WO2015087845A1 - Method for fractional precipitation of rare metal in aqueous system utilizing coordination polymerization - Google Patents

Method for fractional precipitation of rare metal in aqueous system utilizing coordination polymerization Download PDF

Info

Publication number
WO2015087845A1
WO2015087845A1 PCT/JP2014/082460 JP2014082460W WO2015087845A1 WO 2015087845 A1 WO2015087845 A1 WO 2015087845A1 JP 2014082460 W JP2014082460 W JP 2014082460W WO 2015087845 A1 WO2015087845 A1 WO 2015087845A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
ions
aqueous solution
dysprosium
fractional precipitation
Prior art date
Application number
PCT/JP2014/082460
Other languages
French (fr)
Japanese (ja)
Inventor
友衣子 半田
大井 健太
弘一 成田
幹也 田中
昭弘 脇坂
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Publication of WO2015087845A1 publication Critical patent/WO2015087845A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/091Esters of phosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/11Esters of phosphoric acids with hydroxyalkyl compounds without further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B58/00Obtaining gallium or indium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to an aqueous fractional precipitation method of a rare metal using coordination polymerization.
  • rare metals For rare metals (rare metals) that are in danger of stable supply, elements such as platinum group elements, tungsten, rare earth elements (rare earth), etc. that have extremely low reserves or production, or other resources such as indium Since only a very small amount is produced as a by-product when mining lime, there are elements that are difficult to increase in production according to demand.
  • the importance of recycling rare metals from used products has been advocated as a measure to secure a stable supply of rare metals essential for advanced technologies.
  • the supply structure of rare earths has become fragile, and the realization of recycling is urgently required. Separation is particularly important in the rare metal recycling process.
  • a rare metal When a rare metal is to be separated, there are two types of separation. One is separation of rare metals from base metals such as iron, and the other is mutual separation of rare metals.
  • rare metals rare earths are very similar in nature, so the latter is particularly difficult to separate.
  • neodymium magnets mainly composed of neodymium (hereinafter sometimes referred to as “Nd”), iron, and boron are considered to be the strongest among permanent magnets, and drive motors and air conditioner compressors for hybrid vehicles. It is used for motors and the like, and it is known that the addition of a small amount of dysprosium (hereinafter sometimes referred to as “Dy”) improves the coercive force.
  • Dy dysprosium
  • Shirayama et al. Are studying separation of iron and lanthanoids by a dry method (Non-patent Document 3).
  • Non-Patent Document 4 a solvent extraction method has been studied as a method for separating neodymium and dysprosium.
  • This solvent extraction method is a method in which ions to be separated dissolved in an aqueous solution are selectively extracted into an organic solvent and then back-extracted again into an aqueous solution phase.
  • This technique has been applied to many metal ion separation systems, and there are many types of extraction reagents used industrially. However, it is effective when the target substance has a high concentration, but is not suitable for a low concentration system.
  • the extraction reagent in the organic solvent that is responsible for the selectivity, so the extraction reagent can be selected according to the target, but if the properties of the metal ions are similar, such as mutual separation of rare earths, In this case, large-scale equipment, a large amount of organic solvent and energy are required.
  • Non-Patent Document 5 shows a result of separation of metal ions by acid leaching and solvent extraction to recover indium, which is one of rare metals, from a liquid crystal panel.
  • solvent extraction di- (2-ethylhexyl) phosphoric acid (Hdehp), tributyl phosphate (TBP), bis (2,4,4-trimethylpentyl) phosphinic acid (Cyanex272), Cyanex 923 (phosphine oxide) Is used as an extraction reagent, and separation of indium, aluminum, copper, iron, tin, and zinc is investigated using kerosene, toluene, n-octanol, and cyclohexane as organic solvents. Among them, it has been reported that the recovery of indium is excellent when Hdehp is used as an extraction reagent and kerosene is used as an organic solvent.
  • an “ion exchange method” is a method in which a target substance is separated by selectively desorbing after adsorbing metal ions to a porous polymer.
  • ion exchange resins and the like there is no great difference in the interaction between the exchanger itself and the rare earth, and separation is performed by using a complexing agent having selectivity for the rare earth in the desorption process.
  • a chelate resin in which a highly selective chelating agent is bound to a specific metal ion, the separation process is simplified, but an organic solvent is required for the synthesis of the chelate resin, and the synthesis process is complicated. is there.
  • an “impregnation resin method” can also be mentioned.
  • a solvent extraction reagent is used by being immersed in a porous polymer.
  • the metal ion separation mechanism is the same as the solvent extraction method described above, but is excellent in that no organic solvent is used. However, since only the liquid is infiltrated, deterioration due to the liquid starting to dissolve from the polymer is a problem.
  • “precipitation separation method” may be mentioned.
  • Aisin Seiki has announced technology to extract neodymium, dysprosium, etc. from used magnets using inosinic acid contained in skipjack soup (Non-Patent Documents 6 and 7), which is cheaper and safer than conventional methods. It can be said that it is a feature.
  • this method when 90 grams of inosinic acid per liter is mixed with 40 grams of neodymium chloride solution per liter, 95% or more of neodymium can be recovered as a precipitate, and there is a certain target for stable procurement of dysprosium. Has been. However, data on the mutual separation of neodymium and dysprosium is not shown.
  • Non-Patent Document 8 neodymium, praseodymium, and erbium are 62% di (2-ethylhexyl) phosphoric acid (HA) and 37% mono- (2-etylhexyl) phosphoric acid (H 2 A ′). It has been found that when the mixture is mixed in an acetone solution, only a precipitate is formed with HA, while lanthanum is precipitated only by complexing with H 2 A ′.
  • neodymium is 19.8% and lanthanum is 0.7% precipitated.
  • the results of separation of praseodymium and erbium are not described, but are reported to be worse than the neodymium-lanthanum system. However, there is no description about neodymium ions and dysprosium ions.
  • the present inventors have examined a method for selectively separating rare earths, particularly neodymium and dysprosium, which are very difficult to separate, and extracting them with high selectivity to the rare earths.
  • the coordination polymer is a polymer type complex formed by crosslinking an organic ligand with a metal ion, and is a material group that has been attracting attention in recent years.
  • the present inventors have found that metal (M) and Hdehp are coordinated and polymerized with ethanol or an ethanol-water mixed solvent to form [M (dehp) 3 ] n and precipitate (the above non-reactions).
  • Patent documents (9, 10) are examples of Patent documents (M) and Hdehp are coordinated and polymerized with ethanol or an ethanol-water mixed solvent to form [M (dehp) 3 ] n and precipitate (the above non-reactions).
  • FIG. 10 is a diagram for explaining the coordination polymerization of Hdehp.
  • C represents the coordination polymer [M (dehp) 3 ] n (M is a rare earth metal) when Hdehp reacts with a rare earth metal ion. Ion) is formed.
  • the Hdehp shown in A in the figure is said to form a dimer in a non-polar solvent.
  • B in the conventional solvent extraction system, three Hdehp dimers are present.
  • a 1: 6 complex is formed with a trivalent rare earth metal ion.
  • Patent Document 1 uses a hydrophilic organic solvent such as ethanol or a mixed solvent of a hydrophilic organic solvent such as ethanol and water, but considers the actual process. Then, it was found that it is difficult to use repeatedly, and it is preferable to perform fractional precipitation with a single solvent consisting of only water rather than a mixed solution.
  • a hydrophilic organic solvent such as ethanol or a mixed solvent of a hydrophilic organic solvent such as ethanol and water
  • the present invention has been made in view of the current situation, and a method of selectively separating low-cost rare metals that are difficult to separate using only water as a solvent and the rare metals after separation are recovered. It is intended to provide a method.
  • the present inventors have replaced water-soluble phosphate diesters such as dibutyl phosphate (hereinafter referred to as the following) instead of di-2-ethylhexyl phosphate (Hdehp).
  • Hdbp di-2-ethylhexyl phosphate
  • Hpmoe hydrogen phosphate
  • the separation is improved, and as the acid to be used, it is better to separate using nitric acid than hydrochloric acid, Furthermore, it was also found that the separation is improved when the coordination polymer precipitated at high temperature is aged at high temperature and then filtered.
  • a method for separating rare metal by fractional precipitation from an aqueous solution containing rare metal ions A fractional precipitation method characterized in that a water-soluble phosphoric acid diester is used as a coordination polymer forming agent, and trivalent rare metal ions are selectively converted into a coordination polymer in an aqueous solution for fractional precipitation.
  • a water-soluble phosphoric acid diester is used as a coordination polymer forming agent, and trivalent rare metal ions are selectively converted into a coordination polymer in an aqueous solution for fractional precipitation.
  • the fractional precipitation method according to [1], wherein the water-soluble phosphate diester is dibutyl phosphate or hydrogen phosphate bis [2- (methacryloyloxy) ethyl].
  • trivalent rare metals can be separated using only water as a solvent without requiring a multistage process using an organic solvent as in solvent extraction, and separation is particularly difficult. Neodymium and dysprosium can be separated.
  • the method of the present invention solidifies the extraction reagent itself, and unlike the impregnating resin that supports the liquid extraction reagent, water is the only solvent required for separation, and is very inexpensive and simple. .
  • a water-soluble phosphoric acid diester is used as a coordination polymer-forming agent, and a rare metal ion is selectively converted into a coordination polymer in an aqueous solution containing a trivalent rare metal ion. It is characterized by fractional precipitation.
  • the present invention utilizes the fact that a phosphate diester that has been acid-dissociated in an aqueous solution reacts with trivalent rare metal ions in the aqueous solution to form a coordination polymer (solid). However, it is not necessary that all the phosphoric acid diesters in the aqueous solution are acid-dissociated.
  • the water-soluble phosphate diester used in the present invention preferably has a water solubility of 0.01 mol ⁇ L ⁇ 1 or more, more preferably 0.05 mol ⁇ L ⁇ 1 .
  • a substance satisfying the above-mentioned conditions may be used for the solubility of the phosphoric diester made dissociated by mixing sodium salt or the like.
  • a phosphoric acid diester having 2 to 6 carbon atoms in the alkyl chain is desirable, and if it has a hydrophilic group such as an ether or a hydroxyl group, it may be a diester having 6 or more carbon atoms, particularly preferably easily available.
  • Commercially available water-soluble phosphoric acid diesters are used, for example:
  • trivalent rare metals in the present invention include indium, titanium, vanadium, chromium, manganese, cobalt, gallium, Zirconium, niobium, molybdenum, ruthenium, rhodium, antimony, tantalum, rhenium, thallium, bismuth can be mentioned.
  • the present invention is capable of selectively coordinating polymerizing dysprosium ions and fractionally precipitating them in an aqueous solution containing neodymium and dysprosium ions, which are difficult to separate.
  • the phosphate diester dissolved in water selectively forms a coordination polymer with the rare metal ions.
  • the coordinating polymer is precipitated, and the rare metal can be separated using only water as a solvent.
  • the concentration of the water-soluble phosphoric diester in the aqueous solution is preferably 0.01 to 0.5 mol ⁇ L ⁇ 1 .
  • the concentration of the water-soluble phosphate diester is desirably mixed so as to be approximately three times the concentration of the dysprosium ions to be separately precipitated.
  • a water-soluble phosphate diester which is a coordination polymerizing agent in a mixed solution containing neodymium ions and dysprosium ions.
  • the mixing method is not particularly limited. That is, for example, as a solution containing neodymium ions and dysprosium ions, an aqueous solution in which a salt of neodymium and dysprosium is dissolved in water is used.
  • a water-soluble phosphate diester is mixed with an aqueous solution containing these neodymium ions and dysprosium ions, or an aqueous solution in which a water-soluble phosphate diester is dissolved is mixed with the aqueous solution. Mix water accordingly.
  • the coordination polymer thus obtained is separated by washing and filtering after, for example, standing at room temperature overnight.
  • separation efficiency can be improved by mixing an acid with a liquid mixture and adjusting the acid dissociation degree of the phosphoric acid diester in this liquid mixture.
  • the acid to be mixed is not particularly limited as long as it is soluble in water.
  • nitric acid or hydrochloric acid is preferably used, and nitric acid is more preferably used.
  • the preferred acid concentration varies depending on the acid dissociation constant of the water-soluble phosphate diester and the type of acid, but when Na-type dibutyl phosphate is used in a nitric acid solution, the acid concentration is preferably 0.4 mol ⁇ L ⁇ 1 .
  • the temperature at which the solution is mixed is preferably higher than 100 ° C., more preferably 50 to 80 ° C., rather than room temperature (20 ° C.). Furthermore, if the solution is allowed to stand for 3 hours or more, preferably 24 hours or more, and more preferably 72 hours or more, rather than filtering immediately after mixing the solution, the selectivity for precipitation separation is increased.
  • the separately precipitated dysprosium can be recovered as dysprosium oxide by converting it into oxalate or carbonate and baking it. Specifically, the fractionally precipitated dysprosium is put into an aqueous solution of oxalic acid or carbonic acid or a salt of oxalic acid or carbonic acid.
  • the aqueous solution contains an amount necessary for dysprosium to precipitate as a salt of oxalic acid or carbonic acid, an amount exceeding the so-called stoichiometric ratio.
  • the recovery rate is improved by increasing the concentration, and it is preferable that the amount is twice or more.
  • the reaction is preferably performed for 1 day or longer, more preferably 2 days or longer.
  • Hdbp was changed to Na type using an aqueous NaOH solution so that the pH did not change before and after the reaction.
  • Hdbp (6.3 g) was mixed with 2.07 mL of 14.5 mol ⁇ L ⁇ 1 NaOH aqueous solution to make 100 mL with water to prepare 0.30 mol ⁇ L ⁇ 1 Nadbp aqueous solution.
  • HPmoe was changed to Na type using an aqueous NaOH solution.
  • Hpmoe 5.11 g was mixed with 1.07 mL of 14.5 mol ⁇ L ⁇ 1 NaOH aqueous solution to make 50 mL with water to prepare 0.32 mol ⁇ L ⁇ 1 Napmoe aqueous solution.
  • K sp solubility product
  • a is the activity
  • is the activity coefficient
  • c is the concentration.
  • 1, the product of concentration can be used to evaluate the effectiveness of fractional precipitation.
  • the product of this concentration is the apparent solubility (K a sp ).
  • K sp (Nd) / K sp (Dy) calculated based on the solubility product described in Liu et al., Geochim. Cosmochimica Acta., 1997, 61, 1625.
  • K sp (Nd) / K sp (Dy) calculated based on the solubility product described in Chung et al. J. Ind. Eng. Chem., 1998, 4, 277. * M indicates Nd or Dy
  • Example 1 In this example, the dependence of the precipitation rate of Nd and Dy on the HCl concentration when a single component solution of Nd and Dy and a Nadbp solution were mixed was examined. About 0.015 g of the precipitate obtained from each solution shown in Table 1-1 was weighed and subjected to acid decomposition using a microwave oven in the same manner as described in [0047]. The resulting acid solution was diluted and Nd or Dy and P concentrations were quantified by ICP-emission spectroscopic analysis. The obtained P / M molar ratio, HCl concentration at the time of mixing, Nd and Dy precipitation rates calculated from the Nd or Dy concentration in the solution are summarized in Table 1-5. FIG. 1 plots the precipitation rate against the HCl concentration.
  • the P / M molar ratio is 3, indicating that the precipitate has a coordination polymer structure. It can also be seen that the precipitation rate is higher for Dy than Nd, and the higher the HCl concentration, the lower the precipitation rate, but the greater the difference between the Nd precipitation rate and the Dy precipitation rate.
  • Example 2 In this example, the dependence of the precipitation rate of Nd and Dy on the HCl concentration when the mixture was precipitated as a dbp coordination polymer using a mixed solution of Nd and Dy was examined. As shown in Table 2-1, four types of solutions were mixed, and each weight was recorded.
  • the precipitate obtained by mixing the mixed solution of Nd and Dy and the Nadbp solution also has a coordination polymer structure.
  • the precipitation rate is higher for Dy than for Nd.
  • the HCl concentration is 5 mol ⁇ L ⁇ 1 , only Dy is selectively precipitated.
  • Example 3 In this example, the dependence of the precipitation rate on the Nadbp concentration was examined using a mixed solution of Nd and Dy.
  • Experiment No. 2-2 of Example 2 the precipitation rates of Nd and Dy were examined under the conditions where the Nadbp concentration was changed. As shown in Table 3-1, four types of solutions were mixed and each weight was recorded.
  • the Nadbp concentration is in the range of 0.03 to 0.12 mol ⁇ L ⁇ 1 , the precipitation rate of Nd slightly increases and the precipitation rate of Dy greatly increases as the Nadbp concentration increases. High Nadbp concentration increases Dy recovery but increases Nd content. On the other hand, when the Nadbp concentration is low, the Dy recovery rate is lowered, but the Nd content rate can be lowered. Therefore, it can be seen that the Nadbp concentration is preferably about three times the Dy concentration in order to reduce the Nd content and increase the Dy recovery rate.
  • Example 4 the dependence of the precipitation rate of Nd and Dy on the HNO 3 concentration in the case of precipitation as a dbp coordination polymer using a mixed solution of Nd and Dy was examined. As shown in Table 4-1, four types of solutions were mixed and each solution was allowed to stand at 20 ° C. overnight (24 h), and then the precipitated coordination polymer was washed and filtered to measure the weight. Recorded.
  • the precipitate obtained in the HNO 3 solution also has a coordination polymer structure. Moreover, the precipitation rate is higher for Dy than for Nd, and especially when the HNO 3 concentration at the time of mixing the solution is 0.40 mol ⁇ L ⁇ 1 , the precipitation rate of Nd is low and Dy selectively precipitates. .
  • Example 5 In this example, the precipitation rates of Nd and Dy when the time until filtration in Experiment No. 4-5 of Example 4 was changed were examined. After mixing the solution under the same conditions as in Experiment No. 4-5, the solution was allowed to stand at 20 ° C. as shown in Table 5-1.
  • the precipitated coordination polymer was washed and filtered to measure the weight, and the precipitate was filtered and decomposed in the same manner as described above.
  • Table 5 shows the obtained P / (Dy + Nd) molar ratio, the precipitation rate of Nd and Dy calculated from Nd and Dy concentrations in the solution, and the Dy / Nd molar ratio in the precipitate calculated from the composition analysis of the precipitate. Sum it up in two. Moreover, the change of the precipitation rate with respect to the solution standing time at 20 ° C. is plotted in FIG.
  • Example 6 In this example, when a mixed solution of Nd and Dy is used to precipitate as a dbp coordination polymer in an HNO 3 acidic solution, the effect of shaking the solution before filtration and the temperature of the solution are increased. The effect was examined.
  • the solution was mixed under the same conditions as in Experiment No. 4-5 in Example 4 above, and the solution was processed as shown in Table 6-1.
  • the precipitated coordination polymer was washed and filtered to measure the weight, and the precipitate was filtered and decomposed in the same procedure as described above.
  • the obtained P / (Dy + Nd) molar ratio, the Nd and Dy precipitation rates calculated from the Nd and Dy concentrations in the solution, and the Dy / Nd molar ratio in the precipitate calculated from the composition analysis of the precipitate are shown in Table 6- Sum it up in two.
  • the Nd precipitation rate is lower and the Dy precipitation rate is higher when shaken than when the solution is allowed to stand at 20 ° C.
  • the precipitation rate of Nd is lower and the precipitation rate of Dy is higher when the solution is allowed to stand at 80 ° C. than when the solution is shaken at 20 ° C.
  • Example 7 In this example, in Experiment No. 6-3 of Example 6, the precipitation rates of Nd and Dy when the solution standing time was changed were examined. The solution was mixed under the same conditions as in Experiment No. 6-3, and the solution was treated as shown in Table 7-1.
  • the precipitated coordination polymer was washed and filtered to measure the weight, and the precipitate was filtered and decomposed in the same procedure as described above.
  • the obtained P / (Dy + Nd) molar ratio, the Nd and Dy precipitation rates calculated from the Nd and Dy concentrations in the solution, and the Dy / Nd molar ratio in the precipitate calculated from the composition analysis of the precipitate are shown in Table 7- Sum it up in two.
  • the change of the precipitation rate with respect to the solution standing time at 80 ° C. is plotted in FIG.
  • Example 8 In this example, the precipitation rate of Nd and Dy when the Nadbp concentration was changed in Experiment No. 7-2 of Example 7 was examined.
  • the solutions were mixed as in Table 8-1.
  • the mixed solution was allowed to stand at 80 ° C. for 24 hours, and then the precipitated coordination polymer was washed and filtered to measure the weight, and the precipitate was filtered and decomposed in the same procedure as described above.
  • the obtained P / (Dy + Nd) molar ratio, the Nd and Dy precipitation rates calculated from the Nd and Dy concentrations in the solution, and the Dy / Nd molar ratio in the precipitate calculated from the composition analysis of the precipitate are shown in Table 8- Sum it up in two.
  • concentration at the time of solution mixing is plotted in FIG.
  • Example 9 In this example, the precipitation rates of Nd and Dy when the acid concentration in Experiment No. 7-1 in Example 7 was changed were examined. The solutions were mixed as shown in Table 9-1.
  • a coordination polymer is preferably formed in a 0.4 mol ⁇ L ⁇ 1 HNO 3 solution.
  • Example 10 In this example, a method for recovering fractionally precipitated Dy as a highly versatile oxide was examined.
  • the precipitate (Dy-dbp coordination polymer) obtained in Experiment No. 7-2 in Example 8 was placed in an oxalic acid or sodium bicarbonate solution as shown in Table 10-1.
  • FIG. 9-1 shows SEM images of the precipitate obtained in Experiment No. 7-2 in Example 8 and the precipitates obtained in 10-1-1 and 10-2-1.
  • Fig. 9-2 shows the powder X-ray diffraction patterns of the precipitates obtained in Experiment Nos. 10-1-2 and 10-2-2.
  • Example 11 In this example, the Nd and Dy precipitation rates when the Dy concentration and the Nadbp concentration were reduced to 1/5 in Experiment No. 7-3 in Example 7 were examined. The solutions were mixed as shown in Table 11-1.
  • Example 12 in this example, in order to investigate whether the coordination polymer forming agent of the present invention can be applied to recover indium (In) from a liquid crystal panel, In and transition metals (aluminum (Al), copper ( The acid concentration dependence of the precipitation rate from a mixed solution of Cu) and zinc (Zn) was investigated.
  • the precipitation rate of each metal element was examined under the condition that the mixed solution of Nd and Dy was changed to a mixed solution of In, Al, Cu, and Zn.
  • Four types of solutions were mixed as shown in Table 12-1 below, and each weight was recorded.
  • Table 13-1 Table 13-1 below, and each weight was recorded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Molecular Biology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The purpose of the present invention is to provide a method for selectively separating a rare metal such as indium and a rare earth, which is a substance that is usually difficult to be separated, at low cost, particularly a method for selectively separating dysprosium ions from an aqueous solution containing neodymium ions and the dysprosium ions at low cost. Rare metal ions can be separated by carrying out the selective coordination polymerization of the rare metal ions in an aqueous solution containing the rare metal ions using a water-soluble phosphoric acid diester, e.g., dibutyl phosphate ester and hydrogen=bis[2-(methacryloyloxy)ethyl] phosphate, as a coordination polymer forming agent to cause the fractional precipitation of the ions.

