WO2015092865A1 - Vector hysteresis analysis method, program therefor, and vector hysteresis analysis device - Google Patents

Vector hysteresis analysis method, program therefor, and vector hysteresis analysis device Download PDF

Info

Publication number
WO2015092865A1
WO2015092865A1 PCT/JP2013/083719 JP2013083719W WO2015092865A1 WO 2015092865 A1 WO2015092865 A1 WO 2015092865A1 JP 2013083719 W JP2013083719 W JP 2013083719W WO 2015092865 A1 WO2015092865 A1 WO 2015092865A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetization
magnetic field
magnetic
axis
vector
Prior art date
Application number
PCT/JP2013/083719
Other languages
French (fr)
Japanese (ja)
Inventor
李 燦
宮田 健治
長谷川 学
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/083719 priority Critical patent/WO2015092865A1/en
Publication of WO2015092865A1 publication Critical patent/WO2015092865A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/14Measuring or plotting hysteresis curves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Definitions

  • the present invention relates to a method for analyzing vector hysteresis of a magnetic material, a program thereof, and a vector hysteresis analyzing apparatus.
  • the hysteresis phenomenon is a representative physical phenomenon that memorizes past history and governs the behavior after the present. There are two physical movements of A and A 'with different past histories, and A and A' drag past past histories even if they have the same physical quantity and external force works under the same conditions for the future. It is a phenomenon that shows different movements.
  • hysteresis In electrical equipment, magnetic materials, especially electromagnetic steel sheets, are often used. Most magnetic materials have hysteresis. In this hysteresis, if the magnetic field is not one-dimensional and has a degree of freedom of the vector, the magnetization appears as a vector. Therefore, the hysteresis is also vector hysteresis.
  • Patent Documents 1 and 2 disclose magnetic field analysis methods related to vector hysteresis.
  • Patent Document 1 in the modeling of the two-dimensional magnetic characteristics for performing the magnetic field analysis by taking the relationship between the magnetic field strength and the magnetic flux density as a vector quantity, the magnetic flux density, the inclination angle, and the A method is disclosed in which interpolation around a predetermined angle is handled separately when performing coefficient interpolation with respect to the axial ratio.
  • Patent Document 2 discloses a magnetic field analysis method using two-dimensional magnetic property modeling including a term representing a change due to frequency of a term representing a temporal change in magnetic flux density.
  • Patent Document 3 discloses a method for analyzing a hysteresis magnetic field in consideration of a minor loop.
  • Non-Patent Document 2 discloses a method of analyzing hysteresis when a compressive stress and an external magnetic field are applied in the rolling direction of a non-oriented electrical steel sheet using a grain magnetics model (GM model). .
  • GM model grain magnetics model
  • An object of the present invention is to provide a vector hysteresis solution that can analyze the vector hysteresis magnetic characteristics of a magnetic material and can be easily incorporated into a magnetic field analysis.
  • the vector hysteresis analysis method of the present invention uses a model in which a magnetic material is regarded as an assembly of micro magnets, magnetic property data represented by a vector of a plurality of easy magnetization axes and hard magnetization axes, a magnetization easy axis, and a magnetization difficulty.
  • the distribution ratio of the shaft is input, and the hysteresis of the magnetic material is analyzed.
  • the vector magnetization trajectory corresponding to the history can be obtained from the history of the trajectory. Moreover, since the above transition probability or its cumulative function is expressed in the form of a function, it is suitable for a computer. Therefore, high speed calculation can be realized.
  • vector hysteresis can be predicted, it is possible to optimally design or optimally control an electric device using a magnetic material.
  • FIG. 1B is a schematic diagram of a four-axis model in which the micromagnet of FIG. 1A is divided for each direction. It is a graph which shows the transition probability of 180 degree inversion of a micro magnet. It is a graph which shows the accumulation function which is integral of the transition probability of FIG. 2A. It is a graph which shows the transition probability of 90 degree rotation in the case of defining a hard magnetization axis in a direction orthogonal to the easy magnetization axis. It is a graph which shows the accumulation function which is integral of the transition probability of FIG. 3A.
  • FIG. 4A It is a schematic diagram which shows the magnetization easy axis
  • FIG. 4A It is a schematic diagram which shows the magnetization easy axis
  • FIG. 7B is a graph showing, from the orbit around the origin to the farthest point in the first quadrant, after the orbit around the origin and reaching the farthest point in the third quadrant of the magnetic field trajectory shown in FIG. 7A.
  • FIG. 7B is a graph showing, from the magnetic field trajectory shown in FIG. 7A, after the process of FIG. 7B, after the orbit around the origin from the farthest point in the third quadrant to the farthest point in the first quadrant.
  • 8 is a graph showing a magnetization trajectory obtained from the magnetic field trajectories of FIGS. 7A to 7C. It is a schematic diagram showing a magnetization easy axis and a magnetization difficult axis of a two-dimensional 8-axis model.
  • FIG. 7B is a graph showing, from the orbit around the origin to the farthest point in the first quadrant, after the orbit around the origin and reaching the farthest point in the third quadrant of the magnetic field trajectory shown in FIG. 7A.
  • FIG. 5 is a schematic diagram showing an easy axis of magnetization in the XY plane and its hard axis of magnetization when three two-dimensional four-axis models are overlapped and expanded to three dimensions. It is a schematic diagram showing an easy axis of magnetization in the YZ plane and its hard axis of magnetization when three two-dimensional four-axis models are overlapped and expanded to three dimensions.
  • FIG. 6 is a schematic diagram showing an easy magnetization axis and a hard magnetization axis of a ZX plane when three two-dimensional four-axis models are overlapped and expanded to three dimensions.
  • FIG. 10A is a schematic diagram showing a state in which the easy magnetization axis and the hard magnetization axis of FIGS. 10A to 10C are superimposed. It is a flowchart which shows the procedure which determines the analysis function of the magnetic body data in a vector hysteresis analysis. It is a schematic block diagram which shows the analysis apparatus of vector hysteresis.
  • the magnetic properties of the magnetic material are determined by the collective motion of a group (group) of micro magnets (magnetic domains).
  • the easy axis of magnetization of this micromagnet (the most stable state is that the micromagnet is oriented along this axis.
  • easy axis has a finite number of directions (for example, four directions).
  • each easy axis has an orthogonal hard axis (hereinafter, also simply referred to as “hard axis”).
  • the change in magnetization due to the magnetic field includes 180 ° reversal on the easy axis of the micromagnet, 90 ° rotation from the easy axis to the hard axis, or 90 ° from the hard axis to the easy axis, and the magnetic field in the magnetic field direction.
  • the parallel rotation of the magnetic field means that the direction of magnetization of the micro magnet is directed to the direction of the magnetic field when the magnetic field acts strongly in a direction other than the easy magnetization axis or the hard magnetization axis. This is because when the magnetic field is strong, the direction of the magnetic field is energetically stable.
  • the micro magnets When there is no magnetic field, the micro magnets are in a stable state, so they line up in the positive direction of the easy axis or in the opposite direction (negative direction).
  • FIG. 1A is a schematic diagram showing a demagnetization state of a micro magnet in a magnetic body.
  • FIG. 1B is a schematic diagram of a four-axis model in which the micromagnet of FIG. 1A is divided into directions.
  • the micro magnets 1 have magnetization, and the magnetization directions of the respective micro magnets 1 are not determined and are randomly distributed in all directions. This is referred to as a demagnetized state, and the total magnetization of the micro magnets is 0, that is, the macro is a state in which the magnetic material has no magnetization.
  • the micro magnets 1 of FIG. 1A are grouped into four easy axes 2 (four axes) to form a micro magnet group 101.
  • the number of micro magnets 1 having positive and negative magnetizations is theoretically equal. Therefore, also in each easy magnetization axis 2, the total magnetization cancels each other and becomes zero.
  • transition probability by magnetic field 180 ° inversion by magnetic field is given as transition probability by magnetic field.
  • a magnetic field is applied in the direction of the hard magnetization axis, which is perpendicular to the easy magnetization axis, initially it is energetically better to line up in the easy axis direction because of the energy generated from the repulsive force between the magnetic field and the micro magnet.
  • the micromagnet rotates 90 ° because it rotates 90 ° and becomes more energetically stable toward the hard axis. This is given as the transition probability due to this 90 ° rotating magnetic field.
  • a micro magnet oriented toward the easy axis and the difficult axis is more energetically stable when oriented in the direction of the magnetic field.
  • This rotation is defined as a parallel magnetic field rotation and given as a transition probability.
  • FIG. 2A is a graph showing the transition probability of the 180 ° inversion of the micro magnet.
  • One state is a state in which the magnetic field is -1 and works in the negative direction of the easy axis, and the micro magnets are aligned in the negative direction. This state is set to -1.
  • the other state is a state where the magnetic field is 1 and works in the positive axis direction, and the micro magnets are aligned in the positive direction.
  • the magnetization of the micromagnet reverses 180 ° in the easy axis negative direction. That is, the magnetization changes from 1 to -1.
  • the transition probability in this case is indicated by a broken line in FIG. 2A.
  • FIG. 2B shows the process of FIG. 2A as a sum of the ratios of the micro magnets.
  • the solid line shown in this figure is also called ascending curve, and the broken line is also called descending curve.
  • a function representing an ascending curve is defined as fD (h)
  • the descending curve becomes ⁇ fD ( ⁇ h).
  • FIG. 3A is a graph showing the transition probability of 90 ° rotation when a hard magnetization axis is defined in a direction orthogonal to the easy magnetization axis.
