WO2015089832A1 - 影像信号获取方法及影像信号获取装置 - Google Patents

影像信号获取方法及影像信号获取装置 Download PDF

Info

Publication number
WO2015089832A1
WO2015089832A1 PCT/CN2013/090126 CN2013090126W WO2015089832A1 WO 2015089832 A1 WO2015089832 A1 WO 2015089832A1 CN 2013090126 W CN2013090126 W CN 2013090126W WO 2015089832 A1 WO2015089832 A1 WO 2015089832A1
Authority
WO
WIPO (PCT)
Prior art keywords
grayscale
picture
switching
luminance signal
matrix
Prior art date
Application number
PCT/CN2013/090126
Other languages
English (en)
French (fr)
Inventor
陈黎暄
方斌
秦红江
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/131,910 priority Critical patent/US9420256B2/en
Publication of WO2015089832A1 publication Critical patent/WO2015089832A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing

Definitions

  • the present invention relates to the field of signal processing, and in particular, to an image signal acquisition method and an image signal acquisition device.
  • the 3D shutter type liquid crystal display device can greatly satisfy the user's need for viewing 3D movies.
  • the left eye signal and the right eye signal need to be displayed through different frames of the screen, so the screen refresh frequency is high, and when the left eye signal and the right eye signal are switched, the switching interval is short, and crosstalk is likely to occur. (crosstalk) phenomenon.
  • the 3D shutter type liquid crystal display overdrives the switching signal when the left eye signal and the right eye signal are switched (Over) Drive) to shorten the switching interval between the left-eye signal and the right-eye signal to avoid crosstalk.
  • the setting of the luminance signal of the grayscale switching screen of the 3D shutter type liquid crystal display (the crosstalk phenomenon does not occur under the luminance signal) needs to be realized by measuring the luminance signal when the 256*256 group is switched (ie, fixing the left eye)
  • the gray level of the picture, the brightness signal of the right eye picture of the 256 gray levels after switching is measured, then the gray level of the left eye picture is switched, and then the brightness signal of the right eye picture of the switched 256 gray levels is measured until the switch is switched.
  • 256 gray-scale left-eye images or measure the luminance signal at the 64*64 group switching, and then perform linear interpolation on the measurement results.
  • An object of the present invention is to provide an image signal acquisition method and a video signal acquisition device for efficiently acquiring luminance signals of different gray levels of a liquid crystal display, so as to solve the existing image signal acquisition method and the image signal acquisition device for acquiring a liquid crystal display.
  • the efficiency of the luminance signal of different grayscale switching pictures is relatively low.
  • the invention provides a method for acquiring an image signal, which comprises the steps of:
  • nonlinear interpolation operation is an interpolation operation using a cubic spline interpolation function
  • the steps of performing an interpolation operation using a cubic spline interpolation function include:
  • interp2 interpolation function to perform a two-dimensional interpolation operation on the sampled luminance signal matrix by using a cubic spline interpolation algorithm to generate a luminance signal of the two-dimensional full grayscale switching picture
  • the boundary condition of the interpolation operation is set such that the third derivative of the boundary end point is equal to the third derivative of the adjacent point of the boundary end point.
  • the number of samples of the gray level of the picture before the switching is 17, the number of samples of the gray level of the picture after the switching is 17; the matrix of the sampled brightness signal is 17*17 matrix.
  • the number of samples of the gray scale of the picture before the switching is 33
  • the number of samples of the gray level of the switched picture is 33
  • the matrix of the sampled brightness signal is 33*33 matrix.
  • the number of gray levels of the picture before switching of the full grayscale switching picture is 256
  • the number of gray levels of the picture after switching of the full gray level switching picture is 256
  • the luminance signal of the full grayscale switching picture is a 256*256 matrix.
  • the invention also provides a method for acquiring an image signal, comprising the steps of:
  • the nonlinear interpolation operation is an interpolation operation using a cubic spline interpolation function.
  • the step of performing an interpolation operation using a cubic spline interpolation function includes:
  • the interp2 interpolation function is called to perform a two-dimensional interpolation operation on the sampled luminance signal matrix by using a cubic spline interpolation algorithm to generate a luminance signal of the two-dimensional full grayscale switching picture.
  • the boundary condition of the interpolation operation is set such that the third derivative of the boundary end point is equal to the third derivative of the adjacent point of the boundary end point.
  • the number of samples of the gray level of the picture before the switching is 17, the number of samples of the gray level of the picture after the switching is 17; the matrix of the sampled brightness signal is 17*17 matrix.
  • the number of samples of the gray scale of the picture before the switching is 33
  • the number of samples of the gray level of the switched picture is 33
  • the matrix of the sampled brightness signal is 33*33 matrix.
  • the number of gray levels of the picture before switching of the full grayscale switching picture is 256
  • the number of gray levels of the picture after switching of the full gray level switching picture is 256
  • the luminance signal of the full grayscale switching picture is a 256*256 matrix.
  • the invention also provides an image signal acquiring device, comprising:
  • a sampling gray scale brightness measuring module for measuring a brightness signal of a gray scale switching picture of a sampling gray scale
  • a full gray scale brightness acquiring module configured to perform a nonlinear interpolation operation on the measured luminance signal of the gray scale switching picture of the gray scale to obtain a brightness signal of the full gray scale switching picture;
  • the full grayscale luminance acquiring module performs the nonlinear interpolation operation by using a cubic spline interpolation function.
  • the full grayscale brightness acquiring module includes:
  • a matrix construction unit configured to construct a sampling luminance signal according to a gray level of the pre-switching picture of the sampling gray level, a gray level of the switched picture of the grayscale, and a brightness signal of the grayscale switching picture of the sampling gray level Matrix;
  • the full grayscale brightness acquiring unit is configured to call the interp2 interpolation function to perform a two-dimensional interpolation operation on the sampled luminance signal matrix by using a cubic spline interpolation algorithm to generate a luminance signal of the two-dimensional full grayscale switching picture.
  • the boundary condition of the interpolation operation is set such that the third derivative of the boundary end point is equal to the third derivative of the adjacent point of the boundary end point.
  • the number of samples of the gray scale of the screen before the switching is 17, the number of samples of the gray scale of the screen after the switching is 17; the matrix of the sampled luminance signal is 17*17 matrix.
  • the number of samples of the gray scale of the screen before the switching is 33
  • the number of samples of the gray scale of the screen after the switching is 33
  • the matrix of the sampled luminance signal is 33*33 matrix.
  • the grayscale number of the screen before the switching of the full grayscale switching screen is 256
  • the grayscale number of the screen after the switching of the full grayscale switching screen is 256.
  • the luminance signal of the full grayscale switching picture is a 256*256 matrix.
  • the image signal acquisition method and the image signal acquisition device of the present invention perform nonlinear interpolation operation on the luminance signal of the grayscale switching screen of the sampling gray scale to obtain the full gray.
  • the brightness signal of the screen is switched, so that the brightness signals of different gray-scale switching pictures can be efficiently obtained, and the efficiency of the existing image signal acquiring method and the brightness signal of the different gray-scale switching pictures of the liquid crystal display by the image signal acquiring device is solved. Low technical problems.
  • FIG. 1 is a flow chart of a preferred embodiment of a method for acquiring a video signal according to the present invention
  • step S102 of a preferred embodiment of the image signal acquiring method of the present invention
  • FIG. 3 is a schematic structural diagram of a preferred embodiment of an image signal acquiring apparatus according to the present invention.
  • FIG. 4 is a luminance signal of a full grayscale switching picture obtained by using a luminance signal of a grayscale switching picture of different sampling numbers and a luminance signal of a full grayscale switching picture obtained by a method of measuring a luminance signal of 64*64 sets of grayscales Compare the diagrams.
  • the image signal acquiring method and the image signal acquiring device of the present invention can be used in a corresponding 3D shutter type liquid crystal display device.
  • the 3D shutter type liquid crystal display device includes a shutter type liquid crystal display and shutter glasses.
  • the shutter type liquid crystal display includes a backlight, a liquid crystal panel, and a driving circuit for driving the liquid crystal panel for display.
  • the liquid crystal panel alternately generates a left eye picture and a right eye picture using a higher refresh frequency (generally higher than 120 Hz), and the shutter glasses also switch the opening and closing of the left eye piece and the right eye piece at the same refresh frequency. This allows the user to get a better 3D picture experience through the shutter glasses.
  • the image signal acquisition method and the image signal acquisition device of the present invention are used/disposed in the drive circuit of the shutter liquid crystal display for better driving the liquid crystal panel for display, thereby avoiding the occurrence of crosstalk.
  • FIG. 1 is a flowchart of a preferred embodiment of a method for acquiring a video signal according to the present invention.
  • the image signal acquisition method of the preferred embodiment includes:
  • Step S101 measuring a luminance signal of a grayscale switching picture of the sampling gray scale
  • Step S102 performing a nonlinear interpolation operation on the luminance signal of the grayscale switching picture of the measured grayscale to obtain a luminance signal of the full grayscale switching picture;
  • the image signal acquisition method of the preferred embodiment ends in step S102.
  • a luminance signal (ie, an overdrive signal) of the grayscale switching picture of the gray scale is measured, and the grayscale of the sampling includes a grayscale of the pre-switching screen (such as a left-eye image) and a screen after the switching (such as a right-eye image).
  • Gray scale here you can set the number of grayscale samples of the screen before switching to 17, the number of grayscale samples of the screen after switching is 17, which is to set 15 grayscale between the grayscale of the black screen and the grayscale of the all white screen.
  • the intermediate grayscale picture such that the grayscale of the pre-switching picture and the switched picture after sampling are 0 (all black pictures), 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192 , 208, 224, 240, 255 (all white screen).
  • the gray scale of the screen before the switching is set to the 0th gray scale, and then the driving luminance signal of the switched image of the 17 gray scales after the switching is measured; then the gray scale of the screen before the switching is set to the 16th gray.
  • the driving luminance signal of the switched picture of the 17 gray levels after switching is measured until the gray level of the picture before switching is set to the 255th gray level; thereby obtaining the brightness signal of the grayscale switching picture of the sampling gray level.
  • the luminance signals of the grayscale switching pictures of different sampling gray levels obtained do not crosstalk when the screen is switched. Then it proceeds to step S102.
  • step S102 a sampled luminance signal matrix of 17*17 is constructed according to the luminance signal acquired in step S102, and a non-linear interpolation operation is performed on the sampled luminance signal matrix, thereby acquiring the luminance of the full grayscale switching picture of the 256*256 matrix. signal.
  • the interpolation operation is performed using a cubic spline interpolation function.
  • FIG. 2 is a detailed flowchart of step S102 of a preferred embodiment of the image signal acquisition method of the present invention.
  • the sampling cubic spline interpolation function for interpolation operations specifically includes:
  • Step S1021 construct a sampling luminance signal matrix according to a gray level of the pre-switching picture of the grayscale, a gray level of the grayscale switching picture of the grayscale of the sampling grayscale, and a luminance signal of the grayscale switching picture of the grayscale.
  • Step S1022 calling the interp2 interpolation function to perform a two-dimensional interpolation operation on the sampled luminance signal matrix by using a cubic spline interpolation algorithm to generate a luminance signal of the two-dimensional full grayscale switching picture.
  • step S1021 the luminance signals of the grayscale switching pictures of each sampling gray level correspond to the gray level of a pre-switching picture and the gray level of a switched picture. If the number of grayscale samples of the screen before switching and the number of grayscale samples of the screen after switching are both 17, the luminance signals of 17*17 different grayscale switching pictures can be obtained.
  • the gray scale of the screen before switching is used as the row number, and the gray scale of the screen after switching is used as the column number.
  • the luminance signal of the corresponding grayscale switching screen is formed as a data matrix of 17*17 as the sampling luminance signal matrix. Then it proceeds to step S1022.
  • step S1022 the interp2 interpolation function of MATLAB is called to perform a two-dimensional interpolation operation on the sampled luminance signal matrix obtained in step S1021 by using a cubic spline interpolation algorithm, thereby generating a luminance signal of the two-dimensional full grayscale switching picture of the 256*256 matrix.
  • X and Y are the same size
  • Z is a two-dimensional function array composed of a sampled luminance signal matrix.
  • XI and YI are grayscales of the grayscale and full grayscale switches before the switching of the full grayscale, and the grayscale of the screen is an array of independent variables.
  • the method is a boundary adjustment for the two-dimensional interpolation operation, and is generally set to spline.
  • the ZI thus obtained is a two-dimensional function array composed of luminance signals of the full grayscale switching picture, that is, a luminance signal of a two-dimensional full grayscale switching picture of 256*256 matrix is obtained.
  • the number of grayscale samples of the screen before switching can also be set to 33, and the number of grayscale samples of the screen after switching is also set to 33, which will further improve the acquired full grayscale switching.
  • the accuracy of the luminance signal of the picture but it increases the workload of the measurement operation of a part of the luminance signal.
  • the image signal acquisition method of the preferred embodiment performs a nonlinear interpolation operation on the luminance signal of the grayscale switching picture of the gray scale to obtain the luminance signal of the full grayscale switching picture, so that the brightness of the different grayscale switching pictures can be efficiently obtained. signal.
  • FIG. 3 is a schematic structural diagram of a preferred embodiment of the image signal acquisition device of the present invention.
  • the image signal acquiring device 30 of the preferred embodiment includes a sampling gray scale brightness measuring module 31 and an all gray level brightness acquiring module 32.
  • the sampling gray scale brightness measuring module 31 is configured to measure the brightness signal of the gray scale switching picture of the sampling gray level 33;
  • the full gray level brightness acquiring module 32 is configured to perform nonlinearity on the brightness signal of the gray scale switching picture of the measured sampling gray level 33
  • An interpolation operation is performed to obtain a luminance signal 34 of the full grayscale switching picture.
  • the full grayscale luminance obtaining module 32 performs a nonlinear interpolation operation using a cubic spline interpolation function.
  • the full grayscale luminance acquisition module 32 includes a matrix construction unit 321 and an all grayscale luminance acquisition unit 322.
  • the matrix construction unit 321 is configured to construct a sampled luminance signal matrix according to the grayscale of the pre-switching picture of the grayscale 33, the grayscale of the grayscale switching screen of the grayscale 33 of the sampling grayscale 33, and the luminance of the grayscale switching screen of the grayscale 33;
  • the order brightness obtaining unit 322 is configured to call the interp2 interpolation function to perform a two-dimensional interpolation operation on the sampled luminance signal matrix by using a cubic spline interpolation algorithm to generate a luminance signal 34 of the two-dimensional full gray-scale switching picture.
  • the grayscale brightness measuring module 31 first measures the brightness signal of the grayscale switching picture of the sampling gray level 33, and then the full gray level brightness obtaining module 32 is used to sample the gray of the measurement.
  • the luminance signal of the grayscale switching picture of the order 33 is subjected to a nonlinear interpolation operation to obtain the luminance signal 34 of the full grayscale switching picture.
  • the matrix construction unit 321 which is specifically the full gray scale brightness acquisition module 32 , switches the gray scale of the screen before the switching of the gray scale 33 of the sampling gray scale 33, the gray scale of the screen after the gray scale of the sampling gray scale 33, and the gray scale of the sampling gray scale 33.
  • Luminance constructs a sampled luminance signal matrix; then the full grayscale luminance acquisition unit 322 of the full grayscale luminance acquisition module 32 calls the interp2 interpolation function to perform a two-dimensional interpolation operation on the sampled luminance signal matrix using a cubic spline interpolation algorithm to generate a two-dimensional full
  • the grayscale switches the luminance signal 34 of the picture.
  • the number of grayscale samples of the screen before switching can also be set to 33, and the number of grayscale samples of the screen after switching is also set to 33, which further improves the acquisition.
  • the full gray scale switches the accuracy of the luminance signal of the picture, but increases the workload of the measurement operation of a part of the luminance signal.
  • the specific working principle of the video signal acquiring apparatus of the preferred embodiment is the same as or similar to the related description in the first preferred embodiment of the video signal acquiring method.
  • the image signal acquiring apparatus of the preferred embodiment performs a nonlinear interpolation operation on the luminance signal of the grayscale switching picture of the gray scale to obtain the luminance signal of the full grayscale switching picture, so that the switching screen of different gray levels can be efficiently acquired. Brightness signal.
  • FIG. 4 is a full gray scale switching obtained by using a luminance signal obtained by using a grayscale switching screen of different sampling numbers to obtain a luminance signal of a full grayscale switching picture and a method for measuring a luminance signal of 64*64 grayscale signals.
  • the curve of the symbol A is the luminance signal of the full grayscale switching picture obtained by the method of measuring the luminance signal of the 64*64 group gray scale;
  • the curve of the symbol B is the non-luminance signal of the grayscale switching picture with the sampling number of 17
  • the curve of the symbol C is the luminance signal of the full grayscale switching picture obtained by nonlinearly interpolating the luminance signal of the grayscale switching picture with the sampling number of 33;
  • symbol D The curve is a luminance signal of the full grayscale switching picture obtained by performing a nonlinear interpolation operation on the luminance signal of the grayscale switching picture with a sampling number of 9.
  • the abscissa in the figure is the grayscale number of the screen after switching of the full grayscale switching screen (here, the grayscale number of the screen before the default switching is 0 grayscale), and the ordinate in the figure is the luminance signal of the full grayscale switching screen.
  • the curve of the symbol D deviates greatly from the curve of the symbol A, and the curve of the symbol B and the curve of the symbol C can better overlap with the curve of the symbol A.
  • the luminance signal of the full grayscale switching picture obtained by using the image signal acquiring method of the present invention can be substantially consistent with the luminance signal of the full grayscale switching picture obtained by the method of measuring the luminance signal of 64*64 sets of gray levels. Since both the curve of the symbol A and the curve of the symbol C take a long time to perform the measurement operation, the curve of the symbol A takes 16 times of the time taken by the curve of the symbol B, and the time taken by the curve of the symbol C is the symbol. The curve of B takes 4 times the time. Therefore, the image signal acquisition method of the present invention greatly improves the efficiency of acquiring luminance signals of different grayscale switching pictures of the liquid crystal display.
  • the image signal acquisition method and the image signal acquisition device of the present invention perform nonlinear interpolation operation on the luminance signal of the grayscale switching screen of the sampling gray scale to obtain the luminance signal of the full grayscale switching picture, so that different grayscale switching can be efficiently obtained.
  • the brightness signal of the picture solves the technical problem that the existing image signal acquisition method and the image signal acquisition device obtain the brightness signal of different grayscale switching pictures of the liquid crystal display are relatively low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Image Analysis (AREA)

Abstract

 本发明提供一种影像信号获取方法及影像信号获取装置。该影像信号获取方法包括步骤:测量采样灰阶的灰阶切换画面的亮度信号;以及对测量的采样灰阶的灰阶切换画面的亮度信号进行非线性插值操作。本发明还提供一种影像信号获取装置,本发明对采样灰阶的灰阶切换画面的亮度信号进行非线性插值操作,以获取全灰阶切换画面的亮度信号,这样可高效的获取不同灰阶切换画面的亮度信号。

Description

影像信号获取方法及影像信号获取装置 技术领域
本发明涉及信号处理领域,特别是涉及一种影像信号获取方法及影像信号获取装置。
背景技术
随着社会的发展,越来越多的用户使用液晶显示器进行各种社会活动。特别是3D快门式液晶显示设备,可以大大满足用户对于观看3D影片的需要。使用3D快门式液晶显示设备时,需要通过不同帧的画面显示左眼信号以及右眼信号,因此画面刷新频率较高,左眼信号与右眼信号进行切换时,切换间隔较短,容易出现串扰(crosstalk)现象。
为了较好的消除画面串扰现象,3D快门式液晶显示器会对左眼信号与右眼信号进行切换时的切换信号进行过驱动(Over Drive)处理,从而缩短左眼信号和右眼信号的切换间隔,避免串扰现象的产生。
因此3D快门式液晶显示器的不同灰阶切换画面的亮度信号(在该亮度信号下不会产生串扰现象)的设定,需要通过测量256*256组切换时的亮度信号来实现(即固定左眼画面的灰阶,测量切换后的256个灰阶的右眼画面的亮度信号,然后切换左眼画面的灰阶,再测量切换后的256个灰阶的右眼画面的亮度信号,直至切换了256个灰阶的左眼画面),或测量64*64组切换时的亮度信号,然后通过对测量结果进行线性插值来实现。
但是无论是测量256*256组灰阶的亮度信号的方法还是测量64*64组灰阶的亮度信号的方法,均需要进行大量的测量操作或灰阶亮度的运算操作,获取液晶显示器的不同灰阶的亮度信号的效率比较低下。
故,有必要提供一种影像信号获取方法及影像信号获取装置,以解决现有技术所存在的问题。
技术问题
本发明的目的在于提供一种可高效的获取液晶显示器的不同灰阶的亮度信号的影像信号获取方法及影像信号获取装置,以解决现有的影像信号获取方法及影像信号获取装置获取液晶显示器的不同灰阶切换画面的亮度信号的效率比较低下的技术问题。
技术解决方案
本发明提供的技术方案如下:
本发明提供一种影像信号获取方法,其包括步骤:
测量采样灰阶的灰阶切换画面的亮度信号;以及
对测量的所述采样灰阶的灰阶切换画面的亮度信号进行非线性插值操作,以获取全灰阶切换画面的亮度信号;
其中所述非线性插值操作为采用三次样条插值函数进行插值操作;
所述采用三次样条插值函数进行插值操作的步骤包括:
根据所述采样灰阶的切换前画面的灰阶、所述采样灰阶的切换后画面的灰阶以及所述采样灰阶的灰阶切换画面的亮度信号构建采样亮度信号矩阵;以及
调用interp2插值函数采用三次样条插值算法对所述采样亮度信号矩阵进行二维内插值操作,以生成二维全灰阶切换画面的亮度信号;
其中在进行二维内插值操作时,设定所述插值操作的边界条件为边界端点的三阶导数与所述边界端点的邻近点的三阶导数相等。
在本发明所述的影像信号获取方法中,所述切换前画面的灰阶的采样数为17,所述切换后画面的灰阶的采样数为17;所述采样亮度信号矩阵为17*17矩阵。
在本发明所述的影像信号获取方法中,所述切换前画面的灰阶的采样数为33,所述切换后画面的灰阶的采样数为33;所述采样亮度信号矩阵为33*33矩阵。
在本发明所述的影像信号获取方法中,所述全灰阶切换画面的切换前画面的灰阶数为256,所述全灰阶切换画面的切换后画面的灰阶数为256,所述全灰阶切换画面的亮度信号为256*256矩阵。
本发明还提供一种影像信号获取方法,其包括步骤:
测量采样灰阶的灰阶切换画面的亮度信号;以及
对测量的所述采样灰阶的灰阶切换画面的亮度信号进行非线性插值操作,以获取全灰阶切换画面的亮度信号;
其中所述非线性插值操作为采用三次样条插值函数进行插值操作。
在本发明所述的影像信号获取方法中,所述采用三次样条插值函数进行插值操作的步骤包括:
根据所述采样灰阶的切换前画面的灰阶、所述采样灰阶的切换后画面的灰阶以及所述采样灰阶的灰阶切换画面的亮度信号构建采样亮度信号矩阵;以及
调用interp2插值函数采用三次样条插值算法对所述采样亮度信号矩阵进行二维内插值操作,以生成二维全灰阶切换画面的亮度信号。
在本发明所述的影像信号获取方法中,在进行二维内插值操作时,设定所述插值操作的边界条件为边界端点的三阶导数与所述边界端点的邻近点的三阶导数相等。
在本发明所述的影像信号获取方法中,所述切换前画面的灰阶的采样数为17,所述切换后画面的灰阶的采样数为17;所述采样亮度信号矩阵为17*17矩阵。
在本发明所述的影像信号获取方法中,所述切换前画面的灰阶的采样数为33,所述切换后画面的灰阶的采样数为33;所述采样亮度信号矩阵为33*33矩阵。
在本发明所述的影像信号获取方法中,所述全灰阶切换画面的切换前画面的灰阶数为256,所述全灰阶切换画面的切换后画面的灰阶数为256,所述全灰阶切换画面的亮度信号为256*256矩阵。
本发明还提供一种影像信号获取装置,其包括:
采样灰阶亮度测量模块,用于测量采样灰阶的灰阶切换画面的亮度信号;以及
全灰阶亮度获取模块,用于对测量的所述采样灰阶的灰阶切换画面的亮度信号进行非线性插值操作,以获取全灰阶切换画面的亮度信号;
其中所述全灰阶亮度获取模块采用三次样条插值函数进行所述非线性插值操作。
在本发明所述的影像信号获取装置中,所述全灰阶亮度获取模块包括:
矩阵构建单元,用于根据所述采样灰阶的切换前画面的灰阶、所述采样灰阶的切换后画面的灰阶以及所述采样灰阶的灰阶切换画面的亮度信号构建采样亮度信号矩阵;以及
全灰阶亮度获取单元,用于调用interp2插值函数采用三次样条插值算法对所述采样亮度信号矩阵进行二维内插值操作,以生成二维全灰阶切换画面的亮度信号。
在本发明所述的影像信号获取装置中,在进行二维内插值操作时,设定所述插值操作的边界条件为边界端点的三阶导数与所述边界端点的邻近点的三阶导数相等。
在本发明所述的影像信号获取装置中,所述切换前画面的灰阶的采样数为17,所述切换后画面的灰阶的采样数为17;所述采样亮度信号矩阵为17*17矩阵。
在本发明所述的影像信号获取装置中,所述切换前画面的灰阶的采样数为33,所述切换后画面的灰阶的采样数为33;所述采样亮度信号矩阵为33*33矩阵。
在本发明所述的影像信号获取装置中,所述全灰阶切换画面的切换前画面的灰阶数为256,所述全灰阶切换画面的切换后画面的灰阶数为256,所述全灰阶切换画面的亮度信号为256*256矩阵。
有益效果
相较于现有的影像信号获取方法及影像信号获取装置,本发明的影像信号获取方法及影像信号获取装置对采样灰阶的灰阶切换画面的亮度信号进行非线性插值操作,以获取全灰阶切换画面的亮度信号,这样可高效的获取不同灰阶切换画面的亮度信号,解决了现有的影像信号获取方法及影像信号获取装置获取液晶显示器的不同灰阶切换画面的亮度信号的效率比较低下的技术问题。
附图说明
图1为本发明的影像信号获取方法的优选实施例的流程图;
图2为本发明的影像信号获取方法的优选实施例的步骤S102的详细流程图;
图3为本发明的影像信号获取装置的优选实施例的结构示意图;
图4为使用不同采样数的灰阶切换画面的亮度信号获取的全灰阶切换画面的亮度信号与采用测量64*64组灰阶的亮度信号的方法获取的全灰阶切换画面的亮度信号的比较示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
在图中,结构相似的单元是以相同标号表示。
本发明的影像信号获取方法及影像信号获取装置可使用在相应的3D快门式液晶显示设备中。该3D快门式液晶显示设备包括快门式液晶显示器以及快门式眼镜。其中快门式液晶显示器包括背光源、液晶面板以及驱动液晶面板进行显示的驱动电路。该液晶面板使用较高的刷新频率(一般高于120Hz)交替生成左眼画面以及右眼画面,同时快门式眼镜也以相同的刷新频率切换左眼镜片以及右眼镜片的开启以及关闭。这样用户可通过快门式眼镜获得较好的3D画面体验。本发明的影像信号获取方法及影像信号获取装置使用/设置在该快门式液晶显示器的驱动电路中,用于更好的驱动液晶面板进行显示,避免串扰现象的产生。
请参照图1,图1为本发明的影像信号获取方法的优选实施例的流程图。本优选实施例的影像信号获取方法包括:
步骤S101,测量采样灰阶的灰阶切换画面的亮度信号;
步骤S102,对测量的采样灰阶的灰阶切换画面的亮度信号进行非线性插值操作,以获取全灰阶切换画面的亮度信号;
本优选实施例的影像信号获取方法结束于步骤S102。
下面详细说明本优选实施例的影像信号获取方法的各步骤的具体流程。
在步骤S101中,测量采样灰阶的灰阶切换画面的亮度信号(即过驱动信号),该采样灰阶包括切换前画面(如左眼画面)的灰阶以及切换后画面(如右眼画面)的灰阶,这里可以设置切换前画面的灰阶采样数为17,切换后画面的灰阶采样数为17,即将全黑画面的灰阶和全白画面的灰阶之间均匀设置15档中间灰阶画面,这样采样的切换前画面和切换后画面的灰阶均为0(全黑画面)、16、32、48、64、80、96、112、128、144、160、176、192、208、224、240、255(全白画面)。具体为将切换前画面的灰阶设定为第0灰阶,然后测量切换后的上述17个灰阶的切换后画面的驱动亮度信号;然后将切换前画面的灰阶设定为第16灰阶,然后测量切换后的17个灰阶的切换后画面的驱动亮度信号,直至切换前画面的灰阶设定为第255灰阶;从而获取采样灰阶的灰阶切换画面的亮度信号。其中获取的不同采样灰阶的灰阶切换画面的亮度信号在画面切换时均不会发生串扰现象。随后转到步骤S102。
在步骤S102中,根据步骤S102中获取的亮度信号构建17*17的采样亮度信号矩阵,并对该采样亮度信号矩阵进行非线性插值操作,从而获取256*256矩阵的全灰阶切换画面的亮度信号。在本优选实施例中,采用三次样条插值函数进行插值操作。
请参照图2,图2为本发明的影像信号获取方法的优选实施例的步骤S102的详细流程图。采样三次样条插值函数进行插值操作具体包括:
步骤S1021,根据采样灰阶的切换前画面的灰阶、采样灰阶的切换后画面的灰阶以及采样灰阶的灰阶切换画面的亮度信号构建采样亮度信号矩阵;
步骤S1022,调用interp2插值函数采用三次样条插值算法对采样亮度信号矩阵进行二维内插值操作,以生成二维全灰阶切换画面的亮度信号。
在步骤S1021中,每个采样灰阶的灰阶切换画面的亮度信号均对应一切换前画面的灰阶和一切换后画面的灰阶。如切换前画面的灰阶采样数和切换后画面的灰阶采样数均为17,则可以得到17*17个不同的灰阶切换画面的亮度信号。这里以切换前画面的灰阶作为行序号,切换后画面的灰阶作为列序号,相应的灰阶切换画面的亮度信号作为数据构成以17*17的矩阵,作为采样亮度信号矩阵。随后来到步骤S1022。
在步骤S1022中,调用MATLAB的interp2插值函数采用三次样条插值算法对步骤S1021获取的采样亮度信号矩阵进行二维内插值操作,从而生成256*256矩阵的二维全灰阶切换画面的亮度信号。
其中interp2插值函数具体为ZI=interp2(X,Y,Z,XI,YI,method),其中X和Y为由采样灰阶的切换前画面的灰阶和采样灰阶的切换后画面的灰阶作为自变量构成的数组,X与Y尺寸相同,Z为由采样亮度信号矩阵构成的2维函数数组。XI和YI为全灰阶的切换前画面的灰阶和全灰阶的切换后画面的灰阶作为自变量构成的数组,method为进行二维内插值操作的边界调节,一般设定为spline,即边界端点的三阶导数与边界端点的邻近点的三阶倒数相等。这样得到的ZI即为由全灰阶切换画面的亮度信号构成的2维函数数组,即得到了256*256矩阵的二维全灰阶切换画面的亮度信号。
这样即完成了本优选实施例的影像信号获取方法的信号获取过程。
在本优选实施例的影像信号获取方法中,也可将切换前画面的灰阶采样数设置为33,切换后画面的灰阶采样数也设置为33,这样将进一步提高获取的全灰阶切换画面的亮度信号的精度,但是会增加一部分亮度信号的测量操作的工作量。
本优选实施例的影像信号获取方法对采样灰阶的灰阶切换画面的亮度信号进行非线性插值操作,以获取全灰阶切换画面的亮度信号,这样可高效的获取不同灰阶切换画面的亮度信号。
本发明还提供一种影像信号获取装置,请参照图3,图3为本发明的影像信号获取装置的优选实施例的结构示意图。本优选实施例的影像信号获取装置30包括采样灰阶亮度测量模块31以及全灰阶亮度获取模块32。采样灰阶亮度测量模块31用于测量采样灰阶33的灰阶切换画面的亮度信号;全灰阶亮度获取模块32用于对测量的采样灰阶33的灰阶切换画面的亮度信号进行非线性插值操作,以获取全灰阶切换画面的亮度信号34。其中全灰阶亮度获取模块32采用三次样条插值函数进行非线性插值操作。
全灰阶亮度获取模块32包括矩阵构建单元321以及全灰阶亮度获取单元322。矩阵构建单元321用于根据采样灰阶33的切换前画面的灰阶、采样灰阶33的切换后画面的灰阶以及采样灰阶33的灰阶切换画面的亮度构建采样亮度信号矩阵;全灰阶亮度获取单元322用于调用interp2插值函数采用三次样条插值算法对采样亮度信号矩阵进行二维内插值操作,以生成二维全灰阶切换画面的亮度信号34。
本优选实施例的影像信号获取装置30使用时,首先采样灰阶亮度测量模块31测量采样灰阶33的灰阶切换画面的亮度信号,随后全灰阶亮度获取模块32用于对测量的采样灰阶33的灰阶切换画面的亮度信号进行非线性插值操作,以获取全灰阶切换画面的亮度信号34。其中具体为全灰阶亮度获取模块32的矩阵构建单元321根据采样灰阶33的切换前画面的灰阶、采样灰阶33的切换后画面的灰阶以及采样灰阶33的灰阶切换画面的亮度构建采样亮度信号矩阵;然后全灰阶亮度获取模块32的全灰阶亮度获取单元322调用interp2插值函数采用三次样条插值算法对采样亮度信号矩阵进行二维内插值操作,以生成二维全灰阶切换画面的亮度信号34。
这样即完成了本优选实施例的影像信号获取装置30的信号获取过程。
在本优选实施例的影像信号获取装置30的信号获取过程中,也可将切换前画面的灰阶采样数设置为33,切换后画面的灰阶采样数也设置为33,这样将进一步提高获取的全灰阶切换画面的亮度信号的精度,但是会增加一部分亮度信号的测量操作的工作量。
本优选实施例的影像信号获取装置的具体工作原理与上述的影像信号获取方法的第一优选实施例中的相关描述相同或相似,具体请参见上述影像信号获取方法的第一优选实施例中的相关描述。
本优选实施例的影像信号获取装置对采样灰阶的灰阶切换画面的亮度信号进行非线性插值操作,以获取全灰阶切换画面的亮度信号,这样可高效的获取不同灰阶的切换画面的亮度信号。
请参照图4,图4为使用不同采样数的灰阶切换画面的亮度信号获取的全灰阶切换画面的亮度信号与采用测量64*64组灰阶的亮度信号的方法获取的全灰阶切换画面的亮度信号的比较示意图。
其中符号A的曲线为采用测量64*64组灰阶的亮度信号的方法获取的全灰阶切换画面的亮度信号;符号B的曲线为对采样数为17的灰阶切换画面的亮度信号进行非线性插值操作获取的全灰阶切换画面的亮度信号;符号C的曲线为对采样数为33的灰阶切换画面的亮度信号进行非线性插值操作获取的全灰阶切换画面的亮度信号;符号D的曲线为对采样数为9的灰阶切换画面的亮度信号进行非线性插值操作获取的全灰阶切换画面的亮度信号。图中的横坐标为全灰阶切换画面的切换后画面的灰阶数(这里默认切换前画面的灰阶数为0灰阶),图中的纵坐标为全灰阶切换画面的亮度信号。
从图中可以看出,符号D的曲线与符号A的曲线偏离较大,而符号B的曲线和符号C的曲线可以较好的与符号A的曲线重叠。采用本发明的影像信号获取方法获取的全灰阶切换画面的亮度信号可与采用测量64*64组灰阶的亮度信号的方法获取的全灰阶切换画面的亮度信号基本一致。由于符号A的曲线和符号C的曲线均需要耗费较长的时间进行测量操作,其中符号A的曲线耗费的时间为符号B的曲线耗费的时间的16倍,符号C的曲线耗费的时间为符号B的曲线耗费的时间的4倍。因此本发明的影像信号获取方法大大提升了获取液晶显示器的不同灰阶切换画面的亮度信号的效率。
本发明的影像信号获取方法及影像信号获取装置对采样灰阶的灰阶切换画面的亮度信号进行非线性插值操作,以获取全灰阶切换画面的亮度信号,这样可高效的获取不同灰阶切换画面的亮度信号,解决了现有的影像信号获取方法及影像信号获取装置获取液晶显示器的不同灰阶切换画面的亮度信号的效率比较低下的技术问题
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。
本发明的实施方式
工业实用性
序列表自由内容

Claims (16)

  1. 一种影像信号获取方法,其包括步骤:
    测量采样灰阶的灰阶切换画面的亮度信号;以及
    对测量的所述采样灰阶的灰阶切换画面的亮度信号进行非线性插值操作,以获取全灰阶切换画面的亮度信号;
    其中所述非线性插值操作为采用三次样条插值函数进行插值操作;
    所述采用三次样条插值函数进行插值操作的步骤包括:
    根据所述采样灰阶的切换前画面的灰阶、所述采样灰阶的切换后画面的灰阶以及所述采样灰阶的灰阶切换画面的亮度信号构建采样亮度信号矩阵;以及
    调用interp2插值函数采用三次样条插值算法对所述采样亮度信号矩阵进行二维内插值操作,以生成二维全灰阶切换画面的亮度信号;
    其中在进行二维内插值操作时,设定所述插值操作的边界条件为边界端点的三阶导数与所述边界端点的邻近点的三阶导数相等。
  2. 根据权利要求1所述的影像信号获取方法,其中所述切换前画面的灰阶的采样数为17,所述切换后画面的灰阶的采样数为17;所述采样亮度信号矩阵为17*17矩阵。
  3. 根据权利要求1所述的影像信号获取方法,其中所述切换前画面的灰阶的采样数为33,所述切换后画面的灰阶的采样数为33;所述采样亮度信号矩阵为33*33矩阵。
  4. 根据权利要求1所述的影像信号获取方法,其中所述全灰阶切换画面的切换前画面的灰阶数为256,所述全灰阶切换画面的切换后画面的灰阶数为256,所述全灰阶切换画面的亮度信号为256*256矩阵。
  5. 一种影像信号获取方法,其包括步骤:
    测量采样灰阶的灰阶切换画面的亮度信号;以及
    对测量的所述采样灰阶的灰阶切换画面的亮度信号进行非线性插值操作,以获取全灰阶切换画面的亮度信号;
    其中所述非线性插值操作为采用三次样条插值函数进行插值操作。
  6. 根据权利要求5所述的影像信号获取方法,其中所述采用三次样条插值函数进行插值操作的步骤包括:
    根据所述采样灰阶的切换前画面的灰阶、所述采样灰阶的切换后画面的灰阶以及所述采样灰阶的灰阶切换画面的亮度信号构建采样亮度信号矩阵;以及
    调用interp2插值函数采用三次样条插值算法对所述采样亮度信号矩阵进行二维内插值操作,以生成二维全灰阶切换画面的亮度信号。
  7. 根据权利要求6所述的影像信号获取方法,其中在进行二维内插值操作时,设定所述插值操作的边界条件为边界端点的三阶导数与所述边界端点的邻近点的三阶导数相等。
  8. 根据权利要求6所述的影像信号获取方法,其中所述切换前画面的灰阶的采样数为17,所述切换后画面的灰阶的采样数为17;所述采样亮度信号矩阵为17*17矩阵。
  9. 根据权利要求6所述的影像信号获取方法,其中所述切换前画面的灰阶的采样数为33,所述切换后画面的灰阶的采样数为33;所述采样亮度信号矩阵为33*33矩阵。
  10. 根据权利要求6所述的影像信号获取方法,其中所述全灰阶切换画面的切换前画面的灰阶数为256,所述全灰阶切换画面的切换后画面的灰阶数为256,所述全灰阶切换画面的亮度信号为256*256矩阵。
  11. 一种影像信号获取装置,其包括:
    采样灰阶亮度测量模块,用于测量采样灰阶的灰阶切换画面的亮度信号;以及
    全灰阶亮度获取模块,用于对测量的所述采样灰阶的灰阶切换画面的亮度信号进行非线性插值操作,以获取全灰阶切换画面的亮度信号;
    其中所述全灰阶亮度获取模块采用三次样条插值函数进行所述非线性插值操作。
  12. 根据权利要求11所述的影像信号获取装置,其中所述全灰阶亮度获取模块包括:
    矩阵构建单元,用于根据所述采样灰阶的切换前画面的灰阶、所述采样灰阶的切换后画面的灰阶以及所述采样灰阶的灰阶切换画面的亮度信号构建采样亮度信号矩阵;以及
    全灰阶亮度获取单元,用于调用interp2插值函数采用三次样条插值算法对所述采样亮度信号矩阵进行二维内插值操作,以生成二维全灰阶切换画面的亮度信号。
  13. 根据权利要求12所述的影像信号获取装置,其中在进行二维内插值操作时,设定所述插值操作的边界条件为边界端点的三阶导数与所述边界端点的邻近点的三阶导数相等。
  14. 根据权利要求12所述的影像信号获取装置,其中所述切换前画面的灰阶的采样数为17,所述切换后画面的灰阶的采样数为17;所述采样亮度信号矩阵为17*17矩阵。
  15. 根据权利要求12所述的影像信号获取装置,其中所述切换前画面的灰阶的采样数为33,所述切换后画面的灰阶的采样数为33;所述采样亮度信号矩阵为33*33矩阵。
  16. 根据权利要求12所述的影像信号获取装置,其中所述全灰阶切换画面的切换前画面的灰阶数为256,所述全灰阶切换画面的切换后画面的灰阶数为256,所述全灰阶切换画面的亮度信号为256*256矩阵。
PCT/CN2013/090126 2013-12-17 2013-12-20 影像信号获取方法及影像信号获取装置 WO2015089832A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/131,910 US9420256B2 (en) 2013-12-17 2013-12-20 Image signal acquisition method and image signal acquisition device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310693793.5 2013-12-17
CN201310693793.5A CN103685864B (zh) 2013-12-17 2013-12-17 影像信号获取方法及影像信号获取装置

Publications (1)

Publication Number Publication Date
WO2015089832A1 true WO2015089832A1 (zh) 2015-06-25

Family

ID=50322051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090126 WO2015089832A1 (zh) 2013-12-17 2013-12-20 影像信号获取方法及影像信号获取装置

Country Status (2)

Country Link
CN (1) CN103685864B (zh)
WO (1) WO2015089832A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109632735A (zh) * 2018-12-11 2019-04-16 北京世纪桑尼科技有限公司 光学超分辨显微成像系统及成像方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103685864B (zh) * 2013-12-17 2017-02-08 深圳市华星光电技术有限公司 影像信号获取方法及影像信号获取装置
CN107193785A (zh) * 2017-03-03 2017-09-22 广州致远电子股份有限公司 一种基于三次样条插值的波形拟合方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1696771A (zh) * 2004-05-14 2005-11-16 三星电子株式会社 产生用于图像信号修正的基准数据的装置及方法
CN103151015A (zh) * 2013-03-12 2013-06-12 京东方科技集团股份有限公司 过驱动方法、电路、显示面板和显示装置
CN103165096A (zh) * 2013-04-08 2013-06-19 深圳市华星光电技术有限公司 一种液晶面板的驱动方法、驱动电路和液晶显示装置
CN103685864A (zh) * 2013-12-17 2014-03-26 深圳市华星光电技术有限公司 影像信号获取方法及影像信号获取装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100504518C (zh) * 2005-03-03 2009-06-24 奇美电子股份有限公司 过驱动装置及其方法
CN101290684B (zh) * 2007-04-19 2012-07-18 深圳迈瑞生物医疗电子股份有限公司 三维超声图像的快速体绘制方法与装置
CN101425267B (zh) * 2007-10-29 2011-10-26 中华映管股份有限公司 影像调整方法
CN101359458A (zh) * 2008-09-12 2009-02-04 上海广电光电子有限公司 液晶显示器的过驱动方法
JP5305105B2 (ja) * 2009-11-11 2013-10-02 ソニー株式会社 表示装置およびその駆動方法ならびに電子機器
KR101289654B1 (ko) * 2010-05-07 2013-07-25 엘지디스플레이 주식회사 영상표시장치 및 그 구동방법
CN102663983B (zh) * 2012-05-14 2014-12-24 青岛海信电器股份有限公司 3d过电压确定方法、液晶显示器驱动方法、系统、电视机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1696771A (zh) * 2004-05-14 2005-11-16 三星电子株式会社 产生用于图像信号修正的基准数据的装置及方法
CN103151015A (zh) * 2013-03-12 2013-06-12 京东方科技集团股份有限公司 过驱动方法、电路、显示面板和显示装置
CN103165096A (zh) * 2013-04-08 2013-06-19 深圳市华星光电技术有限公司 一种液晶面板的驱动方法、驱动电路和液晶显示装置
CN103685864A (zh) * 2013-12-17 2014-03-26 深圳市华星光电技术有限公司 影像信号获取方法及影像信号获取装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109632735A (zh) * 2018-12-11 2019-04-16 北京世纪桑尼科技有限公司 光学超分辨显微成像系统及成像方法
CN109632735B (zh) * 2018-12-11 2023-12-12 北京世纪桑尼科技有限公司 光学超分辨显微成像系统及成像方法

Also Published As

Publication number Publication date
CN103685864B (zh) 2017-02-08
CN103685864A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
CN101930714B (zh) 液晶显示器
WO2018084516A1 (ko) 전지 장치, 디스플레이 장치 및 그의 제어 방법
WO2020052008A1 (zh) 显示面板的驱动方法、装置以及显示设备
TWI416499B (zh) 平面顯示裝置的影像顯示方法
KR101560413B1 (ko) 액정표시장치
WO2014023050A1 (zh) 液晶显示面板及显示装置
CN108039155B (zh) 获取液晶显示器的过驱动查找表的方法
WO2016173006A1 (zh) 一种液晶面板及其驱动方法
WO2012145948A1 (zh) 一种像素结构以及其驱动方法
WO2015089832A1 (zh) 影像信号获取方法及影像信号获取装置
WO2015096199A1 (zh) 切换显示二维和三维影像的液晶显示器
WO2018176561A1 (zh) 一种液晶面板驱动电路及液晶显示装置
CN104849929B (zh) 液晶显示面板及液晶显示装置
WO2021107291A1 (en) Electronic apparatus and control method thereof
WO2018014411A1 (zh) 显示亮度调整方法
WO2017131409A2 (en) Display apparatus and driving method thereof
WO2017004859A1 (zh) 3d显示装置
WO2015154328A1 (zh) 像素结构及液晶显示装置
WO2015131409A1 (zh) 液晶显示面板及液晶显示装置
WO2019042405A1 (zh) 显示面板及其驱动方法、显示装置
WO2018209755A1 (zh) 显示面板及显示装置
WO2013056473A1 (zh) 用于液晶显示器过驱动控制的系统
WO2017020333A1 (zh) 一种液晶显示器及其控制方法
WO2015100745A1 (zh) 改善显示3d影像发生闪烁的液晶显示器
WO2015196510A1 (zh) 显示面板及其显示图像的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14131910

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899500

Country of ref document: EP

Kind code of ref document: A1