WO2015090023A1 - Vlan接入vf网络的实现方法及装置、fcf - Google Patents

Vlan接入vf网络的实现方法及装置、fcf Download PDF

Info

Publication number
WO2015090023A1
WO2015090023A1 PCT/CN2014/080348 CN2014080348W WO2015090023A1 WO 2015090023 A1 WO2015090023 A1 WO 2015090023A1 CN 2014080348 W CN2014080348 W CN 2014080348W WO 2015090023 A1 WO2015090023 A1 WO 2015090023A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
vlan
vlans
fcid
fcf
Prior art date
Application number
PCT/CN2014/080348
Other languages
English (en)
French (fr)
Inventor
赵清凌
赵进
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14872593.0A priority Critical patent/EP3086512B1/en
Priority to US15/106,307 priority patent/US10257118B2/en
Publication of WO2015090023A1 publication Critical patent/WO2015090023A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/15Interconnection of switching modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • H04B10/25891Transmission components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/35Switches specially adapted for specific applications
    • H04L49/354Switches specially adapted for specific applications for supporting virtual local area networks [VLAN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/35Switches specially adapted for specific applications
    • H04L49/356Switches specially adapted for specific applications for storage area networks
    • H04L49/357Fibre channel switches

Definitions

  • the present invention relates to the field of data center storage, and in particular to a virtual local area network (VLAN) access virtual structure (Visual Fabric, abbreviated as abbreviated as VF or VFabirc) Network implementation method and device, Fibre Channel over Ethernet Forwarder (FCF).
  • VLAN virtual local area network
  • FCF Fibre Channel over Ethernet Forwarder
  • FCoE Fibre Channel over Ethernet
  • the card can connect SAN and local area network (LAN) at the same time to realize the interworking of storage and application.
  • the traditional FC protocol in order to realize the virtualization of the fiber network, proposes a virtual fabric technology.
  • Different VFabircs (indicated by Virtual Storage Area Network (VSAN) in existing devices) are distinguished by VF_ID.
  • Different VFabrics have independent SAN resources, such as each VFabirc independent election master switch ( Principal Switch), independently assigns the Domain ID and FC-ID. All control frames and service frames between different VFabrics are isolated from each other and are distinguished by the outer frame encapsulation VF tag of the FC frame.
  • the tag has a 12-bit VF_ID to identify the VFabric to which the data belongs.
  • VLANs have isolated broadcast packets, isolate Layer 2 links, or isolate terminals. This is important for LAN network security, resource partitioning, and network performance maximization.
  • DCB Data Center Bridging
  • the SAN network is integrated with the user LAN.
  • VFabric and VLAN technologies are similar in function, in order to reduce redundancy, VF_ID and VLANJD are established in the FCoE device implementation-corresponding relationship, and VLAN tags are used instead of VF tags.
  • FCF FCoE Forwarder
  • the mapping between the VF label and the VLAN label is indispensable.
  • the mainstream FCoE devices on the market map a VF_ID uniquely to the specified VLAN_ID, and even directly use the same ID for the VFabric and the VLAN. This makes the use of VLANs in the FCoE network extremely inflexible.
  • the host side (initiator side) device is generally connected to the SAN and the LAN network at the same time. If the VLAN is used to implement service isolation between hosts, it is bound to be limited by the VF_ID mapping.
  • the VLAN division is strongly coupled with the VFabric configuration, which greatly limits the role of VLANs.
  • VFabric When only one VFabric is used in the entire FCoE network, all the devices are in the same VLAN. This is also likely to cause the blocking of this VLAN link and the waste of other VLAN links.
  • the SAN network is divided into different VFabrics, and its Dom a inID, name service, and zone (ZONE) partitions must have independent management resources and consume A large amount of system resources such as CPU and memory, and the network configuration becomes complicated.
  • Dom a inID, name service, and zone (ZONE) partitions must have independent management resources and consume A large amount of system resources such as CPU and memory, and the network configuration becomes complicated.
  • the present invention provides a method and device for implementing a VLAN access VF network, and an FCF, to solve at least the foregoing technologies. problem.
  • a method for implementing a virtual local area network VLAN access virtual structure VF network including: configuring a VF network according to a preset rule, and between the VF network and a plurality of virtual local area network VLANs to be accessed
  • Corresponding relationship The plurality of VLANs are associated with the same VF network according to the configured correspondence relationship, wherein data communication between the terminals in different VLANs is allowed.
  • the preset rule includes: the same VF network corresponds to the multiple VLANs, and the same VLAN only corresponds to the unique VF network.
  • the associating the plurality of VLANs with the same VF network according to the configured correspondence includes: sharing the network resources of the VF network with the associated multiple VLANs; and accessing according to the shared network resources Associated terminals in the plurality of VLANs.
  • the method includes: establishing, between the Fibre Channel identifier FCID and the virtual local area network identifier VLAN ID, after the terminal accesses the VF network Correspondence relationship; according to the destination Fibre Channel Identify in the received message (Fibre Channel Identify, Jane The FCID is used to retrieve the destination VLAN ID.
  • the forwarding device or the terminal corresponding to the destination VLAN ID forwards the packet to implement interworking between the terminals.
  • the method is applied to an Ethernet Fibre Channel Forwarder FCF.
  • an apparatus for implementing a VLAN access VF network including: a configuration module, configured to configure a VF network according to a preset rule, and the VF network and multiple virtual local area networks that need to be accessed Corresponding relationship between the VLANs; the association module is configured to associate the multiple VLANs to the same VF network according to the configured correspondence, wherein data communication between the terminals in different VLANs is allowed.
  • the configuration module is configured to configure the VF network and the corresponding relationship when the preset rule includes the following: the same VF network corresponds to the multiple VLANs, and the same VLAN only corresponds to The only such VF network.
  • the association module includes: a sharing unit, configured to share the network resources of the VF network with the associated multiple VLANs; and the access unit is configured to be associated according to the shared network resource access Terminals in the plurality of VLANs.
  • the association module further includes: an establishing unit, configured to establish a correspondence between a Fibre Channel identifier FCID and a virtual local area network identifier VLAN ID after the terminal accesses the VF network; and the retrieval unit is configured to receive according to The destination FCID in the packet retrieves the destination VLAN ID.
  • the forwarding unit is configured to forward the packet to the forwarding device or the terminal corresponding to the destination VLAN ID to implement interworking between the terminals.
  • an Ethernet Fibre Channel Repeater FCF characterized by comprising the apparatus of any of the above.
  • a method for configuring multiple VLANs to access the same VF network according to a preset rule and interworking between terminals in different VLANs is implemented, and the implementation of the VFabric access VLAN in the related technology is solved.
  • the solution has the technical problem of wasting resources and complex network configuration. Therefore, the strong coupling between the VF and the VLAN is removed in the corresponding relationship between the VF and the VLAN, and the VLANs are flexibly allocated under the same VF, thereby saving network resources.
  • FIG. 1 is a FCoE data center network architecture diagram according to the related art
  • FIG. 2 is a schematic diagram of an FCoE network architecture strongly coupled to a VFabric according to the related art
  • FIG. 3 is a schematic diagram of a VLAN access W network implementation method according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of an apparatus for implementing a VLAN access VF network according to an embodiment of the present invention
  • FIG. 5 is another structural block diagram of an apparatus for implementing a VLAN access VF network according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a VFabric supporting multi-VLAN configuration according to a preferred embodiment 1 of the present invention
  • FIG. 8 is a VFabric support according to a preferred embodiment 2 of the present invention.
  • FIG. 9 is a schematic diagram of an ENode access FCF implementation according to a preferred embodiment 2 of the present invention
  • FIG. 10 is a schematic diagram of an FCF and FCF interconnection implementation according to a preferred embodiment 2 of the present invention.
  • FIG. 3 is a flowchart of a method for implementing a VLAN access VF network according to an embodiment of the present invention. As shown in FIG. 3, the method includes the following processing steps: Step S302: Configure a VF network and a correspondence between the VF network and multiple VLANs to be accessed according to a preset rule. In this configuration, multiple VLANs corresponding to the same VF network share network resources of the VF network (that is, resources of the FCoE forwarder).
  • the preset rule may include: the same VF network corresponds to multiple VLANs, and the same VLAN only corresponds to a unique VF network.
  • Step S304 Associate multiple VLANs to the same VF network according to the configured correspondence relationship, where data communication between the terminals in different VLANs is allowed. This step may be implemented in the following implementation manner: sharing the network resources of the VF network to the associated multiple VLANs; accessing the terminals in the multiple associated VLANs according to the shared network resources.
  • the mapping between the FCID and the VLAN ID is established; the destination VLAN ID is retrieved according to the destination FCID in the received packet; and the forwarding device or the terminal corresponding to the destination VLAN ID forwards the packet to implement the terminal.
  • the implementation method of the VLAN access VF network provided in this embodiment may be applied to the FCF, but is not limited thereto.
  • FIG. 4 is a structural block diagram of an apparatus for implementing a VLAN access VF network according to an embodiment of the present invention. As shown in FIG.
  • the device includes: a configuration module 40, configured to configure a VF network and a correspondence between a VF network and a plurality of VLANs to be accessed according to a preset rule; and an association module 42 connected to the configuration module 40, It is configured to associate multiple VLANs to the same VF network according to the configured correspondence, where data communication between terminals in different VLANs is allowed.
  • the configuration module 40 is configured to configure the VF network and the corresponding relationship when the preset rule includes the following: The same VF network corresponds to multiple VLANs, and the same VLAN only corresponds to a unique VF network. As shown in FIG.
  • the association module 42 includes the following processing unit: a sharing unit 420 configured to share network resources of the VF network with the associated multiple VLANs; the access unit 422, connected to the sharing unit 420, configured to be shared according to the sharing The above network resources are accessed by terminals in multiple VLANs associated with each other.
  • the association module 42 may further include the following processing unit: an establishing unit 424, configured to establish a correspondence between the FCID and the VLAN ID after the terminal accesses the VF network; and the retrieval unit 426 is configured to The destination VLAN ID is retrieved according to the destination FCID in the received message.
  • the forwarding unit 428 is connected to the retrieving unit 426, and is configured to forward the packet to the forwarding device or the terminal corresponding to the destination VLAN ID to implement interworking between the terminals.
  • the above various modules involved in the embodiment can be implemented by corresponding hardware.
  • each of the above modules may be in the processor, and of course, at least two of the processing modules may be located in the same processor.
  • the configuration of the VFabric and the VLAN is one-to-one.
  • the VLAN division is strongly coupled with the configuration of the VFabric, which greatly limits the role of the VLAN.
  • the main design idea of this embodiment is that in the FCoE device configuration, the same VFabric can be bound to multiple VLANJDs, but the same VLAN ID can only correspond to a unique VFJD.
  • FIP FCoE Initialization Protocol
  • VFabric module (equivalent to configuration module 40): It is divided into VFJD and is responsible for management and maintenance of FC fabric attributes and information, such as FCID pool management, name service, and ZONE management.
  • FIP controller module (equivalent to association module 42): Based on VLANJD, it is responsible for specifying the operation of FIP protocol in VLAN, and completing the establishment of virtual link of FC-2V (FL0GI, a process of logical connection of nodes to the fabric switch). Maintenance
  • FCOE routing module (equivalent to association module 42): responsible for FC route maintenance and FCoE data forwarding;
  • FCID-MAC table management module (equivalent to association module 42): Responsible for maintaining the mapping between FCID and MAC+VLAN for FCOE data forwarding.
  • the FCID-MAC table contains the following information:
  • VFJD VFJD FCID corresponding to the VFabric instance: The next hop FCID obtained by the FC route, such as the destination FCID of the next hop ENode, or the domain controller ID of the next hop FCF device.
  • Media Access Control (MAC) The MAC address corresponding to the next hop FCID.
  • VLANJD VLAN ID used by the next hop FCID
  • the FCID-MAC table is indexed by the VFJD and the FCID, and the MAC address and the VLAN JD information of the next hop node are obtained, so that FCoE packets are forwarded between different VLANs in the same VFJD.
  • the operation process of the above several modules is as follows: In the first step, the FIP controller module generates a separate instance with the VLANJD as the identifier, and the FIP of each VLAN instance operates separately. The VLAN instance is mapped to the same VFabric instance. The VLAN instance can obtain the required communication resources (such as the mapping and fabric attributes) from the VFabric instance.
  • Figure 6 shows the network architecture of VFabric supporting multiple VLANs.
  • Figure 7 shows a schematic diagram of VFabric support for multi-VLAN configuration.
  • Step 2 When the FIP controller successfully establishes a FL0GI virtual connection, it generates a mapping relationship between the FCID and the MAC+VLAN and adds the FCID-MAC table.
  • the FCID-MAC table is indexed by VFJD and next hop FCID, and the corresponding MAC address and VLANJD are queried.
  • Step 3 When the FC0E forwarding module receives the FC0E frame, it completes by checking the route and the FCID-MAC table.
  • the first step can be considered as a specific implementation manner of the step S302 in the embodiment shown in FIG. 3, and the second step and the third step can be considered as specific implementation manners of the step S304 in the specific implementation.
  • the embodiment of the present invention provides a scheme for flexibly dividing a VLAN under the same VFabric in an FCoE network device, which removes the limitation of the VLAN by the VFabric and reduces the impact of the VLAN division of the LAN network on the SAN network.
  • This solution can save the occupation and consumption of SAN network fabric management resources, and fully utilize the advantages of VLAN technology in network security, broadcast domain isolation, resource division, etc., and is more conducive to FCoE network link performance optimization.
  • Embodiment 2 Referring to FIG. 8, according to a specific implementation method in an FCF device system, an example of the cooperation relationship of each module in the system is illustrated:
  • step S302 creates an FIP controller instance of a different VLAN and establish a mapping relationship with the same VFabric instance. This step can be seen as a specific implementation of step S302 in the embodiment shown in FIG. (2)
  • the FIP controller in each VLAN performs its own FIP interaction, and obtains the VFabhc attribute through the mapping relationship and passes the neighbor device information to the VFabric instance.
  • the FIP controller establishes a FLOGI virtual link, generates an FCID-MAC entry, and joins the FC-MAC table management module.
  • the FCoE forwarding module forwards the FCoE across the VLANs in the same VFabric by querying the route and the FCID-MAC table.
  • the ENode uses different VLANs to provide IT services for different LAN users. At the same time, the ENodes access the same VFabric and share storage network resources.
  • the ENode-a configuration uses VLAN 10 and the ENode-b configuration uses VLAN 20.
  • the FCF configuration uses a VFabric with a VFJD of 10 and maps VLAN 10 and VLAN 20 to VFabric10.
  • ENode-a sends an FCF Discovery Request (Discovery Solicitation) in VLAN 10.
  • FCF received FCF Discovery Request (Discovery Solicitation) in VLAN 10.
  • the discovery request message sent by the ENode-a responds to the FCF Discovery Advertisement (DA), which carries the VFJD to which the VLAN 10 belongs and the MAC address of the VF_Port controller MAC-f. After receiving the DA that the FCF responds, the ENode-a obtains the VFJD corresponding to the VLAN 10.
  • DA FCF Discovery Advertisement
  • ENode-b sends an FCF Discovery Request (Discovery Solicitation) in VLAN 20.
  • the FCF receives the discovery request message sent by the ENode-a, and responds to the FCF Discovery Advertisement, where the VFJD to which the VLAN 20 belongs. After receiving the DA of the FCF response, the ENode-b obtains the VFJD corresponding to the VLAN 20.
  • ENode-a sends a FLOGI request to the FCF.
  • the FCF receives the FLOGI request packet from the ENode-a, and the VLAN 10 maps to the VFabrid O.
  • the FCID-a and the MAC-a are allocated from the FCID pool of the VFabrid O, and the response is sent to the ENode-a.
  • the FCF records the ENode-a login information and generates an FCID-MAC entry. After receiving the FLOGI LS_ACC of the FCF response, the ENode-a generates an FCID-MAC entry.
  • ENode-b discovers the FLOGI request to the FCF.
  • the FCF receives the FLOGI request packet of the ENode-b, and the VLAN 20 maps to the VFabrid O.
  • the FCID-b and the MAC-b are allocated from the FCID pool of the VFabrid O, and the response is sent to the ENode-b.
  • the FCF records the ENode-b login information and generates an FCID-MAC entry. After receiving the FLOGI LS_ACC of the FCF response, the ENode-b generates an FCID-MAC entry.
  • the ENode-a sends an FCoE frame to the ENode-b.
  • the source FCID is FCID-a and the destination FCID is FCID-b. Since the FCF is used as the gateway of the ENode-a, the next hop of the FCoE frame is the FCF VF_Port controller (FFFFFEh).
  • FFFFFEh FCF VF_Port controller
  • the FCF receives the FCoE frame sent by the ENode-a, and its destination FCID is FCID-b. Because it is the FCID in the same Domain, the FCID-MAC table obtains the destination MAC address of the next hop as MAC-b and VLANJD as 20. The FCF modifies the Ethernet header of the FCoE frame as: Destination MAC - MAC-b, Source MAC - MAC-f, VLANJD - 20. The modified FCoE frame will be sent to ENode-b.
  • this embodiment provides another implementation manner: ENode-a accesses the FCoE SAN through the FCF-a, and the ENode-b accesses the FCoE SAN network through the FCF-b.
  • the VFabriic ID is 10 in the SAN, where VLAN 10 VLAN 20 and VLAN 30 are mapped to VF10.
  • FCF-a uses DomainlD as 10 (0xA) and FCF-b uses DomainlD as 11 (0xB).
  • FCF-a assigns FCID to ONode-a as OOAOOAH, and generates FCID-MAC entry:
  • FCF-a and FCF-b establish a VE-to-VE virtual link based on VLAN 30 to generate an FCID-MAC entry: Device VF ID Destination FCID Destination MAC VLAN ID FCF-a VF10 OBOOOOh MAC-fb VLAN30
  • ENode-a sends an FCoE frame to ENode-b with the source FCID OAOOOAh and the destination FCID 0B000Bh. Since FCF-a is used as the gateway of ENode-a, the next hop FCID of this FCoE frame is FCF-Port's VF_Port controller (FFFFFEh).
  • FCF-a receives the FCoE frame sent by ENode-a, its destination FCID is 0B000Bh, because it is the FCID in another Domain, the next hop FCID is the Domain Controller ID of another FCF ( 0B0000h), check the FCID-MAC table to get the destination hop of the next hop as MAC-fb and VLANJD as 30.
  • the FCF modifies the Ethernet header of the FCoE frame as: Destination MAC - MAC-fb, Source MAC - MAC-fa, VLANJD - 30.
  • the modified FCoE frame will be sent to FCF-b:
  • FCF-b receives the FCoE frame sent by FCF-a, and its destination FCID is 0B000Bh. Because it is the FCID in the same domain as FCF-b, it is the last hop. Therefore, according to the destination FCID, the FCID-MAC table is obtained.
  • the destination MAC is MAC-b and the VLANJD is 20.
  • the FCF modifies the Ethernet header of the FCoE frame as: Destination MAC-MAC-b, Source MAC—MAC-fb, VLANJD-30.
  • the modified FCoE frame will be sent to ENode-b.
  • the ENode-b After receiving the FCoE frame, the ENode-b processes the corresponding FCoE frame. If the FCoE frame needs to be sent to the ENode-a, the forwarding process is as described above, and the details are not described here.
  • the VLAN function is enabled, and the SAN network is flexibly managed by using the FC function. It is not restricted by the VLAN, and solves the problem that the coupling between the VLAN and the VFabric function is too strong.
  • software is also provided for performing the technical solutions described in the above embodiments and preferred embodiments.
  • a storage medium is provided, the software being stored, including but not limited to: an optical disk, a floppy disk, a hard disk, a rewritable memory, and the like.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. Perform the steps shown or described, or separate them into individual integrated circuit modules, or Multiple of these modules or steps are fabricated as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
  • the above are only the preferred embodiments of the present invention, and are not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种VLAN接入VF网络的实现方法和装置以及以太网光纤通道转发器FCF。其中,该方法包括:按照预设规则配置VF网络以及所述VF网络与需要接入的多个虚拟局域网VLAN之间的对应关系,根据配置的对应关系将所述多个VLAN关联到同一VF网络,其中,位于不同VLAN中的终端之间允许进行数据互通。通过上述技术方案,解决了现有技术中VFabric接入VLAN时资源浪费和网络配置实现复杂的问题,并且解除了VF与VLAN之间的强耦合的对应关系,实现了同一VF下VLAN的灵活分配,节省了网络资源。

Description

VLAN接入 VF网络的实现方法及装置、 FCF 技术领域 本发明涉及数据中心存储领域,具体而言,涉及一种虚拟局域网(Virtual Local Area Network, 简称为 VLAN) 接入虚拟结构 (Visual Fabric, 简称 VF或者 VFabirc) 网络 的实现方法及装置、 以太网光纤通道转发器 (Fibre Channel over Ethernet Forwarder, 简 称 FCF)。 背景技术 随着数据中心存储技术的发展和以太网技术的演进, 越来越多的存储网络使用以 太网作为其传输链路。 在传统存储区域网 (Storage Area Network, 简称为 SAN)存储网 络市场中占有绝对优势的光纤通道 (Fibre Channel, 简称为 FC) 协议架构也开始向以 太网网络融合, 即是当今热门的以太网光纤通道(Fibre Channel over Ethernet, 简称为 FCoE) 技术。 在图 1 所示的 FCoE 网络中, 服务器主机 (HOST)的融合网络适配器
(Converged Network Adapter, 简称为 CNA) 卡可同时连接 SAN与局域网 (LAN), 实现存储与应用的互通。 传统的 FC协议, 为了实现光纤(Fabric)网络的虚拟化, 提出了虚拟 Fabric技术。 不同的 VFabirc (在现有设备中常以虚拟存储区域网 (Virtual Storage Area Network, 简 称为 VSAN) 来体现)通过 VF_ID来区分, 不同的 VFabric拥有独立的 SAN资源, 如 每个 VFabirc独立选举主交换机 (Principal Switch), 独立分配 Domain ID与 FC-ID等。 不同 VFabric之间的所有控制帧和业务帧都相互隔离,通过 FC帧外层封装 VF标签来 区分, 标签内有 12位的 VF_ID来标识数据所属的 VFabric。
VLAN在以太网络中有着隔离广播报文, 隔离二层链路, 或者隔离终端的功能, 对于 LAN网络安全、 资源划分以及网络性能最大化都有重要作用。 应用了 FCoE技术后,数据将使用 FCoE格式的以太网帧在数据中心桥接技术 ( Data Center Bridging, 简称为 DCB) 以太网链路中传输, 并且实现 SAN网络与用户 LAN 的融合。 由于 VFabric与 VLAN技术的功能相似, 为了减少冗余, 在 FCoE设备实现 中会将 VF_ID与 VLANJD建立——对应关系,由 VLAN标签来代替 VF标签。在 FCoE SAN网络边缘接入设备, 即 FCoE转发器 (FCoE Forwarder, 简称 FCF)上, 为了实现 FC向 FCoE的过渡与扩展, 需要同时提供 FC SAN设备的接入。 在这种应用中, 还需 要对报文进行 FC格式与 FCoE格式的转换, 其中 VF标签与 VLAN标签的映射是必 不可少的。 目前市场上主流的 FCoE设备, 都是将某一 VF_ID唯一映射为指定 VLAN_ID, 甚至直接将 VFabric与 VLAN使用同一 ID,这使得在 FCoE网络中 VLAN的使用极不 灵活。 尤其是主机侧 (Initiator侧)设备, 一般同时连接 SAN与 LAN网络, 如果需要利 用 VLAN实现主机间的业务隔离, 势必受到 VF_ID映射的限制。 如图 2所示, 一对一的映射关系下, VLAN的划分与 VFabric的配置形成强耦合, 大大限制了 VLAN的作用。 当整个 FCoE网络只使用一个 VFabric时, 所有设备全在 同一个 VLAN中, 也容易造成此 VLAN链路的阻塞和其他 VLAN链路的浪费。 若要 对 LAN网络充分使用 VLAN的链路隔离等功能,则要 SAN网络划分在不同的 VFabric 中, 其 DomainID、 名称服务、 区域 (ZONE) 划分等都要有独立的管理资源, 会消耗 大量的 CPU、 内存等系统资源, 并且会使网络配置变得很复杂。 针对相关技术中的上述问题, 目前尚未提出有效的解决方案。 发明内容 针对相关技术中, VFabric接入 VLAN的实现方案存在浪费资源以及网络配置实 现复杂等技术问题, 本发明提供了一种 VLAN接入 VF网络的实现方法及装置、 FCF, 以至少解决上述技术问题。 根据本发明的一个方面, 提供了一种虚拟局域网 VLAN接入虚拟结构 VF网络的 实现方法,包括:按照预设规则配置 VF网络以及所述 VF网络与需要接入的多个虚拟 局域网 VLAN之间的对应关系; 根据配置的对应关系将所述多个 VLAN关联到同一 VF网络, 其中, 位于不同 VLAN中的终端之间允许进行数据互通。 优选地, 所述预设规则包括: 同一所述 VF网络对应所述多个 VLAN, 且同一所 述 VLAN仅对应唯一的所述 VF网络。 优选地, 根据配置的对应关系将所述多个 VLAN关联到同一 VF网络, 包括: 将 所述 VF网络的网络资源对关联的所述多个 VLAN进行共享; 根据共享的所述网络资 源接入关联的所述多个 VLAN内的终端。 优选地,根据共享的所述网络资源接入关联的所述多个 VLAN内的终端之后包括: 在所述终端接入所述 VF网络后建立光纤通道标识 FCID和虚拟局域网标识 VLAN ID 之间的对应关系; 根据接收的报文中的目的光纤通道标识 (Fibre Channel Identify, 简 称为 FCID)检索目的 VLAN ID; 向所述目的 VLAN ID对应的转发设备或终端转发所 述报文实现所述终端之间的互通。 优选地, 所述方法应用于以太网光纤通道转发器 FCF。 根据本发明的再一个方面,还提供了一种 VLAN接入 VF网络的实现装置,包括: 配置模块,设置为按照预设规则配置 VF网络以及所述 VF网络与需要接入的多个虚拟 局域网 VLAN之间的对应关系; 关联模块, 设置为根据配置的对应关系将所述多个 VLAN关联到同一 VF网络,其中,位于不同 VLAN中的终端之间允许进行数据互通。 优选地, 所述配置模块, 设置为在所述预设规则包括以下内容时配置所述 VF 网 络和所述对应关系: 同一所述 VF网络对应所述多个 VLAN, 且同一所述 VLAN仅对 应唯一的所述 VF网络。 优选地, 所述关联模块包括: 共享单元, 设置为将所述 VF 网络的网络资源对关 联的所述多个 VLAN进行共享; 接入单元, 设置为根据共享的所述网络资源接入关联 的所述多个 VLAN内的终端。 优选地, 所述关联模块还包括: 建立单元, 设置为在所述终端接入所述 VF 网络 后建立光纤通道标识 FCID和虚拟局域网标识 VLAN ID之间的对应关系; 检索单元, 设置为根据接收的报文中的目的 FCID检索目的 VLAN ID; 转发单元, 设置为向所述 目的 VLAN ID对应的转发设备或终端转发所述报文实现所述终端之间的互通。 根据本发明的又一个方面, 还提供了一种以太网光纤通道转发器 FCF, 其特征在 于, 包括上述任一项所述的装置。 通过本发明上述实施例,采用按照预设规则配置多个 VLAN接入到同一 VF网络, 并且位于不同 VLAN 中的终端之间是互通的技术手段, 解决了相关技术中, VFabric 接入 VLAN的实现方案存在浪费资源以及网络配置实现复杂等技术问题, 从而在 VF 与 VLAN的对应关系上解除了 VF与 VLAN的强耦合, 实现同一 VF下 VLAN的灵活 分配, 进而节省了网络资源。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1为根据相关技术的 FCoE数据中心网络架构图; 图 2为根据相关技术的 VLAN与 VFabric强耦合的 FCoE网络架构示意图; 图 3为根据本发明实施例的 VLAN接入 W网络的实现方法的流程图; 图 4为根据本发明实施例的 VLAN接入 VF网络的实现装置的结构框图; 图 5为根据本发明实施例的 VLAN接入 VF网络的实现装置的另一结构框图; 图 6为根据本发明优选实施例 1的 VFabric支持多 VLAN的网络架构示意图; 图 7为根据本发明优选实施例 1的 VFabric支持多 VLAN的配置实施示意图; 图 8为根据本发明优选实施例 2的 VFabric支持多 VLAN系统模块示意图; 图 9为根据本发明优选实施例 2的 ENode接入 FCF实施方案示意图; 以及 图 10为根据本发明优选实施例 2的 FCF与 FCF互连实施方案示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 图 3为根据本发明实施例的 VLAN接入 VF网络的实现方法的流程图。 如图 3所 示, 该方法包括以下处理步骤: 步骤 S302, 按照预设规则配置 VF网络以及该 VF网络与需要接入的多个 VLAN 之间的对应关系。 该配置即同一 VF网络对应的多个 VLAN共享 VF网络的网络资源 (即 FCoE转发器的资源)。 在本实施例中, 上述预设规则可以包括: 同一 VF网络对 应多个 VLAN, 且同一 VLAN仅对应唯一的 VF网络。 步骤 S304, 根据配置的对应关系将多个 VLAN关联到同一 VF网络, 其中, 位于 不同 VLAN中的终端之间允许进行数据互通。该步骤可以表现为以下实现形式:将 VF 网络的网络资源对关联的多个 VLAN进行共享; 根据共享的网络资源接入关联的多个 VLAN内的终端。在终端接入上述 VF网络后建立 FCID和 VLAN ID之间的对应关系; 根据接收的报文中的目的 FCID检索目的 VLAN ID; 向目的 VLAN ID对应的转发设备 或终端转发报文实现上述终端之间的互通。 本实施例提供的 VLAN接入 VF网络的实现方法可以应用于 FCF, 但不限于此。 通过上述处理步骤, 由于同一 VF对应于多个 VLAN, 并且多个 VLAN之间可以 实现数据互通, 因此, 解除了由于 VF和 VLAN存在一对一的映射关系而形成的强耦 合, 实现了同一 VF下 VLAN的灵活分配, 达到了节省网络资源并优化以太网性能的 效果。 在本实施例中提供了一种 VLAN接入 VF网络的实现装置, 用于实现上述实施例 及优选实施方式, 已经进行过说明的不再赘述, 下面对该装置中涉及到的模块进行说 明。 如以下所使用的, 术语 "模块"可以实现预定功能的软件和 /或硬件的组合。 尽管 以下实施例所描述的装置较佳地以软件来实现, 但是硬件, 或者软件和硬件的组合的 实现也是可能并被构想的。 图 4为根据本发明实施例的 VLAN接入 VF网络的实现装 置的结构框图。 如图 4所示, 该装置包括: 配置模块 40, 设置为按照预设规则配置 VF网络以及 VF网络与需要接入的多个 VLAN之间的对应关系; 关联模块 42, 连接至配置模块 40, 设置为根据配置的对应关系将多个 VLAN关 联到同一 VF网络, 其中, 位于不同 VLAN中的终端之间允许进行数据互通。 在本实施例中, 配置模块 40, 设置为在上述预设规则包括以下内容时配置 VF网 络和上述对应关系: 同一 VF 网络对应多个 VLAN , 且同一 VLAN仅对应唯一的 VF 网络。 如图 5所示, 关联模块 42包括以下处理单元: 共享单元 420, 设置为将 VF网络 的网络资源对关联的多个 VLAN进行共享; 接入单元 422, 连接至共享单元 420, 设 置为根据共享的上述网络资源接入关联的多个 VLAN内的终端。 可选地, 如图 5所示, 关联模块 42还可以包括以下处理单元: 建立单元 424, 设 置为在终端接入 VF网络后建立 FCID和 VLAN ID之间的对应关系; 检索单元 426, 设置为根据接收的报文中的目的 FCID检索目的 VLAN ID; 转发单元 428, 连接至检 索单元 426, 设置为向目的 VLAN ID对应的转发设备或终端转发报文实现终端之间的 互通。 正如上面所述, 本实施例中涉及到的上述各个模块可以通过相应地硬件来实现。 例如, 上述各个模块均可以处在处理器中, 当然也可以为其中的至少两个处理模块位 于同一处理器中。 为了更好地理解上述实施例, 以下结合优选实施例详细说明。 实施例 1 现有方案 VFabric与 VLAN是一对一的映射关系, VLAN的划分与 VFabric的配 置形成强耦合,大大限制了 VLAN的作用。当整个 FCoE网络只使用一个 VFabric时, 所有设备全在同一个 VLAN中,也容易造成此 VLAN链路的阻塞和其他 VLAN链路的 浪费。 若要对 LAN网络充分使用 VLAN的链路隔离等功能, 则要 SAN网络划分在不 同的 VFabric中, 其 DomainlD、 名称服务、 ZONE划分等都要有独立的管理资源, 会消耗大量的 CPU、 内存等系统资源, 并且会使网络配置变得很复杂。 为解决上述问题, 本实施例采用的技术方案如下: 本实施例的主要设计思想在于, 在 FCoE设备配置中, 同一 VFabric可以绑定多 个 VLANJD, 但同一 VLAN ID仅能对应唯一的 VFJD。 SAN网络中, 同一 VFabric 下的设备, FIP ( FCoE Initialization Protocol) 链接控制报文严格按 VLAN隔离开; 但建立链接后允许不同 VLAN间的设备, 可以通过 FCF跨 VLAN路由转发实现数据 互通, 不受 VLAN限制。 本实施例中的方案可以通过以下几个模块实现:
VFabric模块 (相当于配置模块 40): 以 VFJD为区分, 负责 FC Fabric属性与 信息的管理维护, 比如 FCID池管理、 名称服务、 ZONE管理等;
FIP控制器模块(相当于关联模块 42): 以 VLANJD为区分, 负责指定 VLAN内 FIP 协议的运作, 完成 FC-2V(FL0GI, 一种节点逻辑连接到架构交换机上的过程)虚 连接的建立与维护;
FCOE路由模块 (相当于关联模块 42): 负责 FC路由维护与 FCoE数据转发;
FC ID-MAC表管理模块 (相当于关联模块 42): 负责维护 FCID与 MAC+VLAN 的映射关系, 用于 FCOE数据转发。 FCID-MAC表包含以下信息:
VFJD: 对应 VFabric实例的 VFJD FCID: 通过 FC路由后得到的下一跳 FCID, 比如下一跳 ENode的目的 FCID, 或者下一跳 FCF设备的域控制器 ID等; 媒体接入控制 (Media Access Control, 简称为 MAC): 下一跳 FCID所对应的 MAC地址;
VLANJD: 下一跳 FCID所使用的 VLAN ID;
FCID-MAC表以 VFJD和 FCID为索引, 查询得到下一跳节点所对应的 MAC及 其 VLANJD信息, 从而实现在同一 VFJD下的不同 VLAN间 FCoE报文转发。 上述几个模块的运行过程如下: 第一步, FIP控制器模块以 VLANJD为标识生成独立的实例,每个 VLAN实例的 FIP单独运作。 通过配置, 将多个 VLAN实例映射到同一个 VFabric实例, VLAN实 例在操作 FIP 协议时可向 VFabric 实例获取所需的通信资源 (例如上述映射关系、 Fabric属性) Fabric属性。 图 6示出了 VFabric支持多 VLAN的网络架构。 图 7示出 了 VFabric支持多 VLAN的配置实施示意图。 第二步: FIP控制器在成功建立 FL0GI虚连接时, 生成 FCID与 MAC+VLAN的 映射关系, 加入 FCID-MAC表。 FCID-MAC表以 VFJD和下一跳 FCID为索引, 查 询到对应的 MAC地址和 VLANJD。 第三步: FC0E转发模块收到 FC0E帧时, 通过查路由和 FCID-MAC表来完成。 其中, 第一步可以认为是图 3所示实施例中的步骤 S302在具体实施时的具体实 现方式, 第二步和第三步可以认为是步骤 S304在具体实施时的具体实现方式 由此可见, 本实施例提供了一种在 FCoE网络设备中应用的, 在同一 VFabric下 灵活划分 VLAN的方案, 解除了 VFabric对 VLAN的限制, 减少 LAN网络的 VLAN 划分对 SAN网络的影响。 此方案可以节省 SAN网络 Fabric管理资源的占用与消耗, 并使 VLAN技术在网络安全、 广播域隔离、 资源划分等方面的优势得以充分发挥, 更 有利于 FCoE网络链路性能最优化。 实施例 2 参考图 8, 根据在 FCF设备系统中的具体实施方法, 举例说明各模块在系统中的 协作关系:
( 1 ) 根据配置, 创建不同 VLAN的 FIP控制器实例, 并与同一 VFabric实例建 立映射关系。 该步骤可以看作图 3所示实施例中步骤 S302的具体实现方式。 (2) 每个 VLAN 中的 FIP控制器进行各自的 FIP 交互, 通过映射关系, 获得 VFabhc属性, 并将邻居设备信息传递给 VFabric实例。
(3) FIP控制器建立 FLOGI虚链接, 生成 FCID-MAC条目, 加入 FC-MAC表 管理模块。 (4) 虚链接建立完成后, FCoE转发模块通过查询路由与 FCID-MAC表, 来实 现 FCoE在同一 VFabric下跨 VLAN转发。 需要说明的是, 上述步骤 (2) - (4)可以看作是图 3所示实施例中步骤 S304的 具体实现方式。 下面针对几种不同的网络场景, 举例说明本实施例的具体实施方法。 首先, 参考图 9的 FCoE SAN网络, 说明 ENode接入 FCF的实施方案: 两个
ENode使用不同的 VLAN,为不同的 LAN用户提供 IT服务; 同时 ENode接入同一个 VFabric中, 共享存储网络资源。
ENode-a配置使用 VLAN10, ENode-b配置使用 VLAN20。 FCF配置使用 VFJD 为 10的 VFabric, 同时将 VLAN 10禾 P VLAN20映射到 VFabric10。 ENode-a在 VLAN 10中发送 FCF发现请求 (Discovery Solicitation)。 FCF收到
ENode-a发来的发现请求报文, 回应 FCF发现通告 (Discovery Advertisement, 简称 DA),通告中将携带 VLAN10所归属的 VFJD以及 VF_Port控制器 MAC地址 MAC-f。 ENode-a收到 FCF回应的 DA后, 得到 VLAN10所对应的 VFJD。
ENode-b在 VLAN20中发送 FCF发现请求 (Discovery Solicitation)。 FCF收到 ENode-a发来的发现请求报文, 回应 FCF发现通告 (Discovery Advertisement), 通告 中将 VLAN20所归属的 VFJD。 ENode-b收到 FCF回应的 DA后, 得到 VLAN20所 对应的 VFJD。
ENode-a向 FCF发送 FLOGI请求。 FCF收到 ENode-a的 FLOGI请求报文, 由 VLAN 10映射到 VFabrid O, 从 VFabrid O的 FCID池中分配 FCID-a与 MAC-a, 回 应给 ENode-a。 FCF记录 ENode-a登录信息, 并生成 FCID-MAC条目。 ENode-a收 到 FCF回应的 FLOGI LS_ACC后, 生成 FCID-MAC条目。
Figure imgf000009_0001
ENode-b向 FCF发现 FLOGI请求。 FCF收到 ENode-b的 FLOGI请求报文, 由 VLAN20映射到 VFabrid O, 从 VFabrid O的 FCID池中分配 FCID-b与 MAC-b, 回 应给 ENode-b。 FCF记录 ENode-b登录信息, 并生成 FCID-MAC条目。 ENode-b收 到 FCF回应的 FLOGI LS_ACC后, 生成 FCID-MAC条目。
Figure imgf000010_0001
ENode-a向 ENode-b发送 FCoE帧,源 FCID为 FCID-a, 目的 FCID为 FCID-b。 由于 FCF作为 ENode-a的网关,此 FCoE帧的路由下一跳为 FCF的 VF_Port控制器 (FFFFFEh), 查 FCID-MAC表得到 FCoE帧的目的 MAC为 MAC-f, VLANJD为 10。
FCF收到 ENode-a发送的 FCoE帧,其目的 FCID为 FCID-b,由于是同一 Domain 域内的 FCID,所以查 FCID-MAC表得到下一跳的目的 MAC为 MAC-b, VLANJD为 20。 FCF修改 FCoE帧的以太网首部为: 目的 MAC—— MAC-b,源 MAC—— MAC-f, VLANJD—— 20。 修改后的 FCoE帧将发往 ENode-b。
ENode-b收到 FCoE帧后, 作相应处理, 如果需要回应 FCoE帧给 ENode-a, 转 发流程同上, 由 FCF将 FCoE帧从 VLAN20转到 VLAN10, 发给 ENode-a。 参考图 10, 本实施例给出另一种实施方案: ENode-a通过 FCF-a接入 FCoE SAN, ENode-b通过 FCF-b接入 FCoE SAN 网络, SAN内使用 VFabriic ID为 10, 其中 VLAN10、 VLAN20、 VLAN30都映射到 VF10。 FCF-a使用 DomainlD为 10(0xA), FCF-b使用 DomainlD为 11 (0xB)。
ENode-a 登录到 FCF-a, FCF-a 向 ENode-a 分配 FCID 为 OAOOOAh,生成 FCID-MAC条目:
Figure imgf000010_0002
ENode-b 登录到 FCF-b, FCF-b 向 ENode-b 分配 FCID 为 OBOOOBh,生成 FCID-MAC条目:
Figure imgf000010_0003
FCF-a与 FCF-b基于 VLAN30建立 VE-to-VE虚链接, 生成 FCID-MAC条目: 设备 VF ID 目的 FCID 目的 MAC VLAN ID FCF-a VF10 OBOOOOh MAC-fb VLAN30
FCF-b VF10 OAOOOOh MAC-fa VLAN30
ENode-a 向 ENode-b 发送 FCoE 帧, 源 FCID 为 OAOOOAh, 目的 FCID 为 0B000Bh。由于 FCF-a作为 ENode-a的网关,此 FCoE帧的路由下一跳 FCID为 FCF-a 的 VF_Port控制器 (FFFFFEh), 按下一跳查 FCID-MAC表得到 FCoE帧的目的 MAC 为 MAC-fa, VLANJD为 10: FCF-a收到 ENode-a发送的 FCoE帧, 其目的 FCID为 0B000Bh, 由于是另一 个 Domain 域内的 FCID, 所以下一跳 FCID 为另一个 FCF 的 Domain 域控制器 ID(0B0000h),查 FCID-MAC表得到下一跳的目的 MAC为 MAC-fb, VLANJD为 30。 FCF修改 FCoE帧的以太网首部为: 目的 MAC—— MAC-fb, 源 MAC—— MAC-fa, VLANJD—— 30。 修改后的 FCoE帧将发往 FCF-b: FCF-b收到 FCF-a发来的 FCoE帧,其目的 FCID为 0B000Bh,由于是和 FCF-b 同一 Domain域内的 FCID, 则为最后一跳。 所以按目的 FCID查 FCID-MAC表得到 目的 MAC为 MAC-b, VLANJD为 20。 FCF修改 FCoE帧的以太网首部为: 目的 MAC-MAC-b,源 MAC— MAC-fb, VLANJD— 30。修改后的 FCoE帧将发往 ENode-b。
ENode-b收到 FCoE帧后, 作相应处理, 如果需要回应 FCoE帧给 ENode-a, 转 发流程参见上面所述, 此处不再赘述: 通过本实施例提供的上述方案, LAN用户可以灵活使用 VLAN功能, 而 SAN网 络灵活使用 FC功能进行管理, 不受 VLAN限制, 解决了 VLAN与 VFabric功能耦合 性太强的问题。 在另外一个实施例中, 还提供了一种软件, 该软件用于执行上述实施例及优选实 施方式中描述的技术方案。 在另外一个实施例中, 还提供了一种存储介质, 该存储介质中存储有上述软件, 该存储介质包括但不限于: 光盘、 软盘、 硬盘、 可擦写存储器等。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何 修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种虚拟局域网 VLAN接入虚拟结构 VF网络的实现方法, 包括: 按照预设规则配置 VF网络以及所述 VF网络与需要接入的多个虚拟局域 网 VLAN之间的对应关系;
根据配置的对应关系将所述多个 VLAN关联到同一 VF网络, 其中, 位于 不同 VLAN中的终端之间允许进行数据互通。
2. 根据权利要求 1所述的方法, 其中, 所述预设规则包括:
同一所述 VF网络对应所述多个 VLAN, 且同一所述 VLAN仅对应唯一的 所述 VF网络。
3. 根据权利要求 1所述的方法, 其中, 根据配置的对应关系将所述多个 VLAN关 联到同一 VF网络, 包括:
将所述 VF网络的网络资源对关联的所述多个 VLAN进行共享; 根据共享的所述网络资源接入关联的所述多个 VLAN内的终端。
4. 根据权利要求 3所述的方法, 其中, 根据共享的所述网络资源接入关联的所述 多个 VLAN内的终端之后包括: 在所述终端接入所述 VF网络后建立光纤通道标识 FCID和虚拟局域网标 识 VLAN ID之间的对应关系; 根据接收的报文中的目的 FCID检索目的 VLAN ID;
向所述目的 VLAN ID对应的转发设备或终端转发所述报文实现所述终端 之间的互通。
5. 根据权利要求 1至 4任一项所述的方法, 其中, 所述方法应用于以太网光纤通 道转发器 FCF。
6. 一种虚拟局域网 VLAN接入虚拟结构 VF网络的实现装置, 包括: 配置模块, 设置为按照预设规则配置 VF网络以及所述 VF网络与需要接 入的多个虚拟局域网 VLAN之间的对应关系; 关联模块, 设置为根据配置的对应关系将所述多个 VLAN关联到同一 VF 网络, 其中, 位于不同 VLAN中的终端之间允许进行数据互通。 根据权利要求 6所述的装置, 其中, 所述配置模块, 用于在所述预设规则包括 以下内容时配置所述 VF网络和所述对应关系:
同一所述 VF网络对应所述多个 VLAN, 且同一所述 VLAN仅对应唯一的 所述 VF网络。 根据权利要求 6所述的装置, 其中, 所述关联模块包括:
共享单元, 设置为将所述 VF网络的网络资源对关联的所述多个 VLAN进 行共享;
接入单元,设置为根据共享的所述网络资源接入关联的所述多个 VLAN内 的终端。 根据权利要求 8所述的装置, 其中, 所述关联模块还包括: 建立单元,设置为在所述终端接入所述 VF网络后建立光纤通道标识 FCID 和虚拟局域网标识 VLAN ID之间的对应关系;
检索单元, 设置为根据接收的报文中的目的 FCID检索目的 VLAN ID; 转发单元, 设置为向所述目的 VLAN ID对应的转发设备或终端转发所述 报文实现所述终端之间的互通。 一种以太网光纤通道转发器 FCF, 包括权利要求 6至 9中任一项所述的装置。
PCT/CN2014/080348 2013-12-19 2014-06-19 Vlan接入vf网络的实现方法及装置、fcf WO2015090023A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14872593.0A EP3086512B1 (en) 2013-12-19 2014-06-19 Implementation method and apparatus for vlan to access vf network and fcf
US15/106,307 US10257118B2 (en) 2013-12-19 2014-06-19 Implementation method and device for VLAN to access VF network, and FCF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310706125.1 2013-12-19
CN201310706125.1A CN104734930B (zh) 2013-12-19 2013-12-19 Vlan接入vf网络的实现方法及装置、fcf

Publications (1)

Publication Number Publication Date
WO2015090023A1 true WO2015090023A1 (zh) 2015-06-25

Family

ID=53402046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080348 WO2015090023A1 (zh) 2013-12-19 2014-06-19 Vlan接入vf网络的实现方法及装置、fcf

Country Status (4)

Country Link
US (1) US10257118B2 (zh)
EP (1) EP3086512B1 (zh)
CN (1) CN104734930B (zh)
WO (1) WO2015090023A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166414A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种通信方法、装置及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3424151B1 (en) 2016-03-03 2020-09-30 Andrew Wireless Systems GmbH Hybrid ran/digital das repeater system with ethernet transport
CN106100960B (zh) * 2016-07-06 2020-03-24 新华三技术有限公司 跨存储区域网络Fabric互通的方法、装置及系统
CN107547247B (zh) * 2017-05-31 2020-11-06 新华三技术有限公司 智能弹性架构中的三层管理网ip地址分配方法和装置
CN113132200B (zh) * 2019-12-30 2024-01-19 中兴通讯股份有限公司 数据转发方法、转发器、系统、服务器和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060159081A1 (en) * 2005-01-18 2006-07-20 Dropps Frank R Address translation in fibre channel switches
CN1820463A (zh) * 2002-10-24 2006-08-16 思科技术公司 大规模第2层城域网
CN102111318A (zh) * 2009-12-23 2011-06-29 杭州华三通信技术有限公司 分配虚拟局域网资源的方法和交换机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8036229B2 (en) 2007-10-08 2011-10-11 Cisco Technology, Inc. Switch with virtual network identifier re-write capability
CN102111395B (zh) * 2009-12-23 2013-06-26 杭州华三通信技术有限公司 建立基于以太网的光纤通道虚链路的方法和系统
US8493983B2 (en) * 2010-06-02 2013-07-23 Cisco Technology, Inc. Virtual fabric membership assignments for fiber channel over Ethernet network devices
CN102316175B (zh) * 2011-06-30 2013-08-14 杭州华三通信技术有限公司 全网中vsan与vlan映射关系的管理方法和装置
CN102413060B (zh) * 2011-12-31 2014-10-29 杭州华三通信技术有限公司 Vpls网络中用户专线通信方法及设备
CN103220215B (zh) * 2013-04-25 2015-10-07 杭州华三通信技术有限公司 TRILL网络中FCoE报文的转发方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1820463A (zh) * 2002-10-24 2006-08-16 思科技术公司 大规模第2层城域网
US20060159081A1 (en) * 2005-01-18 2006-07-20 Dropps Frank R Address translation in fibre channel switches
CN102111318A (zh) * 2009-12-23 2011-06-29 杭州华三通信技术有限公司 分配虚拟局域网资源的方法和交换机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166414A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种通信方法、装置及系统
CN110166414B (zh) * 2018-02-14 2021-10-26 华为技术有限公司 一种通信方法、装置及系统

Also Published As

Publication number Publication date
EP3086512B1 (en) 2019-08-14
CN104734930B (zh) 2020-06-23
EP3086512A4 (en) 2017-01-11
US10257118B2 (en) 2019-04-09
CN104734930A (zh) 2015-06-24
EP3086512A1 (en) 2016-10-26
US20170034077A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
US11463279B2 (en) Method and apparatus for implementing a flexible virtual local area network
US8214528B2 (en) Address identifier scaling in converged networks
US9432754B2 (en) Maintaining a fabric name across a distributed switch
US7466712B2 (en) System and method for providing proxy and translation domains in a fibre channel router
US9515922B2 (en) Distributed fibre channel forwarder
WO2017113306A1 (zh) 可扩展虚拟局域网报文发送方法、计算机设备和可读介质
US8571408B2 (en) Hardware accelerated data frame forwarding
US8489763B2 (en) Distributed virtual bridge management
US8619796B2 (en) Forwarding data frames with a distributed fiber channel forwarder
US20060023708A1 (en) Interfabric routing header for use with a backbone fabric
US20110261827A1 (en) Distributed Link Aggregation
EP3069471B1 (en) Optimized multicast routing in a clos-like network
WO2015149253A1 (zh) 数据中心的虚拟网络管理方法及数据中心系统
US20060023751A1 (en) Multifabric global header
US7742484B2 (en) Multifabric communication using a backbone fabric
US20060023726A1 (en) Multifabric zone device import and export
WO2011113393A2 (zh) 一种实现虚拟局域网标识转换的方法及装置
EP2584742B1 (en) Method and switch for sending packet
WO2015090023A1 (zh) Vlan接入vf网络的实现方法及装置、fcf
WO2022017099A1 (zh) 通信方法、cp设备及nat设备
WO2014124557A1 (zh) 光纤通道中实现节点端口虚拟化的方法,装置和系统
JPWO2019240158A1 (ja) 通信システム及び通信方法
WO2020215455A1 (zh) 一种基于Virtio端口传输数据的方法和系统
WO2014169439A1 (zh) 实现FCoE的方法、装置和系统
WO2023143186A1 (zh) 一种数据传输方法、系统及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872593

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15106307

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014872593

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014872593

Country of ref document: EP