  • FIG. 3B is a graph showing a cumulative function that is an integral of the transition probability of FIG. 3A.
  • a hard magnetization axis 4 is defined in a direction orthogonal to the easy magnetization axis 2.
  • a magnetic field 3 magnetic field is -1
  • the micro magnet faces the direction of the magnetic field 3. This state is set to -1.
  • the magnetic field 3 is changed to 1 which is the positive direction from here, the micro magnet rotates 90 ° and faces the direction of the easy magnetization axis 2.
  • a state in which all the micro magnets are in the easy axial direction is defined as a zero state.
  • the cumulative function that is the result of integrating such a process is the solid line in FIG. 3B.
  • the process becomes a broken line in FIG. 3A, and the cumulative function in this case is the broken line in FIG. 3B. If the rising curve function in FIG. 3B is defined as fDt (h), the falling curve is again ⁇ fDt ( ⁇ h).
  • FIG. 4A shows the transition probability of the parallel rotation of the magnetic field.
  • the micro magnet In the parallel rotation of the magnetic field, when the magnetic field works strongly in a direction other than the easy axis or the hard axis, the micro magnet is energetically oriented in the magnetic field direction because the magnetic field is stronger than the easy axis or the hard axis. Is more stable.
  • the solid line shown in this figure is the probability of rotating in the magnetization direction when the magnetic field increases, and the broken line is the probability of rotating in the easy axis direction from the state 1 where the magnetic field decreases.
  • FIG. 4B shows a cumulative function of the transition probability of FIG. 4A.
  • the ascending curve and the descending curve of the magnetic field parallel rotation are not point-symmetric and are defined respectively.
  • the rising curve function is defined as frotR (h)
  • the falling curve function is defined as frotL (h).
  • transition probabilities of 180 ° reversal, 90 ° rotation, and magnetic field parallel rotation, and their cumulative functions could be prepared.
  • a solution method for vector hysteresis is constructed when four easy magnetization axes are used.
  • FIG. 5 shows the unit vector dD i of the i-magnetization easy axis and the unit vector dDt i of the hard axis of the 4-axis model.
  • dD i is given as the following formula (1) and the hard axis is rotated 90 ° to the easy axis in the counterclockwise direction.
  • This example is a 4-axis model, where i is an integer from 1 to 4.
  • the magnetization mi is obtained according to the following equations (3) to (16).
  • MEMO (hD, hDpst i , mDpst i ) is calculated from the past magnetic field, magnetization (hDpst i , mDpst i ), and current magnetic field hD (HiDt i , MiDt i ), (HfDt i ).
  • the magnetization value at the previous time may be given.
  • micro-magnetization that faces the easy axis and the magnetization that faces the hard axis must satisfy the following formula (19). This equation is necessary to match the actual magnetization.
  • the parallel rotation of the magnetic field is a ratio that is directed to the direction of the magnetic field, and thus is related only to the magnitude of the magnetic field regardless of the direction of the magnetic field. Therefore, it is the same as scalar hysteresis.
  • the magnetization M j is obtained by the following equation (26) using the current magnetic field H j from the past magnetic fields H j ⁇ 1 and M j ⁇ 1 .
  • the magnetization trajectory on the magnetic field trajectory can be obtained using the above equations (2) to (18) and (20) to (26) and coefficients.
  • FIG. 6 shows the relationship between Hx and Mx described above.
  • a magnetization curve major loop including a saturation point of magnetization due to a magnetic field is shown.
  • FIG. 7A shows the entire magnetic field trajectory.
  • 7C moves from ( ⁇ 2858.83, ⁇ 39.45) to the vicinity of (0,0) after passing through the trajectory of FIG. 7B, and after rotating, traces to (285.83, 39.45). It shows the trajectory to arrive.
  • FIG. 8 shows the magnetization trajectories corresponding to the trajectories shown in FIGS. 7A to 7C, using the above calculation formulas and conditions.
  • the solid line corresponds to FIG. 7B
  • the broken line corresponds to FIG. 7C.
  • Mx 1.5T
  • Mx ⁇ 1.5T
  • a magnetic field rotated in the vicinity of (0,0) rotates the magnetization around ( ⁇ 0.75, 0).
  • Example 1 In Example 1, four axes of easy magnetization were used, but here the case of eight axes is shown.
  • FIG. 9 shows the easy axis and the hard axis in the 8-axis model.
  • dD i is given by the following equation (27).
  • the easy magnetization axis and the hard magnetization axis are on a two-dimensional space (plane).
  • the limitation is the same in three dimensions. Therefore, in order to expand to three dimensions, three planes XY, YZ, and XZ must be prepared.
  • FIGS. 10A to 10C are overlapped and expanded to a three-dimensional space shown in FIG. 10D.
  • the cumulative function is calculated by integration (step 3).
  • step 3 with respect to the change in magnetization due to the magnetic field, 180 ° inversion on the easy axis of the micromagnet, 90 ° rotation from the easy axis to the hard axis, or 90 ° from the hard axis to the easy axis, and in the magnetic field direction. Assuming that the change is due to three processes of parallel rotation of the magnetic field, a cumulative function is calculated from the transition probabilities for these processes.
  • a magnetization curve (major loop) including a saturation point of magnetization due to the magnetic field is calculated by fitting or function processing S104 of FIG. 11 described later (step 4).
  • step 5 a minor loop that does not include the origin (0, 0) can also be calculated.
  • the analysis device includes a data holding unit and a calculation unit.
  • the data holding unit records numerical data of a model in which a magnetic body is regarded as an assembly of micro magnets, and magnetic characteristic data represented by vectors of a plurality of easy magnetization axes and hard magnetization axes. This analyzes the hysteresis of a magnetic substance from magnetic characteristic data and the distribution ratio of the easy magnetization axis and the hard magnetization axis.
  • FIG. 11 is a flowchart for determining an analysis function of magnetic material data in vector hysteresis analysis.
  • the magnetic data and the number of axes of the magnetic material to be analyzed are input (S101).
  • magnetic data In the case of magnetic steel sheets, magnetic data must have major loops in the RD (rolling direction) and TD (rolling orthogonal direction) directions. Enter the trajectory. If it is not a magnetic steel sheet, it is possible with a single major loop in the case of an isotropic magnetic body, but in the case of a magnetic body with anisotropy, if it is a two-dimensional body, the x-axis and y-axis are defined, Enter the major loop for those axes. If it is 3D, enter the z-axis major loop. If there is a magnetization trajectory for the rotating magnetic field, the data is also input.
  • Processing the input data includes, for example, determining the saturation magnetic field and magnetization in each direction, or allowing the user to determine whether to confirm the input by input, and the saturation magnetic field and magnetization as shown in FIGS. 1B, 2B, and 3B. Use to standardize. In the rotating magnetic field, processing is performed so that the delay angle of magnetization with respect to each rotating magnetic field can be displayed.
  • each function is called from the storage device 50 that has previously stored the probability function shown in FIGS. 1A to 3B or a cumulative function group thereof, 180 ° reversal, 90 ° rotation and magnetic field parallel rotation function,
  • the cO i in 28) and (26) and the correlation coefficients a and b in the above equations (14) and (15) are calculated according to a preprogrammed routine so as to match the input data as much as possible.
  • a function determinant is prepared in the input data.
  • the deterministic coefficient is a numerical value input by the user. If the value calculated from the measure function that digitizes the difference of the decision function from the input data is smaller than the deterministic coefficient, the next step will be taken. If larger, the error function will contribute to the error. Measure the degree, readjust the decision function in the direction of decreasing its contribution, and repeat until it becomes smaller than the deterministic coefficient (S105).
  • calculation is performed from the decision function such as the major loop and the delay angle displayed on the display (S103) by the input data processing (S106).
  • the calculated result is displayed on the display in comparison with the input data (S107).
  • the user compares with the display and determines whether or not the vector hysteresis function is valid (S108).
  • a decision function is output (S109), and the analysis is terminated (S110).
  • the user returns to S104, prepares a routine for redefining and calculating the deterministic coefficient, or a routine for readjusting the error contribution, and performs the processing from S105 onward.
  • the dynamic magnetic field analysis incorporating the above model may be used to perform analysis with a system desired to be analyzed.
  • FIG. 12 is a schematic configuration diagram showing a vector hysteresis analyzing apparatus.
  • the analysis device 200 includes a central processing unit 201 (CPU), a storage device 202, an input interface 203, a display device 204, and an input device 205 (for example, a keyboard or a mouse).
  • the central processing unit 201 and the storage device 202 are connected to the display device 204 and the input device 205 via the input interface 203.
  • the processing procedure of the vector hysteresis analysis method shown in FIG. 11, the equations used to calculate the physical quantity to be analyzed, and control data for controlling the analysis process are stored in advance.
  • the processing procedure of the vector hysteresis analysis is programmed and stored in the storage device 202.
  • the storage device 202 is a recording medium that can be read by the central processing unit 201.
  • the vector hysteresis solution of the present invention can be predicted in the design of an electric device using a magnetic material, for example, a transformer, a motor, a generator, etc., so that optimum design or optimum control becomes possible.
  • a magnetic material for example, a transformer, a motor, a generator, etc.

Abstract

This vector hysteresis analysis method is characterized by using a model that assumes a magnetic material to be an aggregate of micro-magnets, wherein the hysteresis of the magnetic material is analyzed by inputting magnetic characteristic data represented by vectors along a plurality of easy magnetization axes and a plurality of hard magnetization axes and further inputting the proportion of each of the easy magnetization axes and the proportion of each of the hard magnetization axes. This makes it possible to obtain the vector magnetization path corresponding to the history of a given vector magnetic field path.