Description

配位高分子化を利用するレアメタルの水系分別沈殿法Aqueous fractional precipitation of rare metals using coordination polymerisation
 本発明は配位高分子化を利用するレアメタルの水系分別沈殿法に関する。 The present invention relates to an aqueous fractional precipitation method of a rare metal using coordination polymerization.
 安定供給が危惧されているレアメタル(希少金属)には、白金族元素、タングステン、希土類元素(レアアース)等のように埋蔵鉱量や生産量が極めて少ない元素や、インジウムのように、別の資源を採掘する際の副産物として極少量しか生産されないために、需要に応じた生産増加が困難な元素などがある。
 近年、先端技術に必要不可欠なレアメタルの安定な供給確保の対策として、使用済み製品などからのレアメタルのリサイクルの重要性が唱えられている。特に、近年、レアアースの供給構造の脆弱化が明らかとなり、リサイクルの実現が早急に求められる。
 レアメタルのリサイクルプロセスの中でも特に重要なのは分離である。レアメタルを分離対象とする場合、2種類の分離がある。1つは鉄などベースメタルからのレアメタルの分離、もう一つはレアメタルの相互分離である。レアメタルの中でも、レアアースはその性質が互いに非常に類似しているため、後者の分離が特に困難である。
For rare metals (rare metals) that are in danger of stable supply, elements such as platinum group elements, tungsten, rare earth elements (rare earth), etc. that have extremely low reserves or production, or other resources such as indium Since only a very small amount is produced as a by-product when mining lime, there are elements that are difficult to increase in production according to demand.
In recent years, the importance of recycling rare metals from used products has been advocated as a measure to secure a stable supply of rare metals essential for advanced technologies. In particular, in recent years, the supply structure of rare earths has become fragile, and the realization of recycling is urgently required.
Separation is particularly important in the rare metal recycling process. When a rare metal is to be separated, there are two types of separation. One is separation of rare metals from base metals such as iron, and the other is mutual separation of rare metals. Among rare metals, rare earths are very similar in nature, so the latter is particularly difficult to separate.
 例えば、ネオジム(以下、「Nd」と記載することもある。)、鉄、ホウ素を主成分とするネオジム磁石は、永久磁石の中では最も強力とされ、ハイブリッド自動車の駆動用モータ、エアコン用コンプレッサーモータなどに利用されており、少量のジスプロシウム(以下、「Dy」と記載することもある。)を添加すると保磁力が向上することが知られている。
 このような磁石からのレアメタルのリサイクルでは、まず、大量の鉄を取り除くことが必要であり、例えば、Naganawaらは鉄の除去に有効な抽出試薬を開発している(非特許文献1,2)。また、Shirayamaらは乾式法により、鉄とランタノイドの分離を検討している(非特許文献3)
 次いで、レアアースの相互分離である、ネオジムとジスプロシウムの分離が行われる。
For example, neodymium magnets mainly composed of neodymium (hereinafter sometimes referred to as “Nd”), iron, and boron are considered to be the strongest among permanent magnets, and drive motors and air conditioner compressors for hybrid vehicles. It is used for motors and the like, and it is known that the addition of a small amount of dysprosium (hereinafter sometimes referred to as “Dy”) improves the coercive force.
In recycling rare metals from such magnets, it is first necessary to remove a large amount of iron. For example, Naganawa et al. Have developed extraction reagents effective for removing iron (Non-Patent Documents 1 and 2). . Shirayama et al. Are studying separation of iron and lanthanoids by a dry method (Non-patent Document 3).
Next, separation of neodymium and dysprosium, which is a mutual separation of rare earths, is performed.
 従来、ネオジムとジスプロシウムの分離法としては、溶媒抽出法が検討されている(非特許文献4)。
 この溶媒抽出法は、水溶液中に溶解した分離対象イオンを有機溶媒中に選択的に抽出して、その後再び水溶液相に逆抽出する方法である。この手法は多くの金属イオン分離系に適用されており、工業的に利用されている抽出試薬も多種類ある。
 しかしながら、目的物質が高濃度の場合に有効であるが、低濃度の系には不向きである。また、選択性を担うのは有機溶媒中の抽出試薬であるので、目的物に合わせて抽出試薬を選択することができるが、レアアースの相互分離など、金属イオンの性質が類似する場合は、プロセスが多段になり、その場合、大型設備、大量の有機溶媒とエネルギーが必要である。
Conventionally, a solvent extraction method has been studied as a method for separating neodymium and dysprosium (Non-Patent Document 4).
This solvent extraction method is a method in which ions to be separated dissolved in an aqueous solution are selectively extracted into an organic solvent and then back-extracted again into an aqueous solution phase. This technique has been applied to many metal ion separation systems, and there are many types of extraction reagents used industrially.
However, it is effective when the target substance has a high concentration, but is not suitable for a low concentration system. In addition, it is the extraction reagent in the organic solvent that is responsible for the selectivity, so the extraction reagent can be selected according to the target, but if the properties of the metal ions are similar, such as mutual separation of rare earths, In this case, large-scale equipment, a large amount of organic solvent and energy are required.
 また、金属イオンの分離のもう1つの例として、非特許文献5では、液晶パネルからレアメタルの1つであるインジウムを回収するために、酸による浸出と溶媒抽出による金属イオンの分離を行った結果が報告されており、溶媒抽出では、di-(2-ethylhexyl)phosphoric acid (Hdehp),tributyl phosphate (TBP),bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex272),Cyanex 923 (ホスフィンオキシドの混合物)を抽出試薬とし、ケロセン、トルエン、n-オクタノ―ル、シクロヘキサンを有機溶媒とし、インジウム、アルミニウム、銅、鉄、スズ、亜鉛の分離を調べている。その中で、インジウムの回収には、抽出試薬としてHdehpを用い、有機溶媒としてケロセンを用いた場合が優れていることが報告されている。 As another example of separation of metal ions, Non-Patent Document 5 shows a result of separation of metal ions by acid leaching and solvent extraction to recover indium, which is one of rare metals, from a liquid crystal panel. In the solvent extraction, di- (2-ethylhexyl) phosphoric acid (Hdehp), tributyl phosphate (TBP), bis (2,4,4-trimethylpentyl) phosphinic acid (Cyanex272), Cyanex 923 (phosphine oxide) Is used as an extraction reagent, and separation of indium, aluminum, copper, iron, tin, and zinc is investigated using kerosene, toluene, n-octanol, and cyclohexane as organic solvents. Among them, it has been reported that the recovery of indium is excellent when Hdehp is used as an extraction reagent and kerosene is used as an organic solvent.
 また、金属イオンのその他の分離法の1つに、「イオン交換法」がある。
 この方法は、多孔性ポリマーに金属イオンを吸着させた後、選択的に脱着することによって目的物質を分離する手法である。通常のイオン交換樹脂などでは、交換体そのものとレアアースの相互作用に大差がなく、脱着プロセスにおいてレアアースに選択性のある錯化剤を用いることで分離を行う。また、特定の金属イオンに高選択的なキレート剤を結合させたキレート樹脂では、分離プロセスは簡単になるが、キレート樹脂の合成に有機溶媒が必要でありかつ合成プロセスが煩雑であるという問題がある。
As another method for separating metal ions, there is an “ion exchange method”.
This method is a method in which a target substance is separated by selectively desorbing after adsorbing metal ions to a porous polymer. In ordinary ion exchange resins and the like, there is no great difference in the interaction between the exchanger itself and the rare earth, and separation is performed by using a complexing agent having selectivity for the rare earth in the desorption process. In addition, with a chelate resin in which a highly selective chelating agent is bound to a specific metal ion, the separation process is simplified, but an organic solvent is required for the synthesis of the chelate resin, and the synthesis process is complicated. is there.
 また、他の分離法として、「含浸樹脂法」も挙げられる。
 この方法では、溶媒抽出試薬を多孔性ポリマーに浸み込ませて用いる。金属イオンの分離メカニズムは、前述の溶媒抽出法と同じであるが、有機溶媒を用いない点が優れている。ただし、液体を浸み込ませているだけなので、液体がポリマーから溶けだしてしまうことによる劣化が問題点である。
As another separation method, an “impregnation resin method” can also be mentioned.
In this method, a solvent extraction reagent is used by being immersed in a porous polymer. The metal ion separation mechanism is the same as the solvent extraction method described above, but is excellent in that no organic solvent is used. However, since only the liquid is infiltrated, deterioration due to the liquid starting to dissolve from the polymer is a problem.
 さらに、他の分離法として、「沈殿分離法」が挙げられる。
 アイシン精機は、カツオだしなどに含まれるイノシン酸を活用して、中古の磁石からネオジムやジスプロシウムなどを抽出する技術を発表しており(非特許文献6、7)、従来法より低コストで安全なのが特徴であるといえる。この方法で、1リットルあたり90グラムのイノシン酸に1リットルあたり40グラムの塩化ネオジム溶液を混合すると95%以上のネオジムを沈殿物として回収でき、ジスプロシウムなどの安定調達に一定の目途がたつと記載されている。しかしながら、ネオジムとジスプロシウムの相互分離に関するデータは示されていない。
Furthermore, as another separation method, “precipitation separation method” may be mentioned.
Aisin Seiki has announced technology to extract neodymium, dysprosium, etc. from used magnets using inosinic acid contained in skipjack soup (Non-Patent Documents 6 and 7), which is cheaper and safer than conventional methods. It can be said that it is a feature. According to this method, when 90 grams of inosinic acid per liter is mixed with 40 grams of neodymium chloride solution per liter, 95% or more of neodymium can be recovered as a precipitate, and there is a certain target for stable procurement of dysprosium. Has been. However, data on the mutual separation of neodymium and dysprosium is not shown.
 また、非特許文献8では、ネオジム、プラセオジム、及びエルビウムは、62%のdi(2-ethylhexyl)phosphoric acid(HA)と37%のmono-(2-etylhexyl)phosphoric acid(H2A’)の混合物と、アセトン溶液中で混合すると、HAとのみ沈殿物を生じ、一方で、ランタンは、H2A’とのみ錯形成により沈殿することを見出している。そして、これを利用して、ランタンとネオジムの混合溶液からのこれらの分離を試みた結果、例えばランタンとネオジムを1:1で混合した系では、ネオジム19.8%、ランタンは0.7%沈殿するとしている。プラセオジムとエルビウムの分離の結果は記載がないが、ネオジム-ランタン系より悪いと報告されている。しかしながら、ネオジムイオンとジスプロシウムイオンについては記載がない。 In Non-Patent Document 8, neodymium, praseodymium, and erbium are 62% di (2-ethylhexyl) phosphoric acid (HA) and 37% mono- (2-etylhexyl) phosphoric acid (H 2 A ′). It has been found that when the mixture is mixed in an acetone solution, only a precipitate is formed with HA, while lanthanum is precipitated only by complexing with H 2 A ′. And as a result of trying to separate them from a mixed solution of lanthanum and neodymium using this, for example, in a system in which lanthanum and neodymium are mixed at 1: 1, neodymium is 19.8% and lanthanum is 0.7% precipitated. . The results of separation of praseodymium and erbium are not described, but are reported to be worse than the neodymium-lanthanum system. However, there is no description about neodymium ions and dysprosium ions.
 本発明者らは、こうした現状を鑑み、分離が非常に困難であるレアアース、中でも特に、ネオジムとジスプロシウムを、選択的かつ低コストに分離する方法について検討したところ、レアアースに選択性が高い溶媒抽出試薬として知られている、ジ-2-エチルへキシルリン酸エステル(Hdehp)(液体)(D.F.Peppard,G.W.Mason,J.L.Maier,and W.J.Driscoll,J.Inorg.Nucl.Chem. 1957,4,334-343.)(下記の式参照)を、配位高分子形成剤として用いることにより解決しうるという知見を得た。 In view of the current situation, the present inventors have examined a method for selectively separating rare earths, particularly neodymium and dysprosium, which are very difficult to separate, and extracting them with high selectivity to the rare earths. Di-2-ethylhexyl phosphate (Hdehp) (liquid) (DF Peppard, GW Mason, JL Maier, and WJ Driscoll, J., known as a reagent). Inorg.Nucl.Chem. 1957,4,334-343.) (See the following formula) was obtained as a coordinating polymer forming agent.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 配位高分子は、有機配位子が金属イオンを架橋して形成する高分子型錯体であって、近年、着目されている材料群である。
 本発明者らは、金属(M)とHdehpが、エタノールまたはエタノール-水混合溶媒で配位高分子化して[M(dehp)3]nを形成し、沈殿することを見出している(上記非特許文献(9、10))。
The coordination polymer is a polymer type complex formed by crosslinking an organic ligand with a metal ion, and is a material group that has been attracting attention in recent years.
The present inventors have found that metal (M) and Hdehp are coordinated and polymerized with ethanol or an ethanol-water mixed solvent to form [M (dehp) 3 ] n and precipitate (the above non-reactions). Patent documents (9, 10)).
 本発明者らは、更に検討を重ねた結果、Hdehpがレアアースと反応して配位高分子を形成すること、及びこの反応率は、イオンの種類及び混合溶媒組成比に依存して変化することを見出し、該反応を利用して、ネオジムイオンとジスプロシウムイオンを、選択的かつ低コストに分離できる分別沈殿法を提案した(特許文献1、非特許文献11)。
 図10は、Hdehpの配位高分子化について説明する図であり、図中のCが、Hdehpがレアアース金属イオンと反応して配位高分子[M(dehp)3]n(Mはレアアース金属イオン)を形成することを示している。
 なお、図中のAに示すHdehpは、無極性溶媒中では二量体を形成すると言われており、同Bに示すように、従来の溶媒抽出系においては、該Hdehpの二量体3つが、3価のレアアース金属イオンと1:6錯体を形成している。
As a result of further studies, the present inventors have found that Hdehp reacts with rare earth to form a coordination polymer, and that this reaction rate varies depending on the type of ion and the composition ratio of the mixed solvent. The fractionation precipitation method which can isolate | separate neodymium ion and dysprosium ion selectively and low-cost using this reaction was proposed (patent document 1, nonpatent literature 11).
FIG. 10 is a diagram for explaining the coordination polymerization of Hdehp. In the figure, C represents the coordination polymer [M (dehp) 3 ] n (M is a rare earth metal) when Hdehp reacts with a rare earth metal ion. Ion) is formed.
