WO2015088055A1 - Bio-sensor using single electron transistor operating at room temperature, method for manufacturing same, analysis system having same, and analysis method - Google Patents

Bio-sensor using single electron transistor operating at room temperature, method for manufacturing same, analysis system having same, and analysis method Download PDF

Info

Publication number
WO2015088055A1
WO2015088055A1 PCT/KR2013/011354 KR2013011354W WO2015088055A1 WO 2015088055 A1 WO2015088055 A1 WO 2015088055A1 KR 2013011354 W KR2013011354 W KR 2013011354W WO 2015088055 A1 WO2015088055 A1 WO 2015088055A1
Authority
WO
WIPO (PCT)
Prior art keywords
biosensor
layer
metal oxide
aqueous solution
target molecule
Prior art date
Application number
PCT/KR2013/011354
Other languages
French (fr)
Korean (ko)
Inventor
최중범
강호종
현병관
Original Assignee
나노칩스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나노칩스(주) filed Critical 나노칩스(주)
Priority to PCT/KR2013/011354 priority Critical patent/WO2015088055A1/en
Publication of WO2015088055A1 publication Critical patent/WO2015088055A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4146Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires

Definitions

  • the present invention relates to a biosensor using a room temperature operating single-electron transistor, a method for manufacturing the biosensor, an analysis system having the biosensor, and an analysis method. More specifically, a T-shaped gate is formed on the quantum dot coulomb channel between the source and the drain of the room temperature operating single-electron transistor to float, and a metal oxide detection layer is formed on the gate.
  • hydrogen ions (H +) that can be generated by chemical bonding reactions of target molecules to be detected in an aqueous solution of ions, including a structure of forming an oxide sensing layer and contacting its surface with an aqueous ionic solution.
  • the T-type floating gate induces a change in the electrostatic potential of the quantum dot coulomb channel, causing a change in the current between the source and the drain, and detecting the current change to target molecules in the ion solution.
  • the present invention relates to a biosensor capable of analyzing the identity of and a method of analyzing the same.
  • the quantum dot single-electron transistor (SET) device technology applied to the present invention can change the distribution of the minute charges generated by the chemical bond reaction between the biomolecules-molecules at a level of 10E-4e / ⁇ Hz (one full charge per electron). Ultra-sensitivity sensing is possible to replace the existing FET biosensor.
  • SET quantum dot single-electron transistor
  • Conventional bio-sensing method that can be replaced by the present invention, as in the conventional FET type biosensor, by fixing the recognition material on the gate of the FET to measure the change in the electrical signal generated when the recognition material and the target molecules are combined It is in a form to say.
  • enzyme FETs immobilized on gates Immuno FETs using antigen-antibody reactions, and ion-sensitive FETs (IS FETs), which are used as actual pH sensors, and similar nanowire FETs. Is possible.
  • the present invention has been made to solve the above problems, according to an embodiment of the present invention, the 10E-4e / ⁇ Hz (10,000 electron charge per million) level of the room temperature operating single-electron transistor technology
  • the 10E-4e / ⁇ Hz (10,000 electron charge per million) level of the room temperature operating single-electron transistor technology To detect and analyze the identity of target molecules using ultra-sensitivity sensing characteristics related to the change in the distribution of fine charges in the nanowires, it overcomes the serious noise problem that occurs when detecting very small amount of target molecules in the aqueous solution.
  • the purpose is to provide a biosensor and analysis method that can solve the difficulties of the FET method, including.
  • a first object of the present invention is a biosensor comprising: a single electron transistor having a source and a drain provided on a substrate, a quantum dot coulomb channel provided between the source and drain, and a gate provided on an upper side of the quantum dot coulomb channel; A metal oxide detection layer provided on an upper side of the gate and capable of chemically bonding to a target molecule; And an ion aqueous solution container in which an ion aqueous solution having a target molecule is stored therein and provided in an upper side of the metal oxide detecting layer so that the ion aqueous solution contacts the metal oxide detecting layer. It can be achieved as a biosensor used.
  • a second object of the present invention is a biosensor, comprising: a plurality of sources provided on a substrate, each of the plurality of drains provided on the substrate at a position spaced apart from the source, at a position opposite to the source and the source; A gate provided on an upper side of the plurality of quantum dot coulomb channels provided between each of the provided drains; A metal oxide detection layer provided on an upper side of the gate and capable of chemically bonding to a target molecule; And an ion aqueous solution container in which an ion aqueous solution having a target molecule is stored therein and provided in an upper side of the metal oxide detecting layer so that the ion aqueous solution contacts the metal oxide detecting layer. It can be achieved as a biosensor used.
  • a source oxide film layer having a source and a quantum dot coulomb channel and a drain connected to each other and disposed between the substrate, the source and the drain; And a first dielectric layer stacked on an upper side of the source, the quantum dot coulomb channel and the drain, and formed with a trench; And a second dielectric layer deposited over the first dielectric layer and the quantum dot coulomb channel, and the gate may be provided in a trench in which the second dielectric layer is deposited as a T-shaped floating gate.
  • a source, a quantum dot coulomb channel, and a drain are connected to each other to form a plurality of nanowire structures, and a buried oxide layer disposed between the substrate, the plurality of sources, and the plurality of drains; And a first dielectric layer stacked on an upper side of the plurality of nanowire structures and having trenches formed therein. And a second dielectric layer deposited over the first dielectric layer and the plurality of quantum dot coulomb channels, and the gate may be provided in a trench in which the second dielectric layer is deposited as a T-shaped floating gate.
  • the metal oxide detection layer may be composed of a tantalum oxide film, an aluminum oxide film, a silicon oxide film, or a silicon nitride film.
  • the upper surface of the metal oxide detection layer may be characterized by including a chemically treated surface layer for immobilizing a specific antibody reacting with the specific antigen.
  • a third object of the present invention is a method of manufacturing a room temperature operating single-electron transistor having a substrate on which at least one buried oxide layer and an upper silicon layer are stacked, the first step of forming a nanowire structure by etching the upper silicon layer.
  • a fourth step of forming a second dielectric layer thereon Forming a gate in the trench; Depositing a metal oxide detection layer capable of chemically bonding to a target molecule on the gate; And a seventh step of storing an ion aqueous solution having a target molecule therein, and forming an ion aqueous container on the upper side of the metal oxide detection layer such that the ion aqueous solution contacts the metal oxide detection layer. It can be achieved as a method of manufacturing a biosensor using an electronic transistor.
  • a fourth object of the present invention is a method of manufacturing a biosensor using a single-electron transistor in a room temperature operation having a substrate on which at least one buried oxide layer and an upper silicon layer are stacked, wherein a plurality of nanowire structures are formed by etching the upper silicon layer.
  • Forming a first step Forming a first dielectric layer on top of the substrate and the plurality of nanowire structures; Etching the first dielectric layer to form a trench and a plurality of quantum dot coulomb channels; A fourth step of forming a second dielectric layer thereon; Forming a gate in the trench; Depositing a metal oxide detection layer capable of chemically bonding to a target molecule on the gate; And a seventh step of storing an ion aqueous solution having a target molecule therein, and forming an ion aqueous container on the upper side of the metal oxide detection layer such that the ion aqueous solution contacts the metal oxide detection layer. It can be achieved as a method of manufacturing a biosensor using an electronic transistor.
  • the method may further include forming a chemically treated surface layer for immobilizing the upper surface of the metal oxide detection layer with a specific antibody reacting with the specific antigen.
  • the seventh step may include depositing an dielectric layer on top of the metal oxide detection layer; Etching the insulating film layer into a container shape until the top surface of the metal oxide detection layer is exposed; And it may be characterized in that it comprises the step of introducing an ion solution containing a target molecule therein.
  • the first dielectric layer may be formed to have a thickness of 10 nm to 1000 nm through a deposition process
  • the second dielectric layer may be formed by a deposition process after a thermal oxidation process or a thermal oxidation process.
  • the width of the nanowire structure formed by etching the upper silicon layer in the first step may be 1 to 50 nm, and the length may be 0.1 to 10 ⁇ m.
  • the trench may be formed to have a width of 1 to 100 nm by etching, and a portion of the thickness of the upper silicon layer may be etched to form a thickness of the quantum dot of 1 to 50 nm.
  • a fifth object of the present invention is a target molecule analysis system having a biosensor, comprising: a biosensor according to the aforementioned first object; A voltage applying unit having a reference electrode serving as a gate voltage by applying a specific voltage to the ion aqueous solution stored in the ion aqueous solution container of the biosensor; Measuring means for measuring a current flowing between the source and the drain of the biosensor; And analytical means for analyzing the target molecule by measuring a change in current caused by a chemical bond between the target molecule included in the ion aqueous solution and the metal oxide detection layer of the biosensor, based on the data measured by the measurement means. It can be achieved as a target molecule analysis system having a biosensor.
  • a sixth object of the present invention is a target molecule analysis system having a biosensor, comprising: a biosensor according to the aforementioned second object; A voltage applying unit having a reference electrode serving as a gate voltage by applying a specific voltage to the ion aqueous solution stored in the ion aqueous solution container of the biosensor; Measuring means for measuring each of the currents flowing between the plurality of sources provided in the biosensor and the plurality of drains provided at positions opposite to the sources; And analytical means for analyzing the target molecule by measuring a change in current caused by a chemical bond between the target molecule included in the ion aqueous solution and the metal oxide detection layer of the biosensor, based on the data measured by the measurement means. It can be achieved as a target molecule analysis system having a biosensor.
  • a seventh object of the present invention is a target molecule analysis method using the analysis system according to the above-mentioned fifth or sixth object, the method comprising: applying a voltage to the ion aqueous solution by a voltage applying unit; Generating a chemical bond of the target molecule contained in the ion aqueous solution; The charges generated by the chemical bonding are adsorbed on the surface of the metal oxide detection layer; Changing the electrostatic potential of the gate of the biosensor by the amount of charge adsorbed on the surface of the metal oxide detection layer; Inducing a change in the electrostatic potential of the quantum dot coulomb channel of the biosensor to generate a current change between the source and the drain; And analyzing the target molecule by detecting a change in current based on the current value between the source and the drain measured by the measuring means by the analyzing means.
  • the target molecule is a specific antigen
  • the upper surface of the metal oxide detection layer includes a chemically treated surface layer for immobilizing a specific antibody that reacts with the specific antigen
  • the step of adsorbing on the surface of the detection layer is that the specific antigen is applied to the chemically treated surface layer and the antigen. It may be characterized by the step of antibody reaction.
  • the amount of charge may be characterized as being a certain amount of positive or negative charge, including H + .
  • the ultra-sensitivity sensing characteristic related to the distribution change of the minute charge amount of 10E-4e / ⁇ Hz (one million charge amount per electron) of the room temperature operation SET technology is used. This is to detect and analyze the identity of the target molecule, and it has the effect of solving the difficulty of the FET method including the nanowire by overcoming the serious noise problem that occurs when detecting the small amount of the target molecule in the test aqueous solution. .
  • FIG. 1 is a perspective view of a biosensor using a room temperature operating single-electron transistor according to a first embodiment of the present invention
  • FIG. 2 is a flow chart of a biosensor manufacturing method using a room temperature operating single-electron transistor according to a first embodiment of the present invention
  • FIG. 3 is a perspective view showing an example of a substrate according to the first embodiment of the present invention.
  • FIG. 4 is a perspective view showing a state in which the nanowire structure is formed according to the first embodiment of the present invention
  • FIG. 5 is a perspective view illustrating a state in which a first dielectric layer is formed according to a first embodiment of the present invention
  • FIG. 6 is a perspective view showing a state in which a trench is formed in the first dielectric layer according to the first embodiment of the present invention.
  • FIG. 7 is a perspective view illustrating a state in which a quantum dot is formed according to a first embodiment of the present invention
  • FIG. 8 is a perspective view illustrating a state in which a second dielectric layer is formed according to the first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view taken along line A-A of FIG. 8;
  • FIG. 10 is a perspective view showing an example in which a gate is formed according to a first embodiment of the present invention.
  • FIG. 11 is a perspective view illustrating another example in which a sidewall spacer is formed by etching a planar layer of a second dielectric layer formed by a deposition process according to a first embodiment of the present invention
  • FIG. 12 is a perspective view showing a state in which a source and a drain are formed by doping impurities according to the first embodiment of the present invention
  • FIG. 13 is a perspective view of a metal oxide detection layer formed on top according to a first embodiment of the present invention.
  • FIG. 14 is a perspective view of an insulating film layer formed on top according to a first embodiment of the present invention.
  • FIG. 15 is a perspective view of a biosensor using a single-temperature transistor operating at room temperature according to a first embodiment of the present invention
  • 16 is a cross-sectional view taken along line B-B of FIG. 15;
  • FIG. 17 is a perspective view of a biosensor using a room temperature operating single-electron transistor according to a second embodiment of the present invention.
  • FIG. 18 is a plan view of a biosensor using a room temperature operating single-electron transistor according to a second embodiment of the present invention.
  • FIG. 19 is a cross-sectional view schematically showing the configuration of a target molecule analysis system having a biosensor according to an embodiment of the present invention.
  • FIG. 20 is a flowchart of an analysis method using a target molecule analysis system having a biosensor according to an embodiment of the present invention.
  • Fig. 21 shows the gate voltage (V g ) applied by the voltage applying section before (indicated by the solid line) and after (indicated by the dashed line) the injection / chemical coupling of the target molecules contained in the ion aqueous solution and the current values measured by the measuring means.
  • V g gate voltage
  • I ds Characteristic curve
  • the graph shows the change in the amount of charges generated by chemical bonding after injection of the target molecule, or the Coulomb vibration current generated by chemical bonding of the target molecule to the metal oxide detection layer. Show the shift.