Description

ベクトルヒステリシスの解析方法、そのプログラム及びベクトルヒステリシスの解析装置Vector hysteresis analysis method, program thereof, and vector hysteresis analysis apparatus
 本発明は、磁性体のベクトルヒステリシスの解析方法、そのプログラム及びベクトルヒステリシスの解析装置に関するものである。 The present invention relates to a method for analyzing vector hysteresis of a magnetic material, a program thereof, and a vector hysteresis analyzing apparatus.
 ヒステリシス現象とは、過去の履歴を記憶し、現在以後の振る舞いを支配する物理現象の代表的な一つである。それは、過去の履歴が違うAとA’の二つの物理運動があり、現在は同一の物理量を持ち且つ未来に対し同一の条件で外力が働いても、AとA’は過去の履歴を引きずり異なった運動を示す現象である。 The hysteresis phenomenon is a representative physical phenomenon that memorizes past history and governs the behavior after the present. There are two physical movements of A and A 'with different past histories, and A and A' drag past past histories even if they have the same physical quantity and external force works under the same conditions for the future. It is a phenomenon that shows different movements.
 電気機器では、磁性体、特に電磁鋼板が多く利用されている。磁性体の殆どはヒステリシスを持つ。このヒステリシスは、磁界が1次元ではなく、ベクトルの自由度を持つと、磁化もベクトルとして現れる。そのため、ヒステリシスもベクトルヒステリシスになる。 In electrical equipment, magnetic materials, especially electromagnetic steel sheets, are often used. Most magnetic materials have hysteresis. In this hysteresis, if the magnetic field is not one-dimensional and has a degree of freedom of the vector, the magnetization appears as a vector. Therefore, the hysteresis is also vector hysteresis.
 このベクトルヒステリシスの解法については、非特許文献1に詳細が書かれているが、現在に至るまで、有限要素法などを利用した磁化解析に用いられ、実際の機器に応用された例はまれである。 The details of this vector hysteresis solution are described in Non-Patent Document 1, but until now, it has been used for magnetization analysis using the finite element method and applied to actual equipment. is there.
 特許文献1及び2には、ベクトルヒステリシスに関する磁界解析方法が開示されている。 Patent Documents 1 and 2 disclose magnetic field analysis methods related to vector hysteresis.
 このうち、特許文献1には、磁界強度と磁束密度との関係をベクトル量としてとらえて磁界解析を行うための二次元磁気特性のモデリングにおいて、高精度化のために、磁束密度、傾き角及び軸比に関して係数補間を行う際に、所定の角度付近の補間を別扱いとする方法が開示されている。 Among these, in Patent Document 1, in the modeling of the two-dimensional magnetic characteristics for performing the magnetic field analysis by taking the relationship between the magnetic field strength and the magnetic flux density as a vector quantity, the magnetic flux density, the inclination angle, and the A method is disclosed in which interpolation around a predetermined angle is handled separately when performing coefficient interpolation with respect to the axial ratio.
 また、特許文献2には、磁束密度の時間的変化を表す項の周波数による変化を表現する項を含む二次元磁気特性のモデリングを用いる磁界解析方法が開示されている。 Patent Document 2 discloses a magnetic field analysis method using two-dimensional magnetic property modeling including a term representing a change due to frequency of a term representing a temporal change in magnetic flux density.
 また、特許文献3には、マイナーループを考慮したヒステリシス磁界を解析する方法が開示されている。 Patent Document 3 discloses a method for analyzing a hysteresis magnetic field in consideration of a minor loop.
 さらに、非特許文献2には、Grain Magneticsモデル(GMモデル)を用いて、無方向性電磁鋼板の圧延方向に圧縮応力と外部磁界が印加された場合のヒステリシスを解析する方法が開示されている。 Furthermore, Non-Patent Document 2 discloses a method of analyzing hysteresis when a compressive stress and an external magnetic field are applied in the rolling direction of a non-oriented electrical steel sheet using a grain magnetics model (GM model). .
特開2004-184234号公報JP 2004-184234 A 特開2004-184233号公報JP 2004-184233 A 特開2005-83764号公報Japanese Patent Laid-Open No. 2005-83764
 磁性体を含む電気機器に現れるベクトルヒステリシスの解析は、従来、煩雑で、困難であった。特許文献1~3及び非特許文献1~2に記載の技術を用いても十分とは言えなかった。 Conventionally, analysis of vector hysteresis appearing in electrical devices including magnetic materials has been complicated and difficult. Even the techniques described in Patent Documents 1 to 3 and Non-Patent Documents 1 and 2 were not sufficient.
 本発明は、磁性体が持つベクトルヒステリシス磁気特性を解析可能とし、且つ、磁界解析に組み込みが容易なベクトルヒステリシスの解法を提供することを目的とする。 An object of the present invention is to provide a vector hysteresis solution that can analyze the vector hysteresis magnetic characteristics of a magnetic material and can be easily incorporated into a magnetic field analysis.
 本発明のベクトルヒステリシスの解析方法は、磁性体をマイクロ磁石の集合体とみなすモデルを用い、複数の磁化容易軸及び磁化困難軸のベクトルで表された磁気特性データと、磁化容易軸及び磁化困難軸の配分比率とを入力し、磁性体のヒステリシスを解析することを特徴とする。 The vector hysteresis analysis method of the present invention uses a model in which a magnetic material is regarded as an assembly of micro magnets, magnetic property data represented by a vector of a plurality of easy magnetization axes and hard magnetization axes, a magnetization easy axis, and a magnetization difficulty. The distribution ratio of the shaft is input, and the hysteresis of the magnetic material is analyzed.
 本発明によれば、一つのベクトル磁界の軌道が与えられると、その軌道の履歴から、その履歴に対応するベクトル磁化の軌道を得ることができる。また、上記の遷移確率またはその累積関数は、関数の形で表されているため、計算機に適している。よって、高速度の計算が実現可能になる。 According to the present invention, when one vector magnetic field trajectory is given, the vector magnetization trajectory corresponding to the history can be obtained from the history of the trajectory. Moreover, since the above transition probability or its cumulative function is expressed in the form of a function, it is suitable for a computer. Therefore, high speed calculation can be realized.
 また、本発明によれば、ベクトルヒステリシスが予測可能となるため、磁性体を用いる電気機器の最適設計または最適制御が可能になる。 Further, according to the present invention, since vector hysteresis can be predicted, it is possible to optimally design or optimally control an electric device using a magnetic material.
磁性体の中のマイクロ磁石の消磁状態を示す模式図である。It is a schematic diagram which shows the demagnetization state of the micro magnet in a magnetic body. 図1Aのマイクロ磁石を方向ごとに分けて表した4軸モデルの模式図である。FIG. 1B is a schematic diagram of a four-axis model in which the micromagnet of FIG. 1A is divided for each direction. マイクロ磁石の180°反転の遷移確率を示すグラフである。It is a graph which shows the transition probability of 180 degree inversion of a micro magnet. 図2Aの遷移確率の積分である累積関数を示すグラフである。It is a graph which shows the accumulation function which is integral of the transition probability of FIG. 2A. 磁化容易軸に直交方向に磁化困難軸を定義した場合における90°回転の遷移確率を示すグラフである。It is a graph which shows the transition probability of 90 degree rotation in the case of defining a hard magnetization axis in a direction orthogonal to the easy magnetization axis. 図3Aの遷移確率の積分である累積関数を示すグラフである。It is a graph which shows the accumulation function which is integral of the transition probability of FIG. 3A. 磁界が磁化容易軸または困難軸以外の方向に強く働いた場合におけるマイクロ磁石の磁化方向が磁界方向に向く遷移確率を示すグラフである。It is a graph which shows the transition probability that the magnetization direction of a micro magnet turns to a magnetic field direction when a magnetic field acts strongly in directions other than an easy magnetization axis or a difficult axis. 図4Aの遷移確率の積分である累積関数を示すグラフである。It is a graph which shows the accumulation function which is integral of the transition probability of FIG. 4A. 4軸モデルにおける磁化容易軸及びその磁化困難軸を示す模式図である。It is a schematic diagram which shows the magnetization easy axis | shaft and its magnetization difficult axis | shaft in a 4-axis model. 2次元ベクトルヒステリシス解法により得られたメジャーループを示すグラフである。It is a graph which shows the major loop obtained by the two-dimensional vector hysteresis solution method. 実施例における磁界軌道の全体を示すグラフである。It is a graph which shows the whole magnetic field track in an example. 図7Aに示す磁界軌道のうち、原点の周囲における周回から第一象限の最遠点における折り返し、原点の周囲における周回の後、第三象限の最遠点に達するまでを示すグラフである。FIG. 7B is a graph showing, from the orbit around the origin to the farthest point in the first quadrant, after the orbit around the origin and reaching the farthest point in the third quadrant of the magnetic field trajectory shown in FIG. 7A. 図7Aに示す磁界軌道のうち、図7Bの過程の後、第三象限の最遠点から原点の周囲における周回の後、第一象限の最遠点に達するまでを示すグラフである。FIG. 7B is a graph showing, from the magnetic field trajectory shown in FIG. 7A, after the process of FIG. 7B, after the orbit around the origin from the farthest point in the third quadrant to the farthest point in the first quadrant. 図7A~7Cの磁界軌道から求めた磁化軌道を示すグラフである。8 is a graph showing a magnetization trajectory obtained from the magnetic field trajectories of FIGS. 7A to 7C. 2次元8軸モデルの磁化容易軸及びその磁化困難軸を示す模式図である。It is a schematic diagram showing a magnetization easy axis and a magnetization difficult axis of a two-dimensional 8-axis model. 2次元4軸モデルを3つ重ねて3次元に拡張した場合のX-Y面の磁化容易軸及びその磁化困難軸を示す模式図である。FIG. 5 is a schematic diagram showing an easy axis of magnetization in the XY plane and its hard axis of magnetization when three two-dimensional four-axis models are overlapped and expanded to three dimensions. 2次元4軸モデルを3つ重ねて3次元に拡張した場合のY-Z面の磁化容易軸及びその磁化困難軸を示す模式図である。It is a schematic diagram showing an easy axis of magnetization in the YZ plane and its hard axis of magnetization when three two-dimensional four-axis models are overlapped and expanded to three dimensions. 2次元4軸モデルを3つ重ねて3次元に拡張した場合のZ-X面の磁化容易軸及びその磁化困難軸を示す模式図である。FIG. 6 is a schematic diagram showing an easy magnetization axis and a hard magnetization axis of a ZX plane when three two-dimensional four-axis models are overlapped and expanded to three dimensions. 図10A~10Cの磁化容易軸及びその磁化困難軸を重ね合わせた状態を示す模式図である。FIG. 10A is a schematic diagram showing a state in which the easy magnetization axis and the hard magnetization axis of FIGS. 10A to 10C are superimposed. ベクトルヒステリシス解析における磁性体データの解析関数を決定する手順を示すフローチャートである。It is a flowchart which shows the procedure which determines the analysis function of the magnetic body data in a vector hysteresis analysis. ベクトルヒステリシスの解析装置を示す概略構成図である。It is a schematic block diagram which shows the analysis apparatus of vector hysteresis.
 本発明のベクトルヒステリシス解法においては、磁性体の磁気特性が、マイクロ磁石(磁区)の集まり(群)の集団運動により定められると仮定する。そして、このマイクロ磁石の磁化容易軸(マイクロ磁石がこの軸に沿って向くことが最も安定状態。以下、単に「容易軸」ともいう。)が有限個の方向(例えば、4方向)を有するものとする。 In the vector hysteresis solution of the present invention, it is assumed that the magnetic properties of the magnetic material are determined by the collective motion of a group (group) of micro magnets (magnetic domains). And, the easy axis of magnetization of this micromagnet (the most stable state is that the micromagnet is oriented along this axis. Hereinafter, also simply referred to as “easy axis”) has a finite number of directions (for example, four directions). And