The Hdehp shown in A in the figure is said to form a dimer in a non-polar solvent. As shown in B, in the conventional solvent extraction system, three Hdehp dimers are present. A 1: 6 complex is formed with a trivalent rare earth metal ion.
特願2013-214843号明細書Japanese Patent Application No. 2013-214843
 本発明者らが、更に検討した結果、上記特許文献1の方法は、エタノール等の親水性有機溶媒、又はエタノール等の親水性有機溶媒と水との混合溶媒を用いるが、実際のプロセスを考慮すると、繰り返し利用が困難であり、混合溶液よりも、水のみからなる単一溶媒で分別沈殿できることが好ましいことが判明した。 As a result of further studies by the present inventors, the method of Patent Document 1 described above uses a hydrophilic organic solvent such as ethanol or a mixed solvent of a hydrophilic organic solvent such as ethanol and water, but considers the actual process. Then, it was found that it is difficult to use repeatedly, and it is preferable to perform fractional precipitation with a single solvent consisting of only water rather than a mixed solution.
 本発明は、こうした現状を鑑みてなされたものであって、分離が困難であるレアメタルを、溶媒として、水のみを用いて、選択的かつ低コストに分離する方法及び分離後のレアメタルを回収する方法を提供することを目的とするものである。 The present invention has been made in view of the current situation, and a method of selectively separating low-cost rare metals that are difficult to separate using only water as a solvent and the rare metals after separation are recovered. It is intended to provide a method.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、前記ジ-2-エチルへキシルリン酸エステル(Hdehp)に代えて、水溶性のリン酸ジエステル、例えば、ジブチルリン酸(以下、「Hdbp」と表記することもある。)やリン酸水素=ビス[2-(メタクリロイルオキシ)エチル](以下、「Hpmoe」と表記することもある。)等を用いることにより、水のみを溶媒として、分離が困難なネオジムとジスプロシウムの分離が可能であることが判明した。また、インジウム等の3価のレアメタルが選択的に分別沈殿できることも判明した。
 また、さらに酸を混合して水溶液中におけるリン酸ジエステルの酸解離度を調整することにより、分離が良くなること、用いる酸としては、塩酸よりも硝酸を利用する方が分離が良くなること、さらには、高温下で沈殿した配位高分子を高温で熟成した後にろ過すると分離が良くなることも判明した。
As a result of intensive studies to achieve the above-mentioned object, the present inventors have replaced water-soluble phosphate diesters such as dibutyl phosphate (hereinafter referred to as the following) instead of di-2-ethylhexyl phosphate (Hdehp). "Hdbp") or hydrogen phosphate = bis [2- (methacryloyloxy) ethyl] (hereinafter also referred to as "Hpmoe"), etc. As a result, it was found that separation of neodymium and dysprosium, which is difficult to separate, is possible. It was also found that trivalent rare metals such as indium can be selectively fractionated.
Furthermore, by further mixing an acid to adjust the acid dissociation degree of the phosphoric acid diester in the aqueous solution, the separation is improved, and as the acid to be used, it is better to separate using nitric acid than hydrochloric acid, Furthermore, it was also found that the separation is improved when the coordination polymer precipitated at high temperature is aged at high temperature and then filtered.
 また、分離沈殿させたジスプロシウムの再利用可能な回収方法について検討した結果、分別沈殿させたジスプロシウムの配位高分子を、シュウ酸塩や炭酸塩に変換し、焼成することで、再利用に有効な酸化ジスプロシウムとして回収しうることも判明した。 In addition, as a result of studying a reusable recovery method for separated and precipitated dysprosium, it is effective for reuse by converting the fractionally precipitated dysprosium coordination polymer into oxalate and carbonate and firing it. It was also found that it could be recovered as dysprosium oxide.
 本発明は、該知見に基づいて完成に至ったものであり、以下の発明が提供される。
[1]レアメタルのイオンを含有する水溶液中から分別沈殿させることよりレアメタルを分離する方法であって、
 水溶性のリン酸ジエステルを配位高分子形成剤として用い、水溶液中で3価のレアメタルのイオンを選択的に配位高分子化して分別沈殿させることを特徴とする分別沈殿法。
[2]前記水溶性のリン酸ジエステルが、ジブチルリン酸エステル、又はリン酸水素=ビス[2-(メタクリロイルオキシ)エチル]であることを特徴とする請求項[1]に記載の分別沈殿法。
[3]前記3価のレアメタルが、レアアース又はインジウムであることを特徴とする[1]又は[2]に記載の分別沈殿法。
[4]ネオジムイオン及びジスプロシウムイオンを含有する水溶液中で、ジスプロシウムイオンを選択的に配位高分子化して分別沈殿させることを特徴とする[1]又は[2]に記載の分別沈殿法。
[5]前記水溶液に、さらに酸を混合して、該水溶液におけるリン酸ジエステルの解離度を調整することを特徴とする[4]に記載の分別沈殿法。
[6]前記水溶液を、100℃未満に加温することを特徴とする[4]又は[5]の分別沈殿法。
[7][4]~[6]のいずれかの方法で分別沈殿させたジスプロシウムの配位高分子を、シュウ酸塩又は炭酸塩に変換した後焼成し、酸化ジスプロシウムとして回収する方法。
The present invention has been completed based on this finding, and the following inventions are provided.
[1] A method for separating rare metal by fractional precipitation from an aqueous solution containing rare metal ions,
A fractional precipitation method characterized in that a water-soluble phosphoric acid diester is used as a coordination polymer forming agent, and trivalent rare metal ions are selectively converted into a coordination polymer in an aqueous solution for fractional precipitation.
[2] The fractional precipitation method according to [1], wherein the water-soluble phosphate diester is dibutyl phosphate or hydrogen phosphate = bis [2- (methacryloyloxy) ethyl].
[3] The fractional precipitation method according to [1] or [2], wherein the trivalent rare metal is rare earth or indium.
[4] The fractional precipitation method according to [1] or [2], wherein the dysprosium ion is selectively coordinated and polymerized in an aqueous solution containing neodymium ions and dysprosium ions.
[5] The fractional precipitation method according to [4], wherein an acid is further mixed with the aqueous solution to adjust the dissociation degree of the phosphoric acid diester in the aqueous solution.
[6] The fractional precipitation method according to [4] or [5], wherein the aqueous solution is heated to less than 100 ° C.
[7] A method in which the coordination polymer of dysprosium separated and precipitated by the method according to any one of [4] to [6] is converted into oxalate or carbonate and then baked to recover it as dysprosium oxide.
 本発明によれば、溶媒抽出のように有機溶媒を用いる多段プロセスを必要とすることなく、水のみを溶媒に用いて、3価のレアメタルを分離することができ、中でも、分離が困難であるネオジムとジスプロシウムを分離することができる。また、本発明の方法は、抽出試薬そのものを固体化するものであり、液体抽出試薬を担持させる含浸樹脂とは異なり、分離に必要な溶媒は水のみであり、非常に低コストで簡便である。 According to the present invention, trivalent rare metals can be separated using only water as a solvent without requiring a multistage process using an organic solvent as in solvent extraction, and separation is particularly difficult. Neodymium and dysprosium can be separated. In addition, the method of the present invention solidifies the extraction reagent itself, and unlike the impregnating resin that supports the liquid extraction reagent, water is the only solvent required for separation, and is very inexpensive and simple. .
実施例1の、NdとDyのそれぞれの単一成分溶液における、沈殿率の塩酸濃度依存性を示す図The figure which shows the hydrochloric acid concentration dependence of the precipitation rate in each single-component solution of Nd and Dy of Example 1. 実施例2の、NdとDyの混合溶液における、NdとDyの沈殿率の塩酸濃度依存性を示す図The figure which shows the hydrochloric acid concentration dependence of the precipitation rate of Nd and Dy in the mixed solution of Nd and Dy of Example 2. 実施例3の、NdとDyの塩酸酸性混合溶液における、NdとDyの沈殿率のNadbp濃度依存性を示す図The figure which shows the Nadbp density | concentration dependence of the precipitation rate of Nd and Dy in the hydrochloric acid acidic mixed solution of Nd and Dy of Example 3. 実施例4の、NdとDyの混合溶液における、NdとDyの沈殿率の硝酸濃度依存性を示す図The figure which shows the nitric acid concentration dependence of the precipitation rate of Nd and Dy in the mixed solution of Nd and Dy of Example 4. 実施例5の、NdとDyの混合溶液における、20℃での静置時間を変化させたときのNdとDyの沈殿率を示す図The figure which shows the precipitation rate of Nd and Dy when the standing time in 20 degreeC in the mixed solution of Nd and Dy of Example 5 is changed. 実施例7の、NdとDyの混合溶液における、80℃での静置時間を変化させたときのNdとDyの沈殿率を示す図The figure which shows the precipitation rate of Nd and Dy when the standing time in 80 degreeC in the mixed solution of Nd and Dy of Example 7 is changed. 実施例8の、NdとDyの硝酸酸性混合溶液における、NdとDyの沈殿率のNadbp濃度依存性を示す図The figure which shows the Nadbp density | concentration dependence of the precipitation rate of Nd and Dy in the nitric acid acidic mixed solution of Nd and Dy of Example 8. 実施例9の、NdとDyの混合溶液における、80℃で硝酸濃度を変化させたときのNdとDyの沈殿率を示す図The figure which shows the precipitation rate of Nd and Dy when the nitric acid concentration is changed at 80 degreeC in the mixed solution of Nd and Dy of Example 9. 実施例10の、Dy配位高分子と、Dy配位高分子をシュウ酸水溶液および炭酸水素ナトリウム溶液で処理した後の沈殿物のSEM画像SEM image of the Dy coordination polymer of Example 10 and the precipitate after the Dy coordination polymer was treated with an oxalic acid aqueous solution and a sodium hydrogen carbonate solution 実施例10の、Dy配位高分子をシュウ酸水溶液および炭酸水素ナトリウム溶液で処理した後に、800℃で焼成して得られた沈殿物の粉末X線回折パターンPowder X-ray diffraction pattern of a precipitate obtained by treating the Dy coordination polymer of Example 10 with an oxalic acid aqueous solution and a sodium hydrogen carbonate solution and calcining at 800 ° C. Hdehpの配位高分子化について説明する図Diagram explaining Hdehp's coordination polymerisation
 本発明の分別沈殿法は、水溶性のリン酸ジエステルを配位高分子形成剤として用い、3価のレアメタルのイオンを含有する水溶液中で、レアメタルのイオンを選択的に配位高分子化して分別沈殿させることを特徴とするものである。 In the fractional precipitation method of the present invention, a water-soluble phosphoric acid diester is used as a coordination polymer-forming agent, and a rare metal ion is selectively converted into a coordination polymer in an aqueous solution containing a trivalent rare metal ion. It is characterized by fractional precipitation.
 本発明は、水溶液中で酸解離しているリン酸ジエステルが、水溶液中の3価のレアメタルのイオンと反応して、配位高分子(固体)を形成することを利用するものである。ただし、水溶液中の全てのリン酸ジエステルが酸解離している必要はない。 The present invention utilizes the fact that a phosphate diester that has been acid-dissociated in an aqueous solution reacts with trivalent rare metal ions in the aqueous solution to form a coordination polymer (solid). However, it is not necessary that all the phosphoric acid diesters in the aqueous solution are acid-dissociated.
 本発明で用いられる、水溶性のリン酸ジエステルとしては、水に対する溶解度が0.01mol・L-1以上のものが好ましく、0.05mol・L-1のものがより好ましい。ただし、ナトリウム塩を混合するなどして解離型にしたリン酸ジエステルの溶解度が上記の条件を満たす物質でも構わない。
 具体的には、アルキル鎖の炭素数が2~6のリン酸ジエステルが望ましく、エーテルや水酸基など親水性基を有する場合は、炭素数が6以上のジエステルでも良く、特に好ましくは、入手しやすい市販の水溶性リン酸ジエステルが用いられ、例えば、下記の式
The water-soluble phosphate diester used in the present invention preferably has a water solubility of 0.01 mol·L −1 or more, more preferably 0.05 mol·L −1 . However, a substance satisfying the above-mentioned conditions may be used for the solubility of the phosphoric diester made dissociated by mixing sodium salt or the like.
Specifically, a phosphoric acid diester having 2 to 6 carbon atoms in the alkyl chain is desirable, and if it has a hydrophilic group such as an ether or a hydroxyl group, it may be a diester having 6 or more carbon atoms, particularly preferably easily available. Commercially available water-soluble phosphoric acid diesters are used, for example:
Figure JPOXMLDOC01-appb-C000002
で表されるジブチルリン酸エステル、及び下記の式
Figure JPOXMLDOC01-appb-C000002
Dibutyl phosphate represented by the following formula:
Figure JPOXMLDOC01-appb-C000003
で表される、リン酸水素=ビス[2-(メタクリロイルオキシ)エチル]等が挙げられる。
Figure JPOXMLDOC01-appb-C000003
And hydrogen phosphate = bis [2- (methacryloyloxy) ethyl] and the like.
 また、本発明における3価のレアメタルとしては、レアアース(スカンジウム、イットリウムと、ランタンからルテチウムまでのランタノイドの、計17鉱種)に加えて、インジウム、チタン、バナジウム、クロム、マンガン、コバルト、ガリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、アンチモン、タンタル、レニウム、タリウム、ビスマスが挙げられる。
 本発明は、中でも、特に、分離が困難であったネオジム及びジスプロシウムイオンを含有する水溶液中で、ジスプロシウムイオンを選択的に配位高分子化して分別沈殿させることができるものである。すなわち、本発明の方法は、レアメタルのイオン、特に、少なくともネオジムイオン及びジスプロシウムイオンを含有する水溶液中で、水に溶解しているリン酸ジエステルが、レアメタルのイオンと選択的に配位高分子化し、該配位高分子を沈殿させるものであって、水のみを溶媒としてレアメタルを分離することを可能とするものである。
In addition to the rare earths (scandium, yttrium, and lanthanoids from lanthanum to lutetium, a total of 17 mineral species), trivalent rare metals in the present invention include indium, titanium, vanadium, chromium, manganese, cobalt, gallium, Zirconium, niobium, molybdenum, ruthenium, rhodium, antimony, tantalum, rhenium, thallium, bismuth can be mentioned.
In particular, the present invention is capable of selectively coordinating polymerizing dysprosium ions and fractionally precipitating them in an aqueous solution containing neodymium and dysprosium ions, which are difficult to separate. That is, in the method of the present invention, in the aqueous solution containing rare metal ions, particularly at least neodymium ions and dysprosium ions, the phosphate diester dissolved in water selectively forms a coordination polymer with the rare metal ions. The coordinating polymer is precipitated, and the rare metal can be separated using only water as a solvent.