  • Figure 1 shows a perspective view of a biosensor using a room temperature operating single-electron transistor according to a first embodiment of the present invention.
  • a biosensor using a single-electron transistor operating at room temperature includes a source S and a drain D, a source S, and a drain provided on a substrate.
  • a metal oxide detecting layer 50 provided at an upper side of the gate G and capable of chemically bonding to the target molecule 62, and an ion aqueous solution 61 having the target molecule 62 therein are stored, and the ion aqueous solution ( It can be seen that 61 includes an ion aqueous solution 60 provided on the upper side of the metal oxide detection layer 50 so as to contact the metal oxide detection layer 50.
  • the source S, the quantum dot coulomb channel 22, and the drain D are connected to each other. And a buried oxide layer 10 between the substrate and the source S and the drain D, and stacked on the upper side of the source S, the quantum dot coulomb channel 22 and the drain D, and formed with the trench 31. It can be seen that the first dielectric layer 30, the first dielectric layer 30, and the second dielectric layer 40 deposited on the quantum dot coulomb channel 22 are further included.
  • the gate G is provided in the trench 31 in which the second dielectric layer 40 is deposited as the T-shaped floating gate G.
  • the metal oxide detection layer 50 has an adsorption rate of other charges including hydrogen ions (H +), which may be generated by a chemical coupling reaction of the target molecule 62 to be detected in the ion aqueous solution 61.
  • H + hydrogen ions
  • It consists of metal oxides and electrical insulators, such as a large tantalum oxide film (Ta 2 O 5 ), aluminum oxide film (Al 2 O 3 ), silicon oxide film (SiO 2 ) or silicon nitride film (Si 3 N 4).
  • the surface may be chemically treated to form a chemically treated surface layer.
  • the metal oxide detection layer 50 may be chemically treated to immobilize a specific antibody that acts on a specific antigen.
  • the target molecule 62 is a prostate specific antigen (PSA)
  • the surface of the metal oxide detection layer 50 may be silanized and immobilized by reacting with an amine group (NH 2) present on the surface of the antibody. .
  • FIG. 2 is a flowchart illustrating a method of manufacturing a biosensor using a single-temperature transistor operating at room temperature according to a first embodiment of the present invention.
  • FIG. 3 is a perspective view showing an example of a substrate according to the first embodiment of the present invention.
  • the substrate used in the preferred embodiment of the present invention may be a substrate in which the buried oxide layer 10 and the upper silicon layer 20 are repeatedly stacked, but for convenience of description, the silicon substrate 100 is illustrated in FIG. 3. ),
  • An SOI substrate having a structure in which the buried oxide layer 10 and the upper silicon layer 20 are sequentially stacked will be described as an example (S1).
  • S1 SOI substrate having a structure in which the buried oxide layer 10 and the upper silicon layer 20 are sequentially stacked
  • silicon substrate 100 and the upper silicon layer 20 may use various kinds of conductors, silicon will be described as an example.
  • the buried oxide film layer 10 will be described using an oxide film or an insulating film as an example.
  • FIG. 4 is a partial cross-sectional perspective view showing a state in which the nanowire structure 21 according to the first embodiment of the present invention is formed.
  • the nanowire structure 21 is formed on the SOI substrate (S2).
  • the nanowire structure 21 is formed by etching the upper silicon layer 20.
  • a pattern is formed by photolithography or electron beam lithography, and then the upper silicon layer 20 is etched using the formed pattern as a mask.
  • the nanowire structure 21 defined as described above is preferably formed to have a width and a length of 1 to 50 nm and 0.1 to 10 ⁇ m, respectively, so as to minimize the overall size of the biosensor using the room temperature operating single-electron transistor. desirable.
  • the first dielectric layer 30 may be formed to have a constant thickness, or may be formed to have a constant surface at an upper portion as shown in FIG. 5.
  • the first dielectric layer 30 serves as an insulator for providing electrical insulation and may use various insulating materials. Examples of the first dielectric layer 30 may include a silicon oxide film and a silicon nitride film.
  • FIG. 6 is a partial cross-sectional perspective view showing an example in which the trench 31 and the quantum dot coulomb channel 22 according to the first embodiment of the present invention are formed
  • FIG. 7 is a quantum dot coulomb channel 22 according to the first embodiment of the present invention. Is a partial cross-sectional perspective view showing another example in which) is formed. 6 and 7, the next step is to form a quantum dot coulomb channel 22 (S4).
  • the quantum dot coulomb channel 22 is defined by forming the trench 31 by etching the first dielectric layer 30 so that the nanowire structure 21 is exposed.
  • the trench 31 may form a first dielectric layer 30 by dry etching after forming a mask pattern to be orthogonal to the middle portion of the nanowire structure 21 or by using a focused ion beam method. ) Is formed by etching. Subsequently, the middle portion of the nanowire structure 21 exposed in the trench 31 may be partially etched to form the quantum dot coulomb channel 22. As shown in FIG. 6, the quantum dot coulomb channel 22 is formed by etching only the first dielectric layer 30 so that the nanowire structure 21 is exposed. In addition, as shown in FIG. 7, a portion of the thickness of the nanowire structure 21 may be etched to form a thin thickness of the quantum dot coulomb channel 22.
  • the quantum dot coulomb channel 22 formed by the nanowire structure 21 exposed to the outside may be formed to have a width of 1 to 50 nm and a thickness of 1 to 50 nm. .
  • the width of the quantum dot coulomb channel 22 defined herein corresponds to the width of the nanowire structure 21.
  • the quantum dot coulomb channel 22 is preferably formed to have a trench 31 width of 1 to 100nm to have a minimum size.
  • the second dielectric layer 40 is a gate oxide film for insulating the quantum dot coulomb channel 22 and the T-type floating gate G to be described later.
  • the first gate oxide film is an oxide film surrounding the quantum dot coulomb channel 22 through a thermal oxidation process. In this process, the size of the quantum dot coulomb channel 22 is miniaturized by 1 nm to 5 nm to allow room temperature operation. Thereafter, the deposition process is deposited on the upper portion of the first dielectric layer 30 and the trench 31 with a predetermined thickness.
  • the width of the trench 31 is reduced by that much, so that the width of the T-type floating gate G formed in a later process, which will be described later, may be further narrowed.
  • the second dielectric layer 40 having such a function is preferably formed through a thermal oxidation process or a deposition process after the thermal oxidation process.
  • FIG. 8 illustrates an example in which the second dielectric layer 40 is formed through a thermal oxidation process and then a deposition process after the quantum dot coulomb channel 22 is formed.
  • 9 is a cross-sectional view taken along line A-A of FIG. 8 showing a state in which the second dielectric layer 40 is formed according to the first embodiment of the present invention.
  • FIG. 10 is a partial cross-sectional perspective view showing a state in which a T-type floating gate G is formed according to a first embodiment of the present invention.
  • the next step is to form a T-type floating gate (G) (S6).
  • the T-type floating gate G is formed to fill the trench 31 with a conductive material. That is, the quantum dot coulomb channel 22 is formed by fabrication of the trench 31, and the quantum dot coulomb channel 22 is wrapped with the second dielectric layer 40, and then a conductive material is filled thereon to fill the T-type floating gate (G). Will form.
  • the manufacturing method of the first embodiment according to the present invention further includes etching a part of the formed third dielectric film 40 and doping impurities to form the source S and the drain D of the transistor. It can also be configured to include.
  • FIG. 11 is a cross-sectional view illustrating a state in which a sidewall spacer S1 is formed by etching a planar layer of the second dielectric layer 40 formed by the deposition process according to the first embodiment of the present invention. That is, as shown in FIG. 11, the planar layer of the second dielectric layer 40 is etched. The second dielectric layer 40 formed by the deposition process may be etched to exist only on the wall of the trench 31 to form a sidewall spacer S1. In this case, the gate oxide film has a first gate oxide film formed by a thermal oxidation process. 11 is a cross-sectional view illustrating a state in which sidewall spacers S1 are formed by etching a portion of the second dielectric layer 40 according to the first embodiment of the present invention.
  • the step of doping with impurities may include the step of doping with impurities to make the source (S) and drain (D).
  • the first dielectric layer 30 and the second dielectric layer 40 are partially or partially etched to a thickness capable of doping impurities, and then doped with impurities using the T-type floating gate G as a mask.
  • the doping of impurities may be performed as follows according to the method of forming the T-type floating gate (G).
  • FIG. 12 is a cross-sectional perspective view showing a source S and a drain D formed by forming a T-type floating gate G to etch impurities to partially etch the first dielectric layer 30 and the second dielectric layer 40.
  • FIG. 13 is a perspective view of a state in which a metal oxide detection layer 50 is formed thereon according to a first embodiment of the present invention.
  • the metal oxide detection layer 50 has a large adsorption rate of other charges including hydrogen ions (H +), which may be generated by a chemical coupling reaction of the target molecule 62 to be detected in the ion aqueous solution 61. It consists of metal oxides and electrical insulators, such as tantalum oxide film (Ta 2 O 5 ), aluminum oxide film (Al 2 O 3 ), silicon oxide film (SiO 2 ) or silicon nitride film (Si 3 N 4).
  • Ta 2 O 5 tantalum oxide film
  • Al 2 O 3 aluminum oxide film
  • SiO 2 silicon oxide film
  • Si 3 N 4 silicon nitride film
  • the surface may be chemically treated to form a chemically treated surface layer.
  • the metal oxide detection layer 50 may be chemically treated to immobilize a specific antibody that acts on a specific antigen.
  • the target molecule 62 is a prostate specific antigen (PSA)
  • the surface of the metal oxide detection layer 50 may be silanized and immobilized by reacting with an amine group (NH 2) present on the surface of the antibody. .
  • the ion aqueous solution container 60 is formed at the top (S8).
  • the ion aqueous solution container 60 contains the ion aqueous solution 61 containing the target molecules 62.
  • the ion aqueous solution 61 comes into contact with the surface of the metal oxide detection layer 50 mentioned above. Therefore, the target molecules 62 included in the ion aqueous solution 61 react with each other at the surface of the metal oxide detection layer 50 to generate H + and other charges Q.
  • an insulating film layer that does not react with the target molecule 62 is deposited on the upper portion, and a portion of the insulating film is etched until the surface of the metal oxide detection layer 50 is exposed.
  • Can be formed. 14 is a perspective view of a state in which an insulating film layer is formed in an upper portion according to the first embodiment of the present invention.
  • FIG. 15 illustrates a perspective view of a biosensor using a room temperature operating single-electron transistor according to a first embodiment of the present invention.
  • FIG. 16 illustrates a cross-sectional view taken along line B-B in FIG. 15.
  • FIG. 17 illustrates a perspective view of a biosensor using a room temperature operating single-electron transistor according to a second embodiment of the present invention.
  • 18 is a plan view of a biosensor using a room temperature operating single-electron transistor according to a second embodiment of the present invention.
  • a biosensor using a single-electron transistor operating at room temperature has a plurality of T-type floating gates G and a plurality of ion solution containers 60. It can be seen that the drain D, the plurality of sources S, and the plurality of quantum dot coulomb channels 22 are provided.
  • the plurality of nanowire structures 21 are formed instead of one.
  • one biosensor has a plurality of sources (S)-quantum dot coulomb channel (22)-drain (D) so that the current (I ds ) flowing through the source (S)-drain (D), respectively. ) Can be measured to analyze the target molecule 62 more quickly and accurately.
  • FIG. 19 is a cross-sectional view schematically showing the configuration of a target molecule 62 analysis system having a biosensor according to an embodiment of the present invention.
  • Figure 20 shows a flow chart of the analysis method using a target molecule 62 analysis system having a biosensor according to an embodiment of the present invention.
  • FIG. 19 is a cross-sectional view schematically showing the configuration of a target molecule 62 analysis system having a biosensor according to an embodiment of the present invention.
  • Figure 20 shows a flow chart of the analysis method using a target molecule 62 analysis system having a biosensor according to an embodiment of the present invention.
  • FIG. 21 shows the gate voltage V g applied by the voltage applying unit 70 before and after chemical bonding of the target molecules 62 contained in the ion aqueous solution and the current value measured by the measuring means 80 ( I ds ) Characteristic curve I ds -V g Shows the change in the graph.
  • Coulomb vibration currents (indicated by solid lines) before the chemical bonding of the target molecules are charged by the chemical bonding of the target molecules, or the target molecules are coupled to the metal oxide detection layer 50 to shift the coulomb vibration currents. (Shown with a dashed line).
  • the measuring means 80 measures the value of the current I ds flowing between the source S and the drain D in real time as a function of the gate voltage V g .
  • a voltage applying unit 70 applies a gate voltage V g to a reference electrode provided in the ion aqueous solution 61 before injection of the target molecules into the ion aqueous solution.
  • the current value I ds is measured to obtain an I ds -V g characteristic curve prior to injection of the target molecule (S10).
  • the target molecules 62 to be detected into the ion aqueous solution 61 are injected to allow the target molecules 62 to chemically react with the surface of the metal oxide detection layer 50 (S20).
  • such chemical binding can be an antigen-antibody reaction.
  • Such chemical reactions and bonds can be of any kind as long as they can adsorb charges on the detection layer 50 surface.
  • a chemical treatment is performed to immobilize a specific antibody that functions with the specific antigen on the surface of the metal oxide detection layer 50.
  • the specific antigen is prostate specific antigen (PSA)
  • the surface of the metal oxide detection layer 50 may be silanized and immobilized by reacting with an amine group (NH 2) present on the surface of the antibody.
  • Hydrogen ions and other charges (Q) generated by such chemical bonds are adsorbed onto the surface of the metal oxide detection layer 50 (S30).
  • the electrostatic potential of the T-type floating gate G is changed by the amount of charge adsorbed on the surface of the metal oxide detection layer 50 (S40).
  • the electrostatic potential of the T-type floating gate G is changed, thereby inducing a change in the electrostatic potential of the quantum dot coulomb channel 22 located at the lower end of the T-type floating gate G, thereby allowing the source S to drain D.
  • the current I ds of the liver is changed (S50, S60).
  • the analytical means detects the change of the current (I ds ) value after injection of the target molecule and measures the new I ds -V g characteristic (S70), and compares / analyzes the I ds -V g characteristic curve before the target molecule injection ( S80)
  • the identity of the target molecules 62 in the ion aqueous solution 61 is deciphered.
  • the target molecule 62 is analyzed using the biosensor according to the second embodiment described above, that is, one T-type gate G and the ion aqueous solution 60 are shared by several sources ( By adding single-electron transistors integrated into the S) -quantum dot coulomb channel 22-drain D, in one ion aqueous solution 61 located above the T-type floating gate G and the metal oxide detection layer 50 During the chemical reaction of the target molecules 62, the measuring means 80 provided in each of the plurality of sources S-drain D measures the current I ds as a function of the gate voltage and Simultaneously measuring the change of I ds ) and comparing / analyzing the I ds -V g characteristic curve prior to the injection of the target molecule can decode the target molecule to significantly reduce the time required while increasing the reliability.

Abstract

The present invention relates to a bio-sensor using a single electron transistor operating at room temperature, a method for manufacturing the same, an analysis system having the same, and an analysis method. More specifically, the preset invention relates to a bio-sensor using a single electron transistor operating at room temperature comprising: a single electron transistor that has a source and a drain formed on a substrate, a quantum point coulomb channel formed between the source and the drain, and a gate formed on the upper side of the quantum point coulomb channel; a metal oxide sensing layer formed on the upper side of the gate to form a chemical bond with target molecules; and an ion aqueous solution reservoir that has ion aqueous solution with target molecules stored therein and is provided on the upper side of the metal oxide sensing layer such that the ion aqueous solution is brought into contact with the metal oxide sensing layer.

Description

상온동작 단전자 트랜지스터를 이용한 바이오센서, 그 바이오센서의 제조방법, 그 바이오센서를 갖는 분석시스템 및 분석방법Biosensor using single-electron transistor at room temperature, manufacturing method of biosensor, analysis system having biosensor and analysis method
본 발명은 상온동작 단전자 트랜지스터를 이용한 바이오센서, 그 바이오센서의 제조방법, 그 바이오센서를 갖는 분석시스템 및 분석방법에 대한 것이다. 보다 상세하게는, 상온동작 단전자 트랜지스터의 소스와 드레인 사이의 양자점 쿨롱채널 위에 T-형 게이트(T-shaped gate)를 형성시켜 부유화 (floating)시키고, 게이트 상부에 금속산화물 검지층(metal-oxide sensing layer)을 형성시키고 그 표면을 이온 수용액과 접촉시키는 구조를 포함하여, 이온수용액 내에서 검지하고자 하는 표적분자(target molecule)의 화학적 결합 반응에 의해 생성될 수 있는 수소이온 (H+)등을 비롯한 기타 전하량들이 검지층 표면에 흡착되면서 T형 부유게이트를 통해 양자점 쿨롱채널의 정전 포텐셜의 변화를 유도하여, 소스-드레인 간의 전류의 변화를 일으키게 되며, 이러한 전류변화를 감지함으로써 이온수용액 내의 표적분자의 정체를 분석할 수 있는 바이오 센서 및 그 분석방법에 관한 것이다.The present invention relates to a biosensor using a room temperature operating single-electron transistor, a method for manufacturing the biosensor, an analysis system having the biosensor, and an analysis method. More specifically, a T-shaped gate is formed on the quantum dot coulomb channel between the source and the drain of the room temperature operating single-electron transistor to float, and a metal oxide detection layer is formed on the gate. hydrogen ions (H +) that can be generated by chemical bonding reactions of target molecules to be detected in an aqueous solution of ions, including a structure of forming an oxide sensing layer and contacting its surface with an aqueous ionic solution. As other charges are adsorbed on the surface of the sensing layer, the T-type floating gate induces a change in the electrostatic potential of the quantum dot coulomb channel, causing a change in the current between the source and the drain, and detecting the current change to target molecules in the ion solution. The present invention relates to a biosensor capable of analyzing the identity of and a method of analyzing the same.
DNA, 단백질 및 바이러스 등, 생체 고분자의 검지 및 정량적 분석은 헬스 케어 및 생명공학 연구분야의 중요한 영역이다. 본 발명에 적용되는 양자점 단전자 트랜지스터(SET) 소자기술은 생체분자-분자 간의 화학결합 반응에 의해 생성되는 미세 전하량의 분포 변화를 10E-4e/√Hz (전자 한 개의 만분의 1 전하량) 수준의 초고감도 센싱이 가능하여 새롭게 기존의 FET 방식 바이오센서를 대치할 수 있다. Detection and quantitative analysis of biopolymers, such as DNA, proteins and viruses, is an important area of healthcare and biotechnology research. The quantum dot single-electron transistor (SET) device technology applied to the present invention can change the distribution of the minute charges generated by the chemical bond reaction between the biomolecules-molecules at a level of 10E-4e / √Hz (one full charge per electron). Ultra-sensitivity sensing is possible to replace the existing FET biosensor.
특히 기존의 방법으로 수용액 내의 극소량의 표적분자를 검지하는 경우, 발생하는 전기적 노이즈는 심각한 수준에 이르러 기존의 FET 방법에는 많은 문제점이 존재하였다. In particular, when detecting a small amount of target molecules in the aqueous solution by the conventional method, the electrical noise generated to a serious level, there were many problems in the conventional FET method.
본 발명이 대체할 수 있는 종래의 바이오 센싱 방법으로서는, 일반적인 FET 방식의 바이오센서에서와 마찬가지로 FET의 게이트에 인식물질을 고정화하여 인식물질과 타겟분자가 결합하였을 때 발생하는 전기적인 신호의 변화를 측정하는 형태로 되어 있다. 일예로는 게이트에 효소를 고정화한 enzyme FET, 항원-항체반응을 이용한 Immuno FET 및 실제 pH센서로 활용되고 있는 IS FET(ion-sensitive FET) 등을 비롯하여 이와 유사한 나노와이어 FET 방식 모두에 적용, 대치가 가능하다.Conventional bio-sensing method that can be replaced by the present invention, as in the conventional FET type biosensor, by fixing the recognition material on the gate of the FET to measure the change in the electrical signal generated when the recognition material and the target molecules are combined It is in a form to say. For example, enzyme FETs immobilized on gates, Immuno FETs using antigen-antibody reactions, and ion-sensitive FETs (IS FETs), which are used as actual pH sensors, and similar nanowire FETs. Is possible.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 일실시예에 따르면, 상온동작 단전자 트랜지스터 기술이 가진 10E-4e/√Hz (전자 한 개의 만분의 1 전하량) 수준의 미세 전하량의 분포 변화 관련 초고감도 센싱 특성을 이용하여 표적분자의 정체를 검지 및 분석하기 위한 것으로 검사 수용액 내의 극소량의 표적분자를 검지하는 경우 발생하는 심각한 수준의 노이즈 문제를 극복하여 기존의 나노와이어를 포함한 FET 방식의 어려움을 해결할 수 있는 바이오센서 및 분석방법을 제공하는 것을 목적으로 하고 있다. Accordingly, the present invention has been made to solve the above problems, according to an embodiment of the present invention, the 10E-4e / √Hz (10,000 electron charge per million) level of the room temperature operating single-electron transistor technology To detect and analyze the identity of target molecules using ultra-sensitivity sensing characteristics related to the change in the distribution of fine charges in the nanowires, it overcomes the serious noise problem that occurs when detecting very small amount of target molecules in the aqueous solution. The purpose is to provide a biosensor and analysis method that can solve the difficulties of the FET method, including.
본 발명의 그 밖에 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 관련되어 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명확해질 것이다. Other objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments in conjunction with the accompanying drawings.
본 발명의 제1목적은, 바이오센서에 있어서, 기판상에 구비되는 소스와 드레인, 소스와 드레인 사이에 구비되는 양자점 쿨롱채널 및 양자점 쿨롱채널의 상부 측에 구비되는 게이트를 갖는 단전자 트랜지스터; 게이트의 상부 측에 구비되어, 표적분자와 화학적 결합이 가능한 금속산화물 검지층; 및 내부에 표적분자를 갖는 이온수용액이 저장되고, 이온수용액이 금속산화물 검지층과 접촉되도록 금속산화물 검지층의 상부측에 구비되는 이온수용액 용기;를 포함하는 것을 특징으로 하는 상온동작 단전자 트랜지스터를 이용한 바이오센서로서 달성될 수 있다. A first object of the present invention is a biosensor comprising: a single electron transistor having a source and a drain provided on a substrate, a quantum dot coulomb channel provided between the source and drain, and a gate provided on an upper side of the quantum dot coulomb channel; A metal oxide detection layer provided on an upper side of the gate and capable of chemically bonding to a target molecule; And an ion aqueous solution container in which an ion aqueous solution having a target molecule is stored therein and provided in an upper side of the metal oxide detecting layer so that the ion aqueous solution contacts the metal oxide detecting layer. It can be achieved as a biosensor used.
본 발명의 제2목적은 바이오센서에 있어서, 기판상에 구비되는 복수의 소스, 각각이 소스와 대향된 위치에 특정간격 이격되어 기판상에 구비되는 복수의 드레인, 소스와 소스와 대향된 위치에 구비된 드레인 사이 각각에 구비되는 복수의 양자점 쿨롱채널 및 복수의 양자점 쿨롱채널을 공유하여 상부 측에 구비되는 게이트; 게이트의 상부 측에 구비되어, 표적분자와 화학적 결합이 가능한 금속산화물 검지층; 및 내부에 표적분자를 갖는 이온수용액이 저장되고, 이온수용액이 금속산화물 검지층과 접촉되도록 금속산화물 검지층의 상부측에 구비되는 이온수용액 용기;를 포함하는 것을 특징으로 하는 상온동작 단전자 트랜지스터를 이용한 바이오센서로서 달성될 수 있다. A second object of the present invention is a biosensor, comprising: a plurality of sources provided on a substrate, each of the plurality of drains provided on the substrate at a position spaced apart from the source, at a position opposite to the source and the source; A gate provided on an upper side of the plurality of quantum dot coulomb channels provided between each of the provided drains; A metal oxide detection layer provided on an upper side of the gate and capable of chemically bonding to a target molecule; And an ion aqueous solution container in which an ion aqueous solution having a target molecule is stored therein and provided in an upper side of the metal oxide detecting layer so that the ion aqueous solution contacts the metal oxide detecting layer. It can be achieved as a biosensor used.
소스와 양자점 쿨롱채널 및 드레인은 서로 연결되어 지고, 기판과 소스 및 드레인 사이에 구비되는 매몰산화막층; 및 소스와 양자점 쿨롱채널 및 드레인의 상부측으로 적층되며 트랜치가 형성된 제1유전층; 및 제1유전층과 양자점 쿨롱채널 상부에 증착되는 제2유전층;을 더 포함하고, 게이트는 T자형 부유게이트로 제2유전층이 증착된 트랜치에 구비되는 것을 특징으로 할 수 있다. A source oxide film layer having a source and a quantum dot coulomb channel and a drain connected to each other and disposed between the substrate, the source and the drain; And a first dielectric layer stacked on an upper side of the source, the quantum dot coulomb channel and the drain, and formed with a trench; And a second dielectric layer deposited over the first dielectric layer and the quantum dot coulomb channel, and the gate may be provided in a trench in which the second dielectric layer is deposited as a T-shaped floating gate.
소스와 양자점 쿨롱채널 및 드레인은 서로 연결되어 복수의 나노선구조물을 형성하고, 기판과 복수의 소스 및 복수의 드레인 사이에 구비되는 매몰산화막층; 및 복수의 나노선구조물의 상부측으로 적층되며 트랜치가 형성된 제1유전층; 및 제1유전층과 복수의 양자점 쿨롱채널 상부에 증착되는 제2유전층;을 더 포함하고, 게이트는 T자형 부유게이트로 제2유전층이 증착된 트랜치에 구비되는 것을 특징으로 할 수 있다. A source, a quantum dot coulomb channel, and a drain are connected to each other to form a plurality of nanowire structures, and a buried oxide layer disposed between the substrate, the plurality of sources, and the plurality of drains; And a first dielectric layer stacked on an upper side of the plurality of nanowire structures and having trenches formed therein. And a second dielectric layer deposited over the first dielectric layer and the plurality of quantum dot coulomb channels, and the gate may be provided in a trench in which the second dielectric layer is deposited as a T-shaped floating gate.
금속산화물 검지층은, 탄탈륨 산화막, 알루미늄 산화막, 실리콘 산화막 또는 질화규소막으로 구성된 것을 특징으로 할 수 있다. The metal oxide detection layer may be composed of a tantalum oxide film, an aluminum oxide film, a silicon oxide film, or a silicon nitride film.
표적분자가 특정항원인 경우, 금속산화물 검지층의 상부표면은 특정항원과 반응하는 특정항체를 고정화시키기 위한 화학처리 표면층을 포함하는 것을 특징으로 할 수 있다. When the target molecule is a specific antigen, the upper surface of the metal oxide detection layer may be characterized by including a chemically treated surface layer for immobilizing a specific antibody reacting with the specific antigen.
본 발명의 제3목적은 적어도 하나의 매몰 산화막층 및 상부 실리콘층이 각각 적층된 기판을 갖는 상온동작 단전자 트랜지스터의 제조방법에 있어서, 상부실리콘층을 식각하여 나노선구조물을 형성하는 제1단계; 기판과 나노선 구조물의 상부로 제1유전층을 형성하는 제2단계; 제1유전층을 식각하여 트랜치와 양자점 쿨롱채널을 형성하는 제3단계; 상부로 제2유전층을 형성하는 제4단계; 트랜치에 게이트를 형성하는 제5단계; 게이트의 상부로 표적분자와 화학적 결합이 가능한 금속산화물 검지층을 증착하는 제6단계; 및 내부에 표적분자를 갖는 이온수용액이 저장되고, 이온수용액이 금속산화물 검지층과 접촉되도록 금속산화물 검지층의 상부측으로 이온수용액용기를 형성하는 제7단계;를 포함하는 것을 특징으로 하는 상온동작 단전자 트랜지스터를 이용한 바이오센서의 제조방법으로서 달성될 수 있다. A third object of the present invention is a method of manufacturing a room temperature operating single-electron transistor having a substrate on which at least one buried oxide layer and an upper silicon layer are stacked, the first step of forming a nanowire structure by etching the upper silicon layer. ; Forming a first dielectric layer on top of the substrate and the nanowire structure; Etching the first dielectric layer to form a trench and a quantum dot coulomb channel; A fourth step of forming a second dielectric layer thereon; Forming a gate in the trench; Depositing a metal oxide detection layer capable of chemically bonding to a target molecule on the gate; And a seventh step of storing an ion aqueous solution having a target molecule therein, and forming an ion aqueous container on the upper side of the metal oxide detection layer such that the ion aqueous solution contacts the metal oxide detection layer. It can be achieved as a method of manufacturing a biosensor using an electronic transistor.
본 발명의 제4목적은 적어도 하나의 매몰 산화막층 및 상부 실리콘층이 각각 적층된 기판을 갖는 상온동작 단전자 트랜지스터를 이용한 바이오센서의 제조방법에 있어서, 상부실리콘층을 식각하여 복수의 나노선구조물을 형성하는 제1단계; 기판과 복수의 나노선 구조물의 상부로 제1유전층을 형성하는 제2단계; 제1유전층을 식각하여 트랜치와 복수의 양자점 쿨롱채널을 형성하는 제3단계; 상부로 제2유전층을 형성하는 제4단계; 트랜치에 게이트를 형성하는 제5단계; 게이트의 상부로 표적분자와 화학적 결합이 가능한 금속산화물 검지층을 증착하는 제6단계; 및 내부에 표적분자를 갖는 이온수용액이 저장되고, 이온수용액이 금속산화물 검지층과 접촉되도록 금속산화물 검지층의 상부측으로 이온수용액용기를 형성하는 제7단계;를 포함하는 것을 특징으로 하는 상온동작 단전자 트랜지스터를 이용한 바이오센서의 제조방법으로서 달성될 수 있다. A fourth object of the present invention is a method of manufacturing a biosensor using a single-electron transistor in a room temperature operation having a substrate on which at least one buried oxide layer and an upper silicon layer are stacked, wherein a plurality of nanowire structures are formed by etching the upper silicon layer. Forming a first step; Forming a first dielectric layer on top of the substrate and the plurality of nanowire structures; Etching the first dielectric layer to form a trench and a plurality of quantum dot coulomb channels; A fourth step of forming a second dielectric layer thereon; Forming a gate in the trench; Depositing a metal oxide detection layer capable of chemically bonding to a target molecule on the gate; And a seventh step of storing an ion aqueous solution having a target molecule therein, and forming an ion aqueous container on the upper side of the metal oxide detection layer such that the ion aqueous solution contacts the metal oxide detection layer. It can be achieved as a method of manufacturing a biosensor using an electronic transistor.
제6단계에서, 표적분자가 특정항원인 경우, 금속산화물 검지층의 상부표면을 특정항원과 반응하는 특정항체를 고정화시키기 위한 화학처리 표면층을 형성하는 단계를 더 포함하는 것을 특징으로 할 수 있다. In the sixth step, when the target molecule is a specific antigen, the method may further include forming a chemically treated surface layer for immobilizing the upper surface of the metal oxide detection layer with a specific antibody reacting with the specific antigen.
제4단계와 제5단계 사이에는 증착공정으로 형성된 제2유전층의 일부를 식각하여 측벽스페이서를 형성하는 단계; 및 제1유전층 일부와 제2유전층 일부를 식각하여 게이트를 마스크로 불순물을 도핑하여 소스 및 드레인을 형성하는 단계를 더 포함하는 것을 특징으로 할 수 있다. Etching a portion of the second dielectric layer formed by the deposition process between the fourth and fifth steps to form a sidewall spacer; And etching a portion of the first dielectric layer and a portion of the second dielectric layer to form a source and a drain by doping impurities with a gate as a mask.
제7단계는, 금속산화물 검지층의 상부로 절연막층(Dielectric Layer)을 증착시키는 단계; 절연막층을 금속산화물 검지층의 상부면이 노출될 때까지 용기형상으로 식각하는 단계; 및 내부에 표적분자를 포함하는 이온수용액을 투입시키는 단계를 포함하는 것을 특징으로 할 수 있다. The seventh step may include depositing an dielectric layer on top of the metal oxide detection layer; Etching the insulating film layer into a container shape until the top surface of the metal oxide detection layer is exposed; And it may be characterized in that it comprises the step of introducing an ion solution containing a target molecule therein.
제1유전층은 증착공정을 통하여 10nm~1000nm 두께로 형성하고, 제2유전층은 열산화 공정 또는 열산화 공정 후 증착공정으로 형성하는 것을 특징으로 할 수 있다. The first dielectric layer may be formed to have a thickness of 10 nm to 1000 nm through a deposition process, and the second dielectric layer may be formed by a deposition process after a thermal oxidation process or a thermal oxidation process.
제1단계에서 상부실리콘층을 식각하여 형성되는 나노선구조물의 폭은 1~50nm로, 길이는 0.1~10㎛로 형성되는 것을 특징으로 할 수 있다. The width of the nanowire structure formed by etching the upper silicon layer in the first step may be 1 to 50 nm, and the length may be 0.1 to 10 μm.
제3단계는 식각에 의해 트랜치를 폭이 1~100nm로 형성하며, 상부실리콘층의 두께 일부를 식각하여 양자점의 두께는 1~50nm로 형성하는 것을 특징으로 할 수 있다. In the third step, the trench may be formed to have a width of 1 to 100 nm by etching, and a portion of the thickness of the upper silicon layer may be etched to form a thickness of the quantum dot of 1 to 50 nm.
본 발명의 제5목적은 바이오센서를 갖는 표적분자 분석시스템에 있어서, 앞서 언급한 제1목적에 따른 바이오센서; 바이오센서의 이온수용액 용기 내부에 저장된 이온수용액에 특정전압을 인가시켜 게이트전압 역할을 하는 기준전극(reference electrode)을 갖는 전압인가부; 바이오센서의 소스와 드레인 사이에 흐르는 전류를 측정하기 위한 측정수단; 및 측정수단에서 측정된 데이터를 기반으로, 이온수용액에 포함된 표적분자와 바이오센서의 금속산화물 검지층 사이의 화학적 결합에 의한 전류변화를 측정하여 표적분자를 분석하는 분석수단을 포함하는 것을 특징으로 하는 바이오센서를 갖는 표적분자 분석시스템으로서 달성될 수 있다. A fifth object of the present invention is a target molecule analysis system having a biosensor, comprising: a biosensor according to the aforementioned first object; A voltage applying unit having a reference electrode serving as a gate voltage by applying a specific voltage to the ion aqueous solution stored in the ion aqueous solution container of the biosensor; Measuring means for measuring a current flowing between the source and the drain of the biosensor; And analytical means for analyzing the target molecule by measuring a change in current caused by a chemical bond between the target molecule included in the ion aqueous solution and the metal oxide detection layer of the biosensor, based on the data measured by the measurement means. It can be achieved as a target molecule analysis system having a biosensor.
본 발명의 제6목적은 바이오센서를 갖는 표적분자 분석시스템에 있어서, 앞서 언급한 제2목적에 따른 바이오센서; 바이오센서의 이온수용액 용기 내부에 저장된 이온수용액에 특정전압을 인가시켜 게이트전압 역할을 하는 기준전극(reference electrode)을 갖는 전압인가부; 바이오센서에 구비된 복수의 소스와 소스에 대향된 위치에 구비된 복수의 드레인 사이에 흐르는 전류 각각을 측정하기 위한 측정수단; 및 측정수단에서 측정된 데이터를 기반으로, 이온수용액에 포함된 표적분자와 바이오센서의 금속산화물 검지층 사이의 화학적 결합에 의한 전류변화를 측정하여 표적분자를 분석하는 분석수단을 포함하는 것을 특징으로 하는 바이오센서를 갖는 표적분자 분석시스템으로서 달성될 수 있다. A sixth object of the present invention is a target molecule analysis system having a biosensor, comprising: a biosensor according to the aforementioned second object; A voltage applying unit having a reference electrode serving as a gate voltage by applying a specific voltage to the ion aqueous solution stored in the ion aqueous solution container of the biosensor; Measuring means for measuring each of the currents flowing between the plurality of sources provided in the biosensor and the plurality of drains provided at positions opposite to the sources; And analytical means for analyzing the target molecule by measuring a change in current caused by a chemical bond between the target molecule included in the ion aqueous solution and the metal oxide detection layer of the biosensor, based on the data measured by the measurement means. It can be achieved as a target molecule analysis system having a biosensor.
본 발명의 제7목적은 앞서 언급한 제5목적 또는 제6목적에 따른 분석시스템을 이용한 표적분자 분석방법에 있어서, 전압인가부에 의해 이온수용액으로 전압을 인가하는 단계; 이온수용액 내에 포함된 표적분자의 화학적 결합이 발생되는 단계; 화학적 결합에 의해 발생된 전하량들이 금속산화물 검지층 표면에 흡착되는 단계; 금속산화물 검지층 표면에 흡착된 전하량에 의해 바이오센서의 게이트의 정전표텐셜이 변화하는 단계; 바이오센서의 양자점 쿨롱채널의 정전포텐셜의 변화를 유도하여 소스와 드레인 간의 전류변화가 발생되는 단계; 및 분석수단이 측정수단에 의해 측정된 소스와 드레인 간의 전류값을 기반으로 전류변화를 감지하여 표적분자를 분석하는 단계;를 포함하는 것을 특징으로 하는 표적분자 분석방법으로서 달성될 수 있다. A seventh object of the present invention is a target molecule analysis method using the analysis system according to the above-mentioned fifth or sixth object, the method comprising: applying a voltage to the ion aqueous solution by a voltage applying unit; Generating a chemical bond of the target molecule contained in the ion aqueous solution; The charges generated by the chemical bonding are adsorbed on the surface of the metal oxide detection layer; Changing the electrostatic potential of the gate of the biosensor by the amount of charge adsorbed on the surface of the metal oxide detection layer; Inducing a change in the electrostatic potential of the quantum dot coulomb channel of the biosensor to generate a current change between the source and the drain; And analyzing the target molecule by detecting a change in current based on the current value between the source and the drain measured by the measuring means by the analyzing means.
표적분자는 특정항원이며, 금속산화물 검지층의 상부표면은 특정항원과 반응하는 특정항체를 고정화시키기 위한 화학처리 표면층을 포함하며, 검지층 표면에 흡착되는 단계는, 특정항원이 화학처리표면층과 항원-항체 반응하는 단계인 것을 특징으로 할 수 있다. The target molecule is a specific antigen, the upper surface of the metal oxide detection layer includes a chemically treated surface layer for immobilizing a specific antibody that reacts with the specific antigen, and the step of adsorbing on the surface of the detection layer is that the specific antigen is applied to the chemically treated surface layer and the antigen. It may be characterized by the step of antibody reaction.
전하량은 H+를 포함하는 특정 양의 양전하 또는 음전하인 것을 특징으로 할 수 있다. The amount of charge may be characterized as being a certain amount of positive or negative charge, including H + .
따라서, 상기 설명한 바와 같이 본 발명의 일실시예에 따르면, 상온동작 SET 기술이 가진 10E-4e/√Hz (전자 한 개의 만분의 1 전하량) 수준의 미세 전하량의 분포 변화 관련 초고감도 센싱 특성을 이용하여 표적분자의 정체를 검지 및 분석하기 위한 것으로 검사 수용액 내의 극소량의 표적분자를 검지하는 경우 발생하는 심각한 수준의 노이즈 문제를 극복하여 기존의 나노와이어를 포함한 FET 방식의 어려움을 해결할 수 있는 효과를 갖는다.Accordingly, as described above, according to an embodiment of the present invention, the ultra-sensitivity sensing characteristic related to the distribution change of the minute charge amount of 10E-4e / √Hz (one million charge amount per electron) of the room temperature operation SET technology is used. This is to detect and analyze the identity of the target molecule, and it has the effect of solving the difficulty of the FET method including the nanowire by overcoming the serious noise problem that occurs when detecting the small amount of the target molecule in the test aqueous solution. .
비록 본 발명이 상기에서 언급한 바람직한 실시예와 관련하여 설명되어 졌지만, 본 발명의 요지와 범위로부터 벗어남이 없이 다른 다양한 수정 및 변형이 가능한 것은 당업자라면 용이하게 인식할 수 있을 것이며, 이러한 변경 및 수정은 모두 첨부된 특허 청구 범위에 속함은 자명하다.Although the present invention has been described in connection with the above-mentioned preferred embodiments, it will be readily apparent to those skilled in the art that various other modifications and variations are possible without departing from the spirit and scope of the present invention. Are all within the scope of the appended claims.
도 1은 본 발명의 제1실시예에 따른 상온동작 단전자 트랜지스터를 이용한 바이오센서의 사시도, 1 is a perspective view of a biosensor using a room temperature operating single-electron transistor according to a first embodiment of the present invention;
도 2는 본 발명의 제1실시예에 따른 상온동작 단전자 트랜지스터를 이용한 바이오센서 제조방법의 흐름도, 2 is a flow chart of a biosensor manufacturing method using a room temperature operating single-electron transistor according to a first embodiment of the present invention,
도 3은 본 발명의 제1실시예에 따른 기판의 일예를 도시한 사시도, 3 is a perspective view showing an example of a substrate according to the first embodiment of the present invention;
도 4는 본 발명의 제1실시예에 따른 나노선구조물이 형성된 상태를 도시한 사시도, 4 is a perspective view showing a state in which the nanowire structure is formed according to the first embodiment of the present invention;
도 5는 본 발명의 제1실시예에 따른 제1유전층이 형성된 상태를 도시한 사시도, 5 is a perspective view illustrating a state in which a first dielectric layer is formed according to a first embodiment of the present invention;
도 6은 본 발명의 제1실시예에 따른 제1유전층에 트랜치가 형성된 상태를 도시한 사시도, 6 is a perspective view showing a state in which a trench is formed in the first dielectric layer according to the first embodiment of the present invention;
도 7은 본 발명의 제1실시예에 따른 양자점이 형성된 상태를 도시한 사시도, 7 is a perspective view illustrating a state in which a quantum dot is formed according to a first embodiment of the present invention;
도 8은 본 발명의 제1실시예에 따른 제2유전층이 형성된 상태를 도시한 사시도, 8 is a perspective view illustrating a state in which a second dielectric layer is formed according to the first embodiment of the present invention;
도 9는 도 8의 A-A 단면도, 9 is a cross-sectional view taken along line A-A of FIG. 8;
도 10은 본 발명의 제1실시예에 따른 게이트가 형성된 일예를 도시한 사시도, 10 is a perspective view showing an example in which a gate is formed according to a first embodiment of the present invention;
도 11은 본 발명의 제1실시예에 따른 증착공정으로 형성된 제2유전층의 평면층을 식각하여 측벽스페이서가 형성된 다른 일예를 나타낸 사시도, 11 is a perspective view illustrating another example in which a sidewall spacer is formed by etching a planar layer of a second dielectric layer formed by a deposition process according to a first embodiment of the present invention;
도 12는 본 발명의 제1실시예에 따른 불순물을 도핑하여 소스 및 드레인이 형성된 상태를 도시한 사시도, 12 is a perspective view showing a state in which a source and a drain are formed by doping impurities according to the first embodiment of the present invention;
도 13은 본 발명의 제1실시예에 따른 상부로 금속산화물 검지층이 형성된 상태의 사시도, 13 is a perspective view of a metal oxide detection layer formed on top according to a first embodiment of the present invention;
도 14는 본 발명의 제1실시예에 따른 상부로 절연막층이 형성된 상태의 사시도, 14 is a perspective view of an insulating film layer formed on top according to a first embodiment of the present invention;
도 15는 본 발명의 제1실시예에 따른 상온동작 단전자 트랜지스터를 이용한 바이오센서의 사시도, 15 is a perspective view of a biosensor using a single-temperature transistor operating at room temperature according to a first embodiment of the present invention;
도 16은 도 15의 B-B 단면도, 16 is a cross-sectional view taken along line B-B of FIG. 15;
도 17은 본 발명의 제2실시예에 따른 상온동작 단전자 트랜지스터를 이용한 바이오센서의 사시도, 17 is a perspective view of a biosensor using a room temperature operating single-electron transistor according to a second embodiment of the present invention;
도 18은 본 발명의 제2실시예에 따른 상온동작 단전자 트랜지스터를 이용한 바이오센서의 평면도, 18 is a plan view of a biosensor using a room temperature operating single-electron transistor according to a second embodiment of the present invention;
도 19는 본 발명의 일실시예에 따른 바이오센서를 갖는 표적분자 분석시스템의 구성을 모식적으로 나타낸 단면도, 19 is a cross-sectional view schematically showing the configuration of a target molecule analysis system having a biosensor according to an embodiment of the present invention;
도 20은 본 발명의 일실시예에 따른 바이오센서를 갖는 표적분자 분석시스템을 이용한 분석방법의 흐름도20 is a flowchart of an analysis method using a target molecule analysis system having a biosensor according to an embodiment of the present invention.
도 21은 이온수용액 내에 포함된 표적분자의 주입/화학적 결합 발생 이전 (실선으로 표시)과 이후(점선으로 표시)의 전압인가부에서 인가되는 게이트전압(Vg)과 측정수단에서 측정되는 전류값(Ids) 특성곡선 (characteristic curve) 그래프의 변화를 도시한 것으로서, 표적분자의 주입 후 화학적 결합에 의해 발생된 전하량들, 혹은 표적분자가 금속산화물 검지층에 화학적 결합되어 발생되는 쿨롱진동 전류의 전이(shift)를 보여준다. Fig. 21 shows the gate voltage (V g ) applied by the voltage applying section before (indicated by the solid line) and after (indicated by the dashed line) the injection / chemical coupling of the target molecules contained in the ion aqueous solution and the current values measured by the measuring means. (I ds ) Characteristic curve The graph shows the change in the amount of charges generated by chemical bonding after injection of the target molecule, or the Coulomb vibration current generated by chemical bonding of the target molecule to the metal oxide detection layer. Show the shift.
이하 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 쉽게 실시할 수 있는 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예에 대한 동작 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, in describing in detail the operating principle of the preferred embodiment of the present invention, if it is determined that the detailed description of the related known functions or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면 부호를 사용한다. 명세서 전체에서, 어떤 부분이 다른 부분과 ‘연결’되어 있다고 할 때, 이는 ‘직접적으로 연결’되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고, ‘간접적으로 연결’되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 ‘포함’한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In addition, the same reference numerals are used for parts having similar functions and functions throughout the drawings. Throughout the specification, when a part is 'connected' to another part, this includes not only 'directly connected' but also 'indirectly connected' with another element in between. do. In addition, "including" a certain component does not exclude other components unless specifically stated otherwise, it means that may further include other components.
이하에서는 본 발명의 제1실시예에 따른 상온동작 단전자 트랜지스터를 이용한 바이오센서의 구성 및 제조방법에 대해 설명하도록 한다. 먼저, 도 1은 본 발명의 제1실시예에 따른 상온동작 단전자 트랜지스터를 이용한 바이오센서의 사시도를 도시한 것이다. Hereinafter, the configuration and manufacturing method of the biosensor using the room temperature operating single-electron transistor according to the first embodiment of the present invention will be described. First, Figure 1 shows a perspective view of a biosensor using a room temperature operating single-electron transistor according to a first embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명의 제1실시예에 따른 상온동작 단전자 트랜지스터를 이용한 바이오센서는, 기판상에 구비되는 소스(S)와 드레인(D), 소스(S)와 드레인(D) 사이에 구비되는 양자점 쿨롱채널(22) 및 양자점 쿨롱채널(22)의 상부 측에 구비되는 게이트(G)를 갖는 단전자 트랜지스터; 게이트(G)의 상부 측에 구비되어, 표적분자(62)와 화학적 결합이 가능한 금속산화물 검지층(50) 및 내부에 표적분자(62)를 갖는 이온수용액(61)이 저장되고, 이온수용액(61)이 금속산화물 검지층(50)과 접촉되도록 금속산화물 검지층(50)의 상부측에 구비되는 이온수용액 용기(60) 등을 포함하고 있음을 알 수 있다. As shown in FIG. 1, a biosensor using a single-electron transistor operating at room temperature according to a first embodiment of the present invention includes a source S and a drain D, a source S, and a drain provided on a substrate. A single electron transistor having a quantum dot coulomb channel 22 provided between the D) and a gate G provided on an upper side of the quantum dot coulomb channel 22; A metal oxide detecting layer 50 provided at an upper side of the gate G and capable of chemically bonding to the target molecule 62, and an ion aqueous solution 61 having the target molecule 62 therein are stored, and the ion aqueous solution ( It can be seen that 61 includes an ion aqueous solution 60 provided on the upper side of the metal oxide detection layer 50 so as to contact the metal oxide detection layer 50.
또한, 도 1에 도시된 바와 같이, 본 발명의 제1실시예에 따른 상온동작 단전자 트랜지스터를 이용한 바이오센서는 소스(S)와 양자점 쿨롱채널(22) 및 드레인(D)은 서로 연결되어 지고, 기판과 소스(S) 및 드레인(D) 사이에 구비되는 매몰산화막층(10) 및 소스(S)와 양자점 쿨롱채널(22) 및 드레인(D)의 상부측으로 적층되며 트랜치(31)가 형성된 제1유전층(30) 및 제1유전층(30)과 양자점 쿨롱채널(22) 상부에 증착되는 제2유전층(40)을 더 포함하고 있음을 알 수 있다. 또한, 게이트(G)는 T자형 부유게이트(G)로 제2유전층(40)이 증착된 트랜치(31)에 구비되게 된다. In addition, as shown in FIG. 1, in the biosensor using the single-electron transistor operating at room temperature according to the first embodiment of the present invention, the source S, the quantum dot coulomb channel 22, and the drain D are connected to each other. And a buried oxide layer 10 between the substrate and the source S and the drain D, and stacked on the upper side of the source S, the quantum dot coulomb channel 22 and the drain D, and formed with the trench 31. It can be seen that the first dielectric layer 30, the first dielectric layer 30, and the second dielectric layer 40 deposited on the quantum dot coulomb channel 22 are further included. In addition, the gate G is provided in the trench 31 in which the second dielectric layer 40 is deposited as the T-shaped floating gate G.
그리고, 금속산화물 검지층(50)은 이온수용액(61) 내에서 검지하고자 하는 표적분자(62)의 화학적 결합 반응에 의해 생성될 수 있는 수소이온(H+)을 비롯한 기타 전하량의 흡착율(adsorption)이 큰 탄탈륨 산화막(Ta2O5), 알루미늄 산화막(Al2O3), 실리콘 산화막(SiO2) 또는 질화규소막(Si3N4) 등의 금속산화물 및 전기적 부도체로 구성되어 진다. In addition, the metal oxide detection layer 50 has an adsorption rate of other charges including hydrogen ions (H +), which may be generated by a chemical coupling reaction of the target molecule 62 to be detected in the ion aqueous solution 61. It consists of metal oxides and electrical insulators, such as a large tantalum oxide film (Ta 2 O 5 ), aluminum oxide film (Al 2 O 3 ), silicon oxide film (SiO 2 ) or silicon nitride film (Si 3 N 4).
또한, 금속산화물 검지층(50) 표면에 전하 흡착률을 극대화하기 위해 표면을 화학적으로 처리시켜 화학처리 표면층을 형성시킬 수 있다. 또한, 금속산화물 검지층(50)은 항체-항원 반응을 이용하여 표적분자(62)를 검지하는 경우, 특이항원에 작용하는 특정한 항체를 고정화시키기 위해 화학적 처리를 할 수 있다. 예를 들어, 표적분자(62)가 전립선 특이항원(PSA)인 경우, 금속산화물 검지층(50) 표면을 실린화시키고, 항체의 표면에 존재하는 아민기(NH2)와 반응시켜 고정화할 수 있다. In addition, in order to maximize the charge adsorption rate on the surface of the metal oxide detection layer 50, the surface may be chemically treated to form a chemically treated surface layer. In addition, when detecting the target molecule 62 using the antibody-antigen reaction, the metal oxide detection layer 50 may be chemically treated to immobilize a specific antibody that acts on a specific antigen. For example, when the target molecule 62 is a prostate specific antigen (PSA), the surface of the metal oxide detection layer 50 may be silanized and immobilized by reacting with an amine group (NH 2) present on the surface of the antibody. .
이하에서는 제1실시예에 따른 상온동작 단전자 트랜지스터를 이용한 바이오센서 제조방법과 함께 각각의 구성에 대해 보다 상세하게 설명하도록 한다. 먼저, 도 2는 본 발명의 제1실시예에 따른 상온동작 단전자 트랜지스터를 이용한 바이오센서 제조방법의 흐름도를 도시한 것이다. Hereinafter, each configuration will be described in detail with the biosensor manufacturing method using the room temperature operating single-electron transistor according to the first embodiment. First, FIG. 2 is a flowchart illustrating a method of manufacturing a biosensor using a single-temperature transistor operating at room temperature according to a first embodiment of the present invention.
도 3은 본 발명의 제1실시예에 따른 기판의 일예를 도시한 사시도이다. 본 발명의 바람직한 실시예에서 이용되는 기판은 매몰 산화막층(10)과 상부 실리콘층(20)이 반복하여 적층되는 기판을 이용할 수도 있으나, 여기서는 설명의 편의상 도 3에 도시된 바와 같이 실리콘기판(100), 매몰 산화막층(10) 그리고 상부 실리콘층(20)이 순차적으로 적층된 구조의 SOI 기판을 예로 들어 설명한다(S1). 또한, 실리콘기판(100)과 상부 실리콘층(20)은 다양한 종류의 전도체를 이용할 수 있으나, 여기서는 실리콘을 예로 들어 설명한다. 그리고, 매몰 산화막층(10)으로는 산화막 또는 절연막을 일예로 들어 설명한다.3 is a perspective view showing an example of a substrate according to the first embodiment of the present invention. The substrate used in the preferred embodiment of the present invention may be a substrate in which the buried oxide layer 10 and the upper silicon layer 20 are repeatedly stacked, but for convenience of description, the silicon substrate 100 is illustrated in FIG. 3. ), An SOI substrate having a structure in which the buried oxide layer 10 and the upper silicon layer 20 are sequentially stacked will be described as an example (S1). In addition, although the silicon substrate 100 and the upper silicon layer 20 may use various kinds of conductors, silicon will be described as an example. The buried oxide film layer 10 will be described using an oxide film or an insulating film as an example.
도 4는 본 발명의 제 1실시예에 따른 나노선구조물(21)이 형성된 상태를 보여주는 일부단면 사시도이다. 도 4에 도시된 바와 같이, SOI기판 상에 나노선구조물(21)을 형성하게 된다(S2). 나노선구조물(21)은 상부 실리콘층(20)을 식각하여 형성한다. 이를 위해, 상부 실리콘층 위에 감광제(resist)을 도포 후 포토리소그래피나 전자빔 리소그래피를 이용하여 패턴을 형성한 다음, 형성된 패턴을 마스크로 상부실리콘층(20)을 식각하여 형성하게 된다. 이와 같이 정의되는 나노선구조물(21)은, 바람직하기로는 상온동작 단전자 트랜지스터를 이용한 바이오센서의 전체 크기를 최소화할 수 있도록 폭과 길이가 각각 1~50㎚와 0.1~10㎛로 형성하는 것이 바람직하다.4 is a partial cross-sectional perspective view showing a state in which the nanowire structure 21 according to the first embodiment of the present invention is formed. As shown in FIG. 4, the nanowire structure 21 is formed on the SOI substrate (S2). The nanowire structure 21 is formed by etching the upper silicon layer 20. To this end, after the photoresist is applied on the upper silicon layer, a pattern is formed by photolithography or electron beam lithography, and then the upper silicon layer 20 is etched using the formed pattern as a mask. The nanowire structure 21 defined as described above is preferably formed to have a width and a length of 1 to 50 nm and 0.1 to 10 μm, respectively, so as to minimize the overall size of the biosensor using the room temperature operating single-electron transistor. desirable.
도 5는 본 발명의 제 1실시예에 따른 제1유전층(30)이 형성된 상태를 보여주는 일부단면 사시도이다. 도 5에 도시된 바와 같이, 다음 단계는 기판 상부에 제1유전층(30)을 형성하는 단계이다(S3). 제1유전층(30)은 일정한 두께를 가지도록 형성하는 것도 가능하고, 도 5에서와 같이 상부가 일정한 표면을 가지도록 형성하는 것도 가능하다. 이러한 제1유전층(30)은 전기적인 절연을 시켜주는 절연체의 역할을 하며 다양한 절연 물질을 사용할 수 있으며 실리콘 산화막, 실리콘 질화막을 예로 들 수 있다. 본 발명의 바람직한 실시예에서, 제1유전층(30)의 형성방식으로는 증착방식을 이용하는 것이 바람직하다. 이는 제1유전층(30)이 기판 전면에 일정한 두께로 증착이 가능하고, 특히 그 두께 조절이 용이하기 때문이다.5 is a partial cross-sectional perspective view showing a state in which the first dielectric layer 30 according to the first embodiment of the present invention is formed. As shown in FIG. 5, the next step is to form the first dielectric layer 30 on the substrate (S3). The first dielectric layer 30 may be formed to have a constant thickness, or may be formed to have a constant surface at an upper portion as shown in FIG. 5. The first dielectric layer 30 serves as an insulator for providing electrical insulation and may use various insulating materials. Examples of the first dielectric layer 30 may include a silicon oxide film and a silicon nitride film. In a preferred embodiment of the present invention, it is preferable to use a deposition method as the formation method of the first dielectric layer 30. This is because the first dielectric layer 30 can be deposited to a predetermined thickness on the entire surface of the substrate, and in particular, its thickness can be easily adjusted.
도 6은 본 발명의 제 1실시예에 따른 트랜치(31)와 양자점 쿨롱채널(22)이 형성된 일예를 보여주는 일부 단면 사시도이고, 도 7은 본 발명의 제 1실시예에 따른 양자점 쿨롱채널(22)이 형성된 다른 일예를 보여주는 일부 단면 사시도이다. 도 6 및 도 7에 도시된 바와 같이, 다음단계는 양자점 쿨롱채널(22)을 형성하는 단계이다(S4). 양자점 쿨롱채널(22)은 나노선구조물(21)이 드러나도록 제 1유전층(30)을 식각하여 트랜치(31)를 형성하여 정의하게 된다. 6 is a partial cross-sectional perspective view showing an example in which the trench 31 and the quantum dot coulomb channel 22 according to the first embodiment of the present invention are formed, and FIG. 7 is a quantum dot coulomb channel 22 according to the first embodiment of the present invention. Is a partial cross-sectional perspective view showing another example in which) is formed. 6 and 7, the next step is to form a quantum dot coulomb channel 22 (S4). The quantum dot coulomb channel 22 is defined by forming the trench 31 by etching the first dielectric layer 30 so that the nanowire structure 21 is exposed.
트랜치(31)는 나노선구조물(21)의 중간 부분에 직교하도록 마스크패턴을 형성 후 제1유전층(30)을 건식 식각에 의해 형성하거나 또는 집속 이온빔(Focus Ion Beam) 방식으로 제1유전층(30)을 식각하여 형성한다. 이어서 트랜치(31)에 드러난 나노선구조물(21)의 중간 부분을 일부 식각하여 양자점 쿨롱채널(22)을 형성할 수도 있다. 도 6에서 도시된 바와 같이, 양자점 쿨롱채널(22)은 나노선구조물(21)이 드러나도록 제1유전층(30)만을 식각하여 형성하게 된다. 또한, 도 7에서 도시된 바 같이 양자점 쿨롱채널(22)의 두께를 얇게 형성하기 위해 나노선구조물(21)의 두께 일부를 식각하여 형성할 수도 있다. The trench 31 may form a first dielectric layer 30 by dry etching after forming a mask pattern to be orthogonal to the middle portion of the nanowire structure 21 or by using a focused ion beam method. ) Is formed by etching. Subsequently, the middle portion of the nanowire structure 21 exposed in the trench 31 may be partially etched to form the quantum dot coulomb channel 22. As shown in FIG. 6, the quantum dot coulomb channel 22 is formed by etching only the first dielectric layer 30 so that the nanowire structure 21 is exposed. In addition, as shown in FIG. 7, a portion of the thickness of the nanowire structure 21 may be etched to form a thin thickness of the quantum dot coulomb channel 22.
이와 같이 트랜치(31)를 형성함에 따라 외부에 노출되는 나노선구조물(21)에 의해 형성되는 양자점 쿨롱채널(22)은 1~50㎚의 폭과 1~50nm의 두께로 형성하는 것이 가능하게 된다. 여기서 정의되는 양자점 쿨롱채널(22)의 폭은 나노선구조물(21)의 폭에 해당한다. 또한, 양자점 쿨롱채널(22)은 최소한의 크기를 갖도록 트랜치(31) 폭을 1~100㎚로 형성하는 것이 바람직하다.As the trench 31 is formed as described above, the quantum dot coulomb channel 22 formed by the nanowire structure 21 exposed to the outside may be formed to have a width of 1 to 50 nm and a thickness of 1 to 50 nm. . The width of the quantum dot coulomb channel 22 defined herein corresponds to the width of the nanowire structure 21. In addition, the quantum dot coulomb channel 22 is preferably formed to have a trench 31 width of 1 to 100nm to have a minimum size.
도 8은 본 발명의 제 1실시예에 따른 제2유전층(40)이 형성된 상태를 보여주는 일부 단면사시도이다. 도 8에 도시된 바와 같이, 다음 단계는 기판의 상면에 제2유전층(40)을 형성하는 단계이다(S5). 제2유전층(40)은 양자점 쿨롱채널(22)과 후술할 T형 부유게이트(G)와의 절연을 위한 게이트 산화막으로서, 첫 번째 게이트산화막은 열산화 공정을 통하여 양자점 쿨롱채널(22)을 감싸는 산화막을 형성하며 이 과정에서 양자점 쿨롱채널(22)의 크기는 1nm~5nm 만큼 미세화되어 상온동작이 가능토록 한다. 이 후 증착공정을 통하여 제1유전층(30)의 상부와 트랜치(31)에 일정한 두께로 증착된다.8 is a partial cross-sectional perspective view showing a state in which the second dielectric layer 40 is formed according to the first embodiment of the present invention. As shown in FIG. 8, the next step is to form the second dielectric layer 40 on the upper surface of the substrate (S5). The second dielectric layer 40 is a gate oxide film for insulating the quantum dot coulomb channel 22 and the T-type floating gate G to be described later. The first gate oxide film is an oxide film surrounding the quantum dot coulomb channel 22 through a thermal oxidation process. In this process, the size of the quantum dot coulomb channel 22 is miniaturized by 1 nm to 5 nm to allow room temperature operation. Thereafter, the deposition process is deposited on the upper portion of the first dielectric layer 30 and the trench 31 with a predetermined thickness.
이처럼 제2유전층(40)을 형성하게 되면, 트랜치(31)의 폭이 그만큼 줄어들기 때문에 후술하는 후공정에서 형성되는 T형 부유 게이트(G)의 폭을 더욱 좁게 형성할 수 있게 된다. 이와 같은 기능을 하는 제2유전층(40)은 열산화공정, 또는 열산화공정후 증착공정을 통하여 형성하는 것이 바람직하다. 도 8은 양자점 쿨롱채널(22)을 형성 후 제2유전층(40)이 열산화공정 후 증착공정을 통해 형성된 예를 보여주고 있다. 도 9는 본 발명의 제 1실시예에 따른 제2유전층(40)이 형성된 상태를 보여주는 도 8의 A-A 단면도이다. As such, when the second dielectric layer 40 is formed, the width of the trench 31 is reduced by that much, so that the width of the T-type floating gate G formed in a later process, which will be described later, may be further narrowed. The second dielectric layer 40 having such a function is preferably formed through a thermal oxidation process or a deposition process after the thermal oxidation process. FIG. 8 illustrates an example in which the second dielectric layer 40 is formed through a thermal oxidation process and then a deposition process after the quantum dot coulomb channel 22 is formed. 9 is a cross-sectional view taken along line A-A of FIG. 8 showing a state in which the second dielectric layer 40 is formed according to the first embodiment of the present invention.
도 10은 본 발명의 제 1실시예에 따른 T형 부유 게이트(G)가 형성된 상태를 보여주는 일부 단면사시도이다. 도 10에 도시된 바와 같이, 다음 단계는 T형 부유게이트(G)를 형성하는 단계이다(S6). T형 부유게이트(G)는 트랜치(31)에 전도물질을 충진하는 형태로 형성된다. 즉, 트랜치(31)의 제작으로 양자점 쿨롱채널(22)이 형성되고, 이 양자점 쿨롱채널(22)을 제2유전층(40)으로 감싼 다음 그 위로 전도물질을 충전하여 T형 부유게이트(G)를 형성하게 되는 것이다. 10 is a partial cross-sectional perspective view showing a state in which a T-type floating gate G is formed according to a first embodiment of the present invention. As shown in Figure 10, the next step is to form a T-type floating gate (G) (S6). The T-type floating gate G is formed to fill the trench 31 with a conductive material. That is, the quantum dot coulomb channel 22 is formed by fabrication of the trench 31, and the quantum dot coulomb channel 22 is wrapped with the second dielectric layer 40, and then a conductive material is filled thereon to fill the T-type floating gate (G). Will form.
한편, 본 발명에 따른 제1실시예의 제조방법은 형성된 제3유전막(40)의 일부를 식각하는 단계와, 트랜지스터의 소스(S)와 드레인(D)을 형성하기 위해 불순물을 도핑하는 단계를 더 포함하여 구성할 수도 있다.Meanwhile, the manufacturing method of the first embodiment according to the present invention further includes etching a part of the formed third dielectric film 40 and doping impurities to form the source S and the drain D of the transistor. It can also be configured to include.
도 11은 본 발명의 제 1실시예에 따른 증착공정으로 형성된 제2유전층(40)의 평면층을 식각하여 측벽스페이서(S1)가 형성된 상태를 보여주는 단면도이다. 즉, 도 11에서 도시된 바와 같이, 제2유전층(40)중 평면층을 식각하게 된다. 증착공정으로 형성된 제2유전층(40)을 트랜치(31) 벽면에만 존재하도록 식각하여 측벽스페이서(S1)를 형성하여 구성할 수 있다. 이때 게이트산화막은 열산화공정으로 형성된 제1게이트산화막이 존재하게 된다. 즉 도 11은 본 발명의 제 1실시예에 따른 제2유전층(40)의 일부를 식각하여 측벽 스페이서(S1)가 형성된 상태를 보여주는 단면도이다.FIG. 11 is a cross-sectional view illustrating a state in which a sidewall spacer S1 is formed by etching a planar layer of the second dielectric layer 40 formed by the deposition process according to the first embodiment of the present invention. That is, as shown in FIG. 11, the planar layer of the second dielectric layer 40 is etched. The second dielectric layer 40 formed by the deposition process may be etched to exist only on the wall of the trench 31 to form a sidewall spacer S1. In this case, the gate oxide film has a first gate oxide film formed by a thermal oxidation process. 11 is a cross-sectional view illustrating a state in which sidewall spacers S1 are formed by etching a portion of the second dielectric layer 40 according to the first embodiment of the present invention.
또한, 소스(S)와 드레인(D)을 만들기 위해 불순물로 도핑하는 단계를 포함할 수 있다. 건식식각을 통하여 제1유전층(30)과 제2유전층(40)을 불순물 도핑이 가능한 두께로 전부 또는 일부 식각한 후 T형 부유게이트(G)를 마스크로 하여 불순물로 도핑한다. 본 발명의 바람직한 실시예는 T형 부유게이트(G)의 형성방법에 따라 불순물 도핑을 다음과 같이 할 수 있다. In addition, it may include the step of doping with impurities to make the source (S) and drain (D). Through dry etching, the first dielectric layer 30 and the second dielectric layer 40 are partially or partially etched to a thickness capable of doping impurities, and then doped with impurities using the T-type floating gate G as a mask. According to a preferred embodiment of the present invention, the doping of impurities may be performed as follows according to the method of forming the T-type floating gate (G).
첫째, T형 부유게이트(G)를 형성하여 제1유전층(30)과 제2유전층(40)을 전부 또는 일부 식각한 후 도핑한다. 둘째, 트랜치(31)에만 게이트(G)를 형성하여 제1유전층(30)과 제2유전층(40)을 전부 또는 일부 식각한 후 도핑한다. 셋째, 트랜치(31)에만 게이트(G)를 형성하여 제1유전층(30)과 제2유전층(40)을 식각한 후 측벽 스페이서(S1)를 형성한 후 도핑한다. 도 12는 T형 부유게이트(G)를 형성하여 제1유전층(30)과 제2유전층(40)을 일부 식각하여 불순물을 도핑하여 소스(S) 및 드레인(D)이 형성된 단면사시도이다. First, the first dielectric layer 30 and the second dielectric layer 40 are etched by forming a T-type floating gate G and then doped. Second, the gate G is formed only in the trench 31 to etch all or part of the first dielectric layer 30 and the second dielectric layer 40 and then doping. Third, the gate G is formed only in the trench 31 to etch the first dielectric layer 30 and the second dielectric layer 40, and then do the sidewall spacers S1. FIG. 12 is a cross-sectional perspective view showing a source S and a drain D formed by forming a T-type floating gate G to etch impurities to partially etch the first dielectric layer 30 and the second dielectric layer 40.
다음으로 T형 부유게이트(G)를 형성한 후에, 상부로 금속산화물 검지층(50)을 증착시키게 된다(S7). 도 13은 본 발명의 제1실시예에 따른 상부로 금속산화물 검지층(50)이 형성된 상태의 사시도를 도시한 것이다. Next, after forming the T-type floating gate (G), the metal oxide detection layer 50 is deposited on the top (S7). FIG. 13 is a perspective view of a state in which a metal oxide detection layer 50 is formed thereon according to a first embodiment of the present invention.
이러한 금속산화물 검지층(50)은 이온수용액(61) 내에서 검지하고자 하는 표적분자(62)의 화학적 결합 반응에 의해 생성될 수 있는 수소이온(H+)을 비롯한 기타 전하량의 흡착율(adsorption)이 큰 탄탈륨 산화막(Ta2O5), 알루미늄 산화막(Al2O3), 실리콘 산화막(SiO2) 또는 질화규소막(Si3N4) 등의 금속산화물 및 전기적 부도체로 구성되어 진다. The metal oxide detection layer 50 has a large adsorption rate of other charges including hydrogen ions (H +), which may be generated by a chemical coupling reaction of the target molecule 62 to be detected in the ion aqueous solution 61. It consists of metal oxides and electrical insulators, such as tantalum oxide film (Ta 2 O 5 ), aluminum oxide film (Al 2 O 3 ), silicon oxide film (SiO 2 ) or silicon nitride film (Si 3 N 4).
또한, 금속산화물 검지층(50) 표면에 전하 흡착률을 극대화하기 위해 표면을 화학적으로 처리시켜 화학처리 표면층을 형성시킬 수 있다. 또한, 금속산화물 검지층(50)은 항체-항원 반응을 이용하여 표적분자(62)를 검지하는 경우, 특이항원에 작용하는 특정한 항체를 고정화시키기 위해 화학적 처리를 할 수 있다. 예를 들어, 표적분자(62)가 전립선 특이항원(PSA)인 경우, 금속산화물 검지층(50) 표면을 실린화시키고, 항체의 표면에 존재하는 아민기(NH2)와 반응시켜 고정화할 수 있다. In addition, in order to maximize the charge adsorption rate on the surface of the metal oxide detection layer 50, the surface may be chemically treated to form a chemically treated surface layer. In addition, when detecting the target molecule 62 using the antibody-antigen reaction, the metal oxide detection layer 50 may be chemically treated to immobilize a specific antibody that acts on a specific antigen. For example, when the target molecule 62 is a prostate specific antigen (PSA), the surface of the metal oxide detection layer 50 may be silanized and immobilized by reacting with an amine group (NH 2) present on the surface of the antibody. .
그리고, 금속산화물 검지층(50)을 형성한 후, 상부로 이온수용액 용기(60)를 형성시키게 된다(S8). 이온수용액 용기(60) 내에는 표적분자(62)를 함유한 이온수용액(61)이 담겨지게 된다. 이러한 이온수용액(61)은 앞서 언급한 금속산화물 검지층(50)의 표면과 접촉되게 된다. 따라서 금속산화물 검지층(50)의 표면에서 이온수용액(61) 내에 포함된 표적분자(62)들이 화학적 반응을 일으켜 H+를 비롯한 기타 전하량(Q)이 발생되게 된다. After the metal oxide detection layer 50 is formed, the ion aqueous solution container 60 is formed at the top (S8). The ion aqueous solution container 60 contains the ion aqueous solution 61 containing the target molecules 62. The ion aqueous solution 61 comes into contact with the surface of the metal oxide detection layer 50 mentioned above. Therefore, the target molecules 62 included in the ion aqueous solution 61 react with each other at the surface of the metal oxide detection layer 50 to generate H + and other charges Q.
이온수용액 용기(60)를 형성하는 방법의 일예로는 상부로 표적분자(62)와 반응하지 않는 절연막층을 증착하고, 절연막층 일부를 금속산화물 검지층(50)의 표면이 노출될 때까지 식각하여 형성시킬 수 있다. 도 14는 본 발명의 제1실시예에 따른 상부로 절연막층이 형성된 상태의 사시도를 도시한 것이다. As an example of a method of forming the ion-aqueous solution container 60, an insulating film layer that does not react with the target molecule 62 is deposited on the upper portion, and a portion of the insulating film is etched until the surface of the metal oxide detection layer 50 is exposed. Can be formed. 14 is a perspective view of a state in which an insulating film layer is formed in an upper portion according to the first embodiment of the present invention.
도 14에 도시된 바와 같이, 절연막층을 금속산화물 검지층(50) 상부로 증착시킨 후 T형 게이트(G)의 폭과 길이에 맞게 절연막층 일부를 금속산화물 검지층(50)의 표면이 노출될 때까지 식각하여 용기(60) 형태를 만들어 내부에 이온수용액(61)을 저장할 수 있도록 구성한다. 도 15는 본 발명의 제1실시예에 따른 상온동작 단전자 트랜지스터를 이용한 바이오센서의 사시도를 도시한 것이다. 도 16은 도 15의 B-B 단면도를 도시한 것이다. As shown in FIG. 14, after the insulating layer is deposited on the metal oxide detection layer 50, a portion of the insulating layer is exposed to the width and length of the T-type gate G to expose the surface of the metal oxide detection layer 50. Etch until it is configured to form a container 60 so that the ion solution 61 can be stored therein. FIG. 15 illustrates a perspective view of a biosensor using a room temperature operating single-electron transistor according to a first embodiment of the present invention. FIG. 16 illustrates a cross-sectional view taken along line B-B in FIG. 15.
이하에서는 본 발명의 제2실시예에 따른 상온동작 단전자 트랜지스터를 이용한 바이오센서의 구성 및 제조방법을 설명하도록 한다. 기본적인 구성과 제조방법은 앞서 언급한 제1실시예와 동일하므로 차이점을 위주로 설명하도록 한다. 먼저, 도 17은 본 발명의 제2실시예에 따른 상온동작 단전자 트랜지스터를 이용한 바이오센서의 사시도를 도시한 것이다. 그리고, 도 18은 본 발명의 제2실시예에 따른 상온동작 단전자 트랜지스터를 이용한 바이오센서의 평면도를 도시한 것이다. Hereinafter, the configuration and manufacturing method of a biosensor using a room temperature operating single-electron transistor according to a second embodiment of the present invention will be described. Since the basic configuration and manufacturing method are the same as in the first embodiment described above, the differences will be mainly described. First, FIG. 17 illustrates a perspective view of a biosensor using a room temperature operating single-electron transistor according to a second embodiment of the present invention. 18 is a plan view of a biosensor using a room temperature operating single-electron transistor according to a second embodiment of the present invention.
도 17 및 도 18에 도시된 바와 같이, 본 발명의 제2실시예에 따른 상온동작 단전자 트랜지스터를 이용한 바이오센서는 하나의 T형 부유게이트(G)와 이온수용액 용기(60)에 대해 복수의 드레인(D)과 복수의 소스(S) 및 복수의 양자점 쿨롱채널(22)을 구비하고 있음을 알 수 있다. 이는 제1실시예에 따른 제조방법에서 상부실리콘층(20)을 식각하여 나노선 구조물(21)을 형성할 때, 하나가 아닌 복수의 나노선 구조물(21)을 형성시키도록 한다. As shown in FIG. 17 and FIG. 18, a biosensor using a single-electron transistor operating at room temperature according to a second embodiment of the present invention has a plurality of T-type floating gates G and a plurality of ion solution containers 60. It can be seen that the drain D, the plurality of sources S, and the plurality of quantum dot coulomb channels 22 are provided. In the manufacturing method according to the first embodiment, when the upper silicon layer 20 is etched to form the nanowire structure 21, the plurality of nanowire structures 21 are formed instead of one.
따라서 후에 설명되는 바와 같이, 하나의 바이오센서에 다수의 소스(S)-양자점 쿨롱채널(22)-드레인(D)을 구비하고 있어 각각 소스(S)-드레인(D)에 흐르는 전류(Ids)값을 측정할 수 있어 보다 신속하고 정확하게 표적분자(62)를 분석할 수 있게 된다. 즉, 하나의 T형 부유게이트(G)를 공용으로 다수의 소스(S)-양자점 쿨롱채널(22)-드레인(D)으로 집적된 단전자 트랜지스터들을 추가하게 됨으로써 T형 부유게이트(G)/금속산화물 검지층(50) 상부에 위치한 하나의 이온수용액 용기(60) 내에 존재하는 표적분자(62)가 화학반응을 하는 동안 각각의 단전자 트랜지스터의 소스(S)-드레인(D) 전류(Ids)의 변화를 동시에 측정하여 해독함으로써 신뢰도를 높이면서 소요되는 시간을 대폭 단축시킬 수 있게 된다. Therefore, as will be described later, one biosensor has a plurality of sources (S)-quantum dot coulomb channel (22)-drain (D) so that the current (I ds ) flowing through the source (S)-drain (D), respectively. ) Can be measured to analyze the target molecule 62 more quickly and accurately. That is, by adding a single electron transistor integrated with a plurality of sources (S)-quantum coulomb channel 22-drain (D) by using one T-type floating gate (G) in common, T-type floating gate (G) / The source (S) -drain (D) current (I) of each single-electron transistor during the chemical reaction of the target molecules 62 present in the one ion aqueous solution 60 located above the metal oxide detection layer 50. By simultaneously measuring and decoding the change in ds ), it is possible to greatly reduce the time required while increasing the reliability.
이하에서는 본 발명의 일실시예에 따른 바이오센서를 갖는 표적분자(62) 분석시스템의 구성과 표적분자(62) 분석방법에 대해 설명하도록 한다. 도 19는 본 발명의 일실시예에 따른 바이오센서를 갖는 표적분자(62) 분석시스템의 구성을 모식적으로 나타낸 단면도를 도시한 것이다. 그리고, 도 20은 본 발명의 일실시예에 따른 바이오센서를 갖는 표적분자(62) 분석시스템을 이용한 분석방법의 흐름도를 도시한 것이다. 또한, 도 21은 이온수용액 내에 포함된 표적분자(62)의 화학적 결합 발생 이전과 이후의 전압인가부(70)에서 인가되는 게이트전압(Vg)과 측정수단(80)에서 측정되는 전류값(Ids) 특성곡선(characteristic curve) Ids-Vg 그래프의 변화를 도시한 것이다. 표적분자의 화학적 결합이전의 쿨롱진동 전류(실선으로 표시)가 표적분자의 화학적 결합에 의해 발생된 전하량들, 혹은 표적분자가 금속산화물 검지층(50)에 결합되어 쿨롱진동 전류의 전이(shift)를 보여준다(점선으로 표시). Hereinafter will be described the configuration of the target molecule 62 analysis system having a biosensor and the target molecule 62 analysis method according to an embodiment of the present invention. 19 is a cross-sectional view schematically showing the configuration of a target molecule 62 analysis system having a biosensor according to an embodiment of the present invention. And, Figure 20 shows a flow chart of the analysis method using a target molecule 62 analysis system having a biosensor according to an embodiment of the present invention. In addition, FIG. 21 shows the gate voltage V g applied by the voltage applying unit 70 before and after chemical bonding of the target molecules 62 contained in the ion aqueous solution and the current value measured by the measuring means 80 ( I ds ) Characteristic curve I ds -V g Shows the change in the graph. Coulomb vibration currents (indicated by solid lines) before the chemical bonding of the target molecules are charged by the chemical bonding of the target molecules, or the target molecules are coupled to the metal oxide detection layer 50 to shift the coulomb vibration currents. (Shown with a dashed line).
도 19에 도시된 바와 같이, 측정수단(80)은 실시간으로 소스(S)와 드레인(D) 간에 흐르는 전류(Ids)값을 게이트 전압(Vg)의 함수로 측정하게 됨을 알 수 있다. 표적분자(62)의 분석방법은 먼저, 이온수용액 내로 표적분자 주입이전에 전압인가부(70)가 이온수용액(61) 내에 구비된 기준전극(reference electrode)으로 게이트 전압(Vg)을 인가하여 측정수단(80)에서 전류값(Ids) 을 측정, 표적분자 주입이전의 Ids-Vg 특성곡선을 얻는다(S10). As shown in FIG. 19, it can be seen that the measuring means 80 measures the value of the current I ds flowing between the source S and the drain D in real time as a function of the gate voltage V g . In the method of analyzing the target molecules 62, first, a voltage applying unit 70 applies a gate voltage V g to a reference electrode provided in the ion aqueous solution 61 before injection of the target molecules into the ion aqueous solution. In the measuring means 80, the current value I ds is measured to obtain an I ds -V g characteristic curve prior to injection of the target molecule (S10).
다음, 이온수용액(61) 내로 검지하고자 하는 표적분자(62)(target molecule)들을 주입시켜 표적분자(62)들이 금속산화물 검지층(50) 표면과 화학적 결합하여 반응하도록 한다(S20). 또한, 이러한 화학적 결합은 항원-항체 반응이 될 수 있다. 이러한 화학적 반응, 결합은 전하량들을 검지층(50) 표면에 흡착시킬 수만 있다면 어떠한 종류도 가능하다. 표적분자(62)가 특이항원인 경우 금속산화물 검지층(50) 표면에 이러한 특이항원과 작용하는 특정 항체를 고정화하는 화학처리를 수행하게 된다. 예를 들어, 특이 항원이 전립선 특이항원(PSA)인 경우, 금속산화물 검지층(50) 표면을 실린화시키고 항체의 표면에 존재하는 아민기(NH2)와 반응시켜 고정화할 수 있다. Next, the target molecules 62 to be detected into the ion aqueous solution 61 are injected to allow the target molecules 62 to chemically react with the surface of the metal oxide detection layer 50 (S20). In addition, such chemical binding can be an antigen-antibody reaction. Such chemical reactions and bonds can be of any kind as long as they can adsorb charges on the detection layer 50 surface. When the target molecule 62 is a specific antigen, a chemical treatment is performed to immobilize a specific antibody that functions with the specific antigen on the surface of the metal oxide detection layer 50. For example, when the specific antigen is prostate specific antigen (PSA), the surface of the metal oxide detection layer 50 may be silanized and immobilized by reacting with an amine group (NH 2) present on the surface of the antibody.
이러한 화학적 결합에 의해 생성되는 수소이온을 비롯한 기타 전하량(Q)들이 금속산화물 검지층(50) 표면에 흡착하게 된다(S30). Hydrogen ions and other charges (Q) generated by such chemical bonds are adsorbed onto the surface of the metal oxide detection layer 50 (S30).
따라서, 이러한 금속산화물 검지층(50) 표면에 흡착된 전하량에 의한 T형 부유게이트(G)의 정전 포텐셜이 변화되게 된다(S40). 그리고, T형 부유게이트(G)의 정전포텐셜이 변화되게 됨으로써, T형 부유게이트(G) 하단에 위치한 양자점 쿨롱채널(22)의 정전포텐셜의 변화를 유도하여 소스(S)-드레인(D) 간의 전류(Ids)가 변화되게 된다(S50, S60). 분석수단은 이러한 표적분자 주입후의 전류(Ids)값의 변화를 감지하고 새로운 Ids-Vg 특성을 측정(S70), 표적분자 주입 이전의 Ids-Vg 특성곡선과 비교/분석하여(S80) 이온수용액(61) 내의 표적분자(62)의 정체를 해독하게 된다. Therefore, the electrostatic potential of the T-type floating gate G is changed by the amount of charge adsorbed on the surface of the metal oxide detection layer 50 (S40). In addition, the electrostatic potential of the T-type floating gate G is changed, thereby inducing a change in the electrostatic potential of the quantum dot coulomb channel 22 located at the lower end of the T-type floating gate G, thereby allowing the source S to drain D. The current I ds of the liver is changed (S50, S60). The analytical means detects the change of the current (I ds ) value after injection of the target molecule and measures the new I ds -V g characteristic (S70), and compares / analyzes the I ds -V g characteristic curve before the target molecule injection ( S80) The identity of the target molecules 62 in the ion aqueous solution 61 is deciphered.
또한, 앞서 설명한 제2실시예에 따른 바이오센서를 이용하여 표적분자(62)를 분석하게 되는 경우, 즉, 하나의 T형게이트(G)와 이온수용액 용기(60)를 공용으로 수 개의 소스(S)-양자점 쿨롱채널(22)-드레인(D)으로 집적된 단전자 트랜지스터들을 추가함으로써 T형 부유게이트(G) 및 금속산화물 검지층(50) 상부에 위치한 하나의 이온수용액(61) 내에서 표적분자(62)가 화학반응을 하는 동안, 다수의 소스(S)-드레인(D) 각각에 구비된 측정수단(80)에서 게이트전압의 함수로 전류(Ids)를 측정하고 각각의 전류(Ids)변화를 동시에 측정하여 표적분자 주입이전의 Ids-Vg 특성곡선과 비교/분석하여 표적분자 정체를 해독함으로써 신뢰도를 높이면서 소요되는 시간을 대폭 단축시킬 수 있게 된다. In addition, when the target molecule 62 is analyzed using the biosensor according to the second embodiment described above, that is, one T-type gate G and the ion aqueous solution 60 are shared by several sources ( By adding single-electron transistors integrated into the S) -quantum dot coulomb channel 22-drain D, in one ion aqueous solution 61 located above the T-type floating gate G and the metal oxide detection layer 50 During the chemical reaction of the target molecules 62, the measuring means 80 provided in each of the plurality of sources S-drain D measures the current I ds as a function of the gate voltage and Simultaneously measuring the change of I ds ) and comparing / analyzing the I ds -V g characteristic curve prior to the injection of the target molecule can decode the target molecule to significantly reduce the time required while increasing the reliability.

Claims (19)

  1. 바이오센서에 있어서, In the biosensor,
    기판상에 구비되는 소스와 드레인, 소스와 드레인 사이에 구비되는 양자점 쿨롱채널 및 상기 양자점 쿨롱채널의 상부 측에 구비되는 게이트를 갖는 단전자 트랜지스터;A single electron transistor having a source and a drain provided on a substrate, a quantum dot coulomb channel provided between the source and the drain, and a gate provided on an upper side of the quantum dot coulomb channel;
    상기 게이트의 상부 측에 구비되어, 표적분자와 화학적 결합이 가능한 금속산화물 검지층; 및A metal oxide detection layer provided on an upper side of the gate and capable of chemically bonding to a target molecule; And
    내부에 표적분자를 갖는 이온수용액이 저장되고, 상기 이온수용액이 상기 금속산화물 검지층과 접촉되도록 상기 금속산화물 검지층의 상부측에 구비되는 이온수용액 용기;를 포함하는 것을 특징으로 하는 상온동작 단전자 트랜지스터를 이용한 바이오센서.An ion aqueous solution having a target molecule therein, the ion aqueous solution container is provided on the upper side of the metal oxide detection layer so that the ion aqueous solution is in contact with the metal oxide detection layer; Biosensor using transistors.
  2. 바이오센서에 있어서, In the biosensor,
    기판상에 구비되는 복수의 소스, 각각이 상기 소스와 대향된 위치에 특정간격 이격되어 기판상에 구비되는 복수의 드레인, 상기 소스와 상기 소스와 대향된 위치에 구비된 드레인 사이 각각에 구비되는 복수의 양자점 쿨롱채널 및 복수의 상기 양자점 쿨롱채널을 공유하여 상부 측에 구비되는 게이트;A plurality of sources provided on the substrate, each of the plurality of drains provided on the substrate at specific intervals at positions opposed to the source, and a plurality of sources provided at each of the drains provided at the positions opposite to the source and the source; A gate provided on an upper side of the quantum dot coulomb channel and a plurality of quantum dot coulomb channels;
    상기 게이트의 상부 측에 구비되어, 표적분자와 화학적 결합이 가능한 금속산화물 검지층; 및A metal oxide detection layer provided on an upper side of the gate and capable of chemically bonding to a target molecule; And
    내부에 표적분자를 갖는 이온수용액이 저장되고, 상기 이온수용액이 상기 금속산화물 검지층과 접촉되도록 상기 금속산화물 검지층의 상부측에 구비되는 이온수용액 용기;를 포함하는 것을 특징으로 하는 상온동작 단전자 트랜지스터를 이용한 바이오센서.An ion aqueous solution having a target molecule therein, the ion aqueous solution container is provided on the upper side of the metal oxide detection layer so that the ion aqueous solution is in contact with the metal oxide detection layer; Biosensor using transistors.
  3. 제 1항에 있어서, The method of claim 1,
    상기 소스와 상기 양자점 쿨롱채널 및 드레인은 서로 연결되어 지고,The source and the quantum dot coulomb channel and the drain are connected to each other,
    상기 기판과 상기 소스 및 상기 드레인 사이에 구비되는 매몰산화막층; 및A buried oxide layer disposed between the substrate, the source, and the drain; And
    상기 소스와 상기 양자점 쿨롱채널 및 드레인의 상부측으로 적층되며 트랜치가 형성된 제1유전층; 및A first dielectric layer stacked on an upper side of the source, the quantum dot coulomb channel, and a drain and having a trench; And
    상기 제1유전층과 상기 양자점 쿨롱채널 상부에 증착되는 제2유전층;을 더 포함하고,And a second dielectric layer deposited on the first dielectric layer and the quantum dot coulomb channel.
    상기 게이트는 T자형 부유게이트로 상기 제2유전층이 증착된 트랜치에 구비되는 것을 특징으로 하는 상온동작 단전자 트랜지스터를 이용한 바이오센서.The gate is a T-shaped floating gate biosensor using a single-electron transistor operating at room temperature, characterized in that provided in the trench in which the second dielectric layer is deposited.
  4. 제 2항에 있어서, The method of claim 2,
    상기 소스와 상기 양자점 쿨롱채널 및 드레인은 서로 연결되어 복수의 나노선구조물을 형성하고,The source and the quantum dot coulomb channel and the drain are connected to each other to form a plurality of nanowire structures,
    상기 기판과 복수의 상기 소스 및 복수의 상기 드레인 사이에 구비되는 매몰산화막층; 및A buried oxide layer disposed between the substrate and the plurality of sources and the plurality of drains; And
    복수의 나노선구조물의 상부측으로 적층되며 트랜치가 형성된 제1유전층; 및A first dielectric layer stacked on top of the plurality of nanowire structures and having trenches formed therein; And
    상기 제1유전층과 복수의 상기 양자점 쿨롱채널 상부에 증착되는 제2유전층;을 더 포함하고,And a second dielectric layer deposited on the first dielectric layer and the plurality of quantum dot coulomb channels.
    상기 게이트는 T자형 부유게이트로 상기 제2유전층이 증착된 트랜치에 구비되는 것을 특징으로 하는 상온동작 단전자 트랜지스터를 이용한 바이오센서.The gate is a T-shaped floating gate biosensor using a single-electron transistor operating at room temperature, characterized in that provided in the trench in which the second dielectric layer is deposited.
  5. 제 1항 또는 제 2항에 있어서, The method according to claim 1 or 2,
    상기 금속산화물 검지층은, The metal oxide detection layer,
    탄탈륨 산화막, 알루미늄 산화막, 실리콘 산화막 또는 질화규소막으로 구성된 것을 특징으로 하는 상온동작 단전자 트랜지스터를 이용한 바이오센서.A biosensor using a room temperature operating single-electron transistor, comprising a tantalum oxide film, an aluminum oxide film, a silicon oxide film, or a silicon nitride film.
  6. 제 5항에 있어서, The method of claim 5,
    상기 표적분자가 특정항원인 경우When the target molecule is a specific antigen
    상기 금속산화물 검지층의 상부표면은 상기 특정항원과 반응하는 특정항체를 고정화시키기 위한 화학처리 표면층을 포함하는 것을 특징으로 하는 상온동작 단전자 트랜지스터를 이용한 바이오센서.The upper surface of the metal oxide detection layer is a biosensor using a room temperature operating single-electron transistor, characterized in that it comprises a chemical treatment surface layer for immobilizing the specific antibody reacts with the specific antigen.
  7. 적어도 하나의 매몰 산화막층 및 상부 실리콘층이 각각 적층된 기판을 갖는 상온동작 단전자 트랜지스터의 제조방법에 있어서, A method for manufacturing a room temperature operating single-electron transistor having a substrate on which at least one buried oxide layer and an upper silicon layer are laminated,
    상기 상부실리콘층을 식각하여 나노선구조물을 형성하는 제1단계; A first step of forming a nanowire structure by etching the upper silicon layer;
    상기 기판과 상기 나노선 구조물의 상부로 제1유전층을 형성하는 제2단계; A second step of forming a first dielectric layer on the substrate and the nanowire structure;
    상기 제1유전층을 식각하여 트랜치와 양자점 쿨롱채널을 형성하는 제3단계;A third step of forming a trench and a quantum dot coulomb channel by etching the first dielectric layer;
    상부로 제2유전층을 형성하는 제4단계; A fourth step of forming a second dielectric layer thereon;
    상기 트랜치에 게이트를 형성하는 제5단계; Forming a gate in the trench;
    상기 게이트의 상부로 표적분자와 화학적 결합이 가능한 금속산화물 검지층을 증착하는 제6단계; 및Depositing a metal oxide detection layer capable of chemically bonding to a target molecule on the gate; And
    내부에 표적분자를 갖는 이온수용액이 저장되고, 상기 이온수용액이 상기 금속산화물 검지층과 접촉되도록 상기 금속산화물 검지층의 상부측으로 이온수용액용기를 형성하는 제7단계;를 포함하는 것을 특징으로 하는 상온동작 단전자 트랜지스터를 이용한 바이오센서의 제조방법.A seventh step of storing an ion aqueous solution having a target molecule therein and forming an ion aqueous solution container on an upper side of the metal oxide detection layer such that the ion aqueous solution contacts the metal oxide detection layer; A method of manufacturing a biosensor using an operational single electron transistor.
  8. 적어도 하나의 매몰 산화막층 및 상부 실리콘층이 각각 적층된 기판을 갖는 상온동작 단전자 트랜지스터를 이용한 바이오센서의 제조방법에 있어서, A method of manufacturing a biosensor using a room temperature operating single-electron transistor having a substrate on which at least one buried oxide layer and an upper silicon layer are laminated,
    상기 상부실리콘층을 식각하여 복수의 나노선구조물을 형성하는 제1단계; A first step of forming a plurality of nanowire structures by etching the upper silicon layer;
    상기 기판과 복수의 상기 나노선 구조물의 상부로 제1유전층을 형성하는 제2단계; A second step of forming a first dielectric layer on top of the substrate and the plurality of nanowire structures;
    상기 제1유전층을 식각하여 트랜치와 복수의 양자점 쿨롱채널을 형성하는 제3단계;Etching the first dielectric layer to form a trench and a plurality of quantum dot coulomb channels;
    상부로 제2유전층을 형성하는 제4단계; A fourth step of forming a second dielectric layer thereon;
    상기 트랜치에 게이트를 형성하는 제5단계; Forming a gate in the trench;
    상기 게이트의 상부로 표적분자와 화학적 결합이 가능한 금속산화물 검지층을 증착하는 제6단계; 및Depositing a metal oxide detection layer capable of chemically bonding to a target molecule on the gate; And
    내부에 표적분자를 갖는 이온수용액이 저장되고, 상기 이온수용액이 상기 금속산화물 검지층과 접촉되도록 상기 금속산화물 검지층의 상부측으로 이온수용액용기를 형성하는 제7단계;를 포함하는 것을 특징으로 하는 상온동작 단전자 트랜지스터를 이용한 바이오센서의 제조방법.A seventh step of storing an ion aqueous solution having a target molecule therein and forming an ion aqueous solution container on an upper side of the metal oxide detection layer such that the ion aqueous solution contacts the metal oxide detection layer; A method of manufacturing a biosensor using an operational single electron transistor.
  9. 제 7항 또는 제8항에 있어서, The method according to claim 7 or 8,
    상기 제6단계에서, In the sixth step,
    상기 표적분자가 특정항원인 경우, 상기 금속산화물 검지층의 상부표면을 상기 특정항원과 반응하는 특정항체를 고정화시키기 위한 화학처리 표면층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 상온동작 단전자 트랜지스터를 이용한 바이오센서의 제조방법.When the target molecule is a specific antigen, the step of forming a chemical treatment surface layer for immobilizing the upper surface of the metal oxide detection layer with a specific antibody reacting with the specific antigen, characterized in that it further comprises a step Biosensor manufacturing method using.
  10. 제 7항 또는 제8항에 있어서, The method according to claim 7 or 8,
    상기 제4단계와 상기 제5단계 사이에는 증착공정으로 형성된 제2유전층의 일부를 식각하여 측벽스페이서를 형성하는 단계; 및Etching a portion of the second dielectric layer formed by the deposition process between the fourth step and the fifth step to form a sidewall spacer; And
    상기 제1유전층 일부와 상기 제2유전층 일부를 식각하여 게이트를 마스크로 불순물을 도핑하여 소스 및 드레인을 형성하는 단계를 더 포함하는 것을 특징으로 하는 상온동작 단전자 트랜지스터를 이용한 바이오센서의 제조방법.And etching a portion of the first dielectric layer and a portion of the second dielectric layer to form a source and a drain by doping an impurity with a gate as a mask to form a source and a drain.
  11. 제 7항 또는 제8항에 있어서, The method according to claim 7 or 8,
    상기 제7단계는, The seventh step,
    상기 금속산화물 검지층의 상부로 절연막층을 증착시키는 단계; Depositing an insulating layer on top of the metal oxide detection layer;
    상기 절연막층을 상기 금속산화물 검지층의 상부면이 노출될 때까지 용기형상으로 식각하는 단계; 및Etching the insulating film layer into a container shape until the top surface of the metal oxide detection layer is exposed; And
    내부에 표적분자를 포함하는 이온수용액을 투입시키는 단계를 포함하는 것을 특징으로 하는 상온동작 단전자 트랜지스터를 이용한 바이오센서의 제조방법.Method of manufacturing a biosensor using a single-electron transistor operating at room temperature, characterized in that it comprises the step of introducing an ion aqueous solution containing a target molecule therein.
  12. 제7항 또는 제8항에 있어서, The method according to claim 7 or 8,
    상기 제1유전층은 증착공정을 통하여 10nm~1000nm 두께로 형성하고,The first dielectric layer is formed to a thickness of 10nm ~ 1000nm through the deposition process,
    상기 제2유전층은 열산화 공정 또는 열산화 공정 후 증착공정으로 형성하는 것을 특징으로 하는 상온동작 단전자 트랜지스터를 이용한 바이오센서의 제조방법.The second dielectric layer may be formed by a thermal oxidation process or a thermal oxidation process followed by a deposition process.
  13. 제7항 또는 제8항에 있어서, The method according to claim 7 or 8,
    상기 제1단계에서 상부실리콘층을 식각하여 형성되는 나노선구조물의 폭은 1~50nm로, 길이는 0.1~10㎛로 형성되는 것을 특징으로 하는 상온동작 단전자 트랜지스터를 이용한 바이오센서의 제조방법.The width of the nanowire structure formed by etching the upper silicon layer in the first step is 1 ~ 50nm, the length is 0.1 ~ 10㎛ manufacturing method of a biosensor using a single-electron transistor, characterized in that the formed.
  14. 제7항 또는 제8항에 있어서, The method according to claim 7 or 8,
    상기 제3단계는 식각에 의해 트랜치를 폭이 1~100nm로 형성하며, 상부실리콘층의 두께 일부를 식각하여 양자점의 두께는 1~50nm로 형성하는 것을 특징으로 하는 상온동작 단전자 트랜지스터를 이용한 바이오센서의 제조방법.In the third step, the trench is formed to have a width of 1 to 100 nm by etching, and a portion of the thickness of the upper silicon layer is etched to form a thickness of the quantum dot of 1 to 50 nm. Method of manufacturing the sensor.
  15. 바이오센서를 갖는 표적분자 분석시스템에 있어서, In the target molecule analysis system having a biosensor,
    제1항에 따른 바이오센서;A biosensor according to claim 1;
    상기 바이오센서의 이온수용액 용기 내부에 저장된 이온수용액 내에 기준전극을 통해 특정전압을 인가시키는 전압인가부;A voltage applying unit for applying a specific voltage to the ion aqueous solution stored in the ion aqueous solution container of the biosensor through a reference electrode;
    상기 바이오센서의 소스와 드레인 사이에 흐르는 전류를 측정하기 위한 측정수단; 및Measuring means for measuring a current flowing between the source and the drain of the biosensor; And
    상기 측정수단에서 측정된 데이터를 기반으로, 이온수용액에 포함된 표적분자와 상기 바이오센서의 금속산화물 검지층 사이의 화학적 결합에 의한 전류-게이트(Ids-Vg) 특성 변화를 측정하여 상기 표적분자를 분석하는 분석수단을 포함하는 것을 특징으로 하는 바이오센서를 갖는 표적분자 분석시스템.Based on the data measured by the measuring means, the current-gate (I ds -V g ) characteristic change due to chemical bonding between the target molecule contained in the ion aqueous solution and the metal oxide detection layer of the biosensor is measured to the target Target molecule analysis system having a biosensor, characterized in that it comprises an analysis means for analyzing the molecule.
  16. 바이오센서를 갖는 표적분자 분석시스템에 있어서, In the target molecule analysis system having a biosensor,
    제2항에 따른 바이오센서;A biosensor according to claim 2;
    상기 바이오센서의 이온수용액 용기 내부에 저장된 이온수용액 내에 기준전극을 통해 특정전압을 인가시키는 전압인가부;A voltage applying unit for applying a specific voltage to the ion aqueous solution stored in the ion aqueous solution container of the biosensor through a reference electrode;
    상기 바이오센서에 구비된 복수의 소스와 상기 소스에 대향된 위치에 구비된 복수의 드레인 사이에 흐르는 전류 각각을 측정하기 위한 측정수단; 및Measuring means for measuring each current flowing between a plurality of sources provided in the biosensor and a plurality of drains provided at positions opposite to the source; And
    상기 측정수단에서 측정된 데이터를 기반으로, 이온수용액에 포함된 표적분자와 상기 바이오센서의 금속산화물 검지층 사이의 화학적 결합에 의한 전류-게이트(Ids-Vg) 특성 변화를 측정하여 상기 표적분자를 분석하는 분석수단을 포함하는 것을 특징으로 하는 바이오센서를 갖는 표적분자 분석시스템.Based on the data measured by the measuring means, the current-gate (I ds -V g ) characteristic change due to chemical bonding between the target molecule contained in the ion aqueous solution and the metal oxide detection layer of the biosensor is measured to the target Target molecule analysis system having a biosensor, characterized in that it comprises an analysis means for analyzing the molecule.
  17. 제 15항 또는 제16항에 따른 분석시스템을 이용한 표적분자 분석방법에 있어서, In the target molecule analysis method using the analysis system according to claim 15,
    전압인가부에 의해 상기 이온수용액으로 전압을 인가하는 단계; Applying a voltage to the ion aqueous solution by a voltage applying unit;
    이온수용액 내로 표적분자들을 주입하기 이전에 소스-드레인 전류를 측정하는 단계; Measuring source-drain current prior to injecting target molecules into the ion aqueous solution;
    이온수용액 내로 표적분자들을 주입하여 표적분자의 화학적 결합이 발생되는 단계; Injecting target molecules into the aqueous ion solution to generate chemical bonds of the target molecules;
    상기 화학적 결합에 의해 발생된 전하량들이 금속산화물 검지층 표면에 흡착되는 단계; The charges generated by the chemical bonding are adsorbed on the surface of the metal oxide detection layer;
    상기 금속산화물 검지층 표면에 흡착된 전하량에 의해 상기 바이오센서의 게이트의 정전표텐셜이 변화하는 단계;Changing the electrostatic potential of the gate of the biosensor by the amount of charge adsorbed on the surface of the metal oxide detection layer;
    상기 바이오센서의 양자점 쿨롱채널의 정전포텐셜의 변화를 유도하여 소스와 드레인 간의 전류변화가 발생되는 단계; 및Inducing a change in the electrostatic potential of a quantum dot coulomb channel of the biosensor to generate a current change between a source and a drain; And
    분석수단이 측정수단에 의해 표적분자 주입 이전 및 주입 이후 각각에서 측정된 소스와 드레인 간의 전류값을 기반으로 Ids-Vg 특성 변화를 감지하여 상기 표적분자를 분석하는 단계;를 포함하는 것을 특징으로 하는 표적분자 분석방법.And analyzing the target molecules by detecting an Ids-Vg characteristic change based on a current value between the source and the drain measured by the measuring means before and after the injection of the target molecule by the measuring means. Target molecule analysis method.
  18. 제 17항에 있어서, The method of claim 17,
    상기 표적분자는 특정항원이며, 상기 금속산화물 검지층의 상부표면은 상기 특정항원과 반응하는 특정항체를 고정화시키기 위한 화학처리 표면층을 포함하며, The target molecule is a specific antigen, the upper surface of the metal oxide detection layer includes a chemical treatment surface layer for immobilizing a specific antibody reacts with the specific antigen,
    상기 검지층 표면에 흡착되는 단계는, Adsorbed on the surface of the detection layer,
    상기 특정항원이 상기 화학처리표면층과 항원-항체 반응하는 단계인 것을 특징으로 하는 표적분자 분석방법.The specific antigen is a target molecule analysis method characterized in that the step of antigen-antibody reaction with the chemical treatment surface layer.
  19. 제 17항에 있어서, The method of claim 17,
    상기 전하량은 H+을 포함하는 특정 양의 양전하 또는 음전하인 것을 특징으로 하는 표적분자 분석방법.The charge amount is a target molecule analysis method, characterized in that the positive or negative charge of a certain amount including H + .
PCT/KR2013/011354 2013-12-09 2013-12-09 Bio-sensor using single electron transistor operating at room temperature, method for manufacturing same, analysis system having same, and analysis method WO2015088055A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/011354 WO2015088055A1 (en) 2013-12-09 2013-12-09 Bio-sensor using single electron transistor operating at room temperature, method for manufacturing same, analysis system having same, and analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/011354 WO2015088055A1 (en) 2013-12-09 2013-12-09 Bio-sensor using single electron transistor operating at room temperature, method for manufacturing same, analysis system having same, and analysis method

Publications (1)

Publication Number Publication Date
WO2015088055A1 true WO2015088055A1 (en) 2015-06-18

Family

ID=53371347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011354 WO2015088055A1 (en) 2013-12-09 2013-12-09 Bio-sensor using single electron transistor operating at room temperature, method for manufacturing same, analysis system having same, and analysis method

Country Status (1)

Country Link
WO (1) WO2015088055A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3605075A4 (en) * 2017-03-29 2021-01-27 Osong Medical Innovation Foundation Floating gate semiconductor nanostructure-based biosensor and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070054021A (en) * 2005-11-22 2007-05-28 삼성전자주식회사 Fet based biosensor with inorganic film, method for preparing thereof, and method for detecting biomolecule using the fet based biosensor
KR20110032172A (en) * 2009-09-22 2011-03-30 한국전자통신연구원 The bio sensor and the driving method thereof
KR101056467B1 (en) * 2010-03-05 2011-08-12 한국과학기술원 The bio-sensor using field effective transistor and its manufacturing method
JP2012078097A (en) * 2010-09-30 2012-04-19 Dainippon Printing Co Ltd Transistor type sensor
JP2013127428A (en) * 2011-12-19 2013-06-27 Dainippon Printing Co Ltd Transistor type sensor, and method for manufacturing transistor type sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070054021A (en) * 2005-11-22 2007-05-28 삼성전자주식회사 Fet based biosensor with inorganic film, method for preparing thereof, and method for detecting biomolecule using the fet based biosensor
KR20110032172A (en) * 2009-09-22 2011-03-30 한국전자통신연구원 The bio sensor and the driving method thereof
KR101056467B1 (en) * 2010-03-05 2011-08-12 한국과학기술원 The bio-sensor using field effective transistor and its manufacturing method
JP2012078097A (en) * 2010-09-30 2012-04-19 Dainippon Printing Co Ltd Transistor type sensor
JP2013127428A (en) * 2011-12-19 2013-06-27 Dainippon Printing Co Ltd Transistor type sensor, and method for manufacturing transistor type sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3605075A4 (en) * 2017-03-29 2021-01-27 Osong Medical Innovation Foundation Floating gate semiconductor nanostructure-based biosensor and method for manufacturing same
US11460433B2 (en) 2017-03-29 2022-10-04 Osong Medical Innovation Foundation Floating gate semiconductor nanostructure-based biosensor and method for manufacturing same

Similar Documents

Publication Publication Date Title
Zafar et al. Silicon nanowire field effect transistor sensors with minimal sensor-to-sensor variations and enhanced sensing characteristics
Reddy et al. High-k dielectric Al 2 O 3 nanowire and nanoplate field effect sensors for improved pH sensing
US8940548B2 (en) Sensor for biomolecules
US10126263B2 (en) Wide dynamic range fluid sensor based on nanowire platform
KR100906154B1 (en) Semiconductor nanowire sensor device and method for manufacturing the same
Kim et al. Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor
US7632670B2 (en) Fet sensor with specially configured gate electrode for the highly sensitive detection of analytes
WO2010041805A1 (en) Sensing device
US20220397547A1 (en) Floating gate semiconductor nanostructure-based biosensor and method for manufacturing same
US10481126B2 (en) Electrolyte-gated transistors for detection of molecules
KR101625705B1 (en) Method and analysis system for biosensor with roomtemperature operating singleelectron transistor
KR101040083B1 (en) nanowire transistor sensor, manufacturing method and nanoparticle detection apparatus using the same
Knopfmacher et al. Dual gated silicon nanowire field effect transistors
Kim et al. A dual-gate field-effect transistor for label-free electrical detection of avian influenza
WO2015088055A1 (en) Bio-sensor using single electron transistor operating at room temperature, method for manufacturing same, analysis system having same, and analysis method
KR20130057056A (en) Sensors for detecting ion concentration using cnt and methods manufacturing the same
WO2011138985A1 (en) Capacitive element sensor and method for manufacturing same
Midahuen et al. Wafer-scale fabrication of biologically sensitive Si nanowire FET: From pH sensing to electrical detection of DNA hybridization
US11662331B2 (en) Nanobio sensing device
US11467123B2 (en) Double-gate field-effect-transistor based biosensor
JP5737655B2 (en) Semiconductor sensor
Rollo A new design of an electrochemical (bio) sensor: High Aspect Ratio Fin-FET
Zhou et al. Fabrication of silicon nanowire pH sensors using high output, low cost sidewall mask technology
Rasool et al. Simulation-based Study of Super-Nernstian pH Sensor Based on Doping-less Tunnel-field Effect Transistor
US20220136996A1 (en) Sensor having graphene transistors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899070

Country of ref document: EP

Kind code of ref document: A1