 マイクロ磁石は、代表するn個の磁化容易軸の一つに属するとすることにより、磁性体をn個集団として扱うことが可能となる。また、各磁化容易軸は、直交する磁化困難軸(以下、単に「困難軸」ともいう。)を有するものとする。 Suppose that a micro magnet belongs to one of the representative n easy magnetization axes, so that n magnetic bodies can be handled as a group. In addition, each easy axis has an orthogonal hard axis (hereinafter, also simply referred to as “hard axis”).
 ここでは、磁界による磁化の変化は、マイクロ磁石の磁化容易軸上の180°反転、磁化容易軸から磁化困難軸へ、または困難軸から容易軸への90°回転、及び、磁界方向への磁界平行回転の3つの過程による変化だけで成り立つとする。ここで、磁界平行回転とは、磁界が磁化容易軸または磁化困難軸以外の方向に強く働いた場合に、マイクロ磁石の磁化の方向が磁界の方向に向くことをいう。これは、磁界が強い場合、磁界の方向がエネルギー的に安定だからである。 Here, the change in magnetization due to the magnetic field includes 180 ° reversal on the easy axis of the micromagnet, 90 ° rotation from the easy axis to the hard axis, or 90 ° from the hard axis to the easy axis, and the magnetic field in the magnetic field direction. Suppose that it consists only of changes by three processes of parallel rotation. Here, the parallel rotation of the magnetic field means that the direction of magnetization of the micro magnet is directed to the direction of the magnetic field when the magnetic field acts strongly in a direction other than the easy magnetization axis or the hard magnetization axis. This is because when the magnetic field is strong, the direction of the magnetic field is energetically stable.
 磁界がない場合、マイクロ磁石は安定状態にあるため、磁化容易軸の正方向またはその反対方向(負方向)に並ぶ。 When there is no magnetic field, the micro magnets are in a stable state, so they line up in the positive direction of the easy axis or in the opposite direction (negative direction).
 図1Aは、磁性体の中のマイクロ磁石の消磁状態を示す模式図である。また、図1Bは、図1Aのマイクロ磁石を方向ごとに分けて表した4軸モデルの模式図である。 FIG. 1A is a schematic diagram showing a demagnetization state of a micro magnet in a magnetic body. FIG. 1B is a schematic diagram of a four-axis model in which the micromagnet of FIG. 1A is divided into directions.
 図1Aにおいて、マイクロ磁石1は磁化を有し、それぞれのマイクロ磁石1の磁化の方向は、定まることなく、あらゆる方向に乱雑に分布している。これを消磁状態と称し、マイクロ磁石の磁化の総和は0、即ちマクロ的に磁性体は磁化が無い状態である。 In FIG. 1A, the micro magnets 1 have magnetization, and the magnetization directions of the respective micro magnets 1 are not determined and are randomly distributed in all directions. This is referred to as a demagnetized state, and the total magnetization of the micro magnets is 0, that is, the macro is a state in which the magnetic material has no magnetization.
 図1Bにおいては、図1Aのマイクロ磁石1は、4つの磁化容易軸2(4軸)にまとめられて、マイクロ磁石群101を構成している。それぞれのマイクロ磁石群101においては、正方向及び負方向の磁化を有するマイクロ磁石1は、理論的には等しい個数含まれる。よって、それぞれの磁化容易軸2においても、磁化の総和は、互いに打ち消し合い、0になる。 In FIG. 1B, the micro magnets 1 of FIG. 1A are grouped into four easy axes 2 (four axes) to form a micro magnet group 101. In each of the micro magnet groups 101, the number of micro magnets 1 having positive and negative magnetizations is theoretically equal. Therefore, also in each easy magnetization axis 2, the total magnetization cancels each other and becomes zero.
 磁界を磁化容易軸方向に作用させると、反対方向を向いているマイクロ磁石と磁界との間に反発エネルギーが生じ、不安定状態となる。不安定さが増すと、マイクロ磁石は180°反転し、安定状態に入る。 When a magnetic field is applied in the direction of the easy magnetization axis, repulsive energy is generated between the micro magnet facing in the opposite direction and the magnetic field, resulting in an unstable state. As instability increases, the micromagnet flips 180 ° and enters a stable state.
 磁界による180°反転は、磁界による遷移確率として与えられる。磁化容易軸に直交する方向である磁化困難軸の方向に磁界を与えると、最初は、磁界とマイクロ磁石との反発力から生じるエネルギーのため、容易軸方向に並ぶ方がエネルギー的に得であるが、磁界を強めると、90°回転し、磁化困難軸方向に向いた方がエネルギー的に安定になるため、マイクロ磁石は90°回転を起こす。この90°回転の磁界による遷移確率として与えられる。また、任意の方向に強い磁界を掛けると、容易軸及び困難軸に向いているマイクロ磁石は、磁界の方向に向いた方がエネルギー的に安定になる。この回転を磁界平行回転とし、遷移確率として与える。 180 ° inversion by magnetic field is given as transition probability by magnetic field. When a magnetic field is applied in the direction of the hard magnetization axis, which is perpendicular to the easy magnetization axis, initially it is energetically better to line up in the easy axis direction because of the energy generated from the repulsive force between the magnetic field and the micro magnet. However, when the magnetic field is increased, the micromagnet rotates 90 ° because it rotates 90 ° and becomes more energetically stable toward the hard axis. This is given as the transition probability due to this 90 ° rotating magnetic field. Further, when a strong magnetic field is applied in an arbitrary direction, a micro magnet oriented toward the easy axis and the difficult axis is more energetically stable when oriented in the direction of the magnetic field. This rotation is defined as a parallel magnetic field rotation and given as a transition probability.
 遷移確率またはその積分関数である累積関数を与えることにより、n個の磁化容易軸のうちの一つの磁化容易軸における磁界ベクトルに対する磁化ベクトルを求めることが可能となる。これにより、n個の磁化容易軸のそれぞれにおける磁化ベクトルが求められ、その総和が磁性体の磁化ベクトルになる。 It is possible to obtain a magnetization vector for a magnetic field vector in one easy magnetization axis among n easy magnetization axes by giving a transition probability or a cumulative function that is an integral function thereof. Thereby, the magnetization vector in each of n easy magnetization axes is calculated | required, and the sum total becomes a magnetization vector of a magnetic body.
 上述のような手順に従うことにより、ベクトルヒステリシスの解法が与えられる。 従 う Following the above procedure gives a solution for vector hysteresis.
 以下、更に具体的に説明する。 More specific description will be given below.
 磁性体が磁化する場合、それ以上磁化しない上限があり、その磁化は飽和磁化(以下、Msと表示する。)と呼ばれる。そのときの磁界は、飽和磁界(Hs)である。ここでは、必要ではない場合、(Hs,Ms)=(1,1)と規格化し、実施例を説明する。 When a magnetic material is magnetized, there is an upper limit for no further magnetization, and the magnetization is called saturation magnetization (hereinafter referred to as Ms). The magnetic field at that time is a saturation magnetic field (Hs). Here, when it is not necessary, (Hs, Ms) = (1, 1) is standardized and an embodiment will be described.
 図2Aは、マイクロ磁石の180°反転の遷移確率を示すグラフである。 FIG. 2A is a graph showing the transition probability of the 180 ° inversion of the micro magnet.
 本図においては、図1Bに示す磁化容易軸の一つについて、代表的な二つの状態があると考える。一つの状態は、磁界が-1で容易軸負方向に働き、マイクロ磁石が負方向に揃った状態である。この状態を-1とする。もう一つの状態は、磁界が1で容易軸正方向に働き、マイクロ磁石が正方向に揃った状態である。 In this figure, it is considered that there are two typical states for one of the easy magnetization axes shown in FIG. 1B. One state is a state in which the magnetic field is -1 and works in the negative direction of the easy axis, and the micro magnets are aligned in the negative direction. This state is set to -1. The other state is a state where the magnetic field is 1 and works in the positive axis direction, and the micro magnets are aligned in the positive direction.
 この場合において、磁界が-1から1へ連続的に変化すると、マイクロ磁石が180°反転し、磁化が-1から1へと変化する。この場合の遷移確率は、図2Aの実線で示している。 In this case, when the magnetic field continuously changes from −1 to 1, the micro magnet is reversed by 180 °, and the magnetization changes from −1 to 1. The transition probability in this case is indicated by a solid line in FIG. 2A.
 一方、磁界が1から-1へと変化すると、マイクロ磁石の磁化は容易軸負方向へと180°反転する。すなわち、磁化は1から-1へと変化する。この場合の遷移確率は、図2Aの破線で示している。 On the other hand, when the magnetic field changes from 1 to −1, the magnetization of the micromagnet reverses 180 ° in the easy axis negative direction. That is, the magnetization changes from 1 to -1. The transition probability in this case is indicated by a broken line in FIG. 2A.
 図2Bは、図2Aの過程をマイクロ磁石の比率の和で表示したものである。 FIG. 2B shows the process of FIG. 2A as a sum of the ratios of the micro magnets.
 本図に示す実線は上昇曲線ともいい、破線は下降曲線ともいう。ここで、上昇曲線を表す関数をfD(h)と定義すると、下降曲線は-fD(-h)になる。 The solid line shown in this figure is also called ascending curve, and the broken line is also called descending curve. Here, if a function representing an ascending curve is defined as fD (h), the descending curve becomes −fD (−h).
 90°回転における状況は、180°反転と異なる。 The situation at 90 ° rotation is different from 180 ° inversion.
 図3Aは、磁化容易軸に直交方向に磁化困難軸を定義した場合における90°回転の遷移確率を示すグラフである。図3Bは、図3Aの遷移確率の積分である累積関数を示すグラフである。 FIG. 3A is a graph showing the transition probability of 90 ° rotation when a hard magnetization axis is defined in a direction orthogonal to the easy magnetization axis. FIG. 3B is a graph showing a cumulative function that is an integral of the transition probability of FIG. 3A.
 図3Aに示すように、磁化容易軸2に直交方向に磁化困難軸4を定義する。磁化困難軸4の反対方向に磁界3(磁界は-1)を掛けると、マイクロ磁石は磁界3の方向を向く。この状態を-1とする。ここから磁界3を正方向である1に変化すると、マイクロ磁石は、90°回転し、磁化容易軸2の方向を向く。全てのマイクロ磁石が容易軸方向になった状態を0の状態とする。 As shown in FIG. 3A, a hard magnetization axis 4 is defined in a direction orthogonal to the easy magnetization axis 2. When a magnetic field 3 (magnetic field is -1) is applied in the direction opposite to the hard axis 4, the micro magnet faces the direction of the magnetic field 3. This state is set to -1. When the magnetic field 3 is changed to 1 which is the positive direction from here, the micro magnet rotates 90 ° and faces the direction of the easy magnetization axis 2. A state in which all the micro magnets are in the easy axial direction is defined as a zero state.
 この状態から、困難軸方向に磁界3を大きくすると、マイクロ磁石は、困難軸方向へ90°回転し始める。磁界3の値が1になると、全体のマイクロ磁石は、困難軸方向に揃う。この状態を1とする。 From this state, when the magnetic field 3 is increased in the hard axis direction, the micro magnet starts to rotate 90 ° in the hard axis direction. When the value of the magnetic field 3 becomes 1, the entire micro magnets are aligned in the hard axis direction. This state is set to 1.
 このような過程を積分した結果である累積関数は図3Bの実線である。一方、反対の過程を辿ると、図3Aの破線の過程になり、この場合の累積関数は図3Bの破線である。図3Bの上昇曲線関数をfDt(h)と定義すると、ここでも下降曲線は-fDt(-h)になる。 The cumulative function that is the result of integrating such a process is the solid line in FIG. 3B. On the other hand, when the opposite process is followed, the process becomes a broken line in FIG. 3A, and the cumulative function in this case is the broken line in FIG. 3B. If the rising curve function in FIG. 3B is defined as fDt (h), the falling curve is again −fDt (−h).
