WO2015087645A1 - Mass spectrometry method - Google Patents

Mass spectrometry method Download PDF

Info

Publication number
WO2015087645A1
WO2015087645A1 PCT/JP2014/079676 JP2014079676W WO2015087645A1 WO 2015087645 A1 WO2015087645 A1 WO 2015087645A1 JP 2014079676 W JP2014079676 W JP 2014079676W WO 2015087645 A1 WO2015087645 A1 WO 2015087645A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
cleaning
chamber
gas
ion source
Prior art date
Application number
PCT/JP2014/079676
Other languages
French (fr)
Japanese (ja)
Inventor
峻 熊野
益之 杉山
益義 山田
和茂 西村
橋本 雄一郎
秀俊 諸熊
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2015087645A1 publication Critical patent/WO2015087645A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/24Vacuum systems, e.g. maintaining desired pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components

Definitions

  • the present invention relates to an apparatus for analyzing chemical substances and a cleaning method thereof.
  • Mass spectrometer is a highly sensitive analyzer, but contamination of the apparatus may be a problem. That is, when measuring a sample gas containing a high-concentration target substance or contaminants, there is a problem that these substances adhere to and contaminate the inner wall of the sample introduction part, the inner wall of the ion source, and the inner wall of the vacuum chamber. In addition to the sample itself, contamination by the matrix and solvent also occurs. In addition, when a gas chromatograph is connected, contamination is also caused by leakage of the stationary phase of the gas chromatograph. When contamination occurs, the contaminant is detected over a long period of time. As a result, ionization of the measurement target substance in the next measurement is inhibited, and the detection sensitivity of the measurement target substance is greatly reduced. In addition, when the pollutant is a substance to be quantified, an accurate quantification becomes difficult because a bias is applied to the quantification value of the next measurement.
  • the mass spectrometer must be cleaned regularly.
  • a method of cleaning by performing a baking process that heats more than in the sample analysis using a heater installed in the sample introduction part or ion source of the mass spectrometer. For example, if the heating temperature of each part is set to 100 ° C during sample analysis, it is heated to 180 ° C during cleaning. Then, the sample adhering to the inner wall of the apparatus is heated and desorbed.
  • Patent Document 1 describes a method of introducing a desorbed gas in order to desorb a substance adsorbed on the apparatus.
  • the desorption gas is changed depending on the type of adsorbate. For example, it has been proposed to use a water vapor gas as a desorption gas when the adsorbent is a salt, and a vaporized gas of an organic solvent as a desorption gas when the adsorbate is an organic substance.
  • Patent Document 2 describes a method for introducing desorbed gas into the apparatus, as in Patent Document 1.
  • hydrogen gas is said to be effective as a desorption gas. Contamination can be reduced by mixing a small amount of hydrogen gas into the sample gas not only during cleaning but also during sample measurement.
  • the cleaning method by baking has a problem that it takes time for the heating process and the natural cooling process after the heating process. For applications that require high throughput, such as on-site analysis, it is important to clean quickly. In addition, in the case of a battery-powered device such as a portable mass spectrometer, it may not have enough power to perform baking. Further, not all devices are made of heat-resistant materials. For example, when a part of the apparatus is a resin, particularly a material having low heat resistance such as a silicon tube, it is impossible to perform sufficient baking.
  • Decomposition and cleaning takes more time than baking. Moreover, it requires skilled skills and is not an operation that can be easily performed by general users. Also, due to assembly errors of the apparatus, the sensitivity of the apparatus often changes before and after disassembly and cleaning. Furthermore, even if the cleaning solution itself is contaminated, it cannot be noticed until the evacuation is completed after the device is assembled.
  • Patent Documents 1 and 2 both introduce cleaning gas into the apparatus.
  • the higher the probability of collision between the molecules contained in the cleaning gas and the substance attached to the inner wall the higher the cleaning efficiency.
  • the mass separator of the mass spectrometer must be in a high vacuum. For this reason, the introduction flow rate from atmospheric pressure is extremely small. Thus, when only a very small amount of cleaning gas can be introduced, the cleaning efficiency is low.
  • a valve is disposed between the mass spectrometer and the cleaning gas introduction unit, and the cleaning gas is introduced into the apparatus in a pulsed manner by opening and closing the valve.
  • the conductance between the cleaning gas introduction part and the mass spectrometer is sufficiently large, and when the valve is opened, the pressure inside the apparatus increases greatly. That is, a large amount of cleaning gas is introduced. By introducing a large amount of cleaning gas into the inside of the apparatus, contaminants adhering to the inner wall of the apparatus are removed.
  • the present invention includes an ion source that ionizes a sample, a chamber having a mass separation unit that separates the ionized sample at a mass-to-charge ratio, a detector that detects ions separated by the mass separation unit, and a cleaning gas.
  • An analysis method using a mass spectrometer having a pipe for introducing a gas into a chamber, an opening / closing mechanism provided in the pipe, and a control unit, introducing a sample into an ion source, ionizing the ionized sample, It has a sample measurement process in which it is introduced into the chamber and separated in the mass separation unit and detected by a detector, and a cleaning process in which a cleaning gas is introduced into the chamber, and the control unit has a maximum chamber pressure in the cleaning process.
  • the opening / closing mechanism is controlled so as to be larger than the maximum value of the chamber pressure in the sample measurement process.
  • the open / close mechanism is provided between the ion source and the chamber or between the sample inlet to the ion source and the ion source, and in the sample measurement process, the sample ion is placed in the chamber with the open / close mechanism open.
  • the open / close mechanism is closed, the sample ions are separated by the mass separator and detected by the detector.
  • a second opening / closing mechanism is further provided between the ion source and the chamber or between the sample inlet to the ion source and the ion source, and the second opening / closing mechanism is open in the sample measurement step. Then, sample ions are introduced into the chamber, and the sample is separated by the mass separation unit with the open / close mechanism closed and detected by the detector.
  • contaminants inside the apparatus can be quickly removed by introducing a large amount of cleaning gas into the apparatus in pulses using a valve.
  • FIG. 1 is a schematic diagram showing the apparatus configuration of a mass spectrometer of Example 1.
  • FIG. 2 is a schematic diagram showing a specific example of the device configuration of the first embodiment. The figure which shows an example of a measurement sequence. The schematic diagram which shows the typical time-dependent change of the pressure of a vacuum chamber. The figure which shows an example of a washing
  • FIG. 3 is a schematic diagram showing the apparatus configuration of a mass spectrometer of Example 2.
  • FIG. 3 is a schematic configuration diagram showing another form of the mass spectrometer of Example 2.
  • FIG. 4 is a schematic diagram showing the apparatus configuration of a mass spectrometer of Example 3.
  • FIG. 6 is a schematic configuration diagram showing another form of the mass spectrometer of Example 3.
  • FIG. 6 is a schematic configuration diagram showing another form of the mass spectrometer of Example 3.
  • FIG. 6 is a schematic configuration diagram showing another form of the mass spectrometer of Example 3.
  • FIG. 6 is a schematic configuration diagram showing another form of the mass spectrometer of Example 3.
  • FIG. 1 is a schematic configuration diagram showing an example of a mass spectrometer according to the present invention.
  • This device mainly has a gas inlet 1 for introducing sample gas and cleaning gas into the device, a valve 3 that can introduce sample gas and cleaning gas in a pulsed manner, an ion source 2 that ionizes sample molecules, and a mass charge of ions
  • a vacuum chamber 4 having a mass separation unit for analyzing according to the ratio, a vacuum pump 5 for depressurizing the inside of the apparatus, a detector 6 for detecting ions, a control circuit 7 for controlling the apparatus, a control computer 8 for controlling the entire apparatus, It comprises a data display 9 that displays data.
  • the gas inlet 1 may be a pipe or a fine hole.
  • the measurement target substance of this device may be any of gas, liquid, and solid. In the case of a gas sample, it can be introduced as it is. In this case, the gas vaporized from the solid sample is introduced as in the liquid sample.
  • the valve 3 When the valve 3 is closed, the sample gas and the cleaning gas are not introduced into the ion source 2. When the valve 3 is opened, the sample gas and the cleaning gas are introduced into the ion source 2.
  • the valve opening time is preferably 1 second or less. Typical valve opening time is 10 to 100 ms. The valve 3 is opened to introduce gas into the apparatus, and the valve 3 is closed to prevent further gas introduction.
  • the valve 3 only needs to be able to introduce a pulse of gas, and a pinch valve, a ball valve, a shutter valve, or the like can be used.
  • a pulse valve composed of a silicon tube and a pinch valve is inexpensive and stable and easy to use. During measurement, the valve should be opened and closed repeatedly to introduce the sample gas into the device intermittently.
  • neutral molecules in the gas are ionized.
  • a low vacuum barrier discharge ion source, a low vacuum glow discharge ion source, or the like is used, but is not limited thereto.
  • the pressure of the ion source 2 varies depending on the conductance between the outside of the apparatus and the ion source, the conductance between the ion source and the pump, the valve opening time, and the pump displacement. When using a low-vacuum barrier discharge ion source, it is necessary to adjust the conductance and the like so that the pressure at which ionization efficiency is maximized.
  • the ions generated by the ion source 2 are introduced into a vacuum chamber 4 having a mass separation unit.
  • a pressure gauge 32 is connected to the vacuum chamber to monitor the pressure.
  • a typical mass separator is a linear ion trap. Any mechanism other than the linear ion trap can be used as long as it can separate ions by mass-to-charge ratio.
  • the linear ion trap is composed of, for example, four rod electrodes and plate electrodes arranged before and after the rod electrodes. Ions are trapped by the pseudopotential generated by the RF voltage applied to the rod electrode and the potential difference between the incap voltage and the offset voltage of the rod electrode. The trapped ions are discharged to the detector for each mass to charge ratio.
  • the inside of the vacuum chamber 4 may be divided into several rooms, and the pressure in each room may be different.
  • the vacuum chamber 4 may include not only a mechanism for separating ions based on mass-to-charge ratio, but also a mechanism for separating ions based on ion mobility, a mechanism for converging the flow of ions by the force of an electromagnetic field, and the like.
  • the detector 6 may be anything as long as it can detect ions.
  • a channeltron or a microchannel plate is used. Conversion dynodes are often used to convert ions to electrons.
  • a detector using a scintillator and a photomultiplier tube may be used.
  • the device is controlled by the control circuit 7, and the control circuit is controlled by the control computer 8.
  • the control computer 8 may be mounted on the apparatus or connected externally. The obtained result is displayed on the data display 9.
  • a liquid crystal display is often used as the data display device 9.
  • the data display device 9 may also serve as a user interface.
  • an externally connected liquid crystal display may exist.
  • a liquid crystal display mounted on the apparatus main body may be a touch panel so that measurement parameters and the like can be input from the touch panel.
  • FIG. 2 is a schematic diagram of an example in which the device configuration of FIG. 1 is further embodied.
  • the figure shows a sample vial 23 containing a sample solution 24, a gas inlet 1 for introducing a sample gas, a valve 3 composed of a silicon tube 14 and a pinch valve 15, a glass tube 18, an externally wound discharge electrode 17, a discharge Low-vacuum barrier discharge ion source 2 composed of internal electrode 19, high-voltage AC power source 25, linear ion trap composed of rod electrode 21 and incap 20 which is a plate electrode, end cap 22, pump 5 and detector 6 Is described.
  • the control circuit, control computer, and data display are not shown.
  • the sample molecules 16 in the sample vial 23 are introduced into the low vacuum barrier discharge ion source through the pinch valve 15. Neutral molecules in the gas are ionized and the ions are introduced into the vacuum chamber 4. The ions are trapped by the linear ion trap of the mass separation unit, separated based on the mass-to-charge ratio, and discharged to the detector 6.
  • FIG. 3 is a diagram showing an example of the positive ion measurement sequence of the apparatus.
  • the trap RF amplitude is the amplitude of the RF voltage applied to the rod electrode 21 of the linear ion trap, and ions can be trapped only while the voltage is applied. While the barrier discharge voltage is applied, plasma is formed in the ion source, and neutral molecules are ionized.
  • the AC amplitude for ion ejection is the amplitude of the AC voltage applied to the rod electrode when ions trapped in the linear ion trap are ejected. When the ion discharge AC voltage is applied, ions are discharged for each mass-to-charge ratio.
  • Hours 1 in the measurement sequence of Fig. 3 is the barrier discharge stabilization time.
  • Time 2 is the ion storage time, and ions generated by the ion source are introduced into the ion trap. During time 1 and 2, the valve is open.
  • Time 3 is the cooling time for cooling trapped ions.
  • Time 4 is the ion analysis time. The trapped ions are separated for each mass-to-charge ratio and discharged to the detector.
  • Time 5 is an ion exclusion time, and is a time for excluding all ions that have not been ejected during the ion analysis time to the outside of the trap. Repeat the sequence shown in Fig. 3 when measuring the sample.
  • valve opening time is typically less than 1 second, depending on the capacity of the device and pump.
  • FIG. 4 is a schematic diagram showing a typical change over time in the pressure of the vacuum chamber. While the valve 3 was closed, the pressure was maintained at 0.01 Pa or less, the pressure continued to rise during t1 when the valve was open, and reached the maximum pressure at the moment when the valve was closed. When valve 3 was closed, the pressure decreased and became 0.01 Pa or less again. Typically, the pressure increases more than 100 times. A 100-fold increase in pressure means that a large amount of gas has been introduced.
  • the sample gas flows into the pump 5 through the gas inlet 1, the silicon tube 14, the ion source 2, and the mass separation unit.
  • molecules contained in the gas are adsorbed on the inner wall of each part.
  • highly polar molecules such as amines adsorb well on metal surfaces. If the amount contained in the gas is low, the amount of adsorption is small and this is not a problem.
  • a high concentration gas is measured, it is adsorbed on the inner wall of the device in large quantities. At this time, even if the sample gas is not introduced, the adsorbate gradually desorbs and continues to be measured over a long period of time. Such contamination becomes a problem when it is desired to quantify the amount of the sample.
  • the inventors have used a valve 3 to introduce a large amount of cleaning gas in a pulsed manner into the apparatus and desorb the adsorbate.
  • the pressure of the mass separation section must be kept below 0.1 Pa.
  • the vacuum pump 5 depressurizing the mass separation unit has an exhaust characteristic that is assumed to be used at 0.1 Pa or less. Therefore, if the pressure is maintained at a pressure much higher than 0.1 Pa for a long time, the exhaust of the pump 5 stops or the pump 5 is destroyed.
  • the pressure in the mass separation section is increased to 0.1 Pa or more if it is temporary rather than a long time, there will be no problem with the pump 5.
  • Temporary is typically no more than a second.
  • the inventors have found that if a large amount of cleaning gas is introduced into the apparatus in a pulsed manner by the valve 3, the inside of the apparatus can be cleaned quickly without damaging the pump 5.
  • the pulse shape here means a change in pressure within one second. If the valve 3 is opened for more than 1 second and the high pressure is maintained in the vacuum chamber, the pump 5 will be damaged.
  • FIG. 5 is a diagram showing an example of a cleaning sequence during cleaning. Unlike sample measurement, the trap RF amplitude, ion discharge AC amplitude, and incap voltage are set to zero.
  • the valve opening time and the barrier discharge voltage ON time are the same, but they are not necessarily the same. Typical time is 60 to 200 ms for valve opening time and 60 to 200 ms for barrier discharge voltage ON time.
  • the opening time of the valve 3 is longer than that at the time of measurement. This is to introduce a larger amount of gas.
  • One feature of the present invention is that it has at least two modes: a sample measurement mode driven by the sequence of FIG. 3 and an apparatus cleaning mode driven by the sequence of FIG.
  • FIG. 3 and FIG. 5 are examples of sequences, and are not limited to these.
  • FIG. 6 is a schematic diagram showing changes in pressure of the mass separation unit during sample measurement and during cleaning.
  • the ultimate pressure of the mass separation unit also changes. That is, a larger amount of gas is introduced by opening the valve 3 longer.
  • discharge may occur in the mass separator. For this reason, it is recommended to lower each voltage in the vacuum chamber 4 during cleaning rather than during sample measurement. It is not always necessary to lower it to 0V, and it is not necessary to lower all voltages. Moreover, it is not necessary to lower the voltage if it is not discharged.
  • FIG. 7 is a schematic diagram showing pressure fluctuation when the opening and closing of the valve is repeated. The sample gas is intermittently introduced into the device by repeatedly opening and closing the valve when cleaning the sample gas and when cleaning.
  • FIG. Fig. 8 shows the spectrum after CIDing MA showing the measurement results before and after cleaning. It can be seen that the MA-derived signal that appeared strongly decreased to near the lower detection limit by washing.
  • the contaminant is A
  • the adsorption site on the inner wall of the device is M
  • the molecules contained in the cleaning gas are B.
  • One way to shift the equilibrium to the right is to introduce a large amount of B.
  • the present invention utilizes this point. Repeating the sequence of introducing a large amount of cleaning gas in a pulsed manner using the valve 3 means that the concentration of B in the above equation (1) is repeatedly increased and decreased.
  • the pressure fluctuation curves in FIGS. 6 and 7 may be read as B concentration fluctuation curves.
  • valve 3 makes it possible to make the inside of the device at a higher pressure than the continuous introduction system, so the use of valve 3 tends to shift the equilibrium to the right and has a higher cleaning effect.
  • the pressure in at least one place in the mass spectrometer changes 10 times or more when the valve 3 is opened and closed and the cleaning gas is introduced.
  • the pressure of the mass separation part when the valve 3 for introducing the cleaning gas is closed is 0.1 Pa
  • the ultimate pressure when the valve is opened must be 1 Pa or more.
  • the vacuum pump 5 used to depressurize the mass separator to 0.1 Pa or less is designed for use under low pressure, it can withstand excessive high pressure even temporarily. Absent. For this reason, the pressure in the mass separation section must be at most 200 Pa.
  • the mass separator is depressurized by two or more vacuum pumps 5.
  • vacuum pumps For example, high vacuum pumps and roughing pumps. If cleaning is performed with the high vacuum vacuum pump stopped and only the roughing pump running, there is no problem even if the pressure in the mass separation section exceeds 200 Pa.
  • ⁇ ⁇ ⁇ Ionization may be adversely affected by the accumulation of contaminants.
  • barrier discharge is generated in the ion source 2 and plasma is generated only when the valve 3 is opened and the pressure of the ion source 2 is increased.
  • the pulse valve is closed again, the pressure of the ion source 2 decreases and the plasma disappears. This is because an optimum pressure exists during plasma generation.
  • the plasma light adversely affects the detector, it is necessary to extinguish the plasma when detecting ions.
  • Some apparatuses repeat generation and disappearance of plasma in this way. If contaminants accumulate in the ion source 2, plasma generation may fail. Introducing a pulse of cleaning gas is also effective against such problems. Plasma can be stably generated by desorbing contaminants accumulated in the ion source 2 by the cleaning gas.
  • the cleaning effect of the plasma itself can be used.
  • the plasma cleaning effect can be increased by increasing the discharge voltage and lengthening the discharge time during cleaning rather than during measurement.
  • the cleaning effect is remarkably increased.
  • Charged particles generated by the discharge collide with the inner wall of the apparatus and sputtering occurs.
  • pollutants are ejected from the inner wall together with the adsorption sites.
  • it collides with the cleaning gas molecules and the pollutants are desorbed from the adsorption site.
  • Sputtering can break the bond between the contaminant and the adsorption site, and only the contaminant can jump out.
  • the inside of the system is filled with a large amount of cleaning gas, and contaminants rarely recombine with the adsorption sites.
  • the cleaning gas pulse introduction and the discharge cleaning are performed at the same time, the effect of the cleaning gas and the effect of the cleaning by the plasma are more than simply added.
  • plasma cleaning may be performed by installing a plasma generation mechanism at a location that is easily contaminated.
  • ⁇ Contaminants can be removed more effectively by introducing a cleaning gas into the apparatus and baking at the same time. By heating, the bond between the contaminant and the adsorption site is easily released, and the contaminant is desorbed by introducing a cleaning gas there.
  • FIG. 10 is a diagram illustrating an example of an operation sequence of a mass spectrometer having at least a sample measurement mode and an apparatus cleaning mode.
  • the amount of contamination is estimated from the obtained mass spectrum (S12). For example, it is determined that the device is in a contaminated state when the TIC intensity is above a certain level, or when the ionic strength of a molecule that is known to be easily contaminated is high.
  • an operation method in which a blank sample for contamination confirmation is measured after sample measurement may be used.
  • a blank sample is a sample used for judging the contamination state of the apparatus. The type and amount of molecules contained in the blank sample as a contamination confirmation substance are known. Contamination is suspected if a signal other than a known molecule is detected when a blank sample is measured.
  • the degree of contamination can be determined by comparing the intensity of ions derived from the blank sample and the intensity of contaminants. If it is determined that there is no suspicion of contamination or the degree of contamination is mild, measure the next sample. On the other hand, if it is determined that there is a suspicion of contamination or the degree of contamination is severe, cleaning is performed (S13).
  • the cleaning gas is introduced into the apparatus in a pulsed manner using the valve 3. The apparatus shifts from the sample measurement mode to the apparatus cleaning mode. If the pollutant has been identified, the optimum cleaning gas can be selected for each pollutant. For example, it is effective to introduce a basic gas when the pollutant is a basic substance and to introduce an acidic gas when the pollutant is an acidic substance.
  • the cleaning gas may be automatically selected by the apparatus or arbitrarily selected by the user.
  • the cleaning gas is not limited to a basic gas or an acid gas, and may be an alcohol.
  • FIG. 11 is an explanatory diagram showing an example of a screen displayed on the data display 9 of the portable mass spectrometer 26.
  • sample measurement the time until completion of measurement is displayed. If there is a suspicion of contamination from the measurement results, request the user to perform a cleaning operation. During cleaning, the time until the completion of the cleaning operation is displayed. After cleaning is completed, the user is required to measure a blank sample in order to examine the degree of contamination reduction. If a blank sample is measured and it can be confirmed that there is no contamination, the process proceeds to the next sample measurement. You may lock the software so that sample measurement is not possible until it is confirmed that there is no contamination. As shown in Fig. 2, when using a sample vial, the shape of the vial for sample measurement and the vial for washing can be changed, and if it is not the designated vial, it can be locked so that the measurement is not started.
  • ⁇ Gas cylinders, vials containing liquids and solids, etc. can be considered as the supply source of the cleaning gas.
  • the gas evaporated from them is used as cleaning gas.
  • a liquid or solid may be heated to increase the amount of gas generated.
  • a gas can be generated by reacting a liquid and a solid.
  • a method of generating a cleaning gas by reacting a strongly basic or strongly acidic liquid 28 with a salt 30 of the cleaning gas is effective.
  • a label 29 describing the type of gas and the expiration date may be attached to the cylinder or vial 31 for storing the cleaning gas supply source.
  • the internal pressure of the vial should be reduced from atmospheric pressure in order to increase the cleaning efficiency.
  • the vapor pressure of the molecules contained in the liquid or solid is not affected by the internal pressure of the vial.
  • the cleaning gas molecules are 0.00001% of the gas in the vial headspace.
  • the cleaning gas molecules are 0.001% of the gas in the vial headspace. That is, the ratio of cleaning gas molecules is increasing. Therefore, if the flow rate of the gas introduced into the apparatus is the same, the cleaning efficiency is improved because the absolute amount of the cleaning gas molecules introduced into the apparatus increases when the internal pressure of the vial is reduced.
  • FIG. 13 is a schematic configuration diagram showing an embodiment of a mass spectrometer according to the present invention.
  • the valve 3 is disposed between the ion source 2 and the vacuum chamber 4.
  • Neutral molecules in the sample gas are ionized by the ion source 2 and are introduced into the vacuum chamber 4 through the ion introduction pipe 12 and the pulse valve 3.
  • neutral gas and cleaning gas that have not been ionized are introduced through the pulse valve 3.
  • the ion source 2 is generally arranged under atmospheric pressure. For this reason, the ion source 2 can be disassembled, cleaned, remodeled, etc. without breaking the vacuum of the mass spectrometer, and handling of the ion source is easier than in the first embodiment.
  • ions are introduced into the vacuum chamber 4 from atmospheric pressure, the ion loss in the piping is large, and the device sensitivity is often better in the first embodiment.
  • FIG. 14 is a schematic configuration diagram showing another form of the mass spectrometer of the second embodiment.
  • electrospray ionization is generally used as shown in FIG.
  • the sample solution 11 is fed to the electrospray probe 10 and ionized.
  • the present invention is not limited to electrospray, and there is a method in which a gas heater 33 is used to heat and vaporize a liquid in the ion source 2 and the vaporized gas is ionized by atmospheric pressure chemical ionization, and various ionization methods can be used. Even in the apparatus configuration of this embodiment, there is a problem that the inside of the apparatus is contaminated when a high concentration sample is measured.
  • ⁇ ⁇ ⁇ Ions may be introduced into the apparatus simultaneously with the cleaning gas.
  • Sputtering occurs when ions collide with the inner wall of the apparatus. Contaminants jump out of the inner wall along with the adsorption sites by sputtering, and desorb from the adsorption sites by colliding with cleaning gas molecules. Since the probability of collision with cleaning gas molecules is higher when the gas is ejected into the gas than when it is present on the inner wall, the cleaning efficiency is improved.
  • the operation method shown in FIG. 10 the display of the data display shown in FIG. 11, the supply source of the cleaning gas, etc. can be the same as in the first embodiment.
  • FIG. 15 is a schematic configuration diagram showing an embodiment of a mass spectrometer according to the present invention.
  • the difference from the first embodiment is that the pulse valve 3 is not disposed between the gas inlet 1 and the vacuum chamber 4. However, a pulse valve 3 was installed between the cleaning gas inlet 13 and the vacuum chamber 4. That is, in this embodiment, the sample gas and the cleaning gas are introduced from different pipes into the apparatus. The measurement sequence is obtained by omitting the opening and closing of the valve from FIG. If there is no problem with plasma light entering the detector, there is no need to turn on / off the barrier discharge voltage. In Examples 1 and 2, ions could not be introduced into the apparatus unless the valve was opened, and the throughput for detecting ions was poor.
  • the throughput is high.
  • the sensitivity is lower than in Examples 1 and 2.
  • the cleaning effect is the same as in Examples 1 and 2, and the inside of the apparatus can be quickly cleaned by introducing a large amount of cleaning gas into the apparatus in a pulsed manner using the valve 3.
  • the cleaning gas is introduced between the ion source 2 and the vacuum chamber 4, but the cleaning gas may be directly introduced into the vacuum chamber 4.
  • FIG. 16 is a schematic configuration diagram showing another embodiment of the mass spectrometer of the third embodiment.
  • the difference from FIG. 15 is that a valve 3 is arranged between the ion source 2 and the gas inlet 1.
  • sample gas and cleaning gas are introduced from different pipes as in FIG.
  • the sample measurement mode and the cleaning mode are alternately repeated to perform cleaning while measuring the sample.
  • the sample gas side valve 3 is opened and closed to introduce and analyze the sample gas, and then the cleaning gas side valve 3 is opened and closed to clean the apparatus.
  • the inside of the apparatus can always be kept clean. It is not always necessary to alternately introduce the sample gas and the cleaning gas once, and the balance of the number of times can be changed, for example, the cleaning gas is introduced once every five times the sample gas is introduced.
  • FIG. 17 is also a schematic configuration diagram showing another form of the mass spectrometer of the third embodiment.
  • the pulse valve 3 on the sample gas side is arranged between the ion source 2 and the vacuum chamber 4.
  • the sample gas and the cleaning gas are introduced from different pipes.
  • sample measurement and cleaning can be alternately repeated, and the apparatus can always be kept in a healthy state.
  • an atmospheric pressure ion source can be used.
  • FIG. 18 is also a schematic configuration diagram showing another form of the mass spectrometer of the third embodiment.
  • the pipe for introducing the sample gas and the pipe for introducing the cleaning gas are joined before the ion source.
  • the sensitivity is high because the sample gas is pulsed.
  • the cleaning gas is pulsed, so the cleaning efficiency is high.
  • FIGS. 15 to 17 since the cleaning gas is introduced into the vacuum chamber 4 after passing through the ion source 2, the ion source 2 is also cleaned, and the robustness of the apparatus is high.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

For the purpose of cleaning the inside of a chamber having a mass separator of a mass spectrometer quickly without opening the inside of the chamber to the atmosphere, a large amount of cleaning gas capable of separating a contaminant adhered to the internal walls of the mass spectrometer is introduced into the chamber via a pulse valve so that the maximum chamber pressure value in a cleaning step is higher than the maximum chamber pressure value in a sample measurement step.

