子材料では、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)や4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)等の芳香族ジアミン化合物、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(m-MTDATA)、ポルフィン、テトラフェニルポルフィン銅、フタロシアニン、銅フタロシアニン、チタニウムフタロシアニンオキサイド等のポリフィリン化合物、トリアゾール誘導体、オキサジザゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、フルオレン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、シラザン誘導体などを用いることができ、高分子材料では、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、ジアセチレン等の重合体や、その誘導体を用いることができる。電子供与性化合物でなくとも、充分な正孔輸送性を有する化合物であれば用いることは可能である。 An electron donating organic material can be used for the electron blocking layer 31. Specifically, for low molecular weight materials, N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) -4,4′-diamine (TPD) or 4,4′-bis [N Aromatic diamine compounds such as-(naphthyl) -N-phenyl-amino] biphenyl (α-NPD), oxazole, oxadiazole, triazole, imidazole, imidazolone, stilbene derivative, pyrazoline derivative, tetrahydroimidazole, polyarylalkane, butadiene 4,4 ′, 4 ″ -tris (N- (3-methylphenyl) N-phenylamino) triphenylamine (m-MTDATA), porphine, tetraphenylporphine copper, phthalocyanine, copper phthalocyanine, titanium phthalocyanine oxide, etc. Polyphyrin compounds, triazole derivatives, oxa Zazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, fluorene derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, silazane derivatives, etc. As the polymer material, polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, and derivatives thereof can be used. Even if it is not, it is possible to use a compound having sufficient hole transportability.
 具体的には、例えば、特開2008-72090号公報に記載された下記の化合物を示すが、本発明はこれらに限定されるものではない。なお、下記のEaはその材料の電子親和力、Ipはその材料のイオン化ポテンシャルを示す。EB―1,2,…の「EB」は「電子ブロッキング」の略である。
Figure JPOXMLDOC01-appb-C000017
 電子ブロッキング層31としては無機材料を用いることもできる。一般的に、無機材料は有機材料よりも誘電率が大きいため、電子ブロッキング層31に用いた場合に、光電変換層32に電圧が多くかかるようになり、光電変換効率を高くすることができる。電子ブロッキング層31となりうる材料としては、酸化カルシウム、酸化クロム、酸化クロム銅、酸化マンガン、酸化コバルト、酸化ニッケル、酸化銅、酸化ガリウム銅、酸化ストロンチウム銅、酸化ニオブ、酸化モリブデン、酸化インジウム銅、酸化インジウム銀、酸化イリジウム等がある。
Specifically, for example, the following compounds described in JP-A-2008-72090 are shown, but the present invention is not limited thereto. The following Ea represents the electron affinity of the material, and Ip represents the ionization potential of the material. “EB” in EB-1, 2,... Stands for “electronic blocking”.
Figure JPOXMLDOC01-appb-C000017
An inorganic material can also be used as the electron blocking layer 31. In general, since an inorganic material has a dielectric constant larger than that of an organic material, when it is used for the electron blocking layer 31, a large voltage is applied to the photoelectric conversion layer 32, and the photoelectric conversion efficiency can be increased. Materials that can be the electron blocking layer 31 include calcium oxide, chromium oxide, chromium oxide copper, manganese oxide, cobalt oxide, nickel oxide, copper oxide, gallium copper oxide, strontium copper oxide, niobium oxide, molybdenum oxide, indium copper oxide, Examples include indium silver oxide and iridium oxide.
 複数層からなる電子ブロッキング層31において、複数層のうち光電変換層32と隣接する層が該光電変換層32に含まれるp型有機半導体と同じ材料からなる層であることが好ましい。電子ブロッキング層31にも同じp型有機半導体を用いることで、光電変換層32と隣接する層の界面に中間準位が形成されるのを抑制し、暗電流を更に抑制することができる。 In the electron blocking layer 31 composed of a plurality of layers, the layer adjacent to the photoelectric conversion layer 32 among the plurality of layers is preferably a layer made of the same material as the p-type organic semiconductor contained in the photoelectric conversion layer 32. By using the same p-type organic semiconductor for the electron blocking layer 31, it is possible to suppress the formation of intermediate levels at the interface between the photoelectric conversion layer 32 and the adjacent layer, and to further suppress the dark current.
 電子ブロッキング層31が単層の場合にはその層を無機材料からなる層とすることができ、または、複数層の場合には1つ又は2以上の層を無機材料からなる層とすることができる。 When the electron blocking layer 31 is a single layer, the layer can be a layer made of an inorganic material, or in the case of a plurality of layers, one or more layers can be a layer made of an inorganic material. it can.
 また、下部電極20において電子を捕集し、上部電極40において正孔を捕集するようにバイアス電圧を印加する構成とする場合には、電子ブロッキング層31の代わりに正孔ブロッキング層を設ける構成とすればよい。正孔ブロッキング層は、下部電極20から光電変換層32に正孔が注入されるのを抑制し、光電変換層32で発生した正孔が下部電極20側に流れてしまうのを阻害するための有機材料で構成された層とすればよい。正孔ブロッキング層も複数層にすることで、正孔ブロッキング効果を高めることができる。 In addition, when a bias voltage is applied so as to collect electrons in the lower electrode 20 and collect holes in the upper electrode 40, a structure in which a hole blocking layer is provided instead of the electron blocking layer 31. And it is sufficient. The hole blocking layer suppresses injection of holes from the lower electrode 20 into the photoelectric conversion layer 32, and inhibits holes generated in the photoelectric conversion layer 32 from flowing toward the lower electrode 20 side. A layer formed of an organic material may be used. By making the hole blocking layer into a plurality of layers, the hole blocking effect can be enhanced.
 また、上部電極40で捕集された電子又は正孔をその量に応じた電圧信号に変換して外部に取り出すようにしてもよい。この場合には、上部電極40と光電変換層32との間に電子ブロッキング層又は正孔ブロッキング層を設ければよい。いずれの場合も、下部電極20と上部電極40で挟まれた部分が受光層30となる。 Further, electrons or holes collected by the upper electrode 40 may be converted into a voltage signal corresponding to the amount and taken out to the outside. In this case, an electron blocking layer or a hole blocking layer may be provided between the upper electrode 40 and the photoelectric conversion layer 32. In either case, the portion sandwiched between the lower electrode 20 and the upper electrode 40 becomes the light receiving layer 30.
 正孔ブロッキング層には、電子受容性有機材料を用いることができる。電子受容性材料としては、1,3-ビス(4-tert-ブチルフェニル-1,3,4-オキサジアゾリル)フェニレン(OXD-7)等のオキサジアゾール誘導体、アントラキノジメタン誘導体、ジフェニルキノン誘導体、バソクプロイン、バソフェナントロリン、及びこれらの誘導体、トリアゾール化合物、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、ビス(4-メチル-8-キノリナート)アルミニウム錯体、ジスチリルアリーレン誘導体、シロール化合物などを用いることができる。また、電子受容性有機材料でなくとも、十分な電子輸送性を有する材料ならば使用することは可能である。ポルフィリン系化合物や、DCM(4-ジシアノメチレン-2-メチル-6-(4-(ジメチルアミノスチリル))-4Hピラン)等のスチリル系化合物、4Hピラン系化合物を用いることができる。 An electron-accepting organic material can be used for the hole blocking layer. Examples of electron accepting materials include oxadiazole derivatives such as 1,3-bis (4-tert-butylphenyl-1,3,4-oxadiazolyl) phenylene (OXD-7), anthraquinodimethane derivatives, and diphenylquinone derivatives. , Bathocuproine, bathophenanthroline, and derivatives thereof, triazole compounds, tris (8-hydroxyquinolinato) aluminum complexes, bis (4-methyl-8-quinolinato) aluminum complexes, distyrylarylene derivatives, silole compounds, etc. Can do. Moreover, even if it is not an electron-accepting organic material, it can be used if it is a material which has sufficient electron transport property. A porphyrin compound or a styryl compound such as DCM (4-dicyanomethylene-2-methyl-6- (4- (dimethylaminostyryl))-4H pyran) or a 4H pyran compound can be used.
 光電変換層32を構成するp型有機半導体(化合物)は、ドナー性有機半導体(化合物)であり、主に正孔輸送性有機化合物に代表され、電子を供与しやすい性質がある有機化合物をいう。さらに詳しくは2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物をいう。従って、ドナー性有機化合物は、電子供与性のある有機化合物であればいずれの有機化合物も使用可能である。 The p-type organic semiconductor (compound) constituting the photoelectric conversion layer 32 is a donor organic semiconductor (compound), which is mainly represented by a hole-transporting organic compound and refers to an organic compound having a property of easily donating electrons. . More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Therefore, any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound.
 正孔ブロッキング層も、成膜用有機材料60を用いて成膜されることが好ましい。 The hole blocking layer is also preferably formed using the organic material 60 for film formation.
 <封止層>
封止層50は、水、酸素等の有機材料を劣化させる因子が有機材料を含む受光層に侵入するのを防ぐための層である。封止層50は、下部電極20、電子ブロッキング層31、光電変換層32、及び上部電極40を覆って形成されている。
<Sealing layer>
The sealing layer 50 is a layer for preventing a factor that degrades an organic material such as water and oxygen from entering the light receiving layer containing the organic material. The sealing layer 50 is formed so as to cover the lower electrode 20, the electron blocking layer 31, the photoelectric conversion layer 32, and the upper electrode 40.
 光電変換素子1では、入射光は封止層50を通じて光電変換層32に到達するので、光電変換層32に光を入射させるために、光電変換層32が感度を持つ波長の光に対して十分に透明である必要がある。かかる封止層50としては、水分子を浸透させない緻密な金属酸化物・金属窒化物・金属窒化酸化物などセラミクスやダイヤモンド状炭素(DLC)などがあげられ、従来から、酸化アルミニウム、酸化珪素、窒化珪素、窒化酸化珪素やそれらの積層膜、それらと有機高分子の積層膜などが用いられている。 In the photoelectric conversion element 1, since incident light reaches the photoelectric conversion layer 32 through the sealing layer 50, the photoelectric conversion layer 32 has sufficient sensitivity to light having a wavelength with which the photoelectric conversion layer 32 has sensitivity. It must be transparent. Examples of the sealing layer 50 include ceramics such as dense metal oxide, metal nitride, and metal nitride oxide that do not allow water molecules to permeate, diamond-like carbon (DLC), and the like. Conventionally, aluminum oxide, silicon oxide, Silicon nitride, silicon nitride oxide, a laminated film thereof, a laminated film of them and an organic polymer, or the like is used.
 封止層50は、単一材料からなる薄膜で構成することもできるが、多層構成にして各層に別々の機能を付与することで、封止層50全体の応力緩和、製造工程中の発塵等によるクラック、ピンホールなどの欠陥発生の抑制、材料開発の最適化が容易になることなどの効果が期待できる。例えば、封止層50は、水分子などの劣化因子の浸透を阻止する本来の目的を果たす層の上に、その層で達成することが難しい機能を持たせた「封止補助層」を積層した2層構成を形成することができる。3層以上の構成も可能だが、製造コストを勘案するとなるべく層数は少ない方が好ましい。 The sealing layer 50 can be composed of a thin film made of a single material, but by providing a separate function for each layer in a multi-layer structure, the stress relaxation of the entire sealing layer 50 and dust generation during the manufacturing process Such effects as the suppression of defects such as cracks and pinholes caused by the above, and the optimization of material development can be expected. For example, the sealing layer 50 is formed by laminating a “sealing auxiliary layer” having a function that is difficult to achieve on the layer that serves the original purpose of preventing the penetration of deterioration factors such as water molecules. A two-layer structure can be formed. Although it is possible to have three or more layers, it is preferable that the number of layers is as small as possible in consideration of manufacturing costs.
 封止層50の形成方法は、特に制限されず、既に成膜された光電変換層32等の性能、膜質をなるべく劣化させない方法で成膜されることが好ましい。従来、各種真空成膜技術により成膜することが一般的であるが、従来の封止層は、基板表面の構造物、基板表面の微小欠陥、基板表面に付着したパーティクルなどによる段差において、薄膜の成長が困難なので(段差が影になるので)平坦部と比べて膜厚が顕著に薄くなる。このために段差部分が劣化因子の浸透する経路になってしまう。この段差を封止層で完全に被覆するには、平坦部において1μm以上の膜厚になるように成膜して、封止層全体を厚くする必要がある。封止層形成時の真空度は、1×10Pa以下が好ましく、5×10Pa以下がさらに好ましい。 The formation method of the sealing layer 50 is not particularly limited, and is preferably formed by a method that does not deteriorate the performance and film quality of the already formed photoelectric conversion layer 32 and the like as much as possible. Conventionally, the film is generally formed by various vacuum film formation techniques, but the conventional sealing layer is a thin film at a step due to a structure on the substrate surface, minute defects on the substrate surface, particles adhering to the substrate surface, and the like. Is difficult to grow (because the step becomes a shadow), the film thickness is significantly thinner than the flat part. For this reason, the step portion becomes a path through which the deterioration factor penetrates. In order to completely cover the step with the sealing layer, it is necessary to form the film so as to have a film thickness of 1 μm or more in the flat portion, and to increase the thickness of the entire sealing layer. The degree of vacuum when forming the sealing layer is preferably 1 × 10 3 Pa or less, and more preferably 5 × 10 2 Pa or less.
 しかしながら、画素寸法が2μm未満、特に1μm程度の撮像素子とした場合、封止層50の膜厚が大きいと、カラーフィルタと光電変換層との距離が大きくなり、封止層内で入射光が回折/発散し、混色が発生する恐れがある。従って、画素寸法が1μm程度の撮像素子への適用を考えた場合、封止層50の膜厚を減少させても素子性能が劣化しないような封止層材料/製造方法が必要になる。 However, in the case of an imaging device having a pixel size of less than 2 μm, particularly about 1 μm, if the sealing layer 50 is thick, the distance between the color filter and the photoelectric conversion layer increases, and incident light is transmitted within the sealing layer. Diffraction / divergence may occur and color mixing may occur. Therefore, when considering application to an image sensor having a pixel size of about 1 μm, a sealing layer material / manufacturing method is required that does not deteriorate the device performance even if the thickness of the sealing layer 50 is reduced.
 原子層堆積(ALD)法は、CVD法の一種で、薄膜材料となる有機金属化合物分子、金属ハロゲン化物分子、金属水素化物分子の基板表面への吸着/反応と、それらに含まれる未反応基の分解を、交互に繰返して薄膜を形成する技術である。基板表面へ薄膜材料が到達する際は上記低分子の状態なので、低分子が入り込めるごくわずかな空間さえあれば薄膜が成長可能である。そのために、従来の薄膜形成法では困難であった段差部分を完全に被覆し(段差部分に成長した薄膜の厚さが平坦部分に成長した薄膜の厚さと同じ)、すなわち段差被覆性が非常に優れる。そのため、基板表面の構造物、基板表面の微小欠陥、基板表面に付着したパーティクルなどによる段差を完全に被覆できるので、そのような段差部分が光電変換材料の劣化因子の浸入経路にならない。封止層50の形成を原子層堆積法で行なった場合は従来技術よりも効果的に必要な封止層膜厚を薄くすることが可能になる。 The atomic layer deposition (ALD) method is a kind of CVD method, and adsorption / reaction of organometallic compound molecules, metal halide molecules, and metal hydride molecules, which are thin film materials, onto the substrate surface and unreacted groups contained therein Is a technique for forming a thin film by alternately repeating decomposition. When the thin film material reaches the substrate surface, it is in the above-mentioned low molecular state, so that the thin film can be grown in a very small space where the low molecule can enter. For this reason, the step portion, which was difficult with the conventional thin film formation method, is completely covered (the thickness of the thin film grown on the step portion is the same as the thickness of the thin film grown on the flat portion), that is, the step coverage is very high. Excellent. For this reason, steps due to structures on the substrate surface, minute defects on the substrate surface, particles adhering to the substrate surface, and the like can be completely covered, and such a step portion does not become an intrusion path for a deterioration factor of the photoelectric conversion material. When the sealing layer 50 is formed by the atomic layer deposition method, the required sealing layer thickness can be effectively reduced as compared with the prior art.
 原子層堆積法で封止層50を形成する場合は、先述した封止層50に好ましいセラミクスに対応した材料を適宜選択できる。もっとも、本発明の光電変換層は有機光電変換材料を使用するために、有機光電変換材料が劣化しないような、比較的に低温で薄膜成長が可能な材料に制限される。アルキルアルミニウムやハロゲン化アルミニウムを材料とした原子層堆積法によると、有機光電変換材料が劣化しない200℃未満で緻密な酸化アルミニウム薄膜を形成することができる。特にトリメチルアルミニウムを使用した場合は100℃程度でも酸化アルミニウム薄膜を形成でき好ましい。酸化珪素や酸化チタンも材料を適切に選択することで酸化アルミニウムと同様に200℃未満で緻密な薄膜を形成することができ好ましい。 When the sealing layer 50 is formed by the atomic layer deposition method, a material corresponding to the ceramics preferable for the sealing layer 50 described above can be selected as appropriate. However, since the photoelectric conversion layer of the present invention uses an organic photoelectric conversion material, it is limited to a material capable of growing a thin film at a relatively low temperature so that the organic photoelectric conversion material does not deteriorate. According to the atomic layer deposition method using alkyl aluminum or aluminum halide as the material, a dense aluminum oxide thin film can be formed at less than 200 ° C. at which the organic photoelectric conversion material does not deteriorate. In particular, when trimethylaluminum is used, an aluminum oxide thin film can be formed even at about 100 ° C. Silicon oxide and titanium oxide are also preferable because a dense thin film can be formed at less than 200 ° C., similarly to aluminum oxide, by appropriately selecting materials.
 なお、原子層堆積法により形成した薄膜は、段差被覆性、緻密性という観点からは比類なく良質な薄膜形成を低温で達成できる。もっとも、薄膜材料の物性が、フォトリソグラフィ工程で使用する薬品で劣化してしまうことがある。例えば、原子層堆積法で成膜した酸化アルミニウム薄膜は非晶質なので、現像液や剥離液のようなアルカリ溶液で表面が侵食されてしまう。 In addition, the thin film formed by the atomic layer deposition method can achieve a high-quality thin film formation at a low temperature that is unmatched in terms of step coverage and denseness. However, the physical properties of the thin film material may be deteriorated by chemicals used in the photolithography process. For example, since an aluminum oxide thin film formed by atomic layer deposition is amorphous, the surface is eroded by an alkaline solution such as a developer or a stripping solution.
 また、原子層堆積法のようなCVD法で形成した薄膜は内部応力が非常に大きな引張応力を持つ例が多く、半導体製造工程のように、断続的な加熱、冷却が繰返される工程や、長期間の高温/高湿度雰囲気下での保存/使用により、薄膜自体に亀裂の入る劣化が発生することがある。 In addition, thin films formed by CVD, such as atomic layer deposition, often have tensile stresses with very large internal stress, such as processes that repeat intermittent heating and cooling, such as semiconductor manufacturing processes, Due to storage / use in a high temperature / high humidity atmosphere for a period, deterioration of the thin film itself may occur.
 従って、原子層堆積法により成膜した封止層50を用いる場合は、耐薬品性に優れ、且つ、封止層50の内部応力を相殺可能な封止補助層を形成することが好ましい。 Therefore, when the sealing layer 50 formed by the atomic layer deposition method is used, it is preferable to form a sealing auxiliary layer that has excellent chemical resistance and can cancel the internal stress of the sealing layer 50.
 かかる補助封止層としては、例えば、スパッタ法などの物理的気相成膜(PVD)法で成膜した耐薬品性に優れる金属酸化物、金属窒化物、金属窒化酸化物などのセラミクスのいずれか1つを含む層が挙げられる。スパッタ法などのPVD法で成膜したセラミクスは大きな圧縮応力を持つことが多く、原子層堆積法で形成した封止層50の引張応力を相殺することができる。 Examples of the auxiliary sealing layer include any of ceramics such as metal oxide, metal nitride, and metal nitride oxide that are excellent in chemical resistance formed by physical vapor deposition (PVD) such as sputtering. Or a layer containing one of them. Ceramics formed by a PVD method such as sputtering often has a large compressive stress, and can cancel the tensile stress of the sealing layer 50 formed by an atomic layer deposition method.
 原子層堆積法で形成した封止層50としては、酸化アルミニウム、酸化珪素、酸化チタンのいずれかを含むことが好ましく、封止補助層としては、酸化アルミニウム、酸化珪素、窒化珪素、窒化酸化珪素のいずれか1つを含むスパッタ膜が好ましい。この場合、封止層50の膜厚は0.05μm以上、0.5μm以下であることが好ましい。
以上のように、光電変換素子1は構成されている。
The sealing layer 50 formed by the atomic layer deposition method preferably includes any of aluminum oxide, silicon oxide, and titanium oxide. The sealing auxiliary layer includes aluminum oxide, silicon oxide, silicon nitride, and silicon nitride oxide. A sputtered film containing any one of the above is preferable. In this case, the thickness of the sealing layer 50 is preferably 0.05 μm or more and 0.5 μm or less.
As described above, the photoelectric conversion element 1 is configured.
 「撮像素子」
次に、光電変換素子1を備えた撮像素子(光センサ)100の構成について、図3を参照して説明する。図3は、本発明の一実施形態を説明するための撮像素子の概略構成を示す断面模式図である。この撮像素子は、デジタルカメラ、デジタルビデオカメラ等の撮像装置、電子内視鏡、携帯電話機等の撮像モジュール等に搭載して用いられる。
"Image sensor"
Next, the configuration of the image sensor (photosensor) 100 including the photoelectric conversion element 1 will be described with reference to FIG. FIG. 3 is a schematic cross-sectional view showing a schematic configuration of an image sensor for explaining an embodiment of the present invention. This imaging device is used by being mounted on an imaging device such as a digital camera or a digital video camera, an imaging module such as an electronic endoscope or a mobile phone, or the like.
 撮像素子100は、図1に示したような構成の複数の有機光電変換素子1と、各有機光電変換素子の光電変換層で発生した電荷に応じた信号を読み出す読み出し回路が形成された回路基板とを有し、該回路基板上方の同一面上に、複数の有機光電変換素子が1次元状又は二次元状に配列された構成となっている。 The image pickup device 100 is a circuit board on which a plurality of organic photoelectric conversion elements 1 configured as shown in FIG. 1 and a readout circuit that reads out signals corresponding to charges generated in the photoelectric conversion layer of each organic photoelectric conversion element are formed. And a plurality of organic photoelectric conversion elements are arranged one-dimensionally or two-dimensionally on the same surface above the circuit board.
 撮像素子100は、基板101と、絶縁層102と、接続電極103と、画素電極104と、接続部105と、接続部106と、受光層107と、対向電極108と、緩衝層109と、封止層110と、カラーフィルタ(CF)111と、隔壁112と、遮光層113と、保護層114と、対向電極電圧供給部115と、読出し回路116とを備える。 The image sensor 100 includes a substrate 101, an insulating layer 102, a connection electrode 103, a pixel electrode 104, a connection portion 105, a connection portion 106, a light receiving layer 107, a counter electrode 108, a buffer layer 109, a sealing layer. A stop layer 110, a color filter (CF) 111, a partition wall 112, a light shielding layer 113, a protective layer 114, a counter electrode voltage supply unit 115, and a readout circuit 116 are provided.
 画素電極104は、図1に示した有機光電変換素子1の下部電極20と同じ機能を有する。対向電極108は、図1に示した有機光電変換素子1の上部電極40と同じ機能を有する。受光層107は、図1に示した有機光電変換素子1の下部電極20と上部電極40との間に設けられる受光層30と同じ構成である。封止層110は、図1に示した有機光電変換素子1の封止層50と同じ機能を有する。画素電極104と、これに対向する対向電極108の一部と、これら電極で挟まれる受光層107と、画素電極104に対向する緩衝層109及び封止層110の一部とが、有機光電変換素子を構成している。 The pixel electrode 104 has the same function as the lower electrode 20 of the organic photoelectric conversion element 1 shown in FIG. The counter electrode 108 has the same function as the upper electrode 40 of the organic photoelectric conversion element 1 shown in FIG. The light receiving layer 107 has the same configuration as the light receiving layer 30 provided between the lower electrode 20 and the upper electrode 40 of the organic photoelectric conversion element 1 shown in FIG. The sealing layer 110 has the same function as the sealing layer 50 of the organic photoelectric conversion element 1 shown in FIG. The pixel electrode 104, a part of the counter electrode 108 facing the pixel electrode 104, the light receiving layer 107 sandwiched between the electrodes, and the buffer layer 109 and the part of the sealing layer 110 facing the pixel electrode 104 are subjected to organic photoelectric conversion. The element is configured.
 基板101は、ガラス基板又はSi等の半導体基板である。基板101上には絶縁層102が形成されている。絶縁層102の表面には複数の画素電極104と複数の接続電極103が形成されている。 The substrate 101 is a glass substrate or a semiconductor substrate such as Si. An insulating layer 102 is formed on the substrate 101. A plurality of pixel electrodes 104 and a plurality of connection electrodes 103 are formed on the surface of the insulating layer 102.
 受光層107は、複数の画素電極104の上にこれらを覆って設けられた全ての有機光電変換素子で共通の層である。 The light receiving layer 107 is a layer common to all the organic photoelectric conversion elements provided on the plurality of pixel electrodes 104 so as to cover them.
 対向電極108は、受光層107上に設けられた、全ての有機光電変換素子で共通の1つの電極である。対向電極108は、受光層107よりも外側に配置された接続電極103の上にまで形成されており、接続電極103と電気的に接続されている。 The counter electrode 108 is one electrode provided on the light receiving layer 107 and common to all the organic photoelectric conversion elements. The counter electrode 108 is formed up to the connection electrode 103 disposed outside the light receiving layer 107 and is electrically connected to the connection electrode 103.
 接続部106は、絶縁層102に埋設されており、接続電極103と対向電極電圧供給部115とを電気的に接続するためのプラグ等である。対向電極電圧供給部115は、基板101に形成され、接続部106及び接続電極103を介して対向電極108に所定の電圧を印加する。対向電極108に印加すべき電圧が撮像素子の電源電圧よりも高い場合は、チャージポンプ等の昇圧回路によって電源電圧を昇圧して上記所定の電圧を供給する。 The connection part 106 is embedded in the insulating layer 102 and is a plug or the like for electrically connecting the connection electrode 103 and the counter electrode voltage supply part 115. The counter electrode voltage supply unit 115 is formed on the substrate 101 and applies a predetermined voltage to the counter electrode 108 via the connection unit 106 and the connection electrode 103. When the voltage to be applied to the counter electrode 108 is higher than the power supply voltage of the image sensor, the power supply voltage is boosted by a booster circuit such as a charge pump to supply the predetermined voltage.
 読出し回路116は、複数の画素電極104の各々に対応して基板101に設けられており、対応する画素電極104で捕集された電荷に応じた信号を読出すものである。読出し回路116は、例えばCCD、MOS回路、又はTFT回路等で構成されており、絶縁層102内に配置された図示しない遮光層によって遮光されている。読み出し回路116は、それに対応する画素電極104と接続部105を介して電気的に接続されている。 The readout circuit 116 is provided on the substrate 101 corresponding to each of the plurality of pixel electrodes 104, and reads out a signal corresponding to the charge collected by the corresponding pixel electrode 104. The reading circuit 116 is configured by, for example, a CCD, a MOS circuit, or a TFT circuit, and is shielded from light by a light shielding layer (not shown) disposed in the insulating layer 102. The readout circuit 116 is electrically connected to the corresponding pixel electrode 104 via the connection unit 105.
 緩衝層109は、対向電極108上に、対向電極108を覆って形成されている。封止層110は、緩衝層109上に、緩衝層109を覆って形成されている。カラーフィルタ111は、封止層110上の各画素電極104と対向する位置に形成されている。隔壁112は、カラーフィルタ111同士の間に設けられており、カラーフィルタ111の光透過効率を向上させるためのものである。 The buffer layer 109 is formed on the counter electrode 108 so as to cover the counter electrode 108. The sealing layer 110 is formed on the buffer layer 109 so as to cover the buffer layer 109. The color filter 111 is formed at a position facing each pixel electrode 104 on the sealing layer 110. The partition wall 112 is provided between the color filters 111 and is for improving the light transmission efficiency of the color filter 111.
 遮光層113は、封止層110上のカラーフィルタ111及び隔壁112を設けた領域以外に形成されており、有効画素領域以外に形成された受光層107に光が入射する事を防止する。保護層114は、カラーフィルタ111、隔壁112、及び遮光層113上に形成されており、撮像素子100全体を保護する。 The light shielding layer 113 is formed in a region other than the region where the color filter 111 and the partition 112 are provided on the sealing layer 110, and prevents light from entering the light receiving layer 107 formed outside the effective pixel region. The protective layer 114 is formed on the color filter 111, the partition 112, and the light shielding layer 113, and protects the entire image sensor 100.
 このように構成された撮像素子100では、光が入射すると、この光が受光層107に入射し、ここで電荷が発生する。発生した電荷のうちの正孔は、画素電極104で捕集され、その量に応じた電圧信号が読み出し回路116によって撮像素子100外部に出力される。 In the imaging device 100 configured as described above, when light is incident, the light is incident on the light receiving layer 107, and charges are generated here. Holes in the generated charges are collected by the pixel electrode 104, and a voltage signal corresponding to the amount is output to the outside of the image sensor 100 by the readout circuit 116.
 撮像素子100の製造方法は、次の通りである。 The manufacturing method of the image sensor 100 is as follows.
 対向電極電圧供給部115と読み出し回路116が形成された回路基板上に、接続部105,106、複数の接続電極103、複数の画素電極104、及び絶縁層102を形成する。複数の画素電極104は、絶縁層102の表面に例えば正方格子状に配置する。 The connection portions 105 and 106, the plurality of connection electrodes 103, the plurality of pixel electrodes 104, and the insulating layer 102 are formed on the circuit substrate on which the counter electrode voltage supply portion 115 and the readout circuit 116 are formed. The plurality of pixel electrodes 104 are arranged on the surface of the insulating layer 102 in a square lattice pattern, for example.
 次に、複数の画素電極104上に、受光層107、対向電極108、緩衝層109、封止層110を順次形成する。受光層107、対向電極108、封止層110の形成方法は、上記光電変換素子1の説明において記したとおりである。緩衝層109については、例えば抵抗加熱蒸着法によって形成する。次に、カラーフィルタ111、隔壁112、遮光層113を形成後、保護層114を形成して、撮像素子100を完成する。 Next, a light receiving layer 107, a counter electrode 108, a buffer layer 109, and a sealing layer 110 are sequentially formed on the plurality of pixel electrodes 104. The formation method of the light receiving layer 107, the counter electrode 108, and the sealing layer 110 is as described in the description of the photoelectric conversion element 1. The buffer layer 109 is formed by, for example, resistance heating vapor deposition. Next, after forming the color filter 111, the partition 112, and the light shielding layer 113, the protective layer 114 is formed, and the imaging element 100 is completed.
 上記では、撮像素子及び撮像素子として好適な光電変換素子において、本発明の成膜用有機材料を用いて成膜された受光層を備えた態様について説明したが、本発明の成膜用有機材料60は、有機電界発光素子及び有機電界発光素子として好適な光電変換素子における発光層の成膜にも好ましく用いることができる。 In the above description, in the imaging element and the photoelectric conversion element suitable as the imaging element, the aspect including the light receiving layer formed using the organic material for film formation of the present invention has been described. However, the organic material for film formation of the present invention has been described. 60 can also be preferably used for forming a light emitting layer in an organic electroluminescent device and a photoelectric conversion device suitable as an organic electroluminescent device.
 <成膜用有機材料の調製>
 (化合物1)
 まず、化合物1の成膜用有機材料を調製した。
 化合物1の合成は、下記反応式に示される工程に準じて実施した。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
<Preparation of organic material for film formation>
(Compound 1)
First, an organic material for film formation of Compound 1 was prepared.
Compound 1 was synthesized according to the steps shown in the following reaction formula.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 (化合物1aの合成)
 脱水キシレンにN-フェニル-2-ナフチルアミン(東京化成社製)、6―ブロモ―2-ナフトエ酸メチル(和光純薬社製)、酢酸パラジウム、トリフェニルホスフィン、炭酸セシウムを加え、3時間還流した。反応混合物を吸引ろ過し、溶媒をエバポレーターで留去した後、シリカゲルカラムによって精製した(展開溶媒:トルエン)。溶媒を留去することにより、化合物(1a)を得た。
(Synthesis of Compound 1a)
N-phenyl-2-naphthylamine (manufactured by Tokyo Chemical Industry Co., Ltd.), methyl 6-bromo-2-naphthoate (manufactured by Wako Pure Chemical Industries, Ltd.), palladium acetate, triphenylphosphine and cesium carbonate were added to dehydrated xylene and refluxed for 3 hours. . The reaction mixture was suction filtered, the solvent was distilled off by an evaporator, and then purified by a silica gel column (developing solvent: toluene). The solvent was distilled off to obtain compound (1a).
 (化合物1bの合成)
 脱水トルエンにSMEAH(水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム・トルエン溶液(約70%)(和光純薬社製))を加え、内温を氷浴で0℃にした後、1-メチルピペラジンを脱水トルエンに溶かした溶液を滴下した。脱水トルエンに化合物(1a)を溶かし、内温をドライアイス浴で-40℃にした後、これに、上記で調整したSMEAHトルエン溶液を滴下した。4.5時間攪拌した後、濃塩酸をpHが1になるまで加えた。これに水、酢酸エチルを加え油層を炭酸水素ナトリウム水溶液で洗浄した。油層を硫酸マグネシウムで乾燥させた後、ろ過し、エバポレーターによって溶媒を留去した。反応混合物をシリカゲルカラムによって精製し、溶媒を留去することにより、化合物(1b)を得た。
(Synthesis of Compound 1b)
After adding SMEAH (bis (2-methoxyethoxy) aluminum sodium / toluene solution (about 70%) (manufactured by Wako Pure Chemical Industries, Ltd.)) to dehydrated toluene, the internal temperature was brought to 0 ° C. with an ice bath, and then 1-methyl A solution of piperazine in dehydrated toluene was added dropwise. The compound (1a) was dissolved in dehydrated toluene, the internal temperature was adjusted to −40 ° C. with a dry ice bath, and the SMEAH toluene solution prepared above was added dropwise thereto. After stirring for 4.5 hours, concentrated hydrochloric acid was added until the pH was 1. Water and ethyl acetate were added thereto, and the oil layer was washed with an aqueous sodium hydrogen carbonate solution. The oil layer was dried over magnesium sulfate, filtered, and the solvent was removed by an evaporator. The reaction mixture was purified by a silica gel column, and the solvent was distilled off to obtain compound (1b).
 (化合物(1)の合成)
 化合物(1b)とベンゾインダンジオンをトルエンとエタノールの混合溶媒に加え、2時間還流した。放冷後、吸引ろ過を行うことで、化合物(1)を得た。
(Synthesis of Compound (1))
Compound (1b) and benzoindanedione were added to a mixed solvent of toluene and ethanol and refluxed for 2 hours. The compound (1) was obtained by performing suction filtration after standing_to_cool.
 (精製工程)
 次に、得られた化合物1(粗体)を精製する。この精製工程において、精製を繰り返す、または精製方法を複数組み合わせて実施し、蛍光量子収率値の異なる化合物1が得られた。[精製方法例:得られた化合物を溶媒中(少量のクロロホルム)に分散させ、洗浄した。または溶媒(少量のクロロホルム)に溶解させ、エタノールで再結晶させた。または昇華精製を実施した。
(Purification process)
Next, the obtained compound 1 (crude body) is purified. In this purification step, purification was repeated or a plurality of purification methods were combined to obtain compounds 1 having different fluorescence quantum yield values. [Example of purification method: The obtained compound was dispersed in a solvent (a small amount of chloroform) and washed. Alternatively, it was dissolved in a solvent (a small amount of chloroform) and recrystallized with ethanol. Alternatively, sublimation purification was performed.
 (化合物2~11)
 精製工程については化合物1と同様にして、化合物2~11からなる成膜用有機材料の調製を行った。
 化合物2の合成は、下記反応式に示される工程に準じて実施した。
Figure JPOXMLDOC01-appb-C000020
<化合物2の合成>
Figure JPOXMLDOC01-appb-C000021
(Compounds 2 to 11)
Regarding the purification step, the organic material for film formation comprising compounds 2 to 11 was prepared in the same manner as in compound 1.
Compound 2 was synthesized according to the steps shown in the following reaction formula.
Figure JPOXMLDOC01-appb-C000020
<Synthesis of Compound 2>
Figure JPOXMLDOC01-appb-C000021
 2-iso-プロペニルアニリン、酢酸パラジウム、トリ(t-ブチル)ホスフィン、炭酸セシウム、及び6-ブロモ-2-ナフトエ酸メチルをキシレンに溶解させ、窒素雰囲気下5時間沸点還流にて反応させることで、化合物2aを得た。化合物2aを酢酸、塩酸混合溶媒中に加え、60℃で30分攪拌し、化合物2bを得た。化合物2b、酢酸パラジウム、トリ(t-ブチル)ホスフィン、炭酸セシウム、及びブロモベンゼンをキシレンに溶解させ、窒素雰囲気下7時間沸点還流にて反応させることで、化合物2cを得た。窒素雰囲気下THF中に、二水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム(SMEAH)70%トルエン溶液を加え、0℃に冷却する。N-メチルピペラジンを滴下し、30分攪拌し、還元剤溶液を調整する。窒素雰囲気下-40℃にて、化合物2cのTHF溶液に、還元剤溶液を滴下した。反応溶液を-20℃で4時間攪拌した後、希塩酸で反応を停止し、化合物2dを得た。窒素雰囲気下、THF溶媒中に、化合物2dとベンゾインダンジオンを溶解させ、3時間還流し、放冷後、吸引ろ過して化合物2を得た。 By dissolving 2-iso-propenylaniline, palladium acetate, tri (t-butyl) phosphine, cesium carbonate, and methyl 6-bromo-2-naphthoate in xylene and reacting at boiling point reflux for 5 hours under a nitrogen atmosphere. Compound 2a was obtained. Compound 2a was added to a mixed solvent of acetic acid and hydrochloric acid and stirred at 60 ° C. for 30 minutes to obtain compound 2b. Compound 2c was obtained by dissolving compound 2b, palladium acetate, tri (t-butyl) phosphine, cesium carbonate, and bromobenzene in xylene and reacting at boiling point reflux for 7 hours under a nitrogen atmosphere. Add 70% toluene solution of bis (2-methoxyethoxy) aluminum sodium dihydrogen hydride (SMEAH) in THF under nitrogen atmosphere and cool to 0 ° C. N-methylpiperazine is added dropwise and stirred for 30 minutes to prepare a reducing agent solution. The reducing agent solution was added dropwise to a THF solution of compound 2c at −40 ° C. in a nitrogen atmosphere. The reaction solution was stirred at −20 ° C. for 4 hours and then quenched with dilute hydrochloric acid to obtain compound 2d. Under a nitrogen atmosphere, compound 2d and benzoindanedione were dissolved in THF solvent, refluxed for 3 hours, allowed to cool, and then suction filtered to obtain compound 2.
 化合物3の合成は、下記反応式に示される工程に準じて実施した。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Compound 3 was synthesized according to the steps shown in the following reaction formula.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 化合物4の成膜用有機材料を合成した。
Figure JPOXMLDOC01-appb-C000024
An organic material for film formation of Compound 4 was synthesized.
Figure JPOXMLDOC01-appb-C000024
<化合物4の合成>
化合物1において、N-フェニル-2-ナフチルアミンを1,2’-ジナフチルアミン(東京化成社製)に変更すること以外は同様にして合成した。
<Synthesis of Compound 4>
The compound 1 was synthesized in the same manner except that N-phenyl-2-naphthylamine was changed to 1,2'-dinaphthylamine (manufactured by Tokyo Chemical Industry Co., Ltd.).
 化合物5の成膜用有機材料を合成した。
Figure JPOXMLDOC01-appb-C000025
<化合物5の合成>
化合物1において、N-フェニル-2-ナフチルアミンを2,2’-ジナフチルアミン(東京化成社製)に変更すること以外は同様にして合成した。
An organic material for film formation of Compound 5 was synthesized.
Figure JPOXMLDOC01-appb-C000025
<Synthesis of Compound 5>
The compound 1 was synthesized in the same manner except that N-phenyl-2-naphthylamine was changed to 2,2′-dinaphthylamine (manufactured by Tokyo Chemical Industry Co., Ltd.).
 化合物6の成膜用有機材料を合成した。
Figure JPOXMLDOC01-appb-C000026
<化合物6の合成>
化合物1において、1bを4-(N、N’-ジフェニルアミノ)ベンズアルデヒド(東京化成社製)に変更すること以外は同様にして合成した。
An organic material for film formation of Compound 6 was synthesized.
Figure JPOXMLDOC01-appb-C000026
<Synthesis of Compound 6>
The compound 1 was synthesized in the same manner except that 1b was changed to 4- (N, N′-diphenylamino) benzaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.).
 化合物7の成膜用有機材料を合成した。
Figure JPOXMLDOC01-appb-C000027
<化合物7の合成>
Chem. Matter. 2001年, 13巻, 456-458頁におけるDCTP(4-(dicyanomethylene)-2-t-butyl-6-(p-diphenylaminostyryl)-4H-pyran)であり、該論文を参考にして合成した。
An organic material for film formation of Compound 7 was synthesized.
Figure JPOXMLDOC01-appb-C000027
<Synthesis of Compound 7>
Chem. Matter. 2001, Vol. 13, pp. 456-458, DCTP (4- (dicyanomethylene) -2-t-butyl-6- (p-diphenylaminostyryl) -4H-pyran). Synthesized.
 化合物8の合成は、下記反応式に示される工程に準じて実施した。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 化合物1において、1bを3bに、ベンゾインダンジオンをインダンジオンに変更すること以外は同様にして合成した。化合物3bは以下のようにして合成した。化合物3aを脱水N,N-ジメチルホルムアミドに溶解させ、これにトリフルオロメタンスルホン酸無水物を滴下した。窒素雰囲気下90℃に加熱し1時間攪拌して、化合物3bを得た。化合物3aはOrg.Lett.2009,11,1-4.に記載の方法で合成した。
Compound 8 was synthesized according to the steps shown in the following reaction formula.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Compound 1 was synthesized in the same manner except that 1b was changed to 3b and benzoindandione was changed to indandione. Compound 3b was synthesized as follows. Compound 3a was dissolved in dehydrated N, N-dimethylformamide, and trifluoromethanesulfonic anhydride was added dropwise thereto. The mixture was heated to 90 ° C. under a nitrogen atmosphere and stirred for 1 hour to obtain Compound 3b. Compound 3a was prepared according to Org. Lett. 2009, 11, 1-4. It was synthesized by the method described in 1.
 化合物9の成膜用有機材料を合成した。
Figure JPOXMLDOC01-appb-C000030
<化合物9の合成>
 化合物1において、N-フェニル-2-ナフチルアミンをN-(2,4,6-トリメチルフェニル)-4-ビフェニルアミンに変更すること以外は同様にして合成した。
An organic material for film formation of Compound 9 was synthesized.
Figure JPOXMLDOC01-appb-C000030
<Synthesis of Compound 9>
The compound 1 was synthesized in the same manner except that N-phenyl-2-naphthylamine was changed to N- (2,4,6-trimethylphenyl) -4-biphenylamine.
 化合物10の成膜用有機材料を合成した。
Figure JPOXMLDOC01-appb-C000031
 化合物2において、ベンゾインダンジオンを4,7-ジフルオロ-1,3-インダンジオンに変更すること以外は同様にして合成した。
An organic material for film formation of Compound 10 was synthesized.
Figure JPOXMLDOC01-appb-C000031
Compound 2 was synthesized in the same manner except that benzoindandione was changed to 4,7-difluoro-1,3-indandione.
 化合物11の成膜用有機材料を合成した。
Figure JPOXMLDOC01-appb-C000032
 化合物8において、インダンジオンを5,6-ジクロロ-1,3-インダンジオンをに変更すること以外は同様にして合成した。
An organic material for film formation of Compound 11 was synthesized.
Figure JPOXMLDOC01-appb-C000032
Compound 8 was synthesized in the same manner except that indandione was changed to 5,6-dichloro-1,3-indandione.
<蛍光量子収率の測定>
 実施例1~3,比較例1~2の各例で用いた化合物1について、蛍光量子収率の値と共に表1に示す。各例の蛍光量子収率は、各例の粉粒体10mgを用い、浜松ホトニクス社製;絶対蛍光量子収率測定装置(型番:C9920-02)にて測定した。
 同様に実施例4~13,比較例3~16の各例で用いた化合物2~11について、蛍光量子収率の値と共に表1に示す。
<Measurement of fluorescence quantum yield>
The compounds 1 used in Examples 1 to 3 and Comparative Examples 1 and 2 are shown in Table 1 together with the fluorescence quantum yield values. The fluorescence quantum yield of each example was measured with an absolute fluorescence quantum yield measuring apparatus (model number: C9920-02) manufactured by Hamamatsu Photonics, Inc. using 10 mg of the granular material of each example.
Similarly, the compounds 2 to 11 used in Examples 4 to 13 and Comparative Examples 3 to 16 are shown in Table 1 together with the fluorescence quantum yield values.
 また、実施例2、6で用いた粉体に対して、粉粒体を乳鉢ですりつぶし、平均粒径を20μm未満にした場合、実施例14~15に、蛍光量子収率の値を表1に示す。粉粒体の微細化に伴い、蛍光量子収率の値が小さくなっていることが確認された。 In addition, when the powders used in Examples 2 and 6 were ground with a mortar and the average particle size was less than 20 μm, the values of fluorescence quantum yields are shown in Tables 1 to 15. Shown in It was confirmed that the value of the fluorescence quantum yield was reduced with the refinement of the powder.
 また、比較例17として、n型材料であるフラーレンC60について、蛍光量子収率の値と共に表1に示す。 In Comparative Example 17, fullerene C 60 is an n-type material, shown in Table 1 together with the values of the fluorescence quantum yield.
 <光電変換素子の作製>
 ガラス基板を用意し、基板上に、アモルファス性ITO下部電極(30nm厚)をスパッタ法により成膜し、次いで、電子ブロッキング層として上記EB-3を抵抗加熱蒸着法により成膜した(100nm厚)。
 次いで、各例において、化合物1(表1に蛍光量子収率を記載)とフラーレン(C60)を光電変換層用成膜用有機材料としてそれぞれ用意し、電子ブロッキング層上に抵抗加熱蒸着法により膜厚500nmとなるように共蒸着して成膜した。
<Production of photoelectric conversion element>
A glass substrate was prepared, and an amorphous ITO lower electrode (thickness: 30 nm) was formed on the substrate by a sputtering method, and then the above-mentioned EB-3 was deposited by resistance heating vapor deposition (100 nm thickness) as an electron blocking layer. .
Next, in each example, Compound 1 (fluorescence quantum yield is described in Table 1) and fullerene (C 60 ) were prepared as film-forming organic materials for photoelectric conversion layers, respectively, and resistance heating vapor deposition was performed on the electron blocking layer. Co-evaporation was performed to form a film thickness of 500 nm.
 電子ブロッキング層及び光電変換層の真空蒸着は全て4×10-4Pa以下の真空度で行った。また、使用した各材料のHPLC純度は各99.5%以上であり、成膜された光電変換層中のフラーレンと化合物1との体積比率は2:1であった(膜厚換算)。 Vacuum deposition of the electron blocking layer and the photoelectric conversion layer was all performed at a vacuum degree of 4 × 10 −4 Pa or less. Moreover, the HPLC purity of each material used was 99.5% or more, and the volume ratio of fullerene and compound 1 in the formed photoelectric conversion layer was 2: 1 (in terms of film thickness).
 次に、光電変換層上にアモルファス性ITO上部電極(10nm厚)をスパッタ法により成膜し、本発明の光電変換素子を得た。上部電極上には、封止層として加熱蒸着によりSiO膜を形成し、更に、ALCVD法によりAl層を形成して光電変換素子を得た。 Next, an amorphous ITO upper electrode (10 nm thick) was formed on the photoelectric conversion layer by a sputtering method to obtain the photoelectric conversion element of the present invention. On the upper electrode, a SiO film was formed as a sealing layer by heating vapor deposition, and an Al 2 O 3 layer was further formed by ALCVD to obtain a photoelectric conversion element.
 [評価]
 得られた各光電変換素子に中心波長525nmのLED光を上部電極(透明導電性膜)側から入射した。光電変換素子に、2×10V/cmの電場で印加し、入射したLED光をオフにした時間から0.1秒後における残像電流値を評価した。評価結果を下記表1に示す。
同様に、化合物2~11で蛍光量子収率の異なる化合物を用いて光電変換素子を作製し、実施例4~13,比較例3~16の残像電流値を得た。精製に使用した溶媒はクロロホルム、トルエン、塩化メチレンから適時選択した。使用した各材料のおよび電子ブロッキング層EB-3のHPLC純度は各99.5%以上である。
表1において、残像電流値は、実施例6の値を基準値10とし、相対値で示した。
[Evaluation]
LED light having a central wavelength of 525 nm was incident on each obtained photoelectric conversion element from the upper electrode (transparent conductive film) side. An afterimage current value was evaluated after 0.1 seconds from the time when the applied LED light was applied to the photoelectric conversion element with an electric field of 2 × 10 5 V / cm and the incident LED light was turned off. The evaluation results are shown in Table 1 below.
Similarly, photoelectric conversion elements were prepared using compounds 2-11 having different fluorescence quantum yields, and afterimage current values of Examples 4-13 and Comparative Examples 3-16 were obtained. The solvent used for purification was appropriately selected from chloroform, toluene, and methylene chloride. The HPLC purity of each material used and the electron blocking layer EB-3 is 99.5% or more.
In Table 1, the afterimage current value is shown as a relative value with the value of Example 6 as the reference value 10.
 図4に、表1の結果に基づいて得られた粉体の蛍光量子収率と光電変換素子の残像電流値との関係を示す。図4に示されるように、蛍光量子収率0.2を境に、光電変換素子の残像電流値が急激に高くなっていることが確認された。また、粉体の平均粒径を20μm未満にした場合でも、残像電流値は変化しないことが確認された。
Figure JPOXMLDOC01-appb-T000001
In FIG. 4, the relationship between the fluorescence quantum yield of the powder obtained based on the result of Table 1 and the afterimage current value of a photoelectric conversion element is shown. As shown in FIG. 4, it was confirmed that the afterimage current value of the photoelectric conversion element was rapidly increased with the fluorescence quantum yield of 0.2 as a boundary. Further, it was confirmed that the afterimage current value did not change even when the average particle diameter of the powder was less than 20 μm.
Figure JPOXMLDOC01-appb-T000001
本発明の成膜用有機材料及びそれを用いた成膜方法は、デジタルカメラや携帯電話用カメラ、内視鏡用カメラ等に搭載される有機撮像素子や、有機ELディスプレイや有機EL照明等に搭載される有機発光素子、電子ペーパーや無線タグ等に搭載される有機薄膜トランジスタ、光センサ等に用いられる有機光電変換素子の有機層の成膜に好ましく適用することができる。 The organic material for film formation and the film forming method using the same of the present invention are applied to an organic imaging device mounted on a digital camera, a camera for a mobile phone, an endoscope camera, an organic EL display, an organic EL illumination, or the like. It can be preferably applied to film formation of an organic layer of an organic photoelectric conversion element used for an organic light emitting element to be mounted, an organic thin film transistor mounted on an electronic paper or a wireless tag, an optical sensor, or the like.

Claims (18)

  1.  光センサに用いられる有機光電変換素子の受光層を乾式成膜にて成膜する受光層形成方法において、
     前記受光層の構成有機物からなる、蛍光量子収率が0.2以上の粉粒体からなる成膜用有機材料を少なくとも1種用意し、
     該成膜用有機材料を含む気化源を用いて前記乾式成膜を実施する受光層形成方法。
    In the light receiving layer forming method of forming a light receiving layer of an organic photoelectric conversion element used for an optical sensor by dry film formation,
    Prepare at least one organic material for film formation composed of powders having a fluorescent quantum yield of 0.2 or more, comprising the organic material constituting the light receiving layer,
    A light-receiving layer forming method for performing the dry film formation using a vaporization source containing the organic material for film formation.
  2.  前記粉粒体の蛍光量子収率は、0.2以上0.4以下である請求項1記載の受光層形成方法。 The method for forming a light-receiving layer according to claim 1, wherein a fluorescence quantum yield of the powder is 0.2 or more and 0.4 or less.
  3.  前記構成有機物がp型有機半導体材料である請求項1又は2に記載の受光層形成方法。 The light-receiving layer forming method according to claim 1, wherein the constituent organic substance is a p-type organic semiconductor material.
  4.  前記構成有機物が、下記式(A)アミン部位、または、下記式(B)カルボニル基部位を1つ以上有する請求項1~3いずれか1項記載の受光層形成方法。
    Figure JPOXMLDOC01-appb-C000033
    Figure JPOXMLDOC01-appb-C000034
    (式(A)中、R30~R31は、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。R32は、置換基を有してもよいアリーレン連結基または置換基を有してもよいヘテロアリーレン連結基を表す。R30~R32は、それぞれ互いに連結して環を形成してもよい。
    式(B)式中、Yは、2つ以上の炭素原子を含む環であって、5員環、6員環、又は、5員環及び6員環の少なくともいずれかを含む縮合環を表し、これは置換基を有してもよい。)
    The light-receiving layer forming method according to any one of claims 1 to 3, wherein the constituent organic substance has at least one amine moiety represented by the following formula (A) or carbonyl group moiety represented by the following formula (B).
    Figure JPOXMLDOC01-appb-C000033
    Figure JPOXMLDOC01-appb-C000034
    (In the formula (A), R 30 to R 31 each independently represents an alkyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl which may have a substituent. R 32 represents an arylene linking group which may have a substituent or a heteroarylene linking group which may have a substituent, and R 30 to R 32 are connected to each other to form a ring. May be.
    In the formula (B), Y 1 is a ring containing two or more carbon atoms, and a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. Which may have a substituent. )
  5.  前記構成有機物が、下記式(C)である請求項1~4いずれか1項記載の受光層形成方法。
    Figure JPOXMLDOC01-appb-C000035
     (式中、Zは少なくとも2つの炭素原子を含む環であって、5員環、6員環、又は、5員環及び6員環の少なくともいずれかを含む縮合環を表す。L、L、及びLはそれぞれ独立に無置換メチン基、又は置換メチン基を表す。Dは原子群を表す。nは0以上の整数を表す。)
    The light-receiving layer forming method according to any one of claims 1 to 4, wherein the constituent organic substance is represented by the following formula (C).
    Figure JPOXMLDOC01-appb-C000035
    (In the formula, Z 4 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. L 1 , L 2 and L 3 each independently represent an unsubstituted methine group or a substituted methine group, D 1 represents an atomic group, and n represents an integer of 0 or more.)
  6.  前記乾式成膜法が抵抗加熱蒸着法である請求項1~5いずれか1項記載の受光層形成方法。 6. The light receiving layer forming method according to claim 1, wherein the dry film forming method is a resistance heating vapor deposition method.
  7.  前記受光層が光電変換層である請求項1~6いずれか1項記載の受光層形成方法。 The method for forming a light receiving layer according to any one of claims 1 to 6, wherein the light receiving layer is a photoelectric conversion layer.
  8.  一対の電極と、前記一対の電極に挟持された少なくとも光電変換層を含む受光層を有する有機光電変換素子の製造方法であって、
    前記受光層を請求項1~7いずれか1項記載の受光層形成方法により成膜する有機光電変換素子の製造方法。
    A method for producing an organic photoelectric conversion element having a pair of electrodes and a light receiving layer including at least a photoelectric conversion layer sandwiched between the pair of electrodes,
    A method for producing an organic photoelectric conversion element, wherein the light-receiving layer is formed by the light-receiving layer forming method according to any one of claims 1 to 7.
  9.  有機光電変換素子の受光層の乾式成膜に用いられ、
    前記受光層の構成有機物からなる蛍光量子収率が0.2以上の粉粒体からなる成膜用有機材料。
    Used for dry film formation of the light-receiving layer of organic photoelectric conversion elements,
    The organic material for film-forming which consists of a granular material with the fluorescence quantum yield which consists of the organic substance of the said light receiving layer 0.2 or more.
  10.  前記蛍光量子収率が0.2以上0.4以下である請求項9記載の成膜用有機材料。 The organic material for film formation according to claim 9, wherein the fluorescence quantum yield is 0.2 or more and 0.4 or less.
  11.  前記構成有機物がp型有機半導体材料である請求項9又は10に記載の成膜用有機材料。 The organic material for film formation according to claim 9 or 10, wherein the constituent organic substance is a p-type organic semiconductor material.
  12.  前記粉粒体の平均粒径が50μm以上800μm以下で請求項11に記載の成膜用有機材料。 The organic material for film formation according to claim 11, wherein the average particle diameter of the granular material is 50 μm or more and 800 μm or less.
  13.  前記構成有機物が、下記式(A)アミン部位、または、下記式(B)カルボニル基部位を1つ以上有する請求項9~12いずれか1項記載の成膜用有機材料。
    Figure JPOXMLDOC01-appb-C000036
    Figure JPOXMLDOC01-appb-C000037
    (式(A)中、R30~R31は、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。R32は、置換基を有してもよいアリーレン連結基または置換基を有してもよいヘテロアリーレン連結基を表す。R30~R32は、それぞれ互いに連結して環を形成してもよい。
    式(B)式中、Yは、2つ以上の炭素原子を含む環であって、5員環、6員環、又は、5員環及び6員環の少なくともいずれかを含む縮合環を表し、これは置換基を有してもよい。)
    The organic material for film formation according to any one of claims 9 to 12, wherein the constituent organic substance has at least one amine moiety represented by the following formula (A) or carbonyl group moiety represented by the following formula (B).
    Figure JPOXMLDOC01-appb-C000036
    Figure JPOXMLDOC01-appb-C000037
    (In the formula (A), R 30 to R 31 each independently represents an alkyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl which may have a substituent. R 32 represents an arylene linking group which may have a substituent or a heteroarylene linking group which may have a substituent, and R 30 to R 32 are connected to each other to form a ring. May be.
    In the formula (B), Y 1 is a ring containing two or more carbon atoms, and a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. Which may have a substituent. )
  14.  前記構成有機物が、下記式(C)である請求項9~13いずれか1項記載の成膜用有機材料。
    Figure JPOXMLDOC01-appb-C000038
     (式中、Zは少なくとも2つの炭素原子を含む環であって、5員環、6員環、又は、5員環及び6員環の少なくともいずれかを含む縮合環を表す。L、L、及びLはそれぞれ独立に無置換メチン基、又は置換メチン基を表す。Dは原子群を表す。nは0以上の整数を表す。)
    The organic material for film formation according to any one of claims 9 to 13, wherein the constituent organic substance is represented by the following formula (C).
    Figure JPOXMLDOC01-appb-C000038
    (In the formula, Z 4 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. L 1 , L 2 and L 3 each independently represent an unsubstituted methine group or a substituted methine group, D 1 represents an atomic group, and n represents an integer of 0 or more.)
  15.  前記乾式成膜法が抵抗加熱蒸着法である請求項9~14いずれか1項記載の成膜用有機材料。 The organic material for film formation according to any one of claims 9 to 14, wherein the dry film formation method is a resistance heating vapor deposition method.
  16.  一対の電極と、該一対の電極に挟持された少なくとも光電変換層を含む受光層を有する有機光電変換素子であって、
     前記光電変換層が請求項9~請求項15のいずれか1項記載の成膜用有機材料を用いて乾式成膜されてなる有機光電変換素子。
    An organic photoelectric conversion element having a pair of electrodes and a light receiving layer including at least a photoelectric conversion layer sandwiched between the pair of electrodes,
    An organic photoelectric conversion element in which the photoelectric conversion layer is formed by dry film formation using the film-forming organic material according to any one of claims 9 to 15.
  17.  複数の、請求項16に記載の有機光電変換素子と、
    該光電変換素子の前記光電変換層で発生した電荷に応じた信号を読み出す信号読出し回路が形成された回路基板とを備える光センサ。
    A plurality of organic photoelectric conversion elements according to claim 16;
    An optical sensor comprising: a circuit board on which a signal reading circuit for reading a signal corresponding to a charge generated in the photoelectric conversion layer of the photoelectric conversion element is formed.
  18.  撮像素子である請求項17に記載の光センサ。 The optical sensor according to claim 17, which is an image sensor.
PCT/JP2014/006282 2013-12-17 2014-12-16 Method for forming light receiving layer, method for producing organic photoelectric conversion element, organic material for film formation, organic photoelectric conversion element obtained using same, and photosensor WO2015093049A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020167012843A KR101869620B1 (en) 2013-12-17 2014-12-16 Method for forming light receiving layer, method for producing organic photoelectric conversion element, organic material for film formation, organic photoelectric conversion element obtained using same, and photosensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013260019A JP6145883B2 (en) 2013-12-17 2013-12-17 Light-receiving layer forming method, organic photoelectric conversion element manufacturing method, film-forming organic material, organic photoelectric conversion element and optical sensor obtained using the same.
JP2013-260019 2013-12-17

Publications (1)

Publication Number Publication Date
WO2015093049A1 true WO2015093049A1 (en) 2015-06-25

Family

ID=53402417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006282 WO2015093049A1 (en) 2013-12-17 2014-12-16 Method for forming light receiving layer, method for producing organic photoelectric conversion element, organic material for film formation, organic photoelectric conversion element obtained using same, and photosensor

Country Status (4)

Country Link
JP (1) JP6145883B2 (en)
KR (1) KR101869620B1 (en)
TW (1) TW201529875A (en)
WO (1) WO2015093049A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111837249A (en) * 2018-03-12 2020-10-27 富士胶片株式会社 Photoelectric conversion element, imaging element, photosensor, and compound
WO2020202978A1 (en) * 2019-03-29 2020-10-08 富士フイルム株式会社 Photoelectric conversion element, image sensor, optical sensor, photoelectric conversion element material for image sensor, photoelectric conversion element material for optical sensor
JP7382404B2 (en) * 2019-06-28 2023-11-16 富士フイルム株式会社 Photoelectric conversion elements, image sensors, optical sensors, materials for photoelectric conversion elements
EP4089752A4 (en) 2020-01-10 2023-07-05 FUJIFILM Corporation Photoelectric conversion element, imaging element, and optical sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023752A (en) * 2011-07-25 2013-02-04 Fujifilm Corp Deposition material for photoelectric conversion element, photoelectric conversion element, sensor, and image pick-up device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4914597B2 (en) 2005-10-31 2012-04-11 富士フイルム株式会社 Photoelectric conversion element, imaging element, and method of applying electric field to them
JP2010528485A (en) * 2007-05-30 2010-08-19 チェイル インダストリーズ インコーポレイテッド Organic photoelectric device and material used therefor
JP5323025B2 (en) 2010-10-26 2013-10-23 富士フイルム株式会社 Solid-state image sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023752A (en) * 2011-07-25 2013-02-04 Fujifilm Corp Deposition material for photoelectric conversion element, photoelectric conversion element, sensor, and image pick-up device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAHIRO HIRAMOTO: "Organic solar cells", OYO BUTSURI, vol. 77, no. 5, 2008, pages 539 - 544 *

Also Published As

Publication number Publication date
TW201529875A (en) 2015-08-01
JP6145883B2 (en) 2017-06-14
JP2015118977A (en) 2015-06-25
KR101869620B1 (en) 2018-07-23
KR20160071465A (en) 2016-06-21

Similar Documents

Publication Publication Date Title
JP4852663B2 (en) Photoelectric conversion device, imaging device, and driving method thereof
JP5981399B2 (en) ORGANIC MATERIAL FOR FILM FORMATION, ORGANIC PHOTOELECTRIC CONVERSION DEVICE, IMAGING ELEMENT, LIGHT RECEIVING LAYER FORMING METHOD, AND ORGANIC PHOTOELECTRIC CONVERSION METHOD
JP5557663B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, OPTICAL SENSOR, IMAGING ELEMENT AND ITS DRIVING METHOD
JP5938028B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND METHOD OF USING THE SAME, OPTICAL SENSOR
JP4699561B1 (en) Photoelectric conversion material, film containing the material, photoelectric conversion element and method for producing the same, optical sensor, imaging element, and method for using them
WO2014017042A1 (en) Film-forming organic material, organic photoelectric conversion element obtained using same, imaging element, film-forming method, and method for manufacturing organic photoelectric conversion element
JP5925234B2 (en) Photoelectric conversion material, photoelectric conversion element and method of using the same, optical sensor, imaging element
JP5662893B2 (en) Vapor deposition material for photoelectric conversion element, photoelectric conversion element, sensor, imaging element
WO2013133218A1 (en) Photoelectric conversion element, method for using same, imaging element, optical sensor, and chemical
JP6010567B2 (en) Photoelectric conversion material, photoelectric conversion element, optical sensor, and imaging element
WO2014051007A1 (en) Photoelectric conversion element, method for using same, light sensor, and imaging element
JP5840187B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND USE THEREOF, OPTICAL SENSOR, AND IMAGING ELEMENT
JP2015043362A (en) Photoelectric conversion element and image pickup element
WO2015093049A1 (en) Method for forming light receiving layer, method for producing organic photoelectric conversion element, organic material for film formation, organic photoelectric conversion element obtained using same, and photosensor
JP6077426B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND METHOD OF USING THE SAME, OPTICAL SENSOR
JP5992378B2 (en) Photoelectric conversion device, optical sensor, and imaging device
WO2022014721A1 (en) Photoelectric conversion element, imaging element, optical sensor, and compound
JP6059616B2 (en) Photoelectric conversion material, photoelectric conversion element and method of using the same, optical sensor, imaging element
JP2013012535A (en) Photoelectric conversion element and usage thereof, image pickup device, optical sensor, and photoelectric conversion film
JP6114606B2 (en) Photoelectric conversion material, photoelectric conversion element and method of using the same, optical sensor, imaging element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873102

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020167012843

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873102

Country of ref document: EP

Kind code of ref document: A1