 図4Aは、磁界平行回転の遷移確率を示したものである。磁界平行回転は、磁界が磁化容易軸または困難軸以外の方向に強く働いた場合、マイクロ磁石は、容易軸または困難軸を向くより、磁界が強いためエネルギー的に磁化方向を磁界方向に向いた方が安定である。 FIG. 4A shows the transition probability of the parallel rotation of the magnetic field. In the parallel rotation of the magnetic field, when the magnetic field works strongly in a direction other than the easy axis or the hard axis, the micro magnet is energetically oriented in the magnetic field direction because the magnetic field is stronger than the easy axis or the hard axis. Is more stable.
 本図に示す実線は、磁界が増加する場合の磁化方向に回転する確率であり、破線は、1の状態から磁界が減少し、容易軸方向に回転する確率である。 The solid line shown in this figure is the probability of rotating in the magnetization direction when the magnetic field increases, and the broken line is the probability of rotating in the easy axis direction from the state 1 where the magnetic field decreases.
 図4Bは、図4Aの遷移確率の累積関数を示したものである。 FIG. 4B shows a cumulative function of the transition probability of FIG. 4A.
 磁界平行回転の上昇曲線及び下降曲線は、180°反転又は90°回転とは異なり、点対称ではないため、各々定義する。上昇曲線関数はfrotR(h)、下降曲線関数はfrotL(h)と定義する。 Unlike the 180 ° reversal or 90 ° rotation, the ascending curve and the descending curve of the magnetic field parallel rotation are not point-symmetric and are defined respectively. The rising curve function is defined as frotR (h), and the falling curve function is defined as frotL (h).
 上述のとおり、180°反転、90°回転及び磁界平行回転の遷移確率並びにこれらの累積関数を用意することができた。以下では、磁化容易軸を4個用いた場合で、ベクトルヒステリシスの解法を構築する。 As described above, the transition probabilities of 180 ° reversal, 90 ° rotation, and magnetic field parallel rotation, and their cumulative functions could be prepared. In the following, a solution method for vector hysteresis is constructed when four easy magnetization axes are used.
 図5は、4軸モデルのi-磁化容易軸の単位ベクトルdD及びその磁化困難軸の単位ベクトルdDtを示したものである。dDは、下記式(1)として与え、困難軸は容易軸を反時計方向へ90°回転させた。この例は、4軸モデルであり、iは1から4までの整数である。 FIG. 5 shows the unit vector dD i of the i-magnetization easy axis and the unit vector dDt i of the hard axis of the 4-axis model. dD i is given as the following formula (1) and the hard axis is rotated 90 ° to the easy axis in the counterclockwise direction. This example is a 4-axis model, where i is an integer from 1 to 4.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 各容易軸の配分比を定める。その配分比をcOとすると、下記式(2)を満たさなければならない。 Determine the distribution ratio of each easy axis. When the distribution ratio is cO i , the following formula (2) must be satisfied.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 飽和磁界及び飽和磁化が(Hs,Ms)の磁性体に、2次元磁界軌道が…Hj-1,H,Hj+1,…として与えられた場合、i-磁化容易軸の磁界Hにおける磁化mは、下記式(3)~(16)に従って求められる。 The magnetic saturation field and the saturation magnetization (Hs, Ms), 2-dimensional magnetic field trajectories ... H j-1, H j , H j + 1, when given as ..., the i- easy axis in the magnetic field H j The magnetization mi is obtained according to the following equations (3) to (16).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 ここで、MEMO(hD,hDpst,mDpst)は、過去の磁界と磁化(hDpst,mDpst)と現在の磁界hDから、二つの分岐点の(HiDt,MiDt)、(HfDt,MfDt)を割り出すとともに、磁界増加方向(hDtpst<hDt)であればdirDt=1を与え、かつ、磁界減少方向(hDtpst>hDt)であればdirDt=-1を与える関数である。磁界の変化がない場合は、前時刻の磁化値を与えればよい。 Here, MEMO (hD, hDpst i , mDpst i ) is calculated from the past magnetic field, magnetization (hDpst i , mDpst i ), and current magnetic field hD (HiDt i , MiDt i ), (HfDt i ). , MfDt i ) and dirDt i = 1 if the magnetic field increase direction (hDtpst i <hDt) and dirDt i = −1 if the magnetic field decrease direction (hDtpst i > hDt) is there. When there is no change in the magnetic field, the magnetization value at the previous time may be given.
 この分岐点の情報及び累積関数を用いることにより、上記式(11)のFD及びFDtは、下記式(17)及び(18)で与えられる。 FD and FDt of the above equation (11) are given by the following equations (17) and (18) by using the information on the branch point and the cumulative function.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 上記式(14)及び(15)における係数a、b、α及びβは、次の物理的要請に由来する。 The coefficients a, b, α, and β in the above formulas (14) and (15) are derived from the following physical requirements.
 容易軸を向いているマイクロ磁化と困難軸を向いている磁化が、下記式(19)を満たさなければならない。この式は、実際の磁化に一致させるために必要な式である。 The micro-magnetization that faces the easy axis and the magnetization that faces the hard axis must satisfy the following formula (19). This equation is necessary to match the actual magnetization.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 残りの磁界平行回転は、下記式(20)~(24)で与えられる。 The remaining parallel rotation of the magnetic field is given by the following equations (20) to (24).
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 磁界平行回転は、磁界の方向に向く比率であるため、磁界の方向によらず、磁界の大きさのみに関わる。そのため、スカラーヒステリシスと同様である。 The parallel rotation of the magnetic field is a ratio that is directed to the direction of the magnetic field, and thus is related only to the magnitude of the magnetic field regardless of the direction of the magnetic field. Therefore, it is the same as scalar hysteresis.
 関数FR(hrot,Hi,Mi,Hf,Mf,dir)は、下記式(25)のように与える。 The function FR (hrot, Hi, Mi, Hf, Mf, dir) is given by the following equation (25).
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 これらの式を計算することで、過去の磁界Hj-1とMj-1から、現在の磁界Hに用いて、磁化Mが下記式(26)で得られる。 By calculating these equations, the magnetization M j is obtained by the following equation (26) using the current magnetic field H j from the past magnetic fields H j−1 and M j−1 .
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 磁性体が等方的である場合、各容易軸の配分比cOは同一であるため、cO=0.25を代入する。上記式(14)及び(15)の係数a、b、α及びβについては、a=0、b=1、α=1、β=1を代入する。また、飽和磁界Hs及び飽和磁化Msとして(6000(A/m),1.8(T))を用いる。 When the magnetic body is isotropic, the distribution ratio cO i of each easy axis is the same, so cO i = 0.25 is substituted. For the coefficients a, b, α, and β in the equations (14) and (15), a = 0, b = 1, α = 1, and β = 1 are substituted. Further, (6000 (A / m), 1.8 (T)) is used as the saturation magnetic field Hs and the saturation magnetization Ms.
 ここで、磁界軌道を(Hx,Hy)=(0,0)からはじめ、x軸正方向の飽和点(Hx,Hy)=(6000,0)に達し、折り返しx軸負方向の飽和点(Hx,Hy)=(-6000,0)に移動、また、飽和点(Hx,Hy)=(6000,0)に戻る磁界軌道を与える。 Here, the magnetic field trajectory starts from (Hx, Hy) = (0, 0), reaches the saturation point (Hx, Hy) = (6000, 0) in the x-axis positive direction, and returns to the saturation point in the negative x-axis direction ( The magnetic field trajectory is moved to Hx, Hy) = (− 6000,0) and returned to the saturation point (Hx, Hy) = (6000,0).
 この磁界軌道上での磁化軌道は、上記式(2)~(18)及び(20)~(26)並びに係数を用いて求めることができる。 The magnetization trajectory on the magnetic field trajectory can be obtained using the above equations (2) to (18) and (20) to (26) and coefficients.
 図6は、上述のHxとMxとの関係を示したものである。本図においては、磁界による磁化の飽和点を含む磁化曲線(メジャーループ)を示している。 FIG. 6 shows the relationship between Hx and Mx described above. In this figure, a magnetization curve (major loop) including a saturation point of magnetization due to a magnetic field is shown.
 つぎに、上述の解法が過去の履歴を表しているかについて上記の条件で検討した結果を示す。 Next, the results of studying whether the above solution represents a past history under the above conditions will be shown.
 図7Aは、全体の磁界軌道を示したものである。図7Bは、(Hx,Hy)=(0,0)から始まり、(2858.83,39.45)で折り返し、(0,0)近傍で回転した後、(-2858.83,-39.45)に辿り着く軌道を示したものである。図7Cは、図7Bの軌道を通過した後、(-2858.83,-39.45)から(0,0)近傍に移動し、回転した後、(2858.83,39.45)に辿り着く軌道を示したものである。 FIG. 7A shows the entire magnetic field trajectory. FIG. 7B starts from (Hx, Hy) = (0, 0), turns back at (285.83, 39.45), rotates around (0, 0), and then (−2858.83, −39. 45) shows the trajectory to reach. 7C moves from (−2858.83, −39.45) to the vicinity of (0,0) after passing through the trajectory of FIG. 7B, and after rotating, traces to (285.83, 39.45). It shows the trajectory to arrive.
 図8は、図7A~7Cに示す軌道に対応する磁化軌道を、上記の計算式と条件とを用いて求めたものである。図8において、実線は図7Bに対応し、破線は図7Cに対応する。 FIG. 8 shows the magnetization trajectories corresponding to the trajectories shown in FIGS. 7A to 7C, using the above calculation formulas and conditions. In FIG. 8, the solid line corresponds to FIG. 7B, and the broken line corresponds to FIG. 7C.
 図8においては、Mx=1.5T近傍まで行き、(0,0)近傍で回転した磁界に対し、(0.75,0)近傍を中心に磁化回転をし、Mx=-1.5T近傍まで行き、(0,0)近傍で回転した磁界に対しては、(-0.75,0)近傍を中心に磁化回転をすることがわかる。両者の磁界軌道の回転は(0,0)近傍であるが、前者はMx=1.5Tまで辿り着いた履歴のため(0.75,0)近傍を中心に回転し、後者はMx=-1.5T近傍までの履歴により(-0.75,0)近傍を中心に回転する。このことから、本発明の解法が有効であることがわかる。 In FIG. 8, Mx = 1.5T, and the magnetic field rotated near (0,0) rotates around (0.75,0), and Mx = −1.5T. It can be seen that a magnetic field rotated in the vicinity of (0,0) rotates the magnetization around (−0.75, 0). The rotation of both magnetic field trajectories is near (0, 0), but the former rotates around (0.75, 0) because of the history of reaching Mx = 1.5T, and the latter is Mx = −. Rotate around (-0.75, 0) by the history up to 1.5T. This shows that the solution of the present invention is effective.
 実施例1においては、4軸の磁化容易軸を用いたが、ここでは8軸の場合を示す。 In Example 1, four axes of easy magnetization were used, but here the case of eight axes is shown.
 図9は、8軸モデルにおける磁化容易軸及び磁化困難軸を示したものである。dDは、下記式(27)で与えられる。 FIG. 9 shows the easy axis and the hard axis in the 8-axis model. dD i is given by the following equation (27).
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 このモデルにおいても、上記式(2)は成り立つため、磁性体が等方的である場合、配分比は4軸モデルの半分であるcO=0.125になる。 Also in this model, since the above equation (2) holds, when the magnetic material is isotropic, the distribution ratio is cO j = 0.125 which is half of the 4-axis model.
 他の数式の適用については、実施例1と同様である。 The application of other mathematical expressions is the same as in the first embodiment.
 つぎに、3次元モデルについて説明する。 Next, the 3D model will be described.
 2次元のモデルにおいては、磁化容易軸及び磁化困難軸が2次元空間(平面)上にある。3次元においてもその制限は同一である。そのため、3次元に拡張するためには、X-Y、Y-Z及びX-Zの3つの面を用意しなければならない。 In the two-dimensional model, the easy magnetization axis and the hard magnetization axis are on a two-dimensional space (plane). The limitation is the same in three dimensions. Therefore, in order to expand to three dimensions, three planes XY, YZ, and XZ must be prepared.
 本実施例においては、図10A~10Cに示す2次元4軸モデルを3つ重ね、図10Dに示す3次元空間に拡張する。 In this embodiment, three two-dimensional four-axis models shown in FIGS. 10A to 10C are overlapped and expanded to a three-dimensional space shown in FIG. 10D.
 この場合においても、上記式(2)が適用される。よって、その配分比は、下記式(28)を満たさなければならない。 In this case, the above formula (2) is also applied. Therefore, the distribution ratio must satisfy the following formula (28).