 本発明において、水溶性のリン酸ジエステルの水溶液中での濃度は0.01~0.5mol・L-1が好ましい。
 また、ネオジムイオン及びジスプロシウムイオンを含有する混合液において、水溶性リン酸ジエステルの濃度は、分別沈殿させるジスプロシウムイオンの濃度に対して、およそ3倍となるように混合されることが望ましい。
In the present invention, the concentration of the water-soluble phosphoric diester in the aqueous solution is preferably 0.01 to 0.5 mol·L −1 .
In the mixed solution containing neodymium ions and dysprosium ions, the concentration of the water-soluble phosphate diester is desirably mixed so as to be approximately three times the concentration of the dysprosium ions to be separately precipitated.
 本発明において、水溶液中で、ジスプロシウムイオンを選択的に配位高分子化する方法としては、ネオジムイオンとジスプロシウムイオンが存在する混合液中に、配位高分子化剤である水溶性リン酸ジエステルが含有されていればよく、その混合方法は特に限定されない。
 すなわち、例えば、ネオジムイオン及びジスプロシウムイオンを含有する溶液として、ネオジム及びジスプロシウムの塩を水に溶解させた水溶液が用いられる。そして、これらのネオジムイオン及びジスプロシウムイオンを含有する水溶液に、水溶性リン酸ジエステルを混合するか、或いは、前記の水溶液に、水溶性リン酸ジエステルを溶解させた水溶液を混合し、さらに、必要に応じて、水を混合する。
 こうして得られた配位高分子を、例えば、室温で一晩静置するなどした後に洗浄・濾過して、分離する。
In the present invention, as a method for selectively converting dysprosium ions into an aqueous solution in an aqueous solution, a water-soluble phosphate diester which is a coordination polymerizing agent in a mixed solution containing neodymium ions and dysprosium ions. The mixing method is not particularly limited.
That is, for example, as a solution containing neodymium ions and dysprosium ions, an aqueous solution in which a salt of neodymium and dysprosium is dissolved in water is used. Then, a water-soluble phosphate diester is mixed with an aqueous solution containing these neodymium ions and dysprosium ions, or an aqueous solution in which a water-soluble phosphate diester is dissolved is mixed with the aqueous solution. Mix water accordingly.
The coordination polymer thus obtained is separated by washing and filtering after, for example, standing at room temperature overnight.
 さらに、本発明においては、混合液に酸を混合して、該混合液中におけるリン酸ジエステルの酸解離度を調整することにより、分離効率を高めることができる。
 混合する酸は、水に溶解するものであれば、特に限定されないが、例えば、硝酸又は塩酸などが好ましく用いられ、より好ましくは硝酸が用いられる。
 好ましい酸濃度は、水溶性リン酸ジエステルの酸解離定数と酸の種類によって変わるが、硝酸溶液中でNa型ジブチルリン酸を用いる場合、酸濃度は、0.4mol・L-1が好ましい。
Furthermore, in this invention, separation efficiency can be improved by mixing an acid with a liquid mixture and adjusting the acid dissociation degree of the phosphoric acid diester in this liquid mixture.
The acid to be mixed is not particularly limited as long as it is soluble in water. For example, nitric acid or hydrochloric acid is preferably used, and nitric acid is more preferably used.
The preferred acid concentration varies depending on the acid dissociation constant of the water-soluble phosphate diester and the type of acid, but when Na-type dibutyl phosphate is used in a nitric acid solution, the acid concentration is preferably 0.4 mol·L −1 .
 また、溶液を混合する温度は、室温(20℃)よりも、100℃未満の高温である方が好ましく、より好ましくは、50~80℃である。さらに、溶液を混合した直後にろ過するよりも、3時間以上、好ましくは24時間以上、より好ましくは72時間以上静置してからろ過すると沈殿分離の選択性が高くなる。 The temperature at which the solution is mixed is preferably higher than 100 ° C., more preferably 50 to 80 ° C., rather than room temperature (20 ° C.). Furthermore, if the solution is allowed to stand for 3 hours or more, preferably 24 hours or more, and more preferably 72 hours or more, rather than filtering immediately after mixing the solution, the selectivity for precipitation separation is increased.
 本発明の方法により、分離した、ネオジム、ジスプロシウム等のレアメタルを再利用するためには、汎用性の高い化合物として回収する必要がある。
 そのためには、水に対する溶解度が高く、塩化物や硝酸化物に変換可能で、さらに高温で還元すると金属に変換可能な酸化物にすることが望ましい。
 本発明では、分別沈殿させたジスプロシウムをシュウ酸塩や炭酸塩に変換し、焼成することで酸化ジスプロシウムとして回収することが可能である。
 具体的には、分別沈殿させたジスプロシウムを、シュウ酸または炭酸、あるいはシュウ酸または炭酸の塩の水溶液中に入れる。シュウ酸または炭酸は、ジスプロシウムと難溶性の塩を形成するので、水溶液中には、ジスプロシウムがシュウ酸または炭酸の塩として沈殿するのに必要な量、いわゆる化学量論比以上の量が含まれていればよいが、濃度を高めることで、回収率は向上すると考えられ、2倍以上の量が含まれていることが好ましい。
 また、溶液は静置してもよいが、溶液を振とうすることで回収率を向上させることが好ましい。さらに、1日以上反応させることが好ましく、より好ましくは2日以上反応させると良い。
In order to reuse rare metals such as neodymium and dysprosium separated by the method of the present invention, it is necessary to recover them as highly versatile compounds.
For that purpose, it is desirable to form an oxide that has high solubility in water, can be converted into chlorides and nitrates, and can be converted into metal when reduced at a high temperature.
In the present invention, the separately precipitated dysprosium can be recovered as dysprosium oxide by converting it into oxalate or carbonate and baking it.
Specifically, the fractionally precipitated dysprosium is put into an aqueous solution of oxalic acid or carbonic acid or a salt of oxalic acid or carbonic acid. Since oxalic acid or carbonic acid forms a sparingly soluble salt with dysprosium, the aqueous solution contains an amount necessary for dysprosium to precipitate as a salt of oxalic acid or carbonic acid, an amount exceeding the so-called stoichiometric ratio. However, it is considered that the recovery rate is improved by increasing the concentration, and it is preferable that the amount is twice or more.
Moreover, although a solution may be left still, it is preferable to improve a collection rate by shaking a solution. Further, the reaction is preferably performed for 1 day or longer, more preferably 2 days or longer.
 以下、本発明の沈殿分離法について、実施例を用いて説明するが、本発明は、これらの実施例に限定されるものではない。
 以下の実施例では、水溶性リン酸ジエステルとして、ジブチルリン酸(以下、「Hdbp」とする。)、又はリン酸水素=ビス[2-(メタクリロイルオキシ)エチル](以下、「Hpmoe」とする。)を用いた。
Hereinafter, although the precipitation separation method of this invention is demonstrated using an Example, this invention is not limited to these Examples.
In the following examples, dibutyl phosphate (hereinafter referred to as “Hdbp”) or hydrogen phosphate = bis [2- (methacryloyloxy) ethyl] (hereinafter referred to as “Hpmoe”) as the water-soluble phosphate diester. ) Was used.
 [0.30mol・L-1 Nadbp水溶液の調製]
 反応前後でpHが変化しないように、NaOH水溶液を用いて、HdbpをNa型に変えた。
 Hdbp 6.3gを、14.5mol・L-1 NaOH水溶液2.07mLと混合して、水で100mLとし、0.30mol・L-1 Nadbp水溶液を調製した。
[0.37mol・L-1 Napmoe水溶液の調製]
 反応前後でpHが変化しないように、NaOH水溶液を用いて、HpmoeをNa型に変えた。
 Hpmoe 5.11gを、14.5mol・L-1 NaOH水溶液1.07mLと混合して、水で50mLとし、0.32mol・L-1 Napmoe水溶液を調製した。
[Preparation of 0.30mol·L -1 Nadbp aqueous solution]
Hdbp was changed to Na type using an aqueous NaOH solution so that the pH did not change before and after the reaction.
Hdbp (6.3 g) was mixed with 2.07 mL of 14.5 mol·L −1 NaOH aqueous solution to make 100 mL with water to prepare 0.30 mol·L −1 Nadbp aqueous solution.
[Preparation of 0.37mol·L -1 Napmoe aqueous solution]
To prevent the pH from changing before and after the reaction, HPmoe was changed to Na type using an aqueous NaOH solution.
Hpmoe 5.11 g was mixed with 1.07 mL of 14.5 mol·L −1 NaOH aqueous solution to make 50 mL with water to prepare 0.32 mol·L −1 Napmoe aqueous solution.
 [1.0mol・L-1 MCl3およびM(NO3)3水溶液の調製(MはNdまたはDy)]
 NdとDyの水溶液を、以下の2通りの方法で調製した。
 (1)NdCl3 6水和物、DyCl3 6水和物のそれぞれを、水に溶解して1.0mol・L-1溶液を調製した。塩の析出を防ぐために、0.25mol・L-1となるように塩酸(HCl)を加えた。
 (2)Nd(NO3)3 6水和物、Dy(NO3)3 6水和物のそれぞれを、水に溶解して1.0mol・L-1溶液を調製した。塩の析出を防ぐために、0.25mol・L-1となるように硝酸(HNO3)を加えた。
[Preparation of 1.0 mol·L −1 MCl 3 and M (NO 3 ) 3 aqueous solution (M is Nd or Dy)]
An aqueous solution of Nd and Dy was prepared by the following two methods.
(1) Each of NdCl 3 hexahydrate and DyCl 3 hexahydrate was dissolved in water to prepare 1.0 mol·L −1 solution. In order to prevent salt precipitation, hydrochloric acid (HCl) was added so that the concentration was 0.25 mol·L −1 .
(2) Each of Nd (NO 3 ) 3 hexahydrate and Dy (NO 3 ) 3 hexahydrate was dissolved in water to prepare a 1.0 mol·L −1 solution. In order to prevent salt precipitation, nitric acid (HNO 3 ) was added so as to be 0.25 mol·L −1 .
 前記の0.30mol・L-1 Nadbp水溶液、及び前記(1)の1.0mol・L-1 MCl3水溶液を用いて、表1-1に示す4種類の溶液を混合し、各溶液を20℃で一晩静置した後、沈殿した配位高分子を洗浄・濾過して重量を測定し、各重量を記録した。
 以下、表中の濃度単位「mol・L-1」を、「M」と表記することもある。
0.30mol · L -1 Nadbp aqueous solution of the, and with reference to 1.0mol · L -1 MCl 3 aqueous solution of the (1) was mixed with 4 kinds of solutions shown in Table 1-1, in each solution 20 ° C. After allowing to stand overnight, the precipitated coordination polymer was washed and filtered, the weight was measured, and each weight was recorded.
Hereinafter, the concentration unit “mol·L −1 ” in the table may be expressed as “M”.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (溶解度積の測定)
 Hdbpの沈殿分離の有効性を評価するために、Nd-dbp配位高分子([Nd(dbp)3])とDy-dbp配位高分子([Dy(dbp)3])の溶解度積を測定した。
 Dbp-とNdまたはDyとの沈殿反応は以下の反応式で表せる。
(Measurement of solubility product)
In order to evaluate the effectiveness of Hdbp precipitation separation, the solubility product of Nd-dbp coordination polymer ([Nd (dbp) 3 ]) and Dy-dbp coordination polymer ([Dy (dbp) 3 ]) It was measured.
Dbp - precipitation reaction between the Nd or Dy expressed in the following reaction scheme.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 沈殿が生成する条件は、以下の式で求められる溶解度積(Ksp)によって決まり、Ksp(Nd)とKsp(Dy)の差が大きいほど分別沈殿に有効である。 The conditions under which precipitation occurs are determined by the solubility product (K sp ) determined by the following equation, and the larger the difference between K sp (Nd) and K sp (Dy), the more effective the fractional precipitation.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式中、aは活量、γは活量係数、cは濃度である。
 γ=1と仮定すると、濃度の積を用いて分別沈殿の有効性を評価することができる。この濃度の積を、みかけの溶解度(Ka sp)とする。
In the formula, a is the activity, γ is the activity coefficient, and c is the concentration.
Assuming γ = 1, the product of concentration can be used to evaluate the effectiveness of fractional precipitation. The product of this concentration is the apparent solubility (K a sp ).
 上記の表1-1の、実験No.1-1、1-5の条件で合成した、Ndの配位高分子及びDyの配位高分子を、表1-2に示す重量で、20℃の水中に入れた。 The Nd coordination polymer and the Dy coordination polymer synthesized under the conditions of Experiments No. 1-1 and 1-5 in Table 1-1 above were measured at 20 ° C. in the weight shown in Table 1-2. I put it in the water.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 45日間振とうした後、所定の量の上澄み液を採取して秤量し、60% HNO3 3mLとH2O0.3mLを酸分解専用のPTFE容器に入れ、電子レンジ(200W)で分解した。得られた酸溶液を希釈してICP-発光分光分析でNdまたはDyとPの濃度を定量した。表1-3に結果をまとめる。 After shaking for 45 days, a predetermined amount of supernatant was collected and weighed, and 3 mL of 60% HNO 3 and 0.3 mL of H 2 O 2 were put in a PTFE container dedicated to acid decomposition and decomposed in a microwave oven (200 W). . The resulting acid solution was diluted and the concentrations of Nd or Dy and P were quantified by ICP-emission spectroscopic analysis. Table 1-3 summarizes the results.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 上記表中のc(P)はc(dbp-)と等しいとして、[0044]に記載の見かけの溶解度Ka sp(Nd)とKa sp(Dy)を求めた。表1-4に結果をまとめる。
 参考として、リン酸塩(MPO4)、及びシュウ酸塩(M2(C2O4)3)のKsp(Nd)/Ksp(Dy)を記載する。
C in the above table (P) is c (dbp -) by equal and to determine the apparent solubility K a sp (Nd) and K a sp (Dy) according to [0044]. Table 1-4 summarizes the results.
For reference, K sp (Nd) / K sp (Dy) of phosphate (MPO 4 ) and oxalate (M 2 (C 2 O 4 ) 3 ) are described.
Figure JPOXMLDOC01-appb-T000010
1)Liu et al., Geochim. Cosmochimica Acta., 1997, 61, 1625.に記載された溶解度積に基づいて計算したKsp(Nd)/ Ksp(Dy)
2)Chung et al. J. Ind. Eng. Chem., 1998, 4, 277.に記載された溶解度積に基づいて計算したKsp(Nd)/ Ksp(Dy)
※MはNdまたはDyを示す
Figure JPOXMLDOC01-appb-T000010
1) K sp (Nd) / K sp (Dy) calculated based on the solubility product described in Liu et al., Geochim. Cosmochimica Acta., 1997, 61, 1625.
2) K sp (Nd) / K sp (Dy) calculated based on the solubility product described in Chung et al. J. Ind. Eng. Chem., 1998, 4, 277.
* M indicates Nd or Dy
 [M(dbp)3]の場合のKa spの比は、リン酸塩(MPO4)及びシュウ酸塩(M2(C2O4)3)の場合と比較して大きく、dbpを利用する沈殿反応はNdとDyの沈殿分離に有効なことがわかる。 The ratio of K a sp in the case of [M (dbp) 3] is larger than that in the phosphate (MPO 4) and oxalate (M 2 (C 2 O 4 ) 3), utilizing the dbp It can be seen that the precipitation reaction is effective for separation of Nd and Dy.
(実施例1)
 本実施例では、NdとDyの単一成分溶液とNadbp溶液を混合した場合の、NdとDyの沈殿率のHCl濃度依存性について検討した。
