WO2015092909A1 - Polymeric compound, organic photoelectric conversion element, and method for producing said element - Google Patents

Polymeric compound, organic photoelectric conversion element, and method for producing said element Download PDF

Info

Publication number
WO2015092909A1
WO2015092909A1 PCT/JP2013/084162 JP2013084162W WO2015092909A1 WO 2015092909 A1 WO2015092909 A1 WO 2015092909A1 JP 2013084162 W JP2013084162 W JP 2013084162W WO 2015092909 A1 WO2015092909 A1 WO 2015092909A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
formula
alkyl group
general formula
carbon atoms
Prior art date
Application number
PCT/JP2013/084162
Other languages
French (fr)
Japanese (ja)
Inventor
豪志 武藤
近藤 健
正樹 堀江
書維 張
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to PCT/JP2013/084162 priority Critical patent/WO2015092909A1/en
Priority to JP2015553294A priority patent/JP6199992B2/en
Priority to TW103143791A priority patent/TWI647250B/en
Publication of WO2015092909A1 publication Critical patent/WO2015092909A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications

Definitions

  • the present invention relates to a novel polymer compound, an organic photoelectric conversion device having a photoelectric conversion layer containing the polymer compound, and a method for producing the device.
  • organic thin-film solar cells are lighter, more flexible, easier to manufacture at relatively low temperatures, and can have a larger area than silicon-based solar cells. It is attracting attention as a next-generation solar cell.
  • the power generation efficiency of solar cells using organic thin films remains low compared to silicon-based solar cells, not only for home-use power generation, but also for outdoor use (under sunlight) for portable information terminals.
  • Even in practical use as a battery source or a battery source for in-vehicle low power consumption devices improvement of power generation conversion efficiency is an important issue.
  • a see-through organic thin-film solar cell has a first transparent electrode, a bulk heterojunction photoelectric conversion layer, and a second transparent electrode laminated on a substrate. It has a structure. For this reason, as the external color of the organic thin film solar cell, basically, the transmitted color of the photoelectric conversion layer (thin film) is dominantly reflected.
  • a bulk heterojunction photoelectric conversion layer used in an organic thin film solar cell a mixture of a conjugated polymer such as poly-3-hexylthiophene (P3HT) and a fullerene derivative such as PCBM is used.
  • the present invention provides a polymer compound that constitutes a bulk heterojunction photoelectric conversion layer, and an organic photoelectric conversion layer having a photoelectric conversion layer containing the polymer compound that has high photoelectric conversion efficiency and is achromatic and transparent. It is an object to provide a conversion element and a method for producing the organic photoelectric conversion element.
  • the present inventors have found that the above problems can be solved by using a bulk hetero-type photoelectric conversion layer containing the following polymer compound and C [70] fullerene derivative, and completed the present invention. That is, the present invention provides the following [1] to [18].
  • X represents a divalent structural unit represented by any of the following formulas (3) to (7)
  • Ra represents a hydrogen atom, a halogen atom, carbon
  • R 1 , R 2 , R 3 , and R 4 each independently represents a hydrogen atom, a halogen atom, a C 1-16 alkyl group or a substituted alkyl group. Or an alkoxy group having 1 to 12 carbon atoms, n represents the number of repeating units, and is 2 to 100.
  • Rb represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group.
  • Rc represents a hydrogen atom, a halogen atom, 1 to carbon atoms.
  • 16 represents an alkyl group or a substituted alkyl group, and in formula (3), m represents the number of repeating units and is 1 to 5.
  • R 1 to R 4 in the general formula (1) are an alkyl group or substituted alkyl group having 1 to 16 carbon atoms, and X is represented by the formula (3) or the formula (4).
  • R 1 to R 4 in the general formula (2) are alkyl groups or substituted alkyl groups having 1 to 16 carbon atoms, and X is represented by the formula (3) or the formula (6).
  • R 1 to R 4 in the general formula (1) are a C 1-16 alkyl group or substituted alkyl group, and X is a divalent structural unit represented by the following formula (8)
  • R 1 to R 4 in the general formula (2) are alkyl groups or substituted alkyl groups having 1 to 16 carbon atoms, and X is a divalent structural unit represented by the formula (6)
  • An organic photoelectric conversion device having a bulk hetero photoelectric conversion layer, wherein the bulk hetero photoelectric conversion layer is a polymer compound represented by the following general formula (1) or general formula (2) and C [70] fullerene
  • An organic photoelectric conversion element comprising a derivative.
  • X represents a divalent structural unit represented by any of the following formulas (3) to (7)
  • Ra represents a hydrogen atom, a halogen atom, carbon
  • R 1 , R 2 , R 3 , and R 4 each independently represents a hydrogen atom, a halogen atom, a C 1-16 alkyl group or a substituted alkyl group. Or an alkoxy group having 1 to 12 carbon atoms, n represents the number of repeating units, and is 2 to 100.
  • Rb represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group.
  • Rc represents a hydrogen atom, a halogen atom, 1 to carbon atoms.
  • 16 represents an alkyl group or a substituted alkyl group, and in formula (3), m represents the number of repeating units and is 1 to 5.
  • R 1 to R 4 in the general formula (1) are alkyl groups or substituted alkyl groups having 1 to 16 carbon atoms, and X is represented by the formula (3) or the formula (4).
  • R 1 to R 4 in the general formula (2) are an alkyl group or substituted alkyl group having 1 to 16 carbon atoms, and X is represented by the formula (3) or the formula (6).
  • R 1 to R 4 in the general formula (1) are alkyl groups or substituted alkyl groups having 1 to 16 carbon atoms, and X is a divalent structural unit represented by the following formula (8)
  • R 1 to R 4 in the general formula (2) are alkyl groups or substituted alkyl groups having 1 to 16 carbon atoms, and X is a divalent structural unit represented by the formula (6)
  • the mass ratio of the polymer compound represented by the general formula (1) or the general formula (2) constituting the bulk hetero photoelectric conversion layer and the C [70] fullerene derivative is 1: 2 to 1: 5.
  • the bulk hetero photoelectric conversion layer includes at least one of an aliphatic thiol represented by the following general formula (I) and an iodine compound represented by the following general formula (II).
  • the organic photoelectric conversion element in any one of.
  • R M represents an alkylene group having 3 to 15 carbon atoms
  • R N denotes an alkylene group having 3 to 15 carbon atoms.
  • the bulk hetero photoelectric conversion layer has a thickness of 100 nm, a C light source and a 2 ° field of view in a CIE (International Commission on Illumination) L * a * b * color system defined in JIS Z 8729-1994.
  • the organic photoelectric conversion device according to any one of [6] to [15] above, wherein a saturation C * value measured under conditions is 10 or less.
  • An organic thin-film solar cell comprising the organic photoelectric conversion element according to any one of [6] to [16].
  • [18] A method for producing an organic photoelectric conversion device according to any one of [6] to [17], Forming an electrode serving as an anode on a transparent substrate; Forming a bulk hetero photoelectric conversion layer comprising the polymer compound represented by the general formula (1) or the general formula (2) and the C [70] fullerene derivative; Forming a cathode electrode; The manufacturing method of the organic photoelectric conversion element containing this.
  • an organic photoelectric compound having a bulk hetero-type photoelectric conversion layer comprising the novel polymer compound constituting the bulk hetero-type photoelectric conversion layer, and having a high photoelectric conversion efficiency, an achromatic and transparent polymer, and the polymer.
  • a conversion element can be provided.
  • FIG. 1 shows an example of a photograph of the appearance of the present invention and a conventional bulk hetero photoelectric conversion layer, wherein the photograph of (a) contains P3HT (3-hexylthiophene) and PC [60] BM.
  • the photograph on the left of (b) is a photograph of the bulk hetero photoelectric conversion layer containing the polymer compound (1-1) of the present invention and PC [70] BM, and the photograph on the right is It is a photograph of the photoelectric converting layer which consists of P3HT and PC [70] BM.
  • polymer compound The polymer compound of the present invention is represented by the following general formula (1) or general formula (2).
  • n represents the number of repeating units and is 2 to 100.
  • n is less than 2, the ⁇ -electron conjugated system does not extend sufficiently, so that sufficient solar light absorption efficiency cannot be obtained, which is not preferable.
  • n exceeds 100, the solubility in a solvent is lowered, and film formation by a wet method as described later becomes difficult. Therefore, n is preferably 5 to 90, more preferably 10 to 50.
  • said n is a value calculated based on the weight average molecular weight of a polymer, and the said weight average molecular weight is a value measured by the method as described in an Example.
  • R 1 , R 2 , R 3 , and R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group, 1 to 12 alkoxy groups are shown.
  • alkyl group having 1 to 16 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group (isomer) ), Hexyl group (including isomer), heptyl group (including isomer), octyl group (including isomer), nonyl group (including isomer), decyl group (including isomer), undecyl Groups (including isomers) and dodecyl groups (including isomers).
  • a hydrogen atom of the above alkyl group is a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, an oxygen atom, a silicon atom, a sulfur atom, a phosphorus atom, or the like.
  • an alkyl group substituted with is the same as the above alkyl group.
  • R 1 to R 4 are preferably the same.
  • an alkyl group having 6 to 15 carbon atoms is preferable, and a 2-ethylhexyl group is more preferable.
  • Ra represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group.
  • the alkyl group having 1 to 16 carbon atoms or the substituted alkyl group is the same as R 1 , R 2 , R 3 , and R 4 described above.
  • an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group is preferable, and an alkyl group is more preferable.
  • the alkyl groups an alkyl group having 6 to 15 carbon atoms is preferable, and an n-hexyl group is more preferable.
  • X represents a divalent structural unit represented by any of the following (3) to (7).
  • M in the formula (3) represents the number of repeating units and is 1 to 5. Preferably, it is 1 to 3, more preferably 2.
  • Rb in the formula (4) represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group.
  • the alkyl group having 1 to 16 carbon atoms or the substituted alkyl group is the same as R 1 , R 2 , R 3 , and R 4 described above.
  • an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group is preferable, and from the viewpoint of improving solubility in a solvent, an alkyl group having 6 to 15 carbon atoms is preferable, and an alkyl group having 6 to 10 carbon atoms is preferable. Is more preferable.
  • Rc in the formula (7) represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group.
  • the alkyl group having 1 to 16 carbon atoms or the substituted alkyl group is the same as R 1 , R 2 , R 3 , and R 4 described above.
  • an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group is preferable, and from the viewpoint of improving solubility in a solvent, an alkyl group having 6 to 15 carbon atoms is more preferable, and an alkyl group having 6 to 10 carbon atoms is preferable. Groups are more preferred.
  • X is preferably a divalent structural unit represented by Formula (3) or (4), and more preferably X is represented by Formula (8) below. Unit of value.
  • X is preferably a divalent structural unit represented by formula (3) or (6), more preferably X is represented by formula (6). Unit of value.
  • the polymer compound of the present invention can be synthesized by a known method and is not particularly limited.
  • the polymer compound represented by the general formula (1) can be synthesized, for example, according to the following synthesis scheme. . That is, it can be synthesized by a method in which a monomer constituting the polymer compound is polymerized by a coupling reaction in the presence of a metal catalyst.
  • Step 1 is a step of synthesizing an intermediate by halogenating a starting material.
  • the reagent used at that time include N-bromosuccinimide and the like.
  • step 2 an intermediate and a monomer having a divalent structural unit X represented by any of the above formulas (3) to (7) are polymerized by a coupling reaction in the presence of a metal complex catalyst.
  • This is a step of synthesizing the polymer compound of the invention.
  • the reaction used in that case is not particularly limited, and for example, a Suzuki coupling reaction, a Still coupling reaction, or the like can be used.
  • reduction catalysts such as a copper complex, a nickel complex, and a palladium complex
  • a nickel complex and a palladium complex are mentioned.
  • a nickel complex and a palladium complex are preferable.
  • the nickel complex include bis (1,5-cyclooctadiene) nickel, tetrakis (triphenylphosphine) nickel, dichloro (2,2′-bipyridine) nickel, and among these, the viewpoint of polymerization performance Therefore, bis (1,5-cyclooctadiene) nickel is preferable.
  • Examples of the palladium complex include tetrakis (triphenylphosphine) palladium, dichloro ⁇ 1,3-bis (diphenylphosphine) propane ⁇ palladium, tris (dibenzylidene) dipalladium and the like.
  • tris (dibenzylidene) dipalladium is preferable from the viewpoint of polymerization performance.
  • Step 2 is usually performed in air or under an inert atmosphere, and preferably performed under an inert atmosphere.
  • the inert atmosphere include nitrogen gas or argon gas atmosphere.
  • the polymerization reaction is not particularly limited, but is preferably performed under heating and reflux.
  • the heating temperature is usually room temperature to 180 ° C., preferably 80 to 150 ° C., more preferably 80 to 120 ° C. Although there is no restriction
  • the polymerization time is usually 1 to 240 hours, preferably 20 to 120 hours, although it varies depending on the type of monomer and catalyst used, the temperature and pressure during polymerization, and the like.
  • the polymer compound represented by the general formula (2) is prepared by, for example, the monomer constituting the polymer compound in the presence of a metal catalyst in the same manner as the method for synthesizing the polymer compound represented by the general formula (1). It can be synthesized by a method of polymerization by a coupling reaction.
  • a starting material is halogenated to synthesize an intermediate, and the intermediate and a monomer having a divalent structural unit X represented by any one of the above formulas (3) to (7) are synthesized in the presence of a metal catalyst.
  • the polymer compound represented by the general formula (2) can be synthesized by polymerizing by a coupling reaction to synthesize the polymer compound of the present invention.
  • the reaction used at that time is not particularly limited, and for example, a Suzuki coupling reaction, a Still coupling reaction, a direct arylation reaction, or the like can be used.
  • the organic photoelectric conversion element of the present invention is an organic photoelectric conversion element having a bulk hetero photoelectric conversion layer, and the bulk hetero photoelectric conversion layer is a polymer compound represented by the following general formula (1) and C [70] fullerene. It is an organic photoelectric conversion element containing a derivative.
  • n represents the number of repeating units and is 2 to 100.
  • n is less than 2, the ⁇ -electron conjugated system does not extend sufficiently, so that sufficient solar light absorption efficiency cannot be obtained, which is not preferable.
  • n exceeds 100, the solubility in a solvent is lowered, and film formation by a wet method as described later becomes difficult. Therefore, n is preferably 5 to 90, more preferably 10 to 50.
  • said n is a value calculated based on the weight average molecular weight of a polymer, and the said weight average molecular weight is a value measured by the method as described in an Example.
  • R 1 , R 2 , R 3 , and R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group, 1 to 12 alkoxy groups are shown.
  • alkyl group having 1 to 16 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group (isomer) ), Hexyl group (including isomer), heptyl group (including isomer), octyl group (including isomer), nonyl group (including isomer), decyl group (including isomer), undecyl Groups (including isomers) and dodecyl groups (including isomers).
  • a hydrogen atom of the above alkyl group is a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, an oxygen atom, a silicon atom, a sulfur atom, a phosphorus atom, or the like.
  • an alkyl group substituted with is the same as the above alkyl group.
  • R 1 to R 4 are preferably the same.
  • an alkyl group having 6 to 15 carbon atoms is preferable, and a 2-ethylhexyl group is more preferable.
  • Ra represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group.
  • the alkyl group having 1 to 16 carbon atoms or the substituted alkyl group is the same as R 1 , R 2 , R 3 , and R 4 described above.
  • an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group is preferable, and an alkyl group is more preferable.
  • the alkyl groups an alkyl group having 6 to 15 carbon atoms is preferable, and an n-hexyl group is more preferable.
  • X represents a divalent structural unit represented by any of the following (3) to (7).
  • M in the formula (3) represents the number of repeating units and is 1 to 5. Preferably, it is 1 to 3, more preferably 2.
  • Rb in the formula (4) represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group.
  • the alkyl group having 1 to 16 carbon atoms or the substituted alkyl group is the same as R 1 , R 2 , R 3 , and R 4 described above.
  • an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group is preferable, and from the viewpoint of improving solubility in a solvent, an alkyl group having 6 to 15 carbon atoms is preferable, and an alkyl group having 6 to 10 carbon atoms is preferable. Is more preferable.
  • Rc in the formula (7) represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group.
  • the alkyl group having 1 to 16 carbon atoms or the substituted alkyl group is the same as R 1 , R 2 , R 3 , and R 4 described above.
  • an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group is preferable, and from the viewpoint of improving solubility in a solvent, an alkyl group having 6 to 15 carbon atoms is more preferable, and an alkyl group having 6 to 10 carbon atoms is preferable. Groups are more preferred.
  • X is preferably a divalent structural unit represented by Formula (3) or (4), and more preferably X is represented by Formula (8) below. Unit of value.
  • X is preferably a divalent structural unit represented by formula (3) or (6), more preferably X is represented by formula (6). Unit of value.
  • FIG. 1 shows an example of a cross-sectional view of the organic photoelectric conversion element of the present invention.
  • an organic photoelectric conversion element 1 is an organic photoelectric conversion element having a bulk hetero photoelectric conversion layer 3 between a pair of an anode 2 and a cathode 4 stacked on a transparent substrate (not shown).
  • An organic photoelectric conversion element is an element that generates an electromotive force when irradiated with light energy. Generally, an element that converts light energy into electrical energy is provided with an electrode for taking out electric charges from the photoelectric conversion layer. It is a thing. Examples of the organic photoelectric conversion element include various organic semiconductor devices such as an organic thin film solar cell and a photodiode. Among these, in this invention, it is suitable for an organic thin film solar cell.
  • the bulk hetero photoelectric conversion layer includes the polymer compound represented by the general formula (1) or the general formula (2) and a C [70] fullerene derivative.
  • C [70] fullerene derivative refers to a concept including a compound in which at least part of which is modified for C 70 fullerene and C 70 fullerene carbon atoms is 70.
  • Examples of the C [70] fullerene derivative include phenyl C71 butyric acid methyl ester (PC [70] BM) indene C70 monoadduct (IC [70] MA) and indene C70 bisadduct (IC [70] BA).
  • PC [70] BM phenyl C71 butyric acid methyl ester
  • IC [70] BA indene C70 monoadduct
  • BA indene C70 bisadduct
  • the bulk hetero photoelectric conversion layer is, for example, C60, C76, C78, C82, C84, C90, C94 as an n-type semiconductor material other than the C [70] fullerene derivative as long as the effects of the present invention are not impaired.
  • the bulk hetero photoelectric conversion layer preferably contains at least one of an aliphatic thiol represented by the following general formula (I) and an iodine compound represented by the following general formula (II).
  • R M represents an alkylene group having 3 to 15 carbon atoms
  • R N denotes an alkylene group having 3 to 15 carbon atoms.
  • Examples of the aliphatic thiol include octanedithiol and butanedithiol. Of these, octanedithiol is preferred.
  • Examples of the iodine compound include diiodooctane and diiodobutane. Among these, diiodooctane is preferable.
  • the mass ratio of the polymer compound represented by the general formula (1) or the general formula (2) and the C [70] fullerene derivative is 1: 1 to 1:10, preferably 1: 2 to 1: 5.
  • a mass ratio in this range is preferable because an achromatic and transparent bulk hetero photoelectric conversion layer can be obtained.
  • the polymer compound represented by the general formula (1) or the general formula (2) has an absorption spectrum peak in the near infrared region, while the C [70] fullerene derivative has an absorption spectrum around 500 nm. Although it has a peak, by mixing both, it is thought that the absorption spectrum in the visible light region of the mixture becomes flat and does not have a clear peak.
  • the transmittance in the visible light region (near 550 nm) of the bulk hetero photoelectric conversion layer is preferably 50% or more, more preferably 60% or more, and even more preferably 70% or more when the thickness is 100 nm.
  • the photoelectric conversion layer is highly transparent, and when it is installed as a solar cell on a window glass of a car, a building, or a general house, sunlight can be sufficiently collected and high visibility is obtained. Therefore, it is preferable.
  • the bulk hetero photoelectric conversion layer has a thickness of 100 nm and is measured with a C light source and a 2 ° viewing condition in a CIE (International Commission on Illumination) L * a * b * color system defined in JIS Z 8729-1994.
  • the saturation C * value is preferably 10 or less, and more preferably 4 or less.
  • a chroma C * value of 10 or less is preferable because it is less colored and approaches an achromatic color.
  • the thickness of the bulk hetero photoelectric conversion layer of the present invention is preferably 30 to 300 nm, and more preferably 50 to 150 nm. If the thickness is within this range, the photoelectric conversion layer is preferable because it is highly transparent and has an achromatic color.
  • the anode 2 is preferably a transparent electrode.
  • a transparent electrode For example, tin-doped indium oxide (ITO), IrO 2 , In 2 O 3 , SnO 2 , indium oxide-zinc oxide (IZO), ZnO (Ga, Al doped), MoO Examples thereof include a transparent semiconductor electrode formed of a material such as 3 .
  • the thickness of the electrode is preferably 50 to 200 nm, more preferably 70 to 150 nm.
  • Examples of the cathode 4 include Ag, Al, Pt, Ir, Cr, ZnO, CNT, and alloys and composites thereof.
  • the transmittance in the visible light region (near 550 nm) of the transparent substrate is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.
  • the transparent substrate include glass and plastic substrates.
  • the thickness of the transparent substrate is usually about 0.1 to 10 mm, and is selected from the viewpoint of mechanical strength, thermal expansion coefficient, weight, and cost, but is not particularly limited.
  • the organic photoelectric conversion element of the present invention includes a hole transport layer such as poly (3,4) -ethylenedioxythiophene / polystyrene sulfonate (PEDOT-PSS) between the anode 2 and the bulk hetero photoelectric conversion layer. It is preferable to provide a hole blocking layer such as bathocuproine between the bulk hetero photoelectric conversion layer and the cathode 4.
  • a hole transport layer such as poly (3,4) -ethylenedioxythiophene / polystyrene sulfonate (PEDOT-PSS) between the anode 2 and the bulk hetero photoelectric conversion layer.
  • PEDOT-PSS polystyrene sulfonate
  • the organic photoelectric conversion element of the present invention can be used as an organic thin film solar cell.
  • the organic thin film solar cell including the organic photoelectric conversion element of the present invention has high photoelectric conversion efficiency, the bulk hetero type photoelectric conversion layer has high transparency and an achromatic appearance, and the sheath type organic thin film solar cell Can be used as
  • the method for producing an organic photoelectric conversion element of the present invention includes a step of forming an electrode serving as an anode on a transparent substrate, A step of forming a bulk hetero photoelectric conversion layer containing the polymer compound represented by the general formula (1) or the general formula (2) and the C [70] fullerene derivative, and a step of forming an electrode serving as a cathode. It is a manufacturing method of the organic photoelectric conversion element containing.
  • the anode forming step in the present invention is a step of forming an electrode serving as an anode on a transparent substrate.
  • a method for forming the electrode a general electrode forming method can be used.
  • a dry method such as a sputtering method, a vacuum evaporation method, an ion plating method, or the like
  • a wet method such as a dip coating method or a spin coating method of a solution containing ITO fine particles can be used.
  • the photoelectric conversion layer forming step is a step of forming the bulk hetero photoelectric conversion layer 3 including the polymer compound represented by the general formula (1) or the general formula (2) and a C [70] fullerene derivative. Specifically, on the anode formed in the anode forming step, a polymer compound and C [70] fullerene derivative are dissolved in a solvent, a mixed and dispersed solution is applied, the solvent is dried, and bulk hetero photoelectric conversion is performed. Form a layer.
  • the solvent is not particularly limited, and chlorobenzene, orthodichlorobenzene, chloroform, dichloromethane, toluene, tetrahydrofuran and the like can be used as described above.
  • a method for forming the bulk hetero photoelectric conversion layer is not particularly limited, but a general wet thin film forming method can be used. For example, formation methods such as a dip coating method, a spin coating method, a gravure coating method, and a roll coating method are exemplified.
  • the cathode forming step is a step of forming an electrode serving as a cathode on the bulk hetero photoelectric conversion layer formed in 1-2.
  • a method for forming an electrode to be a cathode a general electrode forming method can be used.
  • a sputtering method, a vacuum deposition method, an ion plating method, or the like can be used.
  • a step of forming a hole transport layer may be provided between the anode and the bulk hetero photoelectric conversion layer.
  • a method for forming the hole transport layer a general thin film forming method can be used.
  • the film is formed by a vacuum deposition method, a sputtering method, an ion plating method, or the like.
  • the film may be formed by a wet method such as a dip coating method, a spin coating method, or a roll coating method.
  • a step of forming a hole blocking layer may be further provided between the photoelectric conversion layer and the cathode.
  • a general thin film forming method can be used as a method for forming the previous hole blocking layer.
  • the film is formed by a vacuum deposition method, a sputtering method, an ion plating method, or the like.
  • An organic photoelectric conversion element can be manufactured by implementing the process shown above.
  • the measuring method concerning the high molecular compound performed in the Example is shown below.
  • A Weight average molecular weight measurement of polymer GPC apparatus [manufactured by Tosoh Corporation, apparatus name “HLC-8228GPC”, column: product name “SHODEX GPC KF-804L + GPC KF-805L”, column temperature: 40 ° C., detector: Using a UV detector (254 nm), eluent: THF, column flow rate: 1.0 ml / min, in terms of polystyrene], the polymer obtained has a weight average molecular weight (Mw) in terms of standard polystyrene and polydispersity of the polymer. The degree (Mw / Mn) was measured. The number of repeating units n was calculated from this weight average molecular weight.
  • B 1 H-NMR measurement An FT-NMR apparatus (manufactured by JEOL, apparatus name “JNM-A500”) was used.
  • a bulk hetero photoelectric conversion layer is formed on a synthetic quartz substrate by spin coating using the mixed solution for forming the bulk hetero photoelectric conversion layer used in Examples 3 to 6 and Comparative Examples 1 to 5 so as to have a thickness of 100 nm.
  • a sample for measurement of transmittance and saturation C * was formed. Using the obtained sample, light transmittance evaluation and saturation evaluation were performed by the following methods.
  • the above is generally classified according to the CIE (International Lighting Commission) L * a * b * color space.
  • the three components of this system are: L * (indicating brightness on a scale 0-100), a * (red / magenta-green axis; positive values are red / magenta, negative values are green And b * (yellow-blue axis; positive values are yellow and negative values are blue).
  • the resulting solution was purged with nitrogen for 5 minutes, and the reaction mixture was stirred at 80 ° C. for 2 hours, and then directly dried under vacuum to distill off DMF from the organic layer.
  • the reaction residue was purified by silica gel chromatography using hexane as an eluent. After concentration in vacuo, the residue was dissolved in 10 mL of chloroform, and the molecular weight was determined by SEC (size exclusion chromatography) (flow rate: 14 mL / min). Distribution was measured.
  • SEC size exclusion chromatography
  • Example 3 2.3 mg of the polymer compound (1-1) as the p-type semiconductor, 6.6 mg of PC [70] BM (manufactured by Frontier Carbon Corporation, trade name “Nanom Spectra E110”) as the n-type semiconductor material, and 1,8 -6.6 mg of octanedithiol (manufactured by Tokyo Chemical Industry Co., Ltd.) was weighed, 0.66 mL of dehydrated chlorobenzene (manufactured by Sigma Aldrich, dehydrated product) was added under a nitrogen atmosphere, and the mixture was stirred under a nitrogen atmosphere for 24 hours.
  • PC [70] BM manufactured by Frontier Carbon Corporation, trade name “Nanom Spectra E110”
  • 1,8 -6.6 mg of octanedithiol manufactured by Tokyo Chemical Industry Co., Ltd.
  • the mixture was filtered through a syringe filter having a pore diameter of 0.45 ⁇ m to prepare a mixed solution for forming a photoelectric conversion layer (the mass ratio of the polymer compound (1-1): PC [70] BM was 1: 2.9). .
  • a glass substrate with an ITO film cleaned by cleaning and UV-ozone treatment (a glass substrate with a transparent conductive film in which a tin-doped indium oxide film is formed on the glass substrate, surface resistivity: 14 ( ⁇ / ⁇ ))
  • PEDOT-PSS manufactured by Clevios
  • the thickness of a photoelectric converting layer might be set to 100 nm by the spin coat method using the said mixed solution on the obtained positive hole transport layer.
  • the surface of the obtained photoelectric conversion layer was a uniform and cloudless film. Furthermore, 10 nm of calcium (manufactured by Kanto Chemical Co., Inc.) and 100 nm of aluminum (manufactured by High Purity Chemical Laboratories Co., Ltd.) on this photoelectric conversion layer (degree of vacuum: 8.2 ⁇ 10 ⁇ 5 Pa, film formation rate: 0.15 nm / s), the organic photoelectric conversion element 1 was produced by stacking in this order. Using the obtained organic photoelectric conversion element 1, (e) photoelectric conversion efficiency evaluation mentioned above was performed and the photoelectric conversion efficiency (PCE) was computed. The results are shown in Table 1.
  • Organic photoelectric conversion element 2 was produced in the same manner as in Example 3, except that polymer compound (2-1) was used instead of polymer compound (1-1) as the p-type semiconductor. Using the obtained organic photoelectric conversion element 2, (e) photoelectric conversion efficiency evaluation mentioned above was performed and the photoelectric conversion efficiency (PCE) was computed. The results are shown in Table 1.
  • Example 5 In Example 3, except that 1,8-diiodooctane (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1,8-octanedithiol (manufactured by Tokyo Chemical Industry Co., Ltd.), the organic photoelectric conversion element 3 was prepared in the same manner as in Example 3. Produced. Using the obtained organic photoelectric conversion element 3, (e) photoelectric conversion efficiency evaluation mentioned above was performed and the photoelectric conversion efficiency (PCE) was computed. The results are shown in Table 1.
  • Table 1 shows the evaluation results of the visible light transmittance (550 nm) of the photoelectric conversion layer and the above-described (d) saturation.
  • Example 6 In Example 4, except that 1,8-diiodooctane (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1,8-octanedithiol (manufactured by Tokyo Chemical Industry Co., Ltd.), the organic photoelectric conversion element 4 was prepared in the same manner as in Example 4. Produced. Using the obtained organic photoelectric conversion element 4, (e) photoelectric conversion efficiency evaluation mentioned above was performed and the photoelectric conversion efficiency (PCE) was computed. The results are shown in Table 1.
  • Table 1 shows the evaluation results of the visible light transmittance (550 nm) of the photoelectric conversion layer and the above-described (d) saturation.
  • Example 7 an organic photoelectric conversion element 5 was produced in the same manner as in Example 3 except that the mass ratio of the polymer compound (1-1) to PC [70] BM was 1: 4. Using the obtained organic photoelectric conversion element 5, (e) photoelectric conversion efficiency evaluation mentioned above was performed and the photoelectric conversion efficiency (PCE) was computed. The results are shown in Table 1.
  • Table 1 shows the evaluation results of the visible light transmittance (550 nm) of the photoelectric conversion layer and the above-described (d) saturation.
  • Example 8 In Example 4, the organic photoelectric conversion element 6 was produced in the same manner as in Example 4 except that the mass ratio of the polymer compound (2-1) and PC [70] BM was 1: 4. Using the obtained organic photoelectric conversion element 6, (e) photoelectric conversion efficiency evaluation mentioned above was performed and the photoelectric conversion efficiency (PCE) was computed. The results are shown in Table 1.
  • Table 1 shows the evaluation results of the visible light transmittance (550 nm) of the photoelectric conversion layer and the above-described (d) saturation.
  • Table 1 shows the evaluation results of the visible light transmittance (550 nm) of the photoelectric conversion layer and the above-described (d) saturation.
  • An organic photoelectric conversion element 9 was produced in the same manner as in Example 3 except that 3-hexylthiophene (P3HT) was used instead of the polymer compound (1-1) as the p-type semiconductor. Using the obtained organic photoelectric conversion element 9, (e) photoelectric conversion efficiency evaluation mentioned above was performed and the photoelectric conversion efficiency (PCE) was computed. The results are shown in Table 1.
  • Table 1 shows the evaluation results of the visible light transmittance (550 nm) of the photoelectric conversion layer and the above-described (d) saturation.
  • Table 1 shows the evaluation results of the visible light transmittance (550 nm) of the photoelectric conversion layer and the above-described (d) saturation.
  • the polymer compound (1-1) contains a polymer compound (polymer of the oligomer (1a)) that does not contain X which is a divalent structural unit;
  • An organic photoelectric conversion device 11 was produced in the same manner as in Example 3 except that. Using the obtained organic photoelectric conversion element 11, (e) photoelectric conversion efficiency evaluation mentioned above was performed and the photoelectric conversion efficiency (PCE) was computed. The results are shown in Table 1.
  • Table 1 shows the evaluation results of the visible light transmittance (550 nm) of the photoelectric conversion layer and the above-described (d) saturation.
  • the conversion efficiency is higher and the transparency is higher than that of the comparative example, and the value of chroma C * is small, which is close to an achromatic color. I understood that.
  • the organic photoelectric conversion device of the present invention is installed in a window of a car, a building, a general house, etc. It is possible to use.
  • Organic photoelectric conversion element 2 Anode 3: Bulk hetero photoelectric conversion layer 4: Cathode

Abstract

Provided are: a polymeric compound which constitutes a bulk-hetero junction photoelectric conversion layer; an organic photoelectric conversion element which has a high photoelectric conversion efficiency, is achromatic and transparent, includes the polymeric compound, and has a photoelectric conversion layer; and a method for producing the organic photoelectric conversion element. The organic photoelectric conversion element is a bulk-hetero junction organic photoelectric conversion element which is composed of a photoelectric conversion layer that includes a polymeric compound represented by general formula (1) or general formula (2) and a C[70] fullerene derivative, and the method is a method for producing the same.

Description

高分子化合物、有機光電変換素子、及び該素子の製造方法Polymer compound, organic photoelectric conversion element, and method for producing the element
 本発明は、新規な高分子化合物、該高分子化合物を含む光電変換層を有する有機光電変換素子及び該素子の製造方法に関する。 The present invention relates to a novel polymer compound, an organic photoelectric conversion device having a photoelectric conversion layer containing the polymer compound, and a method for producing the device.
 近年、地球温暖化の抑制、原子力発電代替等の理由で、火力、原子力以外のエネルギーによる発電に関する開発が注目され、とりわけ、クリーンエネルギーの代表格である太陽光発電の変換効率の向上に関する開発が、世界規模で推進されている。 In recent years, development related to power generation using thermal energy and energy other than nuclear power has been attracting attention for reasons such as the suppression of global warming and the substitution of nuclear power generation. Is being promoted on a global scale.
 このような状況下で、有機薄膜太陽電池は、シリコン系太陽電池に比べ、軽量、フレキシブルまた比較的低温での製造が容易でかつ大面積化が可能であり、トータルでも低コストで製造できるため次世代の太陽電池として注目されている。しかしながら、有機薄膜を使用した太陽電池の発電効率は、シリコン系太陽電池に比べ低い値に留まっており、家庭用向け等の発電用途はもとより、野外(太陽光下)での携帯情報端末用途のバッテリー源、又は車載用の低消費電力機器用途のバッテリー源としての実用化に当たっても、発電変換効率の向上が重要な課題となっている。これに加え、近年、例えば、窓に設置し、窓としての機能である採光はもとより、発電が可能で、冷房コストも下げられるシースルー型有機薄膜太陽電池に注目が集められている。また、通常、シースルー型有機薄膜太陽電池は、特許文献1に示されるように、基板上に、第1の透明電極と、バルクヘテロ接合型の光電変換層と、第2の透明電極とを積層した構造を有している。このため、有機薄膜太陽電池の外観色としては、基本的には、光電変換層(薄膜)の有する透過色が支配的に反映されたものとなっている。一般的に、有機薄膜太陽電池に用いられるバルクヘテロ接合型光電変換層としては、ポリ-3-ヘキシルチオフェン(P3HT)等の共役ポリマーと、PCBM等のフラーレン誘導体の混合物が用いられている。 Under such circumstances, organic thin-film solar cells are lighter, more flexible, easier to manufacture at relatively low temperatures, and can have a larger area than silicon-based solar cells. It is attracting attention as a next-generation solar cell. However, the power generation efficiency of solar cells using organic thin films remains low compared to silicon-based solar cells, not only for home-use power generation, but also for outdoor use (under sunlight) for portable information terminals. Even in practical use as a battery source or a battery source for in-vehicle low power consumption devices, improvement of power generation conversion efficiency is an important issue. In addition, in recent years, attention has been focused on see-through type organic thin-film solar cells that can be installed in windows and used for daylighting, which is a function of windows, as well as power generation and cooling costs. Also, normally, as shown in Patent Document 1, a see-through organic thin-film solar cell has a first transparent electrode, a bulk heterojunction photoelectric conversion layer, and a second transparent electrode laminated on a substrate. It has a structure. For this reason, as the external color of the organic thin film solar cell, basically, the transmitted color of the photoelectric conversion layer (thin film) is dominantly reflected. Generally, as a bulk heterojunction photoelectric conversion layer used in an organic thin film solar cell, a mixture of a conjugated polymer such as poly-3-hexylthiophene (P3HT) and a fullerene derivative such as PCBM is used.
特開2012-69803号公報JP 2012-69803 A
 しかしながら、有機薄膜太陽電池に用いられるバルクヘテロ接合型の光電変換層は、基本的に、透過率は30%程度と低く、ほとんどが着色(有彩色)を呈しているものであった。また、光電変換層の透過率を向上させたとしても、基本的には、太陽光の可視光領域の光吸収効率の低下に繋がるものであり、変換効率が維持できなくなるという問題があった。さらに、車等の窓ガラスに設置する場合、視認性が悪く、安全性の観点からも実用上十分ではなかった。 However, bulk heterojunction photoelectric conversion layers used in organic thin film solar cells basically have a low transmittance of about 30%, and most of them are colored (chromatic colors). Moreover, even if the transmittance of the photoelectric conversion layer is improved, it basically leads to a decrease in light absorption efficiency in the visible light region of sunlight, and there is a problem that the conversion efficiency cannot be maintained. Furthermore, when installed on a window glass of a car or the like, the visibility is poor, and it is not practically sufficient from the viewpoint of safety.
 本発明は、上記問題を鑑み、バルクヘテロ接合型光電変換層を構成する高分子化合物、また光電変換効率が高く、かつ無彩色で透明な、該高分子化合物を含む、光電変換層を有する有機光電変換素子及び該有機光電変換素子の製造方法を提供することを課題とする。 In view of the above problems, the present invention provides a polymer compound that constitutes a bulk heterojunction photoelectric conversion layer, and an organic photoelectric conversion layer having a photoelectric conversion layer containing the polymer compound that has high photoelectric conversion efficiency and is achromatic and transparent. It is an object to provide a conversion element and a method for producing the organic photoelectric conversion element.
 本発明者らは、下記に示す高分子化合物とC[70]フラーレン誘導体とを含むバルクへテロ型光電変換層を用いることにより、上記課題を解決しうることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[18]を提供するものである。
[1]下記一般式(1)又は一般式(2)で表される、高分子化合物。
The present inventors have found that the above problems can be solved by using a bulk hetero-type photoelectric conversion layer containing the following polymer compound and C [70] fullerene derivative, and completed the present invention.
That is, the present invention provides the following [1] to [18].
[1] A polymer compound represented by the following general formula (1) or general formula (2).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010




Figure JPOXMLDOC01-appb-C000011
(式(1)又は式(2)中、Xは、下記式(3)~式(7)のいずれかで表される2価の構成単位を示し、Raは、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基を示し、R1、R2、R3、及びR4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基、又は炭素数1~12のアルコキシ基を示し、nは繰り返し単位数を示し、2~100である。)

Figure JPOXMLDOC01-appb-C000011
(In formula (1) or formula (2), X represents a divalent structural unit represented by any of the following formulas (3) to (7), and Ra represents a hydrogen atom, a halogen atom, carbon R 1 , R 2 , R 3 , and R 4 each independently represents a hydrogen atom, a halogen atom, a C 1-16 alkyl group or a substituted alkyl group. Or an alkoxy group having 1 to 12 carbon atoms, n represents the number of repeating units, and is 2 to 100.)

Figure JPOXMLDOC01-appb-C000012














(式(4)中、Rbは、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基を示し、式(7)中、Rcは、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基を示し、式(3)中、mは繰り返し単位数を示し、1~5である。)
[2]前記一般式(1)中のR1~R4が、炭素数1~16のアルキル基又は置換アルキル基であり、Xが、前記式(3)又は式(4)で表される2価の構成単位である、一般式(1)で表される上記[1]に記載の高分子化合物。
[3]前記一般式(2)中のR1~R4が、炭素数1~16のアルキル基又は置換アルキル基であり、Xが、前記式(3)又は式(6)で表される2価の構成単位である、一般式(2)で表される上記[1]に記載の高分子化合物。
[4]前記一般式(1)中のR1~R4が、炭素数1~16のアルキル基又は置換アルキル基であり、Xが、下記式(8)で表される2価の構成単位である、一般式(1)で表される上記[1]又は[2]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000012














(In the formula (4), Rb represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group. In the formula (7), Rc represents a hydrogen atom, a halogen atom, 1 to carbon atoms. 16 represents an alkyl group or a substituted alkyl group, and in formula (3), m represents the number of repeating units and is 1 to 5.
[2] R 1 to R 4 in the general formula (1) are an alkyl group or substituted alkyl group having 1 to 16 carbon atoms, and X is represented by the formula (3) or the formula (4). The polymer compound according to the above [1], which is a divalent structural unit and represented by the general formula (1).
[3] R 1 to R 4 in the general formula (2) are alkyl groups or substituted alkyl groups having 1 to 16 carbon atoms, and X is represented by the formula (3) or the formula (6). The polymer compound according to the above [1], which is a divalent structural unit and represented by the general formula (2).
[4] R 1 to R 4 in the general formula (1) are a C 1-16 alkyl group or substituted alkyl group, and X is a divalent structural unit represented by the following formula (8) The polymer compound according to the above [1] or [2] represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000013

[5]前記一般式(2)中のR1~R4が、炭素数1~16のアルキル基又は置換アルキル基であり、Xが、前記式(6)で表される2価の構成単位である、一般式(2)で表される上記[1]又は[3]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000013

[5] R 1 to R 4 in the general formula (2) are alkyl groups or substituted alkyl groups having 1 to 16 carbon atoms, and X is a divalent structural unit represented by the formula (6) The polymer compound according to the above [1] or [3], which is represented by the general formula (2).
[6]バルクヘテロ型光電変換層を有する有機光電変換素子であって、該バルクヘテロ型光電変換層が下記一般式(1)又は一般式(2)で表される高分子化合物とC[70]フラーレン誘導体とを含む、有機光電変換素子。 [6] An organic photoelectric conversion device having a bulk hetero photoelectric conversion layer, wherein the bulk hetero photoelectric conversion layer is a polymer compound represented by the following general formula (1) or general formula (2) and C [70] fullerene An organic photoelectric conversion element comprising a derivative.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014




Figure JPOXMLDOC01-appb-C000015
(式(1)又は式(2)中、Xは、下記式(3)~式(7)のいずれかで表される2価の構成単位を示し、Raは、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基を示し、R1、R2、R3、及びR4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基、又は炭素数1~12のアルコキシ基を示し、nは繰り返し単位数を示し、2~100である。)
Figure JPOXMLDOC01-appb-C000015
(In formula (1) or formula (2), X represents a divalent structural unit represented by any of the following formulas (3) to (7), and Ra represents a hydrogen atom, a halogen atom, carbon R 1 , R 2 , R 3 , and R 4 each independently represents a hydrogen atom, a halogen atom, a C 1-16 alkyl group or a substituted alkyl group. Or an alkoxy group having 1 to 12 carbon atoms, n represents the number of repeating units, and is 2 to 100.)
Figure JPOXMLDOC01-appb-C000016














(式(4)中、Rbは、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基を示し、式(7)中、Rcは、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基を示し、式(3)中、mは繰り返し単位数を示し、1~5である。)
[7]前記一般式(1)中のR1~R4が、炭素数1~16のアルキル基又は置換アルキル基であり、Xが、前記式(3)又は式(4)で表される2価の構成単位である、上記[6]に記載の有機光電変換素子。
[8]前記一般式(2)中のR1~R4が、炭素数1~16のアルキル基又は置換アルキル基であり、Xが、前記式(3)又は式(6)で表される2価の構成単位である、上記[6]に記載の有機光電変換素子。
[9]前記一般式(1)中のR1~R4が、炭素数1~16のアルキル基又は置換アルキル基であり、Xが、下記式(8)で表される2価の構成単位である、上記[6]又は[7]に記載の有機光電変換素子。
Figure JPOXMLDOC01-appb-C000016














(In the formula (4), Rb represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group. In the formula (7), Rc represents a hydrogen atom, a halogen atom, 1 to carbon atoms. 16 represents an alkyl group or a substituted alkyl group, and in formula (3), m represents the number of repeating units and is 1 to 5.
[7] R 1 to R 4 in the general formula (1) are alkyl groups or substituted alkyl groups having 1 to 16 carbon atoms, and X is represented by the formula (3) or the formula (4). The organic photoelectric conversion device according to the above [6], which is a divalent structural unit.
[8] R 1 to R 4 in the general formula (2) are an alkyl group or substituted alkyl group having 1 to 16 carbon atoms, and X is represented by the formula (3) or the formula (6). The organic photoelectric conversion device according to the above [6], which is a divalent structural unit.
[9] R 1 to R 4 in the general formula (1) are alkyl groups or substituted alkyl groups having 1 to 16 carbon atoms, and X is a divalent structural unit represented by the following formula (8) The organic photoelectric conversion element according to the above [6] or [7].
Figure JPOXMLDOC01-appb-C000017


[10]前記一般式(2)中のR1~R4が、炭素数1~16のアルキル基又は置換アルキル基であり、Xが、前記式(6)で表される2価の構成単位である、上記[6]又は[8]に記載の有機光電変換素子。
[11]前記バルクヘテロ型光電変換層を構成する前記一般式(1)又は一般式(2)で表される高分子化合物とC[70]フラーレン誘導体との質量比が、1:2~1:5である、上記[6]~[10]のいずれかに記載の有機光電変換素子。
[12]C[70]フラーレン誘導体が、PC[70]BMである、上記[6]~[11]のいずれかに記載の有機光電変換素子。
[13]前記バルクヘテロ型光電変換層は、下記一般式(I)で表される脂肪族チオール及び下記一般式(II)で表されるヨウ素化合物の少なくとも一方を含む、上記[6]~[12]のいずれかに記載の有機光電変換素子。
Figure JPOXMLDOC01-appb-C000017


[10] R 1 to R 4 in the general formula (2) are alkyl groups or substituted alkyl groups having 1 to 16 carbon atoms, and X is a divalent structural unit represented by the formula (6) The organic photoelectric conversion device according to the above [6] or [8].
[11] The mass ratio of the polymer compound represented by the general formula (1) or the general formula (2) constituting the bulk hetero photoelectric conversion layer and the C [70] fullerene derivative is 1: 2 to 1: 5. The organic photoelectric conversion device according to any one of [6] to [10], which is 5.
[12] The organic photoelectric conversion device according to any one of [6] to [11] above, wherein the C [70] fullerene derivative is PC [70] BM.
[13] The bulk hetero photoelectric conversion layer includes at least one of an aliphatic thiol represented by the following general formula (I) and an iodine compound represented by the following general formula (II). ] The organic photoelectric conversion element in any one of.
Figure JPOXMLDOC01-appb-C000018
(式中、RMは炭素数3~15のアルキレン基を示し、RNは炭素数3~15のアルキレン基を示す。)
[14]前記脂肪族チオールがオクタンジチオールであり、前記ヨウ素化合物がジヨードオクタンである、上記[13]に記載の有機光電変換素子。
[15]前記バルクヘテロ型光電変換層の可視光領域の透過率が、厚さが100nmで、50%以上である、上記[6]~[14]のいずれかに記載の有機光電変換素子。
[16]前記バルクヘテロ型光電変換層が、厚さが100nmで、JIS Z 8729-1994に規定されるCIE(国際照明委員会)L***表色系において、C光源及び2°視野条件で測定される彩度C*値が10以下である、上記[6]~[15]のいずれかに記載の有機光電変換素子。
[17]上記[6]~[16]のいずれかに記載の有機光電変換素子を含む、有機薄膜太陽電池。
[18]上記[6]~[17]のいずれかに記載の有機光電変換素子の製造方法であって、
透明基板上に陽極となる電極を形成する工程、
前記一般式(1)又は一般式(2)で表される高分子化合物と前記C[70]フラーレン誘導体とを含むバルクヘテロ型光電変換層を形成する工程、
陰極となる電極を形成する工程、
を含む、有機光電変換素子の製造方法。
Figure JPOXMLDOC01-appb-C000018
(Wherein, R M represents an alkylene group having 3 to 15 carbon atoms, R N denotes an alkylene group having 3 to 15 carbon atoms.)
[14] The organic photoelectric conversion element according to the above [13], wherein the aliphatic thiol is octanedithiol and the iodine compound is diiodooctane.
[15] The organic photoelectric conversion element according to any one of the above [6] to [14], wherein the bulk hetero photoelectric conversion layer has a visible light region transmittance of 100 nm and 50% or more.
[16] The bulk hetero photoelectric conversion layer has a thickness of 100 nm, a C light source and a 2 ° field of view in a CIE (International Commission on Illumination) L * a * b * color system defined in JIS Z 8729-1994. The organic photoelectric conversion device according to any one of [6] to [15] above, wherein a saturation C * value measured under conditions is 10 or less.
[17] An organic thin-film solar cell comprising the organic photoelectric conversion element according to any one of [6] to [16].
[18] A method for producing an organic photoelectric conversion device according to any one of [6] to [17],
Forming an electrode serving as an anode on a transparent substrate;
Forming a bulk hetero photoelectric conversion layer comprising the polymer compound represented by the general formula (1) or the general formula (2) and the C [70] fullerene derivative;
Forming a cathode electrode;
The manufacturing method of the organic photoelectric conversion element containing this.
 本発明によれば、バルクヘテロ型光電変換層を構成する新規な高分子化合物、また光電変換効率が高く、かつ無彩色で透明な、該ポリマーを含む、バルクへテロ型光電変換層を有する有機光電変換素子を提供することができる。 According to the present invention, an organic photoelectric compound having a bulk hetero-type photoelectric conversion layer comprising the novel polymer compound constituting the bulk hetero-type photoelectric conversion layer, and having a high photoelectric conversion efficiency, an achromatic and transparent polymer, and the polymer. A conversion element can be provided.
本発明の有機光電変換素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic photoelectric conversion element of this invention. 本発明の高分子化合物である(1-1)又は(2-1)と、PC[70]BMとからなるバルクへテロ型光電変換層、及びP3HTとPC[70]BMとからなるバルクへテロ型光電変換層の透過スペクトルを示す。Bulk hetero-type photoelectric conversion layer comprising PC [70] BM and (1-1) or (2-1) which is the polymer compound of the present invention, and bulk comprising P3HT and PC [70] BM The transmission spectrum of a terror-type photoelectric conversion layer is shown. 本発明及び従来のバルクへテロ型光電変換層の外観の写真の一例を示し、(a)の写真がP3HT(3-ヘキシルチオフェン)とPC[60]BMとを含む、バルクへテロ型光電変換層の写真であり、(b)の左の写真が本発明の高分子化合物(1-1)とPC[70]BMとを含むバルクへテロ型光電変換層の写真であり、右の写真がP3HTとPC[70]BMとからなる光電変換層の写真である。1 shows an example of a photograph of the appearance of the present invention and a conventional bulk hetero photoelectric conversion layer, wherein the photograph of (a) contains P3HT (3-hexylthiophene) and PC [60] BM. The photograph on the left of (b) is a photograph of the bulk hetero photoelectric conversion layer containing the polymer compound (1-1) of the present invention and PC [70] BM, and the photograph on the right is It is a photograph of the photoelectric converting layer which consists of P3HT and PC [70] BM.
[高分子化合物]
 本発明の高分子化合物は、下記一般式(1)又は一般式(2)で表される。
[Polymer compound]
The polymer compound of the present invention is represented by the following general formula (1) or general formula (2).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019


Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式(1)又は式(2)中、nは繰り返し単位の数を示し、2~100である。nが2未満であると、π電子共役系が充分に伸長しないため、十分な太陽光吸収効率が得られず好ましくない。また、nが100を超えると、溶媒への溶解性が低下し、後述するような湿式法による成膜が困難になるため好ましくない。このため、nとしては、好ましくは5~90、より好ましくは10~50である。
 なお、上記nは、ポリマーの重量平均分子量を基に算出される値であり、上記重量平均分子量は、実施例に記載の方法により測定された値である。
In the formula (1) or the formula (2), n represents the number of repeating units and is 2 to 100. When n is less than 2, the π-electron conjugated system does not extend sufficiently, so that sufficient solar light absorption efficiency cannot be obtained, which is not preferable. On the other hand, when n exceeds 100, the solubility in a solvent is lowered, and film formation by a wet method as described later becomes difficult. Therefore, n is preferably 5 to 90, more preferably 10 to 50.
In addition, said n is a value calculated based on the weight average molecular weight of a polymer, and the said weight average molecular weight is a value measured by the method as described in an Example.
 式(1)又は式(2)中、R1、R2、R3、及びR4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基、炭素数1~12のアルコキシ基を示す。
 炭素数1~16のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基(異性体を含む)、ヘキシル基(異性体を含む)、ヘプチル基(異性体を含む)、オクチル基(異性体を含む)、ノニル基(異性体を含む)、デシル基(異性体を含む)、ウンデシル基(異性体を含む)、及びドデシル基(異性体を含む)等が挙げられる。
 炭素数1~16の置換アルキル基としては、上記のアルキル基の水素原子が、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子や、酸素原子、ケイ素原子、硫黄原子、リン原子等で置換されたアルキル基が挙げられる。
 炭素数1~12のアルコキシ基としては、上記のアルキル基と同様である。
 これらの中でも、溶媒への溶解性を向上させる観点から、炭素数1~16のアルキル基又は置換アルキル基が好ましく、アルキル基がより好ましい。また、R1~R4が、同一であることが好ましい。さらに、アルキル基の中でも、炭素数6~15のアルキル基が好ましく、2-エチルヘキシル基がより好ましい。
In Formula (1) or Formula (2), R 1 , R 2 , R 3 , and R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group, 1 to 12 alkoxy groups are shown.
Examples of the alkyl group having 1 to 16 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group (isomer) ), Hexyl group (including isomer), heptyl group (including isomer), octyl group (including isomer), nonyl group (including isomer), decyl group (including isomer), undecyl Groups (including isomers) and dodecyl groups (including isomers).
As the substituted alkyl group having 1 to 16 carbon atoms, a hydrogen atom of the above alkyl group is a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, an oxygen atom, a silicon atom, a sulfur atom, a phosphorus atom, or the like. And an alkyl group substituted with.
The alkoxy group having 1 to 12 carbon atoms is the same as the above alkyl group.
Among these, from the viewpoint of improving solubility in a solvent, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group is preferable, and an alkyl group is more preferable. R 1 to R 4 are preferably the same. Further, among the alkyl groups, an alkyl group having 6 to 15 carbon atoms is preferable, and a 2-ethylhexyl group is more preferable.
 式(2)中、Raは、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基を示す。炭素数1~16のアルキル基又は置換アルキル基は、上述した、R1、R2、R3、及びR4と同じである。これらの中でも、溶媒への溶解性を向上させる観点から、炭素数1~16のアルキル基又は置換アルキル基が好ましく、アルキル基がより好ましい。また、アルキル基の中でも、炭素数6~15のアルキル基が好ましく、n-ヘキシル基がより好ましい。 In formula (2), Ra represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group. The alkyl group having 1 to 16 carbon atoms or the substituted alkyl group is the same as R 1 , R 2 , R 3 , and R 4 described above. Among these, from the viewpoint of improving solubility in a solvent, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group is preferable, and an alkyl group is more preferable. Among the alkyl groups, an alkyl group having 6 to 15 carbon atoms is preferable, and an n-hexyl group is more preferable.
 式(1)又は式(2)中、Xは、下記(3)~(7)のいずれかで表される2価の構成単位を示す。

In formula (1) or formula (2), X represents a divalent structural unit represented by any of the following (3) to (7).

Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021













 式(3)中のmは、繰り返し単位数を示し、1~5である。好ましくは,1~3であり、さらに好ましくは2である。式(4)中のRbは、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基を示す。炭素数1~16のアルキル基又は置換アルキル基は、上述した、R1、R2、R3、及びR4と同じである。これらの中でも、炭素数1~16のアルキル基又は置換アルキル基が好ましく、溶媒への溶解性を向上させるという観点から、炭素数6~15のアルキル基が好ましく、炭素数6~10のアルキル基がより好ましい。
 式(7)中のRcは、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基を示す。炭素数1~16のアルキル基又は置換アルキル基は、上述した、R1、R2、R3、及びR4と同じである。これらの中でも、炭素数1~16のアルキル基又は置換アルキル基が好ましく、溶媒への溶解性を向上させるという観点から、炭素数6~15のアルキル基がより好ましく、炭素数6~10のアルキル基がより好ましい。
M in the formula (3) represents the number of repeating units and is 1 to 5. Preferably, it is 1 to 3, more preferably 2. Rb in the formula (4) represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group. The alkyl group having 1 to 16 carbon atoms or the substituted alkyl group is the same as R 1 , R 2 , R 3 , and R 4 described above. Among these, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group is preferable, and from the viewpoint of improving solubility in a solvent, an alkyl group having 6 to 15 carbon atoms is preferable, and an alkyl group having 6 to 10 carbon atoms is preferable. Is more preferable.
Rc in the formula (7) represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group. The alkyl group having 1 to 16 carbon atoms or the substituted alkyl group is the same as R 1 , R 2 , R 3 , and R 4 described above. Among these, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group is preferable, and from the viewpoint of improving solubility in a solvent, an alkyl group having 6 to 15 carbon atoms is more preferable, and an alkyl group having 6 to 10 carbon atoms is preferable. Groups are more preferred.
 式(1)中、Xが、前記式(3)又は(4)で表される2価の構成単位であることが好ましく、より好ましくは、Xが、下記式(8)で表される2価の構成単位である。 In Formula (1), X is preferably a divalent structural unit represented by Formula (3) or (4), and more preferably X is represented by Formula (8) below. Unit of value.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022

 式(2)中、Xが、前記式(3)又は(6)で表される2価の構成単位であることが好ましく、より好ましくは、Xが、前記式(6)で表される2価の構成単位である。 In formula (2), X is preferably a divalent structural unit represented by formula (3) or (6), more preferably X is represented by formula (6). Unit of value.
[高分子化合物の合成方法]
 本発明の高分子化合物は、公知の方法で合成することができ、特に制限はないが、一般式(1)で表される高分子化合物は、例えば、以下の合成スキームに従って合成することができる。すなわち、金属触媒の存在下で、高分子化合物を構成するモノマーをカップリング反応により重合させる方法により、合成することができる。
[Method of synthesizing polymer compound]
The polymer compound of the present invention can be synthesized by a known method and is not particularly limited. However, the polymer compound represented by the general formula (1) can be synthesized, for example, according to the following synthesis scheme. . That is, it can be synthesized by a method in which a monomer constituting the polymer compound is polymerized by a coupling reaction in the presence of a metal catalyst.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023




 工程1は、出発原料をハロゲン化して中間体を合成する工程である。その際に用いる試薬としては、例えば、N-ブロモコハク酸イミド等が挙げられる。 Step 1 is a step of synthesizing an intermediate by halogenating a starting material. Examples of the reagent used at that time include N-bromosuccinimide and the like.
 工程2は、中間体と上記式(3)~(7)のいずれかで表される2価の構成単位Xを有するモノマーを、金属錯体触媒の存在下で、カップリング反応により重合し、本発明の高分子化合物を合成する工程である。その際に用いる反応としては、特に限定されず、例えば、鈴木カップリング反応、スティルカップリング反応等を用いることができる。 In step 2, an intermediate and a monomer having a divalent structural unit X represented by any of the above formulas (3) to (7) are polymerized by a coupling reaction in the presence of a metal complex catalyst. This is a step of synthesizing the polymer compound of the invention. The reaction used in that case is not particularly limited, and for example, a Suzuki coupling reaction, a Still coupling reaction, or the like can be used.
 金属錯体としては、特に制限されず、例えば、銅錯体、ニッケル錯体、パラジウム錯体等の還元触媒が挙げられる。これらの中でも、ニッケル錯体、パラジウム錯体が好ましい。
 ニッケル錯体としては、例えば、ビス(1,5-シクロオクタジエン)ニッケル、テトラキス(トリフェニルホスフィン)ニッケル、ジクロロ(2,2'-ビピリジン)ニッケル等が挙げられ、これらの中でも、重合性能の観点から、ビス(1,5-シクロオクタジエン)ニッケルが好ましい。
 パラジウム錯体の例としては、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロ{1,3-ビス(ジフェニルホスフィン)プロパン}パラジウム、トリス(ジベンジリデン)ジパラジウム等が挙げられる。これらの中でも、重合性能の観点から、トリス(ジベンジリデン)ジパラジウムが好ましい。
 なお、これらの金属錯体は、単独で又は2種以上組み合わせて用いてもよい。
It does not restrict | limit especially as a metal complex, For example, reduction catalysts, such as a copper complex, a nickel complex, and a palladium complex, are mentioned. Among these, a nickel complex and a palladium complex are preferable.
Examples of the nickel complex include bis (1,5-cyclooctadiene) nickel, tetrakis (triphenylphosphine) nickel, dichloro (2,2′-bipyridine) nickel, and among these, the viewpoint of polymerization performance Therefore, bis (1,5-cyclooctadiene) nickel is preferable.
Examples of the palladium complex include tetrakis (triphenylphosphine) palladium, dichloro {1,3-bis (diphenylphosphine) propane} palladium, tris (dibenzylidene) dipalladium and the like. Among these, tris (dibenzylidene) dipalladium is preferable from the viewpoint of polymerization performance.
In addition, you may use these metal complexes individually or in combination of 2 or more types.
 工程2は、通常は、空気中又は不活性雰囲気下で行われ、好ましくは、不活性雰囲気下で行われる。不活性雰囲気としては、窒素ガス又はアルゴンガス雰囲気が挙げられる。
 重合反応は、特に制限されないが、加熱還流下で行うことが好ましい。加熱温度としては、通常室温~180℃、好ましくは80~150℃、より好ましくは80~120℃である。重合反応時の圧力としては、特に制限はないが、通常は常圧で行う。
 重合時間としては、使用するモノマーや触媒の種類、重合時の温度や圧力等によっても異なるが、通常1~240時間、好ましくは20~120時間である。
Step 2 is usually performed in air or under an inert atmosphere, and preferably performed under an inert atmosphere. Examples of the inert atmosphere include nitrogen gas or argon gas atmosphere.
The polymerization reaction is not particularly limited, but is preferably performed under heating and reflux. The heating temperature is usually room temperature to 180 ° C., preferably 80 to 150 ° C., more preferably 80 to 120 ° C. Although there is no restriction | limiting in particular as a pressure at the time of a polymerization reaction, Usually, it carries out at a normal pressure.
The polymerization time is usually 1 to 240 hours, preferably 20 to 120 hours, although it varies depending on the type of monomer and catalyst used, the temperature and pressure during polymerization, and the like.
 一般式(2)で表される高分子化合物は、一般式(1)で表される高分子化合物の合成方法と同様に、例えば、金属触媒の存在下で、高分子化合物を構成するモノマーをカップリング反応により重合させる方法により、合成することができる。 The polymer compound represented by the general formula (2) is prepared by, for example, the monomer constituting the polymer compound in the presence of a metal catalyst in the same manner as the method for synthesizing the polymer compound represented by the general formula (1). It can be synthesized by a method of polymerization by a coupling reaction.
 すなわち、出発原料をハロゲン化して中間体を合成し、中間体と上記式(3)~(7)のいずれかで表される2価の構成単位Xを有するモノマーを、金属触媒の存在下で、カップリング反応により重合し、本発明の高分子化合物を合成することで、一般式(2)で表される高分子化合物を合成することができる。その際に用いる反応としては、特に限定されず、例えば、鈴木カップリング反応、スティルカップリング反応、直接アリール化反応等を用いることができる。 That is, a starting material is halogenated to synthesize an intermediate, and the intermediate and a monomer having a divalent structural unit X represented by any one of the above formulas (3) to (7) are synthesized in the presence of a metal catalyst. The polymer compound represented by the general formula (2) can be synthesized by polymerizing by a coupling reaction to synthesize the polymer compound of the present invention. The reaction used at that time is not particularly limited, and for example, a Suzuki coupling reaction, a Still coupling reaction, a direct arylation reaction, or the like can be used.
[有機光電変換素子]
 本発明の有機光電変換素子は、バルクヘテロ型光電変換層を有する有機光電変換素子であって、該バルクヘテロ型光電変換層が下記一般式(1)で表される高分子化合物とC[70]フラーレン誘導体とを含む有機光電変換素子である。
[Organic photoelectric conversion element]
The organic photoelectric conversion element of the present invention is an organic photoelectric conversion element having a bulk hetero photoelectric conversion layer, and the bulk hetero photoelectric conversion layer is a polymer compound represented by the following general formula (1) and C [70] fullerene. It is an organic photoelectric conversion element containing a derivative.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024




Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 式(1)又は式(2)中、nは繰り返し単位の数を示し、2~100である。nが2未満であると、π電子共役系が充分に伸長しないため、十分な太陽光吸収効率が得られず好ましくない。また、nが100を超えると、溶媒への溶解性が低下し、後述するような湿式法による成膜が困難になるため好ましくない。このため、nとしては、好ましくは5~90、より好ましくは10~50である。
 なお、上記nは、ポリマーの重量平均分子量を基に算出される値であり、上記重量平均分子量は、実施例に記載の方法により測定された値である。
In the formula (1) or the formula (2), n represents the number of repeating units and is 2 to 100. When n is less than 2, the π-electron conjugated system does not extend sufficiently, so that sufficient solar light absorption efficiency cannot be obtained, which is not preferable. On the other hand, when n exceeds 100, the solubility in a solvent is lowered, and film formation by a wet method as described later becomes difficult. Therefore, n is preferably 5 to 90, more preferably 10 to 50.
In addition, said n is a value calculated based on the weight average molecular weight of a polymer, and the said weight average molecular weight is a value measured by the method as described in an Example.
 式(1)又は式(2)中、R1、R2、R3、及びR4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基、炭素数1~12のアルコキシ基を示す。
 炭素数1~16のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基(異性体を含む)、ヘキシル基(異性体を含む)、ヘプチル基(異性体を含む)、オクチル基(異性体を含む)、ノニル基(異性体を含む)、デシル基(異性体を含む)、ウンデシル基(異性体を含む)、及びドデシル基(異性体を含む)等が挙げられる。
 炭素数1~16の置換アルキル基としては、上記のアルキル基の水素原子が、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子や、酸素原子、ケイ素原子、硫黄原子、リン原子等で置換されたアルキル基が挙げられる。
 炭素数1~12のアルコキシ基としては、上記のアルキル基と同様である。
 これらの中でも、溶媒への溶解性を向上させる観点から、炭素数1~16のアルキル基又は置換アルキル基が好ましく、アルキル基がより好ましい。また、R1~R4が、同一であることが好ましい。さらに、アルキル基の中でも、炭素数6~15のアルキル基が好ましく、2-エチルヘキシル基がより好ましい。
In Formula (1) or Formula (2), R 1 , R 2 , R 3 , and R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group, 1 to 12 alkoxy groups are shown.
Examples of the alkyl group having 1 to 16 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group (isomer) ), Hexyl group (including isomer), heptyl group (including isomer), octyl group (including isomer), nonyl group (including isomer), decyl group (including isomer), undecyl Groups (including isomers) and dodecyl groups (including isomers).
As the substituted alkyl group having 1 to 16 carbon atoms, a hydrogen atom of the above alkyl group is a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, an oxygen atom, a silicon atom, a sulfur atom, a phosphorus atom, or the like. And an alkyl group substituted with.
The alkoxy group having 1 to 12 carbon atoms is the same as the above alkyl group.
Among these, from the viewpoint of improving solubility in a solvent, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group is preferable, and an alkyl group is more preferable. R 1 to R 4 are preferably the same. Further, among the alkyl groups, an alkyl group having 6 to 15 carbon atoms is preferable, and a 2-ethylhexyl group is more preferable.
 式(2)中、Raは、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基を示す。炭素数1~16のアルキル基又は置換アルキル基は、上述した、R1、R2、R3、及びR4と同じである。これらの中でも、溶媒への溶解性を向上させる観点から、炭素数1~16のアルキル基又は置換アルキル基が好ましく、アルキル基がより好ましい。また、アルキル基の中でも、炭素数6~15のアルキル基が好ましく、n-ヘキシル基がより好ましい。 In formula (2), Ra represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group. The alkyl group having 1 to 16 carbon atoms or the substituted alkyl group is the same as R 1 , R 2 , R 3 , and R 4 described above. Among these, from the viewpoint of improving solubility in a solvent, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group is preferable, and an alkyl group is more preferable. Among the alkyl groups, an alkyl group having 6 to 15 carbon atoms is preferable, and an n-hexyl group is more preferable.
 式(1)又は式(2)中、Xは、下記(3)~(7)のいずれかで表される2価の構成単位を示す。 In formula (1) or formula (2), X represents a divalent structural unit represented by any of the following (3) to (7).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026













 式(3)中のmは、繰り返し単位数を示し、1~5である。好ましくは,1~3であり、さらに好ましくは2である。式(4)中のRbは、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基を示す。炭素数1~16のアルキル基又は置換アルキル基は、上述した、R1、R2、R3、及びR4と同じである。これらの中でも、炭素数1~16のアルキル基又は置換アルキル基が好ましく、溶媒への溶解性を向上させるという観点から、炭素数6~15のアルキル基が好ましく、炭素数6~10のアルキル基がより好ましい。
 式(7)中のRcは、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基を示す。炭素数1~16のアルキル基又は置換アルキル基は、上述した、R1、R2、R3、及びR4と同じである。これらの中でも、炭素数1~16のアルキル基又は置換アルキル基が好ましく、溶媒への溶解性を向上させるという観点から、炭素数6~15のアルキル基がより好ましく、炭素数6~10のアルキル基がより好ましい。
M in the formula (3) represents the number of repeating units and is 1 to 5. Preferably, it is 1 to 3, more preferably 2. Rb in the formula (4) represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group. The alkyl group having 1 to 16 carbon atoms or the substituted alkyl group is the same as R 1 , R 2 , R 3 , and R 4 described above. Among these, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group is preferable, and from the viewpoint of improving solubility in a solvent, an alkyl group having 6 to 15 carbon atoms is preferable, and an alkyl group having 6 to 10 carbon atoms is preferable. Is more preferable.
Rc in the formula (7) represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group. The alkyl group having 1 to 16 carbon atoms or the substituted alkyl group is the same as R 1 , R 2 , R 3 , and R 4 described above. Among these, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group is preferable, and from the viewpoint of improving solubility in a solvent, an alkyl group having 6 to 15 carbon atoms is more preferable, and an alkyl group having 6 to 10 carbon atoms is preferable. Groups are more preferred.
 式(1)中、Xが、前記式(3)又は(4)で表される2価の構成単位であることが好ましく、より好ましくは、Xが、下記式(8)で表される2価の構成単位である。 In Formula (1), X is preferably a divalent structural unit represented by Formula (3) or (4), and more preferably X is represented by Formula (8) below. Unit of value.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027

 式(2)中、Xが、前記式(3)又は(6)で表される2価の構成単位であることが好ましく、より好ましくは、Xが、前記式(6)で表される2価の構成単位である。 In formula (2), X is preferably a divalent structural unit represented by formula (3) or (6), more preferably X is represented by formula (6). Unit of value.
 図1に本発明の有機光電変換素子の断面図の一例を示す。図1において、有機光電変換素子1は、透明基板(図示せず)上に積層された一対の陽極2、陰極4間に、バルクヘテロ型光電変換層3を有する有機光電変換素子である。 FIG. 1 shows an example of a cross-sectional view of the organic photoelectric conversion element of the present invention. In FIG. 1, an organic photoelectric conversion element 1 is an organic photoelectric conversion element having a bulk hetero photoelectric conversion layer 3 between a pair of an anode 2 and a cathode 4 stacked on a transparent substrate (not shown).
 有機光電変換素子とは、光エネルギー照射によって起電力を発生する素子のことであり、一般的には光エネルギーを電気的なエネルギーに変換する素子で光電変換層に電荷を取り出すための電極を配したものである。有機光電変換素子としては、有機薄膜太陽電池、フォトダイオード等の種々の有機半導体デバイスが挙げられる。これらの中でも、本発明においては、有機薄膜太陽電池に適している。 An organic photoelectric conversion element is an element that generates an electromotive force when irradiated with light energy. Generally, an element that converts light energy into electrical energy is provided with an electrode for taking out electric charges from the photoelectric conversion layer. It is a thing. Examples of the organic photoelectric conversion element include various organic semiconductor devices such as an organic thin film solar cell and a photodiode. Among these, in this invention, it is suitable for an organic thin film solar cell.
 本発明の有機光電変換素子において、バルクヘテロ型光電変換層は、上記一般式(1)又は一般式(2)で表される高分子化合物とC[70]フラーレン誘導体とを含むものである。 In the organic photoelectric conversion device of the present invention, the bulk hetero photoelectric conversion layer includes the polymer compound represented by the general formula (1) or the general formula (2) and a C [70] fullerene derivative.
 本発明において、C[70]フラーレン誘導体は、炭素原子数が70であるC70フラーレン及びC70フラーレンの少なくとも一部が修飾された化合物を含む概念をいう。C[70]フラーレン誘導体としては、例えば、フェニルC71ブチリックアシッドメチルエステル(PC[70]BM)インデンC70モノアダクト(IC[70]MA)、インデンC70ビスアダクト(IC[70]BA)挙げられる。これらの中でも、得られるバルクヘテロ型光変換層が無彩色になりやすいという点から、フェニルC71ブチリックアシッドメチルエステル(PC[70]BM)がより好ましい。
 また、バルクヘテロ型光電変換層は、本発明の効果が損なわれない範囲で、上記C[70]フラーレン誘導体以外のn型半導体材料として、例えば、C60、C76、C78、C82、C84、C90、C94をはじめとする無置換のフラーレン化合物、およびこれらの誘導体、1,4,5,8-ナフタレンテトラカルボキシリックジアンハイドライド(NTCDA)、3,4,9,10-ペリレンテトラカルボキシリックジアンハイドライド(PTCDA)、3,4,9,10-ペリレンテトラカルボキシリックビスベンズイミダゾール(PTCBI)、N,N'-ジオクチル-3,4,9,10-ナフチルテトラカルボキシジイミド(PTCDI-C8H)、2-(4-ビフェニリル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール(PBD)、2,5-ジ(1-ナフチル)-1,3,4-オキサジアゾール(BND)等のオキサゾール誘導体、3-(4-ビフェニリル)-4-フェニル-5-(4-t-ブチルフェニル)-1,2,4-トリアゾール(TAZ)等のトリアゾール誘導体、フェナントロリン誘導体、ホスフィンオキサイド誘導体、カーボンナノチューブ(CNT)、ポリ-p-フェニレンビニレン系重合体にシアノ基を導入した誘導体(CN-PPV)、等を含んでいてもよい。
In the present invention, C [70] fullerene derivative refers to a concept including a compound in which at least part of which is modified for C 70 fullerene and C 70 fullerene carbon atoms is 70. Examples of the C [70] fullerene derivative include phenyl C71 butyric acid methyl ester (PC [70] BM) indene C70 monoadduct (IC [70] MA) and indene C70 bisadduct (IC [70] BA). Among these, phenyl C71 butyric acid methyl ester (PC [70] BM) is more preferable because the obtained bulk hetero type light conversion layer tends to be achromatic.
In addition, the bulk hetero photoelectric conversion layer is, for example, C60, C76, C78, C82, C84, C90, C94 as an n-type semiconductor material other than the C [70] fullerene derivative as long as the effects of the present invention are not impaired. Unsubstituted fullerene compounds, and derivatives thereof, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA), 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) 3,4,9,10-perylenetetracarboxylic bisbenzimidazole (PTCBI), N, N′-dioctyl-3,4,9,10-naphthyltetracarboxydiimide (PTCDI-C8H), 2- (4- Biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-o Oxazole derivatives such as oxadiazole (PBD), 2,5-di (1-naphthyl) -1,3,4-oxadiazole (BND), 3- (4-biphenylyl) -4-phenyl-5- (4- Triazole derivatives such as t-butylphenyl) -1,2,4-triazole (TAZ), phenanthroline derivatives, phosphine oxide derivatives, carbon nanotubes (CNT), and derivatives obtained by introducing cyano groups into poly-p-phenylene vinylene polymers (CN-PPV), etc. may be included.
 本発明において、バルクヘテロ型光電変換層は、下記一般式(I)で表される脂肪族チオール及び下記一般式(II)で表されるヨウ素化合物の少なくとも一方を含むことが好ましい。

In the present invention, the bulk hetero photoelectric conversion layer preferably contains at least one of an aliphatic thiol represented by the following general formula (I) and an iodine compound represented by the following general formula (II).

Figure JPOXMLDOC01-appb-C000028
(式中、RMは炭素数3~15のアルキレン基を示し、RNは炭素数3~15のアルキレン基を示す。)
 脂肪族チオール及びヨウ素化合物を含むことにより、高分子化合物(1)の溶解性が向上し、かつ高分子化合物とC[70]フラーレン誘導体の層分離が促進し、変換効率が向上する。
 上記一般式(I)で表される脂肪族チオール及び上記一般式(II)で表されるヨウ素化合物と高分子化合物との質量比が、10:1~1:1であり、好ましくは5:1~1:1である。
Figure JPOXMLDOC01-appb-C000028
(Wherein, R M represents an alkylene group having 3 to 15 carbon atoms, R N denotes an alkylene group having 3 to 15 carbon atoms.)
By including the aliphatic thiol and iodine compound, the solubility of the polymer compound (1) is improved, and the layer separation of the polymer compound and the C [70] fullerene derivative is promoted, thereby improving the conversion efficiency.
The mass ratio of the aliphatic thiol represented by the general formula (I) and the iodine compound represented by the general formula (II) and the polymer compound is 10: 1 to 1: 1, preferably 5: 1: 1 to 1: 1.
 前記脂肪族チオールとして、オクタンジチオール、ブタンジチオール等が挙げられる。これらの中で、オクタンジチオールが好ましい。また、前記ヨウ素化合物として、ジヨードオクタン、ジヨードブタン等が挙げられ、これらの中で、ジヨードオクタンが好ましい。 Examples of the aliphatic thiol include octanedithiol and butanedithiol. Of these, octanedithiol is preferred. Examples of the iodine compound include diiodooctane and diiodobutane. Among these, diiodooctane is preferable.
 本発明において、前記一般式(1)又は一般式(2)で表される高分子化合物とC[70]フラーレン誘導体との質量比は、1:1~1:10であり、好ましくは1:2~1:5である。質量比がこの範囲にあれば、無彩色で透明なバルクヘテロ型光電変換層が得られるため好ましい。
 上記は、一般式(1)又は一般式(2)で表される高分子化合物が、近赤外領域に吸収スペクトルのピークを持ち、一方、C[70]フラーレン誘導体が500nm付近に吸収スペクトルのピークを持つが、両者を混合することで、混合物の可視光領域の吸収スペクトルが平坦になり、明確なピークを有さないためと考えられる。
In the present invention, the mass ratio of the polymer compound represented by the general formula (1) or the general formula (2) and the C [70] fullerene derivative is 1: 1 to 1:10, preferably 1: 2 to 1: 5. A mass ratio in this range is preferable because an achromatic and transparent bulk hetero photoelectric conversion layer can be obtained.
In the above, the polymer compound represented by the general formula (1) or the general formula (2) has an absorption spectrum peak in the near infrared region, while the C [70] fullerene derivative has an absorption spectrum around 500 nm. Although it has a peak, by mixing both, it is thought that the absorption spectrum in the visible light region of the mixture becomes flat and does not have a clear peak.
 前記バルクヘテロ型光電変換層の可視光領域(550nm付近)の透過率が、厚さが100nmで、50%以上であることが好ましく、60%以上がより好ましく、70%以上がさらに好ましい。透過率が、上記範囲にあると、光電変換層の透明性が高く、車、ビル又は一般家屋等の窓ガラス等に太陽電池として設置した場合、太陽光を充分採光できかつ高い視認性が得られるため好ましい。 The transmittance in the visible light region (near 550 nm) of the bulk hetero photoelectric conversion layer is preferably 50% or more, more preferably 60% or more, and even more preferably 70% or more when the thickness is 100 nm. When the transmittance is in the above range, the photoelectric conversion layer is highly transparent, and when it is installed as a solar cell on a window glass of a car, a building, or a general house, sunlight can be sufficiently collected and high visibility is obtained. Therefore, it is preferable.
 前記バルクヘテロ型光電変換層が、厚さが100nmで、JIS Z 8729-1994に規定されるCIE(国際照明委員会)L***表色系において、C光源及び2°視野条件で測定される彩度C*値が10以下であることが好ましく、4以下であることがさらに好ましい。彩度C*値が10以下であれば、着色が少なく、無彩色に近づくため好ましい。 The bulk hetero photoelectric conversion layer has a thickness of 100 nm and is measured with a C light source and a 2 ° viewing condition in a CIE (International Commission on Illumination) L * a * b * color system defined in JIS Z 8729-1994. The saturation C * value is preferably 10 or less, and more preferably 4 or less. A chroma C * value of 10 or less is preferable because it is less colored and approaches an achromatic color.
 本発明のバルクヘテロ型光電変換層の厚さは、30~300nmが好ましく、50~150nmがさらに好ましい。厚さがこの範囲にあれば、光電変換層は透明性が高く、かつ無彩色となるため好ましい。 The thickness of the bulk hetero photoelectric conversion layer of the present invention is preferably 30 to 300 nm, and more preferably 50 to 150 nm. If the thickness is within this range, the photoelectric conversion layer is preferable because it is highly transparent and has an achromatic color.
 陽極2は、透明電極であることが好ましく、例えば、スズドープ酸化インジウム(ITO),IrO2、In23、SnO2、酸化インジウム-酸化亜鉛(IZO)、ZnO(Ga、Alドープ)、MoO3等の材料から形成される透明半導体電極が挙げられる。電極の厚さは、好ましくは50~200nm、より好ましくは70~150nmである。 The anode 2 is preferably a transparent electrode. For example, tin-doped indium oxide (ITO), IrO 2 , In 2 O 3 , SnO 2 , indium oxide-zinc oxide (IZO), ZnO (Ga, Al doped), MoO Examples thereof include a transparent semiconductor electrode formed of a material such as 3 . The thickness of the electrode is preferably 50 to 200 nm, more preferably 70 to 150 nm.
 陰極4は、例えば、Ag、Al、Pt,Ir、Cr、ZnO、CNT、及びそれらの合金、複合体等が挙げられる。 Examples of the cathode 4 include Ag, Al, Pt, Ir, Cr, ZnO, CNT, and alloys and composites thereof.
 透明基板の可視光領域(550nm付近)の透過率は好ましくは80%以上であり、より好ましくは85%以上であり、更に好ましくは90%以上である。前記透明基板として、ガラス、プラスチック基板等が挙げられる。前記透明基板の厚さについては、通常0.1~10mm程度のものが用いられ、機械的強度、熱膨張係数、重量、コストの観点から選択されるが、特に制限されない。 The transmittance in the visible light region (near 550 nm) of the transparent substrate is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more. Examples of the transparent substrate include glass and plastic substrates. The thickness of the transparent substrate is usually about 0.1 to 10 mm, and is selected from the viewpoint of mechanical strength, thermal expansion coefficient, weight, and cost, but is not particularly limited.
 また、本発明の有機光電変換素子は、陽極2とバルクヘテロ型光電変換層の間に、ポリ(3,4)-エチレンジオキシチオフェン/ポリスチレンスルフォネート(PEDOT-PSS)等の正孔輸送層を、バルクヘテロ型光電変換層と陰極4の間に、バソクプロイン等の正孔ブロッキング層を設けることが好ましい。 In addition, the organic photoelectric conversion element of the present invention includes a hole transport layer such as poly (3,4) -ethylenedioxythiophene / polystyrene sulfonate (PEDOT-PSS) between the anode 2 and the bulk hetero photoelectric conversion layer. It is preferable to provide a hole blocking layer such as bathocuproine between the bulk hetero photoelectric conversion layer and the cathode 4.
[有機薄膜太陽電池]
 本発明の有機光電変換素子は、有機薄膜太陽電池として用いることができる。本願発明の有機光電変換素子を含む有機薄膜太陽電池は、光電変換効率が高く、バルクヘテロ型光電変換層は、透明性が高く、かつ無彩色の外観を有しており、シースル型有機薄膜太陽電池として使用することができる。
[Organic thin film solar cells]
The organic photoelectric conversion element of the present invention can be used as an organic thin film solar cell. The organic thin film solar cell including the organic photoelectric conversion element of the present invention has high photoelectric conversion efficiency, the bulk hetero type photoelectric conversion layer has high transparency and an achromatic appearance, and the sheath type organic thin film solar cell Can be used as
[有機光電変換素子の製造方法]
 本発明の有機光電変換素子の製造方法は、透明基板上に陽極となる電極を形成する工程、
前記一般式(1)又は一般式(2)で表される高分子化合物と前記C[70]フラーレン誘導体とを含むバルクヘテロ型光電変換層を形成する工程、陰極となる電極を形成する工程、を含む、有機光電変換素子の製造方法である。
[Method for producing organic photoelectric conversion element]
The method for producing an organic photoelectric conversion element of the present invention includes a step of forming an electrode serving as an anode on a transparent substrate,
A step of forming a bulk hetero photoelectric conversion layer containing the polymer compound represented by the general formula (1) or the general formula (2) and the C [70] fullerene derivative, and a step of forming an electrode serving as a cathode. It is a manufacturing method of the organic photoelectric conversion element containing.
(1-1 陽極形成工程)
 本発明における陽極形成工程は、透明基板上に陽極となる電極を形成する工程である。前記電極の形成方法としては、一般の電極の形成方法を用いることができる。例えば、スパッタリング法、真空蒸着法、イオンプレーティング法等の乾式法、また、ITOを形成する場合、ITO微粒子を含む溶液のディップコート法、スピンコート法等による湿式法を用いることができる。
(1-1 Anode formation process)
The anode forming step in the present invention is a step of forming an electrode serving as an anode on a transparent substrate. As a method for forming the electrode, a general electrode forming method can be used. For example, a dry method such as a sputtering method, a vacuum evaporation method, an ion plating method, or the like, and when forming ITO, a wet method such as a dip coating method or a spin coating method of a solution containing ITO fine particles can be used.
(1-2 光電変換層形成工程)
 光電変換層形成工程は、一般式(1)又は一般式(2)で表される高分子化合物とC[70]フラーレン誘導体とを含むバルクヘテロ型光電変換層3を形成する工程である。具体的には、陽極形成工程で形成した陽極上に、高分子化合物とC[70]フラーレン誘導体とを溶媒に溶解させ、混合分散した溶液を、塗布し、溶媒を乾燥させ、バルクヘテロ型光電変換層を形成する。溶媒としては、特に限定されず、前述したようにクロロベンゼン、オルトジクロロベンゼン、クロロホルム、ジクロロメタン、トルエン、テトラヒドロフラン等を用いることができる。前記バルクヘテロ型光電変換層の形成方法としては、特に限定されないが、一般の湿式による、薄膜形成方法を用いることができる。例えば、ディップコート法、スピンコート法、グラビアコート法、ロールコート法等の形成方法が挙げられる。
(1-2 Photoelectric conversion layer forming step)
The photoelectric conversion layer forming step is a step of forming the bulk hetero photoelectric conversion layer 3 including the polymer compound represented by the general formula (1) or the general formula (2) and a C [70] fullerene derivative. Specifically, on the anode formed in the anode forming step, a polymer compound and C [70] fullerene derivative are dissolved in a solvent, a mixed and dispersed solution is applied, the solvent is dried, and bulk hetero photoelectric conversion is performed. Form a layer. The solvent is not particularly limited, and chlorobenzene, orthodichlorobenzene, chloroform, dichloromethane, toluene, tetrahydrofuran and the like can be used as described above. A method for forming the bulk hetero photoelectric conversion layer is not particularly limited, but a general wet thin film forming method can be used. For example, formation methods such as a dip coating method, a spin coating method, a gravure coating method, and a roll coating method are exemplified.
(1-3 陰極形成工程)
 陰極形成工程は、前記1-2で形成したバルクヘテロ型光電変換層上に、陰極となる電極を形成する工程である。陰極となる電極の形成方法としては、一般の電極の形成方法を用いることができる。例えば、スパッタリング法、真空蒸着法、イオンプレーティング法等を用いることができる。
(1-3 cathode formation process)
The cathode forming step is a step of forming an electrode serving as a cathode on the bulk hetero photoelectric conversion layer formed in 1-2. As a method for forming an electrode to be a cathode, a general electrode forming method can be used. For example, a sputtering method, a vacuum deposition method, an ion plating method, or the like can be used.
(1-4 正孔輸送層形成工程)
 本発明の光電変換素子の製造方法においては、陽極とバルクヘテロ型光電変換層との間に、正孔輸送層を形成する工程を設けていてもよい。
 前記正孔輸送層の形成方法としては、一般の薄膜形成方法を用いることができる。例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等により成膜する。その他、ディップコート法、スピンコート法、ロールコート法等の湿式法で成膜してもよい。
(1-4 Hole transport layer formation process)
In the method for producing a photoelectric conversion element of the present invention, a step of forming a hole transport layer may be provided between the anode and the bulk hetero photoelectric conversion layer.
As a method for forming the hole transport layer, a general thin film forming method can be used. For example, the film is formed by a vacuum deposition method, a sputtering method, an ion plating method, or the like. In addition, the film may be formed by a wet method such as a dip coating method, a spin coating method, or a roll coating method.
(1-5 正孔ブロッキング層形成工程)
 本発明の光電変換素子の製造方法においては、光電変換層と陰極との間に、さらに正孔ブロッキング層を形成する工程を設けていてもよい。
 前正孔ブロック層の形成方法としては、一般の薄膜形成方法を用いることができる。例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等により成膜する。
 上記に示した工程を実施することにより、有機光電変換素子を製造することができる。
(1-5 Hole blocking layer forming step)
In the method for producing a photoelectric conversion element of the present invention, a step of forming a hole blocking layer may be further provided between the photoelectric conversion layer and the cathode.
As a method for forming the previous hole blocking layer, a general thin film forming method can be used. For example, the film is formed by a vacuum deposition method, a sputtering method, an ion plating method, or the like.
An organic photoelectric conversion element can be manufactured by implementing the process shown above.
 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 実施例において行った高分子化合物に係る測定方法を以下に示す。
(a)ポリマーの重量平均分子量測定
 GPC装置[東ソー(株)製、装置名「HLC-8228GPC」、カラム:製品名「SHODEX GPC KF-804L+GPC KF-805L」、カラム温度:40℃、検出器:UV検出器(254nm)、溶離液:THF、カラム流速:1.0ml/分、ポリスチレン換算]を用いて、得られたポリマーの標準ポリスチレン換算の重量平均分子量(Mw)及び高分子ポリマーの多分散度(Mw/Mn)を測定した。また、繰り返し単位数nは、この重量平均分子量から算出した。
(b)1H-NMR測定
 FT-NMR装置(JEOL製、装置名「JNM-A500」)を用いた。
The measuring method concerning the high molecular compound performed in the Example is shown below.
(A) Weight average molecular weight measurement of polymer GPC apparatus [manufactured by Tosoh Corporation, apparatus name “HLC-8228GPC”, column: product name “SHODEX GPC KF-804L + GPC KF-805L”, column temperature: 40 ° C., detector: Using a UV detector (254 nm), eluent: THF, column flow rate: 1.0 ml / min, in terms of polystyrene], the polymer obtained has a weight average molecular weight (Mw) in terms of standard polystyrene and polydispersity of the polymer. The degree (Mw / Mn) was measured. The number of repeating units n was calculated from this weight average molecular weight.
(B) 1 H-NMR measurement An FT-NMR apparatus (manufactured by JEOL, apparatus name “JNM-A500”) was used.
 実施例、比較例で作製した光電変換層の可視光領域の透過率,彩度C*及び光電変換素子の光電変換効率の評価は以下の方法で行った。
 合成石英基板に、実施例3~6、比較例1~5で使用したバルクヘテロ型光電変換層形成用の混合溶液を、スピンコート法にて、厚みが100nmになるようにバルクヘテロ型光電変換層を形成し、透過率,彩度C*測定用のサンプルを作製した。得られたサンプルを用いて、下記の方法で、光透過率評価及び彩度の評価を行った。
(c)光透過率評価 分光光度計(島津製作所社製、型番:UV-3600)で、合成石英基板上に形成されたバルクヘテロ型光電変換層のUV-Vis-NIR光透過スペクトルを測定した。
(d)彩度の評価
 分光光度計(島津製作所社製、型番:UV-3600)を用い、光電変換層のL***表色系のL*値、a*値、b*値を測定した。また、得られたa*値、b*値を用い、数式(1)より、彩度C*を算出した。彩度C*が小さいほど、着色が少ない傾向(無彩色に近づく)となる。
Evaluation of the transmittance in the visible light region, the saturation C *, and the photoelectric conversion efficiency of the photoelectric conversion element of the photoelectric conversion layers prepared in Examples and Comparative Examples was performed by the following methods.
A bulk hetero photoelectric conversion layer is formed on a synthetic quartz substrate by spin coating using the mixed solution for forming the bulk hetero photoelectric conversion layer used in Examples 3 to 6 and Comparative Examples 1 to 5 so as to have a thickness of 100 nm. A sample for measurement of transmittance and saturation C * was formed. Using the obtained sample, light transmittance evaluation and saturation evaluation were performed by the following methods.
(C) Light transmittance evaluation The UV-Vis-NIR light transmission spectrum of the bulk hetero photoelectric conversion layer formed on the synthetic quartz substrate was measured with a spectrophotometer (manufactured by Shimadzu Corporation, model number: UV-3600).
(D) Evaluation of saturation Using a spectrophotometer (manufactured by Shimadzu Corporation, model number: UV-3600), L * a * b * color system L * value, a * value, b * value of the photoelectric conversion layer Was measured. Further, using the obtained a * value and b * value, the saturation C * was calculated from Equation (1). The smaller the saturation C * , the less the coloring tends to be (closer to an achromatic color).
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
 測定は、JIS Z 8729-1994に規定されるCIE(国際照明委員会)L***表色系において、C光源を用い、2°視野条件で行った。
 上記は、CIE(国際照明委員会)のL***色空間に従い一般に分類される。このシステムの3つの成分は、L*(スケール0~100で明るさを記載する)、a*(赤色/マゼンタ色-緑色軸;正の値が赤色/マゼンタ色であり、負の値が緑色である)及びb*(黄色-青色軸;正の値が黄色であり、負の値が青色である)からなる。
The measurement was performed in a CIE (International Commission on Illumination) L * a * b * color system defined in JIS Z 8729-1994, using a C light source and under 2 ° viewing conditions.
The above is generally classified according to the CIE (International Lighting Commission) L * a * b * color space. The three components of this system are: L * (indicating brightness on a scale 0-100), a * (red / magenta-green axis; positive values are red / magenta, negative values are green And b * (yellow-blue axis; positive values are yellow and negative values are blue).
(e)光電変換効率評価
 均一化した100Wタングステンランプの光を照射しながら、ソーラーシミュレータ(ワコム電創社製、型番:WXS-50S-1.5)及び電圧-電流発生器(ADC製、R6243)を用いて、短絡電流密度(JSC)、開放電圧(Voc)を測定した。また得られたデータを太陽電池特性計測ソフトウェア(システムハウスサンライズ製、品名:W32-R6244SOL-C)で処理することで、光電変換効率(PCE)を算出した。
(E) Photoelectric conversion efficiency evaluation A solar simulator (manufactured by Wacom Denso Co., model number: WXS-50S-1.5) and voltage-current generator (manufactured by ADC, R6243) while irradiating light of a uniform 100W tungsten lamp ) Were used to measure the short circuit current density (J SC ) and the open circuit voltage (Voc). The obtained data was processed with solar cell characteristic measurement software (manufactured by System House Sunrise, product name: W32-R6244SOL-C) to calculate photoelectric conversion efficiency (PCE).
[合成例1:オリゴマー(1a)の合成]
 4,4-ビス(2-エチルヘキシル)-4H-シクロペンタ[2,1-b;3,4-b’]ジチオフェン2.80g(6.97mmol)、4,7-ジブロモ-2,1,3-ベンゾチアジアゾール0.340g(1.16mmol)、炭酸カリウム2.40g(0.017mol)、Pd(OAc)20.081g(0.363mmol)とビバル酸0.212g(2.08mmol)を、500mLのシュレンク管中で、DMF100mLを用い溶解した。得られた溶液を5分間、窒素置換し、反応混合物を80℃で2時間攪拌後、有機層からDMFを留去するために、真空下で直接乾燥した。反応残留物を、溶離液としてヘキサンを用いてシリカゲルクロマトグラフィで精製し、これを、真空で濃縮した後、クロロホルム10mLに溶解し、SEC(サイズ排除クロマトグラフィー)(流速14mL/min)にて、分子量分布を測定した。以上の操作により、0.485gの暗紫色固体として、下記式で表される化合物(1a)を得た(収率45%)。
1H-NMR(500MHz、CDCl3): δ 8.08, 8.06, 8.05 (s, 2H, 3-CPDT, ピーク比(ラセミ2-エチルヘキシル基)1:2:1), 7.83 (s, 2H, BT), 7.21, 7.20 (d, 2H, J = 5.0 Hz, 6-CPDT), 6.99 (m, 2H, 5-CPDT), 1.98 (m, 8H, CH2), 1.27 (m, 4H, CH), 1.03-0.84 (m, 32H, CH2), 0.76 (t, J = 10.0 Hz, 12H, CH3).
13C NMR (125 MHz, CDCl3): δ 158.6, 158.3, 152.6, 139.1, 138.7, 137.0, 126.1(CH), 125.3 (CH), 124.2 (CH), 122.6 (CH), 53.7 (4-CPDT), 43.3 (CH2), 35.2 (CH), 34.2, 28.7, 27.4, 22.8 (CH2), 14.1, 10.7 (CH3).
FABMS: m/z = 937 [M]+.
[Synthesis Example 1: Synthesis of oligomer (1a)]
4,4-bis (2-ethylhexyl) -4H-cyclopenta [2,1-b; 3,4-b ′] dithiophene 2.80 g (6.97 mmol), 4,7-dibromo-2,1,3- Benzothiadiazole 0.340 g (1.16 mmol), potassium carbonate 2.40 g (0.017 mol), Pd (OAc) 2 0.081 g (0.363 mmol) and vibalic acid 0.212 g (2.08 mmol) In a Schlenk tube, 100 mL of DMF was used for dissolution. The resulting solution was purged with nitrogen for 5 minutes, and the reaction mixture was stirred at 80 ° C. for 2 hours, and then directly dried under vacuum to distill off DMF from the organic layer. The reaction residue was purified by silica gel chromatography using hexane as an eluent. After concentration in vacuo, the residue was dissolved in 10 mL of chloroform, and the molecular weight was determined by SEC (size exclusion chromatography) (flow rate: 14 mL / min). Distribution was measured. By the above operation, the compound (1a) represented by the following formula was obtained as 0.485 g of a dark purple solid (yield 45%).
1 H-NMR (500 MHz, CDCl 3 ): δ 8.08, 8.06, 8.05 (s, 2H, 3-CPDT, peak ratio (racemic 2-ethylhexyl group) 1: 2: 1), 83 (s, 2H, BT), 7.21, 7.20 (d, 2H, J = 5.0 Hz, 6-CPDT), 6.99 (m, 2H, 5-CPDT), 1.98 ( m, 8H, CH 2), 1.27 (m, 4H, CH), 1.03-0.84 (m, 32H, CH 2), 0.76 (t, J = 10.0 Hz, 12H, CH 3).
13 C NMR (125 MHz, CDCl 3 ): δ 158.6, 158.3, 152.6, 139.1, 138.7, 137.0, 126.1 (CH), 125.3 (CH), 124.2 (CH), 122.6 (CH), 53.7 (4-CPDT), 43.3 (CH 2 ), 35.2 (CH), 34.2, 28.7, 27.4 22.8 (CH 2 ), 14.1, 10.7 (CH 3 ).
FABMS: m / z = 937 [M] +.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030




[合成例2:オリゴマー(1b)の合成]
 オリゴマー(1a)、0.410g(0.438mmol)をTHF4.0mLで溶解し、さらにN-ブロモコハク酸イミド0.172g(0.966mmol)THF5.0mLで溶解し、0oC下で、オリゴマー1のTHF溶液に滴下した。得られた溶液を1時間攪拌した。真空下でTHFを留去し、生成物をヘキサンで溶解し、溶離液としてヘキサン用いてシリカゲルクロマトグラフィで精製した。さらに、溶離液としてクロロホルムを用いてSECにより、分子量分布を測定した。以上の操作により、0.347gの暗紫色油として、下記式で表される化合物(1b)を得た(収率72%)。
1H-NMR(500MHz、CDCl3): δ 8.03, 8.01, 7.99 (s, 2H, 3-CPDT, ピーク比(ラセミ2-エチルヘキシル基)1:2:1), 7.79 (s, 2H, BT), 6.98, 6.97, 6.96 (s, 2H, 5-CPDT, ピーク比(ラセミ2-エチルヘキシル基)1:2:1), 1.99-1.83 (m, 8H, CH2), 1.24 (m, 4H, CH), 1.03-0.59 (m, 32H, CH2, CH3).
13C NMR (125 MHz, CDCl3): δ 157.8, 157.0, 152.5, 139.5, 138.1, 137.3, 126.0, 125.4 (CH), 124.2 (CH), 122.5 (CH), 54.6 (4-CPDT), 43.1 (CH2), 35.2 (CH), 34.1, 28.5, 27.4, 22.8 (CH2), 14.0, 10.7 (CH3).
FABMS: m/z = 1095 [M]+.
[Synthesis Example 2: Synthesis of oligomer (1b)]
Oligomer (1a), 0.410 g (0.438 mmol), was dissolved in 4.0 mL of THF, and 0.172 g (0.966 mmol) of N-bromosuccinimide was dissolved in 5.0 mL of THF. Dropped into the solution. The resulting solution was stirred for 1 hour. The THF was distilled off under vacuum and the product was dissolved in hexane and purified by silica gel chromatography using hexane as the eluent. Furthermore, molecular weight distribution was measured by SEC using chloroform as an eluent. By the above operation, a compound (1b) represented by the following formula was obtained as 0.347 g of dark purple oil (yield 72%).
1 H-NMR (500 MHz, CDCl 3 ): δ 8.03, 8.01, 7.9 (s, 2H, 3-CPDT, peak ratio (racemic 2-ethylhexyl group) 1: 2: 1), 79 (s, 2H, BT), 6.98, 6.97, 6.96 (s, 2H, 5-CPDT, peak ratio (racemic 2-ethylhexyl group) 1: 2: 1), 1.991-1 .83 (m, 8H, CH 2 ), 1.24 (m, 4H, CH), 1.03-0.59 (m, 32H, CH 2 , CH3).
13 C NMR (125 MHz, CDCl 3 ): δ 157.8, 157.0, 152.5, 139.5, 138.1, 137.3, 126.0, 125.4 (CH), 124.2 (CH), 122.5 (CH), 54.6 (4-CPDT), 43.1 (CH 2 ), 35.2 (CH), 34.1, 28.5, 27.4, 22.8 (CH 2), 14.0, 10.7 (CH 3).
FABMS: m / z = 1095 [M] +.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031




[合成例3:オリゴマー(2a)の合成]
 4,4-ビス(2-エチルヘキシル)-4H-シクロペンタ[2,1-b;3,4-b’]ジチオフェン1.63g(4.06mmol)、1,3-ジブロモ-5-ヘキシル-5H-チエノピロール-4,6-ジオン0.200g(0.508mmol)、炭酸カリウム0.352g(1.27mmol)、Pd(OAc)256mg(0.25mmol)とビバル酸76mg(75mmol)を、250mLのシュレンク管中で、DMF45mLを用い溶解し、得られた溶液を5分間、窒素置換した。反応混合物を80℃で2時間攪拌後、有機層からDMFを留去するために、真空下で直接乾燥した。反応残渣を、溶離液としてヘキサンとジクロロメタンを用いてシリカゲルクロマトグラフィで精製し、これを、真空で濃縮した後、クロロホルム10mLに溶解し、SEC(サイズ排除クロマトグラフィー)(流速14mL/min)にて、分子量分布を測定した。以上の操作により、228mgの橙黄色油として、下記式で表される化合物(2a)を得た(収率43%)。
1H-NMR(500MHz、CDCl3):δ7.95, 7.91, 7.88 (s, 2H, 3-CPDT(シクロペンタ[2,1-b;3,4-b’]ジチオフェン), ピーク比(ラセミ2-エチルヘキシル基)1:2:1), 7.25 (d, J = 5.0 Hz, 2H, 6-CPDT), 6.97 (m, 2H, 5-CPDT), 3.69 (t, 2H, J = 10.0 Hz, TPD(5H-チエノピロール-4,6-ジオン)のαプロトン), 2.17?0.61 (m, 49H, CH, CH2, CH3).
FABMS: m/z = 1038 [M]+.

[Synthesis Example 3: Synthesis of oligomer (2a)]
4,4-bis (2-ethylhexyl) -4H-cyclopenta [2,1-b; 3,4-b ′] dithiophene 1.63 g (4.06 mmol), 1,3-dibromo-5-hexyl-5H— Thienopyrrole-4,6-dione 0.200 g (0.508 mmol), potassium carbonate 0.352 g (1.27 mmol), Pd (OAc) 2 56 mg (0.25 mmol) and vivaric acid 76 mg (75 mmol) were added to 250 mL of Schlenk. In a tube, 45 mL of DMF was used for dissolution, and the resulting solution was purged with nitrogen for 5 minutes. The reaction mixture was stirred at 80 ° C. for 2 hours and then directly dried under vacuum in order to distill off DMF from the organic layer. The reaction residue was purified by silica gel chromatography using hexane and dichloromethane as eluents, concentrated in vacuo, dissolved in 10 mL chloroform, and SEC (size exclusion chromatography) (flow rate 14 mL / min). The molecular weight distribution was measured. By the above operation, a compound (2a) represented by the following formula was obtained as 228 mg of an orange-yellow oil (43% yield).
1 H-NMR (500 MHz, CDCl 3 ): δ 7.95, 7.91, 7.88 (s, 2H, 3-CPDT (cyclopenta [2,1-b; 3,4-b ′] dithiophene), peak Ratio (racemic 2-ethylhexyl group) 1: 2: 1), 7.25 (d, J = 5.0 Hz, 2H, 6-CPDT), 6.97 (m, 2H, 5-CPDT), 69 (t, 2H, J = 10.0 Hz, α proton of TPD (5H-thienopyrrole-4,6-dione)), 2.17? 0.61 (m, 49H, CH, CH 2 , CH 3 ) .
FABMS: m / z = 1038 [M] +.

Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032




[合成例4:オリゴマー(2b)の合成]
 オリゴマー(2a)、0.428g(0.412mmol)をTHF10mLで溶解し、さらにN-ブロモコハク酸イミド0.161g(0.906mmol)をTHF10mLで溶解し、0oC下で、オリゴマー(2a)のTHF溶液に滴下した。得られた溶液を1時間攪拌した。次に、真空下でTHFを留去し、生成物をジクロロメタンで溶解し、溶離液としてヘキサンとジクロロメタンを用いてシリカゲルクロマトグラフィで精製した。さらに、溶離液としてクロロホルムを用いてSECにより、分子量分布を測定した。以上の操作により、0.416gの淡黄色油として、下記式で表される化合物(2b)を得た(収率84%)。
1H-NMR(500MHz、CDCl3): δ 7.89, 7.86, 7.82 (s, 2H, 3-CPDT, ピーク比(ラセミ2-エチルヘキシル基)1:2:1), 6.98, 6.97, 6.96 (s, 2H, 5-CPDT, ピーク比(ラセミ2-エチルヘキシル基)1:2:1), 3.66 (t, 2H, J = 7.5 Hz, TPDのαプロトン), 1.94?0.58 (m, 49H, CH, CH2, CH3).
13C NMR (125 MHz, CDCl3): δ 162.7, 158.3, 157.8, 140.5, 136.4, 132.2, 127.3, 125.4 (5-CPDT), 124.4 (3-CPDT), 113.1 , 54.7 (4-シクロペンタジチオフェン), 43.0 , 38.6 (CH2), 35.2 (CH), 34.1, 31.4, 28.6, 28.4, 27.4, 26.6, 22.8, 22.5 (CH2), 14.1, 14.0, and 10.7 (CH3).
FABMS: m/z = 1196 [M]+.
[Synthesis Example 4: Synthesis of oligomer (2b)]
Oligomer (2a), 0.428 g (0.412 mmol) was dissolved in 10 mL of THF, 0.161 g (0.906 mmol) of N-bromosuccinimide was further dissolved in 10 mL of THF, and the oligomer (2a) was dissolved in THF under 0 ° C. It was dripped in. The resulting solution was stirred for 1 hour. The THF was then distilled off under vacuum and the product was dissolved in dichloromethane and purified by silica gel chromatography using hexane and dichloromethane as eluents. Furthermore, molecular weight distribution was measured by SEC using chloroform as an eluent. By the above operation, a compound (2b) represented by the following formula was obtained as 0.416 g of a pale yellow oil (yield 84%).
1 H-NMR (500 MHz, CDCl 3 ): δ 7.89, 7.86, 7.82 (s, 2H, 3-CPDT, peak ratio (racemic 2-ethylhexyl group) 1: 2: 1), 6. 98, 6.97, 6.96 (s, 2H, 5-CPDT, peak ratio (racemic 2-ethylhexyl group) 1: 2: 1), 3.66 (t, 2H, J = 7.5 Hz, TPD Α proton), 1.94 to 0.58 (m, 49H, CH, CH 2 , CH 3 ).
13 C NMR (125 MHz, CDCl 3 ): δ 162.7, 158.3, 157.8, 140.5, 136.4, 132.2, 127.3, 125.4 (5-CPDT), 124 .4 (3-CPDT), 113.1, 54.7 (4-cyclopentadithiophene), 43.0, 38.6 (CH 2 ), 35.2 (CH), 34.1, 31.4 , 28.6, 28.4, 27.4, 26.6, 22.8, 22.5 (CH 2 ), 14.1, 14.0, and 10.7 (CH 3 ).
FABMS: m / z = 1196 [M] +.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033





[実施例1:高分子化合物(1-1)の合成]オリゴマー(1b)、130mg(0.119mmol)と5,5’-ビス(トリメチルスタンニル)-2,2’-ビチオフェン58mg(0.119mmol)を10mLのシュレンク管中で、無水p-キシレン1.8mLと無水p-DMF0.6mLを用い溶解した。溶液を、アルゴンガス置換を30分間行い、テトラキス(トリフェニルフォスフィン)パラジウム(0)6.9mg(0.006mmol)が加えた。反応混合物を、120℃で1日、攪拌し、37%塩酸8mLを含有したメタノール150mL中に注いだ。 沈殿物は1日かけ、エタノールとメチルエチルケトンで、ソックスレー抽出により洗浄し、クロロホルム中に抽出した。ポリマーのクロロホルム溶液はシリカゲルのカラムで濾過し、メタノール中に沈殿させた。沈殿物は、遠心分離機(6000rpm、1分間)で集め、真空乾燥し、0.110gの紺青色粉末として、下記式で表される高分子化合物(1-1)を得た(収率84%)。
1H-NMR(500MHz、CDCl3): δ 8.05 (br, 2H, 3-CPDT), 7.81 (br, 2H, フェニル), 7.07 (br, 6H, 5-CPDT & ビチオフェン), 1.97 (br, 8H, CH2), 1.10?0.60 (m, 30H, CH, CH2, CH3). GPC (THF, ポリスチレン標準液): Mn = 27,600, Mw/Mn = 1.88.

[Example 1: Synthesis of polymer compound (1-1)] Oligomer (1b), 130 mg (0.119 mmol), and 5,5′-bis (trimethylstannyl) -2,2′-bithiophene 58 mg (0. 119 mmol) was dissolved in 10 mL Schlenk tube using 1.8 mL anhydrous p-xylene and 0.6 mL anhydrous p-DMF. The solution was purged with argon gas for 30 minutes, and 6.9 mg (0.006 mmol) of tetrakis (triphenylphosphine) palladium (0) was added. The reaction mixture was stirred at 120 ° C. for 1 day and poured into 150 mL of methanol containing 8 mL of 37% hydrochloric acid. The precipitate was washed with ethanol and methyl ethyl ketone by Soxhlet extraction for 1 day and extracted into chloroform. The polymer chloroform solution was filtered through a silica gel column and precipitated into methanol. The precipitate was collected by a centrifuge (6000 rpm, 1 minute) and dried under vacuum to obtain a polymer compound (1-1) represented by the following formula as 0.110 g of a dark blue powder (yield 84). %).
1 H-NMR (500 MHz, CDCl 3 ): δ 8.05 (br, 2H, 3-CPDT), 7.81 (br, 2H, phenyl), 7.07 (br, 6H, 5-CPDT & bithiophene) , 1.97 (br, 8H, CH 2), 1.10? 0.60 (m, 30H, CH, CH 2, CH 3). GPC (THF, polystyrene standard solution): Mn = 27,600, Mw / Mn = 1.88.

Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
[実施例2:高分子化合物(2-1)の合成]
 オリゴマー(2b)、98mg(0.082mmol)と2,1,3-ベンゾチアジアゾール-4,7-ビス(ボロン酸ピナコールエステル)33mg(0.086mmol)炭酸カリウム水溶液0.5mL(2M)、Aliquat 336(触媒)を1滴、25mLのシュレンク管中で、キシレン1.6mLを用い溶解した。溶液に対し、アルゴンガス置換を30分間行い、テトラキス(トリフェニルフォスフィン)パラジウム(0)4.74mg(0.004mmol)を加えた。反応は、90℃で1日、攪拌することにより行い、4-ブロモアニソール(0.2当量)、ベンゼンボロン酸2,2-ジメチルトリメチレンエステル(0.1当量)を加え、さらに8時間攪拌した。その後、得られた混合物を37%塩酸8mL含有したメタノール150mL中に注いだ。
 沈殿物は1日かけ、エタノールとメチルエチルケトンで、ソックスレー抽出により洗浄し、クロロホルム中に抽出した。ポリマーのクロロホルム溶液はシリカゲルのカラムで濾過し、メタノール中に沈殿させた。沈殿物は、遠心分離機(6000rpm、1分間)で集め、真空乾燥し、0.067gの紺青色粉末として、下記式で表される高分子化合物(2-1)を得た(収率70%)。
1H NMR (500 MHz, CDCl3): δ 8.11 (br, 2H, チエニル), 7.97 (br, 2H, チエニル), 7.87 (br, 2H, フェニル), 3.70 (br, 2H, CH2), 2.02-0.50 (br, 79H, CH, CH2, CH3). GPC (THF, ポリスチレン標準液): Mn = 14,100, Mw/Mn = 2.04.

[Example 2: Synthesis of polymer compound (2-1)]
Oligomer (2b), 98 mg (0.082 mmol), 2,1,3-benzothiadiazole-4,7-bis (boronic acid pinacol ester) 33 mg (0.086 mmol) Aqueous potassium carbonate 0.5 mL (2M), Aliquat 336 1 catalyst (catalyst) was dissolved in 1.6 mL of xylene in a 25 mL Schlenk tube. The solution was purged with argon gas for 30 minutes, and 4.74 mg (0.004 mmol) of tetrakis (triphenylphosphine) palladium (0) was added. The reaction was carried out by stirring at 90 ° C. for 1 day, 4-bromoanisole (0.2 eq) and benzeneboronic acid 2,2-dimethyltrimethylene ester (0.1 eq) were added, and the mixture was further stirred for 8 hours. did. Thereafter, the obtained mixture was poured into 150 mL of methanol containing 8 mL of 37% hydrochloric acid.
The precipitate was washed with ethanol and methyl ethyl ketone by Soxhlet extraction for 1 day and extracted into chloroform. The polymer chloroform solution was filtered through a silica gel column and precipitated into methanol. The precipitate was collected with a centrifuge (6000 rpm, 1 minute) and vacuum-dried to obtain a polymer compound (2-1) represented by the following formula as 0.067 g of a dark blue powder (yield 70). %).
1 H NMR (500 MHz, CDCl 3 ): δ 8.11 (br, 2H, thienyl), 7.97 (br, 2H, thienyl), 7.87 (br, 2H, phenyl), 3.70 (br , 2H, CH 2), 2.02-0.50 (br, 79H, CH, CH 2, CH 3). GPC (THF, polystyrene standard solution): Mn = 14,100, Mw / Mn = 2.04.

Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
[実施例3]
 p型半導体として高分子化合物(1-1)を2.3mg、n型半導体材料としてPC[70]BM(フロンティアカーボン社製、商品名「Nanom Spectra E110」)を6.6mg、及び1,8-オクタンジチオール(東京化成社製)を6.6mgを秤量し、窒素雰囲気下で脱水クロロベンゼン(シグマアルドリッチ社製、脱水品)0.66mLを加え、窒素雰囲気下で24時間撹拌した。次いで、孔径0.45μmのシリンジフィルターで濾過し、光電変換層形成用の混合溶液(高分子化合物(1-1):PC[70]BMの質量比は、1:2.9)を調製した。
 次に、洗浄及びUV-オゾン処理を行って清浄化したITO膜付ガラス基板(ガラス基板にスズドープ酸化インジウム膜を形成した透明導電膜付ガラス基板、表面抵抗率:14(Ω/□))上に、文献(Brabec、C.J. et al.、Advanced Materials、2009年、21巻、1ページ)に記載された方法で、正孔輸送層としてPEDOT-PSS(Clevios社製)を20nm成膜し、得られた正孔輸送層上に、上記混合溶液を用いスピンコート法にて、光電変換層の厚みが100nmになるように形成した。得られた光電変換層の表面は、均質で曇りの無い膜であった。
 さらに、この光電変換層上にカルシウム(関東化学製)を10nm、アルミニウム(高純度化学研究所社製)を100nm(真空度:8.2×10-5Pa、成膜速度:0.15nm/s)、この順に積層し、有機光電変換素子1を作製した。
 得られた有機光電変換素子1を用いて、前述した(e)光電変換効率評価を行い、光電変換効率(PCE)を算出した。結果を表1に示す。
[Example 3]
2.3 mg of the polymer compound (1-1) as the p-type semiconductor, 6.6 mg of PC [70] BM (manufactured by Frontier Carbon Corporation, trade name “Nanom Spectra E110”) as the n-type semiconductor material, and 1,8 -6.6 mg of octanedithiol (manufactured by Tokyo Chemical Industry Co., Ltd.) was weighed, 0.66 mL of dehydrated chlorobenzene (manufactured by Sigma Aldrich, dehydrated product) was added under a nitrogen atmosphere, and the mixture was stirred under a nitrogen atmosphere for 24 hours. Next, the mixture was filtered through a syringe filter having a pore diameter of 0.45 μm to prepare a mixed solution for forming a photoelectric conversion layer (the mass ratio of the polymer compound (1-1): PC [70] BM was 1: 2.9). .
Next, a glass substrate with an ITO film cleaned by cleaning and UV-ozone treatment (a glass substrate with a transparent conductive film in which a tin-doped indium oxide film is formed on the glass substrate, surface resistivity: 14 (Ω / □)) In this way, PEDOT-PSS (manufactured by Clevios) is formed into a 20 nm film as a hole transport layer by the method described in the literature (Brabec, CJ et al., Advanced Materials, 2009, Vol. 21, page 1). And it formed so that the thickness of a photoelectric converting layer might be set to 100 nm by the spin coat method using the said mixed solution on the obtained positive hole transport layer. The surface of the obtained photoelectric conversion layer was a uniform and cloudless film.
Furthermore, 10 nm of calcium (manufactured by Kanto Chemical Co., Inc.) and 100 nm of aluminum (manufactured by High Purity Chemical Laboratories Co., Ltd.) on this photoelectric conversion layer (degree of vacuum: 8.2 × 10 −5 Pa, film formation rate: 0.15 nm / s), the organic photoelectric conversion element 1 was produced by stacking in this order.
Using the obtained organic photoelectric conversion element 1, (e) photoelectric conversion efficiency evaluation mentioned above was performed and the photoelectric conversion efficiency (PCE) was computed. The results are shown in Table 1.
 また、前述した(c)光透過率評価を行い、UV-Vis-NIR光透過スペクトルを測定した。結果を図2に示す。また、光電変換層の可視光(550nm)の透過率及び前述した(d)彩度の評価を行った結果を表1に示す。また、図3(b)の左側に、光電変換層の外観を示す。 Further, (c) the light transmittance evaluation described above was performed, and the UV-Vis-NIR light transmission spectrum was measured. The results are shown in FIG. Table 1 shows the evaluation results of the visible light transmittance (550 nm) of the photoelectric conversion layer and the above-described evaluation of (d) saturation. In addition, the appearance of the photoelectric conversion layer is shown on the left side of FIG.
[実施例4]
 p型半導体として高分子化合物(1-1)の代わりに高分子化合物(2-1)とした以外は、実施例3と同様に有機光電変換素子2を作製した。得られた有機光電変換素子2を用いて、前述した(e)光電変換効率評価を行い、光電変換効率(PCE)を算出した。結果を表1に示す。
[Example 4]
Organic photoelectric conversion element 2 was produced in the same manner as in Example 3, except that polymer compound (2-1) was used instead of polymer compound (1-1) as the p-type semiconductor. Using the obtained organic photoelectric conversion element 2, (e) photoelectric conversion efficiency evaluation mentioned above was performed and the photoelectric conversion efficiency (PCE) was computed. The results are shown in Table 1.
 また、前述した(c)光透過率評価を行い、UV-Vis-NIR光透過スペクトルを測定した。結果を図2に示す。また、光電変換層の可視光(550nm)の透過率及び前述した(d)彩度の評価を行った結果を表1に示す。 Further, (c) the light transmittance evaluation described above was performed, and the UV-Vis-NIR light transmission spectrum was measured. The results are shown in FIG. Table 1 shows the evaluation results of the visible light transmittance (550 nm) of the photoelectric conversion layer and the above-described evaluation of (d) saturation.
[実施例5]
 実施例3において、1,8-オクタンジチオール(東京化成社製)の代わりに1,8-ジヨードオクタン(東京化成社製)とした以外は、実施例3と同様に有機光電変換素子3を作製した。得られた有機光電変換素子3を用いて、前述した(e)光電変換効率評価を行い、光電変換効率(PCE)を算出した。結果を表1に示す。
[Example 5]
In Example 3, except that 1,8-diiodooctane (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1,8-octanedithiol (manufactured by Tokyo Chemical Industry Co., Ltd.), the organic photoelectric conversion element 3 was prepared in the same manner as in Example 3. Produced. Using the obtained organic photoelectric conversion element 3, (e) photoelectric conversion efficiency evaluation mentioned above was performed and the photoelectric conversion efficiency (PCE) was computed. The results are shown in Table 1.
 また、前述した(c)光透過率評価を行い、UV-Vis-NIR光透過スペクトルを測定した。光電変換層の可視光(550nm)の透過率及び前述した(d)彩度の評価を行った結果を表1に示す。 Further, (c) the light transmittance evaluation described above was performed, and the UV-Vis-NIR light transmission spectrum was measured. Table 1 shows the evaluation results of the visible light transmittance (550 nm) of the photoelectric conversion layer and the above-described (d) saturation.
[実施例6]
 実施例4において、1,8-オクタンジチオール(東京化成社製)の代わりに1,8-ジヨードオクタン(東京化成社製)とした以外は、実施例4と同様に有機光電変換素子4を作製した。得られた有機光電変換素子4を用いて、前述した(e)光電変換効率評価を行い、光電変換効率(PCE)を算出した。結果を表1に示す。
[Example 6]
In Example 4, except that 1,8-diiodooctane (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1,8-octanedithiol (manufactured by Tokyo Chemical Industry Co., Ltd.), the organic photoelectric conversion element 4 was prepared in the same manner as in Example 4. Produced. Using the obtained organic photoelectric conversion element 4, (e) photoelectric conversion efficiency evaluation mentioned above was performed and the photoelectric conversion efficiency (PCE) was computed. The results are shown in Table 1.
 また、前述した(c)光透過率評価を行い、UV-Vis-NIR光透過スペクトルを測定した。光電変換層の可視光(550nm)の透過率及び前述した(d)彩度の評価を行った結果を表1に示す。 Further, (c) the light transmittance evaluation described above was performed, and the UV-Vis-NIR light transmission spectrum was measured. Table 1 shows the evaluation results of the visible light transmittance (550 nm) of the photoelectric conversion layer and the above-described (d) saturation.
[実施例7]
 実施例3において、高分子化合物(1-1)とPC[70]BMの質量比を、1:4とした以外は、実施例3と同様に有機光電変換素子5を作製した。得られた有機光電変換素子5を用いて、前述した(e)光電変換効率評価を行い、光電変換効率(PCE)を算出した。結果を表1に示す。
[Example 7]
In Example 3, an organic photoelectric conversion element 5 was produced in the same manner as in Example 3 except that the mass ratio of the polymer compound (1-1) to PC [70] BM was 1: 4. Using the obtained organic photoelectric conversion element 5, (e) photoelectric conversion efficiency evaluation mentioned above was performed and the photoelectric conversion efficiency (PCE) was computed. The results are shown in Table 1.
 また、前述した(c)光透過率評価を行い、UV-Vis-NIR光透過スペクトルを測定した。光電変換層の可視光(550nm)の透過率及び前述した(d)彩度の評価を行った結果を表1に示す。 Further, (c) the light transmittance evaluation described above was performed, and the UV-Vis-NIR light transmission spectrum was measured. Table 1 shows the evaluation results of the visible light transmittance (550 nm) of the photoelectric conversion layer and the above-described (d) saturation.
[実施例8]
 実施例4において、高分子化合物(2-1)とPC[70]BMの質量比を、1:4とした以外は、実施例4と同様に有機光電変換素子6を作製した。得られた有機光電変換素子6を用いて、前述した(e)光電変換効率評価を行い、光電変換効率(PCE)を算出した。結果を表1に示す。
[Example 8]
In Example 4, the organic photoelectric conversion element 6 was produced in the same manner as in Example 4 except that the mass ratio of the polymer compound (2-1) and PC [70] BM was 1: 4. Using the obtained organic photoelectric conversion element 6, (e) photoelectric conversion efficiency evaluation mentioned above was performed and the photoelectric conversion efficiency (PCE) was computed. The results are shown in Table 1.
 また、前述した(c)光透過率評価を行い、UV-Vis-NIR光透過スペクトルを測定した。光電変換層の可視光(550nm)の透過率及び前述した(d)彩度の評価を行った結果を表1に示す。 Further, (c) the light transmittance evaluation described above was performed, and the UV-Vis-NIR light transmission spectrum was measured. Table 1 shows the evaluation results of the visible light transmittance (550 nm) of the photoelectric conversion layer and the above-described (d) saturation.
[比較例1]
 n型半導体材料としてPC[60]BM(フロンティアカーボン社製、商品名「Nanom Spectra E100H」)とした以外は、実施例3と同等に有機光電変換素子7を作製した。得られた有機光電変換素子7を用いて、前述した(e)光電変換効率評価を行い、光電変換効率(PCE)を算出した。結果を表1に示す。
[Comparative Example 1]
An organic photoelectric conversion element 7 was produced in the same manner as in Example 3 except that PC [60] BM (trade name “Nanom Spectra E100H” manufactured by Frontier Carbon Co., Ltd.) was used as the n-type semiconductor material. Using the obtained organic photoelectric conversion element 7, (e) photoelectric conversion efficiency evaluation mentioned above was performed and the photoelectric conversion efficiency (PCE) was computed. The results are shown in Table 1.
 また、前述した(c)光透過率評価を行い、UV-Vis-NIR光透過スペクトルを測定した。光電変換層の可視光(550nm)の透過率及び前述した(d)彩度の評価を行った結果を表1に示す。 Further, (c) the light transmittance evaluation described above was performed, and the UV-Vis-NIR light transmission spectrum was measured. Table 1 shows the evaluation results of the visible light transmittance (550 nm) of the photoelectric conversion layer and the above-described (d) saturation.
[比較例2]
 n型半導体材料としてPC[60]BM(フロンティアカーボン社製、商品名「Nanom Spectra E100H」)とした以外は、実施例4と同等に有機光電変換素子8を作製した。得られた有機光電変換素子8を用いて、前述した(e)光電変換効率評価を行い、光電変換効率(PCE)を算出した。結果を表1に示す。
[Comparative Example 2]
An organic photoelectric conversion element 8 was produced in the same manner as in Example 4 except that PC [60] BM (trade name “Nanom Spectra E100H” manufactured by Frontier Carbon Co., Ltd.) was used as the n-type semiconductor material. Using the obtained organic photoelectric conversion element 8, (e) photoelectric conversion efficiency evaluation mentioned above was performed and the photoelectric conversion efficiency (PCE) was computed. The results are shown in Table 1.
  また、前述した(c)光透過率評価を行い、UV-Vis-NIR光透過スペクトルを測定した。光電変換層の可視光(550nm)の透過率及び前述した(d)彩度の評価を行った結果を表1に示す。 In addition, (c) the light transmittance evaluation described above was performed, and the UV-Vis-NIR light transmission spectrum was measured. Table 1 shows the evaluation results of the visible light transmittance (550 nm) of the photoelectric conversion layer and the above-described (d) saturation.
[比較例3]
 p型半導体として高分子化合物(1-1)の代わりに3-ヘキシルチオフェン(P3HT)とした以外は、実施例3と同様に有機光電変換素子9を作製した。得られた有機光電変換素子9を用いて、前述した(e)光電変換効率評価を行い、光電変換効率(PCE)を算出した。結果を表1に示す。
[Comparative Example 3]
An organic photoelectric conversion element 9 was produced in the same manner as in Example 3 except that 3-hexylthiophene (P3HT) was used instead of the polymer compound (1-1) as the p-type semiconductor. Using the obtained organic photoelectric conversion element 9, (e) photoelectric conversion efficiency evaluation mentioned above was performed and the photoelectric conversion efficiency (PCE) was computed. The results are shown in Table 1.
 また、前述した(c)光透過率評価を行い、UV-Vis-NIR光透過スペクトルを測定した。光電変換層の可視光(550nm)の透過率及び前述した(d)彩度の評価を行った結果を表1に示す。 Further, (c) the light transmittance evaluation described above was performed, and the UV-Vis-NIR light transmission spectrum was measured. Table 1 shows the evaluation results of the visible light transmittance (550 nm) of the photoelectric conversion layer and the above-described (d) saturation.
[比較例4]
 p型半導体として高分子化合物(1-1)の代わりにP3HTとした以外は、比較例1と同様に有機光電変換素子10を作製した。得られた有機光電変換素子10を用いて、前述した(e)光電変換効率評価を行い、光電変換効率(PCE)を算出した。結果を表1に示す。
[Comparative Example 4]
An organic photoelectric conversion element 10 was produced in the same manner as in Comparative Example 1 except that P3HT was used instead of the polymer compound (1-1) as the p-type semiconductor. Using the obtained organic photoelectric conversion element 10, (e) photoelectric conversion efficiency evaluation mentioned above was performed and the photoelectric conversion efficiency (PCE) was computed. The results are shown in Table 1.
 また、前述した(c)光透過率評価を行い、UV-Vis-NIR光透過スペクトルを測定した。光電変換層の可視光(550nm)の透過率及び前述した(d)彩度の評価を行った結果を表1に示す。 Further, (c) the light transmittance evaluation described above was performed, and the UV-Vis-NIR light transmission spectrum was measured. Table 1 shows the evaluation results of the visible light transmittance (550 nm) of the photoelectric conversion layer and the above-described (d) saturation.
[比較例5]
 p型半導体として高分子化合物(1-1)の代わりに、該高分子化合物(1-1)に2価の構成単位であるXを含まない高分子化合物(オリゴマー(1a)の重合物)とした以外は、実施例3と同様に有機光電変換素子11を作製した。得られた有機光電変換素子11を用いて、前述した(e)光電変換効率評価を行い、光電変換効率(PCE)を算出した。結果を表1に示す。
[Comparative Example 5]
In place of the polymer compound (1-1) as a p-type semiconductor, the polymer compound (1-1) contains a polymer compound (polymer of the oligomer (1a)) that does not contain X which is a divalent structural unit; An organic photoelectric conversion device 11 was produced in the same manner as in Example 3 except that. Using the obtained organic photoelectric conversion element 11, (e) photoelectric conversion efficiency evaluation mentioned above was performed and the photoelectric conversion efficiency (PCE) was computed. The results are shown in Table 1.
 また、前述した(c)光透過率評価を行い、UV-Vis-NIR光透過スペクトルを測定した。光電変換層の可視光(550nm)の透過率及び前述した(d)彩度の評価を行った結果を表1に示す。 Further, (c) the light transmittance evaluation described above was performed, and the UV-Vis-NIR light transmission spectrum was measured. Table 1 shows the evaluation results of the visible light transmittance (550 nm) of the photoelectric conversion layer and the above-described (d) saturation.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 実施例3~8で用いた本発明の有機光電変換素子においては、比較例に比べ、変換効率が高く、また高い透明性を有し、かつ彩度C*の値が小さく、無彩色に近いことが分かった。 In the organic photoelectric conversion elements of the present invention used in Examples 3 to 8, the conversion efficiency is higher and the transparency is higher than that of the comparative example, and the value of chroma C * is small, which is close to an achromatic color. I understood that.
 本発明の有機光電変換素子は、車、ビル又は一般家屋等の窓等に設置し、窓としての機能である採光はもとより、発電が可能で、冷房コストも下げられるシースルー型有機薄膜太陽電池として使用することが可能である。 The organic photoelectric conversion device of the present invention is installed in a window of a car, a building, a general house, etc. It is possible to use.
1:有機光電変換素子
2:陽極
3:バルクヘテロ型光電変換層
4:陰極
1: Organic photoelectric conversion element 2: Anode 3: Bulk hetero photoelectric conversion layer 4: Cathode

Claims (18)

  1.  下記一般式(1)又は一般式(2)で表される、高分子化合物。
    Figure JPOXMLDOC01-appb-C000001





    Figure JPOXMLDOC01-appb-C000002
    (式(1)又は式(2)中、Xは、下記式(3)~式(7)のいずれかで表される2価の構成単位を示し、Raは、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基を示し、R1、R2、R3、及びR4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基、又は炭素数1~12のアルコキシ基を示し、nは繰り返し単位数を示し、2~100である。)


    Figure JPOXMLDOC01-appb-C000003















    (式(4)中、Rbは、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基を示し、式(7)中、Rcは、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基を示し、式(3)中、mは繰り返し単位数を示し、1~5である。)
    The high molecular compound represented by the following general formula (1) or general formula (2).
    Figure JPOXMLDOC01-appb-C000001





    Figure JPOXMLDOC01-appb-C000002
    (In formula (1) or formula (2), X represents a divalent structural unit represented by any of the following formulas (3) to (7), and Ra represents a hydrogen atom, a halogen atom, carbon R 1 , R 2 , R 3 , and R 4 each independently represents a hydrogen atom, a halogen atom, a C 1-16 alkyl group or a substituted alkyl group. Or an alkoxy group having 1 to 12 carbon atoms, n represents the number of repeating units, and is 2 to 100.)


    Figure JPOXMLDOC01-appb-C000003















    (In the formula (4), Rb represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group. In the formula (7), Rc represents a hydrogen atom, a halogen atom, 1 to carbon atoms. 16 represents an alkyl group or a substituted alkyl group, and in formula (3), m represents the number of repeating units and is 1 to 5.
  2.  前記一般式(1)中のR1~R4が、炭素数1~16のアルキル基又は置換アルキル基であり、Xが、前記式(3)又は式(4)で表される2価の構成単位である、一般式(1)で表される請求項1に記載の高分子化合物。 R 1 to R 4 in the general formula (1) are an alkyl group or substituted alkyl group having 1 to 16 carbon atoms, and X is a divalent group represented by the formula (3) or the formula (4). The high molecular compound of Claim 1 represented by General formula (1) which is a structural unit.
  3.  前記一般式(2)中のR1~R4が、炭素数1~16のアルキル基又は置換アルキル基であり、Xが、前記式(3)又は式(6)で表される2価の構成単位である、一般式(2)で表される請求項1に記載の高分子化合物。 R 1 to R 4 in the general formula (2) are alkyl groups or substituted alkyl groups having 1 to 16 carbon atoms, and X is a divalent group represented by the formula (3) or the formula (6). The high molecular compound of Claim 1 represented by General formula (2) which is a structural unit.
  4.  前記一般式(1)中のR1~R4が、炭素数1~16のアルキル基又は置換アルキル基であり、Xが、下記式(8)で表される2価の構成単位である、一般式(1)で表される請求項1又は2に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000004
    R 1 to R 4 in the general formula (1) are alkyl groups or substituted alkyl groups having 1 to 16 carbon atoms, and X is a divalent structural unit represented by the following formula (8). The high molecular compound of Claim 1 or 2 represented by General formula (1).
    Figure JPOXMLDOC01-appb-C000004
  5.  前記一般式(2)中のR1~R4が、炭素数1~16のアルキル基又は置換アルキル基であり、Xが、前記式(6)で表される2価の構成単位である、一般式(2)で表される請求項1又は3に記載の高分子化合物。 R 1 to R 4 in the general formula (2) are an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group, and X is a divalent structural unit represented by the formula (6). The high molecular compound of Claim 1 or 3 represented by General formula (2).
  6.  バルクヘテロ型光電変換層を有する有機光電変換素子であって、該バルクヘテロ型光電変換層が下記一般式(1)又は一般式(2)で表される高分子化合物とC[70]フラーレン誘導体とを含む、有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000005






    Figure JPOXMLDOC01-appb-C000006
    (式(1)又は式(2)中、Xは、下記式(3)~式(7)のいずれかで表される2価の構成単位を示し、Raは、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基を示し、R1、R2、R3、及びR4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基、又は炭素数1~12のアルコキシ基を示し、nは繰り返し単位数を示し、2~100である。)
    Figure JPOXMLDOC01-appb-C000007














    (式(4)中、Rbは、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基を示し、式(7)中、Rcは、水素原子、ハロゲン原子、炭素数1~16のアルキル基又は置換アルキル基を示し、式(3)中、mは繰り返し単位数を示し、1~5である。)
    An organic photoelectric conversion element having a bulk hetero photoelectric conversion layer, wherein the bulk hetero photoelectric conversion layer comprises a polymer compound represented by the following general formula (1) or general formula (2) and a C [70] fullerene derivative: Including an organic photoelectric conversion element.
    Figure JPOXMLDOC01-appb-C000005






    Figure JPOXMLDOC01-appb-C000006
    (In formula (1) or formula (2), X represents a divalent structural unit represented by any of the following formulas (3) to (7), and Ra represents a hydrogen atom, a halogen atom, carbon R 1 , R 2 , R 3 , and R 4 each independently represents a hydrogen atom, a halogen atom, a C 1-16 alkyl group or a substituted alkyl group. Or an alkoxy group having 1 to 12 carbon atoms, n represents the number of repeating units, and is 2 to 100.)
    Figure JPOXMLDOC01-appb-C000007














    (In the formula (4), Rb represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group. In the formula (7), Rc represents a hydrogen atom, a halogen atom, 1 to carbon atoms. 16 represents an alkyl group or a substituted alkyl group, and in formula (3), m represents the number of repeating units and is 1 to 5.
  7.  前記一般式(1)中のR1~R4が、炭素数1~16のアルキル基又は置換アルキル基であり、Xが、前記式(3)又は式(4)で表される2価の構成単位である、請求項6に記載の有機光電変換素子。 R 1 to R 4 in the general formula (1) are an alkyl group or substituted alkyl group having 1 to 16 carbon atoms, and X is a divalent group represented by the formula (3) or the formula (4). The organic photoelectric conversion element according to claim 6, which is a structural unit.
  8.  前記一般式(2)中のR1~R4が、炭素数1~16のアルキル基又は置換アルキル基であり、Xが、前記式(3)又は式(6)で表される2価の構成単位である、請求項6に記載の有機光電変換素子。 R 1 to R 4 in the general formula (2) are alkyl groups or substituted alkyl groups having 1 to 16 carbon atoms, and X is a divalent group represented by the formula (3) or the formula (6). The organic photoelectric conversion element according to claim 6, which is a structural unit.
  9.  前記一般式(1)中のR1~R4が、炭素数1~16のアルキル基又は置換アルキル基であり、Xが、下記式(8)で表される2価の構成単位である、請求項6又は7に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000008

    R 1 to R 4 in the general formula (1) are alkyl groups or substituted alkyl groups having 1 to 16 carbon atoms, and X is a divalent structural unit represented by the following formula (8). The organic photoelectric conversion element according to claim 6 or 7.
    Figure JPOXMLDOC01-appb-C000008

  10.  前記一般式(2)中のR1~R4が、炭素数1~16のアルキル基又は置換アルキル基であり、Xが、前記式(6)で表される2価の構成単位である、請求項6又は8に記載の有機光電変換素子。 R 1 to R 4 in the general formula (2) are an alkyl group having 1 to 16 carbon atoms or a substituted alkyl group, and X is a divalent structural unit represented by the formula (6). The organic photoelectric conversion element of Claim 6 or 8.
  11.  前記バルクヘテロ型光電変換層を構成する前記一般式(1)又は一般式(2)で表される高分子化合物とC[70]フラーレン誘導体との質量比が、1:2~1:5である、請求項6~10のいずれかに記載の有機光電変換素子。 The mass ratio of the polymer compound represented by the general formula (1) or the general formula (2) constituting the bulk hetero photoelectric conversion layer and the C [70] fullerene derivative is 1: 2 to 1: 5. The organic photoelectric conversion device according to any one of claims 6 to 10.
  12.  C[70]フラーレン誘導体が、PC[70]BMである、請求項6~11のいずれかに記載の有機光電変換素子。 The organic photoelectric conversion device according to any one of claims 6 to 11, wherein the C [70] fullerene derivative is PC [70] BM.
  13.  前記バルクヘテロ型光電変換層は、下記一般式(I)で表される脂肪族チオール及び下記一般式(II)で表されるヨウ素化合物の少なくとも一方を含む、請求項6~12のいずれかに記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000009
    (式中、RMは炭素数3~15のアルキレン基を示し、RNは炭素数3~15のアルキレン基を示す。)
    The bulk hetero photoelectric conversion layer includes at least one of an aliphatic thiol represented by the following general formula (I) and an iodine compound represented by the following general formula (II). Organic photoelectric conversion element.
    Figure JPOXMLDOC01-appb-C000009
    (Wherein, R M represents an alkylene group having 3 to 15 carbon atoms, R N denotes an alkylene group having 3 to 15 carbon atoms.)
  14.  前記脂肪族チオールがオクタンジチオールであり、前記ヨウ素化合物がジヨードオクタンである、請求項13に記載の有機光電変換素子。 The organic photoelectric conversion device according to claim 13, wherein the aliphatic thiol is octanedithiol and the iodine compound is diiodooctane.
  15.  前記バルクヘテロ型光電変換層の可視光領域の透過率が、厚さが100nmで、50%以上である、請求項6~14のいずれかに記載の有機光電変換素子。 The organic photoelectric conversion device according to any one of claims 6 to 14, wherein the bulk hetero photoelectric conversion layer has a visible light region transmittance of 50% or more at a thickness of 100 nm.
  16.  前記バルクヘテロ型光電変換層が、厚さが100nmで、JIS Z 8729-1994に規定されるCIE(国際照明委員会)L***表色系において、C光源及び2°視野条件で測定される彩度C*値が10以下である、請求項6~15のいずれかに記載の有機光電変換素子。 The bulk hetero photoelectric conversion layer has a thickness of 100 nm and is measured with a C light source and a 2 ° viewing condition in a CIE (International Commission on Illumination) L * a * b * color system defined in JIS Z 8729-1994. The organic photoelectric conversion device according to any one of claims 6 to 15, which has a saturation C * value of 10 or less.
  17.  請求項6~16のいずれかに記載の有機光電変換素子を含む、有機薄膜太陽電池。 An organic thin-film solar cell comprising the organic photoelectric conversion element according to any one of claims 6 to 16.
  18.  請求項6~17のいずれかに記載の有機光電変換素子の製造方法であって、
    透明基板上に陽極となる電極を形成する工程、
    前記一般式(1)又は一般式(2)で表される高分子化合物と前記C[70]フラーレン誘導体とを含むバルクヘテロ型光電変換層を形成する工程、
    陰極となる電極を形成する工程、
    を含む、有機光電変換素子の製造方法。
    A method for producing an organic photoelectric conversion element according to any one of claims 6 to 17,
    Forming an electrode serving as an anode on a transparent substrate;
    Forming a bulk hetero photoelectric conversion layer comprising the polymer compound represented by the general formula (1) or the general formula (2) and the C [70] fullerene derivative;
    Forming a cathode electrode;
    The manufacturing method of the organic photoelectric conversion element containing this.
PCT/JP2013/084162 2013-12-19 2013-12-19 Polymeric compound, organic photoelectric conversion element, and method for producing said element WO2015092909A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/084162 WO2015092909A1 (en) 2013-12-19 2013-12-19 Polymeric compound, organic photoelectric conversion element, and method for producing said element
JP2015553294A JP6199992B2 (en) 2013-12-19 2013-12-19 Polymer compound, organic photoelectric conversion element, and method for producing the element
TW103143791A TWI647250B (en) 2013-12-19 2014-12-16 Polymer compound, organic photoelectric conversion element, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/084162 WO2015092909A1 (en) 2013-12-19 2013-12-19 Polymeric compound, organic photoelectric conversion element, and method for producing said element

Publications (1)

Publication Number Publication Date
WO2015092909A1 true WO2015092909A1 (en) 2015-06-25

Family

ID=53402302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084162 WO2015092909A1 (en) 2013-12-19 2013-12-19 Polymeric compound, organic photoelectric conversion element, and method for producing said element

Country Status (3)

Country Link
JP (1) JP6199992B2 (en)
TW (1) TWI647250B (en)
WO (1) WO2015092909A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020528958A (en) * 2017-07-28 2020-10-01 フイリツプス66カンパニー 1,2,5,6-naphthalenediimide copolymer
KR20220159635A (en) * 2021-05-26 2022-12-05 동서대학교 산학협력단 Method for producing conductive polymer applicable to organic transistors based on cyclopentadithiophene

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009533878A (en) * 2006-04-11 2009-09-17 コナルカ テクノロジーズ インコーポレイテッド Tandem photovoltaic cell
JP2011528383A (en) * 2008-07-02 2011-11-17 ビーエーエスエフ ソシエタス・ヨーロピア High performance, solution processable semiconducting polymers based on alternating donor-acceptor copolymers
CN102443143A (en) * 2010-10-15 2012-05-09 海洋王照明科技股份有限公司 Organic semiconductor material containing thiophene pyrrole dione unit and preparation method and application thereof
WO2012133793A1 (en) * 2011-03-31 2012-10-04 株式会社クラレ Block copolymer and photoelectric conversion element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8227691B2 (en) * 2007-10-31 2012-07-24 The Regents Of The University Of California Processing additives for fabricating organic photovoltaic cells
JPWO2009113450A1 (en) * 2008-03-12 2011-07-21 東レ株式会社 Photovoltaic element, active layer material and method for producing photovoltaic element
EP2495272A4 (en) * 2009-10-29 2013-05-01 Sumitomo Chemical Co Polymeric compound and electronic element
JP5658633B2 (en) * 2011-08-19 2015-01-28 株式会社クラレ Composition for organic semiconductor and photoelectric conversion element using the same
JP2013191794A (en) * 2012-03-15 2013-09-26 Toray Ind Inc Photovoltaic element
CN102945925B (en) * 2012-12-13 2015-08-26 河北大学 Improve the method for organic solar batteries photoelectric conversion efficiency

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009533878A (en) * 2006-04-11 2009-09-17 コナルカ テクノロジーズ インコーポレイテッド Tandem photovoltaic cell
JP2011528383A (en) * 2008-07-02 2011-11-17 ビーエーエスエフ ソシエタス・ヨーロピア High performance, solution processable semiconducting polymers based on alternating donor-acceptor copolymers
CN102443143A (en) * 2010-10-15 2012-05-09 海洋王照明科技股份有限公司 Organic semiconductor material containing thiophene pyrrole dione unit and preparation method and application thereof
WO2012133793A1 (en) * 2011-03-31 2012-10-04 株式会社クラレ Block copolymer and photoelectric conversion element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, CHIU-HSIANG: "Synthesis and Characterization of Bridged Bithiophene-Based Conjugated Polymers for Photovoltaic Applications: Acceptor Strength and Ternary Blends", MACROMOLECULES, vol. 43, no. 2, 2010, pages 697 - 708 *
ZHU, ZHENGGUO: "Panchromatic Conjugated Polymers Containing Alternating Donor/Acceptor", MACROMOLECULES, vol. 40, no. 6, 2007, pages 1981 - 1986 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020528958A (en) * 2017-07-28 2020-10-01 フイリツプス66カンパニー 1,2,5,6-naphthalenediimide copolymer
KR20220159635A (en) * 2021-05-26 2022-12-05 동서대학교 산학협력단 Method for producing conductive polymer applicable to organic transistors based on cyclopentadithiophene
KR102560214B1 (en) 2021-05-26 2023-07-26 동서대학교 산학협력단 Method for producing conductive polymer applicable to organic transistors based on cyclopentadithiophene

Also Published As

Publication number Publication date
JPWO2015092909A1 (en) 2017-03-16
JP6199992B2 (en) 2017-09-20
TW201538558A (en) 2015-10-16
TWI647250B (en) 2019-01-11

Similar Documents

Publication Publication Date Title
JP6446644B2 (en) Organic compound, organic material thin film, photoelectric conversion layer, solution for forming photoelectric conversion layer, and photoelectric conversion element
JP6017836B2 (en) Electron donor polymer and solar cell including the same
Dang et al. Manipulating backbone structure with various conjugated spacers to enhance photovoltaic performance of D–A-type two-dimensional copolymers
JP2009096950A (en) Polymer compound and organic photoelectric conversion element using it
Dong et al. [1, 2, 5] Thiadiazolo [3, 4-f] benzotriazole based narrow band gap conjugated polymers with photocurrent response up to 1.1 μm
JP2017224820A (en) Fullerene derivative and n-type semiconductor material
Hwang et al. Synthesis, characterization, and photovoltaic applications of dithienogermole-dithienylbenzothiadiazole and-dithienylthiazolothiazole copolymers
WO2012117730A1 (en) Polymer and photoelectric conversion element
Gu et al. Design, synthesis and photovoltaic properties of two π-bridged cyclopentadithiophene-based polymers
Li et al. Fabrication of benzothiadiazole–benzodithiophene-based random copolymers for efficient thick-film polymer solar cells via a solvent vapor annealing approach
TWI623564B (en) P-type semiconducting polymers and related methods
Deng et al. Trifluoromethylated thieno [3, 4-b] thiophene-2-ethyl carboxylate as a building block for conjugated polymers
Keum et al. Non-fullerene polymer solar cells based on quinoxaline units with fluorine atoms
WO2016013461A1 (en) Polymeric compound and organic semiconductor device including same
JP6199992B2 (en) Polymer compound, organic photoelectric conversion element, and method for producing the element
KR101328526B1 (en) Organic photovoltain polymer and manufacturing method thereof
KR101550844B1 (en) Conjugated polymer for organic solar cells and Organic solar cells comprising the same
Li et al. Polythiophenes with carbazole side chains: design, synthesis and their application in organic solar cells
KR101400077B1 (en) new polymer process for producing the polymer and organic optoelectronic devices using the same
Rudenko et al. Influence of selenophene on the properties of semi-random polymers and their blends with PC61BM
Hu et al. Donor–Acceptor Copolymers with Rationally Regulated Side Chain Orientation for Polymer Solar Cells Processed by Non-Halogenated Solvent
JP6536940B2 (en) Polymer compound, organic photoelectric conversion device, and method of manufacturing the device
WO2013047293A1 (en) Photoelectric conversion element
KR102457457B1 (en) Conjugated polymer for all-polymer solar cell, active layer composition for all-polymer solar cell comprising thereof, and uses thereof
Zhou et al. Enhanced photovoltaic properties of di (dodecylthiophene)-alt-2, 3-di (3-octoxylphenyl)-5, 8-dithieno [3, 2-b] thiophene 6, 7-difluoroquinoxaline copolymer by fluorination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553294

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899489

Country of ref document: EP

Kind code of ref document: A1