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 他の数式の適用については、実施例1と同様である。 The application of other mathematical expressions is the same as in the first embodiment.
 以上の説明をまとめると、ベクトルヒステリシスの解析方法の工程の概略は下記のとおりとなる。 To summarize the above explanation, the outline of the process of the vector hysteresis analysis method is as follows.
 マイクロ磁石の磁化容易軸を有限個の方向に分類する(ステップ1)。 容易 Classify the easy axis of the micro magnet into a finite number of directions (step 1).
 磁化容易軸の配分比率又は遷移確率若しくはその累積関数を仮定する(ステップ2)。 Suppose the distribution ratio or transition probability of the easy axis or its cumulative function (step 2).
 遷移確率を仮定した場合、その累積関数を積分により算出する(ステップ3)。 If the transition probability is assumed, the cumulative function is calculated by integration (step 3).
 ステップ3においては、磁界による磁化の変化について、マイクロ磁石の磁化容易軸上の180°反転、磁化容易軸から磁化困難軸へ、または困難軸から容易軸への90°回転、及び、磁界方向への磁界平行回転の3つの過程による変化であると仮定した場合、これらの過程について遷移確率から累積関数を算出する。 In step 3, with respect to the change in magnetization due to the magnetic field, 180 ° inversion on the easy axis of the micromagnet, 90 ° rotation from the easy axis to the hard axis, or 90 ° from the hard axis to the easy axis, and in the magnetic field direction. Assuming that the change is due to three processes of parallel rotation of the magnetic field, a cumulative function is calculated from the transition probabilities for these processes.
 3つの累積関数を合わせ、フィッティングまたは後述する図11の関数処理S104により、磁界による磁化の飽和点を含む磁化曲線(メジャーループ)を算出する(ステップ4)。 The three cumulative functions are combined and a magnetization curve (major loop) including a saturation point of magnetization due to the magnetic field is calculated by fitting or function processing S104 of FIG. 11 described later (step 4).
 メジャーループに基いて、マイナーループを算出する(ステップ5)。 マ イ ナ ー Calculate the minor loop based on the major loop (step 5).
 ステップ5においては、原点(0,0)を包含しないマイナーループについても算出することができる。 In step 5, a minor loop that does not include the origin (0, 0) can also be calculated.
 これらの工程は、コンピュータによる読み取りが可能なプログラムとしてもよい。 These steps may be a computer readable program.
 また、これらの工程は、解析装置を用いて処理することができる。解析装置は、具体的には、データ保持部と、計算部とを備えたものである。ここで、データ保持部は、磁性体をマイクロ磁石の集合体とみなすモデルの数値データ並びに複数の磁化容易軸及び磁化困難軸のベクトルで表された磁気特性データを記録したものであり、計算部は、磁気特性データ並びに磁化容易軸及び磁化困難軸の配分比率から磁性体のヒステリシスを解析するものである。 Also, these steps can be processed using an analysis device. Specifically, the analysis device includes a data holding unit and a calculation unit. Here, the data holding unit records numerical data of a model in which a magnetic body is regarded as an assembly of micro magnets, and magnetic characteristic data represented by vectors of a plurality of easy magnetization axes and hard magnetization axes. This analyzes the hysteresis of a magnetic substance from magnetic characteristic data and the distribution ratio of the easy magnetization axis and the hard magnetization axis.
 ベクトルヒステリシスの解析するためのベクトルヒステリシス解析関数の決定する過程をフローチャートで説明する。 The process of determining a vector hysteresis analysis function for analyzing vector hysteresis will be described with reference to a flowchart.
 図11は、ベクトルヒステリシス解析における磁性体データの解析関数決定のフローチャートである。 FIG. 11 is a flowchart for determining an analysis function of magnetic material data in vector hysteresis analysis.
 本図において、ベクトルヒステリシス解析を開始する場合、まず、解析を行う磁性体の磁気データ及び軸数を入力する(S101)。磁気データは、電磁鋼板の場合、RD(圧延方向)、TD(圧延直交方向)方向のメジャーループが必須であり、データ入手が可能であれば幾つかの大きさが一定の回転磁界に対する磁化の軌道を入力する。電磁鋼板ではない場合、等方性磁性体の場合、一つのメジャーループで可能であるが、異方性を持つ磁性体の場合は、2次元体であれば、x軸及びy軸を定め、それらの軸のメジャーループを入力する。3次元であれば、z軸のメジャーループも入力する。また、回転磁界に対する磁化軌道があれば、そのデータも入力する。 In this figure, when starting the vector hysteresis analysis, first, the magnetic data and the number of axes of the magnetic material to be analyzed are input (S101). In the case of magnetic steel sheets, magnetic data must have major loops in the RD (rolling direction) and TD (rolling orthogonal direction) directions. Enter the trajectory. If it is not a magnetic steel sheet, it is possible with a single major loop in the case of an isotropic magnetic body, but in the case of a magnetic body with anisotropy, if it is a two-dimensional body, the x-axis and y-axis are defined, Enter the major loop for those axes. If it is 3D, enter the z-axis major loop. If there is a magnetization trajectory for the rotating magnetic field, the data is also input.
 つぎに、入力データを処理し(S102)、ディスプレイに表示する(S103)。入力データを処理としては、各方向の飽和磁界および磁化を確定し、またはユーザに入力で確定することを判断させること等であり、図1B、2B及び3Bで示したように飽和磁界と磁化を用いて規格化する。回転磁界においては、各回転磁界に対する磁化の遅れ角を表示できるように処理などを行う。 Next, the input data is processed (S102) and displayed on the display (S103). Processing the input data includes, for example, determining the saturation magnetic field and magnetization in each direction, or allowing the user to determine whether to confirm the input by input, and the saturation magnetic field and magnetization as shown in FIGS. 1B, 2B, and 3B. Use to standardize. In the rotating magnetic field, processing is performed so that the delay angle of magnetization with respect to each rotating magnetic field can be displayed.
 データが確認できたら、次の段階に進む。 When the data is confirmed, proceed to the next stage.
 S104においては、予め図1A~3Bに示す確率関数またはその累積関数群を記憶しておいた記憶装置50から、各関数を呼び出し、180°反転、90°回転及び磁界平行回転関数、上記式(28)及び(26)のcO並びに上記式(14)及び(15)の相関係数a、bを入力データとできるだけ一致するように予めプログラムされたルーチンに従い計算する。 In S104, each function is called from the storage device 50 that has previously stored the probability function shown in FIGS. 1A to 3B or a cumulative function group thereof, 180 ° reversal, 90 ° rotation and magnetic field parallel rotation function, The cO i in 28) and (26) and the correlation coefficients a and b in the above equations (14) and (15) are calculated according to a preprogrammed routine so as to match the input data as much as possible.
 この場合に、入力データの中に関数の確定係数を用意しておく。確定係数はユーザにより入力される数値で、入力データから決定関数の差を数値化する測度関数より計算された値が確定係数より小さければ次の段階に、大きい場合は測度関数での誤差の寄与度を測り、その寄与度を小さくする方向で決定関数を再調整し、確定係数より小さくなるまで繰り返す(S105)。 In this case, a function determinant is prepared in the input data. The deterministic coefficient is a numerical value input by the user. If the value calculated from the measure function that digitizes the difference of the decision function from the input data is smaller than the deterministic coefficient, the next step will be taken. If larger, the error function will contribute to the error. Measure the degree, readjust the decision function in the direction of decreasing its contribution, and repeat until it becomes smaller than the deterministic coefficient (S105).
 つぎに、入力データ処理によりディスプレイ表示(S103)で表示されるメジャーループ、遅れ角などの決定関数から計算する(S106)。 Next, calculation is performed from the decision function such as the major loop and the delay angle displayed on the display (S103) by the input data processing (S106).
 計算した結果は、入力データと比較してディスプレイに表示する(S107)。ユーザは、そのディスプレイで比較し、ベクトルヒステリシス関数が妥当であるか否かを判断する(S108)。 The calculated result is displayed on the display in comparison with the input data (S107). The user compares with the display and determines whether or not the vector hysteresis function is valid (S108).
 十分と判断された場合は、決定関数を出力し(S109)、解析を終了する(S110)。一方、不十分と判断された場合、ユーザは、S104に戻り、確定係数を再定義し計算するルーチン、または、誤差寄与度を再調整するルーチンを用意し、S105以下の処理を行う。 If it is determined that it is sufficient, a decision function is output (S109), and the analysis is terminated (S110). On the other hand, if it is determined that it is insufficient, the user returns to S104, prepares a routine for redefining and calculating the deterministic coefficient, or a routine for readjusting the error contribution, and performs the processing from S105 onward.
 本図に示す過程で、一つの磁性材料から、それに対応する本発明のモデルに従うベクトルヒステリシス関数を定義されたことになる。 In the process shown in the figure, a vector hysteresis function according to the model of the present invention corresponding to one magnetic material is defined.
 このようにして、目的とする動磁界解析に使用する磁性体材料のベクトルヒステリシス磁気特性をモデルに取り込むことが可能になる。 In this way, it becomes possible to incorporate into the model the vector hysteresis magnetic characteristics of the magnetic material used for the intended dynamic magnetic field analysis.
 この後は、特許文献3のように、上記のモデルを組み込んだ動磁界解析を用いて、解析を行いたい体系で解析すればよい。 After this, as in Patent Document 3, the dynamic magnetic field analysis incorporating the above model may be used to perform analysis with a system desired to be analyzed.
 図12は、ベクトルヒステリシスの解析装置を示す概略構成図である。 FIG. 12 is a schematic configuration diagram showing a vector hysteresis analyzing apparatus.
 本図において、解析装置200は、中央処理装置201(CPU)、記憶装置202、入力インタフェース203、表示装置204及び入力装置205(例えば、キーボードまたはマウス)を備えている。中央処理装置201及び記憶装置202は、入力インタフェース203を介して表示装置204及び入力装置205に接続されている。 In this figure, the analysis device 200 includes a central processing unit 201 (CPU), a storage device 202, an input interface 203, a display device 204, and an input device 205 (for example, a keyboard or a mouse). The central processing unit 201 and the storage device 202 are connected to the display device 204 and the input device 205 via the input interface 203.
 記憶装置202には、図11に示すベクトルヒステリシスの解析方法の処理手順、並びに解析対象の物理量の算出に用いられる方程式、及び解析プロセスをコントロールするためのコントロールデータが予め記憶されている。ベクトルヒステリシス解析の処理手順は、プログラム化されて記憶装置202に記憶されている。記憶装置202は、中央処理装置201で読み取り可能な記録媒体である。 In the storage device 202, the processing procedure of the vector hysteresis analysis method shown in FIG. 11, the equations used to calculate the physical quantity to be analyzed, and control data for controlling the analysis process are stored in advance. The processing procedure of the vector hysteresis analysis is programmed and stored in the storage device 202. The storage device 202 is a recording medium that can be read by the central processing unit 201.
 本発明のベクトルヒステリシス解法を用いれば、磁性体を用いる電気機器、例えば変圧器、モータ、発電機などの設計においてベクトルヒステリシスが予測可能であるため、最適設計または最適制御が可能になる。 If the vector hysteresis solution of the present invention is used, the vector hysteresis can be predicted in the design of an electric device using a magnetic material, for example, a transformer, a motor, a generator, etc., so that optimum design or optimum control becomes possible.
 1:マイクロ磁石、2:磁化容易軸、3:磁界、4:磁化困難軸。 1: Micro magnet, 2: Easy magnetization axis, 3: Magnetic field, 4: Hard magnetization axis.