Description

質量分析方法Mass spectrometry method
 本発明は,化学物質を分析する装置とそのクリーニング法に関わる。 The present invention relates to an apparatus for analyzing chemical substances and a cleaning method thereof.
 土壌や大気の汚染の測定,食品の農薬検査,血中代謝物による診断,尿中薬物検査など,混合試料中の微量物質をその場で簡便に,高感度に測定する装置が求められている。微量物質の高感度測定が可能な方法の一つとして,質量分析が用いられている。 There is a need for a device that can easily and accurately measure trace substances in mixed samples on the spot, such as soil and air pollution measurements, food pesticide tests, blood metabolite diagnostics, and urine drug tests. . Mass spectrometry is used as one of the methods that enable highly sensitive measurement of trace substances.
 質量分析装置は高感度な分析装置であるが,装置の汚染が問題になることがある。すなわち,高濃度の測定対象物質や夾雑物質を含む試料ガスを測定した場合,それらの物質が試料導入部内壁,イオン源内壁及び真空チャンバー内壁に付着して汚染してしまう問題があった。試料そのものだけでなく,マトリックス,溶媒による汚染も発生する。またガスクロマトグラフを接続している場合には,ガスクロマトグラフの固定相の漏れによっても汚染が発生する。汚染が発生した場合,汚染物質が長期間にわたって検出されてしまう。その結果,次の測定における測定対象物質のイオン化が阻害され,測定対象物質の検出感度が大きく低下してしまう。また,汚染物質が定量対象物質であった場合には,次の測定の定量値にバイアスが乗ることになり正確な定量が困難になる。 質量 Mass spectrometer is a highly sensitive analyzer, but contamination of the apparatus may be a problem. That is, when measuring a sample gas containing a high-concentration target substance or contaminants, there is a problem that these substances adhere to and contaminate the inner wall of the sample introduction part, the inner wall of the ion source, and the inner wall of the vacuum chamber. In addition to the sample itself, contamination by the matrix and solvent also occurs. In addition, when a gas chromatograph is connected, contamination is also caused by leakage of the stationary phase of the gas chromatograph. When contamination occurs, the contaminant is detected over a long period of time. As a result, ionization of the measurement target substance in the next measurement is inhibited, and the detection sensitivity of the measurement target substance is greatly reduced. In addition, when the pollutant is a substance to be quantified, an accurate quantification becomes difficult because a bias is applied to the quantification value of the next measurement.
 これらの問題のため,質量分析装置は定期的に洗浄することが求められる。一般的な手法として,質量分析装置の試料導入部やイオン源に設置したヒータを用いて試料分析時よりも過剰に加熱するベーキング処理を行ってクリーニングする方法がある。例えば,試料分析時に各パーツの加熱温度を100℃に設定していた場合,クリーニング時には180℃まで加熱する。すると,装置内壁に付着した試料は加熱脱離される。 Because of these problems, the mass spectrometer must be cleaned regularly. As a general technique, there is a method of cleaning by performing a baking process that heats more than in the sample analysis using a heater installed in the sample introduction part or ion source of the mass spectrometer. For example, if the heating temperature of each part is set to 100 ° C during sample analysis, it is heated to 180 ° C during cleaning. Then, the sample adhering to the inner wall of the apparatus is heated and desorbed.
 ベーキング以外にも,質量分析装置の真空排気を止め,汚染箇所を分解洗浄する方法がある。イオン源などを装置から外し,メタノール,水,アセトンなどの液体に浸けこみ超音波洗浄することで洗浄できる。その後,オーブンに入れベーキングを行う。化学的洗浄だけでなく,ヤスリで研磨するなどの機械的洗浄を行う場合もある。 In addition to baking, there is a method to stop the evacuation of the mass spectrometer and disassemble and clean the contaminated part. It can be cleaned by removing the ion source from the device and immersing it in a liquid such as methanol, water, or acetone and performing ultrasonic cleaning. Then put it in the oven and bake. In addition to chemical cleaning, mechanical cleaning such as polishing with a file may be performed.
 特許文献1は,装置に吸着した物質を脱離させるために脱離ガスを導入する手法を記載している。脱離ガスは吸着物の種類によって変更している。例えば,吸着物が塩である場合には水蒸気ガスを脱離ガスとして,吸着物が有機物である場合には有機溶媒の気化ガスを脱離ガスとして用いることを提案している。 Patent Document 1 describes a method of introducing a desorbed gas in order to desorb a substance adsorbed on the apparatus. The desorption gas is changed depending on the type of adsorbate. For example, it has been proposed to use a water vapor gas as a desorption gas when the adsorbent is a salt, and a vaporized gas of an organic solvent as a desorption gas when the adsorbate is an organic substance.
 特許文献2は,特許文献1と同様に,装置に脱離ガスを導入する手法を記載している。特に水素ガスが脱離ガスとして効果的であるとしている。洗浄時だけでなく,試料測定時にも試料ガスにわずかな水素ガスを混入させることで汚染を低減できる。 Patent Document 2 describes a method for introducing desorbed gas into the apparatus, as in Patent Document 1. In particular, hydrogen gas is said to be effective as a desorption gas. Contamination can be reduced by mixing a small amount of hydrogen gas into the sample gas not only during cleaning but also during sample measurement.
特開2007-170985号公報JP 2007-170985 A 特開2013-61324号公報JP 2013-61324
 ベーキング処理によるクリーニング方法は,加熱工程および加熱工程後の自然冷却工程に時間がかかるという問題があった。オンサイト分析のようなハイスループットが要求されるアプリケーションでは迅速にクリーニングを行うことが重要である。また,可搬型質量分析装置のようなバッテリー駆動装置の場合,ベーキングを行えるほど電力を有していない場合もある。また,装置が全て耐熱素材で構成されているとは限らない。例えば,装置の一部が樹脂,特にシリコンチューブのような耐熱性が低い物質であった場合,十分なベーキングを行うことは不可能である。 The cleaning method by baking has a problem that it takes time for the heating process and the natural cooling process after the heating process. For applications that require high throughput, such as on-site analysis, it is important to clean quickly. In addition, in the case of a battery-powered device such as a portable mass spectrometer, it may not have enough power to perform baking. Further, not all devices are made of heat-resistant materials. For example, when a part of the apparatus is a resin, particularly a material having low heat resistance such as a silicon tube, it is impossible to perform sufficient baking.
 分解洗浄はベーキング処理以上に時間がかかる。また熟練した技術が必要であり,一般のユーザが簡便に行える作業ではない。また,装置の組み立て誤差によって,分解洗浄の前後で装置感度が変化することは往々にしてある。さらに,洗浄溶液自体が汚染されていたとしても,装置を組み立てた後に真空排気を完了させるまで気づくことができない。 Decomposition and cleaning takes more time than baking. Moreover, it requires skilled skills and is not an operation that can be easily performed by general users. Also, due to assembly errors of the apparatus, the sensitivity of the apparatus often changes before and after disassembly and cleaning. Furthermore, even if the cleaning solution itself is contaminated, it cannot be noticed until the evacuation is completed after the device is assembled.
 特許文献1,2はどちらも洗浄用のガスを装置へと導入している。この場合は,洗浄用ガスに含まれる分子と内壁に付着した物質との衝突確率が高いほど洗浄効率が高い。衝突確率を増加させるためには,洗浄ガスの導入流量を増やす必要がある。しかし,質量分析装置の質量分離部は高真空でなければならない。このため,大気圧からの導入流量は著しく少ない。このように微量しか洗浄ガスを導入できない場合は洗浄効率が低い。 Patent Documents 1 and 2 both introduce cleaning gas into the apparatus. In this case, the higher the probability of collision between the molecules contained in the cleaning gas and the substance attached to the inner wall, the higher the cleaning efficiency. In order to increase the collision probability, it is necessary to increase the flow rate of the cleaning gas. However, the mass separator of the mass spectrometer must be in a high vacuum. For this reason, the introduction flow rate from atmospheric pressure is extremely small. Thus, when only a very small amount of cleaning gas can be introduced, the cleaning efficiency is low.
 前記課題を解決するために,本発明では,質量分析装置と洗浄ガス導入部の間にバルブを配置し,このバルブの開閉により,洗浄ガスを装置へとパルス状に導入する。洗浄ガス導入部と質量分析装置の間のコンダクタンスは十分に大きく,バルブが開状態となると装置内部の圧力が大きく上昇する。すなわち,大量の洗浄ガスを導入する。大量の洗浄ガスを装置内部へと導入することで装置内壁に付着した汚染物質を取り除く。 In order to solve the above-described problems, in the present invention, a valve is disposed between the mass spectrometer and the cleaning gas introduction unit, and the cleaning gas is introduced into the apparatus in a pulsed manner by opening and closing the valve. The conductance between the cleaning gas introduction part and the mass spectrometer is sufficiently large, and when the valve is opened, the pressure inside the apparatus increases greatly. That is, a large amount of cleaning gas is introduced. By introducing a large amount of cleaning gas into the inside of the apparatus, contaminants adhering to the inner wall of the apparatus are removed.
 すなわち,本発明は,試料をイオン化するイオン源と,イオン化された試料を質量電荷比で分離する質量分離部を有するチャンバーと,質量分離部により分離されたイオンを検出する検出器と,洗浄ガスをチャンバーに導入する配管と,配管に設けられた開閉機構と,制御部とを有する質量分析装置を用いた分析方法であって,試料をイオン源に導入してイオン化し,イオン化された試料をチャンバーに導入して質量分離部において分離し,検出器で検出する試料測定工程と,洗浄ガスをチャンバーに導入する洗浄工程と,を有し,制御部は,洗浄工程におけるチャンバーの圧力の最大値が,試料測定工程におけるチャンバーの圧力の最大値よりも大きくなるように,開閉機構を制御するものである。 That is, the present invention includes an ion source that ionizes a sample, a chamber having a mass separation unit that separates the ionized sample at a mass-to-charge ratio, a detector that detects ions separated by the mass separation unit, and a cleaning gas. An analysis method using a mass spectrometer having a pipe for introducing a gas into a chamber, an opening / closing mechanism provided in the pipe, and a control unit, introducing a sample into an ion source, ionizing the ionized sample, It has a sample measurement process in which it is introduced into the chamber and separated in the mass separation unit and detected by a detector, and a cleaning process in which a cleaning gas is introduced into the chamber, and the control unit has a maximum chamber pressure in the cleaning process. However, the opening / closing mechanism is controlled so as to be larger than the maximum value of the chamber pressure in the sample measurement process.
 一態様において,開閉機構は,イオン源とチャンバーの間又はイオン源への試料の導入口とイオン源の間に設けられており,試料測定工程において,開閉機構が開の状態で試料イオンをチャンバーに導入し,開閉機構が閉状態で試料イオンを質量分離部で分離して検出器で検出する。 In one embodiment, the open / close mechanism is provided between the ion source and the chamber or between the sample inlet to the ion source and the ion source, and in the sample measurement process, the sample ion is placed in the chamber with the open / close mechanism open. When the open / close mechanism is closed, the sample ions are separated by the mass separator and detected by the detector.
 別の態様において,イオン源とチャンバーの間又はイオン源への試料の導入口とイオン源の間に,さらに第2の開閉機構を備え,試料測定工程において,第2の開閉機構が開の状態で試料イオンをチャンバーに導入し,開閉機構が閉の状態で試料を質量分離部で分離して検出器で検出する。 In another aspect, a second opening / closing mechanism is further provided between the ion source and the chamber or between the sample inlet to the ion source and the ion source, and the second opening / closing mechanism is open in the sample measurement step. Then, sample ions are introduced into the chamber, and the sample is separated by the mass separation unit with the open / close mechanism closed and detected by the detector.
 本発明によれば,バルブを利用してパルス状に大量の洗浄ガスを装置に導入することにより,装置内部の汚染物質を迅速に取り除くことができる。 According to the present invention, contaminants inside the apparatus can be quickly removed by introducing a large amount of cleaning gas into the apparatus in pulses using a valve.
 上記した以外の,課題,構成及び効果は,以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
実施例1の質量分析装置の装置構成を示す概略図。FIG. 1 is a schematic diagram showing the apparatus configuration of a mass spectrometer of Example 1. 実施例1の装置構成の具体例を示す模式図。FIG. 2 is a schematic diagram showing a specific example of the device configuration of the first embodiment. 測定シーケンスの一例を示す図。The figure which shows an example of a measurement sequence. 真空チャンバーの圧力の典型的な経時変化を示す模式図。The schematic diagram which shows the typical time-dependent change of the pressure of a vacuum chamber. 洗浄シーケンスの一例を示す図。The figure which shows an example of a washing | cleaning sequence. 試料測定時と洗浄時における質量分離部の圧力変化を示す模式図。The schematic diagram which shows the pressure change of the mass separation part at the time of sample measurement and at the time of washing | cleaning. バルブの開閉を繰り返した場合の圧力変動を示す模式図。The schematic diagram which shows the pressure fluctuation at the time of repeating opening and closing of a valve | bulb. 洗浄前後におけるメタンフェタミンのフラグメントのスペクトルを示す図。The figure which shows the spectrum of the fragment | piece of methamphetamine before and behind washing | cleaning. バルブ開時間を変化させた時の洗浄効果の比較図。The comparison figure of the cleaning effect when changing valve opening time. 試料測定モードと装置洗浄モードを有する質量分析装置の運用シーケンスの一例を示す図。The figure which shows an example of the operation | movement sequence of a mass spectrometer which has a sample measurement mode and an apparatus washing mode. データ表示画面の一例を示す図。The figure which shows an example of a data display screen. 洗浄ガス供給方法の例を示す図。The figure which shows the example of the cleaning gas supply method. 実施例2の質量分析装置の装置構成を示す概略図。FIG. 3 is a schematic diagram showing the apparatus configuration of a mass spectrometer of Example 2. 実施例2の質量分析装置の別形態を示す概略構成図。FIG. 3 is a schematic configuration diagram showing another form of the mass spectrometer of Example 2. 実施例3の質量分析装置の装置構成を示す概略図。FIG. 4 is a schematic diagram showing the apparatus configuration of a mass spectrometer of Example 3. 実施例3の質量分析装置の別形態を示す概略構成図。FIG. 6 is a schematic configuration diagram showing another form of the mass spectrometer of Example 3. 実施例3の質量分析装置の別形態を示す概略構成図。FIG. 6 is a schematic configuration diagram showing another form of the mass spectrometer of Example 3. 実施例3の質量分析装置の別形態を示す概略構成図。FIG. 6 is a schematic configuration diagram showing another form of the mass spectrometer of Example 3.
 以下,図面を参照して本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[実施例1]
 図1は,本発明による質量分析装置の一例を示す概略構成図である。本装置は主に試料ガスや洗浄ガスを装置へと導入するためのガス導入口1,試料ガス及び洗浄ガスをパルス状に導入できるバルブ3,試料分子をイオン化するイオン源2,イオンを質量電荷比にしたがって分析する質量分離部を有する真空チャンバー4,装置内部を減圧する真空ポンプ5,イオンを検出するための検出器6,装置を制御する制御回路7,装置全体をコントロールするコントロール計算機8,データを表示するデータ表示機9からなる。ガス導入口1は管でもよいし細孔でもよい。
[Example 1]
FIG. 1 is a schematic configuration diagram showing an example of a mass spectrometer according to the present invention. This device mainly has a gas inlet 1 for introducing sample gas and cleaning gas into the device, a valve 3 that can introduce sample gas and cleaning gas in a pulsed manner, an ion source 2 that ionizes sample molecules, and a mass charge of ions A vacuum chamber 4 having a mass separation unit for analyzing according to the ratio, a vacuum pump 5 for depressurizing the inside of the apparatus, a detector 6 for detecting ions, a control circuit 7 for controlling the apparatus, a control computer 8 for controlling the entire apparatus, It comprises a data display 9 that displays data. The gas inlet 1 may be a pipe or a fine hole.
 試料ガス及び洗浄ガスはガス導入口1から吸引される。本装置の計測対象物質は気体,液体,固体のどれでもよく,気体試料の場合はそのまま導入可能であり,液体試料の場合は液体試料から気化したガスであるヘッドスペースガスを導入し,固体試料の場合も液体試料同様に固体試料から気化したガスを導入する。バルブ3が閉状態の時,試料ガス及び洗浄ガスはイオン源2へと導入されない。バルブ3を開状態とした時,試料ガス及び洗浄ガスがイオン源2へと導入される。装置構成や真空ポンプの容量にもよるが,バルブ開時間は1秒以下とするのが好ましい。典型的なバルブ開時間は10~100 msである。バルブ3を開状態としてガスを装置へと導入し,バルブ3を閉じることでガスがそれ以上導入されないようにする。バルブ3はガスをパルス導入できればよく,ピンチバルブ,ボールバルブ,シャッターバルブなどを利用できる。シリコンチューブとピンチバルブで構成されるパルスバルブがコストも安く安定しており使い勝手が良い。計測時はバルブの開閉を繰り返し,試料ガスを断続的に装置内へと導入するとよい。 Specimen gas and cleaning gas are sucked from the gas inlet 1. The measurement target substance of this device may be any of gas, liquid, and solid. In the case of a gas sample, it can be introduced as it is. In this case, the gas vaporized from the solid sample is introduced as in the liquid sample. When the valve 3 is closed, the sample gas and the cleaning gas are not introduced into the ion source 2. When the valve 3 is opened, the sample gas and the cleaning gas are introduced into the ion source 2. Depending on the device configuration and vacuum pump capacity, the valve opening time is preferably 1 second or less. Typical valve opening time is 10 to 100 ms. The valve 3 is opened to introduce gas into the apparatus, and the valve 3 is closed to prevent further gas introduction. The valve 3 only needs to be able to introduce a pulse of gas, and a pinch valve, a ball valve, a shutter valve, or the like can be used. A pulse valve composed of a silicon tube and a pinch valve is inexpensive and stable and easy to use. During measurement, the valve should be opened and closed repeatedly to introduce the sample gas into the device intermittently.
 イオン源2ではガス中の中性分子がイオン化される。イオン源2としては低真空バリア放電イオン源,低真空グロー放電イオン源などが用いられるが,それらに限定されるわけではない。イオン源2の圧力は,装置外部とイオン源間のコンダクタンス,イオン源とポンプの間のコンダクタンス,バルブの開時間及びポンプの排気量によって変化する。低真空バリア放電イオン源を用いる場合は,イオン化効率が最大となる圧力になるようにコンダクタンス等を調整する必要がある。 In the ion source 2, neutral molecules in the gas are ionized. As the ion source 2, a low vacuum barrier discharge ion source, a low vacuum glow discharge ion source, or the like is used, but is not limited thereto. The pressure of the ion source 2 varies depending on the conductance between the outside of the apparatus and the ion source, the conductance between the ion source and the pump, the valve opening time, and the pump displacement. When using a low-vacuum barrier discharge ion source, it is necessary to adjust the conductance and the like so that the pressure at which ionization efficiency is maximized.
 イオン源2で生成されたイオンは質量分離部を有する真空チャンバー4へと導入される。真空チャンバーには圧力計32が接続されており圧力をモニターしている。典型的な質量分離部はリニアイオントラップである。リニアイオントラップ以外にもイオンを質量電荷比で分離できる機構であれば何でもよい。リニアイオントラップは例えば4つのロッド電極とロッド電極の前後に配置したプレート電極によって構成される。ロッド電極に印加したRF電圧によって生じる擬ポテンシャルと,インキャップ電圧とロッド電極のオフセット電圧の電位差によってイオンをトラップする。トラップされたイオンは質量電荷比ごとに検出器へと排出される。真空チャンバー4内がいくつかの部屋に分割され,各部屋の圧力が異なってもよい。また真空チャンバー4内にはイオンを質量電荷比で分離する機構だけでなく,イオンモビリティを基に分離する機構,イオンの流れを電磁界の力で収束させる機構などが含まれてもよい。 The ions generated by the ion source 2 are introduced into a vacuum chamber 4 having a mass separation unit. A pressure gauge 32 is connected to the vacuum chamber to monitor the pressure. A typical mass separator is a linear ion trap. Any mechanism other than the linear ion trap can be used as long as it can separate ions by mass-to-charge ratio. The linear ion trap is composed of, for example, four rod electrodes and plate electrodes arranged before and after the rod electrodes. Ions are trapped by the pseudopotential generated by the RF voltage applied to the rod electrode and the potential difference between the incap voltage and the offset voltage of the rod electrode. The trapped ions are discharged to the detector for each mass to charge ratio. The inside of the vacuum chamber 4 may be divided into several rooms, and the pressure in each room may be different. The vacuum chamber 4 may include not only a mechanism for separating ions based on mass-to-charge ratio, but also a mechanism for separating ions based on ion mobility, a mechanism for converging the flow of ions by the force of an electromagnetic field, and the like.
 検出器6はイオンを検出できれば何でもよい。例えば,チャンネルトロン,マイクロチャンネルプレートなどが用いられる。イオンを電子に変換するためにコンバージョンダイノードがよく用いられる。また,シンチレータと光電子増倍管を使った検出器を用いる場合もある。 The detector 6 may be anything as long as it can detect ions. For example, a channeltron or a microchannel plate is used. Conversion dynodes are often used to convert ions to electrons. A detector using a scintillator and a photomultiplier tube may be used.
 制御回路7によって装置が制御され,制御回路はコントロール計算機8によってコントロールされている。コントロール計算機8は装置に搭載されていても,外部接続されていても良い。得られた結果はデータ表示機9に表示される。データ表示機9として液晶ディスプレイがよく用いられる。データ表示機9はユーザインターフェースを兼ねてもよい。装置本体に搭載された液晶ディスプレイに加え,外部接続された液晶ディスプレイが存在してもよい。装置本体に搭載された液晶ディスプレイをタッチパネルとし,そこから測定パラメータ等を入力できるようにしてもよい。 The device is controlled by the control circuit 7, and the control circuit is controlled by the control computer 8. The control computer 8 may be mounted on the apparatus or connected externally. The obtained result is displayed on the data display 9. A liquid crystal display is often used as the data display device 9. The data display device 9 may also serve as a user interface. In addition to the liquid crystal display mounted on the apparatus main body, an externally connected liquid crystal display may exist. A liquid crystal display mounted on the apparatus main body may be a touch panel so that measurement parameters and the like can be input from the touch panel.
 図2は,図1の装置構成をより具体化した一例の模式図である。図には,試料溶液24を内包した試料バイアル23,試料ガスを導入するガス導入口1,シリコンチューブ14とピンチバルブ15で構成されるバルブ3,ガラス管18,外巻き放電用電極17,放電用内部電極19,高圧交流電源25で構成される低真空バリア放電イオン源2,ロッド電極21とプレート電極であるインキャップ20,エンドキャップ22で構成されるリニアイオントラップ,ポンプ5,検出器6を記載している。制御回路,コントロール計算機,データ表示機は図示を省略した。 FIG. 2 is a schematic diagram of an example in which the device configuration of FIG. 1 is further embodied. The figure shows a sample vial 23 containing a sample solution 24, a gas inlet 1 for introducing a sample gas, a valve 3 composed of a silicon tube 14 and a pinch valve 15, a glass tube 18, an externally wound discharge electrode 17, a discharge Low-vacuum barrier discharge ion source 2 composed of internal electrode 19, high-voltage AC power source 25, linear ion trap composed of rod electrode 21 and incap 20 which is a plate electrode, end cap 22, pump 5 and detector 6 Is described. The control circuit, control computer, and data display are not shown.
 試料バイアル23中の試料分子16が,ピンチバルブ15を通り低真空バリア放電イオン源へと導入される。ガス中の中性分子がイオン化され,イオンは真空チャンバー4へと導入される。イオンは質量分離部のリニアイオントラップによってトラップされ,質量電荷比をもとに分離されて検出器6へと排出される。 The sample molecules 16 in the sample vial 23 are introduced into the low vacuum barrier discharge ion source through the pinch valve 15. Neutral molecules in the gas are ionized and the ions are introduced into the vacuum chamber 4. The ions are trapped by the linear ion trap of the mass separation unit, separated based on the mass-to-charge ratio, and discharged to the detector 6.
 図3は,装置の正イオン測定シーケンスの一例を示す図である。尚,負イオン測定の場合には,インキャップ電圧とロッド電極のオフセット電位の関係を逆転させればよい。トラップRF振幅はリニアイオントラップのロッド電極21に印加するRF電圧の振幅であり,電圧を印加している間だけイオンをトラップできる。バリア放電電圧を印加している間はイオン源内にプラズマが形成され,中性分子がイオン化される。イオン排出用AC振幅は,リニアイオントラップにトラップされたイオンを排出する際にロッド電極に印加されるAC電圧の振幅である。イオン排出用AC電圧が印加された際にイオンが質量電荷比ごとに排出される。インキャップ電圧が負電圧の時はイオンがインキャップ20を通過してイオントラップへと導入される。一方,インキャップ電圧が正電圧となり逆電界となった時イオンはインキャップを通過できず,イオントラップには導入されない。 FIG. 3 is a diagram showing an example of the positive ion measurement sequence of the apparatus. In the case of negative ion measurement, the relationship between the incap voltage and the offset potential of the rod electrode may be reversed. The trap RF amplitude is the amplitude of the RF voltage applied to the rod electrode 21 of the linear ion trap, and ions can be trapped only while the voltage is applied. While the barrier discharge voltage is applied, plasma is formed in the ion source, and neutral molecules are ionized. The AC amplitude for ion ejection is the amplitude of the AC voltage applied to the rod electrode when ions trapped in the linear ion trap are ejected. When the ion discharge AC voltage is applied, ions are discharged for each mass-to-charge ratio. When the incap voltage is a negative voltage, ions pass through the incap 20 and are introduced into the ion trap. On the other hand, when the incap voltage becomes positive and the electric field is reversed, ions cannot pass through the incap and are not introduced into the ion trap.
 図3の測定シーケンスにおける時間1はバリア放電安定化時間である。時間2はイオン溜め込み時間であり,イオン源で生成されたイオンをイオントラップに導入する。時間1,2の間バルブは開状態である。時間3はクーリング時間で,トラップされたイオンをクーリングする時間である。時間4はイオン分析時間であり,トラップされたイオンを質量電荷比ごとに分離して検出器へ排出する。時間5はイオン排除時間であり,イオン分析時間の間に排出されきらなかったイオンを全てトラップの外部へと排除する時間である。試料測定時は,図3のシーケンスを繰り返し行う。 Hours 1 in the measurement sequence of Fig. 3 is the barrier discharge stabilization time. Time 2 is the ion storage time, and ions generated by the ion source are introduced into the ion trap. During time 1 and 2, the valve is open. Time 3 is the cooling time for cooling trapped ions. Time 4 is the ion analysis time. The trapped ions are separated for each mass-to-charge ratio and discharged to the detector. Time 5 is an ion exclusion time, and is a time for excluding all ions that have not been ejected during the ion analysis time to the outside of the trap. Repeat the sequence shown in Fig. 3 when measuring the sample.
 図2の構成の場合,バルブ3が開状態の時にイオンが質量分離部へと導入され,質量分離部内でトラップされる。バルブ3が閉状態となった後に,イオンは質量電荷比ごとに分離されて検出器へと排出される。すなわち,図3のシーケンスを終えるごとに1つのマススペクトルが得られ,シーケンスを繰り返すことで複数のマススペクトルを取得する。バルブの開時間を長くするほど計測のスループットが悪くなるため,装置やポンプの容量にもよるが,典型的にはバルブの開時間は1秒以内である。 In the case of the configuration of FIG. 2, when the valve 3 is open, ions are introduced into the mass separation unit and trapped in the mass separation unit. After the valve 3 is closed, the ions are separated for each mass-to-charge ratio and discharged to the detector. That is, one mass spectrum is obtained every time the sequence of FIG. 3 is completed, and a plurality of mass spectra are acquired by repeating the sequence. The longer the valve opening time, the worse the measurement throughput, so the valve opening time is typically less than 1 second, depending on the capacity of the device and pump.
 真空チャンバー4には圧力計32が接続されており,圧力の時間変化をモニターしている。図4は,真空チャンバーの圧力の典型的な経時変化を示す模式図である。バルブ3が閉じている間は圧力が0.01 Pa以下に維持されており,バルブが開状態であるt1の間圧力が上昇しつづけ,バルブが閉じる瞬間に最高圧力となった。バルブ3が閉じると圧力が減少していき再び0.01 Pa以下になった。典型的な場合,圧力は100倍以上増加する。圧力が100倍増加するということはそれだけ大量のガスが導入されたということである。 A pressure gauge 32 is connected to the vacuum chamber 4 to monitor the change in pressure over time. FIG. 4 is a schematic diagram showing a typical change over time in the pressure of the vacuum chamber. While the valve 3 was closed, the pressure was maintained at 0.01 Pa or less, the pressure continued to rise during t1 when the valve was open, and reached the maximum pressure at the moment when the valve was closed. When valve 3 was closed, the pressure decreased and became 0.01 Pa or less again. Typically, the pressure increases more than 100 times. A 100-fold increase in pressure means that a large amount of gas has been introduced.
 試料を測定する時,試料ガスはガス導入口1,シリコンチューブ14,イオン源2,そして質量分離部を通りポンプ5へと流れ込む。この過程で各部分の内壁にガスに含まれる分子が吸着する。特にアミンなどの極性が高い分子は金属表面によく吸着する。ガスに含まれる量が低濃度であれば,吸着量も少なく問題にはならない。しかし,高濃度ガスを測定すると大量に装置内壁に吸着することになる。この際,試料ガスを導入しなくとも,吸着物が徐々に脱離し,長期にわたって計測され続ける。このような汚染は試料の量を定量したい場合などに問題となってくる。この問題を解決するために,発明者らはバルブ3を利用することで洗浄ガスをパルス状に大量に装置内部へと導入し,吸着物を脱離させる方法を生み出した。 When measuring a sample, the sample gas flows into the pump 5 through the gas inlet 1, the silicon tube 14, the ion source 2, and the mass separation unit. In this process, molecules contained in the gas are adsorbed on the inner wall of each part. In particular, highly polar molecules such as amines adsorb well on metal surfaces. If the amount contained in the gas is low, the amount of adsorption is small and this is not a problem. However, when a high concentration gas is measured, it is adsorbed on the inner wall of the device in large quantities. At this time, even if the sample gas is not introduced, the adsorbate gradually desorbs and continues to be measured over a long period of time. Such contamination becomes a problem when it is desired to quantify the amount of the sample. In order to solve this problem, the inventors have used a valve 3 to introduce a large amount of cleaning gas in a pulsed manner into the apparatus and desorb the adsorbate.
 イオンを高精度に分離するために,質量分離部の圧力は0.1 Pa以下に保たなければならない。このため,質量分離部を減圧している真空ポンプ5は0.1 Pa以下で利用することを想定した排気特性を有している。したがって0.1 Paよりも非常に高い圧力に長時間維持すると,ポンプ5の排気が止まる,もしくはポンプ5を破壊することになる。ただし,長時間ではなく一時的であれば質量分離部の圧力を0.1 Pa以上に上昇させてもポンプ5に問題は生じない。一時的というのは典型的には長くても1秒以内である。そこで,発明者らはバルブ3によってパルス状に大量の洗浄ガスを装置へと導入すれば,ポンプ5にダメージを与えず迅速に装置内部を洗浄できることを見出した。ここで言うパルス状というのは1秒以内の圧力の変化のことである。1秒より長時間バルブ3を開状態とし,真空チャンバー内を高い圧力を維持するとポンプ5にダメージを与える。 ¡In order to separate ions with high accuracy, the pressure of the mass separation section must be kept below 0.1 Pa. For this reason, the vacuum pump 5 depressurizing the mass separation unit has an exhaust characteristic that is assumed to be used at 0.1 Pa or less. Therefore, if the pressure is maintained at a pressure much higher than 0.1 Pa for a long time, the exhaust of the pump 5 stops or the pump 5 is destroyed. However, if the pressure in the mass separation section is increased to 0.1 Pa or more if it is temporary rather than a long time, there will be no problem with the pump 5. Temporary is typically no more than a second. Therefore, the inventors have found that if a large amount of cleaning gas is introduced into the apparatus in a pulsed manner by the valve 3, the inside of the apparatus can be cleaned quickly without damaging the pump 5. The pulse shape here means a change in pressure within one second. If the valve 3 is opened for more than 1 second and the high pressure is maintained in the vacuum chamber, the pump 5 will be damaged.
 図5は,洗浄時の洗浄シーケンスの一例を示す図である。試料測定時と異なり,トラップRF振幅,イオン排出用AC振幅,インキャップ電圧を0にしている。図5の例ではバルブ開時間とバリア放電電圧ON時間が同じになっているが,必ずしも同じである必要はない。典型的な時間は,バルブ開時間が60~200 msで,バリア放電電圧ON時間が60~200 msである。測定時よりもバルブ3の開時間を長くしている。これはより大量のガスを導入するためである。測定シーケンスと同様に,洗浄シーケンスも繰り返し行う。洗浄シーケンスは,通常0.5~2秒でシーケンスを1サイクルする。 FIG. 5 is a diagram showing an example of a cleaning sequence during cleaning. Unlike sample measurement, the trap RF amplitude, ion discharge AC amplitude, and incap voltage are set to zero. In the example of FIG. 5, the valve opening time and the barrier discharge voltage ON time are the same, but they are not necessarily the same. Typical time is 60 to 200 ms for valve opening time and 60 to 200 ms for barrier discharge voltage ON time. The opening time of the valve 3 is longer than that at the time of measurement. This is to introduce a larger amount of gas. Repeat the washing sequence as well as the measurement sequence. The washing sequence is usually cycled once every 0.5 to 2 seconds.
 本発明の特徴の一つとして,図3のシーケンスで駆動する試料測定モードと図5のシーケンスで駆動する装置洗浄モードの少なくとも2つモードを有することが挙げられる。ただし,図3,図5はシーケンスの一例であり,これらに限定されるものではない。 One feature of the present invention is that it has at least two modes: a sample measurement mode driven by the sequence of FIG. 3 and an apparatus cleaning mode driven by the sequence of FIG. However, FIG. 3 and FIG. 5 are examples of sequences, and are not limited to these.
 図6は,試料測定時と洗浄時における質量分離部の圧力変化を示す模式図である。バルブ開時間を変化させると質量分離部の到達圧力も変化する。すなわちバルブ3をより長く開けることでより大量のガスを導入している。ただし,到達圧力が非常に高い場合は質量分離部内で放電が発生する可能性がある。このため,試料測定時よりも洗浄時は真空チャンバー4内の各電圧を下げることが推奨される。必ずしも0Vまで下げる必要はなく,そして全ての電圧を下げる必要もない。また放電しないのであれば電圧を下げる必要はない。図7は,バルブの開閉を繰り返した場合の圧力変動を示す模式図である。試料測定時は試料ガスを,洗浄時は洗浄ガスをバルブの開閉を繰り返すことで装置へと断続的に導入する。 FIG. 6 is a schematic diagram showing changes in pressure of the mass separation unit during sample measurement and during cleaning. When the valve opening time is changed, the ultimate pressure of the mass separation unit also changes. That is, a larger amount of gas is introduced by opening the valve 3 longer. However, if the ultimate pressure is very high, discharge may occur in the mass separator. For this reason, it is recommended to lower each voltage in the vacuum chamber 4 during cleaning rather than during sample measurement. It is not always necessary to lower it to 0V, and it is not necessary to lower all voltages. Moreover, it is not necessary to lower the voltage if it is not discharged. FIG. 7 is a schematic diagram showing pressure fluctuation when the opening and closing of the valve is repeated. The sample gas is intermittently introduced into the device by repeatedly opening and closing the valve when cleaning the sample gas and when cleaning.
 覚せい剤の一種であるメタンフェタミン(Methamphetamine: MA)を試料として用い,洗浄効果を調べる実験を行った。高濃度のMAガスを導入し,装置を汚染した。装置は図2に示す構成である。測定シーケンスは図3に示す通りである。MAはマススペクトル上でm/z 150の位置に検出される。また,衝突誘起解離(Collision induced dissociation: CID)によってフラグメンテーションさせるとm/z 91とm/z 119の位置に検出される。高濃度のMAを試料とすると,装置内部がMAで汚染される。このため,MAを含んでいない試料を計測したとしても,マススペクトル上にMAに由来するピークが検出される。実験ではMAに汚染された装置を,洗浄ガスを用いて洗浄した。洗浄ガス発生源として20%メタノール水溶液を使用した。水溶液から気化したメタノールガスを洗浄ガスとして利用した。洗浄シーケンスは図5に示す通りである。図8は,洗浄前後の計測結果を示すMAをCIDした後のスペクトルである。強大に現れていたMA由来のシグナルが洗浄によって検出下限近くまで減少していることが分かる。 An experiment was conducted to investigate the cleaning effect using methamphetamine (MA), a kind of stimulant. High concentration MA gas was introduced to contaminate the equipment. The apparatus has the configuration shown in FIG. The measurement sequence is as shown in FIG. MA is detected at a position of m / z 150 on the mass spectrum. In addition, when fragmentation is performed by collision induced dissociation (CID), they are detected at the positions of m / z 91 and m / z 119. If high concentration MA is used as a sample, the inside of the device is contaminated with MA. For this reason, even if a sample not containing MA is measured, a peak derived from MA is detected on the mass spectrum. In the experiment, the equipment contaminated with MA was cleaned using cleaning gas. A 20% aqueous methanol solution was used as a cleaning gas generation source. Methanol gas evaporated from the aqueous solution was used as the cleaning gas. The cleaning sequence is as shown in FIG. Fig. 8 shows the spectrum after CIDing MA showing the measurement results before and after cleaning. It can be seen that the MA-derived signal that appeared strongly decreased to near the lower detection limit by washing.
 洗浄プロセスでは下記のような平衡関係が成り立っている。 The following equilibrium relationship is established in the cleaning process.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで,汚染物質をA,装置内壁の吸着サイトをM,洗浄ガスに含まれる分子をBとする。平衡が右にずれるほど汚染物質が脱離する,すなわち洗浄されることになる。Bの吸着サイトとの親和力が高い方が,平衡は右にずれやすくなる。平衡を右にずらす方法の一つは大量のBを導入することである。この点を利用しているのが本発明である。バルブ3を利用してパルス状に洗浄ガスを大量導入するシーケンスを繰り返し行うということは,上記式(1)におけるBの濃度が増減を繰り返していることを意味する。図6,7の圧力変動のカーブはBの濃度の変動カーブと読み替えてもよい。バルブ3を閉じる瞬間が最も高濃度となり,バルブ3を閉じた後も一定時間Bが高濃度で存在する時間が続く。上述したようにポンプ5の排気特性の問題から連続導入の場合は装置内部の圧力を低圧に維持しなければならず,Bが低濃度の状態で一定に存在することになる。バルブ3を利用すると連続導入系よりも装置内部を高圧にすることが可能になるため,バルブ3を使った場合の方が平衡が右にずれやすく洗浄効果が高い。 Here, the contaminant is A, the adsorption site on the inner wall of the device is M, and the molecules contained in the cleaning gas are B. The more the equilibrium is shifted to the right, the more pollutants are desorbed, that is, they are washed. Equilibrium tends to shift to the right when the affinity for B adsorption sites is higher. One way to shift the equilibrium to the right is to introduce a large amount of B. The present invention utilizes this point. Repeating the sequence of introducing a large amount of cleaning gas in a pulsed manner using the valve 3 means that the concentration of B in the above equation (1) is repeatedly increased and decreased. The pressure fluctuation curves in FIGS. 6 and 7 may be read as B concentration fluctuation curves. The moment when the valve 3 is closed becomes the highest concentration, and even after the valve 3 is closed, the time during which the constant concentration B exists at a high concentration continues. As described above, in the case of continuous introduction due to the problem of the exhaust characteristics of the pump 5, the pressure inside the apparatus must be maintained at a low pressure, and B is constantly present in a low concentration state. The use of valve 3 makes it possible to make the inside of the device at a higher pressure than the continuous introduction system, so the use of valve 3 tends to shift the equilibrium to the right and has a higher cleaning effect.
 バルブ3の開時間を変更すると装置へのガス導入量が変化する。図9は,装置洗浄モードでのバルブ3の開時間を2倍にした時の結果を示す図である(t2=2×t1)。洗浄ガスとしてメタノールガスを用いた。結果に示されるように,バルブ開時間を伸ばすことで汚染をほとんど除去することができた。ガス導入量が増えるほど加速度的に洗浄効果が増大する。ただし,長時間真空チャンバー内を高圧に保つとポンプにダメージを与えるため,バルブ開時間は1秒以内に設定することが好ましい。 ¡When the opening time of valve 3 is changed, the amount of gas introduced into the device changes. FIG. 9 is a diagram showing a result when the opening time of the valve 3 in the apparatus cleaning mode is doubled (t2 = 2 × t1). Methanol gas was used as the cleaning gas. As shown in the results, the contamination was almost eliminated by extending the valve opening time. As the amount of gas introduced increases, the cleaning effect increases at an accelerated rate. However, keeping the vacuum chamber at a high pressure for a long time will damage the pump, so it is preferable to set the valve open time within 1 second.
 洗浄効率を有意に増加させるためには,バルブ3を開閉して洗浄ガスを導入する時に質量分析装置内の少なくとも1か所の圧力が10倍以上変化することが望ましい。例えば,洗浄ガスを導入するためのバルブ3を閉じた状態の時の質量分離部の圧力が0.1 Paであるなら,バルブを開けた時の到達圧力は1 Pa以上にしなければならない。さらに,より効果的なのは質量分析装置内の少なくとも1か所の圧力が100倍以上変化する場合である。ただし,質量分離部を0.1 Pa以下に減圧するために利用される真空ポンプ5は低圧下での利用を想定して設計されているため,一時的であっても過度な高圧力には耐えられない。このため,質量分離部の圧力は最大でも200 Pa以下にしなければならない。一般に質量分離部は2台以上の真空ポンプ5で減圧している。例えば高真空対応のポンプと粗引きポンプである。高真空対応ポンプの排気を止め,粗引きポンプのみ動かしている状態で洗浄を行う場合は,質量分離部の圧力が200 Pa以上になっても問題はない。 In order to significantly increase the cleaning efficiency, it is desirable that the pressure in at least one place in the mass spectrometer changes 10 times or more when the valve 3 is opened and closed and the cleaning gas is introduced. For example, if the pressure of the mass separation part when the valve 3 for introducing the cleaning gas is closed is 0.1 Pa, the ultimate pressure when the valve is opened must be 1 Pa or more. Furthermore, it is more effective when the pressure in at least one place in the mass spectrometer changes more than 100 times. However, since the vacuum pump 5 used to depressurize the mass separator to 0.1 Pa or less is designed for use under low pressure, it can withstand excessive high pressure even temporarily. Absent. For this reason, the pressure in the mass separation section must be at most 200 Pa. In general, the mass separator is depressurized by two or more vacuum pumps 5. For example, high vacuum pumps and roughing pumps. If cleaning is performed with the high vacuum vacuum pump stopped and only the roughing pump running, there is no problem even if the pressure in the mass separation section exceeds 200 Pa.
 汚染物質の蓄積によってイオン化に悪影響が及ぶことがある。例えば,図2に示す構成の質量分析装置の場合,バルブ3が開状態となりイオン源2の圧が上昇した時のみイオン源2でバリア放電が発生し,プラズマが生成される。再びパルスバルブが閉じると,イオン源2の圧が減少し,プラズマも消失する。これはプラズマ生成の際に最適な圧力が存在するためである。圧力の問題だけでなく,プラズマの光が検出器に悪影響を及ぼす場合,イオンを検出する時はプラズマを消失させる必要がある。このようにプラズマの生成と消失を繰り返している装置もある。汚染物がイオン源2に蓄積するとプラズマの生成に失敗することがある。このような不具合に対しても洗浄ガスのパルス導入は有効である。洗浄ガスによってイオン源2に蓄積した汚染物を脱離させることで,プラズマを安定的に発生させることができる。 イ オ ン Ionization may be adversely affected by the accumulation of contaminants. For example, in the mass spectrometer having the configuration shown in FIG. 2, barrier discharge is generated in the ion source 2 and plasma is generated only when the valve 3 is opened and the pressure of the ion source 2 is increased. When the pulse valve is closed again, the pressure of the ion source 2 decreases and the plasma disappears. This is because an optimum pressure exists during plasma generation. When not only the pressure problem but also the plasma light adversely affects the detector, it is necessary to extinguish the plasma when detecting ions. Some apparatuses repeat generation and disappearance of plasma in this way. If contaminants accumulate in the ion source 2, plasma generation may fail. Introducing a pulse of cleaning gas is also effective against such problems. Plasma can be stably generated by desorbing contaminants accumulated in the ion source 2 by the cleaning gas.
 プラズマを利用したイオン源2の場合,プラズマ自身の洗浄効果を利用できる。測定時よりも洗浄時は放電電圧を高め,放電時間を長くすることでプラズマ洗浄の効果を増加させることができる。洗浄ガスのパルス導入とプラズマ洗浄を組み合わせると洗浄効果が著しく増加する。放電によって発生する荷電粒子が装置内壁に衝突しスパッタリングが発生する。その際,汚染物質が吸着サイトごと内壁よりはじき出される。その後,洗浄ガス分子と衝突し,汚染物質は吸着サイトから脱離する。スパッタリングによって汚染物質と吸着サイトとの結合が外れ,汚染物質のみが飛び出すこともある。洗浄ガスをパルス導入しているため大量の洗浄ガスで装置内が満たされており,汚染物質が吸着サイトと再結合することはほとんどない。このように洗浄ガスのパルス導入と放電による洗浄を同時に行うと,洗浄ガスの効果とプラズマによる洗浄の効果が単純に加算される以上の効果を発揮する。 In the case of the ion source 2 using plasma, the cleaning effect of the plasma itself can be used. The plasma cleaning effect can be increased by increasing the discharge voltage and lengthening the discharge time during cleaning rather than during measurement. When the introduction of the cleaning gas pulse and the plasma cleaning are combined, the cleaning effect is remarkably increased. Charged particles generated by the discharge collide with the inner wall of the apparatus and sputtering occurs. At that time, pollutants are ejected from the inner wall together with the adsorption sites. After that, it collides with the cleaning gas molecules and the pollutants are desorbed from the adsorption site. Sputtering can break the bond between the contaminant and the adsorption site, and only the contaminant can jump out. Since the cleaning gas is pulsed, the inside of the system is filled with a large amount of cleaning gas, and contaminants rarely recombine with the adsorption sites. When the cleaning gas pulse introduction and the discharge cleaning are performed at the same time, the effect of the cleaning gas and the effect of the cleaning by the plasma are more than simply added.
 必ずしもイオン源2に用いているプラズマを洗浄に用いる必要はない。イオン源2がプラズマイオン源2でなかったとしても,汚染されやすい箇所にプラズマ生成機構を設置してプラズマ洗浄を行ってもよい。 It is not always necessary to use the plasma used for the ion source 2 for cleaning. Even if the ion source 2 is not the plasma ion source 2, plasma cleaning may be performed by installing a plasma generation mechanism at a location that is easily contaminated.
 洗浄ガスを装置へと導入すると同時にベーキング処理も行うとより効果的に汚染物質を取り除くことができる。加熱されることで汚染物質と吸着サイトの結合が外れやすくなり,そこに洗浄ガスを導入することで汚染物質を脱離させる。 ¡Contaminants can be removed more effectively by introducing a cleaning gas into the apparatus and baking at the same time. By heating, the bond between the contaminant and the adsorption site is easily released, and the contaminant is desorbed by introducing a cleaning gas there.
 上述してきたように,迅速な洗浄が可能な質量分析装置を実現するために,試料測定モードと装置洗浄モードの少なくとも2つのモードを有していることが望ましい。装置の状態に合わせて装置が自動で試料測定モードと洗浄モードを選択する,もしくはユーザが任意に2つのモードを選択できるシステムが良い。図10は,少なくとも試料測定モードと装置洗浄モードを有する質量分析装置の運用シーケンスの一例を示す図である。 As described above, in order to realize a mass spectrometer capable of rapid cleaning, it is desirable to have at least two modes: a sample measurement mode and an apparatus cleaning mode. A system that allows the device to automatically select the sample measurement mode and the cleaning mode according to the state of the device, or allows the user to arbitrarily select two modes. FIG. 10 is a diagram illustrating an example of an operation sequence of a mass spectrometer having at least a sample measurement mode and an apparatus cleaning mode.
 試料を試料測定モードで測定し分析する(S11)。得られたマススペクトルから汚染量を見積もる(S12)。例えば,TIC強度がある一定以上であった場合や,汚染しやすいことが事前に分かっている分子のイオン強度が高かった場合などに装置が汚染状態にあると判断する。図には記載していないが,試料測定後に汚染確認用のブランク試料を測定するという運用法でもよい。ブランク試料とは,装置の汚染状態を判断するために用いる試料である。汚染確認用物質としてブランク試料に含まれる分子の種類と量は既知である。ブランク試料を計測した時に,既知の分子以外のシグナルが検出された場合は汚染が疑われる。またブランク試料由来のイオンの強度と汚染物の強度を比較することで汚染の程度を判断できる。汚染の疑いが無い,もしくは汚染の程度が軽度であると判断した場合は次の試料の測定を行う。一方,汚染の疑いがある,もしくは汚染の程度が重度であると判断した場合は洗浄を行う(S13)。洗浄は上述してきたように,バルブ3を用いて洗浄ガスをパルス状に装置へと導入する。装置は試料測定モードから装置洗浄モードへと移行する。汚染物質が特定できている場合は,汚染物質ごとに最適な洗浄ガスを選択することができる。例えば,汚染物質が塩基性物質であった場合は塩基性ガスを,汚染物質が酸性物質であった場合は酸性ガスを導入すると効果的である。洗浄ガスの選択は装置が自動で行ってもよいし,ユーザが任意に選択してもよい。洗浄ガスは塩基性ガスや酸性ガスに限らずアルコール類でも構わない。 Measure and analyze the sample in the sample measurement mode (S11). The amount of contamination is estimated from the obtained mass spectrum (S12). For example, it is determined that the device is in a contaminated state when the TIC intensity is above a certain level, or when the ionic strength of a molecule that is known to be easily contaminated is high. Although not shown in the figure, an operation method in which a blank sample for contamination confirmation is measured after sample measurement may be used. A blank sample is a sample used for judging the contamination state of the apparatus. The type and amount of molecules contained in the blank sample as a contamination confirmation substance are known. Contamination is suspected if a signal other than a known molecule is detected when a blank sample is measured. Further, the degree of contamination can be determined by comparing the intensity of ions derived from the blank sample and the intensity of contaminants. If it is determined that there is no suspicion of contamination or the degree of contamination is mild, measure the next sample. On the other hand, if it is determined that there is a suspicion of contamination or the degree of contamination is severe, cleaning is performed (S13). In the cleaning, as described above, the cleaning gas is introduced into the apparatus in a pulsed manner using the valve 3. The apparatus shifts from the sample measurement mode to the apparatus cleaning mode. If the pollutant has been identified, the optimum cleaning gas can be selected for each pollutant. For example, it is effective to introduce a basic gas when the pollutant is a basic substance and to introduce an acidic gas when the pollutant is an acidic substance. The cleaning gas may be automatically selected by the apparatus or arbitrarily selected by the user. The cleaning gas is not limited to a basic gas or an acid gas, and may be an alcohol.
 洗浄後,再びブランク試料を測定することで装置の汚染レベルを確認する(S14)。洗浄によって汚染が無くなっていれば次の試料の測定を行う。汚染が無くなっていない場合は再び洗浄を行う。洗浄しながら汚染レベルを確認できる場合は必ずしも洗浄後のブランク試料測定の必要はない。通常,洗浄時は洗浄ガスを装置へと導入し,装置は洗浄モードで動作させる。例えば,バルブ開閉10回ごとに一時的に洗浄モードから試料測定モードに移行し,マススペクトルを取得すれば装置の汚染低減度を確認できる。このように汚染の低減度を定期的にチェックし,十分低減できるまで洗浄モードを継続するという運用方法もある。 After cleaning, measure the blank sample again to confirm the contamination level of the device (S14). If the contamination is eliminated by washing, the next sample is measured. If the contamination is not gone, wash again. When the contamination level can be confirmed while washing, it is not always necessary to measure the blank sample after washing. Normally, cleaning gas is introduced into the apparatus during cleaning, and the apparatus is operated in the cleaning mode. For example, the degree of contamination reduction of the device can be confirmed by shifting from the cleaning mode to the sample measurement mode temporarily every 10 times of opening and closing the valve and acquiring the mass spectrum. In this way, there is an operation method in which the degree of contamination is periodically checked and the cleaning mode is continued until it is sufficiently reduced.
 図11は,可搬型質量分析装置26のデータ表示機9に表示される画面の一例を示す説明図である。試料測定時は測定完了までの時間等が表示される。測定結果から汚染の疑いが有る場合は,ユーザにクリーニング作業を要求する。クリーニング時はクリーニング作業完了までの時間等が表示される。クリーニング完了後は汚染の低減度を調べるため,ユーザにブランク試料の測定を要求する。ブランク試料を計測し,汚染の無いことを確認できれば次の試料測定に移行する。ソフトウェア上で,汚染の無いことを確認できるまで試料測定ができないようなロックをかけてもよい。図2に示すように,試料バイアルを用いる場合は,試料計測用のバイアルと洗浄用のバイアルの形状を変化させ,指定のバイアルでない場合は測定を開始しないといったロックをかけることもできる。 FIG. 11 is an explanatory diagram showing an example of a screen displayed on the data display 9 of the portable mass spectrometer 26. During sample measurement, the time until completion of measurement is displayed. If there is a suspicion of contamination from the measurement results, request the user to perform a cleaning operation. During cleaning, the time until the completion of the cleaning operation is displayed. After cleaning is completed, the user is required to measure a blank sample in order to examine the degree of contamination reduction. If a blank sample is measured and it can be confirmed that there is no contamination, the process proceeds to the next sample measurement. You may lock the software so that sample measurement is not possible until it is confirmed that there is no contamination. As shown in Fig. 2, when using a sample vial, the shape of the vial for sample measurement and the vial for washing can be changed, and if it is not the designated vial, it can be locked so that the measurement is not started.
 洗浄ガスの供給源としてガスボンベ,液体や固体を内包したバイアルなどが考えられる。液体や固体の場合は,それらから気化したガスを洗浄ガスとして用いる。ガスの発生量を増加させるために液体や固体を加熱してもよい。図12に示すように,液体と固体を反応させてガスを発生させることも可能である。例えば,強塩基性もしくは強酸性液28と洗浄ガスの塩30を反応させて,洗浄ガスを発生させる方法は有効である。洗浄ガス供給源を保存するボンベやバイアル31にはガスの種類や使用期限などを記載したラベル29を貼ってもよい。 ¡Gas cylinders, vials containing liquids and solids, etc. can be considered as the supply source of the cleaning gas. In the case of liquid or solid, the gas evaporated from them is used as cleaning gas. A liquid or solid may be heated to increase the amount of gas generated. As shown in FIG. 12, a gas can be generated by reacting a liquid and a solid. For example, a method of generating a cleaning gas by reacting a strongly basic or strongly acidic liquid 28 with a salt 30 of the cleaning gas is effective. A label 29 describing the type of gas and the expiration date may be attached to the cylinder or vial 31 for storing the cleaning gas supply source.
 洗浄ガスの供給源が液体や固体を内包したバイアルであった場合,洗浄効率を上昇させるためにはバイアルの内圧を大気圧より減圧することがよい。液体や固体中に含まれる分子の蒸気圧はバイアル内圧の影響を受けない。例えば,内圧が100,000 Paで洗浄ガス分子の蒸気圧が1 Paであった場合,洗浄ガス分子はバイアルのヘッドスペース中のガスの0.00001%である。一方,バイアル内圧を1000 Paまで減圧させた場合,洗浄ガス分子はバイアルのヘッドスペース中のガスの0.001%となる。すなわち,洗浄ガス分子の存在割合が増加している。このため,装置へ導入するガスの流量が同一であれば,バイアル内圧を減圧した方が装置へと導入される洗浄ガス分子の絶対量が増加するため洗浄効率が向上する。 If the cleaning gas supply source is a vial containing a liquid or solid, the internal pressure of the vial should be reduced from atmospheric pressure in order to increase the cleaning efficiency. The vapor pressure of the molecules contained in the liquid or solid is not affected by the internal pressure of the vial. For example, if the internal pressure is 100,000 Pa and the vapor pressure of the cleaning gas molecules is 1 Pa, the cleaning gas molecules are 0.00001% of the gas in the vial headspace. On the other hand, when the internal pressure of the vial is reduced to 1000 Pa, the cleaning gas molecules are 0.001% of the gas in the vial headspace. That is, the ratio of cleaning gas molecules is increasing. Therefore, if the flow rate of the gas introduced into the apparatus is the same, the cleaning efficiency is improved because the absolute amount of the cleaning gas molecules introduced into the apparatus increases when the internal pressure of the vial is reduced.
 研究所の実験室のような排ガスを管理できる場では洗浄ガスの種類に制限はない。一方,オンサイト分析を考えた場合,有毒なガスは洗浄ガスとして用いる事ができない。また,臭いも問題となる。体への毒性以前に臭いがユーザから敬遠される原因になり得る。アルコールガスは毒性が少なくかつ無臭であり洗浄効果も有するため,オンサイト分析の場ではアルコールガスを用いることが望ましい。 There are no restrictions on the type of cleaning gas in places where exhaust gas can be managed, such as in laboratory laboratories. On the other hand, when considering on-site analysis, toxic gas cannot be used as cleaning gas. Odor is also a problem. The odor can be avoided from the user before toxicity to the body. Since alcohol gas is less toxic, odorless and has a cleaning effect, it is desirable to use alcohol gas for on-site analysis.
[実施例2]
 図13は,本発明による質量分析装置の一実施例を示す概略構成図である。実施例1と異なる点は,バルブ3がイオン源2と真空チャンバー4間に配置されていることである。試料ガス中の中性分子はイオン源2でイオン化されイオン導入用配管12とパルスバルブ3を通過して真空チャンバー4へと導入される。イオン化されなかった中性ガスや洗浄ガスも同様にパルスバルブ3を通り導入される。本構成では一般的にイオン源2は大気圧下に配置される。このため,質量分析装置の真空を破らなくともイオン源2を分解,洗浄,改造等が可能であり,実施例1に比べイオン源の扱いが楽である。ただし,大気圧下から真空チャンバー4へイオンを導入するため,配管でのイオンロスが大きく,装置感度は実施例1の方が良いことが多い。
[Example 2]
FIG. 13 is a schematic configuration diagram showing an embodiment of a mass spectrometer according to the present invention. The difference from the first embodiment is that the valve 3 is disposed between the ion source 2 and the vacuum chamber 4. Neutral molecules in the sample gas are ionized by the ion source 2 and are introduced into the vacuum chamber 4 through the ion introduction pipe 12 and the pulse valve 3. Similarly, neutral gas and cleaning gas that have not been ionized are introduced through the pulse valve 3. In this configuration, the ion source 2 is generally arranged under atmospheric pressure. For this reason, the ion source 2 can be disassembled, cleaned, remodeled, etc. without breaking the vacuum of the mass spectrometer, and handling of the ion source is easier than in the first embodiment. However, since ions are introduced into the vacuum chamber 4 from atmospheric pressure, the ion loss in the piping is large, and the device sensitivity is often better in the first embodiment.
 図14は,実施例2の質量分析装置の別形態を示す概略構成図である。試料がガスではなく液体である場合は,図14のようにエレクトロスプレーイオン化を使うことが一般的である。試料溶液11をエレクトロスプレー用プローブ10へと送液しイオン化する。ただし,エレクトロスプレーに限定されるわけではなく,イオン源2でガスヒータ33を用いて液体を加熱気化させ,気化したガスを大気圧化学イオン化によってイオン化する手法もあり,様々なイオン化法が利用できる。本実施例の装置構成においても高濃度の試料を測定すると,装置内部が汚染されるという問題がある。装置を洗浄するためには,実施例1と同様,洗浄ガスをパルス状に導入することが有効である。バルブ3を使わず,洗浄ガスを連続的に導入する方法では,ポンプ5の特性から真空チャンバーを高真空のまま保つ必要があり,大量の洗浄ガスを導入することができない。一方,バルブ3を用いてガスをパルス状に導入すれば連続導入系よりも大量の洗浄ガスを導入でき効率的に装置内部を洗浄できる。試料測定時よりも装置内部の電圧を下げることで装置内放電の発生を防いだ状態で,バルブ開時間を伸ばすことでより効果的に洗浄できるようになる。また,ポンプ5を止める必要がないため迅速な洗浄が可能となる。 FIG. 14 is a schematic configuration diagram showing another form of the mass spectrometer of the second embodiment. When the sample is a liquid rather than a gas, electrospray ionization is generally used as shown in FIG. The sample solution 11 is fed to the electrospray probe 10 and ionized. However, the present invention is not limited to electrospray, and there is a method in which a gas heater 33 is used to heat and vaporize a liquid in the ion source 2 and the vaporized gas is ionized by atmospheric pressure chemical ionization, and various ionization methods can be used. Even in the apparatus configuration of this embodiment, there is a problem that the inside of the apparatus is contaminated when a high concentration sample is measured. In order to clean the apparatus, it is effective to introduce the cleaning gas in the form of pulses as in the first embodiment. In the method of continuously introducing the cleaning gas without using the valve 3, it is necessary to keep the vacuum chamber at a high vacuum due to the characteristics of the pump 5, and a large amount of cleaning gas cannot be introduced. On the other hand, if the gas is introduced in a pulse form using the valve 3, a larger amount of cleaning gas can be introduced than in the continuous introduction system, and the inside of the apparatus can be efficiently cleaned. It is possible to perform cleaning more effectively by extending the valve opening time in a state in which the occurrence of electric discharge in the apparatus is prevented by lowering the voltage inside the apparatus than when measuring the sample. In addition, since it is not necessary to stop the pump 5, quick cleaning is possible.
 洗浄ガスと同時にイオンを装置内に導入してもよい。イオンが装置内壁と衝突することでスパッタリングが発生する。スパッタリングにより汚染物質が吸着サイトごと内壁から飛び出し,さらに洗浄ガス分子と衝突することで吸着サイトから脱離する。内壁に存在する場合よりもガス中に飛び出した場合の方が洗浄ガス分子との衝突確率が高まるため洗浄効率が向上する。 イ オ ン Ions may be introduced into the apparatus simultaneously with the cleaning gas. Sputtering occurs when ions collide with the inner wall of the apparatus. Contaminants jump out of the inner wall along with the adsorption sites by sputtering, and desorb from the adsorption sites by colliding with cleaning gas molecules. Since the probability of collision with cleaning gas molecules is higher when the gas is ejected into the gas than when it is present on the inner wall, the cleaning efficiency is improved.
 その他,図10に示す運用方法,図11に示すデータ表示機の表示,洗浄ガスの供給源などは実施例1と同様にすることができる。 In addition, the operation method shown in FIG. 10, the display of the data display shown in FIG. 11, the supply source of the cleaning gas, etc. can be the same as in the first embodiment.
[実施例3]
 図15は,本発明による質量分析装置の一実施例を示す概略構成図である。実施例1と異なる点は,ガス導入口1と真空チャンバー4の間にパルスバルブ3を配置していないことである。ただし,洗浄ガス導入口13と真空チャンバー4の間にパルスバルブ3を設置した。すなわち本実施例では試料ガスと洗浄ガスを異なる配管から装置へと導入する。測定シーケンスは図3からバルブの開閉を省いたものである。検出器へのプラズマ光の混入が問題無いのであれば,バリア放電電圧をON/OFFする必要は無い。実施例1,2ではバルブ開状態にしないとイオンを装置へと導入できず,イオンを検出するスループットが悪かった。一方,本実施例ではイオンを連続的に導入しているためスループットが高い。しかし,連続導入系の場合,大量のイオンを装置へと導入できないため,実施例1,2より感度が低くなる。洗浄効果は実施例1,2と同様であり,バルブ3を用いて洗浄ガスをパルス状に装置へと大量導入することで迅速に装置内部を洗浄できる。図15の例では洗浄ガスを導入する箇所をイオン源2と真空チャンバー4の間としているが,真空チャンバー4に直接洗浄ガスを導入してもよい。
[Example 3]
FIG. 15 is a schematic configuration diagram showing an embodiment of a mass spectrometer according to the present invention. The difference from the first embodiment is that the pulse valve 3 is not disposed between the gas inlet 1 and the vacuum chamber 4. However, a pulse valve 3 was installed between the cleaning gas inlet 13 and the vacuum chamber 4. That is, in this embodiment, the sample gas and the cleaning gas are introduced from different pipes into the apparatus. The measurement sequence is obtained by omitting the opening and closing of the valve from FIG. If there is no problem with plasma light entering the detector, there is no need to turn on / off the barrier discharge voltage. In Examples 1 and 2, ions could not be introduced into the apparatus unless the valve was opened, and the throughput for detecting ions was poor. On the other hand, in this embodiment, since ions are continuously introduced, the throughput is high. However, in the case of the continuous introduction system, since a large amount of ions cannot be introduced into the apparatus, the sensitivity is lower than in Examples 1 and 2. The cleaning effect is the same as in Examples 1 and 2, and the inside of the apparatus can be quickly cleaned by introducing a large amount of cleaning gas into the apparatus in a pulsed manner using the valve 3. In the example of FIG. 15, the cleaning gas is introduced between the ion source 2 and the vacuum chamber 4, but the cleaning gas may be directly introduced into the vacuum chamber 4.
 図16は,実施例3の質量分析装置の別形態を示す概略構成図である。図15と異なる点は,イオン源2とガス導入口1の間にバルブ3を配置したことである。ただし,図15と同様に試料ガスと洗浄ガスは異なる配管から導入する。図16の構成では試料ガスをパルス導入しているため,実施例1,2同様に感度が高い。また図16の構成であれば,試料測定モードと洗浄モードを交互に繰り返すことで,試料を測定しながら洗浄を行うことができる。例えば,試料ガス側のバルブ3を開閉して試料ガスを導入・分析し,続いて洗浄ガス側のバルブ3を開閉して装置の洗浄を行う。このように試料計測と洗浄を連続して行うことで常に装置内をクリーンな状態に保つことができる。必ずしも試料ガス導入と洗浄ガス導入を1回ずつ交互に行う必要はなく,試料ガス導入を5回行うたびに洗浄ガス導入を1回行うなど,回数のバランスは変更可能である。 FIG. 16 is a schematic configuration diagram showing another embodiment of the mass spectrometer of the third embodiment. The difference from FIG. 15 is that a valve 3 is arranged between the ion source 2 and the gas inlet 1. However, sample gas and cleaning gas are introduced from different pipes as in FIG. In the configuration of FIG. 16, since the sample gas is introduced in pulses, the sensitivity is high as in Examples 1 and 2. In the configuration of FIG. 16, the sample measurement mode and the cleaning mode are alternately repeated to perform cleaning while measuring the sample. For example, the sample gas side valve 3 is opened and closed to introduce and analyze the sample gas, and then the cleaning gas side valve 3 is opened and closed to clean the apparatus. Thus, by continuously performing sample measurement and cleaning, the inside of the apparatus can always be kept clean. It is not always necessary to alternately introduce the sample gas and the cleaning gas once, and the balance of the number of times can be changed, for example, the cleaning gas is introduced once every five times the sample gas is introduced.
 図17も,実施例3の質量分析装置の別形態を示す概略構成図である。図16と異なり,試料ガス側のパルスバルブ3をイオン源2と真空チャンバー4の間に配置した。図15,図16と同様に試料ガスと洗浄ガスは異なる配管から導入する。図17に示した構成でも図16の構成と同様に,試料測定と洗浄を交互に繰り返すことができ装置を常に健全な状態に保つことができる。図17の構成では大気圧イオン源を用いることができる。 FIG. 17 is also a schematic configuration diagram showing another form of the mass spectrometer of the third embodiment. Unlike FIG. 16, the pulse valve 3 on the sample gas side is arranged between the ion source 2 and the vacuum chamber 4. As in FIGS. 15 and 16, the sample gas and the cleaning gas are introduced from different pipes. In the configuration shown in FIG. 17, similarly to the configuration in FIG. 16, sample measurement and cleaning can be alternately repeated, and the apparatus can always be kept in a healthy state. In the configuration of FIG. 17, an atmospheric pressure ion source can be used.
 図18も,実施例3の質量分析装置の別形態を示す概略構成図である。試料ガスを導入する配管と洗浄ガスを導入する配管がイオン源手前で合流する構成となっている。試料ガスをパルス導入しているため感度は高い。また,洗浄ガスもパルス導入しているため洗浄効率も高い。図15から図17と異なり,洗浄ガスがイオン源2を通過してから真空チャンバー4へと導入されるため,イオン源2も洗浄されることになり装置のロバスト性が高い。 FIG. 18 is also a schematic configuration diagram showing another form of the mass spectrometer of the third embodiment. The pipe for introducing the sample gas and the pipe for introducing the cleaning gas are joined before the ion source. The sensitivity is high because the sample gas is pulsed. Also, the cleaning gas is pulsed, so the cleaning efficiency is high. Unlike FIGS. 15 to 17, since the cleaning gas is introduced into the vacuum chamber 4 after passing through the ion source 2, the ion source 2 is also cleaned, and the robustness of the apparatus is high.
 なお,本発明は上記した実施例に限定されるものではなく,様々な変形例が含まれる。例えば,上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり,必ずしも説明した全ての構成を備えるものに限定されるものではない。また,ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり,また,ある実施例の構成に他の実施例の構成を加えることも可能である。また,各実施例の構成の一部について,他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
1…ガス導入口,2…イオン源,3…バルブ,4…真空チャンバー,5…ポンプ,6…イオン検出器,7…制御回路,8…コントロール計算機,9…データ表示機,10…エレクトロスプレー用プローブ,11…試料溶液,12…イオン導入用配管,13…洗浄ガス導入口,14…シリコンチューブ,15…ピンチバルブ,16…試料分子,17…外巻き放電用電極,18…ガラス管,19…放電用内部電極,20…インキャップ,21…ロッド電極,22…エンドキャップ,23…試料バイアル,24…試料溶液,25…高圧交流電源,26…可搬型質量分析装置,27…可搬型質量分析装置のデータ表示機,28…強塩基性もしくは強酸性液,29…ラベル,30…洗浄ガスの塩,31…洗浄ガス供給源のバイアル,32…圧力計,33…ガスヒータ 1 ... Gas inlet, 2 ... Ion source, 3 ... Valve, 4 ... Vacuum chamber, 5 ... Pump, 6 ... Ion detector, 7 ... Control circuit, 8 ... Control computer, 9 ... Data display, 10 ... Electrospray 11 ... Sample solution, 12 ... Ion introduction pipe, 13 ... Cleaning gas introduction port, 14 ... Silicon tube, 15 ... Pinch valve, 16 ... Sample molecule, 17 ... External winding electrode, 18 ... Glass tube, 19 ... Internal electrode for discharge, 20 ... In cap, 21 ... Rod electrode, 22 ... End cap, 23 ... Sample vial, 24 ... Sample solution, 25 ... High-voltage AC power source, 26 ... Portable mass spectrometer, 27 ... Portable Data display of mass spectrometer, 28 ... strongly basic or acidic liquid, 29 ... label, 30 ... cleaning gas salt, 31 ... cleaning gas supply vial, 32 ... pressure gauge, 33 ... gas heater

Claims (18)

  1.  試料をイオン化するイオン源と,イオン化された試料を質量電荷比で分離する質量分離部を有するチャンバーと,前記質量分離部により分離されたイオンを検出する検出器と,洗浄ガスを前記チャンバーに導入する配管と,前記配管に設けられた開閉機構と,制御部とを有する質量分析装置を用いた分析方法であって,
     試料を前記イオン源に導入してイオン化し,イオン化された試料を前記チャンバーに導入して前記質量分離部において分離し,前記検出器で検出する試料測定工程と,
     前記洗浄ガスを前記チャンバーに導入する洗浄工程と,を有し,
     前記制御部は,前記洗浄工程における前記チャンバーの圧力の最大値が,前記試料測定工程における前記チャンバーの圧力の最大値よりも大きくなるように,前記開閉機構を制御することを特徴とする分析方法。
    An ion source for ionizing the sample, a chamber having a mass separation unit for separating the ionized sample at a mass-to-charge ratio, a detector for detecting ions separated by the mass separation unit, and a cleaning gas are introduced into the chamber An analysis method using a mass spectrometer having a piping to be opened, an opening / closing mechanism provided in the piping, and a control unit,
    A sample measurement step of introducing a sample into the ion source and ionizing the sample, introducing the ionized sample into the chamber, separating the sample in the mass separation unit, and detecting the sample with the detector;
    A cleaning step of introducing the cleaning gas into the chamber,
    The control unit controls the opening / closing mechanism so that a maximum value of the chamber pressure in the cleaning step is larger than a maximum value of the chamber pressure in the sample measurement step. .
  2.  前記制御部は,前記洗浄ガスの前記チャンバー内の圧力変化がパルス状となるように前記開閉機構を制御することを特徴とする請求項1に記載の分析方法。 2. The analysis method according to claim 1, wherein the control unit controls the opening / closing mechanism so that a pressure change of the cleaning gas in the chamber becomes a pulse shape.
  3.  前記洗浄工程において,前記チャンバー内の少なくとも1ヶ所の圧力が10倍以上変化することを特徴とする請求項1に記載の分析方法。 The analysis method according to claim 1, wherein, in the cleaning step, the pressure in at least one place in the chamber changes by 10 times or more.
  4.  前記洗浄工程において,前記チャンバー内の少なくとも1ヶ所の圧力が,100倍以上変化することを特徴とする請求項1に記載の分析方法。 The analysis method according to claim 1, wherein, in the cleaning step, the pressure in at least one place in the chamber changes 100 times or more.
  5.  前記洗浄工程において,前記制御部は,前記開閉機構の開時間が1秒以内になるように制御することを特徴とする請求項1に記載の分析方法。 The analysis method according to claim 1, wherein, in the cleaning step, the control unit controls the opening / closing mechanism so that the opening time of the opening / closing mechanism is within one second.
  6.  前記開閉機構は,前記イオン源と前記チャンバーの間又は前記イオン源への試料の導入口と前記イオン源の間に設けられており,
     前記試料測定工程において,前記開閉機構が開の状態で試料イオンを前記チャンバーに導入し,前記開閉機構が閉状態で試料イオンを前記質量分離部で分離して前記検出器で検出することを特徴とする請求項1に記載の分析方法。
    The opening / closing mechanism is provided between the ion source and the chamber or between a sample inlet to the ion source and the ion source,
    In the sample measurement step, sample ions are introduced into the chamber with the open / close mechanism open, and sample ions are separated by the mass separation unit and detected by the detector with the open / close mechanism closed. The analysis method according to claim 1.
  7.  前記イオン源と前記チャンバーの間又は前記イオン源への試料の導入口と前記イオン源の間に,さらに第2の開閉機構を備え,
     前記試料測定工程において,前記第2の開閉機構が開の状態で試料イオンを前記チャンバーに導入し,前記開閉機構が閉の状態で試料を前記質量分離部で分離して前記検出器で検出することを特徴とする請求項1に記載の分析方法。
    A second opening / closing mechanism is further provided between the ion source and the chamber or between the sample inlet to the ion source and the ion source,
    In the sample measurement step, sample ions are introduced into the chamber with the second opening / closing mechanism open, and the sample is separated by the mass separation unit with the opening / closing mechanism closed and detected by the detector. The analysis method according to claim 1, wherein:
  8.  前記試料測定工程よりも前記洗浄工程の方が前記開閉機構の開となる時間が長いことを特徴とする請求項6又は7に記載の分析方法。 The analysis method according to claim 6 or 7, wherein the cleaning process takes a longer time to open the opening / closing mechanism than the sample measurement process.
  9.  前記試料測定工程において,前記開閉機構の開時間が1秒以内になるように制御することを特徴とする請求項6又は7に記載の分析方法。 The analysis method according to claim 6 or 7, wherein in the sample measurement step, the opening / closing mechanism is controlled to be within one second.
  10.  前記開閉機構の制御により,前記試料測定工程における前記チャンバー内の圧力変動よりも,前記洗浄工程における前記チャンバー内の圧力変動が大きいことを特徴とする請求項6又は7に記載の分析方法。 8. The analysis method according to claim 6, wherein the pressure fluctuation in the chamber in the cleaning step is larger than the pressure fluctuation in the chamber in the sample measurement step by the control of the opening / closing mechanism.
  11.  前記試料測定工程よりも前記洗浄工程の方が,前記チャンバー内の少なくとも1つの電圧が低いことを特徴とする請求項1に記載の分析方法。 The analysis method according to claim 1, wherein at least one voltage in the chamber is lower in the cleaning step than in the sample measurement step.
  12.  前記イオン源が,放電イオン源であることを特徴とする請求項1に記載の分析方法。 The analysis method according to claim 1, wherein the ion source is a discharge ion source.
  13.  前記放電イオン源は,誘電体で形成されるイオン化室の一部を挟んで設けられた電極対と電源とを有し,前記試料測定工程において,前記電極対に電圧を印加することにより発生する誘電体バリア放電により放電プラズマを発生させて試料のイオンを生成することを特徴とする請求項12に記載の分析方法。 The discharge ion source has an electrode pair and a power source provided across a part of an ionization chamber formed of a dielectric, and is generated by applying a voltage to the electrode pair in the sample measurement step. 13. The analysis method according to claim 12, wherein discharge plasma is generated by dielectric barrier discharge to generate sample ions.
  14.  前記試料測定工程及び前記洗浄工程において,前記放電イオン源に放電を発生させ,前記試料測定工程の方が,前記洗浄工程よりも放電時間が長いことを特徴とする請求項12に記載の分析方法。 13. The analysis method according to claim 12, wherein a discharge is generated in the discharge ion source in the sample measurement step and the cleaning step, and the discharge time is longer in the sample measurement step than in the cleaning step. .
  15.  前記試料測定工程及び前記洗浄工程において,前記放電イオン源に放電を発生させ,前記洗浄工程の方が前記試料測定工程よりも放電電圧が高いことを特徴とする請求項12に記載の分析方法。 13. The analysis method according to claim 12, wherein a discharge is generated in the discharge ion source in the sample measurement step and the cleaning step, and the discharge voltage is higher in the cleaning step than in the sample measurement step.
  16.  前記洗浄ガスは,密閉された容器内に入れられた洗浄ガス発生用の液体から供給されるものであって,前記容器の内圧が大気圧より減圧された状態で,前記洗浄ガスを導入することを特徴とする請求項1に記載の分析方法。 The cleaning gas is supplied from a cleaning gas generating liquid contained in a sealed container, and the cleaning gas is introduced in a state where the internal pressure of the container is reduced from the atmospheric pressure. The analysis method according to claim 1.
  17.  前記洗浄ガスは,塩として保存された状態から供給されるものであって,前記洗浄工程において,前記塩と強酸性液体又は強塩基性液体を反応させることで塩析効果により前記洗浄ガスを発生させて導入することを特徴とする請求項1に記載の分析方法。 The cleaning gas is supplied from a state stored as a salt. In the cleaning step, the cleaning gas is generated by a salting-out effect by reacting the salt with a strongly acidic liquid or a strongly basic liquid. The analysis method according to claim 1, wherein the analysis method is introduced.
  18.  汚染確認用物質の測定工程を有し,前記試料又は前記汚染確認物質の測定結果によって前記質量分析装置の汚染状態を判断し,前記洗浄工程をおこなうことを特徴とする請求項1に記載の分析方法。 The analysis according to claim 1, further comprising a step of measuring a contamination confirmation substance, wherein the contamination state of the mass spectrometer is determined based on a measurement result of the sample or the contamination confirmation substance, and the cleaning step is performed. Method.
PCT/JP2014/079676 2013-12-12 2014-11-10 Mass spectrometry method WO2015087645A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-256600 2013-12-12
JP2013256600A JP2015115202A (en) 2013-12-12 2013-12-12 Mass spectrometry