 上記表1-1の各溶液から得られた沈殿物を約0.015g秤量して、[0047]に記載したと同様の方法で電子レンジを用いて酸分解した。得られた酸溶液を希釈してICP-発光分光分析でNdまたはDyとP濃度を定量した。
 得られたP/Mモル比、混合時のHCl濃度、溶液中NdまたはDy濃度から算出したNdおよびDyの沈殿率を表1-5にまとめる。また、図1にHCl濃度に対する沈殿率をプロットする。
Example 1
In this example, the dependence of the precipitation rate of Nd and Dy on the HCl concentration when a single component solution of Nd and Dy and a Nadbp solution were mixed was examined.
About 0.015 g of the precipitate obtained from each solution shown in Table 1-1 was weighed and subjected to acid decomposition using a microwave oven in the same manner as described in [0047]. The resulting acid solution was diluted and Nd or Dy and P concentrations were quantified by ICP-emission spectroscopic analysis.
The obtained P / M molar ratio, HCl concentration at the time of mixing, Nd and Dy precipitation rates calculated from the Nd or Dy concentration in the solution are summarized in Table 1-5. FIG. 1 plots the precipitation rate against the HCl concentration.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 P/Mモル比が3であることから、沈殿物は配位高分子構造であることがわかる。
 また、沈殿率はNdよりもDyの方が大きく、HCl濃度が高いほど、沈殿率は小さくなるが、Ndの沈殿率とDyの沈殿率の差が大きくなることが分かる。
The P / M molar ratio is 3, indicating that the precipitate has a coordination polymer structure.
It can also be seen that the precipitation rate is higher for Dy than Nd, and the higher the HCl concentration, the lower the precipitation rate, but the greater the difference between the Nd precipitation rate and the Dy precipitation rate.
(実施例2)
 本実施例では、NdとDyの混合溶液を用いて、dbp配位高分子として沈殿させた場合の、NdとDyの沈殿率のHCl濃度依存性について検討した。
 表2-1の通り4種類の溶液を混合し、各重量を記録した。
(Example 2)
In this example, the dependence of the precipitation rate of Nd and Dy on the HCl concentration when the mixture was precipitated as a dbp coordination polymer using a mixed solution of Nd and Dy was examined.
As shown in Table 2-1, four types of solutions were mixed, and each weight was recorded.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 溶液を一晩静置した後、沈殿した配位高分子を洗浄・濾過して重量を測定した。
 前述の方法と同様の手順で、沈殿物を濾過して分解した。
 得られたP/(Dy+Nd)モル比、溶液混合時のHCl濃度、溶液中NdとDyの濃度から算出したNdおよびDyの沈殿率を表2-2にまとめる。また、HCl濃度に対する沈殿率を図2にプロットする。
After allowing the solution to stand overnight, the precipitated coordination polymer was washed and filtered, and the weight was measured.
The precipitate was filtered and decomposed by the same procedure as described above.
Table 2-2 summarizes the obtained P / (Dy + Nd) molar ratio, HCl concentration at the time of solution mixing, and Nd and Dy precipitation rates calculated from the concentrations of Nd and Dy in the solution. Further, the precipitation rate against the HCl concentration is plotted in FIG.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 P/(Nd+Dy)モル比がほぼ3であることから、NdとDyの混合溶液とNadbp溶液を混合して得られる沈殿物も配位高分子構造であることがわかる。
 また、沈殿率はNdよりもDyの方が大きく、特にHCl濃度が5mol・L-1のときは、Dyのみが選択的に沈殿することが分かる。
Since the P / (Nd + Dy) molar ratio is approximately 3, it can be seen that the precipitate obtained by mixing the mixed solution of Nd and Dy and the Nadbp solution also has a coordination polymer structure.
In addition, the precipitation rate is higher for Dy than for Nd. In particular, when the HCl concentration is 5 mol·L −1 , only Dy is selectively precipitated.
(実施例3)
 本実施例においては、NdとDyの混合溶液を用いて、沈殿率のNadbp濃度依存性について検討した。
 前記実施例2の実験No.2-2において、Nadbp濃度を変えた条件でNdとDyの沈殿率を調べた。
 表3-1の通り4種類の溶液を混合し、各重量を記録した。
Example 3
In this example, the dependence of the precipitation rate on the Nadbp concentration was examined using a mixed solution of Nd and Dy.
In Experiment No. 2-2 of Example 2, the precipitation rates of Nd and Dy were examined under the conditions where the Nadbp concentration was changed.
As shown in Table 3-1, four types of solutions were mixed and each weight was recorded.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 溶液を一晩静置した後、沈殿した配位高分子を洗浄・濾過して重量を測定し、前述の方法と同様の手順で、沈殿物を濾過して分解した。
 得られたP/(Dy+Nd)モル比、溶液混合時のHCl濃度、溶液中NdとDyの濃度から算出したNdおよびDyの沈殿率を実験No.2-2と比較して表3-2にまとめる。また、溶液混合時のNadbp濃度に対するNdとDyの沈殿率を図3にプロットする。
After allowing the solution to stand overnight, the precipitated coordination polymer was washed and filtered to measure the weight, and the precipitate was filtered and decomposed in the same manner as described above.
The obtained P / (Dy + Nd) molar ratio, HCl concentration at the time of solution mixing, and Nd and Dy precipitation rates calculated from the concentrations of Nd and Dy in the solution were compared with those in Experiment No. 2-2. Sum it up in two. Moreover, the precipitation rate of Nd and Dy with respect to the Nadbp density | concentration at the time of solution mixing is plotted in FIG.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 Nadbp濃度が0.03~0.12mol・L-1の範囲では、Nadbp濃度の増加に伴ってNdの沈殿率はわずかに増加し、Dyの沈殿率は大きく増加している。Nadbp濃度が高いとDy回収率は高くなるが、Nd含有率が高くなる。一方で、Nadbp濃度が低いと、Dy回収率は低くなるが、Nd含有率を低くできる。したがって、Nd含有率を低く、かつDy回収率を高くするためには、Dy濃度に対してNadbp濃度がおよそ3倍であることが好ましいとわかる。 When the Nadbp concentration is in the range of 0.03 to 0.12 mol·L −1 , the precipitation rate of Nd slightly increases and the precipitation rate of Dy greatly increases as the Nadbp concentration increases. High Nadbp concentration increases Dy recovery but increases Nd content. On the other hand, when the Nadbp concentration is low, the Dy recovery rate is lowered, but the Nd content rate can be lowered. Therefore, it can be seen that the Nadbp concentration is preferably about three times the Dy concentration in order to reduce the Nd content and increase the Dy recovery rate.
(実施例4)
 本実施例では、NdとDyの混合溶液を用いて、dbp配位高分子として沈殿させた場合の、NdとDyの沈殿率のHNO3濃度依存性について検討した。
 表4-1の通り4種類の溶液を混合し、各溶液を20℃で一晩(24h)静置した後、沈殿した配位高分子を洗浄・濾過して重量を測定し、各重量を記録した。
Example 4
In this example, the dependence of the precipitation rate of Nd and Dy on the HNO 3 concentration in the case of precipitation as a dbp coordination polymer using a mixed solution of Nd and Dy was examined.
As shown in Table 4-1, four types of solutions were mixed and each solution was allowed to stand at 20 ° C. overnight (24 h), and then the precipitated coordination polymer was washed and filtered to measure the weight. Recorded.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 前述の方法と同様の手順で、沈殿物を濾過して分解した。
 得られたP/(Dy+Nd)モル比、溶液混合時のHNO3濃度、溶液中NdとDy濃度から算出したNdおよびDyの沈殿率、沈殿物の組成分析から算出した沈殿物中のDy/Ndモル比を表4-2にまとめる。また、溶液混合時のHNO3濃度に対するNdとDyの沈殿率を図4にプロットする。
The precipitate was filtered and decomposed by the same procedure as described above.
P / (Dy + Nd) molar ratio obtained, HNO 3 concentration at the time of solution mixing, precipitation rate of Nd and Dy calculated from Nd and Dy concentration in solution, Dy in precipitate calculated from composition analysis of precipitate The / Nd molar ratio is summarized in Table 4-2. Moreover, the precipitation rate of Nd and Dy with respect to the HNO 3 density | concentration at the time of solution mixing is plotted in FIG.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 P/(Nd+Dy)がほぼ3であることから、HNO3溶液中で得られる沈殿物も配位高分子構造であることがわかる。
 また、沈殿率はNdよりもDyの方が大きく、特に溶液混合時のHNO3濃度が0.40mol・L-1のときに、Ndの沈殿率が低く、Dyが選択的に沈殿することが分かる。
Since P / (Nd + Dy) is approximately 3, it can be seen that the precipitate obtained in the HNO 3 solution also has a coordination polymer structure.
Moreover, the precipitation rate is higher for Dy than for Nd, and especially when the HNO 3 concentration at the time of mixing the solution is 0.40 mol·L −1 , the precipitation rate of Nd is low and Dy selectively precipitates. .
(実施例5)
 本実施例では、前記実施例4の実験No.4-5におけるろ過するまでの時間を変化させた場合のNdとDyの沈殿率を検討した。
 実験No.4-5と同じ条件で溶液を混合した後、表5-1の通り20℃で溶液を静置した。
(Example 5)
In this example, the precipitation rates of Nd and Dy when the time until filtration in Experiment No. 4-5 of Example 4 was changed were examined.
After mixing the solution under the same conditions as in Experiment No. 4-5, the solution was allowed to stand at 20 ° C. as shown in Table 5-1.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 沈殿した配位高分子を洗浄・濾過して重量を測定し、前述の方法と同様の手順で沈殿物を濾過して分解した。
 得られたP/(Dy+Nd)モル比、溶液中NdとDy濃度から算出したNdおよびDyの沈殿率、沈殿物の組成分析から算出した沈殿物中のDy/Ndモル比を表5-2にまとめる。また、20℃での溶液静置時間に対する沈殿率の変化を図5にプロットする。
The precipitated coordination polymer was washed and filtered to measure the weight, and the precipitate was filtered and decomposed in the same manner as described above.
Table 5 shows the obtained P / (Dy + Nd) molar ratio, the precipitation rate of Nd and Dy calculated from Nd and Dy concentrations in the solution, and the Dy / Nd molar ratio in the precipitate calculated from the composition analysis of the precipitate. Sum it up in two. Moreover, the change of the precipitation rate with respect to the solution standing time at 20 ° C. is plotted in FIG.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 静置時間が長いほど、Ndの沈殿率は低くなり、Dyの沈殿率は高くなる。したがって、静置時間を長くするほどより選択的にDyを沈殿させられることがわかる。 The longer the standing time, the lower the precipitation rate of Nd and the higher the precipitation rate of Dy. Therefore, it can be seen that the longer the standing time, the more selectively Dy is precipitated.
(実施例6)
 本実施例では、NdとDyの混合溶液を用いて、HNO3酸性溶液中でdbp配位高分子として沈殿させた場合の、濾過までの間に溶液を振とうする効果と溶液を昇温する効果を検討した。
 前記の実施例4における実験No.4-5と同じ条件で溶液を混合し、表6-1の通り溶液を処理した。
(Example 6)
In this example, when a mixed solution of Nd and Dy is used to precipitate as a dbp coordination polymer in an HNO 3 acidic solution, the effect of shaking the solution before filtration and the temperature of the solution are increased. The effect was examined.
The solution was mixed under the same conditions as in Experiment No. 4-5 in Example 4 above, and the solution was processed as shown in Table 6-1.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 沈殿した配位高分子を洗浄・濾過して重量を測定し、前述の方法と同様の手順で、沈殿物を濾過して分解した。
 得られたP/(Dy+Nd)モル比、溶液中NdとDy濃度から算出したNdおよびDyの沈殿率、沈殿物の組成分析から算出した沈殿物中のDy/Ndモル比を表6-2にまとめる。
The precipitated coordination polymer was washed and filtered to measure the weight, and the precipitate was filtered and decomposed in the same procedure as described above.
The obtained P / (Dy + Nd) molar ratio, the Nd and Dy precipitation rates calculated from the Nd and Dy concentrations in the solution, and the Dy / Nd molar ratio in the precipitate calculated from the composition analysis of the precipitate are shown in Table 6- Sum it up in two.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 20℃で溶液を静置するよりも、振とうした方がNdの沈殿率は低く、かつDyの沈殿率は高くなる。また、20℃で溶液を振とうするよりも、80℃で静置した方がさらにNdの沈殿率は低く、かつDyの沈殿率は高くなる。 The Nd precipitation rate is lower and the Dy precipitation rate is higher when shaken than when the solution is allowed to stand at 20 ° C. In addition, the precipitation rate of Nd is lower and the precipitation rate of Dy is higher when the solution is allowed to stand at 80 ° C. than when the solution is shaken at 20 ° C.
(実施例7)
 本実施例では、前記実施例6の実験No.6-3において、溶液静置時間を変化させたときのNdとDyの沈殿率を検討した。
 同実験No.6-3と同じ条件で溶液を混合し、表7-1の通り溶液を処理した。
(Example 7)
In this example, in Experiment No. 6-3 of Example 6, the precipitation rates of Nd and Dy when the solution standing time was changed were examined.
The solution was mixed under the same conditions as in Experiment No. 6-3, and the solution was treated as shown in Table 7-1.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 沈殿した配位高分子を洗浄・濾過して重量を測定し、前述の方法と同様の手順で、沈殿物を濾過して分解した。
 得られたP/(Dy+Nd)モル比、溶液中NdとDy濃度から算出したNdおよびDyの沈殿率、沈殿物の組成分析から算出した沈殿物中のDy/Ndモル比を表7-2にまとめる。また、80℃での溶液静置時間に対する沈殿率の変化を図6にプロットする。
The precipitated coordination polymer was washed and filtered to measure the weight, and the precipitate was filtered and decomposed in the same procedure as described above.
The obtained P / (Dy + Nd) molar ratio, the Nd and Dy precipitation rates calculated from the Nd and Dy concentrations in the solution, and the Dy / Nd molar ratio in the precipitate calculated from the composition analysis of the precipitate are shown in Table 7- Sum it up in two. Moreover, the change of the precipitation rate with respect to the solution standing time at 80 ° C. is plotted in FIG.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 混合した溶液を80℃で5分間静置した場合はNdも沈殿するが、24時間以上静置するとNdの沈殿率はゼロである。したがって、混合した溶液を80℃で24時間以上静置すると、より選択的にDyを沈殿させられることがわかる。24時間または72時間静置した場合は沈殿物中のDy/Ndモル比はあまり変わらないが、168時間静置すると沈殿物中のDy/Nd比はわずかに大きくなる。したがって、静置時間が長いほど、沈殿物中のDy純度が高くなることがわかる。 When the mixed solution is allowed to stand at 80 ° C. for 5 minutes, Nd also precipitates, but when left for more than 24 hours, the Nd precipitation rate is zero. Therefore, it can be seen that when the mixed solution is allowed to stand at 80 ° C. for 24 hours or more, Dy can be more selectively precipitated. When left for 24 hours or 72 hours, the Dy / Nd molar ratio in the precipitate does not change much, but when left for 168 hours, the Dy / Nd ratio in the precipitate slightly increases. Therefore, it can be seen that the longer the standing time, the higher the Dy purity in the precipitate.
(実施例8)
 本実施例では、前記実施例7の実験No.7-2においてNadbp濃度を変化させた場合の、NdとDyの沈殿率を検討した。
 表8-1の通り溶液を混合した。
(Example 8)
In this example, the precipitation rate of Nd and Dy when the Nadbp concentration was changed in Experiment No. 7-2 of Example 7 was examined.
The solutions were mixed as in Table 8-1.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 混合した溶液を80℃で24時間静置のち、沈殿した配位高分子を洗浄・濾過して重量を測定し、前述の方法と同様の手順で、沈殿物を濾過して分解した。
 得られたP/(Dy+Nd)モル比、溶液中NdとDy濃度から算出したNdおよびDyの沈殿率、沈殿物の組成分析から算出した沈殿物中のDy/Ndモル比を表8-2にまとめる。また、溶液混合時のNadbp濃度に対する沈殿率の変化を図7にプロットする。
The mixed solution was allowed to stand at 80 ° C. for 24 hours, and then the precipitated coordination polymer was washed and filtered to measure the weight, and the precipitate was filtered and decomposed in the same procedure as described above.
The obtained P / (Dy + Nd) molar ratio, the Nd and Dy precipitation rates calculated from the Nd and Dy concentrations in the solution, and the Dy / Nd molar ratio in the precipitate calculated from the composition analysis of the precipitate are shown in Table 8- Sum it up in two. Moreover, the change of the precipitation rate with respect to the Nadbp density | concentration at the time of solution mixing is plotted in FIG.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 Nadbp濃度が高くなると、NdとDyの沈殿率が高くなる。したがって、より選択的にDyだけを沈殿させるためには、Dyイオン濃度が0.02mol・L-1のときにはNadbp濃度は0.06mol・L-1、つまり配位高分子を形成する当量のdbp-を混合すると良いことがわかる。 As the Nadbp concentration increases, the precipitation rate of Nd and Dy increases. Therefore, in order to precipitate only more selective and Dy, Nadbp concentration 0.06 mol · L -1 when the Dy ion concentration 0.02 mol · L -1, i.e. equivalent of dbp forming a coordination polymer - a It turns out that mixing is good.
(実施例9)
 本実施例では、前記実施例7の実験No.7-1における酸濃度を変化させたときのNdとDyの沈殿率を検討した。
 表9-1の通り溶液を混合処理した。
Example 9
In this example, the precipitation rates of Nd and Dy when the acid concentration in Experiment No. 7-1 in Example 7 was changed were examined.
The solutions were mixed as shown in Table 9-1.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 混合した溶液を80℃で3時間静置のち、沈殿した配位高分子を洗浄・濾過して重量を測定し、前述の方法と同様の手順で、沈殿物を濾過して分解した。
 得られたP/(Dy+Nd)モル比、溶液中NdとDy濃度から算出したNdおよびDyの沈殿率を表9-2にまとめる。また、溶液混合時のHNO3濃度に対する沈殿率の変化を図8にプロットする。
The mixed solution was allowed to stand at 80 ° C. for 3 hours, and then the precipitated coordination polymer was washed and filtered to measure the weight, and the precipitate was filtered and decomposed in the same procedure as described above.
The obtained P / (Dy + Nd) molar ratio, Nd and Dy precipitation rates calculated from the Nd and Dy concentrations in the solution are summarized in Table 9-2. Moreover, the change of the precipitation rate with respect to the HNO 3 density | concentration at the time of solution mixing is plotted in FIG.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 酸濃度が低くなると、Ndの沈殿率が高くなる。一方で、Dyの沈殿率はあまり変化しない。したがって、より選択的にDyだけを沈殿させるためには、0.4mol・L-1 HNO3溶液中で配位高分子を形成させると良いことがわかる。 As the acid concentration decreases, the precipitation rate of Nd increases. On the other hand, the precipitation rate of Dy does not change much. Therefore, in order to precipitate only Dy more selectively, it is understood that a coordination polymer is preferably formed in a 0.4 mol·L −1 HNO 3 solution.
(実施例10)
 本実施例では、分別沈殿したDyを汎用性の高い酸化物として回収する方法を検討した。
 実施例8における、実験No.7-2で得られた沈殿物(Dy-dbp配位高分子)を表10-1の通りシュウ酸または炭酸水素ナトリウム溶液に入れた。
(Example 10)
In this example, a method for recovering fractionally precipitated Dy as a highly versatile oxide was examined.
The precipitate (Dy-dbp coordination polymer) obtained in Experiment No. 7-2 in Example 8 was placed in an oxalic acid or sodium bicarbonate solution as shown in Table 10-1.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 2日間、液を振とうした後に、溶液をろ過して沈殿物を回収した。回収した沈殿物の重量を表10-2にまとめる。 After shaking the liquid for 2 days, the solution was filtered to collect the precipitate. The weight of the collected precipitate is summarized in Table 10-2.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 前記実施例8における実験No.7-2で得られた沈殿物、および10-1-1,10-2-1で得られた沈殿物のSEM画像を図9-1に示す。 FIG. 9-1 shows SEM images of the precipitate obtained in Experiment No. 7-2 in Example 8 and the precipitates obtained in 10-1-1 and 10-2-1.
 SEM画像より、実験No.10-1-1と10-2-1の結晶の形状が、前記の実験No.7-2で得られた沈殿物とは異なることがわかる。 From the SEM images, it can be seen that the crystal shapes of Experiment Nos. 10-1-1 and 10-2-1 are different from the precipitate obtained in Experiment No. 7-2.
 実験No.10-1-1と10-2-1で得られた沈殿物を表10-3に示す重量採取し、電気炉内で1時間かけて25℃から800℃に昇温した後、800℃で2時間焼成した。 The precipitates obtained in Experiment Nos. 10-1-1 and 10-2-1 were collected in the weight shown in Table 10-3, heated in an electric furnace from 25 ° C. to 800 ° C. over 1 hour, Baked at 800 ° C. for 2 hours.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 室温に冷却した後に回収した沈殿物の重量を表10-4に示す。 The weight of the precipitate collected after cooling to room temperature is shown in Table 10-4.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 実験No.10-1-2,10-2-2で得られた沈殿物の粉末X線回折パターンを図9-2に示す。 Fig. 9-2 shows the powder X-ray diffraction patterns of the precipitates obtained in Experiment Nos. 10-1-2 and 10-2-2.
 実験No.10-1-2,10-2-2で得られた沈殿物の粉末X線回折パターンは酸化ジスプロシウムのパターンと一致することから、800℃で焼成することにより、酸化ジスプロシウムとして回収できることがわかる。 The powder X-ray diffraction patterns of the precipitates obtained in Experiment Nos. 10-1-2 and 10-2-2 agree with the dysprosium oxide pattern, and can be recovered as dysprosium oxide by firing at 800 ° C. I understand.
 表10-1と表10-2から、Dy-dbp配位高分子をシュウ酸ジスプロシウムに変換した際の回収率は70%であるとわかる。表10-3と表10-4から、シュウ酸ジスプロシウム十水和物から酸化ジスプロシウムへ変換した際の回収率は100%であるとわかる。 From Table 10-1 and Table 10-2, it can be seen that the recovery rate when the Dy-dbp coordination polymer is converted to dysprosium oxalate is 70%. From Table 10-3 and Table 10-4, it can be seen that the recovery rate when dysprosium oxalate decahydrate is converted to dysprosium oxide is 100%.
(実施例11)
 本実施例では、前記実施例7における実験No.7-3においてDy濃度とNadbp濃度を5分の1にしたときのNdとDyの沈殿率を検討した。
 表11-1の通り溶液を混合処理した。
(Example 11)
In this example, the Nd and Dy precipitation rates when the Dy concentration and the Nadbp concentration were reduced to 1/5 in Experiment No. 7-3 in Example 7 were examined.
The solutions were mixed as shown in Table 11-1.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 混合した溶液を80℃で72時間静置したのち、沈殿した配位高分子を洗浄・濾過して重量を測定し、[0047]に記載の方法と同様の手順で、沈殿物を濾過して分解した。
 得られたP/(Dy+Nd)モル比、溶液中NdとDy濃度から算出したNdおよびDyの沈殿率を表11-2にまとめる。
The mixed solution is allowed to stand at 80 ° C. for 72 hours, and then the precipitated coordination polymer is washed and filtered to measure the weight, and the precipitate is filtered by the same procedure as described in [0047]. Disassembled.
The obtained P / (Dy + Nd) molar ratio, Nd and Dy precipitation rates calculated from the Nd and Dy concentrations in the solution are summarized in Table 11-2.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 NdとDyの濃度が5:1の場合、Dyの沈殿率は低くなるが、Dyだけを選択的に沈殿させることができる。 When the concentration of Nd and Dy is 5: 1, the precipitation rate of Dy is low, but only Dy can be selectively precipitated.
(実施例12)
 本実施例においては、本発明の配位高分子形成剤が、液晶パネルからインジウム(In)を回収するのに適用できるか否かを調べるため、Inと遷移金属(アルミニウム(Al),銅(Cu),亜鉛(Zn))混合溶液からの沈殿率の酸濃度依存性について検討した。
 前記実施例2において、NdとDy混溶液をIn、Al、Cu、Znの混合溶液に変えた条件で各金属元素の沈殿率を調べた。
 下記の表12-1の通り4種類の溶液を混合し、各重量を記録した。
Example 12
In this example, in order to investigate whether the coordination polymer forming agent of the present invention can be applied to recover indium (In) from a liquid crystal panel, In and transition metals (aluminum (Al), copper ( The acid concentration dependence of the precipitation rate from a mixed solution of Cu) and zinc (Zn) was investigated.
In Example 2, the precipitation rate of each metal element was examined under the condition that the mixed solution of Nd and Dy was changed to a mixed solution of In, Al, Cu, and Zn.
Four types of solutions were mixed as shown in Table 12-1 below, and each weight was recorded.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 溶液を一晩静置した後、沈殿した配位高分子を洗浄・濾過して重量を測定し、前述の方法と同様の手順で、沈殿物を濾過して分解した。
 得られたP/Mモル比(Mは金属イオンの総濃度)、HCl濃度、沈殿物の重量から各金属元素の沈殿率を表12-2にまとめる。
After allowing the solution to stand overnight, the precipitated coordination polymer was washed and filtered to measure the weight, and the precipitate was filtered and decomposed in the same manner as described above.
Table 12-2 summarizes the precipitation rates of each metal element from the obtained P / M molar ratio (M is the total concentration of metal ions), HCl concentration, and the weight of the precipitate.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 表12-2に示すとおり、Inよりも高濃度の遷移金属が混合していても、Inだけが選択的に沈殿している。Cu、Znの沈殿率は0%であることから、2価の金属イオンは配位高分子を形成しないと考えられ、また、Alは3価であるが、Inだけが選択的に沈殿することから、同じ価数の金属イオンに対しても選択的な分離が可能であることが分かる。 As shown in Table 12-2, even if a transition metal having a higher concentration than In is mixed, only In is selectively precipitated. Since the precipitation rate of Cu and Zn is 0%, it is considered that divalent metal ions do not form coordination polymers, and Al is trivalent, but only In precipitates selectively. From this, it can be seen that selective separation is possible even for metal ions having the same valence.
(実施例13)
 本実施例では、水溶性リン酸ジエステルとして、リン酸水素=ビス[2-(メタクリロイルオキシ)エチル]を用いたNd/Dy分離について検討した。
 前記実施例2において、NadbpをNa型にしたリン酸水素=ビス[2-(メタクリロイルオキシ)エチル(Napmoe)に変えて、NdとDy混溶液をからの各金属元素の沈殿率を調べた。
 下記の表13-1の通り4種類の溶液を混合し、各重量を記録した。
(Example 13)
In this example, Nd / Dy separation using hydrogen phosphate = bis [2- (methacryloyloxy) ethyl] as a water-soluble phosphate diester was examined.
In Example 2, the precipitation rate of each metal element from the mixed solution of Nd and Dy was examined by changing the hydrogen phosphate Nadbp to Na-type hydrogen phosphate = bis [2- (methacryloyloxy) ethyl (Napmoe).
Four types of solutions were mixed as shown in Table 13-1 below, and each weight was recorded.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 溶液を一晩静置した後、沈殿した配位高分子を洗浄・濾過して重量を測定し、前述の方法と同様の手順で、沈殿物を濾過して分解した。
 得られたP/(Dy+Nd)モル比、HCl濃度、沈殿物の重量から算出したNdおよびDyの沈殿率を表13-2にまとめる。
After allowing the solution to stand overnight, the precipitated coordination polymer was washed and filtered to measure the weight, and the precipitate was filtered and decomposed in the same manner as described above.
Table 13-2 summarizes the precipitation rates of Nd and Dy calculated from the obtained P / (Dy + Nd) molar ratio, HCl concentration, and the weight of the precipitate.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 表13-2に示すとおり、酸濃度が3.0mol・L-1の場合、DyもNdも沈殿しない。
 前記実施例2と比較すると、NapmoeよりもNadbpの方が高い酸濃度でも沈殿率が高いことがわかる。また、酸濃度が0.30mol・L-1、0.17mol・L-1のときは、Dyの方が選択的に沈殿するが、沈殿率は低い。
As shown in Table 13-2, when the acid concentration is 3.0 mol·L −1 , neither Dy nor Nd is precipitated.
Compared to Example 2, it can be seen that Nadbp has a higher precipitation rate even at higher acid concentrations than Napmoe. In addition, when the acid concentration is 0.30 mol·L −1 and 0.17 mol·L −1 , Dy is selectively precipitated, but the precipitation rate is low.

Claims (7)

  1.  レアメタルのイオンを含有する水溶液中から分別沈殿させることよりレアメタルを分離する方法であって、
     水溶性のリン酸ジエステルを配位高分子形成剤として用い、水溶液中で3価のレアメタルのイオンを選択的に配位高分子化して分別沈殿させることを特徴とする分別沈殿法。
    A method for separating rare metals by fractional precipitation from an aqueous solution containing ions of rare metals,
    A fractional precipitation method characterized in that a water-soluble phosphoric acid diester is used as a coordination polymer forming agent, and trivalent rare metal ions are selectively converted into a coordination polymer in an aqueous solution for fractional precipitation.
  2.  前記水溶性のリン酸ジエステルが、ジブチルリン酸エステル、又はリン酸水素=ビス[2-(メタクリロイルオキシ)エチル]であることを特徴とする請求項1に記載の分別沈殿法。 The fractional precipitation method according to claim 1, wherein the water-soluble phosphate diester is dibutyl phosphate or hydrogen phosphate = bis [2- (methacryloyloxy) ethyl].
  3.  前記3価のレアメタルが、レアアース又はインジウムであることを特徴とする請求項1又は2に記載の分別沈殿法。 The fractional precipitation method according to claim 1 or 2, wherein the trivalent rare metal is rare earth or indium.
  4.  少なくともネオジムイオン及びジスプロシウムイオンを含有する水溶液中で、ジスプロシウムイオンを選択的に配位高分子化して分別沈殿させることを特徴とする請求項1又は2に記載の分別沈殿法。 3. The fractional precipitation method according to claim 1, wherein the dysprosium ions are selectively coordinated and polymerized in an aqueous solution containing at least neodymium ions and dysprosium ions.
  5.  前記水溶液に、さらに酸を混合して、該水溶液におけるリン酸ジエステルの解離度を調整することを特徴とする請求項4に記載の分別沈殿法。 The fractional precipitation method according to claim 4, wherein the aqueous solution is further mixed with an acid to adjust the dissociation degree of the phosphoric acid diester in the aqueous solution.
  6.  前記水溶液を、100℃未満に加温することを特徴とする請求項4又は5に記載の分別沈殿法。 The fractional precipitation method according to claim 4 or 5, wherein the aqueous solution is heated to less than 100 ° C.
  7.  請求項4~6のいずれか1項に記載の方法で分別沈殿させたジスプロシウムの配位高分子を、シュウ酸塩又は炭酸塩に変換した後焼成し、酸化ジスプロシウムとして回収する方法。 A method for recovering dysprosium oxide by converting the dysprosium coordination polymer fractionally precipitated by the method according to any one of claims 4 to 6 into oxalate or carbonate, followed by baking.
PCT/JP2014/082460 2013-12-13 2014-12-08 Method for fractional precipitation of rare metal in aqueous system utilizing coordination polymerization WO2015087845A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-258026 2013-12-13
JP2013258026 2013-12-13

Publications (1)

Publication Number Publication Date
WO2015087845A1 true WO2015087845A1 (en) 2015-06-18

Family

ID=53371148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082460 WO2015087845A1 (en) 2013-12-13 2014-12-08 Method for fractional precipitation of rare metal in aqueous system utilizing coordination polymerization

Country Status (2)

Country Link
JP (1) JP6411199B2 (en)
WO (1) WO2015087845A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105132720A (en) * 2015-10-08 2015-12-09 江西理工大学 Method for recovering rare earth in ion adsorption type rare earth ore leaching solution through fractional precipitation
CN114031634A (en) * 2021-11-18 2022-02-11 江苏科技大学 Zero-field dysprosium single-ion magnet and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551489A (en) * 1978-10-09 1980-04-15 Mitsubishi Chem Ind Ltd Removing acidic phosphate ester in aqueous phase
JPS6075532A (en) * 1983-10-03 1985-04-27 Nippon Mining Co Ltd Method for purifying solution in wet refining of lead
JP2003500542A (en) * 1999-05-27 2003-01-07 ユニヴェルシテ・クロード・ベルナール・リヨン・プルミエ Method for separating lanthanoid element and / or actinoid element in aqueous medium by combination of complexation and nanofiltration, and novel complexing agent used in the method
JP2013194272A (en) * 2012-03-19 2013-09-30 Hitachi Ltd Method for separation-recovering rare-earth elements and devices using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2435533A1 (en) * 1978-09-11 1980-04-04 Penarroya Miniere Metall INDIUM RECOVERY PROCESS
EP0221760A3 (en) * 1985-11-01 1989-09-27 Montana Tech Foundation Method for recovering metal values from mixed-metal aqueous solutions by selective phosphate precipitation
JPH0651567B2 (en) * 1986-01-29 1994-07-06 住友化学工業株式会社 Rare metal recovery method
JP4378540B2 (en) * 2003-11-25 2009-12-09 独立行政法人 日本原子力研究開発機構 How to collect and recover scandium
US20050124765A1 (en) * 2003-11-25 2005-06-09 Japan Atomic Energy Research Institute Adsorbent for recovering useful rare metals by adsorption
JP4882048B2 (en) * 2007-03-07 2012-02-22 独立行政法人産業技術総合研究所 Catalyst for oxidative removal of methane and method for oxidative removal of methane
US7906631B2 (en) * 2007-10-15 2011-03-15 Bridgestone Corporation Method of producing rare earth salt of dialkyl phosphate or dioleyl phosphate
JP6183844B2 (en) * 2013-10-15 2017-08-23 国立研究開発法人産業技術総合研究所 Fractional precipitation of lanthanoid ions using coordination polymerisation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551489A (en) * 1978-10-09 1980-04-15 Mitsubishi Chem Ind Ltd Removing acidic phosphate ester in aqueous phase
JPS6075532A (en) * 1983-10-03 1985-04-27 Nippon Mining Co Ltd Method for purifying solution in wet refining of lead
JP2003500542A (en) * 1999-05-27 2003-01-07 ユニヴェルシテ・クロード・ベルナール・リヨン・プルミエ Method for separating lanthanoid element and / or actinoid element in aqueous medium by combination of complexation and nanofiltration, and novel complexing agent used in the method
JP2013194272A (en) * 2012-03-19 2013-09-30 Hitachi Ltd Method for separation-recovering rare-earth elements and devices using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105132720A (en) * 2015-10-08 2015-12-09 江西理工大学 Method for recovering rare earth in ion adsorption type rare earth ore leaching solution through fractional precipitation
CN114031634A (en) * 2021-11-18 2022-02-11 江苏科技大学 Zero-field dysprosium single-ion magnet and preparation method and application thereof
CN114031634B (en) * 2021-11-18 2024-03-19 江苏科技大学 Zero-field dysprosium single-ion magnet and preparation method and application thereof

Also Published As

Publication number Publication date
JP2015132016A (en) 2015-07-23
JP6411199B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
Stringfellow et al. Technology for the recovery of lithium from geothermal brines
Gasser et al. Separation and recovery of rare earth elements from spent nickel–metal-hydride batteries using synthetic adsorbent
Riaño et al. Extraction and separation of neodymium and dysprosium from used NdFeB magnets: an application of ionic liquids in solvent extraction towards the recycling of magnets
Zarrougui et al. Highly efficient extraction and selective separation of uranium (VI) from transition metals using new class of undiluted ionic liquids based on H-phosphonate anions
Padhan et al. Recovery of Nd and Pr from NdFeB magnet leachates with bi-functional ionic liquids based on Aliquat 336 and Cyanex 272
Um et al. Precipitation behavior of Ca (OH) 2, Mg (OH) 2, and Mn (OH) 2 from CaCl2, MgCl2, and MnCl2 in NaOH-H2O solutions and study of lithium recovery from seawater via two-stage precipitation process
JP5499353B2 (en) Extraction and separation method of rare earth elements
Avdibegović et al. Selective ion-exchange separation of scandium (III) over iron (III) by crystalline α-zirconium phosphate platelets under acidic conditions
Wang et al. A sustainable approach for advanced removal of iron from CFA sulfuric acid leach liquor by solvent extraction with P507
Omelchuk et al. Effects of structural changes of new organophosphorus cationic exchangers on a solvent extraction of cobalt, nickel and manganese from acidic chloride media
CN104498714A (en) Method for removing iron, aluminum, calcium and titanium impurities from scandium-containing solution
CN107614442A (en) The processing of water and/or restorative procedure
Wang et al. Separation of zirconium and hafnium from nitric acid solutions with LIX 63, PC 88A and their mixture by solvent extraction
KR101382905B1 (en) Extraction method of rare earth elements from monazite
Sinha et al. Development of an efficient process for the recovery of zinc and iron as value added products from the waste chloride solution
AU2015275231A1 (en) Solvent extraction of scandium from leach solutions
US9376736B2 (en) Method for separating and recovering rare-earth elements
JP6411199B2 (en) Aqueous fractional precipitation of rare metals using coordination polymerisation
RU2640479C2 (en) Method of extracting rare earth metals from wet-process phosphoric acid when processing apatite concentrates
Zeng et al. Investigation on the recovery of thorium and rare earth from radioactive waste residue by functionalized ionic liquids
JP2011001583A (en) Method for extracting and separating rare earth element
Tasaki-Handa et al. Selective crystallization of phosphoester coordination polymer for the separation of neodymium and dysprosium: A thermodynamic approach
JP6017914B2 (en) Rare earth element separation method and separation apparatus
JP5905592B2 (en) Rare earth element separation method and separation apparatus
Wang et al. Extraction mechanism of lithium from the alkali solution with diketonate-based ionic liquid extractants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14868884

Country of ref document: EP

Kind code of ref document: A1