Claims (12)

  1.  磁性体をマイクロ磁石の集合体とみなすモデルを用い、複数の磁化容易軸及び磁化困難軸のベクトルで表された磁気特性データと、前記磁化容易軸及び前記磁化困難軸の配分比率とを入力し、磁性体のヒステリシスを解析することを特徴とするベクトルヒステリシスの解析方法。 Using a model in which a magnetic material is regarded as an assembly of micro magnets, magnetic property data represented by a vector of a plurality of easy magnetization axes and hard magnetization axes, and a distribution ratio of the easy magnetization axes and the hard magnetization axes are input. An analysis method of vector hysteresis characterized by analyzing hysteresis of a magnetic material.
  2.  前記磁気特性データは、少なくとも1つ以上の方向の磁界による磁化の飽和点を含む磁化曲線を含み、さらに、前記磁化容易軸の前記配分比率又は遷移確率若しくはその累積関数を補正する工程を含むことを特徴とする請求項1記載のベクトルヒステリシスの解析方法。 The magnetic property data includes a magnetization curve including a saturation point of magnetization due to a magnetic field in at least one direction, and further includes a step of correcting the distribution ratio or transition probability of the easy axis or a cumulative function thereof. The method of analyzing vector hysteresis according to claim 1.
  3.  前記磁気特性データは、少なくとも1つ以上の大きさが一定の回転磁界軌道に対する磁化軌道を含み、さらに、前記磁化容易軸の前記配分比率又は遷移確率若しくはその累積関数を補正する工程を含むことを特徴とする請求項1記載のベクトルヒステリシスの解析方法。 The magnetic characteristic data includes a magnetization trajectory for a rotating magnetic field trajectory having at least one constant magnitude, and further includes a step of correcting the distribution ratio or transition probability of the easy axis or a cumulative function thereof. The vector hysteresis analysis method according to claim 1, wherein:
  4.  前記磁気特性データは、独立変数である磁界と、従属変数である磁化とを含むことを特徴とする請求項1~3のいずれか一項に記載のベクトルヒステリシスの解析方法。 4. The method for analyzing vector hysteresis according to claim 1, wherein the magnetic characteristic data includes a magnetic field that is an independent variable and magnetization that is a dependent variable.
  5.  ベクトルヒステリシスの解析に用いるプログラムであって、コンピュータに、磁性体をマイクロ磁石の集合体とみなすモデルを用い、複数の磁化容易軸及び磁化困難軸のベクトルで表された磁気特性データと、前記磁化容易軸及び前記磁化困難軸の配分比率とを入力する手順、並びに、磁性体のヒステリシスを解析する手順を実行させるためのプログラム。 A program used for analysis of vector hysteresis, wherein the computer uses a model in which a magnetic body is regarded as an assembly of micromagnets, magnetic property data represented by vectors of a plurality of easy magnetization axes and hard magnetization axes, and the magnetization A program for executing a procedure for inputting an easy axis and a distribution ratio of the hard-to-magnetize axis, and a procedure for analyzing hysteresis of a magnetic material.
  6.  前記磁気特性データは、少なくとも1つ以上の方向の磁界による磁化の飽和点を含む磁化曲線を含み、さらに、前記磁化容易軸の前記配分比率又は遷移確率若しくはその累積関数を補正する手順をコンピュータに実行させるための請求項5記載のプログラム。 The magnetic property data includes a magnetization curve including a saturation point of magnetization caused by a magnetic field in at least one direction, and the computer further includes a procedure for correcting the distribution ratio or transition probability of the easy axis or a cumulative function thereof. The program according to claim 5 for execution.
  7.  前記磁気特性データは、少なくとも1つ以上の大きさが一定の回転磁界軌道に対する磁化軌道を含み、さらに、前記磁化容易軸の前記配分比率又は遷移確率若しくはその累積関数を補正する手順をコンピュータに実行させるための請求項5記載のプログラム。 The magnetic property data includes a magnetization trajectory with respect to a rotating magnetic field trajectory having at least one constant magnitude, and further executes a procedure for correcting the distribution ratio or transition probability of the easy axis or a cumulative function thereof. The program according to claim 5 for causing the program to occur.
  8.  前記磁気特性データは、独立変数である磁界と、従属変数である磁化とを含むことを特徴とする請求項5~7のいずれか一項に記載のプログラム。 The program according to any one of claims 5 to 7, wherein the magnetic characteristic data includes a magnetic field as an independent variable and magnetization as a dependent variable.
  9.  磁性体をマイクロ磁石の集合体とみなすモデルの数値データ並びに複数の磁化容易軸及び磁化困難軸のベクトルで表された磁気特性データを記録したデータ保持部と、前記磁気特性データ並びに前記磁化容易軸及び前記磁化困難軸の配分比率から磁性体のヒステリシスを解析する計算部とを備えたことを特徴とするベクトルヒステリシスの解析装置。 A data holding unit that records numerical data of a model in which a magnetic body is regarded as an assembly of micromagnets and a vector of a plurality of easy magnetization axes and hard magnetization axes, the magnetic characteristic data, and the easy magnetization axis And a calculation unit for analyzing the hysteresis of the magnetic material from the distribution ratio of the hard magnetization axis.
  10.  前記磁気特性データは、少なくとも1つ以上の方向の磁界による磁化の飽和点を含む磁化曲線を含み、前記計算部は、さらに、前記磁化容易軸の前記配分比率又は遷移確率若しくはその累積関数を補正することを特徴とする請求項9記載のベクトルヒステリシスの解析装置。 The magnetic property data includes a magnetization curve including a saturation point of magnetization due to a magnetic field in at least one direction, and the calculation unit further corrects the distribution ratio or transition probability of the easy axis or a cumulative function thereof. The vector hysteresis analyzing apparatus according to claim 9, wherein:
  11.  前記磁気特性データは、少なくとも1つ以上の大きさが一定の回転磁界軌道に対する磁化軌道を含み、前記計算部は、さらに、前記磁化容易軸の前記配分比率又は遷移確率若しくはその累積関数を補正することを特徴とする請求項9記載のベクトルヒステリシスの解析装置。 The magnetic property data includes a magnetization trajectory for a rotating magnetic field trajectory having at least one constant magnitude, and the calculation unit further corrects the distribution ratio or transition probability of the easy magnetization axis or a cumulative function thereof. The vector hysteresis analyzing apparatus according to claim 9.
  12.  前記磁気特性データは、独立変数である磁界と、従属変数である磁化とを含むことを特徴とする請求項9~11のいずれか一項に記載のベクトルヒステリシスの解析装置。 12. The vector hysteresis analyzing apparatus according to claim 9, wherein the magnetic property data includes a magnetic field as an independent variable and magnetization as a dependent variable.
PCT/JP2013/083719 2013-12-17 2013-12-17 Vector hysteresis analysis method, program therefor, and vector hysteresis analysis device WO2015092865A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/083719 WO2015092865A1 (en) 2013-12-17 2013-12-17 Vector hysteresis analysis method, program therefor, and vector hysteresis analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/083719 WO2015092865A1 (en) 2013-12-17 2013-12-17 Vector hysteresis analysis method, program therefor, and vector hysteresis analysis device