Publications (1)

Publication Number Publication Date
WO2015087645A1 true WO2015087645A1 (en) 2015-06-18

Family

ID=53370960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079676 WO2015087645A1 (en) 2013-12-12 2014-11-10 Mass spectrometry method

Country Status (2)

Country Link
JP (1) JP2015115202A (en)
WO (1) WO2015087645A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT517969A1 (en) * 2015-11-26 2017-06-15 Roland Aschauer Dr Apparatus and method for cleaning a valve
US10304667B1 (en) 2017-12-14 2019-05-28 Thermo Finnigan Llc Apparatus and method for cleaning an inlet of a mass spectrometer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10580632B2 (en) * 2017-12-18 2020-03-03 Agilent Technologies, Inc. In-situ conditioning in mass spectrometry systems
JP7015726B2 (en) * 2018-04-16 2022-02-03 株式会社日立ハイテク Analytical system and ion flow path cleaning method
JP7215121B2 (en) * 2018-12-05 2023-01-31 株式会社島津製作所 Ion trap mass spectrometer
CN110808204B (en) * 2019-11-12 2022-02-08 湖南刘文龙生物医药有限责任公司 Self-cleaning mass spectrum device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298776A (en) * 2001-03-29 2002-10-11 Anelva Corp Ionization apparatus
JP2006153762A (en) * 2004-11-30 2006-06-15 Tdk Corp Sample analyzing method and sample analyzer
JP2007170985A (en) * 2005-12-22 2007-07-05 Hitachi Ltd Chemical substance monitoring apparatus and method for cleaning the same
JP2010025932A (en) * 2008-07-23 2010-02-04 Aviv Amirav Open probe method and device for sample introduction for mass spectrometry analysis
JP2012252881A (en) * 2011-06-03 2012-12-20 Hitachi High-Technologies Corp Mass spectroscope
JP2013061324A (en) * 2011-09-09 2013-04-04 Agilent Technologies Inc On-site adjustment in mass analyzer system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298776A (en) * 2001-03-29 2002-10-11 Anelva Corp Ionization apparatus
JP2006153762A (en) * 2004-11-30 2006-06-15 Tdk Corp Sample analyzing method and sample analyzer
JP2007170985A (en) * 2005-12-22 2007-07-05 Hitachi Ltd Chemical substance monitoring apparatus and method for cleaning the same
JP2010025932A (en) * 2008-07-23 2010-02-04 Aviv Amirav Open probe method and device for sample introduction for mass spectrometry analysis
JP2012252881A (en) * 2011-06-03 2012-12-20 Hitachi High-Technologies Corp Mass spectroscope
JP2013061324A (en) * 2011-09-09 2013-04-04 Agilent Technologies Inc On-site adjustment in mass analyzer system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT517969A1 (en) * 2015-11-26 2017-06-15 Roland Aschauer Dr Apparatus and method for cleaning a valve
AT517969B1 (en) * 2015-11-26 2017-10-15 Roland Aschauer Dr Vapor Pressure Monitor
US10304667B1 (en) 2017-12-14 2019-05-28 Thermo Finnigan Llc Apparatus and method for cleaning an inlet of a mass spectrometer

Also Published As

Publication number Publication date
JP2015115202A (en) 2015-06-22

Similar Documents

Publication Publication Date Title
WO2015087645A1 (en) Mass spectrometry method
JP5764433B2 (en) Mass spectrometer and mass spectrometry method
US9978574B2 (en) Sample collection in compact mass spectrometry systems
JP6663407B2 (en) Method and mass spectrometer for mass spectrometric testing of gas mixtures
US10325764B2 (en) Automated beam check
US8648293B2 (en) Calibration of mass spectrometry systems
EP2212903A2 (en) Chemical ionization reaction or proton transfer reaction mass spectrometry with a quadrupole or time-of-flight mass spectrometer
JP6183929B2 (en) Compact mass spectrometer
GB2519853A (en) Automated beam check
US9698000B2 (en) Integrated mass spectrometry systems
US9779924B2 (en) Mass spectrometer
US8946624B2 (en) Mass spectrometer having an external detector
KR20090104034A (en) Detector Apparatus and Pre-concentrators
US20230145929A1 (en) Photoionization detector and method for gas sample analysis
WO2015176567A1 (en) Atmospheric pressure interface device and mass spectrometer
GB2546014A (en) Ion source
JP2009264949A (en) Ion attachment mass spectrometer and ion attachment mass spectrometry method thereof
JP2021007102A (en) Compact mass spectrometer
TW200526873A (en) Detection of contaminants within pumped fluid
GB2520153A (en) Mass spectrometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869751

Country of ref document: EP

Kind code of ref document: A1