Publications (1)

Publication Number Publication Date
WO2015092865A1 true WO2015092865A1 (en) 2015-06-25

Family

ID=53402261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083719 WO2015092865A1 (en) 2013-12-17 2013-12-17 Vector hysteresis analysis method, program therefor, and vector hysteresis analysis device

Country Status (1)

Country Link
WO (1) WO2015092865A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100067A (en) * 2003-09-24 2005-04-14 Fujitsu Ltd Program and device for analyzing micromagnetization

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100067A (en) * 2003-09-24 2005-04-14 Fujitsu Ltd Program and device for analyzing micromagnetization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BURRASCANO, P. ET AL.: "Vector Hysteresis Model at Micromagnetic Scale", IEEE TRANSACTIONS ON MAGNETICS, vol. 42, no. 10, October 2006 (2006-10-01), pages 3138 - 3140 *

Similar Documents

Publication Publication Date Title
Lee et al. Distributed multipole model for design of permanent-magnet-based actuators
Soda Statistical anisotropy from anisotropic inflation
Dlala et al. Improving loss properties of the Mayergoyz vector hysteresis model
Manzin et al. Connections between numerical behavior and physical parameters in the micromagnetic computation of static hysteresis loops
Janssen Extended analytical charge modeling for permanent-magnet based devices
Zhao et al. Exact two-component relativistic energy band theory and application
Weise et al. Optimal magnet design for Lorentz force eddy-current testing
Berkani et al. Study on optimal design based on direct coupling between a FEM simulation model and L-BFGS-B algorithm
Mukherjee et al. An evolving switching surface model for ferromagnetic hysteresis
Lee et al. Isogeometric shape optimization of ferromagnetic materials in magnetic actuators
Peng et al. Study on the magnetic forces of the dipole in the SPERF
Qu et al. A study on magnetic force characteristics between two cuboidal permanent magnets
Reichel et al. A comparative study of finite element schemes for micromagnetic mechanically coupled simulations
Meessen Electromagnetic fields and interactions in 3D cylindrical structures: Modeling and application
WO2015092865A1 (en) Vector hysteresis analysis method, program therefor, and vector hysteresis analysis device
Johns Relativistically correct electromagnetic energy flow
Minorowicz et al. Hysteresis modelling in electromechanical transducer with magnetic shape memory alloy
Przybył et al. Modeling of Magnetic Properties of Rare-Earth Hard Magnets
WO2019171660A1 (en) Magnetic field analysis device, analysis method, and program
Sorti et al. Data-driven modeling of nonlinear materials in normal-conducting magnets
Bakhvalov et al. OPTIMAL DESIGN OF ENERGY SAVING ELECTROMAGNETIC SYS-TEMS USING SOLUTIONS OF INVERSE PROBLEMS
O’Connell et al. Analytic magnetic fields and semi-analytic forces and torques due to general polyhedral permanent magnets
Krebs et al. Overlapping finite elements for arbitrary surfaces in 3-D
Satoh et al. Bounded stability of nonlinear stochastic systems
Fang et al. Equivalent Magnetic Network-Based Multiphysics Optimization of a Normal-Stressed Millimeter-Range Nanopositioning Stage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP