WO2015087629A1 - Image acquisition device and image acquisition method - Google Patents

Image acquisition device and image acquisition method Download PDF

Info

Publication number
WO2015087629A1
WO2015087629A1 PCT/JP2014/078520 JP2014078520W WO2015087629A1 WO 2015087629 A1 WO2015087629 A1 WO 2015087629A1 JP 2014078520 W JP2014078520 W JP 2014078520W WO 2015087629 A1 WO2015087629 A1 WO 2015087629A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
intensity
intensity distribution
image
image acquisition
Prior art date
Application number
PCT/JP2014/078520
Other languages
French (fr)
Japanese (ja)
Inventor
順一 坂上
田中 健二
和田 成司
山根 健治
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2015087629A1 publication Critical patent/WO2015087629A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence

Definitions

  • the present disclosure relates to an image acquisition device and an image acquisition method.
  • Patent Document 1 discloses an example of a fluorescence microscope.
  • Such a fluorescence microscope scans a measurement material with excitation light output from a laser light source and creates an intensity distribution of fluorescence from the measurement material, thereby generating an image of the measurement material based on the intensity distribution. To do.
  • the laser light source used for the light source of the fluorescence microscope as described above is generally a large-sized one, and is used in a configuration that is externally attached to the microscope as a separate housing from the microscope. Tends to increase in size.
  • the laser light source is provided in the housing of the image acquisition device, the laser light source is affected by heat generated by each device provided in the same housing, and the laser intensity changes. Appears as noise on the image.
  • the present disclosure proposes a new and improved image acquisition apparatus and image acquisition method capable of downsizing the apparatus by providing a laser light source in the same housing and acquiring a clear image. To do.
  • a light source that emits laser light
  • a sample that is provided in the same housing as the light source, scans the sample with the laser light, and receives the laser light to measure the intensity of light to be measured from the sample.
  • a control unit that generates an image of the sample based on the measured intensity distribution of the measurement target light, and the measurement unit measures the intensity of the laser light emitted from the light source.
  • the control unit performs at least one of control of the intensity of the laser light emitted from the light source and correction of the intensity distribution of the measured light to be measured based on the measured intensity of the laser light.
  • An image acquisition device is provided for execution.
  • the sample is scanned with the laser light emitted from the light source provided in the same housing, the intensity of the measurement target light generated from the sample is received by receiving the laser light, and the processor Is based on the measured intensity distribution of the measurement target light, generating an image of the sample, measuring the intensity of the laser light emitted from the light source, and measuring the intensity of the laser light. Based on this, there is provided an image acquisition method including control of the intensity of laser light emitted from the light source and at least one of correction of the measured intensity distribution of the measurement target light.
  • an image acquisition apparatus and an image acquisition method capable of downsizing the apparatus by providing a laser light source in the same housing and acquiring a clear image.
  • FIG. 3 is an explanatory diagram illustrating an example of a schematic configuration of an image acquisition device according to a first embodiment of the present disclosure. It is explanatory drawing for demonstrating fluorescence. It is explanatory drawing for demonstrating the principle of a confocal microscope. It is explanatory drawing for demonstrating the principle of a confocal microscope. It is explanatory drawing for demonstrating the difference between the fluorescence by 1 photon excitation and the fluorescence by 2 photon excitation. It is a graph for demonstrating the light absorption characteristic of a biological body. It is explanatory drawing for demonstrating a two-photon excitation fluorescence microscope. It is explanatory drawing for demonstrating the sample scanning system of a microscope.
  • FIG. 3 is an explanatory diagram illustrating an example of a configuration of an optical system of the image acquisition device according to the first embodiment of the present disclosure.
  • FIG. 1 is an explanatory diagram illustrating an example of a schematic configuration of an image acquisition device according to the first embodiment of the present disclosure.
  • the image acquisition device 1 includes a light source 2, a measurement unit 3, a control unit 6, and an I / F (Interface) 7.
  • the image acquisition device 1 scans the sample S with light emitted from the light source 2 and measures the fluorescence emitted from the sample S by the measurement unit 3, thereby measuring the sample based on the measured fluorescence.
  • the image of S is acquired.
  • the light obtained from the sample S corresponds to an example of “measurement target light”.
  • the light source 2 and the measurement unit 3 are provided in the image acquisition device 1 (that is, in the same housing).
  • the light source 2, the measurement unit 3, the control unit 6, and the I / F 7 are provided in the image acquisition device 1.
  • the measurement unit 3 includes a microscope unit 4 that functions as a microscope, which will be described later, and a scanning system (detection system) 5 that performs scanning of the sample S and detection of fluorescence emitted from the sample S.
  • a microscope unit 4 that functions as a microscope, which will be described later
  • a scanning system (detection system) 5 that performs scanning of the sample S and detection of fluorescence emitted from the sample S.
  • control unit 6 controls the operation of the light source 2 and the measurement unit 3, and converts the light measured (detected) by the measurement unit 3 into an image.
  • the control unit 6 controls the operation of the light source 2 based on the light measured (detected) by the measurement unit 3 so that the light source 2 operates stably.
  • the I / F 7 is an interface for the image acquisition device 1 to transmit / receive information to / from a user or another device.
  • the image acquisition apparatus 1 is connected to an external network via the I / F 7 (for example, a communication interface), and is generated by the control unit 6 in the information processing apparatus 800 connected via the external network.
  • An image may be output.
  • the image acquisition device 1 does not necessarily have other configurations (for example, the control unit 6 and the I / F 7) as long as at least the light source 2 and the measurement unit 3 are provided in the same housing.
  • the image acquisition apparatus 1 may not be provided.
  • an information processing device capable of transmitting and receiving information between the light source 2 and the image acquisition device 1 including the measurement unit 3 is separately provided, and the control unit 6 and the I / F 7 are provided in the information processing device. Also good.
  • the control unit 6 and the I / F 7 may be provided on the information processing apparatus 800 side.
  • FIGS. 2 to 8 show a microscope used as the microscope unit 4 of the measurement unit 3 in the image acquisition device 1 according to the present embodiment. Details will be described with reference to FIG.
  • Fluorescence emitted from the sample S can be cited as one of the phenomena occurring in the sample S of interest in the present embodiment.
  • fluorescence will be briefly described with reference to FIG.
  • FIG. 2 is an explanatory diagram for explaining fluorescence.
  • the electrons in the molecule correspond to the ground state using the energy of the irradiated light. May shift from the energy level to the energy level corresponding to the excited state.
  • the light irradiated at this time is called excitation light.
  • the excited electron moves to one of the energy levels corresponding to the singlet excited state. , Moving to lower energy levels while releasing energy by internal conversion.
  • energy may be emitted as light, and the light emitted at this time is the fluorescence of interest in the present embodiment.
  • FIGS. 3 and 4 are explanatory diagrams for explaining the principle of the confocal microscope.
  • the confocal fluorescence microscope shown in FIG. 3 uses a laser beam as excitation light, guides the laser beam to a measurement sample (fluorescence specimen), and guides the fluorescence generated at the focal plane of the measurement sample to a detector. It has a configuration like this.
  • the laser beam used as the excitation light can be regarded as a point light source by passing through the pinhole A, and the laser beam passes through the dichroic mirror and the objective lens and is projected onto the fluorescent specimen.
  • fluorescence is generated by the energy of the projected laser beam, and the emitted fluorescence is collected by the objective lens and guided to the detector by the dichroic mirror.
  • a pinhole B is installed immediately before the detector, and the fluorescence that has passed through the pinhole B is detected by a detector such as a photomultiplier tube (PMT).
  • PMT photomultiplier tube
  • the wavelength of the laser beam used as the excitation light can be appropriately selected according to, for example, the type of fluorescent dye used for staining the measurement sample, and is not limited to a specific wavelength. .
  • the installation position of the pinhole A, the projection position of the point light source (focal plane of the measurement sample), and the installation position of the pinhole B are optically conjugate with each other. This three-point conjugate relationship is said to be confocal.
  • the fluorescence emitted from the focal plane (the focused surface) of the objective lens is collected by the objective lens and passes through the confocal pinhole (pinhole B in FIG. 3). Fluorescence from out-of-focus parts can pass through the confocal pinhole, although it can pass through.
  • a two-dimensional image (optical tomographic image) of only a focused portion can be constructed by scanning the plane (sample surface) of the measurement sample in the vertical direction and the horizontal direction.
  • the scanning of the sample surface is repeated while changing the focal position, and fluorescence from measurement samples at different depth positions (depth positions) is accumulated to collect a set of optical tomographic images (3 Dimensional enlarged image group) can be obtained.
  • FIG. 5 is an explanatory diagram for explaining the principle of two-photon excitation.
  • the diagram on the left side of FIG. 5 is an explanatory diagram showing the principle of normal fluorescence explained earlier.
  • Excitation light is generated by exciting a molecule with excitation light having a certain wavelength (in the figure, excitation light having a wavelength of 350 nm).
  • Longer wavelength fluorescence fluorescence with a wavelength of 500 nm in the figure
  • Such a mechanism of fluorescence generation is so-called fluorescence generation by one-photon excitation because it is a mechanism in which fluorescence is generated when a molecule is excited by the interaction between one photon and a molecule.
  • fluorescence generation by two-photon excitation because fluorescence is generated when the molecule is excited by the interaction between two photons and the molecule.
  • the fluorescence wavelength in the infrared band of about 700 nm to 1000 nm used for two-photon excitation is water or water as shown in FIG. This is because it has a wavelength range called “biological window” that easily penetrates the living body without being absorbed by hemoglobin. Because of such high transmittance of excitation light, it can be observed only to a depth of about 100 ⁇ m with a confocal fluorescence microscope, whereas it can be observed to a depth of 1000 ⁇ m (1 mm) with a two-photon excitation fluorescence microscope. It has been broken.
  • the fluorescence emitted by excitation is derived from a minute region in the sample, and thus a fluorescence image can be obtained by detecting all the light signals.
  • the detection optical system in the microscope can be simplified. That is, in the two-photon excitation process, since fluorescence is emitted only from the sample near the focal position, there is no need to cut extra signals using a pinhole as in the confocal fluorescence microscope, and the detector is located near the sample. Is arranged so as to pick up as many fluorescent signals as possible to diffuse in all directions.
  • FIG. 8 shows a configuration example of a confocal fluorescence microscope using two types of galvanometer mirrors.
  • Excitation light emitted from a laser light source passes through an optical system such as a lens and a pinhole provided at a conjugate position, and then passes through a dichroic mirror that transmits the excitation light and reflects fluorescence.
  • the excitation light that has passed through the dichroic mirror passes through an optical system such as a lens, and after the X coordinate is controlled by an X direction galvanometer mirror that controls scanning of the measurement sample in the X direction, the Y direction controls the Y direction scanning.
  • the Y coordinate is controlled by the galvanometer mirror, and the light is condensed to a desired XY coordinate on the measurement sample by the objective lens.
  • Fluorescence emitted from the measurement sample is reflected by the Y-direction galvanometer mirror and the X-direction galvanometer mirror, follows the same path as the excitation light, and is reflected by the dichroic mirror.
  • the fluorescence reflected by the dichroic mirror is transmitted through a pinhole provided at the conjugate position and then guided to a detector such as a photomultiplier tube.
  • the two galvanometer mirrors used for controlling the condensing position on the measurement sample have mirrors connected to a rotation axis as schematically shown in FIG.
  • the amount of rotation of the rotating shaft is controlled by the magnitude of the input voltage, and the angle at which the mirror surface is facing can be changed at high speed and with high accuracy.
  • FIG. 9 is an explanatory diagram illustrating an example of a schematic configuration of an image acquisition apparatus according to a comparative example.
  • the image acquisition device 1w according to the comparative example has a light source 2w provided outside the image acquisition device 1w.
  • the configuration of the optical system of the image acquisition device 1 w according to the comparative example is mainly such that the sample S is irradiated with light from the light source 2 w and excited by the light. A description will be given focusing on the part for detecting the fluorescence generated from.
  • the optical system of the image acquisition device 1 w according to the comparative example includes a light source 2, a beam shaping lens 511, a galvano mirror 51, lenses 513 and 515, a mirror 517, and a dichroic mirror 52. , Objective lens 42, imaging lens 521, emission filter 523, and photodetector 53.
  • a PMT is used as the photodetector 53.
  • the excitation light (laser light) emitted from the light source 2 reaches the galvanometer mirror 51 with the beam diameter being expanded by the beam shaping lens 511 while being parallel light.
  • the excitation light that has reached the galvanometer mirror 51 is reflected by the galvanometer mirror 51 and then guided to the dichroic mirror 52 via the lens 513, the mirror 517, and the lens 515.
  • the lens 513, the mirror 517, and the lens 515 are an optical system for guiding the excitation light reflected by the galvanometer mirror 51 to the dichroic mirror 52.
  • the dichroic mirror 52 transmits the reached excitation light and guides it to the objective lens 42.
  • the objective lens 42 condenses the excitation light on the sample S.
  • the objective lens 42 and the imaging lens 521 enlarge the image of the sample S to a predetermined magnification, and form the enlarged image on the detection surface of the PMT 53.
  • the emission filter 523 transmits only the emitted color by absorbing light (external light) other than the color light expanded by the objective lens 42.
  • the colored light image from which the external light is lost is formed on the PMT 53.
  • FIG. 11 is an explanatory diagram for explaining an example of the configuration of the microscope unit 4.
  • the microscope unit 4 includes non-polarizing beam splitters 41 and 44, an objective lens 42, a filter 43, a camera 45, and an eyepiece 46.
  • each configuration of the scanning system (detection system) 5 w corresponds to the configuration given the same reference numeral in the optical system shown in FIG. 10.
  • a part of the configuration shown in FIG. 10 is omitted.
  • Excitation light (laser light) emitted from the light source 2w is guided to the non-polarizing beam splitter 41 in the microscope unit 4 through the scanning system (detection system) 5w.
  • the non-polarizing beam splitter 41 reflects the excitation light guided through the scanning system (detection system) 5 w toward the objective lens 42.
  • the objective lens 42 corresponds to the objective lens 42 in the optical system shown in FIG.
  • the objective lens 42 condenses the excitation light on the sample S. As a result, a molecule in the sample S is excited by the excitation light and emits fluorescence. Excitation light generated from the sample S is guided to the non-polarizing beam splitter 41 via the objective lens 42.
  • the non-polarizing beam splitter 41 branches the fluorescence guided through the objective lens 42 toward both the scanning system (detection system) 5w and the filter 43.
  • the filter 43 selectively transmits the emission color guided through the objective lens 42 and the non-polarizing beam splitter 41.
  • an emission filter may be applied as the filter 43.
  • the filter 43 absorbs light (external light) other than the colored light and transmits only the emission color.
  • the colored light image from which the external light has been lost is guided to the non-polarizing beam splitter 44.
  • the non-polarizing beam splitter 44 branches the colored light image guided through the filter 43 toward both the camera 45 and the eyepiece 46. With such a configuration, the user can observe the image of the sample guided through the eyepiece 46 or can capture the image of the sample with the camera 45.
  • the fluorescence guided toward the scanning system (detection system) 5w is reflected by the dichroic mirror 52, guided to the PMT 53, and detected by the PMT 53.
  • the processing based on the fluorescence detected by the PMT 53 will be described later as the operation of the control unit 6w.
  • an image acquisition device 1w has a light source 2 connected to the outside of the device, and excitation light emitted from the light source 2 is transmitted to a scanning system (detection system) 5w and a microscope unit 4. To the sample S. At this time, the operation of the galvanometer mirror 51 is controlled by the system control unit 61 described later, so that the sample S is scanned with the excitation light.
  • Fluorescence generated from the sample S by the irradiated excitation light is guided to the scanning system (detection system) 5w through the microscope unit 4 and detected by the PMT 53 of the scanning system (detection system) 5w.
  • the PMT 53 converts the detected fluorescence into an electrical signal by a photoelectric effect at a preset sampling rate, and outputs the electrical signal to the control unit 6w as data indicating the intensity of the fluorescence.
  • the control unit 6w includes a system control unit 61w, a two-dimensional processing unit 62w, a correction processing unit 63w, an image processing unit 64, a RAW image generation unit 65, a storage unit 66, a display control unit 67, a communication And a control unit 68.
  • the I / F 7 includes a condition specifying unit 71, a display unit 72, and a communication unit 73.
  • the system control unit 61w controls the operation of the light source 2 and the galvanometer mirror 51 based on the measurement conditions specified by the user via the condition specifying unit 71.
  • the condition specifying unit 71 is an input I / F for the user to specify conditions related to measurement and image acquisition (hereinafter, sometimes collectively referred to as “measurement conditions”). For example, the user designates the output of the light source 2 and the scanning condition relating to the scanning on the sample S (for example, the scanned range and the resolution of the generated image) via the condition designating unit 71 as the measurement conditions. Is possible.
  • the system control unit 61w controls the operation of the galvano mirror 51 based on a scanning condition specified as a measurement condition by the user, and outputs control information indicating the content of the control to a two-dimensionalization processing unit 62w described later.
  • the two-dimensionalization processing unit 62w sequentially acquires data indicating the intensity of fluorescence detected (measured) by the PMT 53 from the PMT 53 at a preset sampling rate. Further, the two-dimensionalization processing unit 62w sequentially acquires control information indicating the control content of the galvano mirror 51 from the system control unit 61w. Thereby, the two-dimensionalization processing unit 62w recognizes which data on the sample S corresponds to the data indicating the fluorescence intensity acquired from the PMT 53 based on the control information acquired from the system control unit 61w. It becomes possible.
  • the two-dimensionalization processing unit 62w arranges the data indicating the fluorescence intensity sequentially acquired from the PMT 53 based on the control information acquired from the system control unit 61w and converts the data into a two-dimensional data, thereby obtaining the detected fluorescence intensity distribution. Generate.
  • the intensity distribution of the fluorescence generated by the two-dimensional processing unit 62w is subjected to correction processing such as noise removal by the correction processing unit 63w and is output to the image processing unit 64, for example.
  • the image processing unit 64 generates image data by performing image processing such as compression processing on the intensity distribution subjected to the correction processing.
  • the image processing unit 64 outputs the generated image data to the display control unit 67, for example. Further, the image processing unit 64 may output the generated image data to the communication control unit 68. Further, the image processing unit 64 may store the generated image data in the storage unit 66.
  • the RAW image generation unit 65 acquires the fluorescence intensity distribution from the two-dimensional processing unit 62w, and generates a RAW file by shaping the fluorescence intensity distribution as image data (RAW image) into a predetermined file format. .
  • the RAW image generation unit 65 displays information related to the fluorescence intensity distribution, such as a fluorescence intensity distribution acquisition condition (for example, a shooting condition or a scanning condition such as a parameter at the time of shooting).
  • the acquired information may be associated with the generated RAW file as related information.
  • the related information may be recorded in the RAW file as incidental information of the RAW file, or may be associated as a separate file from the RAW file. In the following, these modes may be collectively referred to simply as “associate”.
  • the RAW image generation unit 65 outputs the generated RAW file to the communication control unit 68, for example. Further, the RAW image generation unit 65 may store the generated RAW file in the storage unit 66.
  • the storage unit 66 is a storage unit for storing various control data used in the image acquisition device 1w and data generated in the image acquisition device 1w (for example, image data and RAW files).
  • the storage unit 66 may be configured as a database, for example. Further, the storage unit 66 may be used as a storage area for storing data temporarily created to execute various processes such as image processing.
  • the display control unit 67 acquires image data from the image processing unit 64 and causes the display unit 72 to display the acquired image data.
  • the display unit 72 is an output I / F for displaying information such as a display. Thereby, the user can check the image of the sample S through the display unit 72.
  • the display control unit 67 may cause the display unit 72 to display a U / I (User Interface) for operating the image acquisition device 1w.
  • U / I User Interface
  • the control data for the display control unit 67 to generate U / I may be stored in advance in the storage unit 66, for example.
  • the communication control unit 68 controls the operation of the communication unit 73 that performs communication with the external device so that the image acquisition device 1w transmits and receives data to and from the external device such as the information processing device 800 via the network. To do.
  • the communication control unit 68 acquires image data or a RAW file generated in the image acquisition device 1w, and controls the communication unit 73 to acquire the acquired data to the information processing device 800 via the network. Send.
  • the generated image data and RAW file can be processed by the information processing apparatus 800 having higher image processing capability than the image acquisition apparatus 1w.
  • the image acquisition device 1w according to the comparative example includes the light source 2w outside (that is, externally) the image acquisition device 1w, and includes a series including the light source 2w and the image acquisition device 1w.
  • the system tends to become larger.
  • the image acquisition device 1 according to the present embodiment is downsized by incorporating the light source 2 (that is, the laser module) in the housing.
  • the light source 2 when the light source 2 is provided in the same housing as the measurement unit 3 and the control unit 6, the light source 2 is provided close to the measurement unit 3 and the control unit 6. For this reason, the operation of the light source 2 becomes unstable due to heat generated by the measurement unit 3 and the control unit 6, for example, the intensity of the laser light output from the light source 2 changes, and the change in the intensity causes noise in the generated image. May become apparent.
  • the observation result of the microscope unit 4 (for example, a two-photon excitation microscope) is imaged as in the image acquisition device 1 according to the present embodiment, an image is generated by scanning the sample S.
  • the imaging speed depends on the control speed of the galvanometer mirror 51 used for scanning and the detection speed of the PMT 53. Due to such a configuration, the shooting speed is often slower than a device that generates an image using an imaging element such as a so-called camera, and the shooting speed tends to decrease in proportion to an increase in image size.
  • the image acquisition device 1 is miniaturized by incorporating the light source 2 in the device (in the same housing), and thermal fluctuation of the laser light emitted from the light source 2. This is to reduce the noise associated with the image and to obtain a clearer image.
  • the image acquisition device 1 measures the intensity of the laser light emitted from the light source 2, and based on the measured intensity distribution of the laser light, the laser light emitted from the light source 2 is measured. At least one of intensity control and correction of the generated image is executed.
  • the image acquisition device 1 corrects the generated image based on the measured intensity distribution of the laser beam, thereby eliminating noise associated with the thermal fluctuation of the laser beam that is manifested on the image. It becomes possible to reduce.
  • the image acquisition device 1 can stabilize the laser beam that has become unstable due to thermal fluctuation by controlling the intensity of the laser beam based on the measured intensity distribution of the laser beam. It becomes possible.
  • the image acquisition device 1 for the image acquisition device 1 according to the present embodiment, first, an example of the configuration of the light source 2 will be described, and then the optical system and functional configuration of the image acquisition device 1 according to the present embodiment will be described. Since the configuration of the microscope unit 4 is the same as that of the image acquisition device 1w according to the comparative example described above, detailed description thereof is omitted.
  • the light source 2 includes an oscillating unit such as an optical parametric oscillator, and the wavelength of the emitted laser light can be changed by changing the oscillation condition of the oscillating unit.
  • a structured light source is used.
  • FIG. 13A is a schematic diagram showing an example of the configuration of the light source 2 in detail.
  • the light source 2 includes a MOPA 210 combining a mode-locked oscillation laser and an optical amplifier, and a wavelength conversion module (OPO) 250.
  • the MOPA 210 includes a mode-locked laser section 220, an optical isolator section 230, and an optical amplifier section (SOA section) 240.
  • Each waveform P1 is shown.
  • the mode-locked laser unit 220 includes a semiconductor laser 222 and elements of a lens 224, a band-pass filter 226, and a mirror 228 that allow laser light emitted from the semiconductor laser 222 to pass therethrough.
  • the bandpass filter 226 has a function of transmitting light in a certain wavelength range and not allowing light outside the range to pass.
  • An external resonator (spatial resonator) is formed between the mirror at the rear end face of the semiconductor laser 222 and the mirror 228. The laser emitted from the mode-locked laser unit 220 by the path length of the external resonator. The frequency of light is determined. Thereby, it can be made to lock to a specific frequency compulsorily, and the mode of a laser beam can be locked.
  • the mode-locked laser unit 220 can synchronize a short pulse with a longer period (for example, about 1 GHz) than a normal semiconductor laser by configuring an external resonator. For this reason, the laser beam L1 output from the mode-locked laser unit 220 has a low average power and a high peak, has little damage to the living body, and has a high photon efficiency.
  • the optical isolator unit 230 is arranged at the subsequent stage of the mode-locked laser unit 220.
  • the optical isolator unit 230 includes an optical isolator 232 and a mirror 234.
  • the optical isolator unit 230 has a function of preventing light reflected by a subsequent optical component or the like from entering the semiconductor laser 222.
  • the optical amplifier section (SOA section) 240 functions as an optical modulation section that amplifies and modulates the laser light emitted from the semiconductor laser 222, and is disposed at the subsequent stage of the optical isolator section 230.
  • the laser output from the mode-locked laser unit 220 is amplified by the optical amplifier unit 240 because its power is relatively small.
  • the optical amplifier 240 is composed of an SOA (Semiconductor Optical Amp), that is, a semiconductor optical amplifier 242 and an SOA driver 244 that controls the semiconductor optical amplifier 242.
  • the semiconductor optical amplifier 242 is a small and low-cost optical amplifier, and can be used as an optical gate and an optical switch for turning light on and off. In the present embodiment, the laser light emitted from the semiconductor laser 222 is modulated by turning on and off the semiconductor optical amplifier 242.
  • the laser light is amplified according to the magnitude of the control current (DC). Furthermore, the optical amplifier unit 240 intermittently drives with the control current of the pulse waveform P1 shown in FIG. 2 at the time of amplification, thereby turning on / off the laser light of the pulse waveform L1 with a predetermined period T, and intermittently. Laser light (pulse waveform L2) is output.
  • a pulse waveform having a desired timing and period, it is possible to synchronize with a control signal included in the system.
  • intermittent driving is realized by intermittent driving in the semiconductor optical amplifier 242 (Semiconductor Optical Amplifier abbreviated as SOA) in the rear stage that amplifies the pulse of the oscillation unit in the front stage. I can do it.
  • the optical amplifier unit 240 semiconductor optical amplifier 242 functions as an intermittent light emitting unit.
  • the frequency of the laser light output from the semiconductor laser 222 is, for example, 500 MHz to 1 GHz, and the pulse width is about 0.5 to 1.0 [ps].
  • the oscillation pulse output from the semiconductor laser 222 is also synchronized with the control signal of the system. It is possible.
  • the oscillation frequency of laser light is about 40 MHz to 80 MHz and the pulse width is about 0.1 to 0.2 [ps], whereas a laser having a higher oscillation frequency can be obtained by using MLLD. It is possible to output light.
  • the wavelength of the laser beam output from the optical amplifier unit 240 is 405 nm as an example. Since the wavelength of 405 nm is a wavelength with relatively high absorption, it is converted into a wavelength (about 900 nm to 1300 nm) that reaches the back of the living body and produces a two-photon effect at a high density. Therefore, the laser light output from the optical amplifier unit 240 is input to the subsequent wavelength conversion module 250 and wavelength-converted by the LBO 252 of the wavelength conversion module 250.
  • the LBO 252 of the wavelength conversion module 250 converts the input laser beam (pulse waveform L2) into two wavelengths.
  • One of the converted two-wavelength laser light corresponds to signal light, and the other corresponds to idler light.
  • one of the signal light and the idler light is output from the wavelength conversion module 250 to the outside, and is irradiated onto the object (sample S).
  • the long wavelength laser light (pulse waveform L3) of the two converted laser lights is output from the wavelength conversion module 250 as signal light and is applied to the object (sample S). Irradiated.
  • the short-wavelength laser light corresponds to idler light.
  • the operation limit is determined by heat generated by a high power load.
  • the average power is the same as compared with the case where intermittent operation is not performed.
  • the peak when emitting light can be increased. Further, by performing intermittent operation, heat generation due to a high power load can be suppressed.
  • the light source 2 for two-photon excitation, and the light source 2 excites the phosphor with two photons.
  • FIG. 13B is a characteristic diagram showing a state where the peak power of the laser is increased by intermittent light emission.
  • the upper part of FIG. 13B shows the characteristics in the case of one-photon excitation.
  • the upper left characteristic shows the peak power of continuous emission
  • the right characteristic shows the peak power of intermittent emission when the DUTY ratio is 50%. ing.
  • the duty ratio of intermittent light emission is set to 50%, the signal intensity (2 ⁇ I 0 ) that is twice as high in the case of intermittent light emission can be output with respect to the signal intensity (I 0 ) of continuous light emission. it can.
  • the middle part of FIG. 13B shows the characteristics in the case of two-photon excitation.
  • the characteristics on the left side show the peak power of continuous emission, and the characteristics on the right side show the peak power of intermittent emission when the DUTY ratio is 50%. ing.
  • the lower characteristic of FIG. 13B shows a signal obtained by passing the middle characteristic through a band-limited low-pass filter. Since the processing by the band-limited low-pass filter is inserted before the A / D conversion, when the on / off duty ratio is 50% (1/2), the signal amplitude before the A / D conversion becomes 1/2, and as a result In the intermittent light emission of two-photon excitation, twice the signal amplitude can be obtained. Also, when the on / off duty ratio is 1 / n, if the peak power is n times, the signal amplitude obtained by two-photon excitation is n times, so it is desirable that the duty is small. Since the peak power obtained from the light source 2 has an upper limit, it is preferable to select an appropriate value with a duty ratio of 1 or less.
  • the light source 2 includes the wavelength conversion module (OPO) 250, and the input laser light (pump light) is converted into laser light having two wavelengths (that is, signal light). Light and idler light) and output.
  • OPO wavelength conversion module
  • one of the signal light and idler light output from the light source 2 is irradiated toward the sample S as excitation light.
  • the signal light is irradiated toward the sample S as excitation light.
  • the excitation light emitted from the light source 2 is guided to the objective lens 42 via the beam shaping lens 511, the galvano mirror 51, the lens 513, the mirror 517, the lens 515, and the dichroic mirror 52. It is condensed toward the sample S.
  • the sample S When the sample S is irradiated with excitation light, a molecule in the sample S is excited by the excitation light to emit fluorescence, and the fluorescence is emitted from the objective lens 42, the dichroic mirror 52, the imaging lens 521, and the emission. An image is formed on the detection surface of the PMT 53 via the filter 523. At this time, the emission filter 523 absorbs light (external light) other than the color light expanded by the objective lens 42 (that is, only the emitted color is transmitted), and the color light that has lost the external light is absorbed. An image is formed on the PMT 53.
  • a PD (Photo Detector) 54 is provided to detect the intensity of the other signal light and idler light different from the one used as excitation light.
  • the PD 54 measures the intensity of idler light emitted from the light source 2.
  • each configuration of the scanning system (detection system) 5 corresponds to the configuration given the same reference numeral in the optical system shown in FIG. 14.
  • a part of the configuration shown in FIG. 14 is omitted.
  • the image acquisition device 1 includes a light source 2 inside the device (inside the housing), and excitation light emitted from the light source 2 is scanned with a scanning system (detection system) 5 and a microscope unit. 4 is irradiated to the sample S.
  • the system controller 61 controls the operation of the galvanometer mirror 51, so that the sample S is scanned with the excitation light.
  • the signal light is used as the excitation light among the signal light and idler light emitted from the light source 2.
  • Fluorescence generated from the sample S by the irradiated excitation light is guided to the scanning system (detection system) 5 through the microscope unit 4 and detected by the PMT 53 of the scanning system (detection system) 5.
  • the PMT 53 converts the detected fluorescence into an electrical signal by a photoelectric effect at a preset sampling rate, and outputs it to the control unit 6 as data indicating the intensity of the fluorescence.
  • the scanning system (detection system) 5 of the image acquisition apparatus 1 includes a PD 54, and the PD 54 measures the intensity of idler light at a preset sampling rate.
  • the PD 54 converts the intensity of the measured idler light into an electric signal, and outputs it to the control unit 6 as data indicating the intensity of the idler light.
  • PD54 may replace with PD54 and may provide PD56 which measures the intensity
  • a beam splitter 55 is provided on the optical path of the excitation light (signal light) irradiated toward the sample S, and a part of the excitation light (signal light) guided toward the sample S is supplied to the PD 56.
  • the scanning system (detection system) 5 is provided with a PD 54 for measuring the intensity of idler light.
  • the control unit 6 includes a system control unit 61, a distribution information generation unit 62, a correction processing unit 63, an image processing unit 64, a RAW image generation unit 65, a storage unit 66, a display control unit 67, and communication control. Part 68.
  • the I / F 7 includes a condition specifying unit 71, a display unit 72, and a communication unit 73.
  • the operations of the storage unit 66, the display control unit 67, the communication control unit 68, the condition designating unit 71, the display unit 72, and the communication unit 73 are the same as those of the image acquisition device 1w according to the comparative example described above, and thus detailed description thereof will be made. Description is omitted.
  • the system control unit 61 controls the operations of the light source 2 and the galvanometer mirror 51 based on the measurement conditions specified by the user via the condition specifying unit 71.
  • the condition specifying unit 71 is an input I / F for the user to specify measurement conditions related to measurement and image acquisition. For example, the user designates the output of the light source 2 and the scanning condition relating to the scanning on the sample S (for example, the scanned range and the resolution of the generated image) via the condition designating unit 71 as the measurement conditions. Is possible.
  • the system control unit 61 controls the operation of the galvano mirror 51 based on the scanning conditions specified by the user as the measurement conditions, and outputs control information indicating the contents of the control to the two-dimensional processing units 621 and 625 described later.
  • the operation so far is the same as that of the image acquisition device 1w (see FIG. 12) according to the comparative example described above.
  • the system control unit 61 may control operations of the light source 2 and the galvanometer mirror 51 based on control information indicating measurement conditions determined in advance. For example, when the sample S is known, the wavelength and output of the laser light output from the light source 2 may be controlled based on control information created in advance corresponding to the sample S. Note that these pieces of control information may be stored in advance in the storage unit 66, for example.
  • system control unit 61 acquires data indicating an intensity distribution based on the intensity of idler light from the distribution information generation unit 62 described later, and controls the operation of the light source 2 based on the acquired data. .
  • FIG. 16 is an explanatory diagram for describing detailed functional configurations of the distribution information generation unit 62 and the system control unit 61 according to the present embodiment.
  • the system control unit 61 includes an intensity control amount determination unit 611.
  • the intensity control amount determination unit 611 acquires data indicating an intensity distribution based on the intensity of idler light measured by the PD 54 from the two-dimensionalization processing unit 621 of the distribution information generation unit 62 described later. Further, the intensity control amount determination unit 611 receives a notification of the maximum correction amount width from the intensity correction distribution determination unit 623 of the distribution information generation unit 62 described later. The intensity control amount determination unit 611 monitors the state of the light source 2 (particularly, the change in the intensity of the excitation light) based on the acquired data indicating the intensity distribution of idler light and the maximum width of the correction amount.
  • the intensity control amount determination unit 611 generates control information for controlling the intensity of the laser light (pump light) emitted from the light source 2 based on the monitoring result.
  • the system control unit 61 controls the intensity of the laser light (pump light) emitted from the light source 2 based on the control information generated by the intensity control amount determination unit 611.
  • the system control unit 61 makes the light source 2 stable when the operation of the light source 2 becomes unstable (for example, when the intensity of emitted laser light fluctuates). It is possible to control the intensity of the laser light (pump light) emitted from the light source 2 so as to operate.
  • the details of the control of the light source 2, that is, the intensity control of the laser beam emitted from the light source 2 by the system control unit 61 will be separately described later as “1.8. Details of laser beam intensity control”.
  • the distribution information generation unit 62 includes a two-dimensionalization processing unit 621, an intensity correction distribution determination unit 623, and a two-dimensionalization processing unit 625.
  • the two-dimensionalization processing unit 621 sequentially acquires data indicating the intensity of the idler light detected (measured) by the PD 54 from the PD 54 at a preset sampling rate. Further, the two-dimensionalization processing unit 621 sequentially acquires control information indicating the control content of the galvanometer mirror 51 from the system control unit 61. Thereby, the two-dimensionalization processing unit 621 recognizes which position on the sample S the data indicating the intensity of the idler light acquired from the PD 54 corresponds to based on the control information acquired from the system control unit 61. It becomes possible. That is, the two-dimensionalization processing unit 621 arranges the data indicating the idler light intensity sequentially acquired from the PD 54 based on the control information acquired from the system control unit 61 to two-dimensionalize the detected idler light intensity. Generate a distribution.
  • FIG. 17 is an explanatory diagram for describing an example of the operation of the two-dimensionalization processing unit 621.
  • reference numeral C ⁇ b> 11 schematically shows the control content of the galvanometer mirror 51, i.e., the scan content on the sample S by the excitation light.
  • the two-dimensionalization processing unit 621 two-dimensionalizes the data indicating the idler light intensity sequentially acquired from the PD 54 based on the scanning content indicated by the control information, and generates the intensity distribution D21.
  • the intensity of the laser light (pump light) output from the light source 2 changes under the influence of heat generated by each device (for example, the measurement unit 3 and the control unit 6) in the image acquisition device 1. There is a case. At this time, with the change in the intensity of the pump light, the intensity of the signal light and the idler light also changes in the same manner as the pump light. Therefore, a change in the intensity of idler light appears as, for example, the strength of the electrical signal converted by the PD 54.
  • the end regions D211a and D211b at which the scanning direction is switched may be deleted as unnecessary portions, and the other regions D210 may be used as effective portions.
  • the unnecessary portions D211a and D211b may be deleted by, for example, the two-dimensionalization processing unit 621 or a correction processing unit 63 described later.
  • the operation when the two-dimensionalization processing unit 625 described later generates an intensity distribution based on the intensity of the fluorescence detected by the PMT 53 is the same as the operation of the two-dimensionalization processing unit 621 described with reference to FIG. It is the same.
  • the two-dimensionalization processing unit 621 uses the data indicating the generated idler light intensity distribution (hereinafter simply referred to as “idler light intensity distribution”) as an intensity correction distribution determining unit 623 and an intensity control amount determining unit. To 611.
  • the intensity correction distribution determination unit 623 acquires the intensity distribution of idler light from the two-dimensionalization processing unit 621. Based on the acquired intensity distribution of idler light, the intensity correction distribution determination unit 623 generates correction data for the correction processing unit 63 described later to correct the fluorescence intensity distribution.
  • the intensity correction distribution determining unit 623 obtains in advance the intensity distribution of idler light during the warm-up period, and calculates the maximum width of the correction amount based on the intensity distribution of idler light during the warm-up period. Also good.
  • the maximum width of the correction amount calculated in this way is emitted from the light source 2 and the correction amount of the fluorescence intensity distribution based on the temporal fluctuation of the number of photons due to the fluctuation of the intensity of the laser emitted from the light source 2.
  • the maximum width (margin) of the control amount of the intensity of laser light (pump light) is shown. Therefore, the intensity correction distribution determining unit 623 may notify the intensity control amount determining unit 611 of the calculated maximum correction amount width.
  • the intensity correction distribution determination unit 623 outputs the intensity distribution of idler light to the RAW image generation unit 65, and outputs correction data generated based on the intensity distribution of the idler light to the correction processing unit 63.
  • the two-dimensionalization processing unit 625 sequentially acquires data indicating the intensity of fluorescence detected (measured) by the PMT 53 from the PMT 53 at a preset sampling rate. Further, the two-dimensional processing unit 625 sequentially acquires control information indicating the control contents of the galvanometer mirror 51 from the system control unit 61. Thereby, the two-dimensionalization processing unit 625 recognizes, based on the control information acquired from the system control unit 61, which position on the sample S the data indicating the fluorescence intensity acquired from the PMT 53 corresponds to. Is possible.
  • the two-dimensionalization processing unit 625 arranges data indicating the fluorescence intensity sequentially acquired from the PMT 53 based on the control information acquired from the system control unit 61 and converts the data into a two-dimensional data, thereby obtaining the detected fluorescence intensity distribution. Generate.
  • the two-dimensionalization processing unit 625 outputs data indicating the generated fluorescence intensity distribution (hereinafter, simply referred to as “fluorescence intensity distribution”) to the correction processing unit 63 and the RAW image generation unit 65.
  • the correction processing unit 63 acquires the fluorescence intensity distribution from the two-dimensionalization processing unit 625. Further, the correction processing unit 63 acquires correction data generated based on the intensity distribution of idler light from the intensity correction distribution determining unit 623.
  • the correction processing unit 63 corrects the fluorescence intensity distribution based on the correction data.
  • an outline of correction by the correction processing unit 63 will be described with reference to FIG. It is explanatory drawing for demonstrating the outline
  • reference symbol D ⁇ b> 11 schematically indicates the fluorescence intensity distribution generated by the two-dimensional processing unit 625.
  • Reference numeral D21 schematically indicates the intensity distribution of idler light generated by the two-dimensionalization processing unit 621.
  • Reference numeral D10 indicates the fluorescence intensity distribution (that is, the RAW image) after the correction processing.
  • the intensity of the laser light (pump light) output from the light source 2 may change due to the influence of heat generated by each device in the image acquisition device 1, and similarly to the pump light,
  • the intensity of the signal light and idler light also changes. Therefore, the change in the intensity of the signal light is manifested as noise in the fluorescence intensity distribution, and similarly, the change in the intensity of the idler light is manifested as noise in the intensity distribution of the idler light.
  • the signal light and the idler light are output after the pump light is converted by the wavelength conversion module (OPO) 250. Therefore, the intensity change of the signal light and the intensity change of the idler light are always synchronized. That is, the intensity of the signal light and the intensity of the idler light are always in a proportional relationship.
  • the correction processing unit 63 using such a property, noise that is manifested in the fluorescence intensity distribution based on the change in the intensity of the signal light is generated based on the intensity distribution of the idler light. Correct with the correction data.
  • the correction processing unit 63 outputs the fluorescence intensity distribution corrected by the correction data to the image processing unit 64.
  • the image processing unit 64 acquires the fluorescence intensity distribution corrected by the correction data.
  • the image processing unit 64 generates image data by performing image processing such as compression processing on the corrected fluorescence intensity distribution.
  • the image processing unit 64 outputs the generated image data to the display control unit 67, for example. Further, the image processing unit 64 may output the generated image data to the communication control unit 68. Further, the image processing unit 64 may store the generated image data in the storage unit 66.
  • the correction processing for the fluorescence intensity distribution D11 based on the correction data D21 described above may be performed by an external device such as the information processing device 800, for example. Therefore, the RAW image generation unit 65 according to the present embodiment may associate the idler intensity distribution D21 with the RAW file D1 generated with the fluorescence intensity distribution D11 as image data (RAW image).
  • RAW image image data
  • the external apparatus for example, the information processing apparatus 800
  • the external apparatus that has read the RAW file D1 has a laser intensity similar to that of the correction processing unit 63. It is possible to correct the noise associated with the fluctuations.
  • the RAW image generation unit 65 outputs the generated RAW file to the communication control unit 68, for example. Further, the RAW image generation unit 65 may store the generated RAW file in the storage unit 66.
  • FIG. 19 is a diagram showing an example of the file format of the RAW file D1 according to the present embodiment.
  • the RAW file D1 includes, for example, a data area d10, a basic control information area d30, and an extension area d20.
  • the data area d10 is an area for storing image data (actual data). As shown in FIG. 19, for example, the data area d10 includes a RAW main image d11, a child image IFD (Image File or Directory) d12, and a child image d121.
  • the RAW main image d11 shows a RAW image.
  • the fluorescence intensity distribution D11 is stored as the RAW main image d11.
  • the fluorescence intensity distribution D11 stored as the RAW main image d11 is not limited to one (1 slice).
  • the plurality of fluorescence intensity distributions D11 are acquired. May be stored in the RAW file D1 as the RAW main image d11.
  • image data that has been subjected to image processing and images that have been subjected to image processing such as enlarged / reduced image data may be separately stored as child images.
  • a child image IFD d12 for storing child images may be provided, and the child image d121 may be stored in the child image IFD d12.
  • the child image IFD d12 also plays a role of indicating the position (address) of the child image d121 in the RAW file D1.
  • the basic control information area d30 information of a predetermined type is recorded as control information.
  • the basic control information area d30 includes a main image and shooting information IFDd31, a set reproduction JPEGd32, and a plaintext part manufacturer note IFDd33.
  • the main image and shooting information IFDd31 is an IFD for storing, for example, image data used for playback and shooting information (for example, meta information such as EXIF (Exchangeable image file format)).
  • image data used for image reproduction (for example, data subjected to compression processing) is stored as a set reproduction JPEGd32.
  • the plaintext maker note IFDd33 stores the model information of the image acquisition device 1 and information indicating the format such as encryption as control information.
  • the control information may be stored in advance in the storage unit 66, for example, and the RAW image generation unit 65 may read the control information from the storage unit 66 and embed it in the RAW file D1.
  • the extended area d20 includes a manufacturer note IFDd21.
  • the manufacturer note IFDd21 is an IFD for storing information not specified in EXIF, such as a camera control mode, and also stores shooting information and control information unique to the image acquisition device 1.
  • the manufacturer note IFDd21 includes, for example, an imaging condition d211, an idler light intensity image d212, a servo signal image d213, a captured image d214 during warm-up, a tampering prevention signal d215, and an automatic tracking adjustment. It includes a subject image d216 and an imaging synchronization signal d217.
  • the imaging condition d211 is control information indicating conditions that are not defined in EXIF among the imaging conditions when acquiring a RAW image (that is, fluorescence intensity distribution).
  • control information indicating each condition is stored, for example, in the form of a parameter table.
  • the idler light intensity image d212 shows the idler light intensity distribution D21.
  • idler intensity distributions D21 corresponding to the plurality of fluorescence intensity distributions D11 are used as idler light intensity images d212.
  • correction data calculated based on the idler light intensity distribution D21 may be used instead of the idler light intensity distribution D21.
  • the external device for example, the information processing device 800
  • the external device that has read the RAW file D1 can perform the same as the correction processing unit 63 described above. It is possible to correct the RAW main image d11.
  • the servo signal image d213 is data obtained by two-dimensionalizing a servo signal for controlling the intensity of laser light emitted from the light source 2 by the system control unit 61 based on scanning conditions.
  • the external device for example, the information processing device 800
  • the fluorescence intensity distribution that is, the RAW image
  • the external device performs image processing content (control) on the fluorescence intensity distribution (that is, the RAW image) according to the control content recognized based on the servo signal image d213 in the RAW file D1. Parameter) can be changed as appropriate.
  • the photographed image d214 at the time of warm-up is an image obtained by two-dimensionalizing the intensity distribution of idler light and the intensity distribution of fluorescence acquired at the time of warm-up.
  • the external device for example, the information processing apparatus 800
  • the captured image d214 at the time of warming up may be recorded in the RAW file D1 at least when shooting is started during the warmup period, and may not be included in other cases. The details of the operation when photographing during the warm-up period will be described later separately as “1.9. Control of laser light intensity during warm-up”.
  • the falsification preventing signal d215 is a signal (data) for detecting the falsification when at least a part of the data in the RAW file D1 is falsified.
  • the falsification preventing signal d215 there is a sticky bit.
  • the subject image d216 at the time of automatic tracking adjustment indicates an image acquired as a result of the tracking or enlargement / reduction when, for example, tracking or enlargement / reduction is performed. Instead of the subject image d216 at the time of automatic tracking adjustment, information indicating the contents of control related to tracking and enlargement / reduction may be recorded.
  • the inter-imaging synchronization signal d217 is a signal indicating the timing of each imaging related to the acquisition of each fluorescence intensity distribution D11 when the plurality of fluorescence intensity distributions D11 are stored in the RAW file D1 as the RAW main image d11. It is.
  • the file format of the RAW file D1 according to the present embodiment has been described above with reference to FIG. Note that the file format of the RAW file D1 described above is merely an example, and it is needless to say that not all information may be included. Also, image data such as the idler light intensity image d212, the servo signal image d213, and the captured image d214 at the time of warm-up are not necessarily two-dimensionalized if information necessary for reproducing the image data is recorded. There is no need to record it as data. For example, it goes without saying that an array of data corresponding to each pixel of image data may be recorded together with control information indicating scanning conditions (that is, information for making the array of data two-dimensional).
  • control unit 6 According to the present embodiment generates correction data based on the idler light intensity distribution and the operation related to correction of the fluorescent intensity distribution based on the correction data. Details will be described.
  • FIG. 20 is an explanatory diagram for explaining the principle of intensity distribution correction.
  • the pump light frequency output from the MOPA light source (fixed wavelength) is ⁇ p
  • the signal light frequency is ⁇ s
  • the idler light frequency is ⁇ i. .
  • the energy E per photon of light having a frequency ⁇ is expressed by the following formula 1 when the Planck multiplier h, the speed of light c, and the wavelength ⁇ of light are used.
  • Equation 2 the frequency ⁇ p of the pump light, the frequency ⁇ s of the signal light, and the frequency ⁇ i of the idler light are expressed by Equation 2 below. Meets the requirements.
  • Equation 3 the spatial fluorescence intensity PMTin (x, y, z) of the fluorescence generated at the coordinates (x, y, z) on the sample S ) Is represented by Equation 3 shown below.
  • Equation 3 S (c / ⁇ s) represents the absorption luminous efficiency, and Q (x, y, z) represents the spatial fluorescence concentration distribution of the observation target (ie, sample S). Show.
  • Equation 3 in general, the spatial fluorescence intensity PMTin (x, y, z) will remain the time fluctuation n (t) of the number of photons accompanying the laser intensity fluctuation.
  • control unit 6 estimates the time fluctuation n (t) of the number of photons accompanying the fluctuation of the laser intensity based on the intensity distribution of the idler light detected by the PD 54.
  • the intensity PDin (x, y, z) of the idler light when scanning the coordinates (x, y, z) on the sample S is the signal light and the intensity of the pump light. Since it fluctuates in the same manner, it is expressed by the following equation 4.
  • the control unit 6 calculates the time variation n (t) based on the equation 4 shown above, and based on the calculated time variation n (t), the spatial fluorescence intensity PMTin (x, y, z shown in the equation 3 ) Is corrected.
  • the corrected spatial fluorescence intensity is PMTin ′ (x, y, z)
  • the spatial fluorescence intensity PMTin ′ (x, y, z) is expressed by Equation 5 shown below.
  • Equation 5 shown above (h * ⁇ i) / PDin (x, y, z) corresponds to the correction data.
  • the intensity correction distribution determining unit 623 calculates the correction data based on the intensity PDin (x, y, z) for each coordinate (x, y, z) indicated by the acquired intensity distribution of idler light.
  • FIG. 21 is a flowchart for explaining the flow of processing relating to correction of the intensity distribution.
  • the warm-up is completed and the processing at the time of observing the sample S will be described.
  • the intensity distribution of idler light is acquired in advance during the warm-up period. I will explain it as something to keep.
  • Step S101 The two-dimensionalization processing unit 621 of the distribution information generation unit 62 sequentially acquires data indicating the intensity of the idler light detected (measured) by the PD 54 from the PD 54 at a preset sampling rate. Further, the two-dimensionalization processing unit 621 sequentially acquires control information indicating the control content of the galvanometer mirror 51 from the system control unit 61. The two-dimensionalization processing unit 621 arranges data indicating the idler light intensity sequentially acquired from the PD 54 based on the control information acquired from the system control unit 61 and converts the data into a two-dimensional data, thereby calculating the detected idler light intensity distribution. Generate.
  • the two-dimensionalization processing unit 621 may discard the unnecessary portion of the idler light intensity distribution and use only the effective portion as the idler light intensity distribution.
  • the two-dimensional processing unit 621 outputs the generated idler light intensity distribution to the intensity correction distribution determining unit 623 and the intensity control amount determining unit 611.
  • the two-dimensionalization processing unit 625 of the distribution information generation unit 62 sequentially acquires data indicating the intensity of fluorescence detected (measured) by the PMT 53 from the PMT 53 at a preset sampling rate. Further, the two-dimensional processing unit 625 sequentially acquires control information indicating the control contents of the galvanometer mirror 51 from the system control unit 61. The two-dimensionalization processing unit 625 generates the detected fluorescence intensity distribution by arranging the data indicating the fluorescence intensity sequentially acquired from the PMT 53 and making it two-dimensional based on the control information acquired from the system control unit 61. . At this time, the two-dimensionalization processing unit 625 may discard the unnecessary portion of the fluorescence intensity distribution and use only the effective portion as the fluorescence intensity distribution. The two-dimensionalization processing unit 625 outputs the generated fluorescence intensity distribution to the correction processing unit 63 and the RAW image generation unit 65.
  • the distribution information generation unit 62 may perform noise removal processing on the intensity distribution of idler light and the intensity distribution of fluorescence generated by the two-dimensionalization processing unit 621 and the two-dimensionalization processing unit 625, respectively. .
  • a mode in which noise removal processing is performed on each of the intensity distribution of idler light and the intensity distribution of fluorescence will be separately described later as a “fourth embodiment”.
  • the intensity correction distribution determination unit 623 acquires the maximum value and the average value of the idler light intensity based on the previously acquired intensity distribution of the idler light during the warm-up period, and calculates the maximum correction amount based on the maximum value / average value. Calculate large.
  • the intensity correction distribution determining unit 623 notifies the intensity control amount determining unit 611 of the calculated maximum correction amount width. Thereby, the intensity control amount determination unit 611 estimates the time variation of the number of photons due to the variation of the intensity of the laser emitted from the light source 2, and sets the maximum width (margin) of the control amount of the intensity of the laser beam (pump light). It becomes possible to decide.
  • the details of the laser beam (pump light) intensity control will be described separately later in “1.8. Details of laser beam intensity control”.
  • the intensity correction distribution determination unit 623 generates correction data for correcting the fluorescence intensity distribution based on the intensity distribution of idler light acquired from the two-dimensionalization processing unit 621 when the sample S is observed. Specifically, the intensity correction distribution determination unit 623 has (h * ⁇ i) / when the intensity of the idler light at the coordinates (x, y, z) on the sample S is PDin (x, y, z). Correction data is generated based on PDin (x, y, z).
  • h represents the Planck constant
  • ⁇ i represents the frequency of idler light.
  • the intensity correction distribution determination unit 623 outputs the idler light intensity distribution to the RAW image generation unit 65, and outputs correction data generated based on the idler light intensity distribution to the correction processing unit 63.
  • the RAW image generation unit 65 generates a RAW file by shaping the fluorescence intensity distribution acquired from the two-dimensionalization processing unit 625 as image data (RAW image) into a predetermined file format. At this time, the RAW image generation unit 65 may generate a RAW file using a series of fluorescence intensity distributions acquired in the Z direction (depth direction) as image data.
  • the RAW image generation unit 65 associates the intensity distribution of idler light acquired from the intensity correction distribution determination unit 623 with the generated RAW file.
  • the RAW image generation unit 65 when a series of fluorescence intensity distributions acquired in the Z direction (depth direction) is recorded as image data in the RAW file, The idler intensity distributions corresponding to the intensity distributions are associated together.
  • the external apparatus for example, the information processing apparatus 800 that has read the RAW file D1 changes the laser intensity that is manifested in the fluorescence intensity distribution. Can be corrected.
  • the RAW image generation unit 65 outputs the generated RAW file to the communication control unit 68, for example. Further, the RAW image generation unit 65 may store the generated RAW file in the storage unit 66.
  • the correction processing unit 63 acquires the fluorescence intensity distribution from the two-dimensional processing unit 625. Further, the correction processing unit 63 acquires correction data generated based on the intensity distribution of idler light from the intensity correction distribution determining unit 623. The correction processing unit 63 corrects the fluorescence intensity distribution with the correction data based on the above-described Expression 5.
  • the image acquisition device 1 corrects the noise that is manifested in the fluorescence intensity distribution based on the change in the intensity of the signal light using the correction data generated based on the intensity distribution of the idler light. It becomes possible.
  • FIG. 22 is an explanatory diagram for explaining the principle of intensity control of emitted light from the light source 2.
  • the frequency of pump light output from the MOPA light source (fixed wavelength) is ⁇ p
  • the frequency of signal light is ⁇ s
  • the frequency of idler light is ⁇ i. .
  • the spatial fluorescence intensity PMTin (x, y, z) is expressed by the following equation in anticipation of the time fluctuation n (t) of the number of photons accompanying the fluctuation of the intensity of the output laser beam.
  • the maximum spatial fluorescence intensity PMTin_max (x, y, z) represented by 6 is designed.
  • n_max (t) represents the maximum value of the time variation n (t) of the number of photons
  • Q_max (x, y, z) represents the observation target (ie, the sample S ) Shows the maximum value of the spatial fluorescence concentration distribution.
  • control unit 6 monitors the fluctuation of the laser intensity based on the intensity distribution of the idler light detected by the PD 54, and controls the laser intensity following the fluctuation of the laser intensity. Do.
  • the control unit 6 applies intensity control with a sufficiently short latency tl to the imaging time by applying negative feedback proportional to the intensity of idler light to nl (t).
  • the spatial fluorescence intensity PMTin (x, y, z) at this time is expressed by the following formula 7.
  • Expression 7 shown above when tl is sufficiently short with respect to fluctuation of nl, Expression 7 can be approximated to Expression 8 shown below.
  • the spatial fluorescence intensity PMTin (x, y, z) is expressed by the following formula 10, it is necessary to consider the time fluctuation n (t) of the number of photons accompanying the fluctuation of the laser light intensity. It becomes possible to use almost the entire dynamic range.
  • FIG. 23 is a flowchart for explaining a flow of processing relating to intensity control of emitted light from the light source.
  • Step S201 First, individual differences of laser light sources (for example, the semiconductor laser 222 of the mode-locked laser unit 220) used for the light source 2 before the start of measurement are in a reference state determined in advance based on the control parameters of the laser light source. Adjust it. This adjustment is an adjustment based on individual differences of laser light sources, and is different from the adjustment of laser intensity due to thermal fluctuation.
  • laser light sources for example, the semiconductor laser 222 of the mode-locked laser unit 220
  • the intensity control amount determination unit 611 of the system control unit 61 receives from the intensity correction distribution determination unit 623 of the distribution information generation unit 62 the maximum width of the correction amount based on the intensity distribution of idler light during the warm-up period (that is, warm The maximum value / average value of the intensity of idler light during the up period is acquired.
  • the intensity control amount determination unit 611 determines the maximum value n_max of the intensity control target of the laser light (pump light) based on the acquired maximum width of the correction amount.
  • the intensity control amount determination unit 611 reciprocates the maximum width of the correction amount in the dynamic range of the intensity of the laser light (pump light). That is, the maximum value n_max of the intensity control target is determined so as to use a range of 1/2.
  • Step S203 Based on the determined maximum value n_max of the intensity control target, the intensity control amount determination unit 611 calculates the control target maximum value PDin_max of the idler light intensity based on Expression 11 shown below.
  • Expression 11 shown below h represents the Planck constant, and ⁇ i represents the frequency of idler light.
  • the intensity control amount determination unit 611 is the intensity distribution for one shooting acquired most recently (for example, the immediately preceding shooting) from the intensity distribution of idler light from the two-dimensional processing unit 621 of the distribution information generation unit 62. Based on the above, the average PDin_ave of the idler light intensity is calculated.
  • the intensity control amount determination unit 611 may dynamically determine the coefficient W in the range of 0 ⁇ W ⁇ 1 based on the difference calculated according to the comparison between the intensity distributions of idler light. Good. Specifically, the intensity control amount determining unit 611 sets W to a value closer to 0 when the calculated difference is large (that is, unstable), and when the calculated difference is small (that is, If it is relatively stable, W may be set to a value closer to 1.
  • Step S211 The system control unit 61 controls the light source 2 so that the intensity of the laser light (pump light) emitted from the light source 2 is controlled based on the intensity after control calculated by the intensity control amount determination unit 611. At this time, it is desirable that the system control unit 61 performs feedback control so that the intensity of the laser beam is controlled within one imaging unit (that is, within imaging for one fluorescence intensity distribution).
  • Step S213 When the system control unit 61 controls the intensity of the laser beam, the intensity control amount determination unit 611 determines whether the laser beam is emitted based on the intensity distribution of idler light emitted from the light source 2 after the intensity of the laser beam (pump light) is controlled. Determine if it is stable.
  • the system control unit 61 sequentially determines whether or not the laser light is stable, determines the weighting coefficient W based on the determination result, and determines the laser light (pump light) emitted from the light source 2. ) Execute intensity control.
  • the system control unit 61 may continuously execute the above-described series of operations during the period in which the light source 2 emits laser light, or periodically (intermittently) at predetermined timings. May be.
  • the system control unit 61 may determine whether or not to stop the series of operations in step S213. Specifically, the system control unit 61 repeatedly executes a series of operations according to steps S207 to S211 (that is, monitoring of laser light and feedback processing based on the monitoring result) until the laser light is stabilized (step S213, No). And if a laser beam is stabilized (step S213, Yes), the system control part 61 should just stop a series of operation
  • the image acquisition device 1 is configured so that the light source 2 can be operated even when the operation of the light source 2 becomes unstable due to heat generated by a built-in device (for example, the measurement unit 3 or the control unit 6). By controlling the intensity of the laser light emitted from 2, the light source 2 can be stably operated.
  • a built-in device for example, the measurement unit 3 or the control unit 6
  • the warm-up of the laser module often takes a long time, and this warm-up time may impose a work time related to the observation of the sample S. Therefore, in the image acquisition device 1 according to the present embodiment, by controlling the intensity of the laser beam, the laser beam can be stabilized even in a state where the intensity of the laser beam is unstable, such as during warm-up. The sample S can be observed.
  • FIG. 24 is an explanatory diagram for explaining the principle of intensity control of emitted light from the light source 2 during warm-up.
  • feedback control during warm-up by the control unit 6 according to the present embodiment is converted into a time response by Laplace conversion.
  • the image acquisition apparatus 1 performs PID control by adding control based on the differential component K3s to the feedback control, and improves responsiveness.
  • the control unit 6 of the image acquisition device 1 calculates and accumulates the transfer function G (s) of the wavelength conversion module (OPO) 250 during the warm-up period, thereby storing the accumulated transfer function G (s ) To calculate the differential component K3s.
  • the control unit 6 calculates an input to the wavelength conversion module (OPO) 250 based on control information for controlling the intensity of the laser light emitted from the light source 2, and calculates the intensity of the detected idler light.
  • the transfer function G (s) may be calculated as the output.
  • the image acquisition device 1 controls the intensity of the laser light emitted from the light source 2 based on the calculated differential component K3s, thereby suppressing the manifestation of the change with periodicity.
  • the image acquisition apparatus 1 predicts the periodicity of the change in the intensity of the laser light based on the accumulated transfer function G (s) of the OPO, and applies feedback control that is opposite to the predicted period. Thus, a change with periodicity may be suppressed.
  • the image acquisition apparatus 1 emits light from the light source 2 even when the intensity of the laser light emitted from the light source 2 is unstable as in the warm-up period. It is possible to improve the responsiveness related to the intensity control of the laser beam. Therefore, according to the image acquisition device 1, for example, it is possible to start observation of the sample S even in a state where the warm-up period is not completed (a state where the intensity of the emitted laser light is unstable). Become.
  • the control amount based on the differential component K3s is larger than the change amount of the periodic change of the emitted laser light, and the influence of the control by the differential component K3s. May remain as noise. Therefore, when the image acquisition device 1 starts observation before the completion of the warm-up period, the fluorescence intensity distribution and the intensity of idler light are used using a known sample such as a fluorescent bead before the start of the observation. You may acquire distribution. In this case, the image acquisition apparatus 1 warms up the fluorescence intensity distribution and the idler intensity distribution acquired in advance to the RAW file created based on the observation result of the sample S into the RAW file. You may associate as a picked-up image of time (refer FIG. 19).
  • the external device for example, the information processing device 800
  • the external device estimates a change in the intensity of the laser light based on a captured image associated with the RAW file during warm-up. It becomes possible. Therefore, even when the influence of the control by the differential component K3s remains as noise in the observation result (that is, the fluorescence intensity distribution) in the RAW file, the external device estimates the change in the intensity of the laser light and Noise can be corrected.
  • the sample S is observed even in a state where the warm-up period is not completed (a state where the intensity of the emitted laser light is unstable). Can be started. Therefore, according to the image acquisition apparatus 1 according to the present embodiment, the period during which observation is impossible is shortened due to warm-up, and as a result, the observation time of the sample S can be shortened.
  • FIG. 25 is a flowchart showing a flow of a series of processes related to image display of the information processing apparatus 800 according to the present embodiment.
  • FIG. 26 is a flowchart illustrating an example of processing related to noise correction of the information processing apparatus 800 according to the present embodiment.
  • Step S301 the information processing apparatus 800 uses a U / I (hereinafter referred to as “U / I”) to specify the RAW file D1 that is the target of image correction and display, the image processing content for the specified RAW file D1, and the parameters of the processing. , Described as “image adjustment U / I”), for example, to the user via a display device.
  • U / I a U / I
  • Step S303 the information processing apparatus 800 displays information specified by the user via the presented image adjustment U / I, for example, the RAW file D1 to be processed, the details of the image processing, and the processing parameters, based on the user operation details (for example, , And the operation content using the operation device).
  • Step S305 The information processing apparatus 800 acquires a RAW file D1 to be processed based on the user's specification.
  • the RAW file D1 may be acquired in advance from the image acquisition apparatus 1 and stored in a storage device or the like, or communication with the image acquisition apparatus 1 is established and acquired from the image acquisition apparatus 1. May be.
  • Step S307 The information processing apparatus 800 analyzes the acquired RAW file D1 based on the file format of the RAW file D1, and extracts each piece of information recorded in the RAW file D1. Thereby, the information processing apparatus 800 extracts, for example, the RAW main image S309 recorded in the RAW file D1, and the shooting information S311 and S321 indicating the conditions at the time of shooting the RAW main image S309.
  • the photographing information S311 and S321 extracted in this way includes, for example, the above-described intensity distribution of idler light. Needless to say, if the target RAW file D1 has already been analyzed, the information processing apparatus 800 does not need to execute the process relating to the analysis of the RAW file D1 again.
  • the information processing apparatus 800 generates an image of the sample S based on the RAW main image S309 extracted from the RAW file D1 and the shooting information S311 and S321, performs image processing on the generated image, and presents it to the user.
  • image processing include processing related to various noise corrections. Therefore, hereinafter, the processing relating to the correction of the noise accompanying the fluctuation of the intensity of the laser beam will be described as steps S313 to S315, and the processing different from the noise accompanying the fluctuation of the intensity of the laser beam will be described as steps S323 to S325. A process related to noise correction will be described.
  • Step S313 First, the contents of processing related to correction of noise accompanying fluctuations in the intensity of laser light will be described.
  • the information processing apparatus 800 first cuts out an image of a region to be processed from the extracted RAW main image S309, and sets a partial image corresponding to the cut out region as a processing target.
  • the area to be processed may be acquired by the information processing apparatus 800 itself based on user input, for example.
  • the image acquisition apparatus 1 when the image acquisition device 1 captures the RAW main image S309, the image acquisition apparatus 1 receives the designation of the region to be observed as a user input, and sends control information indicating the region to the RAW file D1 in the photographic information S311. May be recorded as In this case, the information processing apparatus 800 may recognize an area to be processed based on the control information recorded as the shooting information S311 from the RAW file D1.
  • RAW main image S309 may be processed without performing the cut-out process.
  • the cut-out partial image and the RAW main image S309 itself are not particularly distinguished from each other, and are simply described as “RAW main image S309”.
  • Step S315) The information processing apparatus 800 corrects the noise associated with the fluctuation in the intensity of the laser light that appears on the RAW main image S309 based on the intensity distribution of the idler light extracted as the imaging information S311.
  • the content of this correction process is the same as the content of the process in which the image acquisition device 1 described above calculates correction data based on the intensity distribution of idler light and corrects the fluorescence intensity distribution based on the correction data.
  • the information processing apparatus 800 may be configured to be able to adjust the content of the correction process based on the parameter of the correction process specified as the user input.
  • the information processing apparatus 800 may be configured to adjust the application amount of correction processing based on the intensity distribution of idler light for the RAW main image S309 based on user input.
  • the information processing apparatus 800 generates the adjusted image S317 by correcting the noise associated with the fluctuation of the intensity of the laser light that has been manifested on the RAW main image S309.
  • Step S323 a case where noise correction based on an ⁇ filter is performed will be described as an example of processing related to correction of other noise that is different from noise due to fluctuations in laser light intensity.
  • the information processing apparatus 800 cuts out an image of a region to be processed from the extracted RAW main image S309, and sets a partial image corresponding to the cut-out region as a processing target. This process is the same as the process according to step S313 described above.
  • Step S323 the information processing apparatus 800 corrects the RAW main image S309 based on the extracted shooting information S321.
  • FIG. 26 is a flowchart illustrating an example of processing related to noise correction of the information processing apparatus 800 according to the present embodiment.
  • Step S401 the information processing apparatus 800 specifies a pixel serving as a reference for processing from the RAW main image S309, and calculates the level (pixel value) of the pixel as a reference level.
  • Step S403 the information processing apparatus 800 calculates a threshold for weighting for each pixel to be processed. At this time, the information processing apparatus 800 compares pixels whose idler intensity is extremely fluctuating as compared with other pixels due to the intensity distribution of the idler light extracted as the shooting information S311 compared to other pixels. Set the threshold value high.
  • Step S405 When the threshold value is calculated for each pixel to be processed, the information processing apparatus 800 weights the level for each pixel to be processed based on the calculated reference level and the threshold value calculated for each pixel to be processed.
  • Step S407 the information processing apparatus 800 calculates the distance from the reference pixel for each pixel to be processed.
  • Step S409 The information processing apparatus 800 weights the distance for each pixel to be processed based on the distance calculated for each pixel to be processed.
  • Step S411 The information processing apparatus 800 performs an averaging process by applying an ⁇ filter based on the level weighting and the distance weighting calculated for each pixel to be processed.
  • Step S413 As described above, the information processing apparatus 800 performs the above-described series of operations until the noise correction process is performed on a series of pixels as a processing target (NO in step S413). Then, the information processing apparatus 800 generates an adjusted image S327 by performing noise correction processing on a series of pixels (step S413, YES).
  • Step S331) Here, FIG. 25 will be referred to again.
  • the information processing apparatus 800 When the information processing apparatus 800 generates at least one of the adjusted images S317 and S327, the information processing apparatus 800 presents the generated adjusted image in a predetermined area on the image adjustment U / I and displays the image adjustment U / I. Update. Thereby, the user can check the generated adjusted image via the image adjustment U / I.
  • the information processing apparatus 800 may store the generated adjusted image in a predetermined storage unit (for example, a storage such as a hard disk).
  • Step S333 The information processing apparatus 800 continues the above-described series of processing relating to image adjustment and presentation of the adjusted image until the user instructs the end of the image adjustment (NO in step S333). At this time, the information processing apparatus 800 may be configured to further execute processing related to image adjustment on the generated adjusted image based on an instruction from the user.
  • the information processing apparatus 800 ends the above-described series of processes relating to the adjustment of the image and the presentation of the image after the adjustment.
  • the image acquisition device 1 when the signal light is excitation light, the image acquisition device 1 according to the present embodiment corrects the fluorescence intensity distribution based on the excitation light based on the idler light intensity distribution. With such a configuration, the image acquisition device 1 according to the present embodiment corrects noise associated with fluctuations in the intensity of the laser light, for example, even under circumstances where the intensity of the laser light varies, and provides a clear image. Can be obtained.
  • the image acquisition device 1 monitors the intensity of the excitation light emitted from the light source 2 based on the intensity distribution of idler light, and the laser light (pump light) emitted from the light source 2 based on the monitoring result. ) Control the intensity.
  • the image acquisition apparatus 1 according to the present embodiment can be controlled so that the intensity of the laser beam is stabilized even under a situation where the intensity of the laser beam fluctuates, for example. .
  • the image acquisition device 1 can incorporate the light source 2 in the same housing, so that the image acquisition device 1 itself can be downsized.
  • a laser module used as the light source is provided by, for example, an OEM (Original equipment manufacturer) or the like, and its internal structure is There are many cases where detailed control is difficult due to the black box. For this reason, the image acquisition device 1w according to the comparative example is often used at a low output in order to stably operate the laser module, and the performance of the laser module may not be fully utilized.
  • the image acquisition device 1 controls the intensity of the laser beam and corrects the noise accompanying the fluctuation of the intensity of the laser beam. For this reason, the image acquisition apparatus 1 according to the present embodiment can obtain a clear image even when the output of the laser module is increased and can be used by taking advantage of the performance of the laser module.
  • Second Embodiment> [2.1. Overview of image acquisition device] Next, an image acquisition apparatus according to the second embodiment will be described. First, the problems of the image acquisition apparatus according to the present embodiment will be organized.
  • Image acquisition apparatuses that require a light source such as a fluorescence microscope often use a fixed-wavelength laser light source that can project an excitation wavelength that is predetermined according to the fluorescent dye used.
  • the fluorescent substrate in the sample may fade over time.
  • the excitation wavelength changes, it is necessary to change the wavelength of the excitation light output from the laser light source.
  • the excitation wavelength of the fluorescent substrate in the sample changes according to the degree of fading
  • the user can appropriately switch the laser light source to be used to excite the fluorescent substrate. It is necessary to specify the light source, which may reduce convenience. Further, in the case of a configuration in which a plurality of types of laser light sources are switched and used, even if fluorescence can be excited from a sample that has faded, an image with high contrast is not necessarily obtained.
  • the present disclosure proposes a new and improved image acquisition apparatus and image acquisition method capable of obtaining a high-contrast image by a simpler method even in a situation where the excitation wavelength of the sample changes. .
  • the image acquisition apparatus uses a laser module capable of changing the wavelength of the output laser light (excitation light) as a light source, and the laser is based on the observed fluorescence intensity distribution. Control the wavelength of light.
  • the image acquisition apparatus does not require a complicated operation such as an observer (user) controlling the operation of the light source 2 while checking the observation result or switching the light source 2 itself. It is possible to obtain an image with high contrast.
  • the image acquisition apparatus may be referred to as an “image acquisition apparatus 1a”.
  • the image acquisition device 1a controls the wavelength of laser light (pump light) emitted from the light source 2 based on the intensity of fluorescence (coloring light) detected by the PMT 53. Therefore, it is not always necessary to provide the PD 54 for detecting the intensity of idler light as in the image acquisition device 1 according to the first embodiment described above.
  • the optical system (refer FIG. 10) of the image acquisition apparatus 1w which concerns on the comparative example mentioned above, or the optical system of the image acquisition apparatus 1 which concerns on 1st Embodiment (refer FIG. This is the same as in FIG. That is, the excitation light emitted from the light source 2 is guided to the objective lens 42 via the beam shaping lens 511, the galvano mirror 51, the lens 513, the mirror 517, the lens 515, and the dichroic mirror 52. It is condensed toward the sample S.
  • the sample S When the sample S is irradiated with excitation light, a molecule in the sample S is excited by the excitation light to emit fluorescence, and the fluorescence is emitted from the objective lens 42, the dichroic mirror 52, the imaging lens 521, and the emission. An image is formed on the detection surface of the PMT 53 via the filter 523. At this time, the emission filter 523 absorbs light (external light) other than the color light expanded by the objective lens 42 (that is, only the emitted color is transmitted), and the color light that has lost the external light is absorbed. An image is formed on the PMT 53.
  • the image acquisition device 1a according to the present embodiment includes a light source 2, a measurement unit 3, a control unit 6a, and an I / F 7.
  • the measurement unit 3 includes a microscope unit 4 and a scanning system (detection system) 5a.
  • the configurations of the light source 2, the microscope unit 4, and the I / F 7 are the same as those of the image acquisition apparatus 1 according to the first embodiment described above.
  • each configuration of the scanning system (detection system) 5a corresponds to the configuration given the same reference numeral in the optical system shown in FIG.
  • a part of the configuration shown in FIG. 27 is omitted.
  • the scanning system (detection system) 5a does not necessarily include the PD 54 for measuring idler light, and thus the scanning system according to the first embodiment described above. Different from (detection system) 5 (see FIG. 15). Other configurations are the same as those of the scanning system (detection system) 5 according to the first embodiment described above.
  • the excitation light emitted from the light source 2 is applied to the sample S via the scanning system (detection system) 5 a and the microscope unit 4.
  • the fluorescence generated from the sample S by the irradiated excitation light is guided to the scanning system (detection system) 5a through the microscope unit 4 and detected by the PMT 53 of the scanning system (detection system) 5a.
  • the PMT 53 converts the detected fluorescence into an electrical signal by a photoelectric effect at a preset sampling rate, and outputs it to the control unit 6a as data indicating the intensity of the fluorescence.
  • the control unit 6a includes a system control unit 61a, a distribution information generation unit 62a, a correction processing unit 63, an image processing unit 64, a RAW image generation unit 65, a storage unit 66, a display control unit 67, and communication control. Part 68.
  • the control unit 6a according to the present embodiment is particularly different from the control unit 6 according to the first embodiment described above (see FIGS. 15 and 16) in the configuration of the system control unit 61a and the distribution information generation unit 62a. .
  • the distribution information generation unit 62a includes a two-dimensionalization processing unit 625. Further, the system control unit 61a includes a wavelength control amount determination unit 613.
  • the two-dimensionalization processing unit 625 sequentially acquires data indicating the intensity of fluorescence detected (measured) by the PMT 53 from the PMT 53 at a preset sampling rate. Further, the two-dimensional processing unit 625 sequentially acquires control information indicating the control contents of the galvanometer mirror 51 from the system control unit 61. Then, the two-dimensionalization processing unit 625 arranges the data indicating the fluorescence intensity sequentially acquired from the PMT 53 based on the control information acquired from the system control unit 61 and converts the data into a two-dimensional data, thereby obtaining the detected fluorescence intensity distribution. Generate.
  • the two-dimensionalization processing unit 625 outputs the generated fluorescence intensity distribution to the wavelength control amount determination unit 613, the correction processing unit 63, and the RAW image generation unit 65.
  • the fluorescence intensity distribution output from the two-dimensional processing unit 625 is subjected to correction processing such as noise removal by the correction processing unit 63 and output to the image processing unit 64.
  • the image processing unit 64 generates image data by performing image processing such as compression processing on the intensity distribution subjected to the correction processing.
  • the generated image data is output to the display control unit 67 and displayed on the display unit 72 by the display control unit 67. As a result, the user can check the image of the sample S via the display unit 72.
  • the wavelength control amount determination unit 613 acquires the generated fluorescence intensity distribution from the two-dimensional processing unit 625, and the laser light (excitation) emitted from the light source 2 so as to improve the contrast of the fluorescence intensity distribution.
  • the control amount of the wavelength (frequency) of light is determined.
  • the system control unit 61 controls the wavelength of the laser light emitted from the light source 2 based on the control amount.
  • the two-dimensionalization processing unit 625 acquires the fluorescence intensity distribution based on the laser light after the control, and the acquired fluorescence intensity distribution is wavelength-controlled.
  • the data is output to the quantity determining unit 613.
  • the wavelength control amount determination unit 613 evaluates the newly acquired fluorescence intensity distribution, and calculates the control amount of the wavelength of the laser light so as to improve the contrast of the fluorescence intensity distribution.
  • the wavelength of the laser light emitted from the light source 2 is controlled by the system control unit 61 and the wavelength control amount determination unit 613 so that, for example, the contrast of the fluorescence intensity distribution is maximized. .
  • the wavelength control amount determination unit 613 may determine the control amount of the wavelength of the laser light by evaluating the contrast for the region designated as the observation target by the user in the acquired fluorescence intensity distribution. .
  • the display control unit 67 may display U / I for designating a region in the image data on the display unit 72 together with the image data created based on the fluorescence intensity distribution. Thereby, the user can designate the region to be observed for the image displayed on the display unit 72 via the condition designating unit 71.
  • FIG. 30 is a diagram for explaining an example of an observation target designation method.
  • a reference sign V20 indicates an image displayed on the display unit 72
  • a reference sign V21 schematically indicates a region designated as an observation target by the user.
  • the shape of the region V21 is not necessarily limited to the circular shape shown in FIG. 30 as long as at least a part of the region in the image V20 can be designated.
  • the shape of the region V21 may be a rectangular shape or an arbitrary shape designated by the user.
  • the wavelength control amount determination unit 613 receives, from the condition designation unit 71, information indicating the region V21 in the image designated by the user via the condition designation unit 71 with respect to the image V20 of the sample S displayed on the display unit 72. get.
  • the coordinate system of the image V20 corresponds to the coordinate system of the fluorescence intensity distribution. Therefore, the wavelength control amount determination unit 613 recognizes a region on the fluorescence intensity distribution corresponding to the region V21 designated by the user for the image V20 based on the information indicating the region V21 acquired from the condition designating unit 71. .
  • the wavelength control amount determination unit 613 improves the contrast so that the region V21 on the fluorescence intensity distribution is the target. What is necessary is just to determine the control amount of the wavelength of a laser beam.
  • system control unit 61 may be configured to control (adjust) the wavelength of the laser light based on designation from the user.
  • the system control unit 61 causes the user to specify whether or not further adjustment is necessary for an image created based on the fluorescence intensity distribution after wavelength control, and based on the designation, It may be possible to determine whether or not to further control the wavelength of light.
  • the display control unit 67 presents image data created based on the fluorescence intensity distribution after wavelength control to the user via the display unit 72, and the system control unit 61 further adjusts.
  • a user designation indicating whether it is necessary is acquired from the condition designating unit 71.
  • the system control unit 61 may cause the wavelength control amount determination unit 613 to calculate the control amount of the wavelength of the laser light again when receiving a designation from the user that further adjustment is necessary. At this time, the system control unit 61 controls the wavelength control amount determination unit 613 so as to control conditions (for example, parameters such as a threshold value for determining contrast) related to the calculation of the control amount of the wavelength of the laser light. May be.
  • control conditions for example, parameters such as a threshold value for determining contrast
  • the system controller 61 may be operated so that the user can directly or indirectly specify the wavelength of the laser beam.
  • the system control unit 61 receives a specification related to contrast adjustment (for example, increases / decreases the contrast or specifies an adjustment amount) from the user, and determines the wavelength of the laser light based on the specified contrast adjustment content. May be controlled.
  • the system control unit 61 can automatically control the wavelength of the laser light so as to improve the contrast of the fluorescence intensity distribution, and also controls the wavelength of the laser light based on an instruction from the user. It is also possible to do. With such a configuration, for example, the system control unit 61 automatically controls the wavelength of the laser beam so that the contrast of the fluorescence intensity distribution is maximized, and then sets the wavelength of the laser beam based on an instruction from the user. It is also possible to operate so as to make fine adjustments.
  • the RAW image generation unit 65 acquires the fluorescence intensity distribution from the two-dimensionalization processing unit 625 and generates a RAW file by shaping the fluorescence intensity distribution as image data (RAW image) into a predetermined file format. May be. At this time, the RAW image generation unit 65 displays information related to the fluorescence intensity distribution, such as a fluorescence intensity distribution acquisition condition (for example, a shooting condition or a scanning condition such as a parameter at the time of shooting). The acquired information may be associated with the generated RAW file as related information.
  • a fluorescence intensity distribution acquisition condition for example, a shooting condition or a scanning condition such as a parameter at the time of shooting.
  • the acquired information may be associated with the generated RAW file as related information.
  • the RAW image generation unit 65 for example, as shown in FIG. 30, information indicating the region V21 specified by the user in the image V20 or an image in the region V21 as RAW It may be associated with a file.
  • the RAW image generation unit 65 may associate control information indicating the control amount of the wavelength (frequency) of the laser light (excitation light) determined by the wavelength control amount determination unit 613 with the RAW file as related information. In this way, by associating control information indicating the control amount of the wavelength of the laser light with the RAW file as related information, for example, the external device of the information processing apparatus 800 recognizes the degree of fading of the sample based on the control amount. Is possible.
  • the RAW image generation unit 65 may separately associate the control information determined based on the automatic adjustment by the system control unit 61 and the control information changed based on the user's instruction with the RAW file as related information.
  • the RAW image generation unit 65 associates an image based on the fluorescence intensity distribution acquired based on each condition (for example, an image subjected to image processing such as compression) with the RAW file together with the control information. Good.
  • the RAW image generation unit 65 displays the control information indicating the control amount of the wavelength of the laser light and the image acquired based on the laser light controlled according to the control amount for each of the conditions over a plurality of conditions. May be associated with a RAW file.
  • FIG. 31 is a diagram showing an example of the file format of the RAW file D1a according to the present embodiment.
  • the RAW file D1 includes, for example, a data area d10, a basic control information area d30, and an extension area d20a.
  • the configurations of the data area d10 and the basic control information area d30 are the same as those of the RAW file D1 (see FIG. 19) according to the first embodiment described above, and detailed description thereof is omitted.
  • the expansion area d20 includes a manufacturer note IFDd21.
  • the manufacturer note IFDd21 is an IFD for storing information not specified in EXIF, such as a camera control mode, and also stores shooting information and control information unique to the image acquisition device 1.
  • the manufacturer note IFDd21 includes, for example, a shooting condition d211, an initial shot image d221, a target image d222 specified by the user, a variable range d223 specified by the user, a parameter d224 based on automatic adjustment, and an observation.
  • Parameter d225 designated by the user and an image d226 after automatic adjustment.
  • the shooting condition d211 is the same as that of the RAW file D1 according to the first embodiment described above.
  • the initial captured image d221 is an image based on the fluorescence intensity distribution acquired before the system control unit 61 controls the wavelength based on the control amount determined by the wavelength control amount determination unit 613.
  • the initial photographed image d221 shows an image based on the fluorescence intensity distribution acquired using laser light having a wavelength (that is, initial setting) determined in advance according to the sample S to be observed as excitation light. .
  • the target image d222 designated by the user indicates an image obtained by cutting out a portion corresponding to the area designated as the observation target by the user from the captured image.
  • the target image d222 designated by the user corresponds to an image obtained by cutting out the portion indicated by the region V21 from the image V20.
  • variable range d223 designated by the user is information indicating an area designated as an observation target by the user in the captured image.
  • the variable range d223 specified by the user corresponds to control information indicating the region V21.
  • the control information indicating the area can be expressed by, for example, coordinates or vectors in the captured image.
  • the parameter d224 based on automatic adjustment indicates a parameter determined by the system control unit 61 during the automatic adjustment, such as the wavelength of the laser light emitted from the light source 2 determined by automatic adjustment by the system control unit 61.
  • parameter D224 based on automatic adjustment indicates each parameter (for example, the wavelength of laser light) when adjustment is performed so that the contrast of the captured image is maximized.
  • the parameter D224 based on the automatic adjustment is an image based on the fluorescence intensity distribution acquired according to the control of the light source 2 based on the parameter determined by the automatic adjustment by the system control unit 61 (for example, image processing such as compression). May be included.
  • the parameter d225 designated by the observer indicates the parameter determined by the system control unit 61 based on the designation from the user.
  • the parameter d225 designated by the observer is an image based on the fluorescence intensity distribution acquired in accordance with the control of the light source 2 based on the parameter determined by the user (for example, image processing such as compression has been performed) Image).
  • the relevant information indicating the control amount of the wavelength (frequency) of the laser beam (excitation light) (that is, the parameter d224 based on the automatic adjustment or the parameter d225 specified by the observer) is recorded in the RAW file D1a.
  • the external device of the information processing device 800 can recognize the degree of fading of the sample based on the related information.
  • the external device of the information processing apparatus 800 displays the image corresponding to each condition as the image. It is possible to present it to the user together with the acquisition conditions (that is, parameters).
  • the post-automatic adjustment image d226 shows an image based on the fluorescence intensity distribution acquired in accordance with the control of the light source 2 based on the finally determined parameters.
  • the automatically adjusted image d226 may be an image cut out based on the variable range d223 designated by the user.
  • the file format of the RAW file D1a according to the present embodiment has been described above with reference to FIG. Note that the file format of the RAW file D1a described above is merely an example, and it is needless to say that not all information may be included.
  • FIG. 32 is a flowchart showing an example of the flow of a series of operations of the image acquisition device 1a according to the present embodiment.
  • Step S501 the control unit 6a of the image acquisition apparatus 1a controls the wavelength of the excitation light emitted from the light source 2 according to the sample S to be measured (that is, controls based on the initial setting). Excitation light emitted from the light source 2 based on the control of the control unit 6a is guided toward the sample S by the measurement unit 3 (that is, the scanning system (detection system) 5a and the microscope unit 4). Then, the measurement unit 3 scans the sample S with the excitation light emitted from the light source 2 and detects the fluorescence emitted from the sample S. The measurement unit 3 outputs the fluorescence detection result to the control unit 6a.
  • the measurement unit 3 that is, the scanning system (detection system) 5a and the microscope unit 4
  • the control unit 6a generates a fluorescence intensity distribution based on the fluorescence detection result acquired from the measurement unit 3, and performs predetermined image processing (for example, noise removal processing or compression processing) on the fluorescence intensity distribution to obtain image data. Is generated. Then, the control unit 6a may display a U / I for designating a region in the image data on the display unit 72 together with the generated image data. Thereby, the user can designate the region to be observed for the image displayed on the display unit 72 via the condition designating unit 71.
  • predetermined image processing for example, noise removal processing or compression processing
  • Step S503 The control unit 6a receives the designation of the region to be observed in the image data based on the user input via the condition designating unit 71. Note that the area designated by the user corresponds to a variable range, and an object (part of the sample S) in the area is a target.
  • Step S51 The control unit 6a targets the image in the area designated based on the user input so that the object in the image is clearly displayed (for example, the contrast in the area is maximized).
  • the wavelength of the excitation light emitted from the light source 2 is controlled. Details will be described later separately as “2.5. Details of Wavelength Control”.
  • Step S505 When the wavelength of the excitation light emitted from the light source 2 is controlled, the control unit 6a acquires a fluorescence intensity distribution based on the excitation light after the wavelength control, and generates image data based on the acquired fluorescence intensity distribution. Then, the control unit 6a causes the display unit 72 to display the generated image data. Thereby, the user can check the adjusted image based on the control of the wavelength of the excitation light emitted from the light source 2.
  • Step S507 the image acquisition device 1a according to the present embodiment may receive an instruction from the user as to whether or not further adjustment is necessary for the adjusted image.
  • the condition for example, a parameter such as a threshold for determining contrast
  • the wavelength of the excitation light is controlled again.
  • Step S509 When the user instructs that no further adjustment is necessary for the adjusted image (step S507, YES), the image acquisition device 1a according to the present embodiment acquires the fluorescence acquired based on the excitation light at that time.
  • RAW file D1 is generated on the basis of the intensity distribution.
  • the flow of a series of operations of the image acquisition device 1a according to the present embodiment has been described above with reference to FIG.
  • the series of operations of the image acquisition device 1a described above is merely an example, and is not necessarily limited to the operation flow described above.
  • the image acquisition device 1a may be operated so that the user can directly or indirectly specify the wavelength of the excitation light.
  • FIG. 33 is an explanatory diagram for explaining the principle of wavelength control of the laser light emitted from the light source 2, the wavelength of the laser light output from the light source 2, the excitation spectrum and the fluorescence spectrum of the fluorescent dye contained in the sample S
  • An example of the relationship is shown.
  • two different types of fluorescent dyes F1 and F2 in the sample S are to be observed, and the wavelength of the excitation light for causing the fluorescent dyes F1 and F2 to emit light (hereinafter referred to as “emission wavelength” in some cases).
  • A) is assumed to be ⁇ 1 and ⁇ 2, respectively.
  • the horizontal axis indicates the wavelength [nm], and the vertical axis indicates the relative efficiency [%].
  • Reference sign g11 indicates the excitation spectrum of the fluorescent dye F1
  • reference sign g12 indicates the fluorescence spectrum of the fluorescent dye F1.
  • Reference sign g21 indicates the excitation spectrum of the fluorescent dye F2, and reference sign g22 indicates the fluorescence spectrum of the fluorescent dye F2.
  • the light source 2 is configured such that the wavelength of the output laser light can be controlled for each wavelength ⁇ s within the band W1 defined between the wavelengths ⁇ H to ⁇ L.
  • the control unit 6a of the image acquisition device 1a generates a two-color identification image by synthesizing the fluorescence intensity distribution acquired for each of the emission wavelengths ⁇ 1 and ⁇ 2.
  • FIG. 34 is an explanatory diagram for explaining the principle of wavelength control of the laser light emitted from the light source, and is generated by synthesizing the fluorescence intensity distributions acquired for the respective emission wavelengths ⁇ 1 and ⁇ 2.
  • An example of a two-color identification image is shown.
  • reference symbol V11a indicates the fluorescence intensity distribution when the emission wavelength is ⁇ 1
  • reference symbol V12a indicates the fluorescence intensity distribution when the emission wavelength is ⁇ 2.
  • Reference numeral V13a indicates an example of a two-color identification image obtained by combining the fluorescence intensity distributions V11a and V12a.
  • the obtained identification image V13a does not necessarily have a high contrast.
  • control unit 6a (specifically, the system control unit 61a) of the image acquisition device 1a according to the present embodiment controls the emission wavelengths ⁇ 1 and ⁇ 2 so that the contrast of the identification image V13a is maximized.
  • the ratio of the fluorescence intensity obtained based on each of the emission wavelengths ⁇ 1 and ⁇ 2 is adjusted.
  • FIG. 35 an example of a process in which the system control unit 61a calculates the contrast of the two-color identification image generated by combining the fluorescence intensity distributions obtained based on the emission wavelengths ⁇ 1 and ⁇ 2, respectively. While explaining.
  • FIG. 35 is an explanatory diagram for explaining the principle of wavelength control of laser light emitted from the light source 2, and is a diagram for explaining an example of a contrast calculation method when a sample is observed at a plurality of observation wavelengths. It is.
  • reference symbol V11 indicates the fluorescence intensity distribution in the case of the emission wavelength ⁇ 1
  • reference symbol V12 indicates the fluorescence intensity distribution in the case of the emission wavelength ⁇ 2.
  • Reference numeral V13 represents an example of a two-color identification image obtained by combining the fluorescence intensity distributions V11 and V12.
  • the data indicating the excitation spectrum and the fluorescence spectrum of each of the fluorescent dyes F1 and F2 may be stored in advance on the database, for example, by configuring the storage unit 66 as a database. Thereby, the system control unit 61a calculates the fluorescence relative efficiencies E11, E12, E21, and E22 based on the data indicating the excitation spectrum and the fluorescence spectrum of each of the fluorescent dyes F1 and F2 stored in the storage unit 66 (database). It is possible to pass.
  • the system control unit 61a controls the light source 2 so that the laser beams having the determined emission wavelengths ⁇ 1 and ⁇ 2 are output, and the emission wavelengths ⁇ 1 and The fluorescence intensity distribution based on each ⁇ 2 is acquired. Thereby, fluorescence intensity distributions V11 and V12 based on the initial values of the emission wavelengths ⁇ 1 and ⁇ 2 are acquired.
  • the system control unit 61a calculates the luminances L ( ⁇ 1, x1, y1) and L ( ⁇ 1, x2, y2) of the coordinates V111 and V121 in the fluorescence intensity distribution V11. Similarly, the system control unit 61a calculates the luminances L ( ⁇ 2, x1, y1) and L ( ⁇ 2, x2, y2) of the coordinates V111 and V121 in the fluorescence intensity distribution V12.
  • the system control unit 61a shows the calculated luminance L ( ⁇ 1, x1, y1), L ( ⁇ 1, x2, y2), L ( ⁇ 2, x1, y1), and L ( ⁇ 2, x2, y2) as follows: Based on Equation 13, the contrast C ( ⁇ 1, ⁇ 2) is calculated.
  • the contrast C ( ⁇ 1, ⁇ 2) of the two-color identification image V13 generated by combining the fluorescence intensity distributions V11 and V13 obtained based on the emission wavelengths ⁇ 1 and ⁇ 2, respectively, is calculated.
  • the system control unit 61a repeats the control of the light emission wavelengths ⁇ 1 and ⁇ 2 and the calculation and evaluation of the contrast C ( ⁇ 1, ⁇ 2) based on the light emission wavelengths ⁇ 1 and ⁇ 2 after the control, so that the contrast C ( ⁇ 1, ⁇ 2
  • the light emission wavelengths ⁇ 1 and ⁇ 2 may be adjusted so that) is maximized.
  • FIG. 36 is a flowchart for explaining the flow of processing relating to the wavelength control of the laser light emitted from the light source 2, and shows an example in which a sample is observed at a plurality of observation wavelengths.
  • the initial values of the emission wavelengths ⁇ 1 and ⁇ 2 are calculated. It should be noted that the initial values of the emission wavelengths ⁇ 1 and ⁇ 2 may be calculated so that the above-described Expression 12 becomes maximum.
  • Step S513 the system control unit 61a performs control so that the wavelength of the excitation light emitted from the light source 2 becomes the calculated emission wavelength ⁇ 1.
  • the fluorescence detection result based on the controlled excitation light is output from the measurement unit 3a to the distribution information generation unit 62a.
  • the distribution information generation unit 62a generates a fluorescence intensity distribution V11 based on the emission wavelength ⁇ 1 based on the acquired fluorescence detection result.
  • the distribution information generation unit 62a outputs the generated fluorescence intensity distribution V11 to the system control unit 61a.
  • the system control unit 61a acquires the fluorescence intensity distribution V11 based on the controlled excitation light from the distribution information generation unit 62a.
  • Step S5-5 the system control unit 61a performs control so that the wavelength of the excitation light emitted from the light source 2 becomes the calculated emission wavelength ⁇ 2.
  • the fluorescence detection result based on the controlled excitation light is output from the measurement unit 3a to the distribution information generation unit 62a.
  • the distribution information generation unit 62a generates a fluorescence intensity distribution V12 based on the emission wavelength ⁇ 2 based on the acquired fluorescence detection result.
  • the distribution information generation unit 62a outputs the generated fluorescence intensity distribution V12 to the system control unit 61a.
  • the system control unit 61a acquires the fluorescence intensity distribution V12 based on the controlled excitation light from the distribution information generation unit 62a.
  • Step S5-7 The system control unit 61a calculates the contrast C ( ⁇ 1, ⁇ 2) based on the fluorescence intensity distributions V11 and V12 based on the generated emission wavelengths ⁇ 1 and ⁇ 2, respectively.
  • Step S521) The system control unit 61a continues the above processing until the contrast C ( ⁇ 1, ⁇ 2) reaches the maximum while adjusting the emission wavelengths ⁇ 1 and ⁇ 2 (step S519, NO), and the contrast C ( ⁇ 1, ⁇ 2) is When the maximum value is reached, the series of processing ends (step S519, YES).
  • the system control unit 61a uses the case where the emission wavelengths ⁇ 1 and ⁇ 2 are both initial values as a reference state, and changes the emission wavelength ⁇ 1 from the reference state to ⁇ s in the plus direction, and changes from ⁇ s in the minus direction. A fluorescence intensity distribution V11 is obtained for. Then, the system control unit 61a calculates the contrast C ( ⁇ 1, ⁇ 2) based on each of the acquired fluorescence intensity distributions V11, and identifies the changing direction of the emission wavelength ⁇ 1 in which the contrast C ( ⁇ 1, ⁇ 2) increases.
  • the system control unit 61a acquires the fluorescence intensity distribution V12 when the emission wavelength ⁇ 2 is changed by ⁇ s in the positive direction and when ⁇ s is changed by the negative direction from the reference state. Then, the system control unit 61a calculates the contrast C ( ⁇ 1, ⁇ 2) based on each of the acquired fluorescence intensity distributions V12, and specifies the change direction of the emission wavelength ⁇ 2 in which the contrast C ( ⁇ 1, ⁇ 2) increases. .
  • the system control unit 61a changes the light emission wavelengths ⁇ 1 and ⁇ 2 from the reference state a plurality of times (for example, twice) by ⁇ s in the specified direction, and changes the contrast C ( ⁇ 1, ⁇ 2) for each change. calculate. Based on the calculation result of the contrast C ( ⁇ 1, ⁇ 2), the system control unit 61a emits light having a large change amount of the contrast C ( ⁇ 1, ⁇ 2) among the light emission wavelengths ⁇ 1 and ⁇ 2 (that is, the contrast before and after the control). Emission wavelength with a large difference between C ( ⁇ 1, ⁇ 2) is specified. In the following description, it is assumed that the amount of change in contrast C ( ⁇ 1, ⁇ 2) is larger when the emission wavelength ⁇ 1 is changed than when the emission wavelength ⁇ 2 is changed.
  • the system control unit 61a fixes the emission wavelength ⁇ 2 side and calculates the contrast C ( ⁇ 1, ⁇ 2) while changing the emission wavelength ⁇ 1 by ⁇ s in the specified direction, so that the contrast C ( ⁇ 1, ⁇ 2) is maximized.
  • the emission wavelength ⁇ 1 is specified.
  • the system control unit 61a calculates the contrast C ( ⁇ 1, ⁇ 2) while fixing the emission wavelength ⁇ 1 side and changing the emission wavelength ⁇ 2 by ⁇ s in the specified direction, so that the contrast C ( ⁇ 1, ⁇ 2) is obtained.
  • the maximum emission wavelength ⁇ 2 is specified.
  • the system control unit 61a identifies the emission wavelengths ⁇ 1 and ⁇ 2 at which the contrast C ( ⁇ 1, ⁇ 2) is maximized.
  • the example described above is merely an example, and it goes without saying that the method is not particularly limited as long as the emission wavelengths ⁇ 1 and ⁇ 2 that maximize the contrast C ( ⁇ 1, ⁇ 2) can be specified.
  • One aspect of wavelength control When observing data with a single observation wavelength >> >> Next, as an aspect of the operation related to the control of the wavelength of the laser light emitted from the light source 2 by the system control unit 61a according to the present embodiment, a case where the material is observed with a single observation wavelength will be described. In this description, the system control unit 61a is described assuming that the fluorescent dye F1 in the sample S is the target and controls the emission wavelength ⁇ 1.
  • the system control unit 61a may calculate the emission wavelength ⁇ 1 that maximizes the fluorescence relative efficiency E11 based on the peak value of the excitation spectrum of the fluorescent dye F1.
  • the system control unit 61a uses the case where the emission wavelength ⁇ 1 is the initial value as a reference state, and changes the fluorescence when the emission wavelength ⁇ 1 is changed by ⁇ s in the plus direction and when the emission wavelength ⁇ 1 is changed by ⁇ s from the reference state.
  • the intensity distribution V11 is acquired.
  • the system control unit 61a calculates the contrast of the acquired fluorescence intensity distribution V11 and identifies the changing direction of the emission wavelength ⁇ 1 in which the contrast increases.
  • a so-called general contrast calculation method such as a contrast calculation method based on the maximum value and the minimum value of the pixel values in the intensity distribution V11. It is possible to apply.
  • the system control unit 61a calculates the contrast while changing the emission wavelength ⁇ 1 by ⁇ s in the change direction, and specifies the emission wavelength ⁇ 1 that maximizes the contrast. .
  • the system control unit 61a specifies the light emission wavelength ⁇ 1 that maximizes the contrast. Note that the example described above is merely an example, and it is needless to say that the method is not particularly limited as long as the emission wavelength ⁇ 1 that maximizes the contrast can be specified.
  • the image acquisition device 1a uses the laser module that can control the wavelength of the output laser light (excitation light) as the light source 2, and based on the observed fluorescence intensity distribution.
  • the wavelength of the laser beam is controlled.
  • the image acquisition device 1a according to the present embodiment enables the observer (user) to perform complicated work such as controlling the operation of the light source 2 while checking the observation result, or switching the light source 2 itself. Therefore, it is possible to obtain an image with high contrast.
  • the image acquisition device 1a according to the present embodiment allows the laser light to be maximized so that the contrast of the acquired fluorescence intensity distribution is maximized even in a situation where the wavelength of the laser light changes as the temperature rises. It is possible to control the wavelength. For this reason, the image acquisition device 1 according to the present embodiment can stabilize the wavelength of the laser light even if the light source 2 is incorporated in the same housing, for example, and thus the image acquisition device 1a itself can be downsized. Is possible.
  • the light source 2 includes a wavelength conversion module (OPO) 250, and the input laser light (pump light) is converted into laser light having two wavelengths (that is, signal light and idler). Light) and output.
  • OPO wavelength conversion module
  • one of the signal light and idler light output from the light source 2 is irradiated toward the sample S as excitation light. In the following description, it is assumed that the signal light is emitted toward the sample S as excitation light.
  • the sample S When the sample S is irradiated with excitation light, a molecule in the sample S is excited by the excitation light to emit fluorescence, and the fluorescence is emitted from the objective lens 42, the dichroic mirror 52, the imaging lens 521, and the emission. An image is formed on the detection surface of the PMT 53 via the filter 523. At this time, the emission filter 523 absorbs light (external light) other than the color light expanded by the objective lens 42 (that is, only the emitted color is transmitted), and the color light that has lost the external light is absorbed. An image is formed on the PMT 53.
  • the image acquisition device 1b according to the present embodiment includes a light source 2, a measurement unit 3, a control unit 6b, and an I / F 7.
  • the measurement unit 3 includes a microscope unit 4 and a scanning system (detection system) 5.
  • the configurations of the light source 2, the microscope unit 4, the scanning system (detection system) 5, and the I / F 7 are the same as those of the image acquisition device 1 according to the first embodiment described above. Therefore, hereinafter, the description will be focused on the configuration of the control unit 6b that is different from the image acquisition device 1 according to the first embodiment.
  • each configuration of the scanning system (detection system) 5 corresponds to the configuration given the same reference numeral in the optical system shown in FIG. In the example shown in FIG. 37, a part of the configuration shown in FIG. 14 is omitted.
  • the fluorescence generated from the sample S by the irradiated excitation light is guided to the scanning system (detection system) 5 through the microscope unit 4 and detected by the PMT 53 of the scanning system (detection system) 5.
  • the PMT 53 converts the detected fluorescence into an electrical signal by a photoelectric effect at a preset sampling rate, and outputs the electrical signal to the control unit 6b as data indicating the intensity of the fluorescence.
  • the PD 54 measures the intensity of idler light at a preset sampling rate.
  • the PD 54 converts the intensity of the measured idler light into an electric signal, and outputs it to the control unit 6 as data indicating the intensity of the idler light.
  • a PD 56 that measures the intensity of excitation light (signal light) may be provided.
  • the configurations of the PMT 53, the PD 54, and the PD 56 are the same as those of the image acquisition device 1 according to the first embodiment described above.
  • the control unit 6b includes a system control unit 61b, a distribution information generation unit 62b, a correction processing unit 63, an image processing unit 64, a RAW image generation unit 65, and a storage unit 66.
  • the display control unit 67 and the communication control unit 68 are included.
  • the control unit 6b according to the present embodiment has a configuration in which the configuration of the system control unit 61b and the distribution information generation unit 62b is the control unit 6 (see FIGS. 15 and 16) according to the first embodiment described above, It differs from the control part 6a (refer FIG.28 and FIG.29) which concerns on 2nd Embodiment.
  • the distribution information generation unit 62b includes a two-dimensionalization processing unit 621, an intensity correction distribution determination unit 623, and a two-dimensionalization processing unit 625.
  • the system control unit 61 a includes an intensity control amount determination unit 611 and a wavelength control amount determination unit 613.
  • the operations of the two-dimensionalization processing unit 621, the intensity correction distribution determining unit 623, and the intensity control amount determining unit 611, and the operation of the system control unit 61b based on the operation of the intensity control amount determining unit 611 are described above. This is the same as the image acquisition device 1 according to the first embodiment (see FIG. 16).
  • the intensity control amount determination unit 611 acquires the idler light intensity distribution from the two-dimensional processing unit 621, receives the notification of the maximum correction amount width from the intensity correction distribution determination unit 623, and acquires the acquired idler light intensity. Based on the distribution and the maximum width of the correction amount, the state of the light source 2 (particularly, the change in the intensity of the excitation light) is monitored. Further, the intensity control amount determination unit 611 generates control information for controlling the intensity of the laser light (pump light) emitted from the light source 2 based on the monitoring result. And the system control part 61b should just control the intensity
  • the two-dimensionalization processing unit 625, the wavelength control amount determination unit 613, and the operation of the system control unit 61b based on the operation of the wavelength control amount determination unit 613 are the image acquisition device 1a according to the second embodiment described above. (See FIG. 29).
  • the wavelength control amount determination unit 613 obtains the generated fluorescence intensity distribution from the two-dimensional processing unit 625, and the laser light emitted from the light source 2 so as to improve the contrast of the fluorescence intensity distribution.
  • the control amount of the wavelength (frequency) of (excitation light) is determined.
  • the system control unit 61b controls the light source 2 based on the control amount, so that the laser light emitted from the light source 2 is controlled. Control the wavelength.
  • the two-dimensionalization processing unit 625 acquires the fluorescence intensity distribution based on the laser light after the control, and the acquired fluorescence intensity distribution is wavelength-controlled.
  • the data is output to the quantity determining unit 613.
  • the wavelength control amount determination unit 613 evaluates the newly acquired fluorescence intensity distribution, and calculates the control amount of the wavelength of the laser light so as to improve the contrast of the fluorescence intensity distribution.
  • the wavelength of the laser light emitted from the light source 2 is controlled by the system control unit 61b and the wavelength control amount determination unit 613 so that the contrast of the fluorescence intensity distribution is maximized.
  • the operation of the RAW image generation unit 65 according to the present embodiment is the same as that of the RAW image generation unit 65 according to the first and second embodiments described above. That is, the RAW image generation unit 65 acquires the fluorescence intensity distribution from the two-dimensionalization processing unit 625, and shapes the fluorescence intensity distribution as image data (RAW image) into a predetermined file format, thereby converting the RAW file. Generate.
  • the RAW image generation unit 65 may acquire information related to the fluorescence intensity distribution from the system control unit 61 and associate the acquired information with the generated RAW file as related information.
  • the related information associated with the RAW file can include, for example, the related information shown in the first embodiment (see FIG. 19) or the related information shown in the second embodiment (see FIG. 31). Needless to say.
  • the image acquisition device 1b according to the present embodiment may be operated. Is possible. In addition, it cannot be overemphasized that the image acquisition apparatus 1b which concerns on this embodiment has the effect of both the image acquisition apparatus 1 which concerns on 1st Embodiment, and the image acquisition apparatus 1a which concerns on 2nd Embodiment similarly. Yes.
  • FIG. 39 is a diagram for explaining the outline of the image acquisition apparatus according to the present embodiment.
  • FIG. 40 is an explanatory diagram for explaining the principle of the correction processing according to the present embodiment.
  • the image processing apparatus according to the present embodiment may be referred to as “image acquisition apparatus 1c” in order to distinguish it from the image acquisition apparatuses according to other embodiments.
  • the image acquisition device 1 according to the first embodiment and the image acquisition device 1b according to the third embodiment generate correction data based on the intensity distribution of idler light, and generate fluorescence data based on the generated correction data. It corrects the noise caused by the fluctuation in the intensity of the laser beam, which is manifested on the intensity distribution.
  • FIG. 39 schematically shows a state in which different noises are generated in the generated fluorescence intensity distribution D11 and the idler intensity distribution D21.
  • the fluorescence intensity distribution D10 after correction processing includes the fluorescence intensity distribution before correction.
  • the noise generated in the idler light intensity distribution D21 is also superimposed. That is, in the example shown in FIG. 39, the noise associated with the fluctuation in the intensity of the laser light is corrected by the correction process, but the noise generated in each of the fluorescence intensity distribution D11 and the correction data D21 is reduced. Without any actualization, it becomes apparent in the fluorescence intensity distribution D10 after the correction process.
  • noise correction processing is performed on each of the generated fluorescence intensity distribution D11 and idler light intensity distribution D21.
  • the image acquisition apparatus 1c corrects the noise that does not depend on the intensity fluctuation of the laser beam, which is manifested in the fluorescence intensity distribution D11 and the idler intensity distribution D21, and corrects the fluorescence intensity distribution D11a and the noise after correction.
  • An idler light intensity distribution D21a is generated.
  • the image acquisition apparatus 1c corrects the intensity distribution D11a of the fluorescence with the intensity distribution D21a of the idler light, so that noise associated with the intensity variation of the laser light that is manifested in the intensity distribution D11a of the fluorescence is obtained. It correct
  • the image acquisition device 1c generates the RAW file D1 based on the fluorescence intensity distribution D11a and the idler intensity distribution D21a after noise correction.
  • an external device such as the information processing device 800 similarly generates the fluorescence intensity distribution D10 after the correction process, it is possible to suppress the occurrence of noise that does not depend on the intensity fluctuation of the laser light. It becomes. Details of the image acquisition device 1c according to the present embodiment will be described below.
  • the image acquisition device according to the present embodiment is different from the image acquisition device 1b in the configuration of the distribution information generation unit 62c corresponding to the distribution information generation unit 62b in the image acquisition device 1b according to the third embodiment described above.
  • the configuration is basically the same as that of the image acquisition device 1b. Therefore, hereinafter, description will be given focusing on the configuration of the distribution information generation unit 62c according to the present embodiment with reference to FIG.
  • FIG. 41 is an explanatory diagram for describing detailed functional configurations of the distribution information generation unit 62c and the system control unit 61c according to the present embodiment.
  • the distribution information generation unit 62c includes a correction processing unit 627 and a correction processing unit 629, and thus the distribution information generation unit 62b ( Unlike FIG. 38).
  • the two-dimensionalization processing unit 621 outputs the generated idler light intensity distribution to the correction processing unit 627.
  • the correction processing unit 627 acquires the idler light intensity distribution from the two-dimensional processing unit 621, and performs correction processing for noise that does not depend on the intensity fluctuation of the laser light, on the acquired idler light intensity distribution. At this time, the correction processing unit 627 applies a pixel-by-pixel filter to the acquired intensity distribution of idler light.
  • An example of the pixel-by-pixel filter is a median filter.
  • the correction processing unit 627 uses, for example, each pixel in the idler light intensity distribution as a reference pixel, and sets the pixel value of the reference pixel as a threshold value to other surrounding pixels (for example, surrounding 8 pixels). Threshold processing is performed on the image. Then, the correction processing unit 627 smoothes the pixel value between the reference pixel and other surrounding pixels.
  • the correction processing unit 627 may use a simple average, or smooth each pixel value according to predetermined statistics. Also good.
  • the correction processing unit 627 may add anisotropy to threshold processing for other surrounding pixels and processing related to smoothing of pixel values between the reference pixel and other surrounding pixels. .
  • the correction processing unit 627 may control a parameter (for example, a threshold value) of the noise removal process so that a stronger noise removal process is performed in the horizontal direction than in the vertical direction. Good.
  • the correction processing unit 627 outputs the intensity distribution of the idler light subjected to the noise removal processing to the intensity correction distribution determining unit 623 and the intensity control amount determining unit 611. Note that the subsequent processing, that is, the operations of the intensity correction distribution determination unit 623 and the intensity control amount determination unit 611, except for the point that the target is the intensity distribution of the idler light after the noise removal processing, This is the same as the image acquisition apparatus according to the third embodiment.
  • the two-dimensionalization processing unit 625 outputs the generated fluorescence intensity distribution to the correction processing unit 629.
  • the correction processing unit 629 acquires the idler light intensity distribution from the two-dimensional processing unit 625, and performs correction processing on noise that does not depend on the intensity fluctuation of the laser light, on the acquired fluorescence intensity distribution. At this time, the correction processing unit 629 applies a frequency unit filter (that is, a frequency filter) to the acquired fluorescence intensity distribution.
  • a frequency unit filter that is, a frequency filter
  • the correction processing unit 629 uses a predetermined frequency as a threshold and removes a signal having a frequency higher than the threshold as noise (that is, removes a high-frequency component). As described above, the correction processing unit 627 and the correction processing unit 629 perform noise removal processing with different methods on the acquired intensity distributions.
  • the correction processing unit 629 outputs the fluorescence intensity distribution subjected to the noise removal processing to the wavelength control amount determination unit 613, the correction processing unit 63, and the RAW image generation unit 65.
  • the subsequent processing that is, the operations of the wavelength control amount determination unit 613, the correction processing unit 63, and the RAW image generation unit 65 are the same as those described above except that the fluorescence intensity distribution after the noise removal processing is targeted. This is the same as the image acquisition device according to the second and third embodiments.
  • the RAW image generation unit 65 generates a RAW file using the fluorescence intensity distribution after noise removal as image data, and relates the idler intensity distribution after noise removal to the RAW file. Needless to say, it is related as information.
  • the configuration of the image acquisition device 1c according to the present embodiment has been described with particular attention to the operation of the distribution information generation unit 62c, with reference to FIG. Note that the correction processing units 627 and 629 are not necessarily provided, and only one of them may be provided.
  • FIG. 42 is a diagram showing an example of the file format of the RAW file D1c according to the present embodiment.
  • the RAW file D1c includes, for example, a data area d10, a basic control information area d30, and an extension area d20c.
  • the configurations of the data area d10 and the basic control information area d30 are the same as those of the RAW file D1 (see FIG. 19) according to the first embodiment described above, and detailed description thereof is omitted.
  • the extension area d20c includes a manufacturer note IFDd21.
  • the manufacturer note IFDd21 is an IFD for storing information not specified in EXIF, such as a camera control mode, and also stores shooting information and control information unique to the image acquisition device 1.
  • the manufacturer note IFDd21 includes, for example, a shooting condition d211, an initial shot image d221, a target image d222 specified by the user, a variable range d223 specified by the user, and data d231 used for noise separation. And a parameter d232 applied to noise separation and an intensity image of idler light after noise correction.
  • the shooting condition d211, the initial shot image d221, the target image d222 specified by the user, and the variable range d223 specified by the user are the same as those of the RAW file D1a (see FIG. 31) according to the second embodiment described above. .
  • the idler intensity image d233 after noise correction indicates the idler intensity distribution D21a that has been subjected to noise removal processing by the correction processing unit 627.
  • correction data calculated based on the idler intensity distribution D21a may be recorded in the RAW file D1c as an idler intensity image d233 after noise correction.
  • Data d231 used for noise separation indicates frequency filter data applied to the fluorescence intensity distribution D11 for noise removal.
  • the format of the data d231 used for noise separation is not particularly limited as long as the content of the noise removal processing applied to the fluorescence intensity distribution D11 can be specified.
  • the data d231 used for noise separation may be a histogram indicating the characteristics (frequency characteristics) of the frequency filter.
  • the external device for example, the information processing device 800 that has read the RAW file D1c detects the noise on the RAW main image d11. Correction can be performed in the same manner as in the image acquisition device 1c according to the present embodiment.
  • the parameter d232 applied to the noise separation is a parameter indicating the type of noise removal processing performed on the correction data D21 based on the intensity distribution of idler light and the contents thereof (for example, information indicating the applied filter and its parameters). .
  • the format of the parameter d232 applied to the noise separation is not particularly limited as long as the type and contents of the noise removal processing performed on the correction data D21 can be specified.
  • the external device for example, the information processing device 800
  • the external device that has read the RAW file D1c allows the intensity of idler light after noise correction. It is possible to specify the content of the noise removal process performed on the image.
  • the file format of the RAW file D1c according to the present embodiment has been described above with reference to FIG. Note that the file format of the RAW file D1c described above is merely an example, and it is needless to say that not all information may be included.
  • the image acquisition device 1c performs noise correction processing on each of the fluorescence intensity distribution D11 and the idler light intensity distribution D21, so that the fluorescence intensity distribution after noise correction is performed. D11a and idler intensity distribution D21a are generated. Then, the image acquisition device 1c corrects the noise accompanying the intensity fluctuation of the laser light that has become apparent in the fluorescence intensity distribution D11a by correcting the fluorescence intensity distribution D11a with the idler intensity distribution D21a. A fluorescence intensity distribution D10 after processing is generated. With such a configuration, the image acquisition device 1c according to the present embodiment makes manifestation of noise generated in each of the fluorescence intensity distribution D11 and the idler intensity distribution D21 independent of the intensity fluctuation of the laser beam. It becomes possible to suppress.
  • the image acquisition device 1c generates a RAW file D1c based on the fluorescence intensity distribution D11a and the idler intensity distribution D21a after noise correction.
  • a RAW file D1c based on the fluorescence intensity distribution D11a and the idler intensity distribution D21a after noise correction.
  • FIG. 43 is a diagram illustrating an example of a hardware configuration of the image acquisition device 1 according to the present embodiment.
  • the image acquisition apparatus 1 includes a processor 901, a memory 903, a storage 905, a light source unit 907, a measurement unit 909, an operation device 911, a display device 913, A communication device 915 and a bus 917 are included.
  • the processor 901 may be, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a DSP (Digital Signal Processor), or a SoC (System on Chip), and executes various processes of the image acquisition device 1.
  • the processor 901 can be configured by, for example, an electronic circuit for executing various arithmetic processes. Each configuration included in the control unit 6 described above can be configured by the processor 901.
  • the memory 903 includes a RAM (Random Access Memory) and a ROM (Read Only Memory), and stores programs and data executed by the processor 901.
  • the storage 905 can include a storage medium such as a semiconductor memory or a hard disk. Note that the storage unit 66 described above can be configured by, for example, the memory 903 and the storage 905.
  • the light source unit 907 is a unit for irradiating the sample S with excitation light, and corresponds to the light source 2 described above. In the light source unit 907, the intensity and wavelength of the emitted excitation light are controlled by the processor 901.
  • the measurement unit 909 is a unit that guides the excitation light emitted from the light source unit 907 toward the sample S and detects the fluorescence from the sample S, and corresponds to the measurement unit 3 described above.
  • the measurement unit 909 controls the optical path of the light emitted from the light source unit 907 according to the control of the processor 901, and scans the sample S with the light.
  • the operation device 911 has a function of generating an input signal for a user to perform a desired operation.
  • the operation device 911 may include an input unit for a user to input information, such as buttons and switches, and an input control circuit that generates an input signal based on an input by the user and supplies the input signal to the processor 901.
  • the above-described condition designating unit 71 can be configured by the operation device 911.
  • the display device 913 is an example of an output device, and may be a display device such as a liquid crystal display (LCD) device, an organic EL (OLED: Organic Light Emitting Diode) display device, or the like.
  • the display device 913 can provide information by displaying a screen to the user.
  • the display unit 72 described above can be configured by the display device 913.
  • the communication device 915 is a communication unit included in the image acquisition apparatus 1 and communicates with an external apparatus such as the information processing apparatus 800 via a network.
  • the communication device 915 is an interface for wireless communication, and may include a communication antenna, an RF (Radio Frequency) circuit, a baseband processor, and the like.
  • the communication device 915 has a function of performing various kinds of signal processing on a signal received from an external device, and can supply a digital signal generated from the received analog signal to the processor 901.
  • the communication unit 73 described above can be configured by the communication device 915.
  • the bus 917 connects the processor 901, the memory 903, the storage 905, the light source unit 907, the measurement unit 909, the operation device 911, the display device 913, and the communication device 915 to each other.
  • the bus 917 may include a plurality of types of buses.
  • a light source that emits laser light
  • a measurement unit that is provided in the same housing as the light source, scans the sample with the laser light, receives the laser light, and measures the intensity of the measurement target light from the sample
  • a control unit that generates an image of the sample based on the measured intensity distribution of the measurement target light; With The measurement unit measures the intensity of the laser light emitted from the light source, The control unit executes at least one of control of the intensity of the laser light emitted from the light source and correction of the measured intensity distribution of the measurement target light based on the measured intensity of the laser light.
  • the light source includes a laser unit that outputs pump light of a predetermined frequency, and an optical parametric oscillator, and emits signal light and idler light by causing the pump light to enter the optical parametric oscillator.
  • the measuring unit is One of the signal light and the idler light is a first light, the other is a second light, and the sample is scanned with the first light, Receiving the first light, measuring the intensity of the measurement object light generated from the sample and the intensity of the second light,
  • the control unit controls the intensity of the first light according to the control of the intensity of the pump light based on the measured intensity of the second light, and the intensity distribution of the measured light to be measured. Perform at least one of the corrections,
  • the image acquisition apparatus according to (1).
  • the controller is Calculating the maximum width of the intensity correction amount based on the maximum value and the average value of the intensity of the second light during the warm-up period of the light source; Based on the maximum width of the intensity correction amount and the maximum measurable value of the measurement target light, the control target maximum value of the second light is calculated, Based on the control target maximum value of the second light and the average of the intensity of the second light measured during the scanning period related to the generation of the intensity distribution of the measurement target light, Control the intensity of the pump light, The image acquisition apparatus according to (2).
  • the control unit controls the transfer function of the optical parametric oscillator based on the measured intensity distribution of the second light before the first timing during the warm-up period during the warm-up period of the light source.
  • the control unit includes the second light accumulated before the first timing in the image generated based on the intensity distribution of the measurement target light measured after the first timing during the warm-up period.
  • the control unit calculates an intensity correction distribution based on the intensity distribution of the second light measured during the scanning period related to generation of the intensity distribution of the measurement target light, and based on the calculated intensity correction distribution
  • the image acquisition device according to any one of (2) to (6), wherein the image is generated by correcting an intensity distribution of the measurement target light.
  • the control unit performs a noise removal process on the intensity distribution of the second light measured during the scanning period related to the generation of the intensity distribution of the measurement target light, and the noise removal process is performed Based on the intensity distribution of the second light, at least one of the control of the intensity of the first light and the correction of the intensity distribution of the measured light to be measured is executed (2) to (2)
  • the image acquisition device according to any one of 7).
  • the control unit performs a noise removal process on the intensity distribution of the measurement target light, and controls the intensity of the first light based on the intensity distribution of the measurement target light subjected to the noise removal process;
  • the image acquisition device according to (8) wherein at least one of the measured intensity distribution correction of the measurement target light is executed.
  • the control unit removes noise by applying a pixel-based median filter to the intensity distribution of the second light, and applies noise to the intensity distribution of the measurement target light by applying a frequency filter.
  • the control unit generates information indicating the intensity distribution of the second light measured during the scanning period related to generation of the intensity distribution of the measurement target light based on the intensity distribution of the measurement target light.
  • the image acquisition device according to any one of (2) to (11), which is associated with the image.
  • the control unit converts the intensity distribution of the second light measured during the scanning period related to generation of the intensity distribution of the measurement target light into two dimensions based on control information indicating the content of the scanning,
  • the image acquisition device according to (12) wherein information indicating the dimensioned second light intensity distribution is associated with the image generated based on the intensity distribution of the measurement target light.
  • the light source is configured to be able to control the wavelength of the laser light
  • the image acquisition apparatus according to any one of (1) to (13), wherein the control unit controls the wavelength of the laser light based on the measured intensity distribution of the measurement target light.
  • a processor generates an image of the sample based on the measured intensity distribution of the measurement target light; Measuring the intensity of the laser light emitted from the light source; Based on the measured intensity of the laser light, performing at least one of control of the intensity of the laser light emitted from the light source and correction of the measured intensity distribution of the measurement target light;
  • An image acquisition method including:

Abstract

Provided are an image acquisition device and an image acquisition method such that it is possible to acquire a clear image while a laser light source is disposed inside the housing body of the image acquisition device for the purpose of reducing the size of the image acquisition device. The image acquisition device (1) comprises: a light source (2) which emits a laser beam; a measuring unit (3) which is disposed within the same housing body as the light source (2), scans a sample (S) with the laser beam, receives the laser light and measures the intensity of the light to be measured from the sample (S); and a control unit (6) which generates an image of the sample (S) on the basis of the distribution of the measured intensity of the measured light. The measuring unit (3) measures the intensity of the laser beam which is emitted from the light source (2). On the basis of the measured intensity of the laser beam, the control unit (6) executes a control of the intensity of the laser beam which is emitted from the light source, and/or a correction of the distribution of the measured intensity of the measured light.

Description

画像取得装置及び画像取得方法Image acquisition apparatus and image acquisition method
 本開示は、画像取得装置及び画像取得方法に関する。 The present disclosure relates to an image acquisition device and an image acquisition method.
 生物やバイオテクノロジー等の分野において、生きた細胞の生理反応や形態を観察するために、各種の顕微鏡が使用される。このような各種の顕微鏡の中には、生体または非生体の測定資料からの蛍光・燐光現象を観察することによって、対象を観察する顕微鏡である。例えば、特許文献1には、蛍光顕微鏡の一例が開示されている。 Various microscopes are used in the fields of living organisms and biotechnology to observe the physiological reaction and morphology of living cells. Among these various types of microscopes are microscopes that observe an object by observing a fluorescent / phosphorescent phenomenon from living or non-living measurement data. For example, Patent Document 1 discloses an example of a fluorescence microscope.
 また、近年では、光源として使用されるレーザーの短波長化が可能となってきており、このような蛍光顕微鏡として、物質励起に2光子吸収過程を利用した2光子励起顕微鏡も使われるようになってきている。 In recent years, it has become possible to shorten the wavelength of a laser used as a light source, and as such a fluorescence microscope, a two-photon excitation microscope using a two-photon absorption process for material excitation has come to be used. It is coming.
 このような蛍光顕微鏡は、例えば、レーザー光源から出力される励起光により測定資料を走査し、当該測定資料からの蛍光の強度分布を作成することで、当該強度分布に基づき測定資料の画像を生成する。 Such a fluorescence microscope, for example, scans a measurement material with excitation light output from a laser light source and creates an intensity distribution of fluorescence from the measurement material, thereby generating an image of the measurement material based on the intensity distribution. To do.
特開2012-8261号公報JP 2012-8261 A
 上記に説明したような蛍光顕微鏡の光源に用いられるレーザー光源は、一般的には大型のものが用いられており、顕微鏡とは別筐体として当該顕微鏡に外付けする構成で使用され、システム全体として大型化する傾向にある。 The laser light source used for the light source of the fluorescence microscope as described above is generally a large-sized one, and is used in a configuration that is externally attached to the microscope as a separate housing from the microscope. Tends to increase in size.
 これに対して、近年では、半導体の再結合発光を利用した半導体レーザーのように、従来よりも小型のレーザー光源が登場してきている。そのため、蛍光顕微鏡のような光源を要する画像取得装置の筐体内に、半導体レーザーのような小型のレーザー光源を設けることで、当該画像取得装置自体の小型化が検討されている。 On the other hand, in recent years, laser light sources that are smaller than conventional ones have appeared, such as semiconductor lasers that utilize semiconductor recombination emission. Therefore, the miniaturization of the image acquisition device itself is being considered by providing a small laser light source such as a semiconductor laser in the housing of an image acquisition device that requires a light source such as a fluorescence microscope.
 しかしながら、レーザー光源を画像取得装置の筐体内に設けた場合には、当該レーザー光源は、同一筐体内に設けられた各機器による発熱の影響を受けてレーザー強度が変化し、当該レーザー強度の変化が画像上にノイズとして表れることが予想される。 However, when the laser light source is provided in the housing of the image acquisition device, the laser light source is affected by heat generated by each device provided in the same housing, and the laser intensity changes. Appears as noise on the image.
 そこで、本開示では、レーザー光源を同一筐体内に設けることで装置の小型化を図り、かつ、鮮明な画像を取得することが可能な、新規かつ改良された画像取得装置及び画像取得方法を提案する。 Therefore, the present disclosure proposes a new and improved image acquisition apparatus and image acquisition method capable of downsizing the apparatus by providing a laser light source in the same housing and acquiring a clear image. To do.
 本開示によれば、レーザー光を出射する光源と、前記光源と同一筐体内に設けられ、前記レーザー光によりサンプルを走査し、当該レーザー光を受けて前記サンプルからの測定対象光の強度を測定する測定部と、測定された前記測定対象光の強度分布に基づき、当該サンプルの画像を生成する制御部と、を備え、前記測定部は、前記光源から出射されたレーザー光の強度を測定し、前記制御部は、測定された当該レーザー光の強度に基づき、前記光源から出射されるレーザー光の強度の制御と、測定された前記測定対象光の強度分布の補正との、少なくともいずれかを実行する、画像取得装置が提供される。 According to the present disclosure, a light source that emits laser light, and a sample that is provided in the same housing as the light source, scans the sample with the laser light, and receives the laser light to measure the intensity of light to be measured from the sample. And a control unit that generates an image of the sample based on the measured intensity distribution of the measurement target light, and the measurement unit measures the intensity of the laser light emitted from the light source. The control unit performs at least one of control of the intensity of the laser light emitted from the light source and correction of the intensity distribution of the measured light to be measured based on the measured intensity of the laser light. An image acquisition device is provided for execution.
 また、本開示によれば、同一筐体内に設けられた光源から出射されたレーザー光によりサンプルを走査し、当該レーザー光を受けて前記サンプルから生じる測定対象光の強度を測定することと、プロセッサが、測定された前記測定対象光の強度分布に基づき、当該サンプルの画像を生成することと、前記光源から出射されたレーザー光の強度を測定することと、測定された当該レーザー光の強度に基づき、前記光源から出射されるレーザー光の強度の制御と、測定された前記測定対象光の強度分布の補正との、少なくともいずれかを実行することと、を含む画像取得方法が提供される。 Further, according to the present disclosure, the sample is scanned with the laser light emitted from the light source provided in the same housing, the intensity of the measurement target light generated from the sample is received by receiving the laser light, and the processor Is based on the measured intensity distribution of the measurement target light, generating an image of the sample, measuring the intensity of the laser light emitted from the light source, and measuring the intensity of the laser light. Based on this, there is provided an image acquisition method including control of the intensity of laser light emitted from the light source and at least one of correction of the measured intensity distribution of the measurement target light.
 以上説明したように本開示によれば、レーザー光源を同一筐体内に設けることで装置の小型化を図り、かつ、鮮明な画像を取得することが可能な画像取得装置及び画像取得方法が提供される。 As described above, according to the present disclosure, there is provided an image acquisition apparatus and an image acquisition method capable of downsizing the apparatus by providing a laser light source in the same housing and acquiring a clear image. The
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
本開示の第1の実施形態に係る画像取得装置の概略的な構成の一例を示した説明図である。FIG. 3 is an explanatory diagram illustrating an example of a schematic configuration of an image acquisition device according to a first embodiment of the present disclosure. 蛍光について説明するための説明図である。It is explanatory drawing for demonstrating fluorescence. 共焦点顕微鏡の原理について説明するための説明図である。It is explanatory drawing for demonstrating the principle of a confocal microscope. 共焦点顕微鏡の原理について説明するための説明図である。It is explanatory drawing for demonstrating the principle of a confocal microscope. 1光子励起による蛍光と2光子励起による蛍光との違いについて説明するための説明図である。It is explanatory drawing for demonstrating the difference between the fluorescence by 1 photon excitation and the fluorescence by 2 photon excitation. 生体の光吸収特性について説明するためのグラフ図である。It is a graph for demonstrating the light absorption characteristic of a biological body. 2光子励起蛍光顕微鏡について説明するための説明図である。It is explanatory drawing for demonstrating a two-photon excitation fluorescence microscope. 顕微鏡のサンプル走査方式について説明するための説明図である。It is explanatory drawing for demonstrating the sample scanning system of a microscope. 比較例に係る画像取得装置の概略的なシステム構成の一例を示したシステム図である。It is a system diagram showing an example of a schematic system configuration of an image acquisition device according to a comparative example. 比較例に係る画像取得装置の光学系の構成の一例を示した説明図である。It is explanatory drawing which showed an example of the structure of the optical system of the image acquisition apparatus which concerns on a comparative example. 顕微鏡ユニットの構成の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of a structure of a microscope unit. 比較例に係る画像取得装置の機能構成の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of a function structure of the image acquisition apparatus which concerns on a comparative example. 同実施形態に係る光源の構成を詳細に示す模式図である。It is a schematic diagram which shows the structure of the light source concerning the embodiment in detail. 間欠発光によりレーザーのピークパワーを高くした状態を示す特性図である。It is a characteristic view which shows the state which raised the peak power of the laser by intermittent light emission. 本開示の第1の実施形態に係る画像取得装置の光学系の構成の一例を示した説明図である。FIG. 3 is an explanatory diagram illustrating an example of a configuration of an optical system of the image acquisition device according to the first embodiment of the present disclosure. 同実施形態に係る画像取得装置の機能構成の一例について説明するための説明図である。It is an explanatory view for explaining an example of a functional configuration of the image acquisition device according to the embodiment. 同実施形態に係る分布情報生成部及びシステム制御部の詳細な機能構成について説明するための説明図である。It is explanatory drawing for demonstrating the detailed function structure of the distribution information generation part and system control part which concern on the embodiment. 同実施形態に係る二次元化処理部の動作の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of operation | movement of the two-dimensionalization process part which concerns on the embodiment. 同実施形態に係る補正処理の概要について説明するための説明図である。It is explanatory drawing for demonstrating the outline | summary of the correction process which concerns on the same embodiment. 同実施形態に係るRAWファイルのファイルフォーマットの一例を示した図である。It is the figure which showed an example of the file format of the RAW file which concerns on the same embodiment. 強度分布の補正の原理について説明するための説明図である。It is explanatory drawing for demonstrating the principle of correction | amendment of intensity distribution. 強度分布の補正に係る処理の流れについて説明するためのフローチャートである。It is a flowchart for demonstrating the flow of the process concerning correction | amendment of intensity distribution. 光源からの出射光の強度制御の原理について説明するための説明図である。It is explanatory drawing for demonstrating the principle of intensity | strength control of the emitted light from a light source. 光源からの出射光の強度制御に係る処理の流れについて説明するためのフローチャートである。It is a flowchart for demonstrating the flow of the process which concerns on the intensity | strength control of the emitted light from a light source. ウォームアップ時における光源からの出射光の強度制御の原理について説明するための説明図である。It is explanatory drawing for demonstrating the principle of intensity | strength control of the emitted light from the light source at the time of warm-up. 同実施形態に係る情報処理装置の画像表示に係る一連の処理の流れを示したフローチャートである。5 is a flowchart showing a flow of a series of processes related to image display of the information processing apparatus according to the embodiment. 同実施形態に係る情報処理装置のノイズ補正に関する処理の一例を示したフローチャートである。It is the flowchart which showed an example of the process regarding the noise correction of the information processing apparatus which concerns on the embodiment. 本開示の第2の実施形態に係る画像取得装置の光学系の構成の一例を示した説明図である。It is explanatory drawing which showed an example of the structure of the optical system of the image acquisition apparatus which concerns on 2nd Embodiment of this indication. 同実施形態に係る画像取得装置の機能構成の一例について説明するための説明図である。It is an explanatory view for explaining an example of a functional configuration of the image acquisition device according to the embodiment. 同実施形態に係る分布情報生成部及びシステム制御部の詳細な機能構成について説明するための説明図である。It is explanatory drawing for demonstrating the detailed function structure of the distribution information generation part and system control part which concern on the embodiment. 観測対象の指定方法の一例について説明するための図である。It is a figure for demonstrating an example of the designation | designated method of observation object. 同実施形態に係るRAWファイルのファイルフォーマットの一例を示した図である。It is the figure which showed an example of the file format of the RAW file which concerns on the same embodiment. 同実施形態に係る画像取得装置の一連の動作についてその流れの一例を示したフローチャートである。5 is a flowchart illustrating an example of a flow of a series of operations of the image acquisition apparatus according to the embodiment. 光源から出射されるレーザー光の波長制御の原理について説明するための説明図である。It is explanatory drawing for demonstrating the principle of wavelength control of the laser beam radiate | emitted from a light source. 光源から出射されるレーザー光の波長制御の原理について説明するための説明図である。It is explanatory drawing for demonstrating the principle of wavelength control of the laser beam radiate | emitted from a light source. 光源から出射されるレーザー光の波長制御の原理について説明するための説明図である。It is explanatory drawing for demonstrating the principle of wavelength control of the laser beam radiate | emitted from a light source. 光源から出射されるレーザー光の波長制御に係る処理の流れについて説明するためのフローチャートである。It is a flowchart for demonstrating the flow of the process which concerns on the wavelength control of the laser beam radiate | emitted from a light source. 本開示の第3の実施形態に係る画像取得装置の機能構成の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of a function structure of the image acquisition apparatus which concerns on 3rd Embodiment of this indication. 同実施形態に係る分布情報生成部及びシステム制御部の詳細な機能構成について説明するための説明図である。It is explanatory drawing for demonstrating the detailed function structure of the distribution information generation part and system control part which concern on the embodiment. 本開示の第4の実施形態に係る画像取得装置の概要について説明するための説明図である。It is an explanatory view for explaining an outline of an image acquisition device concerning a 4th embodiment of this indication. 同実施形態に係る補正処理の原理について説明するための説明図である。It is explanatory drawing for demonstrating the principle of the correction process which concerns on the same embodiment. 同実施形態に係る分布情報生成部及びシステム制御部の詳細な機能構成について説明するための説明図である。It is explanatory drawing for demonstrating the detailed function structure of the distribution information generation part and system control part which concern on the embodiment. 同実施形態に係るRAWファイルのファイルフォーマットの一例を示した図である。It is the figure which showed an example of the file format of the RAW file which concerns on the same embodiment. 画像取得装置のハードウェア構成の一例である。It is an example of the hardware constitutions of an image acquisition apparatus.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は以下の順序で行うものとする。
 1.第1の実施の形態
  1.1.画像取得装置の概要
  1.2.顕微鏡について
   1.2.1.顕微鏡の種類について:共焦点顕微鏡
   1.2.2.顕微鏡の種類について:2光子励起顕微鏡
  1.3.比較例に係る画像取得装置
   1.3.1.光学系の構成
   1.3.2.顕微鏡ユニットの構成
   1.3.3.画像取得装置の機能構成
  1.4.比較例に係る画像取得装置の課題
  1.5.画像取得装置の構成
   1.5.1.概要
   1.5.2.光源の構成
   1.5.3.光学系の構成
   1.5.4.画像取得装置の機能構成
  1.6.RAWファイルのファイルフォーマット
  1.7.補正処理の詳細
   1.7.1.補正の原理
   1.7.2.補正に係る動作の流れ
  1.8.レーザー光の強度制御の詳細
   1.8.1.強度制御の原理
   1.8.2.強度制御に係る動作の流れ
  1.9.ウォームアップ時におけるレーザー光の強度制御
  1.10.情報処理装置の動作
  1.11.まとめ
 2.第2の実施の形態
  2.1.画像取得装置の概要
  2.2.画像取得装置の構成
   2.2.1.光学系の構成
   2.2.2.画像取得装置の機能構成
  2.3.RAWファイルのファイルフォーマット
  2.4.画像取得装置の動作の流れ
  2.5.波長制御の詳細
   2.5.1.波長制御の原理:複数の観測波長により試料を観測する場合
   2.5.2.波長制御の一態様:単一の観測波長により試料を観測する場合
  2.6.まとめ
 3.第3の実施の形態
  3.1.画像取得装置の概要
  3.2.画像取得装置の構成
   3.2.1.光学系の構成
   3.2.2.画像取得装置の機能構成
  3.3.まとめ
 4.第4の実施の形態
  4.1.画像取得装置の概要
  4.2.画像取得装置の構成
  4.3.RAWファイルのファイルフォーマット
  4.4.まとめ
 5.ハードウェア構成
 6.まとめ
The description will be made in the following order.
1. 1. First embodiment 1.1. Outline of image acquisition apparatus 1.2. About Microscope 1.2.1. Microscope type: Confocal microscope 1.2.2. Microscope type: Two-photon excitation microscope 1.3. Image acquisition apparatus according to comparative example 1.3.1. Configuration of optical system 1.3.2. Configuration of microscope unit 1.3.3. Functional configuration of image acquisition apparatus 1.4. Problems of image acquisition device according to comparative example 1.5. Configuration of image acquisition apparatus 1.5.1. Overview 1.5.2. Configuration of light source 1.5.3. Configuration of optical system 1.5.4. Functional configuration of image acquisition apparatus 1.6. RAW file format 1.7. Details of correction processing 1.7.1. Principle of correction 1.7.2. Flow of operations related to correction 1.8. Details of laser light intensity control 1.8.1. Principle of strength control 1.8.2. Flow of operation related to intensity control 1.9. Control of laser beam intensity during warm-up 1.10. Operation of information processing apparatus 1.11. Summary 2. Second Embodiment 2.1. Outline of image acquisition apparatus 2.2. Configuration of image acquisition apparatus 2.2.1. Configuration of optical system 2.2.2. Functional configuration of image acquisition apparatus 2.3. RAW file format 2.4. Flow of operation of image acquisition device 2.5. Details of wavelength control 2.5.1. Principle of wavelength control: When observing a sample with multiple observation wavelengths 2.5.2. One mode of wavelength control: when observing a sample with a single observation wavelength 2.6. Summary 3. Third embodiment 3.1. Outline of image acquisition device 3.2. Configuration of image acquisition apparatus 3.2.1. Configuration of optical system 3.2.2. Functional configuration of image acquisition apparatus 3.3. Summary 4. Fourth embodiment 4.1. Outline of image acquisition device 4.2. Configuration of image acquisition device 4.3. RAW file format 4.4. Summary 5. Hardware configuration Summary
 <1.第1の実施形態>
 [1.1.画像取得装置の概要]
 まず、図1を参照しながら、本開示の第1の実施形態に係る画像取得装置の概要について説明する。図1は、本開示の第1の実施形態に係る画像取得装置の概略的な構成の一例を示した説明図である。
<1. First Embodiment>
[1.1. Overview of image acquisition device]
First, an overview of an image acquisition device according to the first embodiment of the present disclosure will be described with reference to FIG. FIG. 1 is an explanatory diagram illustrating an example of a schematic configuration of an image acquisition device according to the first embodiment of the present disclosure.
 図1に示すように、本実施形態に係る画像取得装置1は、光源2と、測定部3と、制御部6と、I/F(Interface)7とを含む。 As shown in FIG. 1, the image acquisition device 1 according to the present embodiment includes a light source 2, a measurement unit 3, a control unit 6, and an I / F (Interface) 7.
 本実施形態に係る画像取得装置1は、サンプルSを光源2から出射された光で走査し、サンプルSから放出される蛍光を測定部3で測定することで、測定された蛍光に基づき当該サンプルSの画像を取得する。なお、この場合の蛍光のように、サンプルSから得られる光が「測定対象光」の一例に相当する。 The image acquisition device 1 according to the present embodiment scans the sample S with light emitted from the light source 2 and measures the fluorescence emitted from the sample S by the measurement unit 3, thereby measuring the sample based on the measured fluorescence. The image of S is acquired. In addition, like the fluorescence in this case, the light obtained from the sample S corresponds to an example of “measurement target light”.
 特に、本実施形態に係る画像取得装置1は、少なくとも、光源2と測定部3とが、画像取得装置1内(即ち、同一筐体内)に設けられている。例えば、図1に示す例では、光源2と、測定部3と、制御部6と、I/F7とが、画像取得装置1内に設けられている。 Particularly, in the image acquisition device 1 according to this embodiment, at least the light source 2 and the measurement unit 3 are provided in the image acquisition device 1 (that is, in the same housing). For example, in the example illustrated in FIG. 1, the light source 2, the measurement unit 3, the control unit 6, and the I / F 7 are provided in the image acquisition device 1.
 測定部3は、後述する顕微鏡の役割を果たす顕微鏡ユニット4と、サンプルSの走査及び当該サンプルSから放出される蛍光の検出を担う走査系(検出系)5とを含む。 The measurement unit 3 includes a microscope unit 4 that functions as a microscope, which will be described later, and a scanning system (detection system) 5 that performs scanning of the sample S and detection of fluorescence emitted from the sample S.
 また、制御部6は、光源2及び測定部3の動作を制御し、測定部3で測定(検出)された光を画像に変換する。また、制御部6は、測定部3で測定(検出)された光に基づき光源2の動作を制御することで、光源2を安定的に動作させる。 Also, the control unit 6 controls the operation of the light source 2 and the measurement unit 3, and converts the light measured (detected) by the measurement unit 3 into an image. The control unit 6 controls the operation of the light source 2 based on the light measured (detected) by the measurement unit 3 so that the light source 2 operates stably.
 I/F7は、画像取得装置1が、ユーザや他の装置と情報を送受信するためのインタフェースである。画像取得装置1は、例えば、当該I/F7(例えば、通信用インタフェース)を介して外部ネットワークに接続し、当該外部ネットワークを介して接続された情報処理装置800に、制御部6で生成された画像を出力してもよい。 The I / F 7 is an interface for the image acquisition device 1 to transmit / receive information to / from a user or another device. For example, the image acquisition apparatus 1 is connected to an external network via the I / F 7 (for example, a communication interface), and is generated by the control unit 6 in the information processing apparatus 800 connected via the external network. An image may be output.
 本実施形態に係る画像取得装置1の光源2、測定部3、制御部6、及びI/F7の詳細については、「1.5.画像取得装置の構成」として別途後述する。 Details of the light source 2, the measurement unit 3, the control unit 6, and the I / F 7 of the image acquisition device 1 according to the present embodiment will be separately described later as “1.5. Configuration of the image acquisition device”.
 なお、本実施形態に係る画像取得装置1は、少なくとも光源2と測定部3とが同一筐体内に設けられていれば、その他の構成(例えば、制御部6やI/F7)については、必ずしも画像取得装置1内に設けられていなくてもよい。例えば、光源2と測定部3とを内蔵した画像取得装置1との間で情報を送受信可能な情報処理装置を別途設け、当該情報処理装置に、制御部6と、I/F7とを設けてもよい。もちろん、情報処理装置800側に、制御部6と、I/F7とを設けてもよいことは言うまでもない。 Note that the image acquisition device 1 according to the present embodiment does not necessarily have other configurations (for example, the control unit 6 and the I / F 7) as long as at least the light source 2 and the measurement unit 3 are provided in the same housing. The image acquisition apparatus 1 may not be provided. For example, an information processing device capable of transmitting and receiving information between the light source 2 and the image acquisition device 1 including the measurement unit 3 is separately provided, and the control unit 6 and the I / F 7 are provided in the information processing device. Also good. Of course, it goes without saying that the control unit 6 and the I / F 7 may be provided on the information processing apparatus 800 side.
 [1.2.顕微鏡について]
 ここで、本実施形態に係る画像取得装置1の詳細についての説明に先立ち、本実施形態に係る画像取得装置1において、測定部3の顕微鏡ユニット4として用いられる顕微鏡について、図2~図8を参照しながら、詳細に説明する。
[1.2. About the microscope]
Here, prior to the detailed description of the image acquisition device 1 according to the present embodiment, FIGS. 2 to 8 show a microscope used as the microscope unit 4 of the measurement unit 3 in the image acquisition device 1 according to the present embodiment. Details will be described with reference to FIG.
 本実施形態で着目するサンプルSに生じている現象の一つとして、サンプルSから放出される蛍光を挙げることができる。以下では、まず、図2を参照しながら、蛍光について簡単に説明する。図2は、蛍光について説明するための説明図である。 Fluorescence emitted from the sample S can be cited as one of the phenomena occurring in the sample S of interest in the present embodiment. In the following, first, fluorescence will be briefly described with reference to FIG. FIG. 2 is an explanatory diagram for explaining fluorescence.
 測定サンプルを構成する(又は、測定サンプルに付着する)ある分子に対して所定波長の光が照射されると、照射された光が有するエネルギーを利用して、分子中の電子が基底状態に対応するエネルギー準位から励起状態に対応するエネルギー準位に移動することがある。この際に照射された光のことを、励起光と呼ぶ。基底状態にある分子が励起されて一重項励起状態が生じると、励起された電子は、一重項励起状態に対応するエネルギー準位のいずれかへ移動することとなるが、この励起された電子は、内部転換によりエネルギーを放出しながらより低位のエネルギー準位へと移動していく。励起状態にある電子が基底状態へと戻る際にエネルギーが光として放出されることがあるが、この際に放出される光が、本実施形態で着目する蛍光である。 When light of a predetermined wavelength is irradiated to a molecule that constitutes the measurement sample (or adheres to the measurement sample), the electrons in the molecule correspond to the ground state using the energy of the irradiated light. May shift from the energy level to the energy level corresponding to the excited state. The light irradiated at this time is called excitation light. When a molecule in the ground state is excited to produce a singlet excited state, the excited electron moves to one of the energy levels corresponding to the singlet excited state. , Moving to lower energy levels while releasing energy by internal conversion. When electrons in the excited state return to the ground state, energy may be emitted as light, and the light emitted at this time is the fluorescence of interest in the present embodiment.
  <<1.2.1.顕微鏡の種類について:共焦点顕微鏡>>
 このような蛍光を観測するために利用される光学顕微鏡の一つとして、図3及び図4に示したような共焦点顕微鏡がある。以下、図3及び図4を参照しながら、共焦点顕微鏡の原理について簡単に説明する。図3及び図4は、共焦点顕微鏡の原理について説明するための説明図である。
<< 1.2.1. Microscope type: Confocal microscope >>
As one of optical microscopes used for observing such fluorescence, there is a confocal microscope as shown in FIGS. Hereinafter, the principle of the confocal microscope will be briefly described with reference to FIGS. 3 and 4. 3 and 4 are explanatory diagrams for explaining the principle of the confocal microscope.
 図3に示した共焦点蛍光顕微鏡は、励起光としてレーザー光線を用いて、このレーザー光線を測定サンプル(蛍光標本)まで導光し、測定サンプルの焦点面で発生した蛍光を、検出器まで導光するような構成となっている。ここで、励起光として用いられるレーザー光線は、ピンホールAを通過することによって点光源とみなすことができ、レーザー光線は、ダイクロイックミラー及び対物レンズを透過して、蛍光標本に投影される。蛍光標本では、投影されたレーザー光線の有するエネルギーにより蛍光が生じ、射出された蛍光が対物レンズにより集光され、ダイクロイックミラーにより検出器の方向へと導光される。検出器の直前にはピンホールBが設置されており、ピンホールBを通過した蛍光が、光電子増倍管(PhotoMultiplier Tube:PMT)等の検出器で検出されることとなる。 The confocal fluorescence microscope shown in FIG. 3 uses a laser beam as excitation light, guides the laser beam to a measurement sample (fluorescence specimen), and guides the fluorescence generated at the focal plane of the measurement sample to a detector. It has a configuration like this. Here, the laser beam used as the excitation light can be regarded as a point light source by passing through the pinhole A, and the laser beam passes through the dichroic mirror and the objective lens and is projected onto the fluorescent specimen. In the fluorescent specimen, fluorescence is generated by the energy of the projected laser beam, and the emitted fluorescence is collected by the objective lens and guided to the detector by the dichroic mirror. A pinhole B is installed immediately before the detector, and the fluorescence that has passed through the pinhole B is detected by a detector such as a photomultiplier tube (PMT).
 ここで、励起光として用いるレーザー光線の波長は、例えば測定サンプルを染色するために用いた蛍光色素の種別等に応じて、適宜選択することが可能であり、特定の波長に限定されるものではない。 Here, the wavelength of the laser beam used as the excitation light can be appropriately selected according to, for example, the type of fluorescent dye used for staining the measurement sample, and is not limited to a specific wavelength. .
 このような共焦点蛍光顕微鏡において、ピンホールAの設置位置と、点光源の投影位置(測定サンプルの焦点面)と、ピンホールBの設置位置とは、光学的に互いに共役な関係となっており、この3点の共役関係を共焦点関係にあるという。 In such a confocal fluorescence microscope, the installation position of the pinhole A, the projection position of the point light source (focal plane of the measurement sample), and the installation position of the pinhole B are optically conjugate with each other. This three-point conjugate relationship is said to be confocal.
 このとき、図4に示したように、対物レンズの焦点面(ピントのあった面)から射出された蛍光は、対物レンズによって集光されて共焦点ピンホール(図3のピンホールB)を通過することができるが、焦点の合っていない部分からの蛍光は、共焦点ピンホールを通過することができない。結果として、共焦点蛍光顕微鏡では、焦点の合った測定サンプルの部分のみの輝度情報を得ることができる。従って、測定サンプルの平面(試料面)を縦方向及び横方向に走査することで、焦点の合った部分のみの2次元像(光学断層像)を構築することができる。また、このような試料面の走査を、焦点位置を変えながら繰り返して異なる奥行き位置(深さ位置)にある測定サンプルからの蛍光を集積することで、奥行き位置毎の光学断層像の集合(3次元拡大画像群)を得ることができる。 At this time, as shown in FIG. 4, the fluorescence emitted from the focal plane (the focused surface) of the objective lens is collected by the objective lens and passes through the confocal pinhole (pinhole B in FIG. 3). Fluorescence from out-of-focus parts can pass through the confocal pinhole, although it can pass through. As a result, with the confocal fluorescence microscope, it is possible to obtain luminance information of only the portion of the measurement sample in focus. Therefore, a two-dimensional image (optical tomographic image) of only a focused portion can be constructed by scanning the plane (sample surface) of the measurement sample in the vertical direction and the horizontal direction. In addition, the scanning of the sample surface is repeated while changing the focal position, and fluorescence from measurement samples at different depth positions (depth positions) is accumulated to collect a set of optical tomographic images (3 Dimensional enlarged image group) can be obtained.
  <<1.2.2.顕微鏡の種類について:2光子励起顕微鏡>>
 3次元画像を得ることが可能な他の手法として、2光子励起顕微鏡がある。図5は、2光子励起の原理を説明するための説明図である。図5の左側の図は、先だって説明した通常の蛍光の原理を示した説明図であり、ある波長の励起光(図では、波長350nmの励起光)によって分子が励起されることで、励起光よりも長波長の蛍光(図では、波長500nmの蛍光)が射出される。このような蛍光発生の仕組みは、いわば1つの光子と分子との相互作用により分子が励起状態となることで蛍光が発生する仕組みであるため、1光子励起による蛍光発生と呼ばれている。
<< 1.2.2. Microscope types: Two-photon excitation microscope >>
There is a two-photon excitation microscope as another method capable of obtaining a three-dimensional image. FIG. 5 is an explanatory diagram for explaining the principle of two-photon excitation. The diagram on the left side of FIG. 5 is an explanatory diagram showing the principle of normal fluorescence explained earlier. Excitation light is generated by exciting a molecule with excitation light having a certain wavelength (in the figure, excitation light having a wavelength of 350 nm). Longer wavelength fluorescence (fluorescence with a wavelength of 500 nm in the figure) is emitted. Such a mechanism of fluorescence generation is so-called fluorescence generation by one-photon excitation because it is a mechanism in which fluorescence is generated when a molecule is excited by the interaction between one photon and a molecule.
 一方、図5の右側の図に示したように、1つの光子により分子が仮想準位に励起されている間に、もうひとつの光子によって更に分子が励起されることにより、分子がある励起状態へと励起され、励起状態にある分子が基底状態へと遷移することにより蛍光が発生することがある。このような蛍光発生の仕組みは、2つの光子と分子との相互作用により分子が励起状態となることで蛍光が発生する仕組みであるため、2光子励起による蛍光発生と呼ばれている。2光子励起による蛍光発生を利用することで、励起光よりも短い波長の蛍光を発生させることが可能となる(図5の例では、波長700nmの赤外光を励起光として、波長500nmの蛍光が発生している。)。 On the other hand, as shown in the diagram on the right side of FIG. 5, while a molecule is excited to a virtual level by one photon, the molecule is further excited by another photon. Fluorescence may occur when molecules in the excited state are excited to the transition to the ground state. Such a mechanism of fluorescence generation is called fluorescence generation by two-photon excitation because fluorescence is generated when the molecule is excited by the interaction between two photons and the molecule. By utilizing fluorescence generation by two-photon excitation, it becomes possible to generate fluorescence having a wavelength shorter than that of the excitation light (in the example of FIG. 5, fluorescence having a wavelength of 500 nm using infrared light having a wavelength of 700 nm as excitation light). Has occurred.)
 2光子励起が成立するためには、1つめの光子と衝突した分子が仮想準位に励起している1.0×10-16秒程度の極めて短い時間内に、もう1つの光子と衝突して一重項励起状態まで遷移することが求められるため、高い光子密度が必要になり、高いピーク・パワーを出力可能なレーザー光源を用いることとなる。また、1光子励起過程と比べると放出される蛍光信号が極めて微弱であるため、損失の少ない光学系や感度の良い検出器を利用することが求められる。 In order for two-photon excitation to be established, a molecule that collided with the first photon collided with another photon within an extremely short time of about 1.0 × 10 −16 seconds when it was excited to a virtual level. Therefore, a high photon density is required, and a laser light source capable of outputting a high peak power is used. Further, since the emitted fluorescence signal is very weak compared to the one-photon excitation process, it is required to use an optical system with little loss and a sensitive detector.
 このような点にも関わらず2光子励起蛍光顕微鏡が希求される大きな理由は、2光子励起で用いられる700nm~1000nm程度の赤外帯域の蛍光波長が、図6に示したように、水やヘモグロビンの吸収を受けることなく生体を透過しやすい「生体の窓」と呼ばれる波長域となっているためである。このような励起光の高い透過性のために、共焦点蛍光顕微鏡では100μm程度の深さまでしか観察できないのに対して、2光子励起蛍光顕微鏡では1000μm(1mm)の深さまで観察可能であると言われている。 In spite of these points, the main reason for the demand for a two-photon excitation fluorescence microscope is that the fluorescence wavelength in the infrared band of about 700 nm to 1000 nm used for two-photon excitation is water or water as shown in FIG. This is because it has a wavelength range called “biological window” that easily penetrates the living body without being absorbed by hemoglobin. Because of such high transmittance of excitation light, it can be observed only to a depth of about 100 μm with a confocal fluorescence microscope, whereas it can be observed to a depth of 1000 μm (1 mm) with a two-photon excitation fluorescence microscope. It has been broken.
 また、図7に示したように、1光子励起蛍光顕微鏡では、焦点面以外にも試料の厚み方向全体にわたって分子が励起され、厚み方向全体から蛍光が射出されるのに対し、2光子励起蛍光顕微鏡では、焦点面近傍のみが励起される。このため、試料のより深い部分を明るく観察することが可能となるとともに、異なった焦点面で縦方向及び横方向の走査を繰り返し実施した場合であっても、蛍光の消退や光によるダメージを最小限に抑えることができる。また、同様の理由により光毒性を最小限に抑えることができるため、サンプルの深い位置に存在する生きた細胞を長時間に渡って観察することが可能になる。 In addition, as shown in FIG. 7, in the one-photon excitation fluorescence microscope, molecules are excited throughout the thickness direction of the sample other than the focal plane, and fluorescence is emitted from the entire thickness direction, whereas two-photon excitation fluorescence is emitted. In the microscope, only the vicinity of the focal plane is excited. This makes it possible to brightly observe deeper portions of the sample, and minimizes fluorescence quenching and light damage even when repeated vertical and horizontal scans are performed at different focal planes. To the limit. Moreover, since phototoxicity can be minimized for the same reason, it becomes possible to observe living cells existing deep in the sample for a long time.
 また、2光子励起蛍光顕微鏡では、励起により射出された蛍光は試料内の微小領域に由来するため、その光シグナルを全て検出すれば蛍光画像を得ることができる。これにより、2光子励起蛍光顕微鏡では、顕微鏡における検出光学系を簡易化できる。すなわち、2光子励起過程では、焦点位置近傍の試料のみから蛍光が射出されるため、共焦点蛍光顕微鏡のようにピンホールを用いて余計な信号をカットする必要は無く、サンプルの近傍に検出器を配置して、全方位に拡散する蛍光信号をできるだけ多く拾うようにすればよい。 Also, in the two-photon excitation fluorescence microscope, the fluorescence emitted by excitation is derived from a minute region in the sample, and thus a fluorescence image can be obtained by detecting all the light signals. Thereby, in the two-photon excitation fluorescence microscope, the detection optical system in the microscope can be simplified. That is, in the two-photon excitation process, since fluorescence is emitted only from the sample near the focal position, there is no need to cut extra signals using a pinhole as in the confocal fluorescence microscope, and the detector is located near the sample. Is arranged so as to pick up as many fluorescent signals as possible to diffuse in all directions.
  <<1.2.3.顕微鏡の走査方式について>>
 以上説明したようなレーザー走査型の顕微鏡では、多くの場合、2種類のガルバノミラーを用いて測定サンプルのX方向及びY方向(縦方向及び横方向)の走査を行うことで、2次元画像(光学断層像)を取得している。図8では、2種類のガルバノミラーを用いた共焦点蛍光顕微鏡の構成例を示している。
<< 1.2.3. Microscope scanning method >>
In the laser scanning microscope as described above, in many cases, a two-dimensional image (by scanning in the X direction and Y direction (vertical direction and horizontal direction) of the measurement sample using two types of galvanometer mirrors ( Optical tomogram). FIG. 8 shows a configuration example of a confocal fluorescence microscope using two types of galvanometer mirrors.
 レーザー光源から射出された励起光は、レンズ等の光学系及び共役位置に設けられたピンホールを透過した後に、励起光を透過させるとともに蛍光を反射させるダイクロイックミラーを透過する。ダイクロイックミラーを透過した励起光は、レンズ等の光学系を透過し、測定サンプルのX方向の走査を制御するX方向ガルバノミラーによりX座標が制御された後に、Y方向の走査を制御するY方向ガルバノミラーによりY座標が制御され、対物レンズにより測定サンプル上の所望のXY座標に集光される。 Excitation light emitted from a laser light source passes through an optical system such as a lens and a pinhole provided at a conjugate position, and then passes through a dichroic mirror that transmits the excitation light and reflects fluorescence. The excitation light that has passed through the dichroic mirror passes through an optical system such as a lens, and after the X coordinate is controlled by an X direction galvanometer mirror that controls scanning of the measurement sample in the X direction, the Y direction controls the Y direction scanning. The Y coordinate is controlled by the galvanometer mirror, and the light is condensed to a desired XY coordinate on the measurement sample by the objective lens.
 測定サンプルから射出された蛍光は、Y方向ガルバノミラー及びX方向ガルバノミラーによって反射されて励起光と同じ経路をたどり、ダイクロイックミラーによって反射される。ダイクロイックミラーにより反射された蛍光は、共役位置に設けられたピンホールを透過した後、光電子増倍管等の検出器へと導光される。 Fluorescence emitted from the measurement sample is reflected by the Y-direction galvanometer mirror and the X-direction galvanometer mirror, follows the same path as the excitation light, and is reflected by the dichroic mirror. The fluorescence reflected by the dichroic mirror is transmitted through a pinhole provided at the conjugate position and then guided to a detector such as a photomultiplier tube.
 ここで、測定サンプル上の集光位置を制御するために用いられる2つのガルバノミラーは、図8に模式的に示したように、ミラーに回転軸が接続されたものである。ガルバノミラーは、入力された電圧の大きさによって回転軸の回転量が制御され、ミラー面が向いている角度を高速かつ高精度に変更することができる。 Here, the two galvanometer mirrors used for controlling the condensing position on the measurement sample have mirrors connected to a rotation axis as schematically shown in FIG. In the galvanometer mirror, the amount of rotation of the rotating shaft is controlled by the magnitude of the input voltage, and the angle at which the mirror surface is facing can be changed at high speed and with high accuracy.
 [1.3.比較例に係る画像取得装置]
 次いで、本実施形態に係る画像取得装置1の詳細について説明するにあたり、従来の画像取得装置の構成を比較例として説明することで、本実施形態に係る画像取得装置1の課題について整理する。例えば、図9は、比較例に係る画像取得装置の概略的な構成の一例を示した説明図である。図9に示すように、比較例に係る画像取得装置1wは、光源2wを画像取得装置1wの外部に設けている。
[1.3. Image acquisition apparatus according to comparative example]
Next, in describing the details of the image acquisition device 1 according to the present embodiment, the configuration of the conventional image acquisition device will be described as a comparative example to organize the problems of the image acquisition device 1 according to the present embodiment. For example, FIG. 9 is an explanatory diagram illustrating an example of a schematic configuration of an image acquisition apparatus according to a comparative example. As shown in FIG. 9, the image acquisition device 1w according to the comparative example has a light source 2w provided outside the image acquisition device 1w.
  <<1.3.1.光学系の構成>>
 ここで、図10を参照しながら、比較例に係る画像取得装置1wの光学系の構成について、主に、サンプルSに光源2wからの光を照射し、当該光により励起されることでサンプルSから発生した蛍光を検出する部分に着目して説明する。
<< 1.3.1. Configuration of optical system >>
Here, with reference to FIG. 10, the configuration of the optical system of the image acquisition device 1 w according to the comparative example is mainly such that the sample S is irradiated with light from the light source 2 w and excited by the light. A description will be given focusing on the part for detecting the fluorescence generated from.
 図10に示すように、比較例に係る画像取得装置1wの光学系は、光源2と、ビーム整形用レンズ511と、ガルバノミラー51と、レンズ513及び515と、ミラー517と、ダイクロイックミラー52と、対物レンズ42と、結像レンズ521と、エミッションフィルタ523と、光検出器53とを含む。なお、図10に示す例では、光検出器53として、PMTを用いている。以降では、光検出器53としてPMTが用いられるものとし、「PMT53」と記載した場合には、「光検出器53」を示すものとする。 As shown in FIG. 10, the optical system of the image acquisition device 1 w according to the comparative example includes a light source 2, a beam shaping lens 511, a galvano mirror 51, lenses 513 and 515, a mirror 517, and a dichroic mirror 52. , Objective lens 42, imaging lens 521, emission filter 523, and photodetector 53. In the example shown in FIG. 10, a PMT is used as the photodetector 53. Hereinafter, it is assumed that a PMT is used as the light detector 53, and when “PMT 53” is described, “light detector 53” is indicated.
 光源2から出射された励起光(レーザー光)は、ビーム整形用レンズ511により平行光のままビーム径が拡大されてガルバノミラー51に到達する。ガルバノミラー51に到達した励起光は、当該ガルバノミラー51により反射された後、レンズ513、ミラー517、及びレンズ515を介してダイクロイックミラー52に導かれる。レンズ513、ミラー517、及びレンズ515は、ガルバノミラー51により反射された励起光を、ダイクロックミラー52に導くための光学系である。 The excitation light (laser light) emitted from the light source 2 reaches the galvanometer mirror 51 with the beam diameter being expanded by the beam shaping lens 511 while being parallel light. The excitation light that has reached the galvanometer mirror 51 is reflected by the galvanometer mirror 51 and then guided to the dichroic mirror 52 via the lens 513, the mirror 517, and the lens 515. The lens 513, the mirror 517, and the lens 515 are an optical system for guiding the excitation light reflected by the galvanometer mirror 51 to the dichroic mirror 52.
 ダイクロイックミラー52は、到達した励起光を透過させて対物レンズ42へ導く。対物レンズ42は、当該励起光をサンプルSへ集光する。そして対物レンズ42及び結像レンズ521は、サンプルSの像を所定の倍率に拡大し、当該拡大像をPMT53の検出面に結像させる。 The dichroic mirror 52 transmits the reached excitation light and guides it to the objective lens 42. The objective lens 42 condenses the excitation light on the sample S. The objective lens 42 and the imaging lens 521 enlarge the image of the sample S to a predetermined magnification, and form the enlarged image on the detection surface of the PMT 53.
 サンプルSに励起光が照射されると、サンプルSのある分子が、当該励起光により励起されて蛍光を発する。この蛍光は、対物レンズ42を介してダイクロイックミラー52により反射されて結像レンズ521へ到達し、結像レンズ521により集光されてエミッションフィルタ523を介してPMT53の検出面に結像する。エミッションフィルタ523は、例えば、上記対物レンズ42によって拡大された発色光以外の光(外光)を吸収することで、当該発行色のみを透過させる。当該外光が喪失された発色光の像は、PMT53上に結像される。 When the sample S is irradiated with excitation light, a molecule in the sample S is excited by the excitation light and emits fluorescence. The fluorescence is reflected by the dichroic mirror 52 via the objective lens 42 and reaches the imaging lens 521, and is condensed by the imaging lens 521 and forms an image on the detection surface of the PMT 53 via the emission filter 523. For example, the emission filter 523 transmits only the emitted color by absorbing light (external light) other than the color light expanded by the objective lens 42. The colored light image from which the external light is lost is formed on the PMT 53.
  <<1.3.2.顕微鏡ユニットの構成>>
 次に、図11を参照しながら、顕微鏡ユニット4の構成の一例について説明する。図11は、顕微鏡ユニット4の構成の一例について説明するための説明図である。図14に示すように、顕微鏡ユニット4は、非偏光ビームスプリッタ41及び44と、対物レンズ42と、フィルタ43と、カメラ45と、アイピース46とを含む。なお、図11に示す例において、走査系(検出系)5wの各構成は、図10に示した光学系において同様の符号が付された構成に対応している。また、図11に示す例では、図10に示した構成のうち一部を省略している。
<< 1.3.2. Configuration of microscope unit >>
Next, an example of the configuration of the microscope unit 4 will be described with reference to FIG. FIG. 11 is an explanatory diagram for explaining an example of the configuration of the microscope unit 4. As shown in FIG. 14, the microscope unit 4 includes non-polarizing beam splitters 41 and 44, an objective lens 42, a filter 43, a camera 45, and an eyepiece 46. In the example shown in FIG. 11, each configuration of the scanning system (detection system) 5 w corresponds to the configuration given the same reference numeral in the optical system shown in FIG. 10. In the example shown in FIG. 11, a part of the configuration shown in FIG. 10 is omitted.
 光源2wから出射された励起光(レーザー光)は、走査系(検出系)5wを介して顕微鏡ユニット4内の非偏光ビームスプリッタ41に導光される。非偏光ビームスプリッタ41は、走査系(検出系)5wを介して導光された励起光を、対物レンズ42に向けて反射させる。対物レンズ42は、図10に示した光学系における対物レンズ42に相当する。 Excitation light (laser light) emitted from the light source 2w is guided to the non-polarizing beam splitter 41 in the microscope unit 4 through the scanning system (detection system) 5w. The non-polarizing beam splitter 41 reflects the excitation light guided through the scanning system (detection system) 5 w toward the objective lens 42. The objective lens 42 corresponds to the objective lens 42 in the optical system shown in FIG.
 対物レンズ42は、当該励起光をサンプルSへ集光する。これにより、サンプルSのある分子が、当該励起光により励起されて蛍光を発する。サンプルSから発生した励起光は、対物レンズ42を介して非偏光ビームスプリッタ41に導光される。非偏光ビームスプリッタ41は、対物レンズ42を介して導光された蛍光を、走査系(検出系)5wとフィルタ43との双方に向けて分岐させる。 The objective lens 42 condenses the excitation light on the sample S. As a result, a molecule in the sample S is excited by the excitation light and emits fluorescence. Excitation light generated from the sample S is guided to the non-polarizing beam splitter 41 via the objective lens 42. The non-polarizing beam splitter 41 branches the fluorescence guided through the objective lens 42 toward both the scanning system (detection system) 5w and the filter 43.
 フィルタ43は、対物レンズ42及び非偏光ビームスプリッタ41を介して導光された発光色を選択的に透過させる。具体的な一例として、フィルタ43として、エミッションフィルタを適用することも可能である。この場合には、当該フィルタ43は、発色光以外の光(外光)を吸収し、発光色のみを透過させる。当該外光が喪失された発色光の像は、非偏光ビームスプリッタ44に導光される。非偏光ビームスプリッタ44は、フィルタ43を介して導光された発色光の像を、カメラ45及びアイピース46の双方に向けて分岐させる。このような構成により、ユーザは、アイピース46を介して導光されたサンプルの像を観測したり、当該サンプルの像をカメラ45により撮影することが可能となる。 The filter 43 selectively transmits the emission color guided through the objective lens 42 and the non-polarizing beam splitter 41. As a specific example, an emission filter may be applied as the filter 43. In this case, the filter 43 absorbs light (external light) other than the colored light and transmits only the emission color. The colored light image from which the external light has been lost is guided to the non-polarizing beam splitter 44. The non-polarizing beam splitter 44 branches the colored light image guided through the filter 43 toward both the camera 45 and the eyepiece 46. With such a configuration, the user can observe the image of the sample guided through the eyepiece 46 or can capture the image of the sample with the camera 45.
 また、走査系(検出系)5wに向けて導光された蛍光は、ダイクロイックミラー52に反射されてPMT53に導光され、PMT53で検出される。なお、PMT53で検出された蛍光に基づく処理については、制御部6wの動作として後述する。 Further, the fluorescence guided toward the scanning system (detection system) 5w is reflected by the dichroic mirror 52, guided to the PMT 53, and detected by the PMT 53. The processing based on the fluorescence detected by the PMT 53 will be described later as the operation of the control unit 6w.
  <<1.3.3.画像取得装置の機能構成>>
 次に、図12を参照しながら、比較例に係る画像取得装置1wの機能構成について、特に、制御部6wと、I/F7との構成に着目して説明する。
<< 1.3.3. Functional configuration of image acquisition device >>
Next, the functional configuration of the image acquisition device 1w according to the comparative example will be described with particular attention to the configuration of the control unit 6w and the I / F 7 with reference to FIG.
 図12に示すように、比較例に係る画像取得装置1wは、装置の外部に光源2を接続し、光源2から出射される励起光を、走査系(検出系)5wと顕微鏡ユニット4とを介してサンプルSに照射する。このとき、後述するシステム制御部61により、ガルバノミラー51の動作が制御されることで、励起光によりサンプルS上が走査される。 As shown in FIG. 12, an image acquisition device 1w according to a comparative example has a light source 2 connected to the outside of the device, and excitation light emitted from the light source 2 is transmitted to a scanning system (detection system) 5w and a microscope unit 4. To the sample S. At this time, the operation of the galvanometer mirror 51 is controlled by the system control unit 61 described later, so that the sample S is scanned with the excitation light.
 そして、照射された励起光によりサンプルSから生じた蛍光は、顕微鏡ユニット4を介して走査系(検出系)5wに導かれ、走査系(検出系)5wのPMT53で検出される。PMT53は、あらかじめ設定されたサンプリングレートで、検出された蛍光を光電効果により電気信号に変換し、当該蛍光の強度を示すデータとして制御部6wに出力する。 Fluorescence generated from the sample S by the irradiated excitation light is guided to the scanning system (detection system) 5w through the microscope unit 4 and detected by the PMT 53 of the scanning system (detection system) 5w. The PMT 53 converts the detected fluorescence into an electrical signal by a photoelectric effect at a preset sampling rate, and outputs the electrical signal to the control unit 6w as data indicating the intensity of the fluorescence.
 制御部6wは、システム制御部61wと、二次元化処理部62wと、補正処理部63wと、画像処理部64と、RAW画像生成部65と、記憶部66と、表示制御部67と、通信制御部68とを含む。また、I/F7は、条件指定部71と、表示部72と、通信部73とを含む。 The control unit 6w includes a system control unit 61w, a two-dimensional processing unit 62w, a correction processing unit 63w, an image processing unit 64, a RAW image generation unit 65, a storage unit 66, a display control unit 67, a communication And a control unit 68. The I / F 7 includes a condition specifying unit 71, a display unit 72, and a communication unit 73.
 システム制御部61wは、条件指定部71を介してユーザから指定された測定条件に基づき、光源2及びガルバノミラー51の動作を制御する。条件指定部71は、測定および画像取得に係る条件(以降では、総じて「測定条件」と呼ぶ場合がある)をユーザが指定するための入力I/Fである。例えば、ユーザは、測定条件として、光源2の出力、及びサンプルS上の走査に係る走査条件(例えば、走査される範囲や、生成される画像の解像度)を、条件指定部71を介して指定することが可能である。 The system control unit 61w controls the operation of the light source 2 and the galvanometer mirror 51 based on the measurement conditions specified by the user via the condition specifying unit 71. The condition specifying unit 71 is an input I / F for the user to specify conditions related to measurement and image acquisition (hereinafter, sometimes collectively referred to as “measurement conditions”). For example, the user designates the output of the light source 2 and the scanning condition relating to the scanning on the sample S (for example, the scanned range and the resolution of the generated image) via the condition designating unit 71 as the measurement conditions. Is possible.
 システム制御部61wは、ユーザから測定条件として指定された走査条件に基づきガルバノミラー51の動作を制御し、当該制御の内容を示す制御情報を後述する二次元化処理部62wに出力する。 The system control unit 61w controls the operation of the galvano mirror 51 based on a scanning condition specified as a measurement condition by the user, and outputs control information indicating the content of the control to a two-dimensionalization processing unit 62w described later.
 二次元化処理部62wは、PMT53で検出された(測定された)蛍光の強度を示すデータを、あらかじめ設定されたサンプリングレートで、当該PMT53から逐次取得する。また、二次元化処理部62wは、ガルバノミラー51の制御内容を示す制御情報をシステム制御部61wから逐次取得する。これにより、二次元化処理部62wは、PMT53から取得した蛍光の強度を示すデータが、システム制御部61wから取得した制御情報に基づき、サンプルS上のどの位置のデータに相当するかを認識することが可能となる。即ち、二次元化処理部62wは、PMT53から逐次取得した蛍光の強度を示すデータを、システム制御部61wから取得した制御情報に基づき並べて二次元化することで、検出された蛍光の強度分布を生成する。 The two-dimensionalization processing unit 62w sequentially acquires data indicating the intensity of fluorescence detected (measured) by the PMT 53 from the PMT 53 at a preset sampling rate. Further, the two-dimensionalization processing unit 62w sequentially acquires control information indicating the control content of the galvano mirror 51 from the system control unit 61w. Thereby, the two-dimensionalization processing unit 62w recognizes which data on the sample S corresponds to the data indicating the fluorescence intensity acquired from the PMT 53 based on the control information acquired from the system control unit 61w. It becomes possible. That is, the two-dimensionalization processing unit 62w arranges the data indicating the fluorescence intensity sequentially acquired from the PMT 53 based on the control information acquired from the system control unit 61w and converts the data into a two-dimensional data, thereby obtaining the detected fluorescence intensity distribution. Generate.
 二次元化処理部62wにより生成された蛍光の強度分布は、例えば、補正処理部63wによりノイズ除去等の補正処理が施されて画像処理部64に出力される。画像処理部64は、補正処理施された強度分布に対して、圧縮処理等の画像処理を施すことで画像データを生成する。 The intensity distribution of the fluorescence generated by the two-dimensional processing unit 62w is subjected to correction processing such as noise removal by the correction processing unit 63w and is output to the image processing unit 64, for example. The image processing unit 64 generates image data by performing image processing such as compression processing on the intensity distribution subjected to the correction processing.
 画像処理部64は、生成した画像データを、例えば、表示制御部67に出力する。また、画像処理部64は、生成した画像データを、通信制御部68に出力してもよい。また、画像処理部64は、生成した画像データを、記憶部66に記憶させてもよい。 The image processing unit 64 outputs the generated image data to the display control unit 67, for example. Further, the image processing unit 64 may output the generated image data to the communication control unit 68. Further, the image processing unit 64 may store the generated image data in the storage unit 66.
 RAW画像生成部65は、二次元化処理部62wから蛍光の強度分布を取得し、当該蛍光の強度分布を画像データ(RAW画像)として、所定のファイルフォーマットに整形することでRAWファイルを生成する。このとき、RAW画像生成部65は、蛍光の強度分布の取得条件(例えば、撮影時のパラメタのような撮影条件や走査条件)のように、当該蛍光の強度分布に関連する情報をシステム制御部61wから取得し、取得した情報を関連情報として、生成したRAWファイルに関連付けてもよい。なお、関連情報は、RAWファイルの付帯情報としてRAWファイル内に記録されてもよいし、RAWファイルとは別ファイルとして関連付けられていてもよい。なお、以降では、これらの態様を総じて、単に「関連付ける」と記載する場合がある。 The RAW image generation unit 65 acquires the fluorescence intensity distribution from the two-dimensional processing unit 62w, and generates a RAW file by shaping the fluorescence intensity distribution as image data (RAW image) into a predetermined file format. . At this time, the RAW image generation unit 65 displays information related to the fluorescence intensity distribution, such as a fluorescence intensity distribution acquisition condition (for example, a shooting condition or a scanning condition such as a parameter at the time of shooting). The acquired information may be associated with the generated RAW file as related information. The related information may be recorded in the RAW file as incidental information of the RAW file, or may be associated as a separate file from the RAW file. In the following, these modes may be collectively referred to simply as “associate”.
 RAW画像生成部65は、生成したRAWファイルを、例えば、通信制御部68に出力する。また、RAW画像生成部65は、生成したRAWファイルを、記憶部66に記憶させてもよい。 The RAW image generation unit 65 outputs the generated RAW file to the communication control unit 68, for example. Further, the RAW image generation unit 65 may store the generated RAW file in the storage unit 66.
 記憶部66は、画像取得装置1w内で使用される各種制御データや、画像取得装置1w内で生成されたデータ(例えば、画像データやRAWファイル)を記憶するための記憶部である。記憶部66は、例えば、データベースとして構成されていてもよい。また、記憶部66は、例えば画像処理のような各種処理を実行するために一時的に作成されるデータを記憶するための記憶領域として使用されてもよい。 The storage unit 66 is a storage unit for storing various control data used in the image acquisition device 1w and data generated in the image acquisition device 1w (for example, image data and RAW files). The storage unit 66 may be configured as a database, for example. Further, the storage unit 66 may be used as a storage area for storing data temporarily created to execute various processes such as image processing.
 表示制御部67は、画像処理部64から画像データを取得し、取得した画像データを表示部72に表示させる。表示部72は、例えば、ディスプレイのような情報を表示するための出力I/Fである。これにより、ユーザは、サンプルSの画像を、表示部72を介して確認することが可能となる。 The display control unit 67 acquires image data from the image processing unit 64 and causes the display unit 72 to display the acquired image data. The display unit 72 is an output I / F for displaying information such as a display. Thereby, the user can check the image of the sample S through the display unit 72.
 また、表示制御部67は、画像取得装置1wを操作するためのU/I(User Inteface)を表示部72に表示させてもよい。なお、表示制御部67がU/Iを生成するための制御データは、例えば、記憶部66にあらかじめ記憶させておけばよい。 Also, the display control unit 67 may cause the display unit 72 to display a U / I (User Interface) for operating the image acquisition device 1w. Note that the control data for the display control unit 67 to generate U / I may be stored in advance in the storage unit 66, for example.
 通信制御部68は、画像取得装置1wが、情報処理装置800のような外部装置とネットワークを介してデータを送受信するために、当該外部装置との間で通信を行う通信部73の動作を制御する。通信制御部68は、例えば、画像取得装置1w内で生成された画像データやRAWファイルを取得し、取得した当該データを、通信部73を制御することで、ネットワークを介して情報処理装置800に送信する。これにより、例えば、生成された画像データやRAWファイルを、画像取得装置1wよりも画像処理能力の高い情報処理装置800で処理することが可能となる。 The communication control unit 68 controls the operation of the communication unit 73 that performs communication with the external device so that the image acquisition device 1w transmits and receives data to and from the external device such as the information processing device 800 via the network. To do. For example, the communication control unit 68 acquires image data or a RAW file generated in the image acquisition device 1w, and controls the communication unit 73 to acquire the acquired data to the information processing device 800 via the network. Send. Accordingly, for example, the generated image data and RAW file can be processed by the information processing apparatus 800 having higher image processing capability than the image acquisition apparatus 1w.
 [1.4.比較例に係る画像取得装置の課題]
 以上説明したように、比較例に係る画像取得装置1wは、光源2wを画像取得装置1wの外部に設けており(即ち、外付けしている)、光源2wと画像取得装置1wとを含む一連のシステムが大型化する傾向にある。これに対して、本実施形態に係る画像取得装置1は、光源2(即ち、レーザーモジュール)を筐体内に内蔵することにより小型化を図っている。
[1.4. Problem of image acquisition device according to comparative example]
As described above, the image acquisition device 1w according to the comparative example includes the light source 2w outside (that is, externally) the image acquisition device 1w, and includes a series including the light source 2w and the image acquisition device 1w. The system tends to become larger. On the other hand, the image acquisition device 1 according to the present embodiment is downsized by incorporating the light source 2 (that is, the laser module) in the housing.
 一方で、光源2を測定部3や制御部6と同一筐体内に設けた場合には、光源2が、当該測定部3や制御部6と近接して設けられることとなる。そのため、測定部3や制御部6の発熱により、光源2の動作が不安定となり、例えば、光源2から出力されるレーザー光の強度が変化し、当該強度の変化が、生成した画像中にノイズとして顕在化する場合がある。 On the other hand, when the light source 2 is provided in the same housing as the measurement unit 3 and the control unit 6, the light source 2 is provided close to the measurement unit 3 and the control unit 6. For this reason, the operation of the light source 2 becomes unstable due to heat generated by the measurement unit 3 and the control unit 6, for example, the intensity of the laser light output from the light source 2 changes, and the change in the intensity causes noise in the generated image. May become apparent.
 特に、本実施形態に係る画像取得装置1のように、顕微鏡ユニット4(例えば、二光子励起顕微鏡)の観測結果を画像化する場合には、サンプルSを走査することで画像を生成するため、撮影速度が、走査に用いるガルバノミラー51の制御速度や、PMT53の検波速度に依存する。このような構成のため、所謂カメラのような撮像素子を用いて画像を生成する機器に比べて撮影速度が遅い場合が多く、画像サイズの増大に比例して撮影速度が遅くなる傾向にある。そのため、光源2から出射される励起光をサンプルSに照射し、当該サンプルSからの蛍光を基に画像を生成する構成の場合には、光源2から出射されるレーザー光の強度の熱変動が、画像上にノイズとして顕在化する場合が少なくない。 In particular, when the observation result of the microscope unit 4 (for example, a two-photon excitation microscope) is imaged as in the image acquisition device 1 according to the present embodiment, an image is generated by scanning the sample S. The imaging speed depends on the control speed of the galvanometer mirror 51 used for scanning and the detection speed of the PMT 53. Due to such a configuration, the shooting speed is often slower than a device that generates an image using an imaging element such as a so-called camera, and the shooting speed tends to decrease in proportion to an increase in image size. Therefore, when the sample S is irradiated with the excitation light emitted from the light source 2 and an image is generated based on the fluorescence from the sample S, there is a thermal variation in the intensity of the laser light emitted from the light source 2. In many cases, it appears as noise on the image.
 [1.5.画像取得装置の構成]
  <<1.5.1.概要>>
 本実施形態に係る画像取得装置1は、上記課題を鑑みて、光源2を装置内(同一筐体内)に内蔵することで小型化を図り、かつ、光源2から出射されるレーザー光の熱変動に伴うノイズを低減し、より鮮明な画像を取得可能とするためになされたものである。
[1.5. Configuration of image acquisition apparatus]
<< 1.5.1. Overview >>
In view of the above problems, the image acquisition device 1 according to the present embodiment is miniaturized by incorporating the light source 2 in the device (in the same housing), and thermal fluctuation of the laser light emitted from the light source 2. This is to reduce the noise associated with the image and to obtain a clearer image.
 具体的には、本実施形態に係る画像取得装置1は、光源2から出射されるレーザー光の強度を測定し、測定されたレーザー光の強度分布に基づき、光源2から出射されるレーザー光の強度の制御と、生成された画像の補正との少なくともいずれかを実行する。 Specifically, the image acquisition device 1 according to the present embodiment measures the intensity of the laser light emitted from the light source 2, and based on the measured intensity distribution of the laser light, the laser light emitted from the light source 2 is measured. At least one of intensity control and correction of the generated image is executed.
 例えば、本実施形態に係る画像取得装置1は、生成された画像を、測定されたレーザー光の強度分布に基づき補正することで、当該画像上に顕在化したレーザー光の熱変動に伴うノイズを低減することが可能となる。 For example, the image acquisition device 1 according to the present embodiment corrects the generated image based on the measured intensity distribution of the laser beam, thereby eliminating noise associated with the thermal fluctuation of the laser beam that is manifested on the image. It becomes possible to reduce.
 また、本実施形態に係る画像取得装置1は、測定されたレーザー光の強度分布に基づき、当該レーザー光の強度を制御することで、熱変動により不安定になったレーザー光を安定させることが可能となる。 Further, the image acquisition device 1 according to the present embodiment can stabilize the laser beam that has become unstable due to thermal fluctuation by controlling the intensity of the laser beam based on the measured intensity distribution of the laser beam. It becomes possible.
 以降では、本実施形態に係る画像取得装置1について、まず、光源2の構成の一例について説明し、次いで、本実施形態に係る画像取得装置1の光学系及び機能構成について説明する。なお、顕微鏡ユニット4の構成は、前述した比較例に係る画像取得装置1wと同様のため、詳細な説明は省略する。 Hereinafter, for the image acquisition device 1 according to the present embodiment, first, an example of the configuration of the light source 2 will be described, and then the optical system and functional configuration of the image acquisition device 1 according to the present embodiment will be described. Since the configuration of the microscope unit 4 is the same as that of the image acquisition device 1w according to the comparative example described above, detailed description thereof is omitted.
  <<1.5.2.光源の構成>>
 まず、本実施形態に係る画像取得装置1で使用される光源2の構成の一例について説明する。本実施形態に係る画像取得装置1では、光源2として、例えば、光パラメトリック発振器のような発振部を備え、当該発振部の発振条件を変更することで、出射するレーザー光の波長を変更可能に構成された光源を用いる。以下に、図13Aを参照しながら、光源2の構成の一例について説明する。図13Aは、光源2の構成の一例について詳細に示した模式図である。
<< 1.5.2. Structure of light source >>
First, an example of the configuration of the light source 2 used in the image acquisition device 1 according to the present embodiment will be described. In the image acquisition device 1 according to the present embodiment, the light source 2 includes an oscillating unit such as an optical parametric oscillator, and the wavelength of the emitted laser light can be changed by changing the oscillation condition of the oscillating unit. A structured light source is used. Hereinafter, an example of the configuration of the light source 2 will be described with reference to FIG. 13A. FIG. 13A is a schematic diagram showing an example of the configuration of the light source 2 in detail.
 光源2は、モードロック発振型レーザーと光アンプを組み合わせたMOPA210と、波長変換モジュール(OPO)250とから構成されている。MOPA210は、モードロックレーザー部(Mode Locked Laser Diode)220と、光アイソレータ部230と、光増幅器部(SOA部)240とを有している。 The light source 2 includes a MOPA 210 combining a mode-locked oscillation laser and an optical amplifier, and a wavelength conversion module (OPO) 250. The MOPA 210 includes a mode-locked laser section 220, an optical isolator section 230, and an optical amplifier section (SOA section) 240.
 また、図2の下段には、モードロックレーザー部220、光増幅器部240、波長変換モジュール250から出力されるそれぞれのレーザー光のパルス波形L1,L2,L3と、後述する間欠駆動のためのパルス波形P1をそれぞれ示している。 In the lower part of FIG. 2, pulse waveforms L1, L2, and L3 of the laser beams output from the mode-locked laser unit 220, the optical amplifier unit 240, and the wavelength conversion module 250, and pulses for intermittent driving described later. Each waveform P1 is shown.
 モードロックレーザー部220は、半導体レーザー222と、半導体レーザー222から出射したレーザー光を通過させるレンズ224、バンドパスフィルタ226、ミラー228の各素子とを含んで構成されている。バンドパスフィルタ226は、ある波長範囲の光を透過させて、範囲外の光は通さないという機能を有する。そして、半導体レーザー222の後方端面のミラーと、ミラー228との間に、外部共振器(空間共振器)が構成され、この外部共振器の行路長により、モードロックレーザー部220から出射されるレーザー光の周波数が決まる。これにより、強制的に特定の周波数にロックさせることができ、レーザー光のモードをロックすることができる。 The mode-locked laser unit 220 includes a semiconductor laser 222 and elements of a lens 224, a band-pass filter 226, and a mirror 228 that allow laser light emitted from the semiconductor laser 222 to pass therethrough. The bandpass filter 226 has a function of transmitting light in a certain wavelength range and not allowing light outside the range to pass. An external resonator (spatial resonator) is formed between the mirror at the rear end face of the semiconductor laser 222 and the mirror 228. The laser emitted from the mode-locked laser unit 220 by the path length of the external resonator. The frequency of light is determined. Thereby, it can be made to lock to a specific frequency compulsorily, and the mode of a laser beam can be locked.
 モードロックレーザー部220は、外部共振器を構成することにより、通常の半導体レーザーよりも長い周期(例えば、1GHz程度)で短いパルスを同期させることができる。このため、モードロックレーザー部220から出力されるレーザー光L1は、平均パワーが低く、ピークが高いものとなり、生体に対するダメージが少なく、光子効率が高いものとなる。 The mode-locked laser unit 220 can synchronize a short pulse with a longer period (for example, about 1 GHz) than a normal semiconductor laser by configuring an external resonator. For this reason, the laser beam L1 output from the mode-locked laser unit 220 has a low average power and a high peak, has little damage to the living body, and has a high photon efficiency.
 光アイソレータ部230は、モードロックレーザー部220の後段に配置されている。光アイソレータ部230は、光アイソレータ232とミラー234とを含んで構成される。光アイソレータ部230は、後段の光学部品等において反射した光が、半導体レーザー222に入射することを防ぐ機能を有している。 The optical isolator unit 230 is arranged at the subsequent stage of the mode-locked laser unit 220. The optical isolator unit 230 includes an optical isolator 232 and a mirror 234. The optical isolator unit 230 has a function of preventing light reflected by a subsequent optical component or the like from entering the semiconductor laser 222.
 光増幅器部(SOA部)240は、半導体レーザー222から出射されたレーザー光を増幅変調する光変調部として機能し、光アイソレータ部230の後段に配置されている。モードロックレーザー部220から出力されるレーザーは、そのパワーが比較的小さいため、光増幅器部240によって増幅される。この光増幅器部240は、SOA(Semiconductor Optical Amp)、即ち、半導体光増幅器242と、半導体光増幅器242を制御するSOAドライバ244とから構成されている。半導体光増幅器242は、小型かつ低コストの光増幅器であり、また、光をオン・オフする光ゲート、光スイッチとして用いることができる。本実施の形態においては、この半導体光増幅器242のオン・オフによって、半導体レーザー222から出射したレーザー光を変調する。 The optical amplifier section (SOA section) 240 functions as an optical modulation section that amplifies and modulates the laser light emitted from the semiconductor laser 222, and is disposed at the subsequent stage of the optical isolator section 230. The laser output from the mode-locked laser unit 220 is amplified by the optical amplifier unit 240 because its power is relatively small. The optical amplifier 240 is composed of an SOA (Semiconductor Optical Amp), that is, a semiconductor optical amplifier 242 and an SOA driver 244 that controls the semiconductor optical amplifier 242. The semiconductor optical amplifier 242 is a small and low-cost optical amplifier, and can be used as an optical gate and an optical switch for turning light on and off. In the present embodiment, the laser light emitted from the semiconductor laser 222 is modulated by turning on and off the semiconductor optical amplifier 242.
 光増幅器部(SOA部)240では、制御電流(直流)の大きさに応じてレーザー光が増幅される。更に、光増幅器部240は、増幅の際に図2に示すパルス波形P1の制御電流で間欠駆動を行うことにより、パルス波形L1のレーザー光を所定の周期Tでオン・オフし、間欠的なレーザー光(パルス波形L2)を出力する。このように所望のタイミングと周期のパルス波形を生成する事により、システムが有する制御信号と同期させることができる。このように、例えばMOPA型の光源の場合は、前段の発振部のパルスを増幅する後段部の半導体光増幅器242(Semiconductor Optical Amplifier略してSOAと記す)において間欠駆動する事により、間欠駆動を実現する事が出来る。MOPA型の光源の場合、光増幅器部240(半導体光増幅器242)は、間欠発光部として機能する。 In the optical amplifier section (SOA section) 240, the laser light is amplified according to the magnitude of the control current (DC). Furthermore, the optical amplifier unit 240 intermittently drives with the control current of the pulse waveform P1 shown in FIG. 2 at the time of amplification, thereby turning on / off the laser light of the pulse waveform L1 with a predetermined period T, and intermittently. Laser light (pulse waveform L2) is output. Thus, by generating a pulse waveform having a desired timing and period, it is possible to synchronize with a control signal included in the system. In this way, for example, in the case of a MOPA type light source, intermittent driving is realized by intermittent driving in the semiconductor optical amplifier 242 (Semiconductor Optical Amplifier abbreviated as SOA) in the rear stage that amplifies the pulse of the oscillation unit in the front stage. I can do it. In the case of a MOPA type light source, the optical amplifier unit 240 (semiconductor optical amplifier 242) functions as an intermittent light emitting unit.
 本実施形態ではMLLDを用いているため、半導体レーザー222から出力されるレーザー光の周波数は、一例として500MHz~1GHzであり、パルス幅は0.5~1.0[ps]程度である。後述するように、発振同期信号注入部316から発信同期信号を注入することにより、SOA部による間欠駆動の同期に加えて半導体レーザー222から出力される発振パルスについてもシステムが有する制御信号と同期させることが可能である。なお、TiSaを用いる場合、レーザー光の発振周波数は40MHz~80MHz程度、パルス幅は0.1~0.2[ps]程度であるのに対して、MLLDを用いることでより高い発振周波数のレーザー光を出力することが可能である。 In this embodiment, since MLLD is used, the frequency of the laser light output from the semiconductor laser 222 is, for example, 500 MHz to 1 GHz, and the pulse width is about 0.5 to 1.0 [ps]. As will be described later, by injecting a transmission synchronization signal from the oscillation synchronization signal injection unit 316, in addition to the intermittent drive synchronization by the SOA unit, the oscillation pulse output from the semiconductor laser 222 is also synchronized with the control signal of the system. It is possible. In the case of using TiSa, the oscillation frequency of laser light is about 40 MHz to 80 MHz and the pulse width is about 0.1 to 0.2 [ps], whereas a laser having a higher oscillation frequency can be obtained by using MLLD. It is possible to output light.
 本実施形態において、光増幅器部240から出力されるレーザー光の波長は、一例として405nmである。405nmの波長は比較的吸収が多い波長であるため、生体の奥に到達して高い密度で二光子の効果を生じさせる波長(900nm~1300nm程度)に変換する。このため、光増幅器部240から出力されたレーザー光は、後段の波長変換モジュール250に入力され、波長変換モジュール250のLBO252によって波長変換される。 In this embodiment, the wavelength of the laser beam output from the optical amplifier unit 240 is 405 nm as an example. Since the wavelength of 405 nm is a wavelength with relatively high absorption, it is converted into a wavelength (about 900 nm to 1300 nm) that reaches the back of the living body and produces a two-photon effect at a high density. Therefore, the laser light output from the optical amplifier unit 240 is input to the subsequent wavelength conversion module 250 and wavelength-converted by the LBO 252 of the wavelength conversion module 250.
 波長変換モジュール250のLBO252は、一例として、入力されたレーザー光(パルス波形L2)を2つの波長に変換する。なお、変換した2つの波長のレーザー光のうち、一方がシグナル光に相当し、他方がアイドラー光に相当する。本実施形態に係る光源2では、シグナル光及びアイドラー光のうち、一方のレーザー光を、波長変換モジュール250から外部に出力し、対象物(サンプルS)に照射する。 As an example, the LBO 252 of the wavelength conversion module 250 converts the input laser beam (pulse waveform L2) into two wavelengths. One of the converted two-wavelength laser light corresponds to signal light, and the other corresponds to idler light. In the light source 2 according to this embodiment, one of the signal light and the idler light is output from the wavelength conversion module 250 to the outside, and is irradiated onto the object (sample S).
 なお、図13Aに示す例では、変換した2つの波長のレーザー光のうち、長波長のレーザー光(パルス波形L3)が、シグナル光として波長変換モジュール250から出力され、対象物(サンプルS)に照射される。この場合には、変換した2つの波長のレーザー光のうち、短波長のレーザー光が、アイドラー光に相当となる。 In the example shown in FIG. 13A, the long wavelength laser light (pulse waveform L3) of the two converted laser lights is output from the wavelength conversion module 250 as signal light and is applied to the object (sample S). Irradiated. In this case, of the converted two-wavelength laser light, the short-wavelength laser light corresponds to idler light.
 ところで、生体のレーザー顕微鏡観察においては、対象物のダメージを少なくするために、レーザーの平均パワーを低くして、ピークパワーを高くすることが有効である。また、半導体レーザーを用いたMOPA型光源を構成するレーザーチップは、小型であるが故に、高電力の負荷による発熱によって動作限界が定まることが考えられる。 By the way, in observation of a living body with a laser microscope, it is effective to increase the peak power by reducing the average power of the laser in order to reduce the damage to the object. Further, since the laser chip constituting the MOPA type light source using the semiconductor laser is small, it is considered that the operation limit is determined by heat generated by a high power load.
 本実施形態の光源2においては、間欠的なレーザー光(パルス波形L2)を出力して間欠運転を行うため、間欠運転を行わない場合と比較すると、平均電力は同じであるにも関わらず、発光している際のピークを高めることができる。また、間欠運転を行うことにより、高電力の負荷による発熱も抑えることができる。 In the light source 2 of this embodiment, since intermittent operation is performed by outputting intermittent laser light (pulse waveform L2), the average power is the same as compared with the case where intermittent operation is not performed. The peak when emitting light can be increased. Further, by performing intermittent operation, heat generation due to a high power load can be suppressed.
 本実施形態では、二光子励起の光源2として用いており、光源2は2つの光子で蛍光体を励起する。特に二光子励起の光源を用いる顕微鏡においては、性能指数(Figure of Merit)としてFOM(=(ピークパワー)×パルス幅×周波数=ピークパワー×平均パワー)が知られている。この性能指数によれば、ピークパワーと平均パワーの積に比例して、出力を増加させることができる。従って、生体のレーザー顕微鏡観察において、対象物のダメージを最小限に抑えて出力を高めるためには、平均パワーを低くしてピークパワーを高くすることが有効である。このため、本実施形態では、間欠運転を行うことでデューティ(DUTY=パルス幅×周波数)比を低くして、ピークパワーを高くしている。 In this embodiment, it is used as the light source 2 for two-photon excitation, and the light source 2 excites the phosphor with two photons. In particular, in a microscope using a two-photon excitation light source, FOM (= (peak power) 2 × pulse width × frequency = peak power × average power) is known as a figure of merit. According to this figure of merit, the output can be increased in proportion to the product of peak power and average power. Therefore, in the observation of a living body with a laser microscope, it is effective to increase the peak power by reducing the average power in order to increase the output while minimizing the damage to the object. For this reason, in this embodiment, the duty (DUTY = pulse width × frequency) ratio is lowered by performing intermittent operation, and the peak power is increased.
 図13Bは、間欠発光によりレーザーのピークパワーを高くした状態を示す特性図である。図13Bの上段では一光子励起の場合の特性を示しており、上段の左側の特性は連続発光のピークパワーを、右側の特性はDUTY比を50%とした場合の間欠発光のピークパワーを示している。このように、間欠発光のDUTY比を50%とした場合、連続発光の信号強度(I)に対して、間欠発光の場合は2倍の信号強度(2×I)を出力することができる。 FIG. 13B is a characteristic diagram showing a state where the peak power of the laser is increased by intermittent light emission. The upper part of FIG. 13B shows the characteristics in the case of one-photon excitation. The upper left characteristic shows the peak power of continuous emission, and the right characteristic shows the peak power of intermittent emission when the DUTY ratio is 50%. ing. As described above, when the duty ratio of intermittent light emission is set to 50%, the signal intensity (2 × I 0 ) that is twice as high in the case of intermittent light emission can be output with respect to the signal intensity (I 0 ) of continuous light emission. it can.
 また、図13Bの中段は二光子励起の場合の特性を示しており、左側の特性は連続発光のピークパワーを、右側の特性はDUTY比を50%とした場合の間欠発光のピークパワーを示している。性能指数FOMによれば、二光子励起の場合はピークパワーの2乗で性能指数が高くなる。従って、間欠発光の場合、二光子励起の信号強度(=4×I )は連続発光の信号強度(=I )に対して4倍となる。また、パルス発光ポイントとパルス非発光ポイントの平均の信号強度においても、二光子励起の平均信号強度(=2×I )は、連続発光の信号強度(=I )に対して2倍となる。従って、本実施形態によれば、二光子励起の光源2において間欠駆動を行うことにより、ピークパワーおよび平均信号強度を高めることが可能である。 The middle part of FIG. 13B shows the characteristics in the case of two-photon excitation. The characteristics on the left side show the peak power of continuous emission, and the characteristics on the right side show the peak power of intermittent emission when the DUTY ratio is 50%. ing. According to the figure of merit FOM, in the case of two-photon excitation, the figure of merit increases with the square of the peak power. Therefore, in the case of intermittent light emission, the signal intensity of two-photon excitation (= 4 × I 0 2 ) is four times the signal intensity of continuous light emission (= I 0 2 ). In addition, the average signal intensity of the two-photon excitation (= 2 × I 0 2 ) is 2 with respect to the signal intensity of the continuous emission (= I 0 2 ) in the average signal intensity of the pulse emission point and the pulse non-emission point. Doubled. Therefore, according to the present embodiment, it is possible to increase the peak power and the average signal intensity by performing intermittent driving in the light source 2 of two-photon excitation.
 図13Bの下段の特性は、中段の特性を帯域制限のローパスフィルタに通過させた信号を示している。帯域制限のローパスフィルタによる処理をA/D変換前に入れるため、オン/オフのデューティ比が50%(1/2)の場合、A/D変換前の信号振幅は1/2となり、結果として、二光子励起の間欠発光では2倍の信号振幅を得ることができる。また、オン/オフのデューティ比が1/nの場合、ピークパワーがn倍になるのであれば、二光子励起で得られる信号振幅はn倍になるのでデューティは小さい方が望ましいが、実際には光源2から得られるピークパワーには上限があるので、デューティ比は1以下の適切な値が選ぶことが好適である。 The lower characteristic of FIG. 13B shows a signal obtained by passing the middle characteristic through a band-limited low-pass filter. Since the processing by the band-limited low-pass filter is inserted before the A / D conversion, when the on / off duty ratio is 50% (1/2), the signal amplitude before the A / D conversion becomes 1/2, and as a result In the intermittent light emission of two-photon excitation, twice the signal amplitude can be obtained. Also, when the on / off duty ratio is 1 / n, if the peak power is n times, the signal amplitude obtained by two-photon excitation is n times, so it is desirable that the duty is small. Since the peak power obtained from the light source 2 has an upper limit, it is preferable to select an appropriate value with a duty ratio of 1 or less.
  <<1.5.3.光学系の構成>>
 次に、図14を参照しながら、本実施形態に係る画像取得装置1の光学系の構成について、特に、前述した比較例に係る画像取得装置1wの光学系の構成(図10参照)と異なる部分に着目して説明する。
<< 1.5.3. Configuration of optical system >>
Next, with reference to FIG. 14, the configuration of the optical system of the image acquisition device 1 according to the present embodiment is particularly different from the configuration of the optical system of the image acquisition device 1w according to the comparative example described above (see FIG. 10). The explanation will be given focusing on the part.
 前述したように、本実施形態に係る画像取得装置1では、光源2は、波長変換モジュール(OPO)250を備え、入力されたレーザー光(ポンプ光)を2つの波長のレーザー光(即ち、シグナル光及びアイドラー光)に変換して出力する。本実施形態に係る画像取得装置1では、光源2から出力されるシグナル光及びアイドラー光のうち、いずれか一方を励起光としてサンプルSに向けて照射する。図14に示す例では、シグナル光を励起光としてサンプルSに向けて照射する構成としている。 As described above, in the image acquisition apparatus 1 according to the present embodiment, the light source 2 includes the wavelength conversion module (OPO) 250, and the input laser light (pump light) is converted into laser light having two wavelengths (that is, signal light). Light and idler light) and output. In the image acquisition device 1 according to the present embodiment, one of the signal light and idler light output from the light source 2 is irradiated toward the sample S as excitation light. In the example illustrated in FIG. 14, the signal light is irradiated toward the sample S as excitation light.
 なお、励起光をサンプルSに向けて照射する構成については、前述した比較例に係る画像取得装置1wの光学系(図10参照)と同様である。即ち、光源2から出射された励起光は、ビーム整形用レンズ511、ガルバノミラー51、レンズ513、ミラー517、レンズ515及びダイクロイックミラー52を介して対物レンズ42に導光され、当該対物レンズ42によりサンプルSに向けて集光される。 In addition, about the structure which irradiates excitation light toward the sample S, it is the same as that of the optical system (refer FIG. 10) of the image acquisition apparatus 1w which concerns on the comparative example mentioned above. That is, the excitation light emitted from the light source 2 is guided to the objective lens 42 via the beam shaping lens 511, the galvano mirror 51, the lens 513, the mirror 517, the lens 515, and the dichroic mirror 52. It is condensed toward the sample S.
 また、サンプルSに励起光が照射されると、サンプルSのある分子が、当該励起光により励起されて蛍光を発し、当該蛍光が、対物レンズ42、ダイクロイックミラー52、結像レンズ521、及びエミッションフィルタ523を介してPMT53の検出面に結像する。このとき、エミッションフィルタ523により、上記対物レンズ42によって拡大された、発色光以外の光(外光)が吸収され(即ち、発光色のみが透過し)、当該外光が喪失された発色光の像が、PMT53上に結像される。 When the sample S is irradiated with excitation light, a molecule in the sample S is excited by the excitation light to emit fluorescence, and the fluorescence is emitted from the objective lens 42, the dichroic mirror 52, the imaging lens 521, and the emission. An image is formed on the detection surface of the PMT 53 via the filter 523. At this time, the emission filter 523 absorbs light (external light) other than the color light expanded by the objective lens 42 (that is, only the emitted color is transmitted), and the color light that has lost the external light is absorbed. An image is formed on the PMT 53.
 また、本実施形態に係る画像取得装置1では、PD(Photo Detector)54を設け、シグナル光及びアイドラー光のうち、励起光として使用した一方とは異なる他方の強度を検出する。図14に示す例では、PD54は、光源2から出射されるアイドラー光の強度を測定している。 Also, in the image acquisition device 1 according to the present embodiment, a PD (Photo Detector) 54 is provided to detect the intensity of the other signal light and idler light different from the one used as excitation light. In the example shown in FIG. 14, the PD 54 measures the intensity of idler light emitted from the light source 2.
  <<1.5.4.画像取得装置の機能構成>>
 次に、図15を参照しながら、本実施形態に係る画像取得装置1の機能構成の一例について、特に、制御部6の構成に着目して説明する。なお、図15に示す例において、走査系(検出系)5の各構成は、図14に示した光学系において同様の符号が付された構成に対応している。また、図15に示す例では、図14に示した構成のうち一部を省略している。
<< 1.5.4. Functional configuration of image acquisition device >>
Next, an example of the functional configuration of the image acquisition apparatus 1 according to the present embodiment will be described with particular attention to the configuration of the control unit 6 with reference to FIG. In the example shown in FIG. 15, each configuration of the scanning system (detection system) 5 corresponds to the configuration given the same reference numeral in the optical system shown in FIG. 14. In the example shown in FIG. 15, a part of the configuration shown in FIG. 14 is omitted.
 図15に示すように、本実施形態に係る画像取得装置1は、装置内部(筐体内部)に光源2を備え、光源2から出射される励起光を走査系(検出系)5と顕微鏡ユニット4とを介してサンプルSに照射する。このとき、システム制御部61により、ガルバノミラー51の動作が制御されることで、励起光によりサンプルS上が走査される。なお、以降では、説明をわかりやすくするために、光源2から出射されるシグナル光及びアイドラー光のうち、シグナル光を励起光として使用するものとして説明する。 As shown in FIG. 15, the image acquisition device 1 according to the present embodiment includes a light source 2 inside the device (inside the housing), and excitation light emitted from the light source 2 is scanned with a scanning system (detection system) 5 and a microscope unit. 4 is irradiated to the sample S. At this time, the system controller 61 controls the operation of the galvanometer mirror 51, so that the sample S is scanned with the excitation light. In the following description, in order to make the description easy to understand, it is assumed that the signal light is used as the excitation light among the signal light and idler light emitted from the light source 2.
 照射された励起光によりサンプルSから生じた蛍光は、顕微鏡ユニット4を介して走査系(検出系)5に導かれ、走査系(検出系)5のPMT53で検出される。PMT53は、あらかじめ設定されたサンプリングレートで、検出された蛍光を光電効果により電気信号に変換し、当該蛍光の強度を示すデータとして制御部6に出力する。 Fluorescence generated from the sample S by the irradiated excitation light is guided to the scanning system (detection system) 5 through the microscope unit 4 and detected by the PMT 53 of the scanning system (detection system) 5. The PMT 53 converts the detected fluorescence into an electrical signal by a photoelectric effect at a preset sampling rate, and outputs it to the control unit 6 as data indicating the intensity of the fluorescence.
 また、本実施形態に係る画像取得装置1の走査系(検出系)5は、PD54を備え、当該PD54により、アイドラー光の強度を、あらかじめ設定されたサンプリングレートで測定する。PD54は、測定したアイドラー光の強度を電気信号に変換し、当該アイドラー光の強度を示すデータとして制御部6に出力する。 The scanning system (detection system) 5 of the image acquisition apparatus 1 according to the present embodiment includes a PD 54, and the PD 54 measures the intensity of idler light at a preset sampling rate. The PD 54 converts the intensity of the measured idler light into an electric signal, and outputs it to the control unit 6 as data indicating the intensity of the idler light.
 なお、PD54に替えて、励起光(シグナル光)の強度を測定するPD56を設けてもよい。この場合には、サンプルSに向けて照射される励起光(シグナル光)の光路上にビームスプリッタ55を設け、サンプルSに向けて導光される励起光(シグナル光)の一部を、PD56に向けて分岐させればよい。なお、以降では、走査系(検出系)5には、アイドラー光の強度を測定するPD54が設けられているものとして説明する。 In addition, it may replace with PD54 and may provide PD56 which measures the intensity | strength of excitation light (signal light). In this case, a beam splitter 55 is provided on the optical path of the excitation light (signal light) irradiated toward the sample S, and a part of the excitation light (signal light) guided toward the sample S is supplied to the PD 56. You just have to branch towards. In the following description, it is assumed that the scanning system (detection system) 5 is provided with a PD 54 for measuring the intensity of idler light.
 制御部6は、システム制御部61と、分布情報生成部62と、補正処理部63と、画像処理部64と、RAW画像生成部65と、記憶部66と、表示制御部67と、通信制御部68とを含む。また、I/F7は、条件指定部71と、表示部72と、通信部73とを含む。なお、記憶部66、表示制御部67、通信制御部68、条件指定部71、表示部72、及び通信部73の動作は、前述した比較例に係る画像取得装置1wと同様のため、詳細な説明は省略する。 The control unit 6 includes a system control unit 61, a distribution information generation unit 62, a correction processing unit 63, an image processing unit 64, a RAW image generation unit 65, a storage unit 66, a display control unit 67, and communication control. Part 68. The I / F 7 includes a condition specifying unit 71, a display unit 72, and a communication unit 73. The operations of the storage unit 66, the display control unit 67, the communication control unit 68, the condition designating unit 71, the display unit 72, and the communication unit 73 are the same as those of the image acquisition device 1w according to the comparative example described above, and thus detailed description thereof will be made. Description is omitted.
 システム制御部61は、条件指定部71を介してユーザから指定された測定条件に基づき、光源2及びガルバノミラー51の動作を制御する。条件指定部71は、測定および画像取得に係る測定条件をユーザが指定するための入力I/Fである。例えば、ユーザは、測定条件として、光源2の出力、及びサンプルS上の走査に係る走査条件(例えば、走査される範囲や、生成される画像の解像度)を、条件指定部71を介して指定することが可能である。 The system control unit 61 controls the operations of the light source 2 and the galvanometer mirror 51 based on the measurement conditions specified by the user via the condition specifying unit 71. The condition specifying unit 71 is an input I / F for the user to specify measurement conditions related to measurement and image acquisition. For example, the user designates the output of the light source 2 and the scanning condition relating to the scanning on the sample S (for example, the scanned range and the resolution of the generated image) via the condition designating unit 71 as the measurement conditions. Is possible.
 システム制御部61は、ユーザから測定条件として指定された走査条件に基づきガルバノミラー51の動作を制御し、当該制御の内容を示す制御情報を後述する二次元化処理部621及び625に出力する。ここまでの動作は、前述した比較例に係る画像取得装置1w(図12参照)と同様である。 The system control unit 61 controls the operation of the galvano mirror 51 based on the scanning conditions specified by the user as the measurement conditions, and outputs control information indicating the contents of the control to the two- dimensional processing units 621 and 625 described later. The operation so far is the same as that of the image acquisition device 1w (see FIG. 12) according to the comparative example described above.
 なお、システム制御部61は、あらかじめ決定された測定条件を示す制御情報に基づき、光源2やガルバノミラー51の動作を制御してもよい。例えば、サンプルSが既知の場合には、当該サンプルSに対応してあらかじめ作成された制御情報に基づき、光源2から出力されるレーザー光の波長や出力を制御してもよい。なお、これらの制御情報は、例えば、記憶部66にあらかじめ記憶させておいてもよい。 The system control unit 61 may control operations of the light source 2 and the galvanometer mirror 51 based on control information indicating measurement conditions determined in advance. For example, when the sample S is known, the wavelength and output of the laser light output from the light source 2 may be controlled based on control information created in advance corresponding to the sample S. Note that these pieces of control information may be stored in advance in the storage unit 66, for example.
 また、本実施形態に係るシステム制御部61は、アイドラー光の強度に基づく強度分布を示すデータを、後述する分布情報生成部62から取得し、取得したデータに基づき、光源2の動作を制御する。 Further, the system control unit 61 according to the present embodiment acquires data indicating an intensity distribution based on the intensity of idler light from the distribution information generation unit 62 described later, and controls the operation of the light source 2 based on the acquired data. .
 ここで、図16を参照しながら、システム制御部61の更に詳細な構成について説明する。図16は、本実施形態に係る分布情報生成部62及びシステム制御部61の詳細な機能構成について説明するための説明図である。図16に示すように、システム制御部61は、強度制御量決定部611を含む。 Here, a more detailed configuration of the system control unit 61 will be described with reference to FIG. FIG. 16 is an explanatory diagram for describing detailed functional configurations of the distribution information generation unit 62 and the system control unit 61 according to the present embodiment. As shown in FIG. 16, the system control unit 61 includes an intensity control amount determination unit 611.
 強度制御量決定部611は、後述する分布情報生成部62の二次元化処理部621から、PD54で測定されたアイドラー光の強度に基づく強度分布を示すデータを取得する。また、強度制御量決定部611は、後述する分布情報生成部62の強度補正分布決定部623から補正量の最大幅の通知を受ける。強度制御量決定部611は、取得したアイドラー光の強度分布を示すデータと補正量の最大幅とに基づき、光源2の状態(特に、励起光の強度の変化)を監視する。 The intensity control amount determination unit 611 acquires data indicating an intensity distribution based on the intensity of idler light measured by the PD 54 from the two-dimensionalization processing unit 621 of the distribution information generation unit 62 described later. Further, the intensity control amount determination unit 611 receives a notification of the maximum correction amount width from the intensity correction distribution determination unit 623 of the distribution information generation unit 62 described later. The intensity control amount determination unit 611 monitors the state of the light source 2 (particularly, the change in the intensity of the excitation light) based on the acquired data indicating the intensity distribution of idler light and the maximum width of the correction amount.
 また、強度制御量決定部611は、監視結果に基づき、光源2から出射されるレーザー光(ポンプ光)の強度を制御するための制御情報を生成する。システム制御部61は、強度制御量決定部611が生成した制御情報に基づき、光源2から出射されるレーザー光(ポンプ光)の強度を制御する。 Also, the intensity control amount determination unit 611 generates control information for controlling the intensity of the laser light (pump light) emitted from the light source 2 based on the monitoring result. The system control unit 61 controls the intensity of the laser light (pump light) emitted from the light source 2 based on the control information generated by the intensity control amount determination unit 611.
 このような構成により、例えば、システム制御部61は、光源2の動作が不安定となった場合(例えば、出射されるレーザー光の強度に揺らぎが生じた場合)に、光源2が安定的に動作するように、当該光源2から出射されるレーザー光(ポンプ光)の強度を制御することが可能となる。なお、システム制御部61による、光源2の制御、即ち、光源2から出射されるレーザー光の強度制御の詳細については、「1.8.レーザー光の強度制御の詳細」として別途後述する。 With such a configuration, for example, the system control unit 61 makes the light source 2 stable when the operation of the light source 2 becomes unstable (for example, when the intensity of emitted laser light fluctuates). It is possible to control the intensity of the laser light (pump light) emitted from the light source 2 so as to operate. The details of the control of the light source 2, that is, the intensity control of the laser beam emitted from the light source 2 by the system control unit 61 will be separately described later as “1.8. Details of laser beam intensity control”.
 次に、図15及び図16を参照しながら、分布情報生成部62の詳細について説明する。図16に示すように、分布情報生成部62は、二次元化処理部621と、強度補正分布決定部623と、二次元化処理部625とを含む。 Next, details of the distribution information generation unit 62 will be described with reference to FIGS. 15 and 16. As illustrated in FIG. 16, the distribution information generation unit 62 includes a two-dimensionalization processing unit 621, an intensity correction distribution determination unit 623, and a two-dimensionalization processing unit 625.
 二次元化処理部621は、PD54で検出された(測定された)アイドラー光の強度を示すデータを、あらかじめ設定されたサンプリングレートで、当該PD54から逐次取得する。また、二次元化処理部621は、ガルバノミラー51の制御内容を示す制御情報をシステム制御部61から逐次取得する。これにより、二次元化処理部621は、PD54から取得したアイドラー光の強度を示すデータがサンプルS上のどの位置のデータに相当するかを、システム制御部61から取得した制御情報に基づき認識することが可能となる。即ち、二次元化処理部621は、PD54から逐次取得したアイドラー光の強度を示すデータを、システム制御部61から取得した制御情報に基づき並べて二次元化することで、検出されたアイドラー光の強度分布を生成する。 The two-dimensionalization processing unit 621 sequentially acquires data indicating the intensity of the idler light detected (measured) by the PD 54 from the PD 54 at a preset sampling rate. Further, the two-dimensionalization processing unit 621 sequentially acquires control information indicating the control content of the galvanometer mirror 51 from the system control unit 61. Thereby, the two-dimensionalization processing unit 621 recognizes which position on the sample S the data indicating the intensity of the idler light acquired from the PD 54 corresponds to based on the control information acquired from the system control unit 61. It becomes possible. That is, the two-dimensionalization processing unit 621 arranges the data indicating the idler light intensity sequentially acquired from the PD 54 based on the control information acquired from the system control unit 61 to two-dimensionalize the detected idler light intensity. Generate a distribution.
 ここで、図17を参照する。図17は、二次元化処理部621の動作の一例について説明するための説明図である。図17において、参照符号C11は、ガルバノミラー51の制御内容、即ち、励起光によるサンプルS上の走査の内容を模式的に示している。二次元化処理部621は、PD54から逐次取得したアイドラー光の強度を示すデータを、制御情報が示す走査の内容に基づき並べることで二次元化して、強度分布D21を生成する。 Here, refer to FIG. FIG. 17 is an explanatory diagram for describing an example of the operation of the two-dimensionalization processing unit 621. In FIG. 17, reference numeral C <b> 11 schematically shows the control content of the galvanometer mirror 51, i.e., the scan content on the sample S by the excitation light. The two-dimensionalization processing unit 621 two-dimensionalizes the data indicating the idler light intensity sequentially acquired from the PD 54 based on the scanning content indicated by the control information, and generates the intensity distribution D21.
 なお、前述の通り、光源2から出力されるレーザー光(ポンプ光)の強度は、画像取得装置1内の各機器(例えば、測定部3や制御部6)の発熱の影響を受けて変化する場合がある。このとき、ポンプ光の強度の変化に伴い、当該ポンプ光と同様に、シグナル光及びアイドラー光の強度も変化する。そのため、アイドラー光の強度の変化が、例えば、PD54で変換された電気信号の強弱として表れることとなる。 As described above, the intensity of the laser light (pump light) output from the light source 2 changes under the influence of heat generated by each device (for example, the measurement unit 3 and the control unit 6) in the image acquisition device 1. There is a case. At this time, with the change in the intensity of the pump light, the intensity of the signal light and the idler light also changes in the same manner as the pump light. Therefore, a change in the intensity of idler light appears as, for example, the strength of the electrical signal converted by the PD 54.
 なお、生成された強度分布D21のうち、走査方向が切り替わる端部の領域D211a及びD211bを不要分として削除し、それ以外の領域D210を有効部分としてもよい。不要部分D211a及びD211bの削除は、例えば、二次元化処理部621が行ってもよいし、後述する補正処理部63が行ってもよい。また、後述する二次元化処理部625が、PMT53で検出された蛍光の強度に基づく強度分布を生成する場合の動作についても、図17を参照しながら説明した二次元化処理部621の動作と同様である。 In the generated intensity distribution D21, the end regions D211a and D211b at which the scanning direction is switched may be deleted as unnecessary portions, and the other regions D210 may be used as effective portions. The unnecessary portions D211a and D211b may be deleted by, for example, the two-dimensionalization processing unit 621 or a correction processing unit 63 described later. Also, the operation when the two-dimensionalization processing unit 625 described later generates an intensity distribution based on the intensity of the fluorescence detected by the PMT 53 is the same as the operation of the two-dimensionalization processing unit 621 described with reference to FIG. It is the same.
 二次元化処理部621は、生成したアイドラー光の強度分布を示すデータ(以降では、単に「アイドラー光の強度分布」と呼ぶ場合がある)を、強度補正分布決定部623及び強度制御量決定部611に出力する。 The two-dimensionalization processing unit 621 uses the data indicating the generated idler light intensity distribution (hereinafter simply referred to as “idler light intensity distribution”) as an intensity correction distribution determining unit 623 and an intensity control amount determining unit. To 611.
 強度補正分布決定部623は、二次元化処理部621からアイドラー光の強度分布を取得する。強度補正分布決定部623は、取得したアイドラー光の強度分布を基に、後述する補正処理部63が、蛍光の強度分布を補正するための補正データを生成する。 The intensity correction distribution determination unit 623 acquires the intensity distribution of idler light from the two-dimensionalization processing unit 621. Based on the acquired intensity distribution of idler light, the intensity correction distribution determination unit 623 generates correction data for the correction processing unit 63 described later to correct the fluorescence intensity distribution.
 また、強度補正分布決定部623は、ウォームアップ期間中にアイドラー光の強度分布をあらかじめ取得しておき、当該ウォームアップ期間中のアイドラー光の強度分布に基づき、補正量の最大幅を算出してもよい。なお、このようにして算出された補正量の最大幅は、光源2から出射されるレーザーの強度の変動による光子数の時間変動に基づく、蛍光の強度分布の補正量及び光源2から出射されるレーザー光(ポンプ光)の強度の制御量の最大幅(マージン)を示している。そのため、強度補正分布決定部623は、算出した補正量の最大幅を、強度制御量決定部611に通知してもよい。 Further, the intensity correction distribution determining unit 623 obtains in advance the intensity distribution of idler light during the warm-up period, and calculates the maximum width of the correction amount based on the intensity distribution of idler light during the warm-up period. Also good. The maximum width of the correction amount calculated in this way is emitted from the light source 2 and the correction amount of the fluorescence intensity distribution based on the temporal fluctuation of the number of photons due to the fluctuation of the intensity of the laser emitted from the light source 2. The maximum width (margin) of the control amount of the intensity of laser light (pump light) is shown. Therefore, the intensity correction distribution determining unit 623 may notify the intensity control amount determining unit 611 of the calculated maximum correction amount width.
 強度補正分布決定部623は、アイドラー光の強度分布をRAW画像生成部65に出力し、当該アイドラー光の強度分布に基づき生成した補正データを、補正処理部63に出力する。 The intensity correction distribution determination unit 623 outputs the intensity distribution of idler light to the RAW image generation unit 65, and outputs correction data generated based on the intensity distribution of the idler light to the correction processing unit 63.
 二次元化処理部625は、PMT53で検出された(測定された)蛍光の強度を示すデータを、あらかじめ設定されたサンプリングレートで、当該PMT53から逐次取得する。また、二次元化処理部625は、ガルバノミラー51の制御内容を示す制御情報をシステム制御部61から逐次取得する。これにより、二次元化処理部625は、PMT53から取得した蛍光の強度を示すデータがサンプルS上のどの位置のデータに相当するかを、システム制御部61から取得した制御情報に基づき認識することが可能となる。即ち、二次元化処理部625は、PMT53から逐次取得した蛍光の強度を示すデータを、システム制御部61から取得した制御情報に基づき並べて二次元化することで、検出された蛍光の強度分布を生成する。 The two-dimensionalization processing unit 625 sequentially acquires data indicating the intensity of fluorescence detected (measured) by the PMT 53 from the PMT 53 at a preset sampling rate. Further, the two-dimensional processing unit 625 sequentially acquires control information indicating the control contents of the galvanometer mirror 51 from the system control unit 61. Thereby, the two-dimensionalization processing unit 625 recognizes, based on the control information acquired from the system control unit 61, which position on the sample S the data indicating the fluorescence intensity acquired from the PMT 53 corresponds to. Is possible. That is, the two-dimensionalization processing unit 625 arranges data indicating the fluorescence intensity sequentially acquired from the PMT 53 based on the control information acquired from the system control unit 61 and converts the data into a two-dimensional data, thereby obtaining the detected fluorescence intensity distribution. Generate.
 二次元化処理部625は、生成した蛍光の強度分布を示すデータ(以降では、単に「蛍光の強度分布」と呼ぶ場合がある)を補正処理部63及びRAW画像生成部65に出力する。 The two-dimensionalization processing unit 625 outputs data indicating the generated fluorescence intensity distribution (hereinafter, simply referred to as “fluorescence intensity distribution”) to the correction processing unit 63 and the RAW image generation unit 65.
 補正処理部63は、二次元化処理部625から蛍光の強度分布を取得する。また、補正処理部63は、強度補正分布決定部623からアイドラー光の強度分布に基づき生成された補正データを取得する。 The correction processing unit 63 acquires the fluorescence intensity distribution from the two-dimensionalization processing unit 625. Further, the correction processing unit 63 acquires correction data generated based on the intensity distribution of idler light from the intensity correction distribution determining unit 623.
 補正処理部63は、蛍光の強度分布を補正データに基づき補正する。ここで、補正処理部63による補正の概要について図18を参照しながら説明する。本実施形態に係る補正処理の概要について説明するための説明図である。図18において、参照符号D11は、二次元化処理部625で生成された蛍光の強度分布を模式的に示している。また、参照符号D21は、二次元化処理部621で生成されたアイドラー光の強度分布を模式的に示している。また、参照符号D10は、補正処理後の蛍光の強度分布(即ち、RAW画像)を示している。 The correction processing unit 63 corrects the fluorescence intensity distribution based on the correction data. Here, an outline of correction by the correction processing unit 63 will be described with reference to FIG. It is explanatory drawing for demonstrating the outline | summary of the correction process which concerns on this embodiment. In FIG. 18, reference symbol D <b> 11 schematically indicates the fluorescence intensity distribution generated by the two-dimensional processing unit 625. Reference numeral D21 schematically indicates the intensity distribution of idler light generated by the two-dimensionalization processing unit 621. Reference numeral D10 indicates the fluorescence intensity distribution (that is, the RAW image) after the correction processing.
 なお、前述の通り、光源2から出力されるレーザー光(ポンプ光)の強度は、画像取得装置1内の各機器の発熱の影響を受けて変化する場合があり、当該ポンプ光と同様に、シグナル光及びアイドラー光の強度も変化する。そのため、シグナル光の強度変化が、蛍光の強度分布にノイズとして顕在化し、同様に、アイドラー光の強度変化が、アイドラー光の強度分布にノイズとして顕在化することとなる。一方で、シグナル光及びアイドラー光は、波長変換モジュール(OPO)250によりポンプ光が変換されて出力される。そのため、シグナル光の強度変化とアイドラー光の強度変化とは常に同調している。即ち、シグナル光の強度とアイドラー光の強度とは常に比例関係にある。 Note that, as described above, the intensity of the laser light (pump light) output from the light source 2 may change due to the influence of heat generated by each device in the image acquisition device 1, and similarly to the pump light, The intensity of the signal light and idler light also changes. Therefore, the change in the intensity of the signal light is manifested as noise in the fluorescence intensity distribution, and similarly, the change in the intensity of the idler light is manifested as noise in the intensity distribution of the idler light. On the other hand, the signal light and the idler light are output after the pump light is converted by the wavelength conversion module (OPO) 250. Therefore, the intensity change of the signal light and the intensity change of the idler light are always synchronized. That is, the intensity of the signal light and the intensity of the idler light are always in a proportional relationship.
 そのため、本実施形態に係る補正処理部63では、このような性質を利用して、シグナル光の強度変化に基づき蛍光の強度分布に顕在化したノイズを、アイドラー光の強度分布に基づき生成された補正データにより補正する。補正処理部63は、補正データにより補正された蛍光の強度分布を画像処理部64に出力する。 Therefore, in the correction processing unit 63 according to the present embodiment, using such a property, noise that is manifested in the fluorescence intensity distribution based on the change in the intensity of the signal light is generated based on the intensity distribution of the idler light. Correct with the correction data. The correction processing unit 63 outputs the fluorescence intensity distribution corrected by the correction data to the image processing unit 64.
 なお、上述した強度補正分布決定部623による補正データの生成と、補正処理部63による当該補正データに基づく蛍光の強度分布の補正に係る動作の詳細については、「1.7.補正処理の詳細」として別途後述する。 For details of the operation related to the generation of correction data by the intensity correction distribution determination unit 623 and the correction of the fluorescence intensity distribution based on the correction data by the correction processing unit 63, see “1.7. Details of Correction Processing”. Will be separately described later.
 画像処理部64は、補正データにより補正された蛍光の強度分布を取得する。画像処理部64は、補正後の蛍光の強度分布に対して、圧縮処理等の画像処理を施すことで画像データを生成する。 The image processing unit 64 acquires the fluorescence intensity distribution corrected by the correction data. The image processing unit 64 generates image data by performing image processing such as compression processing on the corrected fluorescence intensity distribution.
 画像処理部64は、生成した画像データを、例えば、表示制御部67に出力する。また、画像処理部64は、生成した画像データを、通信制御部68に出力してもよい。また、画像処理部64は、生成した画像データを、記憶部66に記憶させてもよい。 The image processing unit 64 outputs the generated image data to the display control unit 67, for example. Further, the image processing unit 64 may output the generated image data to the communication control unit 68. Further, the image processing unit 64 may store the generated image data in the storage unit 66.
 また、上記に示した補正データD21に基づく蛍光の強度分布D11に対する補正処理は、例えば、情報処理装置800のような外部装置で行ってもよい。そのため、本実施形態に係るRAW画像生成部65は、蛍光の強度分布D11を画像データ(RAW画像)として生成したRAWファイルD1に対して、アイドラー光の強度分布D21を関連付けてもよい。 Further, the correction processing for the fluorescence intensity distribution D11 based on the correction data D21 described above may be performed by an external device such as the information processing device 800, for example. Therefore, the RAW image generation unit 65 according to the present embodiment may associate the idler intensity distribution D21 with the RAW file D1 generated with the fluorescence intensity distribution D11 as image data (RAW image).
 このように、RAWファイルD1にアイドラー光の強度分布D21を関連付けておくことで、当該RAWファイルD1を読み出した外部装置(例えば、情報処理装置800)が、補正処理部63と同様に、レーザー強度の変動に伴うノイズを補正することが可能となる。 In this way, by associating the intensity distribution D21 of idler light with the RAW file D1, the external apparatus (for example, the information processing apparatus 800) that has read the RAW file D1 has a laser intensity similar to that of the correction processing unit 63. It is possible to correct the noise associated with the fluctuations.
 RAW画像生成部65は、生成したRAWファイルを、例えば、通信制御部68に出力する。また、RAW画像生成部65は、生成したRAWファイルを、記憶部66に記憶させてもよい。 The RAW image generation unit 65 outputs the generated RAW file to the communication control unit 68, for example. Further, the RAW image generation unit 65 may store the generated RAW file in the storage unit 66.
 以上、図13A、図13B、及び図14~図18を参照しながら、本実施形態に係る画像取得装置1の構成について説明した。次に、本実施形態に係る画像取得装置1の各構成の更に詳細な内容について説明する。 The configuration of the image acquisition device 1 according to the present embodiment has been described above with reference to FIGS. 13A, 13B, and FIGS. Next, more detailed contents of each component of the image acquisition device 1 according to the present embodiment will be described.
 [1.6.RAWファイルのファイルフォーマット]
 まず、図19を参照しながら、本実施形態に係るRAWファイルD1のファイルフォーマットの一例について説明する。図19は、本実施形態に係るRAWファイルD1のファイルフォーマットの一例を示した図である。
[1.6. RAW file format]
First, an example of the file format of the RAW file D1 according to the present embodiment will be described with reference to FIG. FIG. 19 is a diagram showing an example of the file format of the RAW file D1 according to the present embodiment.
 図19に示すように、本実施形態に係るRAWファイルD1は、例えば、データ領域d10と、基本制御情報領域d30と、拡張領域d20とを含む。 As shown in FIG. 19, the RAW file D1 according to the present embodiment includes, for example, a data area d10, a basic control information area d30, and an extension area d20.
 データ領域d10は、画像データ(実データ)を格納するための領域である。図19に示すように、例えば、データ領域d10は、RAW本画像d11と、子画像用IFD(Image File or Directory)d12と、子画像d121とを含む。RAW本画像d11は、RAW画像を示している。本実施形態に係るRAWファイルD1では、RAW本画像d11として、蛍光の強度分布D11が格納される。なお、RAW本画像d11として格納される蛍光の強度分布D11は、1枚(1スライス)とは限らない。例えば、XY方向(平面方向)に走査されて作成された蛍光の強度分布D11が、Z方向(深さ方向)に沿って複数枚取得された場合には、当該複数枚の蛍光の強度分布D11が、RAW本画像d11としてRAWファイルD1に格納されてもよい。 The data area d10 is an area for storing image data (actual data). As shown in FIG. 19, for example, the data area d10 includes a RAW main image d11, a child image IFD (Image File or Directory) d12, and a child image d121. The RAW main image d11 shows a RAW image. In the RAW file D1 according to the present embodiment, the fluorescence intensity distribution D11 is stored as the RAW main image d11. The fluorescence intensity distribution D11 stored as the RAW main image d11 is not limited to one (1 slice). For example, when a plurality of fluorescence intensity distributions D11 created by scanning in the XY direction (plane direction) are acquired along the Z direction (depth direction), the plurality of fluorescence intensity distributions D11 are acquired. May be stored in the RAW file D1 as the RAW main image d11.
 また、データ領域d10には、画像処理が施された画像データや、拡大・縮小画像のデータのような画像処理が施された画像を、子画像として別途格納できるようにしてもよい。この場合には、例えば、子画像を格納するための子画像用IFDd12を設け、当該子画像用IFDd12内に子画像d121を格納すればよい。なお、子画像用IFDd12が、RAWファイルD1中における子画像d121の位置(アドレス)を示す役割も果たす。 In the data area d10, image data that has been subjected to image processing and images that have been subjected to image processing such as enlarged / reduced image data may be separately stored as child images. In this case, for example, a child image IFD d12 for storing child images may be provided, and the child image d121 may be stored in the child image IFD d12. The child image IFD d12 also plays a role of indicating the position (address) of the child image d121 in the RAW file D1.
 また、基本制御情報領域d30には、あらかじめ決められた種別の情報が制御情報として記録される。例えば、基本制御情報領域d30は、メイン画像及び撮影情報IFDd31と、セット再生用JPEGd32と、平文部メーカーノートIFDd33とを含む。メイン画像及び撮影情報IFDd31は、例えば、再生用に使用する画像データや、撮影情報(例えば、EXIF(Exchangeable image file format)のようなメタ情報)を格納するためのIFDである In the basic control information area d30, information of a predetermined type is recorded as control information. For example, the basic control information area d30 includes a main image and shooting information IFDd31, a set reproduction JPEGd32, and a plaintext part manufacturer note IFDd33. The main image and shooting information IFDd31 is an IFD for storing, for example, image data used for playback and shooting information (for example, meta information such as EXIF (Exchangeable image file format)).
 メイン画像及び撮影情報IFDd31には、例えば、画像の再生に用いられる画像データ(例えば、圧縮処理が施されたデータ)がセット再生用JPEGd32として格納されている。 In the main image and shooting information IFDd31, for example, image data used for image reproduction (for example, data subjected to compression processing) is stored as a set reproduction JPEGd32.
 また、平文部メーカーノートIFDd33は、画像取得装置1の機種情報や、暗号化などのフォーマットを示す情報が制御情報として記憶される。なお、これらの制御情報については、例えば、記憶部66にあらかじめ記憶させておき、RAW画像生成部65が当該制御情報を記憶部66から読み出して、RAWファイルD1に埋め込めばよい。 Also, the plaintext maker note IFDd33 stores the model information of the image acquisition device 1 and information indicating the format such as encryption as control information. The control information may be stored in advance in the storage unit 66, for example, and the RAW image generation unit 65 may read the control information from the storage unit 66 and embed it in the RAW file D1.
 拡張領域d20は、メーカーノートIFDd21を含む。メーカーノートIFDd21は、カメラ制御モードなどのEXIFに規定されていない情報を格納するためのIFDであり、画像取得装置1に固有の撮影情報や制御情報も格納される。 The extended area d20 includes a manufacturer note IFDd21. The manufacturer note IFDd21 is an IFD for storing information not specified in EXIF, such as a camera control mode, and also stores shooting information and control information unique to the image acquisition device 1.
 本実施形態に係るメーカーノートIFDd21は、例えば、撮影条件d211と、アイドラー光強度画像d212と、サーボ信号画像d213と、ウォームアップ時の撮影画像d214と、改竄防止信号d215と、自動トラッキング調整時の被写体画像d216と、撮影間同期信号d217とを含む。 The manufacturer note IFDd21 according to the present embodiment includes, for example, an imaging condition d211, an idler light intensity image d212, a servo signal image d213, a captured image d214 during warm-up, a tampering prevention signal d215, and an automatic tracking adjustment. It includes a subject image d216 and an imaging synchronization signal d217.
 撮影条件d211は、RAW画像(即ち、蛍光の強度分布)の取得時の撮影条件のうち、EXIFに規定されていない条件を示す制御情報である。撮影条件d211には、各条件を示す制御情報が、例えば、パラメタテーブルの形式で格納されている。 The imaging condition d211 is control information indicating conditions that are not defined in EXIF among the imaging conditions when acquiring a RAW image (that is, fluorescence intensity distribution). In the shooting condition d211, control information indicating each condition is stored, for example, in the form of a parameter table.
 アイドラー光強度画像d212は、アイドラー光の強度分布D21を示している。なお、RAW本画像d11として蛍光の強度分布D11が複数枚記録されている場合には、当該複数枚の蛍光の強度分布D11それぞれに対応したアイドラー光の強度分布D21が、アイドラー光強度画像d212として記録される。また、アイドラー光強度画像d212として、アイドラー光の強度分布D21に替えて、当該アイドラー光の強度分布D21に基づき算出された補正データを用いてもよい。 The idler light intensity image d212 shows the idler light intensity distribution D21. When a plurality of fluorescence intensity distributions D11 are recorded as the RAW main image d11, idler intensity distributions D21 corresponding to the plurality of fluorescence intensity distributions D11 are used as idler light intensity images d212. To be recorded. Further, as the idler light intensity image d212, correction data calculated based on the idler light intensity distribution D21 may be used instead of the idler light intensity distribution D21.
 このように、RAWファイルD1にアイドラー光強度画像d212を格納しておくことで、当該RAWファイルD1を読み出した外部装置(例えば、情報処理装置800)が、前述した補正処理部63と同様に、RAW本画像d11を補正することが可能となる。 In this way, by storing the idler light intensity image d212 in the RAW file D1, the external device (for example, the information processing device 800) that has read the RAW file D1 can perform the same as the correction processing unit 63 described above. It is possible to correct the RAW main image d11.
 サーボ信号画像d213は、システム制御部61による光源2から出射されるレーザー光の強度制御のためのサーボ信号を、走査条件に基づき二次元化したデータである。このようなサーボ信号画像d213を、RAWファイルD1内に格納しておくことで、当該RAWファイルD1を読み出した外部装置(例えば、情報処理装置800)が、蛍光の強度分布(即ち、RAW画像)の取得時に、光源2に対してどのような制御が行われていたかを認識することが可能となる。そのため、例えば、外部装置は、RAWファイルD1内のサーボ信号画像d213に基づき認識した制御内容に応じて、蛍光の強度分布(即ち、RAW画像)のに対して施される画像処理の内容(制御パラメタ)を適宜変更することも可能となる。 The servo signal image d213 is data obtained by two-dimensionalizing a servo signal for controlling the intensity of laser light emitted from the light source 2 by the system control unit 61 based on scanning conditions. By storing such a servo signal image d213 in the RAW file D1, the external device (for example, the information processing device 800) that has read the RAW file D1 causes the fluorescence intensity distribution (that is, the RAW image). It becomes possible to recognize what kind of control was performed on the light source 2 at the time of acquisition. For this reason, for example, the external device performs image processing content (control) on the fluorescence intensity distribution (that is, the RAW image) according to the control content recognized based on the servo signal image d213 in the RAW file D1. Parameter) can be changed as appropriate.
 ウォームアップ時の撮影画像d214は、ウォームアップ時に取得したアイドラー光の強度分布や蛍光の強度分布を二次元化した画像である。このように、RAWファイルD1に、ウォームアップ時の撮影画像d214を記録しておくことで、例えば、当該RAWファイルD1を読み出した外部装置(例えば、情報処理装置800)が、ウォームアップ期間中のレーザー光の強度の変化を推定することが可能となる。なお。ウォームアップ時の撮影画像d214は、少なくともウォームアップ期間中に撮影を開始した場合にRAWファイルD1に記録されればよく、それ以外の場合については含まなくてもよい。また、ウォームアップ期間中に撮影を行う場合の動作の詳細については、「1.9.ウォームアップ時におけるレーザー光の強度制御」として別途後述する。 The photographed image d214 at the time of warm-up is an image obtained by two-dimensionalizing the intensity distribution of idler light and the intensity distribution of fluorescence acquired at the time of warm-up. Thus, by recording the captured image d214 at the time of warm-up in the RAW file D1, for example, the external device (for example, the information processing apparatus 800) that has read the RAW file D1 is in the warm-up period. It becomes possible to estimate the change in the intensity of the laser beam. Note that. The captured image d214 at the time of warming up may be recorded in the RAW file D1 at least when shooting is started during the warmup period, and may not be included in other cases. The details of the operation when photographing during the warm-up period will be described later separately as “1.9. Control of laser light intensity during warm-up”.
 改竄防止信号d215は、RAWファイルD1中の少なくとも一部のデータが改竄された場合に、当該改竄を検出するための信号(データ)である。改竄防止信号d215の具体的な一例として、スティッキービット(Sticky bit)等が挙げられる。 The falsification preventing signal d215 is a signal (data) for detecting the falsification when at least a part of the data in the RAW file D1 is falsified. As a specific example of the falsification preventing signal d215, there is a sticky bit.
 自動トラッキング調整時の被写体画像d216は、例えば、トラッキングや拡大/縮小を行った場合に、当該トラッキングや拡大/縮小の結果として取得された画像を示している。なお、自動トラッキング調整時の被写体画像d216に替えて、トラッキングや拡大/縮小に係る制御の内容を示す情報を記録してもよい。 The subject image d216 at the time of automatic tracking adjustment indicates an image acquired as a result of the tracking or enlargement / reduction when, for example, tracking or enlargement / reduction is performed. Instead of the subject image d216 at the time of automatic tracking adjustment, information indicating the contents of control related to tracking and enlargement / reduction may be recorded.
 撮影間同期信号d217は、複数枚の蛍光の強度分布D11が、RAW本画像d11としてRAWファイルD1に格納されている場合に、各蛍光の強度分布D11の取得に係る各撮影のタイミングを示す信号である。 The inter-imaging synchronization signal d217 is a signal indicating the timing of each imaging related to the acquisition of each fluorescence intensity distribution D11 when the plurality of fluorescence intensity distributions D11 are stored in the RAW file D1 as the RAW main image d11. It is.
 以上、図19を参照しながら、本実施形態に係るRAWファイルD1のファイルフォーマットについて説明した。なお、上記に示すRAWファイルD1のファイルフォーマットはあくまで一例であり、必ずしも全ての情報を含まなくてもよいことは言うまでもない。また、アイドラー光強度画像d212、サーボ信号画像d213、及びウォームアップ時の撮影画像d214のような画像データは、当該画像データを再現するために必要な情報が記録されれば、必ずしも二次元化されたデータとして記録する必要はない。例えば、画像データの各画素に相当するデータの羅列を、走査条件を示す制御情報(即ち、データの羅列を二次元化するための情報)とあわせて記録してもよいことは言うまでもない。 The file format of the RAW file D1 according to the present embodiment has been described above with reference to FIG. Note that the file format of the RAW file D1 described above is merely an example, and it is needless to say that not all information may be included. Also, image data such as the idler light intensity image d212, the servo signal image d213, and the captured image d214 at the time of warm-up are not necessarily two-dimensionalized if information necessary for reproducing the image data is recorded. There is no need to record it as data. For example, it goes without saying that an array of data corresponding to each pixel of image data may be recorded together with control information indicating scanning conditions (that is, information for making the array of data two-dimensional).
 [1.7.補正処理の詳細]
 次に、図20及び図21を参照しながら、本実施形態に係る制御部6による、アイドラー光の強度分布に基づく補正データの生成と、当該補正データに基づく蛍光の強度分布の補正に係る動作の詳細について説明する。
[1.7. Details of correction process]
Next, referring to FIGS. 20 and 21, the control unit 6 according to the present embodiment generates correction data based on the idler light intensity distribution and the operation related to correction of the fluorescent intensity distribution based on the correction data. Details will be described.
  <<1.7.1.補正の原理>>
 まず、図20を参照しながら、本実施形態に係る画像取得装置1における蛍光の強度分布の補正の原理について説明する。図20は、強度分布の補正の原理について説明するための説明図である。図20に示すように、光源2を構成するOPOレーザーモジュールのうち、MOPA光源(固定波長)から出力されるポンプ光の周波数をνp、シグナル光の周波数をνs、アイドラー光の周波数をνiとする。
<< 1.7.1. Principle of correction >>
First, the principle of correction of the fluorescence intensity distribution in the image acquisition apparatus 1 according to the present embodiment will be described with reference to FIG. FIG. 20 is an explanatory diagram for explaining the principle of intensity distribution correction. As shown in FIG. 20, among the OPO laser modules constituting the light source 2, the pump light frequency output from the MOPA light source (fixed wavelength) is νp, the signal light frequency is νs, and the idler light frequency is νi. .
 ここで、周波数νの光の光子1つあたりのエネルギーEは、プランク乗数h、光の速度c、及び光の波長λとした場合に、以下に示す式1で表される。 Here, the energy E per photon of light having a frequency ν is expressed by the following formula 1 when the Planck multiplier h, the speed of light c, and the wavelength λ of light are used.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、レーザー強度の変動による光子数の時間変動をn(t)とした場合には、ポンプ光の周波数νp、シグナル光の周波数νs、及びアイドラー光の周波数νiは、以下に式2で表される条件を満たす。 Here, when the time variation of the number of photons due to the variation of the laser intensity is n (t), the frequency νp of the pump light, the frequency νs of the signal light, and the frequency νi of the idler light are expressed by Equation 2 below. Meets the requirements.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 このとき、h*νs*n(t)のエネルギーを有するシグナル光で励起した場合に、サンプルS上の座標(x,y,z)で発生する蛍光の空間蛍光強度PMTin(x,y,z)は、以下に示す式3で表される。
Figure JPOXMLDOC01-appb-M000003
At this time, when excited with signal light having an energy of h * νs * n (t), the spatial fluorescence intensity PMTin (x, y, z) of the fluorescence generated at the coordinates (x, y, z) on the sample S ) Is represented by Equation 3 shown below.
Figure JPOXMLDOC01-appb-M000003
 なお、上記に示した式3において、S(c/νs)は、吸収発光効率を示しており、Q(x,y,z)は、観測対象(即ち、サンプルS)の空間蛍光濃度分布を示している。 In Equation 3 shown above, S (c / νs) represents the absorption luminous efficiency, and Q (x, y, z) represents the spatial fluorescence concentration distribution of the observation target (ie, sample S). Show.
 式3に示すように、一般的には、空間蛍光強度PMTin(x,y,z)には、レーザー強度の変動に伴う光子数の時間変動n(t)が残存することとなる。 As shown in Equation 3, in general, the spatial fluorescence intensity PMTin (x, y, z) will remain the time fluctuation n (t) of the number of photons accompanying the laser intensity fluctuation.
 これに対して、本実施形態に係る制御部6は、PD54で検出されたアイドラー光の強度分布に基づき、レーザー強度の変動に伴う光子数の時間変動n(t)を推定する。 On the other hand, the control unit 6 according to the present embodiment estimates the time fluctuation n (t) of the number of photons accompanying the fluctuation of the laser intensity based on the intensity distribution of the idler light detected by the PD 54.
 具体的には、サンプルS上の座標(x,y,z)を走査しているときのアイドラー光の強度PDin(x,y,z)は、ポンプ光の強度の変動に伴い、シグナル光と同様に変動するため、以下に示す式4で表される。 Specifically, the intensity PDin (x, y, z) of the idler light when scanning the coordinates (x, y, z) on the sample S is the signal light and the intensity of the pump light. Since it fluctuates in the same manner, it is expressed by the following equation 4.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 制御部6は、上記に示した式4に基づき、時間変動n(t)を算出し、算出した時間変動n(t)に基づき、式3で示した空間蛍光強度PMTin(x,y,z)を補正する。なお、補正後の空間蛍光強度をPMTin’(x,y,z)とした場合には、当該空間蛍光強度をPMTin’(x,y,z)は、以下に示す式5で表される。 The control unit 6 calculates the time variation n (t) based on the equation 4 shown above, and based on the calculated time variation n (t), the spatial fluorescence intensity PMTin (x, y, z shown in the equation 3 ) Is corrected. When the corrected spatial fluorescence intensity is PMTin ′ (x, y, z), the spatial fluorescence intensity PMTin ′ (x, y, z) is expressed by Equation 5 shown below.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 なお、上記に示した式5において、(h*νi)/PDin(x,y,z)が補正データに相当する。即ち、強度補正分布決定部623は、取得したアイドラー光の強度分布が示す座標(x,y,z)ごとの強度PDin(x,y,z)に基づき当該補正データを算出することとなる。 In Equation 5 shown above, (h * νi) / PDin (x, y, z) corresponds to the correction data. In other words, the intensity correction distribution determining unit 623 calculates the correction data based on the intensity PDin (x, y, z) for each coordinate (x, y, z) indicated by the acquired intensity distribution of idler light.
  <<1.7.2.補正に係る動作の流れ>>
 次に、図21を参照しながら、アイドラー光の強度分布に基づく補正データの生成と、当該補正データに基づく蛍光の強度分布の補正に係る動作の流れについて説明する。図21は、強度分布の補正に係る処理の流れについて説明するためのフローチャートである。なお、本説明ではウォームアップが終了しサンプルSの観測時における処理に注目して説明することとし、サンプルSの観測の前段階として、ウォームアップ期間中にアイドラー光の強度分布をあらかじめ取得しておくものとして説明する。
<< 1.7.2. Flow of operations related to correction >>
Next, the flow of operations related to generation of correction data based on idler intensity distribution and correction of fluorescence intensity distribution based on the correction data will be described with reference to FIG. FIG. 21 is a flowchart for explaining the flow of processing relating to correction of the intensity distribution. In this description, the warm-up is completed and the processing at the time of observing the sample S will be described. As the pre-stage of the observation of the sample S, the intensity distribution of idler light is acquired in advance during the warm-up period. I will explain it as something to keep.
  (ステップS101)
 分布情報生成部62の二次元化処理部621は、PD54で検出された(測定された)アイドラー光の強度を示すデータを、あらかじめ設定されたサンプリングレートで、当該PD54から逐次取得する。また、二次元化処理部621は、ガルバノミラー51の制御内容を示す制御情報をシステム制御部61から逐次取得する。二次元化処理部621は、PD54から逐次取得したアイドラー光の強度を示すデータを、システム制御部61から取得した制御情報に基づき並べて二次元化することで、検出されたアイドラー光の強度分布を生成する。なお、このとき二次元化処理部621は、アイドラー光の強度分布のうち、不要部分を破棄し、有効部分のみをアイドラー光の強度分布としてもよい。二次元化処理部621は、生成したアイドラー光の強度分布を、強度補正分布決定部623及び強度制御量決定部611に出力する。
(Step S101)
The two-dimensionalization processing unit 621 of the distribution information generation unit 62 sequentially acquires data indicating the intensity of the idler light detected (measured) by the PD 54 from the PD 54 at a preset sampling rate. Further, the two-dimensionalization processing unit 621 sequentially acquires control information indicating the control content of the galvanometer mirror 51 from the system control unit 61. The two-dimensionalization processing unit 621 arranges data indicating the idler light intensity sequentially acquired from the PD 54 based on the control information acquired from the system control unit 61 and converts the data into a two-dimensional data, thereby calculating the detected idler light intensity distribution. Generate. At this time, the two-dimensionalization processing unit 621 may discard the unnecessary portion of the idler light intensity distribution and use only the effective portion as the idler light intensity distribution. The two-dimensional processing unit 621 outputs the generated idler light intensity distribution to the intensity correction distribution determining unit 623 and the intensity control amount determining unit 611.
 また、分布情報生成部62の二次元化処理部625は、PMT53で検出された(測定された)蛍光の強度を示すデータを、あらかじめ設定されたサンプリングレートで、当該PMT53から逐次取得する。また、二次元化処理部625は、ガルバノミラー51の制御内容を示す制御情報をシステム制御部61から逐次取得する。二次元化処理部625は、PMT53から逐次取得した蛍光の強度を示すデータを、システム制御部61から取得した制御情報に基づき並べて二次元化することで、検出された蛍光の強度分布を生成する。なお、このとき二次元化処理部625は、蛍光の強度分布のうち、不要部分を破棄し、有効部分のみを蛍光の強度分布としてもよい。二次元化処理部625は、生成した蛍光の強度分布を補正処理部63及びRAW画像生成部65に出力する。 Also, the two-dimensionalization processing unit 625 of the distribution information generation unit 62 sequentially acquires data indicating the intensity of fluorescence detected (measured) by the PMT 53 from the PMT 53 at a preset sampling rate. Further, the two-dimensional processing unit 625 sequentially acquires control information indicating the control contents of the galvanometer mirror 51 from the system control unit 61. The two-dimensionalization processing unit 625 generates the detected fluorescence intensity distribution by arranging the data indicating the fluorescence intensity sequentially acquired from the PMT 53 and making it two-dimensional based on the control information acquired from the system control unit 61. . At this time, the two-dimensionalization processing unit 625 may discard the unnecessary portion of the fluorescence intensity distribution and use only the effective portion as the fluorescence intensity distribution. The two-dimensionalization processing unit 625 outputs the generated fluorescence intensity distribution to the correction processing unit 63 and the RAW image generation unit 65.
  (ステップS103)
 なお、二次元化処理部621及び二次元化処理部625より生成された、アイドラー光の強度分布及び蛍光の強度分布それぞれに対して、分布情報生成部62によりノイズ除去処理が施されてもよい。アイドラー光の強度分布及び蛍光の強度分布それぞれに対してノイズ除去処理を施す態様については、「第4の実施形態」として別途後述する。
(Step S103)
The distribution information generation unit 62 may perform noise removal processing on the intensity distribution of idler light and the intensity distribution of fluorescence generated by the two-dimensionalization processing unit 621 and the two-dimensionalization processing unit 625, respectively. . A mode in which noise removal processing is performed on each of the intensity distribution of idler light and the intensity distribution of fluorescence will be separately described later as a “fourth embodiment”.
  (ステップS105)
 強度補正分布決定部623は、あらかじめ取得したウォームアップ期間中のアイドラー光の強度分布に基づき、当該アイドラー光の強度の最大値及び平均値を取得し、最大値/平均値に基づき補正量の最大幅を算出する。強度補正分布決定部623は、算出した補正量の最大幅を、強度制御量決定部611に通知する。これにより、強度制御量決定部611は、光源2から出射されるレーザーの強度の変動による光子数の時間変動を推定し、レーザー光(ポンプ光)の強度の制御量の最大幅(マージン)を決定することが可能となる。なお、レーザー光(ポンプ光)の強度制御の詳細については、「1.8.レーザー光の強度制御の詳細」として別途後述する。
(Step S105)
The intensity correction distribution determination unit 623 acquires the maximum value and the average value of the idler light intensity based on the previously acquired intensity distribution of the idler light during the warm-up period, and calculates the maximum correction amount based on the maximum value / average value. Calculate large. The intensity correction distribution determining unit 623 notifies the intensity control amount determining unit 611 of the calculated maximum correction amount width. Thereby, the intensity control amount determination unit 611 estimates the time variation of the number of photons due to the variation of the intensity of the laser emitted from the light source 2, and sets the maximum width (margin) of the control amount of the intensity of the laser beam (pump light). It becomes possible to decide. The details of the laser beam (pump light) intensity control will be described separately later in “1.8. Details of laser beam intensity control”.
  (ステップS107)
 また、強度補正分布決定部623は、サンプルSの観測時に二次元化処理部621から取得したアイドラー光の強度分布に基づき、蛍光の強度分布を補正するための補正データを生成する。具体的には、強度補正分布決定部623は、サンプルS上の座標(x,y,z)におけるアイドラー光の強度をPDin(x,y,z)とした場合に、(h*νi)/PDin(x,y,z)に基づき、補正データを生成する。なお、hはプランク定数を示し、νiはアイドラー光の周波数を示している。強度補正分布決定部623は、アイドラー光の強度分布をRAW画像生成部65に出力し、当該アイドラー光の強度分布に基づき生成した補正データを、補正処理部63に出力する。
(Step S107)
The intensity correction distribution determination unit 623 generates correction data for correcting the fluorescence intensity distribution based on the intensity distribution of idler light acquired from the two-dimensionalization processing unit 621 when the sample S is observed. Specifically, the intensity correction distribution determination unit 623 has (h * νi) / when the intensity of the idler light at the coordinates (x, y, z) on the sample S is PDin (x, y, z). Correction data is generated based on PDin (x, y, z). Here, h represents the Planck constant, and νi represents the frequency of idler light. The intensity correction distribution determination unit 623 outputs the idler light intensity distribution to the RAW image generation unit 65, and outputs correction data generated based on the idler light intensity distribution to the correction processing unit 63.
  (ステップS109)
 RAW画像生成部65は、二次元化処理部625から取得した蛍光の強度分布を画像データ(RAW画像)として、所定のファイルフォーマットに整形することでRAWファイルを生成する。このとき、RAW画像生成部65は、Z方向(深さ方向)に沿って複数枚取得された一連の蛍光の強度分布を、画像データとしてRAWファイルを生成してもよい。
(Step S109)
The RAW image generation unit 65 generates a RAW file by shaping the fluorescence intensity distribution acquired from the two-dimensionalization processing unit 625 as image data (RAW image) into a predetermined file format. At this time, the RAW image generation unit 65 may generate a RAW file using a series of fluorescence intensity distributions acquired in the Z direction (depth direction) as image data.
  (ステップS111)
 また、RAW画像生成部65は、生成したRAWファイルに対して、強度補正分布決定部623から取得したアイドラー光の強度分布を関連付ける。なお、RAW画像生成部65は、Z方向(深さ方向)に沿って複数枚取得された一連の蛍光の強度分布がRAWファイルに画像データとして記録されている場合には、当該一連の蛍光の強度分布それぞれに対応するアイドラー光の強度分布をあわせて関連付ける。
(Step S111)
The RAW image generation unit 65 associates the intensity distribution of idler light acquired from the intensity correction distribution determination unit 623 with the generated RAW file. The RAW image generation unit 65, when a series of fluorescence intensity distributions acquired in the Z direction (depth direction) is recorded as image data in the RAW file, The idler intensity distributions corresponding to the intensity distributions are associated together.
 このように、RAWファイルにアイドラー光の強度分布を関連付けておくことで、当該RAWファイルD1を読み出した外部装置(例えば、情報処理装置800)が、蛍光の強度分布に顕在化したレーザー強度の変動に伴うノイズを補正することが可能となる。 As described above, by associating the intensity distribution of idler light with the RAW file, the external apparatus (for example, the information processing apparatus 800) that has read the RAW file D1 changes the laser intensity that is manifested in the fluorescence intensity distribution. Can be corrected.
 RAW画像生成部65は、生成したRAWファイルを、例えば、通信制御部68に出力する。また、RAW画像生成部65は、生成したRAWファイルを、記憶部66に記憶させてもよい。 The RAW image generation unit 65 outputs the generated RAW file to the communication control unit 68, for example. Further, the RAW image generation unit 65 may store the generated RAW file in the storage unit 66.
  (ステップS113)
 補正処理部63は、二次元化処理部625から蛍光の強度分布を取得する。また、補正処理部63は、強度補正分布決定部623からアイドラー光の強度分布に基づき生成された補正データを取得する。補正処理部63は、前述した式5に基づき、補正データにより蛍光の強度分布を補正する。
(Step S113)
The correction processing unit 63 acquires the fluorescence intensity distribution from the two-dimensional processing unit 625. Further, the correction processing unit 63 acquires correction data generated based on the intensity distribution of idler light from the intensity correction distribution determining unit 623. The correction processing unit 63 corrects the fluorescence intensity distribution with the correction data based on the above-described Expression 5.
 このような構成により、本実施形態に係る画像取得装置1は、シグナル光の強度変化に基づき蛍光の強度分布に顕在化したノイズを、アイドラー光の強度分布に基づき生成された補正データにより補正することが可能となる。 With such a configuration, the image acquisition device 1 according to the present embodiment corrects the noise that is manifested in the fluorescence intensity distribution based on the change in the intensity of the signal light using the correction data generated based on the intensity distribution of the idler light. It becomes possible.
 [1.8.レーザー光の強度制御の詳細]
  <<1.8.1.強度制御の原理>>
 次に、図22及び図23を参照しながら、本実施形態に係る制御部6による、光源2から出力されるレーザー光(ポンプ光)の強度の制御に係る処理の詳細について説明する。
[1.8. Details of laser light intensity control]
<< 1.8.1. Principle of strength control >>
Next, details of processing related to control of the intensity of laser light (pump light) output from the light source 2 by the control unit 6 according to the present embodiment will be described with reference to FIGS. 22 and 23.
 まず、図22を参照しながら、本実施形態に係る画像取得装置1におけるレーザー光の強度制御の原理について説明する。図22は、光源2からの出射光の強度制御の原理について説明するための説明図である。図22に示すように、光源2を構成するOPOレーザーモジュールのうち、MOPA光源(固定波長)から出力されるポンプ光の周波数をνp、シグナル光の周波数をνs、アイドラー光の周波数をνiとする。 First, the principle of laser beam intensity control in the image acquisition apparatus 1 according to the present embodiment will be described with reference to FIG. FIG. 22 is an explanatory diagram for explaining the principle of intensity control of emitted light from the light source 2. As shown in FIG. 22, among the OPO laser modules constituting the light source 2, the frequency of pump light output from the MOPA light source (fixed wavelength) is νp, the frequency of signal light is νs, and the frequency of idler light is νi. .
 例えば、前述した比較例に係る画像取得装置1wのように、光源2wを画像取得装置1wの外部に設ける構成の場合には、光源2wに対して細かい制御を行うことが困難な場合が少なくない。このような場合には、例えば、出力されるレーザー光の強度の変動に伴う光子数の時間変動n(t)を見越して、空間蛍光強度PMTin(x,y,z)が、下記に示す式6で表される最大空間蛍光強度PMTin_max(x,y,z)となるように設計する。 For example, in the case where the light source 2w is provided outside the image acquisition device 1w as in the image acquisition device 1w according to the comparative example described above, it is often difficult to perform fine control on the light source 2w. . In such a case, for example, the spatial fluorescence intensity PMTin (x, y, z) is expressed by the following equation in anticipation of the time fluctuation n (t) of the number of photons accompanying the fluctuation of the intensity of the output laser beam. The maximum spatial fluorescence intensity PMTin_max (x, y, z) represented by 6 is designed.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 なお、上記に示した式6において、n_max(t)は、光子数の時間変動n(t)の最大値を示しており、Q_max(x,y,z)は、観測対象(即ち、サンプルS)の空間蛍光濃度分布の最大値を示している。 Note that, in Equation 6 shown above, n_max (t) represents the maximum value of the time variation n (t) of the number of photons, and Q_max (x, y, z) represents the observation target (ie, the sample S ) Shows the maximum value of the spatial fluorescence concentration distribution.
 即ち、比較例に係る画像取得装置1wのように、光源2wに対して細かい制御を行うことが困難な場合には、時間変動n(t)の最大値を見越して設計を行うため、空間蛍光濃度分布Q(x,y,z)に対して、ダイナミックレンジ全体を使うことが困難であった。 That is, when it is difficult to perform fine control on the light source 2w as in the image acquisition device 1w according to the comparative example, the design is performed in anticipation of the maximum value of the time variation n (t). It was difficult to use the entire dynamic range for the density distribution Q (x, y, z).
 これに対して、本実施形態に係る制御部6は、PD54で検出されたアイドラー光の強度分布に基づき、レーザー強度の変動を監視し、レーザー強度の変動に追随して当該レーザー強度の制御を行う。 On the other hand, the control unit 6 according to the present embodiment monitors the fluctuation of the laser intensity based on the intensity distribution of the idler light detected by the PD 54, and controls the laser intensity following the fluctuation of the laser intensity. Do.
 具体的には、レーザー強度の変動のうち、撮影時間に対して十分に大きい緩やかな変化分をnl(t)、撮影時間内の変化をnh(t)とした場合には、制御部6は、n(t)=nl(t)+nh(t)の関係にあるように分離する。そのうえで、制御部6は、nl(t)に対して、アイドラー光の強度に比例した負帰還をかけることにより、撮影時間に対して十分短いレイテンシtlを持つ強度制御をかける。この時の空間蛍光強度PMTin(x,y,z)は、以下に示す式7で表される。 Specifically, when the change in laser intensity, which is sufficiently large with respect to the imaging time, is nl (t) and the change within the imaging time is nh (t), the control unit 6 , N (t) = nl (t) + nh (t). In addition, the control unit 6 applies intensity control with a sufficiently short latency tl to the imaging time by applying negative feedback proportional to the intensity of idler light to nl (t). The spatial fluorescence intensity PMTin (x, y, z) at this time is expressed by the following formula 7.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 上記に示した式7において、nlの変動に対してtlが十分に短い場合には、上記式7は、以下に示す式8に近似できる。 In Expression 7 shown above, when tl is sufficiently short with respect to fluctuation of nl, Expression 7 can be approximated to Expression 8 shown below.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 また、前述した補正処理を併用した場合には、上記に示した式8において、nh<<nlとみなせるため、上記式8は、以下に示す式9に近似できる。 Further, when the correction processing described above is used in combination, in the above equation 8, since it can be regarded as nh << nl, the above equation 8 can be approximated to the following equation 9.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 即ち、空間蛍光強度PMTin(x,y,z)が、下記に示す式10で表されることとなるため、レーザー光の強度の変動に伴う光子数の時間変動n(t)を考慮する必要がなくなり、ダイナミックレンジのほぼ全体を使用することが可能となる。 That is, since the spatial fluorescence intensity PMTin (x, y, z) is expressed by the following formula 10, it is necessary to consider the time fluctuation n (t) of the number of photons accompanying the fluctuation of the laser light intensity. It becomes possible to use almost the entire dynamic range.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
  <<1.8.2.強度制御に係る動作の流れ>>
 次に、図23を参照しながら、光源2から出力されるレーザー光(ポンプ光)の強度の制御に係る動作の流れについて説明する。図23は、光源からの出射光の強度制御に係る処理の流れについて説明するためのフローチャートである。
<< 1.8.2. Flow of operations related to intensity control >>
Next, with reference to FIG. 23, the flow of operations related to the control of the intensity of laser light (pump light) output from the light source 2 will be described. FIG. 23 is a flowchart for explaining a flow of processing relating to intensity control of emitted light from the light source.
  (ステップS201)
 まず、測定の開始前に光源2に用いられているレーザー光源(例えば、モードロックレーザー部220の半導体レーザー222)の個体差については、当該レーザー光源の制御パラメタに基づきあらかじめ決められた基準状態に調整しておく。なお、本調整は、レーザー光源の個体差に基づく調整であり、熱変動に伴うレーザー強度の調整とは異なる。
(Step S201)
First, individual differences of laser light sources (for example, the semiconductor laser 222 of the mode-locked laser unit 220) used for the light source 2 before the start of measurement are in a reference state determined in advance based on the control parameters of the laser light source. Adjust it. This adjustment is an adjustment based on individual differences of laser light sources, and is different from the adjustment of laser intensity due to thermal fluctuation.
 次いで、システム制御部61の強度制御量決定部611は、分布情報生成部62の強度補正分布決定部623から、ウォームアップ期間中のアイドラー光の強度分布に基づく補正量の最大幅(即ち、ウォームアップ期間中のアイドラー光の強度の最大値/平均値)を取得する。強度制御量決定部611は、取得した補正量の最大幅に基づき、レーザー光(ポンプ光)の強度制御目標の最大値n_maxを決定する。具体的な一例として、取得した補正量の最大幅が2の場合には、強度制御量決定部611は、レーザー光(ポンプ光)の強度のダイナミックレンジのうち、当該補正量の最大幅の逆数、即ち1/2の範囲を使用するように、強度制御目標の最大値n_maxを決定する。 Next, the intensity control amount determination unit 611 of the system control unit 61 receives from the intensity correction distribution determination unit 623 of the distribution information generation unit 62 the maximum width of the correction amount based on the intensity distribution of idler light during the warm-up period (that is, warm The maximum value / average value of the intensity of idler light during the up period is acquired. The intensity control amount determination unit 611 determines the maximum value n_max of the intensity control target of the laser light (pump light) based on the acquired maximum width of the correction amount. As a specific example, when the maximum width of the acquired correction amount is 2, the intensity control amount determination unit 611 reciprocates the maximum width of the correction amount in the dynamic range of the intensity of the laser light (pump light). That is, the maximum value n_max of the intensity control target is determined so as to use a range of 1/2.
  (ステップS203)
 強度制御量決定部611は、決定した強度制御目標の最大値n_maxに基づき、アイドラー光の強度の制御目標最大値PDin_maxを、下記に示す式11に基づき算出する。なお、下記に示す式11において、hはプランク定数を示しており、νiはアイドラー光の周波数を示している。
(Step S203)
Based on the determined maximum value n_max of the intensity control target, the intensity control amount determination unit 611 calculates the control target maximum value PDin_max of the idler light intensity based on Expression 11 shown below. In Expression 11 shown below, h represents the Planck constant, and νi represents the frequency of idler light.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
  (ステップS205)
 また、強度制御量決定部611は、分布情報生成部62の二次元化処理部621からアイドラー光の強度分布のうち、直近(例えば、直前の1撮影)に取得された1撮影分の強度分布に基づき、アイドラー光の強度の平均PDin_aveを算出する。
(Step S205)
In addition, the intensity control amount determination unit 611 is the intensity distribution for one shooting acquired most recently (for example, the immediately preceding shooting) from the intensity distribution of idler light from the two-dimensional processing unit 621 of the distribution information generation unit 62. Based on the above, the average PDin_ave of the idler light intensity is calculated.
  (ステップS207)
 次いで、強度制御量決定部611は、アイドラー光の強度分布を直近で取得された複数枚(例えば、2撮影分)にわたってパターンマッチングによりレーザー光の安定性を評価し、重み付け係数Wを0<W≦1の範囲で決定する。なお、W=1は、レーザー光が安定している場合に対応しており、係数Wが低くなるほどレーザー光がより不安定な状態に対応していることとなる。
(Step S207)
Next, the intensity control amount determination unit 611 evaluates the stability of the laser beam by pattern matching over a plurality of images (for example, for two photographings) acquired most recently from the intensity distribution of the idler light, and sets the weighting coefficient W to 0 <W. It is determined within the range of ≦ 1. Note that W = 1 corresponds to the case where the laser beam is stable, and the laser beam corresponds to a more unstable state as the coefficient W decreases.
 具体的な一例として、強度制御量決定部611は、パターンマッチングによりアイドラー光の強度分布を複数枚比較してその差を数値化し、当該差を所定の閾値と比較することでレーザー光の安定性を評価してもよい。この場合には、強度制御量決定部611は、算出した差が閾値以下の場合には、レーザー光が安定している状態と判断しW=1を設定する。また、強度制御量決定部611は、算出した差が閾値を超える場合には、レーザー光が不安定な状態と判断し、係数Wを、0<W<1の範囲であらかじめ決められた値に設定する。 As a specific example, the intensity control amount determination unit 611 compares a plurality of idler light intensity distributions by pattern matching, digitizes the difference, and compares the difference with a predetermined threshold value, thereby stabilizing the stability of the laser beam. May be evaluated. In this case, when the calculated difference is equal to or smaller than the threshold value, the intensity control amount determination unit 611 determines that the laser beam is stable and sets W = 1. Further, when the calculated difference exceeds the threshold value, the intensity control amount determination unit 611 determines that the laser beam is in an unstable state, and sets the coefficient W to a predetermined value in a range of 0 <W <1. Set.
 また、他の一例として、強度制御量決定部611は、アイドラー光の強度分布間の比較に応じて算出した差に基づき、係数Wを0<W≦1の範囲で動的に決定してもよい。具体的には、強度制御量決定部611は、算出した差が大きい場合(即ち、不安定な場合)には、Wをより0に近い値に設定し、算出した差が小さい場合(即ち、比較的安定している場合)には、Wをより1に近い値に設定すればよい。 As another example, the intensity control amount determination unit 611 may dynamically determine the coefficient W in the range of 0 <W ≦ 1 based on the difference calculated according to the comparison between the intensity distributions of idler light. Good. Specifically, the intensity control amount determining unit 611 sets W to a value closer to 0 when the calculated difference is large (that is, unstable), and when the calculated difference is small (that is, If it is relatively stable, W may be set to a value closer to 1.
  (ステップS209)
 係数Wを決定したら、強度制御量決定部611は、光源2から出射されるレーザー光の制御後の強度を、制御後の強度=制御前の強度*(PDin_max+1)/(PDin_ave+1)*Wの条件式に基づき算出する。
(Step S209)
When the coefficient W is determined, the intensity control amount determination unit 611 determines the intensity after control of the laser light emitted from the light source 2 as follows: intensity after control = intensity before control * (PDin_max + 1) / (PDin_ave + 1) * W Calculate based on the formula.
  (ステップS211)
 システム制御部61は、強度制御量決定部611が算出した、制御後の強度に基づき、光源2から出射されるレーザー光(ポンプ光)の強度が制御されるように、光源2を制御する。このとき、システム制御部61が、1撮影単位(即ち、蛍光の強度分布1枚分の撮影内)以内に、レーザー光の強度が制御されるようにフィードバック制御を行うことが望ましい。
(Step S211)
The system control unit 61 controls the light source 2 so that the intensity of the laser light (pump light) emitted from the light source 2 is controlled based on the intensity after control calculated by the intensity control amount determination unit 611. At this time, it is desirable that the system control unit 61 performs feedback control so that the intensity of the laser beam is controlled within one imaging unit (that is, within imaging for one fluorescence intensity distribution).
  (ステップS213)
 システム制御部61がレーザー光の強度を制御したら、強度制御量決定部611は、レーザー光(ポンプ光)の強度が制御された後に光源2から出射されるアイドラー光の強度分布に基づきレーザー光が安定しているか否かを判定する。
(Step S213)
When the system control unit 61 controls the intensity of the laser beam, the intensity control amount determination unit 611 determines whether the laser beam is emitted based on the intensity distribution of idler light emitted from the light source 2 after the intensity of the laser beam (pump light) is controlled. Determine if it is stable.
 以上のようにして、システム制御部61は、レーザー光が安定しているか否かを逐次判定し、当該判定結果に基づき重み付け係数Wを決定して、光源2から出射されるレーザー光(ポンプ光)の強度の制御を実行する。 As described above, the system control unit 61 sequentially determines whether or not the laser light is stable, determines the weighting coefficient W based on the determination result, and determines the laser light (pump light) emitted from the light source 2. ) Execute intensity control.
 なお、システム制御部61は上述した一連の動作を、光源2がレーザー光を出射している期間中は継続的に実行してもよいし、所定のタイミングごとに定期的(間欠的)に実行してもよい。 The system control unit 61 may continuously execute the above-described series of operations during the period in which the light source 2 emits laser light, or periodically (intermittently) at predetermined timings. May be.
 上述した一連の動作を所定のタイミングごとに定期的に実行する場合には、システム制御部61は、ステップS213において、一連の動作を停止するか否かの判断を行えばよい。具体的には、システム制御部61は、ステップS207~S211に係る一連の動作(即ち、レーザー光の監視と、監視結果に基づくフィードバック処理)をレーザー光が安定するまで繰り返し実行する(ステップS213、No)。そして、レーザー光が安定したら(ステップS213、Yes)、システム制御部61は、レーザー光(ポンプ光)の強度の制御に係る一連の動作を停止すればよい。 When the series of operations described above are periodically executed at predetermined timings, the system control unit 61 may determine whether or not to stop the series of operations in step S213. Specifically, the system control unit 61 repeatedly executes a series of operations according to steps S207 to S211 (that is, monitoring of laser light and feedback processing based on the monitoring result) until the laser light is stabilized (step S213, No). And if a laser beam is stabilized (step S213, Yes), the system control part 61 should just stop a series of operation | movement which concerns on intensity | strength control of a laser beam (pump light).
 このような構成により、本実施形態に係る画像取得装置1は、内蔵される機器(例えば、測定部3や制御部6)の発熱により光源2の動作が不安定になった場合においても、光源2から出射されるレーザー光の強度を制御することで、光源2を安定的に動作させることが可能となる。 With such a configuration, the image acquisition device 1 according to the present embodiment is configured so that the light source 2 can be operated even when the operation of the light source 2 becomes unstable due to heat generated by a built-in device (for example, the measurement unit 3 or the control unit 6). By controlling the intensity of the laser light emitted from 2, the light source 2 can be stably operated.
 [1.9.ウォームアップ時におけるレーザー光の強度制御]
 次に、フォームアップ時におけるレーザー光の強度制御について説明する。レーザーモジュールから出力されるレーザー光の強度は、前述の通り、温度に依存する場合が少なくない。そのため、光源2としてレーザーモジュールを利用する場合には、多くの場合、出力されるレーザー光の強度を安定化させるためにウォームアップを行ってから使用する。
[1.9. Laser intensity control during warm-up]
Next, laser light intensity control during form-up will be described. As described above, the intensity of the laser beam output from the laser module often depends on the temperature. Therefore, when a laser module is used as the light source 2, in many cases, the laser module is used after warming up in order to stabilize the intensity of the output laser light.
 一方で、レーザーモジュールのウォームアップには、長い時間を要する場合が少なくはなく、このウォームアップの時間が、サンプルSの観測に係る作業の時間を圧迫する場合がある。そこで、本実施形態に係る画像取得装置1では、レーザー光の強度を制御することで、ウォームアップ中のようにレーザー光の強度が不安定な状態下においても、当該レーザー光を安定化させて、サンプルSの観測を可能とする。 On the other hand, the warm-up of the laser module often takes a long time, and this warm-up time may impose a work time related to the observation of the sample S. Therefore, in the image acquisition device 1 according to the present embodiment, by controlling the intensity of the laser beam, the laser beam can be stabilized even in a state where the intensity of the laser beam is unstable, such as during warm-up. The sample S can be observed.
 以下に、本実施形態に係る画像取得装置1の、ウォームアップ時におけるレーザー光の強度制御の例について、図24を参照しながら説明する。図24は、ウォームアップ時における光源2からの出射光の強度制御の原理について説明するための説明図である。図24に示す例では、本実施形態に係る制御部6による、ウォームアップ時におけるフィードバック制御を、ラプラス変換により時間応答に変換して示した図である。 Hereinafter, an example of laser beam intensity control during warm-up of the image acquisition apparatus 1 according to the present embodiment will be described with reference to FIG. FIG. 24 is an explanatory diagram for explaining the principle of intensity control of emitted light from the light source 2 during warm-up. In the example shown in FIG. 24, feedback control during warm-up by the control unit 6 according to the present embodiment is converted into a time response by Laplace conversion.
 図22に基づき前述した構成の場合には、所謂、比例成分K1と積分成分K2/sとに基づくフィードバック制御、即ち、PI制御となる。しかしながら、ウォームアップ期間中のようにレーザー光の強度が不安定な場合には、比例成分K1と積分成分K2/sとに基づくフィードバック制御のみ(即ち、PI制御)では即応性に欠ける場合がある。 In the case of the configuration described above with reference to FIG. 22, so-called feedback control based on the proportional component K1 and integral component K2 / s, that is, PI control is performed. However, when the intensity of the laser beam is unstable as in the warm-up period, the feedback control based only on the proportional component K1 and the integral component K2 / s (that is, PI control) may lack responsiveness. .
 特に、ウォームアップ期間中は、前述した式7として示した空間蛍光強度PMTin(x,y,z)の条件式において、撮影時間に対して十分に大きい緩やかな変化分nl(t)に対して、レイテンシtlが十分に短いとはみなせなくなる。そのため、例えば、光源2から出射されるレーザー光の強度の変化に、周期性を持った変化分が顕在化する場合がある。 In particular, during the warm-up period, in the conditional expression of the spatial fluorescence intensity PMTin (x, y, z) shown as Expression 7 described above, with respect to a gradual change nl (t) that is sufficiently large with respect to the imaging time. The latency tl cannot be regarded as sufficiently short. Therefore, for example, a change with periodicity may be manifested in the change in the intensity of the laser light emitted from the light source 2.
 そこで、本実施形態に係る画像取得装置1は、フィードバック制御に対して微分成分K3sに基づく制御を追加することでPID制御とし、即応性の改善を行う。 Therefore, the image acquisition apparatus 1 according to the present embodiment performs PID control by adding control based on the differential component K3s to the feedback control, and improves responsiveness.
 具体的には、画像取得装置1の制御部6は、ウォームアップ期間における波長変換モジュール(OPO)250の伝達関数G(s)を演算して蓄積することで、蓄積された伝達関数G(s)に基づく予測演算により、微分成分K3sを算出する。なお、制御部6は、例えば、光源2から出射されるレーザー光の強度を制御するための制御情報に基づき波長変換モジュール(OPO)250への入力を演算し、検出されたアイドラー光の強度を出力として伝達関数G(s)を算出すればよい。そして、画像取得装置1は、算出した微分成分K3sに基づき、光源2から出射されるレーザー光の強度を制御することで、周期性を持った変化分の顕在化を抑制する。 Specifically, the control unit 6 of the image acquisition device 1 calculates and accumulates the transfer function G (s) of the wavelength conversion module (OPO) 250 during the warm-up period, thereby storing the accumulated transfer function G (s ) To calculate the differential component K3s. For example, the control unit 6 calculates an input to the wavelength conversion module (OPO) 250 based on control information for controlling the intensity of the laser light emitted from the light source 2, and calculates the intensity of the detected idler light. The transfer function G (s) may be calculated as the output. Then, the image acquisition device 1 controls the intensity of the laser light emitted from the light source 2 based on the calculated differential component K3s, thereby suppressing the manifestation of the change with periodicity.
 具体的な一例として、画像取得装置1は、蓄積されたOPOの伝達関数G(s)に基づき、レーザー光の強度の変化の周期性を予測し、予測した周期と逆異相のフィードバック制御をかけることで、周期性を持った変化を抑制してもよい。 As a specific example, the image acquisition apparatus 1 predicts the periodicity of the change in the intensity of the laser light based on the accumulated transfer function G (s) of the OPO, and applies feedback control that is opposite to the predicted period. Thus, a change with periodicity may be suppressed.
 このような構成により、本実施形態に係る画像取得装置1は、ウォームアップ期間中のように、光源2から出射されるレーザー光の強度が不安定な状態においても、当該光源2から出射されるレーザー光の強度制御に係る即応性を改善することが可能となる。そのため、画像取得装置1に依れば、例えば、ウォームアップ期間が完了していない状態(出射されるレーザー光の強度が不安定な状態)においても、サンプルSの観測を開始することが可能となる。 With such a configuration, the image acquisition apparatus 1 according to the present embodiment emits light from the light source 2 even when the intensity of the laser light emitted from the light source 2 is unstable as in the warm-up period. It is possible to improve the responsiveness related to the intensity control of the laser beam. Therefore, according to the image acquisition device 1, for example, it is possible to start observation of the sample S even in a state where the warm-up period is not completed (a state where the intensity of the emitted laser light is unstable). Become.
 なお、ウォームアップ期間の完了前に観測を開始した場合には、微分成分K3sに基づく制御量が、出射されるレーザー光の周期的変化の変化量よりも大きく、当該微分成分K3sによる制御の影響がノイズとして残存する場合もある。そのため、画像取得装置1は、ウォームアップ期間の完了前に観測を開始する場合には、当該観測の開始前に蛍光ビーズのような既知のサンプルを用いて、蛍光の強度分布とアイドラー光の強度分布とを取得しておいてもよい。この場合には、画像取得装置1は、サンプルSの観測結果に基づき作成されたRAWファイルに、観測前にあらかじめ取得した蛍光の強度分布とアイドラー光の強度分布とを、当該RAWファイルにウォームアップ時の撮影画像として関連付けてもよい(図19参照)。 If the observation is started before the completion of the warm-up period, the control amount based on the differential component K3s is larger than the change amount of the periodic change of the emitted laser light, and the influence of the control by the differential component K3s. May remain as noise. Therefore, when the image acquisition device 1 starts observation before the completion of the warm-up period, the fluorescence intensity distribution and the intensity of idler light are used using a known sample such as a fluorescent bead before the start of the observation. You may acquire distribution. In this case, the image acquisition apparatus 1 warms up the fluorescence intensity distribution and the idler intensity distribution acquired in advance to the RAW file created based on the observation result of the sample S into the RAW file. You may associate as a picked-up image of time (refer FIG. 19).
 このような構成により、例えば、RAWファイルを取得した外部装置(例えば、情報処理装置800)は、当該RAWファイルに関連付けられたウォームアップ時の撮影画像に基づき、レーザー光の強度の変化を推測することが可能となる。そのため、RAWファイル中の観測結果(即ち、蛍光の強度分布)に、微分成分K3sによる制御の影響がノイズとして残存した場合においても、当該外部装置は、レーザー光の強度の変化を推測して当該ノイズを補正することが可能となる。 With such a configuration, for example, the external device (for example, the information processing device 800) that has acquired the RAW file estimates a change in the intensity of the laser light based on a captured image associated with the RAW file during warm-up. It becomes possible. Therefore, even when the influence of the control by the differential component K3s remains as noise in the observation result (that is, the fluorescence intensity distribution) in the RAW file, the external device estimates the change in the intensity of the laser light and Noise can be corrected.
 以上説明したように、本実施形態に係る画像取得装置1に依れば、ウォームアップ期間が完了していない状態(出射されるレーザー光の強度が不安定な状態)においても、サンプルSの観測を開始することが可能となる。そのため、本実施形態に係る画像取得装置1に依れば、ウォームアップにより観測が不可能な期間が短縮されるため、結果として、サンプルSの観測時間を短縮することが可能となる。 As described above, according to the image acquisition device 1 according to the present embodiment, the sample S is observed even in a state where the warm-up period is not completed (a state where the intensity of the emitted laser light is unstable). Can be started. Therefore, according to the image acquisition apparatus 1 according to the present embodiment, the period during which observation is impossible is shortened due to warm-up, and as a result, the observation time of the sample S can be shortened.
 [1.10.情報処理装置の動作]
 次に、情報処理装置800が、画像取得装置1から取得したRAWファイルD1に基づき、サンプルSの画像を生成し、生成した画像に対して画像処理を施してユーザに提示する処理の一例について、図25及び図26を参照しながら説明する。図25は、本実施形態に係る情報処理装置800の画像表示に係る一連の処理の流れを示したフローチャートである。また、図26は、本実施形態に係る情報処理装置800のノイズ補正に関する処理の一例を示したフローチャートである。まず、図25を参照する。
[1.10. Operation of information processing apparatus]
Next, an example of processing in which the information processing apparatus 800 generates an image of the sample S based on the RAW file D1 acquired from the image acquisition apparatus 1, performs image processing on the generated image, and presents the image to the user. This will be described with reference to FIGS. 25 and 26. FIG. FIG. 25 is a flowchart showing a flow of a series of processes related to image display of the information processing apparatus 800 according to the present embodiment. FIG. 26 is a flowchart illustrating an example of processing related to noise correction of the information processing apparatus 800 according to the present embodiment. First, referring to FIG.
  (ステップS301)
 まず、情報処理装置800は、画像の補正及び表示の対象となるRAWファイルD1の指定や、指定されたRAWファイルD1に対する画像処理の内容や当該処理のパラメタを指定するためU/I(以降では、「画像調整用U/I」と記載する)を、例えば、表示デバイスを介してユーザに提示する。
(Step S301)
First, the information processing apparatus 800 uses a U / I (hereinafter referred to as “U / I”) to specify the RAW file D1 that is the target of image correction and display, the image processing content for the specified RAW file D1, and the parameters of the processing. , Described as “image adjustment U / I”), for example, to the user via a display device.
  (ステップS303)
 また、情報処理装置800は、提示した画像調整用U/Iを介してユーザが指定した情報、例えば、処理対象のRAWファイルD1、画像処理の内容、及び処理パラメタを、ユーザの操作内容(例えば、操作デバイスを用いた操作内容)に基づき特定する。
(Step S303)
In addition, the information processing apparatus 800 displays information specified by the user via the presented image adjustment U / I, for example, the RAW file D1 to be processed, the details of the image processing, and the processing parameters, based on the user operation details (for example, , And the operation content using the operation device).
  (ステップS305)
 情報処理装置800は、ユーザの指定に基づき処理対象となるRAWファイルD1を取得する。なお、当該RAWファイルD1は、あらかじめ画像取得装置1から取得して記憶デバイス等に記憶しておいてもよいし、画像取得装置1との間で通信を確立し、当該画像取得装置1から取得してもよい。
(Step S305)
The information processing apparatus 800 acquires a RAW file D1 to be processed based on the user's specification. The RAW file D1 may be acquired in advance from the image acquisition apparatus 1 and stored in a storage device or the like, or communication with the image acquisition apparatus 1 is established and acquired from the image acquisition apparatus 1. May be.
  (ステップS307)
 情報処理装置800は、取得したRAWファイルD1を、当該RAWファイルD1のファイルフォーマットに基づき解析し、RAWファイルD1内に記録された各情報を抽出する。これにより、情報処理装置800は、例えば、RAWファイルD1内に記録されたRAW本画像S309と、当該RAW本画像S309の撮影時の条件を示す撮影情報S311及びS321とを抽出する。このようにして抽出された撮影情報S311及びS321の中には、例えば、前述したアイドラー光の強度分布が含まれている。なお、情報処理装置800は、対象となるRAWファイルD1が既に解析済みの場合には、当該RAWファイルD1の解析に係る処理を改めて実行しなくてもよいことは言うまでもない。
(Step S307)
The information processing apparatus 800 analyzes the acquired RAW file D1 based on the file format of the RAW file D1, and extracts each piece of information recorded in the RAW file D1. Thereby, the information processing apparatus 800 extracts, for example, the RAW main image S309 recorded in the RAW file D1, and the shooting information S311 and S321 indicating the conditions at the time of shooting the RAW main image S309. The photographing information S311 and S321 extracted in this way includes, for example, the above-described intensity distribution of idler light. Needless to say, if the target RAW file D1 has already been analyzed, the information processing apparatus 800 does not need to execute the process relating to the analysis of the RAW file D1 again.
 情報処理装置800は、RAWファイルD1から抽出したRAW本画像S309と撮影情報S311及びS321とに基づきサンプルSの画像を生成し、生成した画像に対して画像処理を施してユーザに提示する。なお、画像処理の例としては、各種ノイズ補正に係る処理が挙げられる。そこで、以降では、ステップS313~S315として、前述したレーザー光の強度の変動に伴うノイズの補正に係る処理について説明し、ステップS323~S325として、レーザー光の強度の変動に伴うノイズとは異なる他のノイズの補正に係る処理について説明する。 The information processing apparatus 800 generates an image of the sample S based on the RAW main image S309 extracted from the RAW file D1 and the shooting information S311 and S321, performs image processing on the generated image, and presents it to the user. Examples of image processing include processing related to various noise corrections. Therefore, hereinafter, the processing relating to the correction of the noise accompanying the fluctuation of the intensity of the laser beam will be described as steps S313 to S315, and the processing different from the noise accompanying the fluctuation of the intensity of the laser beam will be described as steps S323 to S325. A process related to noise correction will be described.
  (ステップS313)
 まず、レーザー光の強度の変動に伴うノイズの補正に係る処理の内容について説明する。この場合には、まず情報処理装置800は、抽出したRAW本画像S309から、処理対象となる領域の画像を切り出し、切り出した当該領域に対応する部分画像を処理対象とする。
(Step S313)
First, the contents of processing related to correction of noise accompanying fluctuations in the intensity of laser light will be described. In this case, the information processing apparatus 800 first cuts out an image of a region to be processed from the extracted RAW main image S309, and sets a partial image corresponding to the cut out region as a processing target.
 なお、処理対象となる領域は、例えば、情報処理装置800自身が、ユーザ入力に基づき取得してもよい。 Note that the area to be processed may be acquired by the information processing apparatus 800 itself based on user input, for example.
 また、他の一例として、画像取得装置1が、RAW本画像S309の撮影時に、観測対象となる領域の指定をユーザ入力として受けて、当該領域を示す制御情報を、RAWファイルD1に撮影情報S311として記録しておいてもよい。この場合には、情報処理装置800は、RAWファイルD1から撮影情報S311として記録された制御情報に基づき、処理対象となる領域を認識すればよい。 As another example, when the image acquisition device 1 captures the RAW main image S309, the image acquisition apparatus 1 receives the designation of the region to be observed as a user input, and sends control information indicating the region to the RAW file D1 in the photographic information S311. May be recorded as In this case, the information processing apparatus 800 may recognize an area to be processed based on the control information recorded as the shooting information S311 from the RAW file D1.
 もちろん、切り出し処理を行わずに、RAW本画像S309を処理対象としてもよいことは言うまでもない。なお、以降の処理については、切り出された部分画像とRAW本画像S309自体とを特に区別せずに、単に「RAW本画像S309」として説明するものとする。 Of course, it goes without saying that the RAW main image S309 may be processed without performing the cut-out process. In the following processing, the cut-out partial image and the RAW main image S309 itself are not particularly distinguished from each other, and are simply described as “RAW main image S309”.
  (ステップS315)
 情報処理装置800は、撮影情報S311として抽出されたアイドラー光の強度分布により、RAW本画像S309上に顕在化したレーザー光の強度の変動に伴うノイズを補正する。本補正処理の内容は、前述した画像取得装置1が、アイドラー光の強度分布に基づき補正データを算出し、当該補正データに基づき蛍光の強度分布を補正する処理の内容と同様である。
(Step S315)
The information processing apparatus 800 corrects the noise associated with the fluctuation in the intensity of the laser light that appears on the RAW main image S309 based on the intensity distribution of the idler light extracted as the imaging information S311. The content of this correction process is the same as the content of the process in which the image acquisition device 1 described above calculates correction data based on the intensity distribution of idler light and corrects the fluorescence intensity distribution based on the correction data.
 なお、情報処理装置800は、ユーザ入力として指定された補正処理のパラメタに基づき、補正処理の内容を調整できるように構成してもよい。具体的な一例として、情報処理装置800は、ユーザ入力に基づき、RAW本画像S309に対して、アイドラー光の強度分布に基づく補正処理の適用量を調整できるようにしてもよい。 Note that the information processing apparatus 800 may be configured to be able to adjust the content of the correction process based on the parameter of the correction process specified as the user input. As a specific example, the information processing apparatus 800 may be configured to adjust the application amount of correction processing based on the intensity distribution of idler light for the RAW main image S309 based on user input.
 以上のようにして、情報処理装置800は、RAW本画像S309上に顕在化したレーザー光の強度の変動に伴うノイズを補正することで、調整後画像S317を生成する。 As described above, the information processing apparatus 800 generates the adjusted image S317 by correcting the noise associated with the fluctuation of the intensity of the laser light that has been manifested on the RAW main image S309.
  (ステップS323)
 次に、レーザー光の強度の変動に伴うノイズとは異なる他のノイズの補正に係る処理について、εフィルタに基づくノイズ補正を行う場合を例に説明する。まず、情報処理装置800は、抽出したRAW本画像S309から、処理対象となる領域の画像を切り出し、切り出した当該領域に対応する部分画像を処理対象とする。本処理については、前述したステップS313に係る処理と同様である。
(Step S323)
Next, a case where noise correction based on an ε filter is performed will be described as an example of processing related to correction of other noise that is different from noise due to fluctuations in laser light intensity. First, the information processing apparatus 800 cuts out an image of a region to be processed from the extracted RAW main image S309, and sets a partial image corresponding to the cut-out region as a processing target. This process is the same as the process according to step S313 described above.
  (ステップS323)
 次いで、情報処理装置800は、抽出された撮影情報S321に基づきRAW本画像S309を補正する。
(Step S323)
Next, the information processing apparatus 800 corrects the RAW main image S309 based on the extracted shooting information S321.
 ここで、当該補正に係る処理の内容について、図26を参照しながら説明する。図26は、本実施形態に係る情報処理装置800のノイズ補正に関する処理の一例を示したフローチャートである。 Here, the contents of the processing relating to the correction will be described with reference to FIG. FIG. 26 is a flowchart illustrating an example of processing related to noise correction of the information processing apparatus 800 according to the present embodiment.
  (ステップS401)
 まず、情報処理装置800は、RAW本画像S309から処理の基準となる画素を特定し、当該画素のレベル(画素値)を基準レベルとして算出する。
(Step S401)
First, the information processing apparatus 800 specifies a pixel serving as a reference for processing from the RAW main image S309, and calculates the level (pixel value) of the pixel as a reference level.
  (ステップS403)
 次に、情報処理装置800は、処理対象となる画素ごとに重み付けための閾値を計算する。このとき、情報処理装置800は、撮影情報S311として抽出されたアイドラー光の強度分布により、アイドラー光の強度が周囲の画素と比べて極端に変動している画素については、他の画素に比べて閾値を高く設定する。
(Step S403)
Next, the information processing apparatus 800 calculates a threshold for weighting for each pixel to be processed. At this time, the information processing apparatus 800 compares pixels whose idler intensity is extremely fluctuating as compared with other pixels due to the intensity distribution of the idler light extracted as the shooting information S311 compared to other pixels. Set the threshold value high.
  (ステップS405)
 処理対象となる画素ごとに閾値を算出したら、情報処理装置800は、算出した基準レベルと、処理対象の画素ごとに算出した閾値とに基づき、当該処理対象の画素ごとにレベルに関する重み付けを行う。
(Step S405)
When the threshold value is calculated for each pixel to be processed, the information processing apparatus 800 weights the level for each pixel to be processed based on the calculated reference level and the threshold value calculated for each pixel to be processed.
  (ステップS407)
 また、情報処理装置800は、処理対象となる画素ごとに、基準となる画素からの距離を算出する。
(Step S407)
Further, the information processing apparatus 800 calculates the distance from the reference pixel for each pixel to be processed.
  (ステップS409)
 情報処理装置800は、処理対象となる画素ごとに算出した距離に基づき、当該処理対象の画素ごとに距離に関する重み付けを行う。
(Step S409)
The information processing apparatus 800 weights the distance for each pixel to be processed based on the distance calculated for each pixel to be processed.
  (ステップS411)
 情報処理装置800は、処理対象となる画素ごとに算出した、レベルに関する重み付けと、距離に関する重み付けとに基づき、εフィルタを適用して平均化処理を行う。
(Step S411)
The information processing apparatus 800 performs an averaging process by applying an ε filter based on the level weighting and the distance weighting calculated for each pixel to be processed.
  (ステップS413)
 以上のようにして、情報処理装置800は、一連の画素を処理対象としてノイズ補正処理を施されるまで(ステップS413、NO)、前述した一連の動作を実行する。そして、情報処理装置800は、一連の画素についてノイズ補正処理を施すことで(ステップS413、YES)、調整後画像S327を生成する。
(Step S413)
As described above, the information processing apparatus 800 performs the above-described series of operations until the noise correction process is performed on a series of pixels as a processing target (NO in step S413). Then, the information processing apparatus 800 generates an adjusted image S327 by performing noise correction processing on a series of pixels (step S413, YES).
  (ステップS331)
 ここで、再度図25を参照する。情報処理装置800は、調整後画像S317及びS327の少なくともいずれかを生成すると、生成した調整後画像を画像調整用U/I上の所定の領域に提示し、画像調整用U/Iの表示を更新する。これにより、ユーザは、生成された調整後画像を、画像調整用U/Iを介して確認することが可能となる。このとき、情報処理装置800は、生成した調整後画像を所定の記憶部(例えば、ハードディスク等のストレージ)に記憶させてもよい。
(Step S331)
Here, FIG. 25 will be referred to again. When the information processing apparatus 800 generates at least one of the adjusted images S317 and S327, the information processing apparatus 800 presents the generated adjusted image in a predetermined area on the image adjustment U / I and displays the image adjustment U / I. Update. Thereby, the user can check the generated adjusted image via the image adjustment U / I. At this time, the information processing apparatus 800 may store the generated adjusted image in a predetermined storage unit (for example, a storage such as a hard disk).
  (ステップS333)
 情報処理装置800は、上述した画像の調整及び調整後の画像の提示に係る一連の処理を、ユーザが画像調整の終了を指示するまで継続する(ステップS333、NO)。このとき、情報処理装置800は、生成した調整後画像に対して、ユーザからの指示に基づき、更に画像の調整に係る処理を実行できるようにしてもよい。
(Step S333)
The information processing apparatus 800 continues the above-described series of processing relating to image adjustment and presentation of the adjusted image until the user instructs the end of the image adjustment (NO in step S333). At this time, the information processing apparatus 800 may be configured to further execute processing related to image adjustment on the generated adjusted image based on an instruction from the user.
 ユーザが画像調整の終了を指示した場合には(ステップS333、YES)、情報処理装置800は、上述した画像の調整及び調整後の画像の提示に係る一連の処理を終了する。 When the user instructs the end of the image adjustment (step S333, YES), the information processing apparatus 800 ends the above-described series of processes relating to the adjustment of the image and the presentation of the image after the adjustment.
 以上、図25及び図26を参照しながら、本実施形態に係る情報処理装置800のノイズ補正に関する処理の一例について説明した。以上のように、RAWファイルD1に対して、アイドラー光の強度分布のような関連情報を関連付けておくことで、情報処理装置800のような外部装置においても、画像取得装置1と同様に、レーザー強度の変動に基づくノイズを補正することが可能となる。 Heretofore, an example of processing related to noise correction of the information processing apparatus 800 according to the present embodiment has been described with reference to FIGS. As described above, by associating the RAW file D1 with related information such as the intensity distribution of idler light, in the external apparatus such as the information processing apparatus 800, similarly to the image acquisition apparatus 1, a laser is obtained. It becomes possible to correct noise based on intensity fluctuations.
 [1.11.まとめ]
 以上、説明したように、本実施形態に係る画像取得装置1は、シグナル光を励起光とした場合に、当該励起光に基づく蛍光の強度分布を、アイドラー光の強度分布に基づき補正する。このような構成により、本実施形態に係る画像取得装置1は、例えば、レーザー光の強度が変動するような状況下においても、当該レーザー光の強度の変動に伴うノイズを補正して鮮明な画像を得ることが可能となる。
[1.11. Summary]
As described above, when the signal light is excitation light, the image acquisition device 1 according to the present embodiment corrects the fluorescence intensity distribution based on the excitation light based on the idler light intensity distribution. With such a configuration, the image acquisition device 1 according to the present embodiment corrects noise associated with fluctuations in the intensity of the laser light, for example, even under circumstances where the intensity of the laser light varies, and provides a clear image. Can be obtained.
 また、本実施形態に係る画像取得装置1は、アイドラー光の強度分布に基づき光源2から出射される励起光の強度を監視し、監視結果に基づき、光源2から出射されるレーザー光(ポンプ光)の強度を制御する。このような構成により、本実施形態に係る画像取得装置1は、例えば、レーザー光の強度が変動するような状況下においても、当該レーザー光の強度が安定するように制御することが可能となる。 Further, the image acquisition device 1 according to the present embodiment monitors the intensity of the excitation light emitted from the light source 2 based on the intensity distribution of idler light, and the laser light (pump light) emitted from the light source 2 based on the monitoring result. ) Control the intensity. With such a configuration, the image acquisition apparatus 1 according to the present embodiment can be controlled so that the intensity of the laser beam is stabilized even under a situation where the intensity of the laser beam fluctuates, for example. .
 以上のような特徴により、本実施形態に係る画像取得装置1は、光源2を同一筐体内に内蔵できるため、画像取得装置1自体を小型化することが可能となる。 Due to the above-described features, the image acquisition device 1 according to the present embodiment can incorporate the light source 2 in the same housing, so that the image acquisition device 1 itself can be downsized.
 また、比較例に係る画像取得装置1wのように光源を外部に設ける構成の場合には、当該光源として用いられるレーザーモジュールが、例えば、OEM(Original equipment manufacturer)等により提供され、その内部構造がブラックボックス化されており、詳細な制御が困難な場合も少なくない。そのため、比較例に係る画像取得装置1wは、レーザーモジュールを安定的に動作させるために低い出力で使用される場合が少なくはなく、当該レーザーモジュールの性能を十分に活かしきれない場合もあった。 Further, in the case of a configuration in which a light source is provided outside as in the image acquisition device 1w according to the comparative example, a laser module used as the light source is provided by, for example, an OEM (Original equipment manufacturer) or the like, and its internal structure is There are many cases where detailed control is difficult due to the black box. For this reason, the image acquisition device 1w according to the comparative example is often used at a low output in order to stably operate the laser module, and the performance of the laser module may not be fully utilized.
 これに対して、本実施形態に係る画像取得装置1は、上記に示したように、レーザー光の強度を制御するとともに、当該レーザー光の強度の変動に伴うノイズを補正する。そのため、本実施形態に係る画像取得装置1は、レーザーモジュールの出力を上げて使用したとしても鮮明な画像を得られるため、当該レーザーモジュールの性能を活かして使用することが可能である。 In contrast, as described above, the image acquisition device 1 according to the present embodiment controls the intensity of the laser beam and corrects the noise accompanying the fluctuation of the intensity of the laser beam. For this reason, the image acquisition apparatus 1 according to the present embodiment can obtain a clear image even when the output of the laser module is increased and can be used by taking advantage of the performance of the laser module.
 <2.第2の実施形態>
 [2.1.画像取得装置の概要]
 次に、第2の実施形態に係る画像取得装置について説明する。まず、本実施形態に係る画像取得装置の課題について整理する。
<2. Second Embodiment>
[2.1. Overview of image acquisition device]
Next, an image acquisition apparatus according to the second embodiment will be described. First, the problems of the image acquisition apparatus according to the present embodiment will be organized.
 蛍光顕微鏡のような光源を要する画像取得装置は、例えば、使用する蛍光色素に依ってあらかじめ決められた励起波長を投光可能な固定波長のレーザー光源を用いている場合が少なくない。 Image acquisition apparatuses that require a light source such as a fluorescence microscope often use a fixed-wavelength laser light source that can project an excitation wavelength that is predetermined according to the fluorescent dye used.
 しかしながら、サンプル中の蛍光基体が時間の経過とともに退色する場合があり、このような場合には、励起波長が変化するため、レーザー光源から出力される励起光の波長も変える必要がある。このような状況に対して、固定波長のレーザー光源を用いる構成により対応する場合には、複数種類のレーザー光源を設ける必要があるため、装置が大型化して使用者の利便性を著しく阻害し、装置自体も高価になる傾向にある。 However, the fluorescent substrate in the sample may fade over time. In such a case, since the excitation wavelength changes, it is necessary to change the wavelength of the excitation light output from the laser light source. When responding to such a situation by a configuration using a fixed-wavelength laser light source, it is necessary to provide a plurality of types of laser light sources. The device itself tends to be expensive.
 また、サンプル中の蛍光基体の励起波長は、退色の度合いに応じて変化するため、固定波長のレーザー光源を複数設ける構成では、ユーザは使用するレーザー光源を適宜切り替えて当該蛍光基体が励起するレーザー光源を特定する必要があり、利便性が低下する場合がある。また、複数種類のレーザー光源を切り替えて用いる構成の場合には、退色が進んだサンプルから蛍光を励起できたとしても、必ずしもコントラストの高い画像を得られるとは限らない。 In addition, since the excitation wavelength of the fluorescent substrate in the sample changes according to the degree of fading, in a configuration in which a plurality of fixed-wavelength laser light sources are provided, the user can appropriately switch the laser light source to be used to excite the fluorescent substrate. It is necessary to specify the light source, which may reduce convenience. Further, in the case of a configuration in which a plurality of types of laser light sources are switched and used, even if fluorescence can be excited from a sample that has faded, an image with high contrast is not necessarily obtained.
 そこで、本開示では、サンプルの励起波長が変化する状況下においても、コントラストの高い画像を、より簡便な方法で得ることが可能な、新規かつ改良された画像取得装置及び画像取得方法を提案する。 In view of this, the present disclosure proposes a new and improved image acquisition apparatus and image acquisition method capable of obtaining a high-contrast image by a simpler method even in a situation where the excitation wavelength of the sample changes. .
 具体的には、本実施形態に係る画像取得装置は、光源として、出力されるレーザー光(励起光)の波長を変更可能なレーザーモジュールを使用し、観測された蛍光の強度分布に基づき当該レーザー光の波長を制御する。これにより、本実施形態に係る画像取得装置は、例えば、観測者(ユーザ)が、観測結果を確認しながら光源2の動作を制御したり、光源2自体を切り替えるといった煩雑な作業を要することなく、コントラストの高い画像の取得を可能とする。 Specifically, the image acquisition apparatus according to the present embodiment uses a laser module capable of changing the wavelength of the output laser light (excitation light) as a light source, and the laser is based on the observed fluorescence intensity distribution. Control the wavelength of light. Thereby, the image acquisition apparatus according to the present embodiment does not require a complicated operation such as an observer (user) controlling the operation of the light source 2 while checking the observation result or switching the light source 2 itself. It is possible to obtain an image with high contrast.
 以降では、本実施形態に係る画像取得装置について、まず、光学系の構成について説明し、次いで、画像取得装置の機能構成について説明する。なお、本実施形態に係る画像取得装置を、第1の実施形態に係る画像取得装置1と区別するために、以降では「画像取得装置1a」と記載する場合がある。 Hereinafter, regarding the image acquisition apparatus according to the present embodiment, the configuration of the optical system will be described first, and then the functional configuration of the image acquisition apparatus will be described. In order to distinguish the image acquisition apparatus according to the present embodiment from the image acquisition apparatus 1 according to the first embodiment, hereinafter, the image acquisition apparatus may be referred to as an “image acquisition apparatus 1a”.
 [2.2.画像取得装置の構成]
  <<2.2.1.光学系の構成>>
 まず、図27を参照しながら、本実施形態に係る画像取得装置1aの光学系の構成について、特に、前述した第1の実施形態に係る画像取得装置1の光学系の構成(図14参照)と異なる部分に着目して説明する。なお、本説明では、前述した第1の実施形態と同様に、シグナル光を励起光としてサンプルSに向けて照射するものとして説明する。
[2.2. Configuration of image acquisition apparatus]
<< 2.2.1. Configuration of optical system >>
First, with reference to FIG. 27, regarding the configuration of the optical system of the image acquisition device 1a according to the present embodiment, in particular, the configuration of the optical system of the image acquisition device 1 according to the first embodiment described above (see FIG. 14). The explanation will focus on the differences. In the present description, as in the first embodiment described above, the description will be made assuming that signal light is emitted toward the sample S as excitation light.
 本実施形態に係る画像取得装置1aは、PMT53で検出される蛍光(発色光)の強度に基づき、光源2から出射されるレーザー光(ポンプ光)の波長を制御する。そのため、必ずしも、前述した第1の実施形態に係る画像取得装置1のように、アイドラー光の強度を検出するためのPD54を設ける必要はない。 The image acquisition device 1a according to the present embodiment controls the wavelength of laser light (pump light) emitted from the light source 2 based on the intensity of fluorescence (coloring light) detected by the PMT 53. Therefore, it is not always necessary to provide the PD 54 for detecting the intensity of idler light as in the image acquisition device 1 according to the first embodiment described above.
 なお、励起光をサンプルSに向けて照射する構成については、前述した比較例に係る画像取得装置1wの光学系(図10参照)や第1の実施形態に係る画像取得装置1の光学系(図14参照)と同様である。即ち、光源2から出射された励起光は、ビーム整形用レンズ511、ガルバノミラー51、レンズ513、ミラー517、レンズ515及びダイクロイックミラー52を介して対物レンズ42に導光され、当該対物レンズ42によりサンプルSに向けて集光される。 In addition, about the structure which irradiates excitation light toward the sample S, the optical system (refer FIG. 10) of the image acquisition apparatus 1w which concerns on the comparative example mentioned above, or the optical system of the image acquisition apparatus 1 which concerns on 1st Embodiment (refer FIG. This is the same as in FIG. That is, the excitation light emitted from the light source 2 is guided to the objective lens 42 via the beam shaping lens 511, the galvano mirror 51, the lens 513, the mirror 517, the lens 515, and the dichroic mirror 52. It is condensed toward the sample S.
 また、サンプルSに励起光が照射されると、サンプルSのある分子が、当該励起光により励起されて蛍光を発し、当該蛍光が、対物レンズ42、ダイクロイックミラー52、結像レンズ521、及びエミッションフィルタ523を介してPMT53の検出面に結像する。このとき、エミッションフィルタ523により、上記対物レンズ42によって拡大された、発色光以外の光(外光)が吸収され(即ち、発光色のみが透過し)、当該外光が喪失された発色光の像が、PMT53上に結像される。 When the sample S is irradiated with excitation light, a molecule in the sample S is excited by the excitation light to emit fluorescence, and the fluorescence is emitted from the objective lens 42, the dichroic mirror 52, the imaging lens 521, and the emission. An image is formed on the detection surface of the PMT 53 via the filter 523. At this time, the emission filter 523 absorbs light (external light) other than the color light expanded by the objective lens 42 (that is, only the emitted color is transmitted), and the color light that has lost the external light is absorbed. An image is formed on the PMT 53.
  <<2.2.2.画像取得装置の機能構成>>
 次に、図28を参照しながら、本実施形態に係る画像取得装置1aの機能構成の一例について説明する。図28に示すように、本実施形態に係る画像取得装置1aは、光源2と、測定部3と、制御部6aと、I/F7とを含む。また、測定部3は、顕微鏡ユニット4と、走査系(検出系)5aとを含む。なお、光源2、顕微鏡ユニット4、及びI/F7の構成は、前述した第1の実施形態に係る画像取得装置1と同様である。そのため、以降では、特に、第1の実施形態に係る画像取得装置1と異なる、走査系(検出系)5a及び制御部6aの構成に着目して説明する。なお、図28に示す例において、走査系(検出系)5aの各構成は、図27に示した光学系において同様の符号が付された構成に対応している。また、図28に示す例では、図27に示した構成のうち一部を省略している。
<< 2.2.2. Functional configuration of image acquisition device >>
Next, an example of a functional configuration of the image acquisition device 1a according to the present embodiment will be described with reference to FIG. As shown in FIG. 28, the image acquisition device 1a according to the present embodiment includes a light source 2, a measurement unit 3, a control unit 6a, and an I / F 7. The measurement unit 3 includes a microscope unit 4 and a scanning system (detection system) 5a. The configurations of the light source 2, the microscope unit 4, and the I / F 7 are the same as those of the image acquisition apparatus 1 according to the first embodiment described above. Therefore, in the following, description will be made with particular attention to the configuration of the scanning system (detection system) 5a and the control unit 6a, which is different from the image acquisition device 1 according to the first embodiment. In the example shown in FIG. 28, each configuration of the scanning system (detection system) 5a corresponds to the configuration given the same reference numeral in the optical system shown in FIG. In the example shown in FIG. 28, a part of the configuration shown in FIG. 27 is omitted.
 図28に示すように、本実施形態に係る走査系(検出系)5aは、アイドラー光を測定するためのPD54を、必ずしも含む必要がない点で、前述した第1の実施形態に係る走査系(検出系)5(図15参照)と異なる。なお、その他の構成については、前述した第1の実施形態に係る走査系(検出系)5と同様である。 As shown in FIG. 28, the scanning system (detection system) 5a according to the present embodiment does not necessarily include the PD 54 for measuring idler light, and thus the scanning system according to the first embodiment described above. Different from (detection system) 5 (see FIG. 15). Other configurations are the same as those of the scanning system (detection system) 5 according to the first embodiment described above.
 即ち、光源2から出射された励起光は、走査系(検出系)5aと顕微鏡ユニット4とを介してサンプルSに照射される。また、照射された励起光によりサンプルSから生じた蛍光は、顕微鏡ユニット4を介して走査系(検出系)5aに導かれ、走査系(検出系)5aのPMT53で検出される。PMT53は、あらかじめ設定されたサンプリングレートで、検出された蛍光を光電効果により電気信号に変換し、当該蛍光の強度を示すデータとして制御部6aに出力する。 That is, the excitation light emitted from the light source 2 is applied to the sample S via the scanning system (detection system) 5 a and the microscope unit 4. The fluorescence generated from the sample S by the irradiated excitation light is guided to the scanning system (detection system) 5a through the microscope unit 4 and detected by the PMT 53 of the scanning system (detection system) 5a. The PMT 53 converts the detected fluorescence into an electrical signal by a photoelectric effect at a preset sampling rate, and outputs it to the control unit 6a as data indicating the intensity of the fluorescence.
 制御部6aは、システム制御部61aと、分布情報生成部62aと、補正処理部63と、画像処理部64と、RAW画像生成部65と、記憶部66と、表示制御部67と、通信制御部68とを含む。なお、本実施形態に係る制御部6aは、特に、システム制御部61a及び分布情報生成部62aの構成が、前述した第1の実施形態に係る制御部6(図15及び図16参照)と異なる。 The control unit 6a includes a system control unit 61a, a distribution information generation unit 62a, a correction processing unit 63, an image processing unit 64, a RAW image generation unit 65, a storage unit 66, a display control unit 67, and communication control. Part 68. The control unit 6a according to the present embodiment is particularly different from the control unit 6 according to the first embodiment described above (see FIGS. 15 and 16) in the configuration of the system control unit 61a and the distribution information generation unit 62a. .
 ここで、図29を参照しながら、システム制御部61a及び分布情報生成部62aの詳細な構成について説明する。図29に示すように、分布情報生成部62aは、二次元化処理部625を含む。また、システム制御部61aは、波長制御量決定部613を含む。 Here, the detailed configuration of the system control unit 61a and the distribution information generation unit 62a will be described with reference to FIG. As illustrated in FIG. 29, the distribution information generation unit 62a includes a two-dimensionalization processing unit 625. Further, the system control unit 61a includes a wavelength control amount determination unit 613.
 二次元化処理部625は、PMT53で検出された(測定された)蛍光の強度を示すデータを、あらかじめ設定されたサンプリングレートで、当該PMT53から逐次取得する。また、二次元化処理部625は、ガルバノミラー51の制御内容を示す制御情報をシステム制御部61から逐次取得する。そして、二次元化処理部625は、PMT53から逐次取得した蛍光の強度を示すデータを、システム制御部61から取得した制御情報に基づき並べて二次元化することで、検出された蛍光の強度分布を生成する。 The two-dimensionalization processing unit 625 sequentially acquires data indicating the intensity of fluorescence detected (measured) by the PMT 53 from the PMT 53 at a preset sampling rate. Further, the two-dimensional processing unit 625 sequentially acquires control information indicating the control contents of the galvanometer mirror 51 from the system control unit 61. Then, the two-dimensionalization processing unit 625 arranges the data indicating the fluorescence intensity sequentially acquired from the PMT 53 based on the control information acquired from the system control unit 61 and converts the data into a two-dimensional data, thereby obtaining the detected fluorescence intensity distribution. Generate.
 二次元化処理部625は、生成した蛍光の強度分布を、波長制御量決定部613、補正処理部63及びRAW画像生成部65に出力する。 The two-dimensionalization processing unit 625 outputs the generated fluorescence intensity distribution to the wavelength control amount determination unit 613, the correction processing unit 63, and the RAW image generation unit 65.
 なお、二次元化処理部625から出力された蛍光の強度分布は、補正処理部63によりノイズ除去等の補正処理が施されて画像処理部64に出力される。画像処理部64は、補正処理施された強度分布に対して、圧縮処理等の画像処理を施すことで画像データを生成する。生成された画像データは、例えば、表示制御部67に出力され、当該表示制御部67により、表示部72に表示される。これにより、ユーザは、表示部72を介してサンプルSの画像を確認することが可能となる。 The fluorescence intensity distribution output from the two-dimensional processing unit 625 is subjected to correction processing such as noise removal by the correction processing unit 63 and output to the image processing unit 64. The image processing unit 64 generates image data by performing image processing such as compression processing on the intensity distribution subjected to the correction processing. For example, the generated image data is output to the display control unit 67 and displayed on the display unit 72 by the display control unit 67. As a result, the user can check the image of the sample S via the display unit 72.
 波長制御量決定部613は、二次元化処理部625から、生成された蛍光の強度分布を取得し、当該蛍光の強度分布のコントラストを向上させるように、光源2から出射されるレーザー光(励起光)の波長(周波数)の制御量を決定する。波長制御量決定部613によりレーザー光の波長の制御量が決定されると、当該制御量に基づき、システム制御部61が、当該光源2から出射されるレーザー光の波長を制御する。 The wavelength control amount determination unit 613 acquires the generated fluorescence intensity distribution from the two-dimensional processing unit 625, and the laser light (excitation) emitted from the light source 2 so as to improve the contrast of the fluorescence intensity distribution. The control amount of the wavelength (frequency) of light is determined. When the wavelength control amount determination unit 613 determines the laser light wavelength control amount, the system control unit 61 controls the wavelength of the laser light emitted from the light source 2 based on the control amount.
 光源2から出射されるレーザー光の波長が制御されると、二次元化処理部625により、当該制御後のレーザー光に基づく蛍光の強度分布が取得され、取得された蛍光の強度分布が波長制御量決定部613に出力される。波長制御量決定部613は、改めて取得した蛍光の強度分布を評価し、当該蛍光の強度分布のコントラストを向上させるように、レーザー光の波長の制御量を算出する。 When the wavelength of the laser light emitted from the light source 2 is controlled, the two-dimensionalization processing unit 625 acquires the fluorescence intensity distribution based on the laser light after the control, and the acquired fluorescence intensity distribution is wavelength-controlled. The data is output to the quantity determining unit 613. The wavelength control amount determination unit 613 evaluates the newly acquired fluorescence intensity distribution, and calculates the control amount of the wavelength of the laser light so as to improve the contrast of the fluorescence intensity distribution.
 以上の動作を繰り返すことで、システム制御部61及び波長制御量決定部613により、例えば、蛍光の強度分布のコントラストが最大となるように、光源2から出射されるレーザー光の波長が制御される。 By repeating the above operations, the wavelength of the laser light emitted from the light source 2 is controlled by the system control unit 61 and the wavelength control amount determination unit 613 so that, for example, the contrast of the fluorescence intensity distribution is maximized. .
 なお、波長制御量決定部613は、取得した蛍光の強度分布中において、ユーザに観測対象として指定された領域を対象にコントラストを評価して、レーザー光の波長の制御量を決定してもよい。 The wavelength control amount determination unit 613 may determine the control amount of the wavelength of the laser light by evaluating the contrast for the region designated as the observation target by the user in the acquired fluorescence intensity distribution. .
 この場合には、表示制御部67は、蛍光の強度分布に基づき作成された画像データとともに、当該画像データ中の領域を指定するためのU/Iを表示部72に表示するとよい。これにより、ユーザは、表示部72に表示された画像に対して、観測対象となる領域を、条件指定部71を介して指定することが可能となる。 In this case, the display control unit 67 may display U / I for designating a region in the image data on the display unit 72 together with the image data created based on the fluorescence intensity distribution. Thereby, the user can designate the region to be observed for the image displayed on the display unit 72 via the condition designating unit 71.
 例えば、図30は、観測対象の指定方法の一例について説明するための図である。図30において、参照符号V20は、表示部72に表示された画像を示しており、参照符号V21は、ユーザにより観測対象として指定された領域を模式的に示している。なお、領域V21の形状は、画像V20中の少なくとも一部の領域を指定できれば、必ずしも図30に示すような円形形状には限定されない。例えば、領域V21の形状は、矩形形状であってもよいし、ユーザにより指定された任意の形状であってもよい。 For example, FIG. 30 is a diagram for explaining an example of an observation target designation method. In FIG. 30, a reference sign V20 indicates an image displayed on the display unit 72, and a reference sign V21 schematically indicates a region designated as an observation target by the user. Note that the shape of the region V21 is not necessarily limited to the circular shape shown in FIG. 30 as long as at least a part of the region in the image V20 can be designated. For example, the shape of the region V21 may be a rectangular shape or an arbitrary shape designated by the user.
 波長制御量決定部613は、表示部72に表示されたサンプルSの画像V20に対して、ユーザが条件指定部71を介して指定した画像中の領域V21を示す情報を、条件指定部71から取得する。なお、画像V20の座標系と、蛍光の強度分布の座標系とは対応している。そのため、波長制御量決定部613は、条件指定部71から取得した領域V21を示す情報に基づき、ユーザが画像V20に対して指定した領域V21に対応する、蛍光の強度分布上の領域を認識する。 The wavelength control amount determination unit 613 receives, from the condition designation unit 71, information indicating the region V21 in the image designated by the user via the condition designation unit 71 with respect to the image V20 of the sample S displayed on the display unit 72. get. The coordinate system of the image V20 corresponds to the coordinate system of the fluorescence intensity distribution. Therefore, the wavelength control amount determination unit 613 recognizes a region on the fluorescence intensity distribution corresponding to the region V21 designated by the user for the image V20 based on the information indicating the region V21 acquired from the condition designating unit 71. .
 なお、ユーザにより観測対象として指定された領域V21を示す情報を取得した場合には、波長制御量決定部613は、蛍光の強度分布上における当該領域V21を対象として、コントラストを向上させるように、レーザー光の波長の制御量を決定すればよい。 When the information indicating the region V21 designated as the observation target by the user is acquired, the wavelength control amount determination unit 613 improves the contrast so that the region V21 on the fluorescence intensity distribution is the target. What is necessary is just to determine the control amount of the wavelength of a laser beam.
 また、システム制御部61は、ユーザからの指定に基づきレーザー光の波長を制御(調整)できるようにしてもよい。具体的な一例として、システム制御部61は、波長制御後の蛍光の強度分布に基づき作成された画像に対して、さらに調整が必要か否かをユーザに指定させることで、当該指定に基づきレーザー光の波長を更に制御するか否かを判断できるようにしてもよい。 Further, the system control unit 61 may be configured to control (adjust) the wavelength of the laser light based on designation from the user. As a specific example, the system control unit 61 causes the user to specify whether or not further adjustment is necessary for an image created based on the fluorescence intensity distribution after wavelength control, and based on the designation, It may be possible to determine whether or not to further control the wavelength of light.
 この場合には、例えば、表示制御部67が、波長制御後の蛍光の強度分布に基づき作成された画像データを、表示部72を介してユーザに提示し、システム制御部61は、さらに調整が必要か否かを示すユーザの指定を条件指定部71から取得する。 In this case, for example, the display control unit 67 presents image data created based on the fluorescence intensity distribution after wavelength control to the user via the display unit 72, and the system control unit 61 further adjusts. A user designation indicating whether it is necessary is acquired from the condition designating unit 71.
 システム制御部61は、ユーザにより、さらに調整が必要である旨の指定を受けた場合には、波長制御量決定部613に、改めてレーザー光の波長の制御量を算出させてもよい。また、このとき、システム制御部61は、レーザー光の波長の制御量の算出に係る条件(例えば、コントラストの判定に係る閾値等のパラメタ)を制御するように、波長制御量決定部613を制御してもよい。 The system control unit 61 may cause the wavelength control amount determination unit 613 to calculate the control amount of the wavelength of the laser light again when receiving a designation from the user that further adjustment is necessary. At this time, the system control unit 61 controls the wavelength control amount determination unit 613 so as to control conditions (for example, parameters such as a threshold value for determining contrast) related to the calculation of the control amount of the wavelength of the laser light. May be.
 また、他の一例として、レーザー光の波長をユーザが直接的または間接的に指定できるように、システム制御部61を動作させてもよい。具体的な一例として、システム制御部61は、ユーザからコントラストの調整に係る指定(例えば、コントラストを上げ下げや調整量の指定)を受けて、指定されたコントラストの調整内容に基づき、レーザー光の波長を制御してもよい。 As another example, the system controller 61 may be operated so that the user can directly or indirectly specify the wavelength of the laser beam. As a specific example, the system control unit 61 receives a specification related to contrast adjustment (for example, increases / decreases the contrast or specifies an adjustment amount) from the user, and determines the wavelength of the laser light based on the specified contrast adjustment content. May be controlled.
 このようにシステム制御部61は、蛍光の強度分布のコントラストを向上させるように自動でレーザー光の波長を制御することが可能であり、また、ユーザからの指示に基づき当該レーザー光の波長を制御することも可能である。このような構成により、例えば、システム制御部61を、蛍光の強度分布のコントラストが最大となるように自動でレーザー光の波長を制御した後、ユーザからの指示に基づき、当該レーザー光の波長を微調整するように動作させることも可能である。 As described above, the system control unit 61 can automatically control the wavelength of the laser light so as to improve the contrast of the fluorescence intensity distribution, and also controls the wavelength of the laser light based on an instruction from the user. It is also possible to do. With such a configuration, for example, the system control unit 61 automatically controls the wavelength of the laser beam so that the contrast of the fluorescence intensity distribution is maximized, and then sets the wavelength of the laser beam based on an instruction from the user. It is also possible to operate so as to make fine adjustments.
 なお、レーザー光の波長の制御量の決定と、当該制御量に基づくレーザー光の波長制御との詳細な内容については、「2.5.波長制御の詳細」として別途後述する。 The detailed contents of the determination of the control amount of the wavelength of the laser light and the wavelength control of the laser light based on the control amount will be separately described later as “2.5. Details of wavelength control”.
 RAW画像生成部65は、二次元化処理部625から蛍光の強度分布を取得し、当該蛍光の強度分布を画像データ(RAW画像)として、所定のファイルフォーマットに整形することでRAWファイルを生成してもよい。このとき、RAW画像生成部65は、蛍光の強度分布の取得条件(例えば、撮影時のパラメタのような撮影条件や走査条件)のように、当該蛍光の強度分布に関連する情報をシステム制御部61から取得し、取得した情報を関連情報として、生成したRAWファイルに関連付けてもよい。 The RAW image generation unit 65 acquires the fluorescence intensity distribution from the two-dimensionalization processing unit 625 and generates a RAW file by shaping the fluorescence intensity distribution as image data (RAW image) into a predetermined file format. May be. At this time, the RAW image generation unit 65 displays information related to the fluorescence intensity distribution, such as a fluorescence intensity distribution acquisition condition (for example, a shooting condition or a scanning condition such as a parameter at the time of shooting). The acquired information may be associated with the generated RAW file as related information.
 特に、本実施形態に係るRAW画像生成部65は、例えば、図30に示すように、画像V20中にユーザが指定した領域V21を示す情報や、当該領域V21中の画像を、関連情報としてRAWファイルに関連付けてもよい。 In particular, the RAW image generation unit 65 according to the present embodiment, for example, as shown in FIG. 30, information indicating the region V21 specified by the user in the image V20 or an image in the region V21 as RAW It may be associated with a file.
 また、RAW画像生成部65は、波長制御量決定部613が決定したレーザー光(励起光)の波長(周波数)の制御量を示す制御情報を、関連情報としてRAWファイルに関連付けてもよい。このようにレーザー光の波長の制御量を示す制御情報を関連情報としてRAWファイルに関連付けることで、例えば、情報処理装置800の外部装置が、当該制御量に基づきサンプルの退色の度合いを認識することが可能である。 Further, the RAW image generation unit 65 may associate control information indicating the control amount of the wavelength (frequency) of the laser light (excitation light) determined by the wavelength control amount determination unit 613 with the RAW file as related information. In this way, by associating control information indicating the control amount of the wavelength of the laser light with the RAW file as related information, for example, the external device of the information processing apparatus 800 recognizes the degree of fading of the sample based on the control amount. Is possible.
 なお、RAW画像生成部65は、システム制御部61による自動調整に基づき決定された制御情報と、ユーザの指示に基づき変更された制御情報とを別々に関連情報としてRAWファイルに関連付けてもよい。また、RAW画像生成部65は、各条件に基づき取得された蛍光の強度分布に基づく画像(例えば、圧縮等の画像処理が施された画像)を、制御情報とあわせてRAWファイルに関連付けてもよい。このように、RAW画像生成部65は、レーザー光の波長の制御量を示す制御情報や、当該制御量に応じて制御されたレーザー光に基づき取得された画像を、複数の条件にわたって当該条件ごとにRAWファイルに関連付けてもよい。 Note that the RAW image generation unit 65 may separately associate the control information determined based on the automatic adjustment by the system control unit 61 and the control information changed based on the user's instruction with the RAW file as related information. In addition, the RAW image generation unit 65 associates an image based on the fluorescence intensity distribution acquired based on each condition (for example, an image subjected to image processing such as compression) with the RAW file together with the control information. Good. As described above, the RAW image generation unit 65 displays the control information indicating the control amount of the wavelength of the laser light and the image acquired based on the laser light controlled according to the control amount for each of the conditions over a plurality of conditions. May be associated with a RAW file.
 以上、図27~図30を参照しながら、本実施形態に係る画像取得装置1aの構成について説明した。次に、本実施形態に係る画像取得装置1aの各構成の更に詳細な内容について説明する。 The configuration of the image acquisition device 1a according to the present embodiment has been described above with reference to FIGS. Next, more detailed contents of each component of the image acquisition device 1a according to the present embodiment will be described.
 [2.3.RAWファイルのファイルフォーマット]
 まず、図31を参照しながら、本実施形態に係るRAWファイルD1aのファイルフォーマットの一例について説明する。図31は、本実施形態に係るRAWファイルD1aのファイルフォーマットの一例を示した図である。
[2.3. RAW file format]
First, an example of the file format of the RAW file D1a according to the present embodiment will be described with reference to FIG. FIG. 31 is a diagram showing an example of the file format of the RAW file D1a according to the present embodiment.
 図31に示すように、本実施形態に係るRAWファイルD1は、例えば、データ領域d10と、基本制御情報領域d30と、拡張領域d20aとを含む。なお、データ領域d10及び基本制御情報領域d30の構成については、前述した第1の実施形態に係るRAWファイルD1(図19参照)と同様のため、詳細な説明は省略する。 As shown in FIG. 31, the RAW file D1 according to the present embodiment includes, for example, a data area d10, a basic control information area d30, and an extension area d20a. The configurations of the data area d10 and the basic control information area d30 are the same as those of the RAW file D1 (see FIG. 19) according to the first embodiment described above, and detailed description thereof is omitted.
 図31に示すように、拡張領域d20は、メーカーノートIFDd21を含む。メーカーノートIFDd21は、カメラ制御モードなどのEXIFに規定されていない情報を格納するためのIFDであり、画像取得装置1に固有の撮影情報や制御情報も格納される。 As shown in FIG. 31, the expansion area d20 includes a manufacturer note IFDd21. The manufacturer note IFDd21 is an IFD for storing information not specified in EXIF, such as a camera control mode, and also stores shooting information and control information unique to the image acquisition device 1.
 本実施形態に係るメーカーノートIFDd21は、例えば、撮影条件d211と、初期撮影画像d221と、ユーザが指定したターゲット画像d222と、ユーザの指定した可変範囲d223と、自動調整に基づくパラメタd224と、観察者の指定したパラメタd225と、自動調整後画像d226とを含む。なお、撮影条件d211は、前述した第1の実施形態に係るRAWファイルD1と同様である。 The manufacturer note IFDd21 according to the present embodiment includes, for example, a shooting condition d211, an initial shot image d221, a target image d222 specified by the user, a variable range d223 specified by the user, a parameter d224 based on automatic adjustment, and an observation. Parameter d225 designated by the user and an image d226 after automatic adjustment. Note that the shooting condition d211 is the same as that of the RAW file D1 according to the first embodiment described above.
 初期撮影画像d221は、波長制御量決定部613が決定した制御量に基づき、システム制御部61が波長を制御する前に取得された蛍光の強度分布に基づく画像である。換言すると、初期撮影画像d221は、観測対象となるサンプルSに応じてあらかじめ決められた波長(即ち、初期設定)のレーザー光を励起光として取得された蛍光の強度分布に基づく画像を示している。 The initial captured image d221 is an image based on the fluorescence intensity distribution acquired before the system control unit 61 controls the wavelength based on the control amount determined by the wavelength control amount determination unit 613. In other words, the initial photographed image d221 shows an image based on the fluorescence intensity distribution acquired using laser light having a wavelength (that is, initial setting) determined in advance according to the sample S to be observed as excitation light. .
 ユーザが指定したターゲット画像d222は、撮像された画像のうち、ユーザが観測対象として指定した領域に相当する部分を切り出した画像を示している。例えば、図31に示す例の場合には、ユーザが指定したターゲット画像d222は、画像V20から領域V21で示された部分を切り出した画像に相当する。 The target image d222 designated by the user indicates an image obtained by cutting out a portion corresponding to the area designated as the observation target by the user from the captured image. For example, in the case of the example shown in FIG. 31, the target image d222 designated by the user corresponds to an image obtained by cutting out the portion indicated by the region V21 from the image V20.
 また、ユーザの指定した可変範囲d223は、撮像された画像中において、ユーザにより観測対象として指定された領域を示す情報である。例えば、図31に示す例の場合には、ユーザの指定した可変範囲d223は、領域V21を示す制御情報に相当する。なお、領域を示す制御情報は、例えば、撮像された画像中の座標やベクトルにより表現することが可能である。 The variable range d223 designated by the user is information indicating an area designated as an observation target by the user in the captured image. For example, in the example shown in FIG. 31, the variable range d223 specified by the user corresponds to control information indicating the region V21. Note that the control information indicating the area can be expressed by, for example, coordinates or vectors in the captured image.
 自動調整に基づくパラメタd224は、システム制御部61による自動調整により決定された光源2から出射されるレーザー光の波長のように、当該自動調整時にシステム制御部61が決定したパラメタを示している。具体的な一例として、自動調整に基づくパラメタD224は、撮像された画像のコントラストが最大となるように調整が行われた場合の、各パラメタ(例えば、レーザー光の波長)を示している。なお、自動調整に基づくパラメタD224は、システム制御部61による自動調整により決定された当該パラメタに基づく光源2の制御に応じて取得された蛍光の強度分布に基づく画像(例えば、圧縮等の画像処理が施された画像)を含んでもよい。 The parameter d224 based on automatic adjustment indicates a parameter determined by the system control unit 61 during the automatic adjustment, such as the wavelength of the laser light emitted from the light source 2 determined by automatic adjustment by the system control unit 61. As a specific example, parameter D224 based on automatic adjustment indicates each parameter (for example, the wavelength of laser light) when adjustment is performed so that the contrast of the captured image is maximized. The parameter D224 based on the automatic adjustment is an image based on the fluorescence intensity distribution acquired according to the control of the light source 2 based on the parameter determined by the automatic adjustment by the system control unit 61 (for example, image processing such as compression). May be included.
 観察者の指定したパラメタd225は、ユーザからの指定に基づきシステム制御部61が決定したパラメタを示している。観察者の指定したパラメタd225は、ユーザからの指定により決定された当該パラメタに基づく光源2の制御に応じて取得された蛍光の強度分布に基づく画像(例えば、圧縮等の画像処理が施された画像)を含んでもよい。 The parameter d225 designated by the observer indicates the parameter determined by the system control unit 61 based on the designation from the user. The parameter d225 designated by the observer is an image based on the fluorescence intensity distribution acquired in accordance with the control of the light source 2 based on the parameter determined by the user (for example, image processing such as compression has been performed) Image).
 このように、RAWファイルD1aにレーザー光(励起光)の波長(周波数)の制御量を示す関連情報(即ち、自動調整に基づくパラメタd224や観察者の指定したパラメタd225)を記録しておくことで、例えば、情報処理装置800の外部装置は、当該関連情報に基づき、サンプルの退色の度合いを認識することが可能となる。また、当該パラメタに基づく光源2の制御に応じて取得された蛍光の強度分布に基づく画像を記録しておくことで、情報処理装置800の外部装置は、各条件に応じた画像を、当該画像の取得条件(即ち、パラメタ)とあわせてユーザに提示することが可能となる。 In this way, the relevant information indicating the control amount of the wavelength (frequency) of the laser beam (excitation light) (that is, the parameter d224 based on the automatic adjustment or the parameter d225 specified by the observer) is recorded in the RAW file D1a. Thus, for example, the external device of the information processing device 800 can recognize the degree of fading of the sample based on the related information. In addition, by recording an image based on the fluorescence intensity distribution acquired in accordance with the control of the light source 2 based on the parameter, the external device of the information processing apparatus 800 displays the image corresponding to each condition as the image. It is possible to present it to the user together with the acquisition conditions (that is, parameters).
 自動調整後画像d226は、最終的に決定されたパラメタに基づく光源2の制御に応じて取得された蛍光の強度分布に基づく画像を示している。なお、自動調整後画像d226は、ユーザの指定した可変範囲d223に基づき、切り出された画像であってもよい。 The post-automatic adjustment image d226 shows an image based on the fluorescence intensity distribution acquired in accordance with the control of the light source 2 based on the finally determined parameters. The automatically adjusted image d226 may be an image cut out based on the variable range d223 designated by the user.
 以上、図31を参照しながら、本実施形態に係るRAWファイルD1aのファイルフォーマットについて説明した。なお、上記に示すRAWファイルD1aのファイルフォーマットはあくまで一例であり、必ずしも全ての情報を含まなくてもよいことは言うまでもない。 The file format of the RAW file D1a according to the present embodiment has been described above with reference to FIG. Note that the file format of the RAW file D1a described above is merely an example, and it is needless to say that not all information may be included.
 [2.4.画像取得装置の動作の流れ]
 次に、図32を参照しながら、本実施形態に係る画像取得装置1aの一連の動作の流れについて説明する。図32は、本同実施形態に係る画像取得装置1aの一連の動作についてその流れの一例を示したフローチャートである。
[2.4. Flow of operation of image acquisition device]
Next, a flow of a series of operations of the image acquisition device 1a according to the present embodiment will be described with reference to FIG. FIG. 32 is a flowchart showing an example of the flow of a series of operations of the image acquisition device 1a according to the present embodiment.
  (ステップS501)
 まず、画像取得装置1aの制御部6aは、測定対象となるサンプルSに応じて光源2から出射される励起光の波長を制御する(即ち、初期設定に基づき制御する)。制御部6aの制御に基づき光源2から出射された励起光は、測定部3(即ち、走査系(検出系)5a及び顕微鏡ユニット4)によりサンプルSに向けて導光される。そして、測定部3は、光源2から出射される励起光によりサンプルS上を走査し、当該サンプルSから出射された蛍光を検出する。測定部3は、蛍光の検出結果を制御部6aに出力する。
(Step S501)
First, the control unit 6a of the image acquisition apparatus 1a controls the wavelength of the excitation light emitted from the light source 2 according to the sample S to be measured (that is, controls based on the initial setting). Excitation light emitted from the light source 2 based on the control of the control unit 6a is guided toward the sample S by the measurement unit 3 (that is, the scanning system (detection system) 5a and the microscope unit 4). Then, the measurement unit 3 scans the sample S with the excitation light emitted from the light source 2 and detects the fluorescence emitted from the sample S. The measurement unit 3 outputs the fluorescence detection result to the control unit 6a.
 制御部6aは、測定部3から取得した蛍光の検出結果に基づき蛍光の強度分布を生成し、当該蛍光の強度分布に所定の画像処理(例えば、ノイズ除去処理や圧縮処理)を施して画像データを生成する。そして、制御部6aは、生成した画像データとともに、該画像データ中の領域を指定するためのU/Iを表示部72に表示するとよい。これにより、ユーザは、表示部72に表示された画像に対して、観測対象となる領域を、条件指定部71を介して指定することが可能となる。 The control unit 6a generates a fluorescence intensity distribution based on the fluorescence detection result acquired from the measurement unit 3, and performs predetermined image processing (for example, noise removal processing or compression processing) on the fluorescence intensity distribution to obtain image data. Is generated. Then, the control unit 6a may display a U / I for designating a region in the image data on the display unit 72 together with the generated image data. Thereby, the user can designate the region to be observed for the image displayed on the display unit 72 via the condition designating unit 71.
  (ステップS503)
 制御部6aは、条件指定部71を介して、ユーザ入力に基づく、画像データ中における観測対象となる領域の指定を受ける。なお、このユーザにより指定された領域が可変範囲に相当し、当該領域中の対象物(サンプルSの一部)がターゲットとなる。
(Step S503)
The control unit 6a receives the designation of the region to be observed in the image data based on the user input via the condition designating unit 71. Note that the area designated by the user corresponds to a variable range, and an object (part of the sample S) in the area is a target.
  (ステップS51)
 制御部6aは、ユーザ入力に基づき指定された領域内の画像を対象として、当該画像中の対象物が鮮明に表示されるように(例えば、当該領域中のコントラストが最大となるように)、光源2から出射される励起光の波長を制御する。なお、詳細については、「2.5.波長制御の詳細」として別途後述する。
(Step S51)
The control unit 6a targets the image in the area designated based on the user input so that the object in the image is clearly displayed (for example, the contrast in the area is maximized). The wavelength of the excitation light emitted from the light source 2 is controlled. Details will be described later separately as “2.5. Details of Wavelength Control”.
  (ステップS505)
 制御部6aは、光源2から出射される励起光の波長を制御したら、波長制御後の励起光に基づく蛍光の強度分布を取得し、取得した蛍光の強度分布に基づき画像データを生成する。そして、制御部6aは、生成した画像データを表示部72に表示させる。これにより、ユーザは、光源2から出射される励起光の波長の制御に基づき、調整が施された画像を確認することが可能となる。
(Step S505)
When the wavelength of the excitation light emitted from the light source 2 is controlled, the control unit 6a acquires a fluorescence intensity distribution based on the excitation light after the wavelength control, and generates image data based on the acquired fluorescence intensity distribution. Then, the control unit 6a causes the display unit 72 to display the generated image data. Thereby, the user can check the adjusted image based on the control of the wavelength of the excitation light emitted from the light source 2.
  (ステップS507)
 なお、本実施形態に係る画像取得装置1aは、調整が施された画像に対して更に調整が必要か否かについて、ユーザからの指示を受け付けてもよい。この場合には、例えば、画像取得装置1aは、ユーザから更に調整が必要と指示された場合には(ステップS507、NO)、条件(例えば、コントラストの判定に係る閾値等のパラメタ)を変更して、再度励起光の波長を制御する。
(Step S507)
Note that the image acquisition device 1a according to the present embodiment may receive an instruction from the user as to whether or not further adjustment is necessary for the adjusted image. In this case, for example, when the user instructs that further adjustment is necessary (step S507, NO), the condition (for example, a parameter such as a threshold for determining contrast) is changed. Then, the wavelength of the excitation light is controlled again.
  (ステップS509)
 調整後の画像に対してユーザからさらなる調整が不要と指示された場合には(ステップS507、YES)、本実施形態に係る画像取得装置1aは、その時点での励起光に基づき取得された蛍光の強度分布を基にRAWファイルD1を生成する。
(Step S509)
When the user instructs that no further adjustment is necessary for the adjusted image (step S507, YES), the image acquisition device 1a according to the present embodiment acquires the fluorescence acquired based on the excitation light at that time. RAW file D1 is generated on the basis of the intensity distribution.
 以上、図32を参照しながら、本実施形態に係る画像取得装置1aの一連の動作の流れについて説明した。なお、上記に示した画像取得装置1aの一連の動作は、あくまで一例であり、必ずしも上記に示した動作の流れには限定されない。具体的な一例として、励起光の波長をユーザが直接的または間接的に指定できるように、画像取得装置1aを動作させてもよい。 The flow of a series of operations of the image acquisition device 1a according to the present embodiment has been described above with reference to FIG. The series of operations of the image acquisition device 1a described above is merely an example, and is not necessarily limited to the operation flow described above. As a specific example, the image acquisition device 1a may be operated so that the user can directly or indirectly specify the wavelength of the excitation light.
 [2.5.波長制御の詳細]
  <<2.5.1.波長制御の原理:複数の観測波長により試料を観測する場合>>
 次に、図33~図36を参照しながら、本実施形態に係る制御部6aによる、光源2から出射されるレーザー光の波長の制御に係る動作の詳細について説明する。なお、本説明では、図33~図35を参照しながら、実施形態に係る画像取得装置1aにおける波長制御の原理について、複数(例えば、2つ)の観測波長で試料の組成を識別する場合を例に説明する。また、単一の観測波長で試料の組成を測定する場合については、「2.3.3.波長制御の一態様:単一の観測波長により試料を観測する場合」として別途後述する。
[2.5. Details of wavelength control]
<< 2.5.1. Principle of wavelength control: When observing a sample with multiple observation wavelengths >>
Next, the details of the operation related to the control of the wavelength of the laser light emitted from the light source 2 by the control unit 6a according to the present embodiment will be described with reference to FIGS. In this description, with reference to FIGS. 33 to 35, the principle of wavelength control in the image acquisition apparatus 1a according to the embodiment is a case where the composition of a sample is identified by a plurality of (for example, two) observation wavelengths. Explained as an example. The case where the composition of a sample is measured at a single observation wavelength will be separately described later as “2.3.3. One aspect of wavelength control: a case where a sample is observed at a single observation wavelength”.
 まず、図33を参照する。図33は、光源2から出射されるレーザー光の波長制御の原理について説明するための説明図光源2から出力されるレーザー光の波長と、サンプルS中に含まれる蛍光色素の励起スペクトル及び蛍光スペクトルとの関係の一例を示している。なお、以降では、サンプルS中の互いに異なる2種類の蛍光色素F1及びF2を観測対象とし、当該蛍光色素F1及びF2を発光させるための励起光の波長(以降では「発光波長」と呼ぶ場合がある)をそれぞれλ1及びλ2とするものとして説明する。 First, refer to FIG. FIG. 33 is an explanatory diagram for explaining the principle of wavelength control of the laser light emitted from the light source 2, the wavelength of the laser light output from the light source 2, the excitation spectrum and the fluorescence spectrum of the fluorescent dye contained in the sample S An example of the relationship is shown. In the following, two different types of fluorescent dyes F1 and F2 in the sample S are to be observed, and the wavelength of the excitation light for causing the fluorescent dyes F1 and F2 to emit light (hereinafter referred to as “emission wavelength” in some cases). A) is assumed to be λ1 and λ2, respectively.
 図33において、横軸は波長[nm]を示し、縦軸は相対効率[%]を示している。また、参照符号g11は、蛍光色素F1の励起スペクトルを示しており、参照符号g12は、蛍光色素F1の蛍光スペクトルを示している。また、参照符号g21は、蛍光色素F2の励起スペクトルを示しており、参照符号g22は、蛍光色素F2の蛍光スペクトルを示している。 33, the horizontal axis indicates the wavelength [nm], and the vertical axis indicates the relative efficiency [%]. Reference sign g11 indicates the excitation spectrum of the fluorescent dye F1, and reference sign g12 indicates the fluorescence spectrum of the fluorescent dye F1. Reference sign g21 indicates the excitation spectrum of the fluorescent dye F2, and reference sign g22 indicates the fluorescence spectrum of the fluorescent dye F2.
 また、蛍光波長分布(即ち、蛍光スペクトル)g12により求まる、発光波長λ1における蛍光色素F1及びF2の蛍光相対効率をE11=E(λ1,F1)及びE12=E(λ1,F2)とする。また、蛍光波長分布(即ち、蛍光スペクトル)g22により求まる、発光波長λ2における蛍光色素F1及びF2の蛍光相対効率をE21=E(λ2,F1)及びE22=E(λ2,F2)とする。 Also, let the fluorescence relative efficiencies of the fluorescent dyes F1 and F2 at the emission wavelength λ1 determined by the fluorescence wavelength distribution (that is, fluorescence spectrum) g12 be E11 = E (λ1, F1) and E12 = E (λ1, F2). In addition, the fluorescence relative efficiencies of the fluorescent dyes F1 and F2 at the emission wavelength λ2 obtained from the fluorescence wavelength distribution (that is, fluorescence spectrum) g22 are E21 = E (λ2, F1) and E22 = E (λ2, F2).
 また、光源2は、出力されるレーザー光の波長を、波長λH~λLの間で定義される帯域W1内において、波長λsごとに波長を制御可能に構成されているものとする。 Further, it is assumed that the light source 2 is configured such that the wavelength of the output laser light can be controlled for each wavelength λs within the band W1 defined between the wavelengths λH to λL.
 本実施形態に係る画像取得装置1aの制御部6aは、発光波長λ1及びλ2それぞれについて取得された蛍光の強度分布を合成することで2色の識別画像を生成する。例えば、図34は、光源から出射されるレーザー光の波長制御の原理について説明するための説明図であり、発光波長λ1及びλ2それぞれについて取得された蛍光の強度分布を合成することで生成された2色の識別画像の一例を示している。 The control unit 6a of the image acquisition device 1a according to the present embodiment generates a two-color identification image by synthesizing the fluorescence intensity distribution acquired for each of the emission wavelengths λ1 and λ2. For example, FIG. 34 is an explanatory diagram for explaining the principle of wavelength control of the laser light emitted from the light source, and is generated by synthesizing the fluorescence intensity distributions acquired for the respective emission wavelengths λ1 and λ2. An example of a two-color identification image is shown.
 図34において、参照符号V11aは、発光波長λ1の場合の蛍光の強度分布を示しており、参照符号V12aは、発光波長λ2の場合の蛍光の強度分布を示している。また、参照符号V13aは、蛍光の強度分布V11a及びV12aを合成することで得られる2色の識別画像の一例を示している。 34, reference symbol V11a indicates the fluorescence intensity distribution when the emission wavelength is λ1, and reference symbol V12a indicates the fluorescence intensity distribution when the emission wavelength is λ2. Reference numeral V13a indicates an example of a two-color identification image obtained by combining the fluorescence intensity distributions V11a and V12a.
 図34に示すように、発光波長λ1及びλ2それぞれについて取得された蛍光の強度分布V11a及びV12aを合成した場合に、得られる識別画像V13aは、必ずしもコントラストが高くなるとは限らない。 As shown in FIG. 34, when the fluorescence intensity distributions V11a and V12a acquired for the emission wavelengths λ1 and λ2, respectively, are synthesized, the obtained identification image V13a does not necessarily have a high contrast.
 そこで、本実施形態に係る画像取得装置1aの制御部6a(具体的には、システム制御部61a)は、例えば、識別画像V13aのコントラストが最大となるように、発光波長λ1及びλ2を制御して、発光波長λ1及びλ2それぞれに基づき得られる蛍光の強度の割合を調整する。 Therefore, for example, the control unit 6a (specifically, the system control unit 61a) of the image acquisition device 1a according to the present embodiment controls the emission wavelengths λ1 and λ2 so that the contrast of the identification image V13a is maximized. Thus, the ratio of the fluorescence intensity obtained based on each of the emission wavelengths λ1 and λ2 is adjusted.
 以下に、システム制御部61aが、発光波長λ1及びλ2それぞれに基づき得られる蛍光の強度分布を合成することで生成された2色の識別画像のコントラストの算出する処理の一例について、図35を参照しながら説明する。図35は、光源2から出射されるレーザー光の波長制御の原理について説明するための説明図であり、複数の観測波長により試料を観測する場合におけるコントラストの算出方法の一例について説明するための図である。 In the following, referring to FIG. 35, an example of a process in which the system control unit 61a calculates the contrast of the two-color identification image generated by combining the fluorescence intensity distributions obtained based on the emission wavelengths λ1 and λ2, respectively. While explaining. FIG. 35 is an explanatory diagram for explaining the principle of wavelength control of laser light emitted from the light source 2, and is a diagram for explaining an example of a contrast calculation method when a sample is observed at a plurality of observation wavelengths. It is.
 図35において、参照符号V11は、発光波長λ1の場合の蛍光の強度分布を示しており、参照符号V12は、発光波長λ2の場合の蛍光の強度分布を示している。また、参照符号V13は、蛍光の強度分布V11及びV12を合成することで得られる2色の識別画像の一例を示している。 35, reference symbol V11 indicates the fluorescence intensity distribution in the case of the emission wavelength λ1, and reference symbol V12 indicates the fluorescence intensity distribution in the case of the emission wavelength λ2. Reference numeral V13 represents an example of a two-color identification image obtained by combining the fluorescence intensity distributions V11 and V12.
 まず、システム制御部61aは、蛍光相対効率E11=E(λ1,F1)、E12=E(λ1,F2)、E21=E(λ2,F1)、及びE22=E(λ2,F2)に基に、以下に示す式12が最大となるように、発光波長λ1及びλ2の初期値を算出する。 First, the system control unit 61a is based on the fluorescence relative efficiencies E11 = E (λ1, F1), E12 = E (λ1, F2), E21 = E (λ2, F1), and E22 = E (λ2, F2). Then, the initial values of the emission wavelengths λ1 and λ2 are calculated so that the following expression 12 is maximized.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 なお、蛍光色素F1及びF2それぞれの励起スペクトル及び蛍光スペクトルを示すデータは、例えば、記憶部66をデータベースとして構成し、当該データベース上にあらかじめ記憶させておけばよい。これにより、システム制御部61aは、記憶部66(データベース)に記憶された蛍光色素F1及びF2それぞれの励起スペクトル及び蛍光スペクトルを示すデータに基づき、蛍光相対効率E11、E12、E21、及びE22を算出すれことが可能となる。 The data indicating the excitation spectrum and the fluorescence spectrum of each of the fluorescent dyes F1 and F2 may be stored in advance on the database, for example, by configuring the storage unit 66 as a database. Thereby, the system control unit 61a calculates the fluorescence relative efficiencies E11, E12, E21, and E22 based on the data indicating the excitation spectrum and the fluorescence spectrum of each of the fluorescent dyes F1 and F2 stored in the storage unit 66 (database). It is possible to pass.
 以上のようにして、発光波長λ1及びλ2の初期値を決定したら、システム制御部61aは、決定した発光波長λ1及びλ2のレーザー光が出力されるように光源2を制御し、発光波長λ1及びλ2それぞれに基づく蛍光の強度分布を取得する。これにより、発光波長λ1及びλ2の初期値に基づく蛍光の強度分布V11及びV12が取得される。 When the initial values of the emission wavelengths λ1 and λ2 are determined as described above, the system control unit 61a controls the light source 2 so that the laser beams having the determined emission wavelengths λ1 and λ2 are output, and the emission wavelengths λ1 and The fluorescence intensity distribution based on each λ2 is acquired. Thereby, fluorescence intensity distributions V11 and V12 based on the initial values of the emission wavelengths λ1 and λ2 are acquired.
 次に、システム制御部61aは、取得した蛍光の強度分布V11から、輝度の高い(例えば、輝度が最大の)座標V111=(x1,y1)を特定する。同様に、システム制御部61aは、取得した蛍光の強度分布V12から、輝度の高い座標V121=(x2,y2)を特定する。 Next, the system control unit 61a specifies a coordinate V111 = (x1, y1) having high luminance (for example, maximum luminance) from the acquired fluorescence intensity distribution V11. Similarly, the system control unit 61a specifies a coordinate V121 = (x2, y2) having a high luminance from the acquired fluorescence intensity distribution V12.
 座標V111及びV121を特定したら、システム制御部61aは、蛍光の強度分布V11中における座標V111及びV121の輝度L(λ1,x1,y1)及びL(λ1,x2,y2)を算出する。同様に、システム制御部61aは、蛍光の強度分布V12中における座標V111及びV121の輝度L(λ2,x1,y1)及びL(λ2,x2,y2)を算出する。 Once the coordinates V111 and V121 are specified, the system control unit 61a calculates the luminances L (λ1, x1, y1) and L (λ1, x2, y2) of the coordinates V111 and V121 in the fluorescence intensity distribution V11. Similarly, the system control unit 61a calculates the luminances L (λ2, x1, y1) and L (λ2, x2, y2) of the coordinates V111 and V121 in the fluorescence intensity distribution V12.
 システム制御部61aは、算出した輝度L(λ1,x1,y1)、L(λ1,x2,y2)、L(λ2,x1,y1)、及びL(λ2,x2,y2)と、以下に示す式13とに基づき、コントラストC(λ1,λ2)を算出する。 The system control unit 61a shows the calculated luminance L (λ1, x1, y1), L (λ1, x2, y2), L (λ2, x1, y1), and L (λ2, x2, y2) as follows: Based on Equation 13, the contrast C (λ1, λ2) is calculated.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 以上のようにして、発光波長λ1及びλ2それぞれに基づき得られる蛍光の強度分布V11及びV13を合成することで生成された2色の識別画像V13のコントラストC(λ1,λ2)が算出される。 As described above, the contrast C (λ1, λ2) of the two-color identification image V13 generated by combining the fluorescence intensity distributions V11 and V13 obtained based on the emission wavelengths λ1 and λ2, respectively, is calculated.
 なお、システム制御部61aは、発光波長λ1及びλ2の制御と、制御後の発光波長λ1及びλ2に基づくコントラストC(λ1,λ2)の算出及び評価とを繰り返すことで、コントラストC(λ1,λ2)が最大となるように発光波長λ1及びλ2を調整すればよい。 The system control unit 61a repeats the control of the light emission wavelengths λ1 and λ2 and the calculation and evaluation of the contrast C (λ1, λ2) based on the light emission wavelengths λ1 and λ2 after the control, so that the contrast C (λ1, λ2 The light emission wavelengths λ1 and λ2 may be adjusted so that) is maximized.
 次に、図36を参照しながら、複数の観測波長により試料を観測する場合における、システム制御部61aによる発光波長λ1及びλ2の制御の流れについて説明する。図36は、光源2から出射されるレーザー光の波長制御に係る処理の流れについて説明するためのフローチャートであり、複数の観測波長により試料を観測する場合の一例について示している。 Next, the flow of controlling the emission wavelengths λ1 and λ2 by the system control unit 61a when observing a sample with a plurality of observation wavelengths will be described with reference to FIG. FIG. 36 is a flowchart for explaining the flow of processing relating to the wavelength control of the laser light emitted from the light source 2, and shows an example in which a sample is observed at a plurality of observation wavelengths.
  (ステップS511)
 まず、システム制御部61aは、蛍光相対効率E11=E(λ1,F1)、E12=E(λ1,F2)、E21=E(λ2,F1)、及びE22=E(λ2,F2)に基に発光波長λ1及びλ2の初期値を算出する。なお、発光波長λ1及びλ2の初期値は、前述した式12が最大となるように算出すればよい。
(Step S511)
First, the system control unit 61a is based on the fluorescence relative efficiencies E11 = E (λ1, F1), E12 = E (λ1, F2), E21 = E (λ2, F1), and E22 = E (λ2, F2). The initial values of the emission wavelengths λ1 and λ2 are calculated. It should be noted that the initial values of the emission wavelengths λ1 and λ2 may be calculated so that the above-described Expression 12 becomes maximum.
  (ステップS513)
 次いで、システム制御部61aは、光源2から出射される励起光の波長が、算出した発光波長λ1となるように制御する。これにより、測定部3aから、当該制御後の励起光に基づく蛍光の検出結果が分布情報生成部62aに出力される。そして、分布情報生成部62aは、取得した蛍光の検出結果に基づき、発光波長λ1に基づく蛍光の強度分布V11を生成する。分布情報生成部62aは、生成した蛍光の強度分布V11をシステム制御部61aに出力する。以上のようにして、システム制御部61aは、当該制御後の励起光に基づく蛍光の強度分布V11を、当該分布情報生成部62aから取得する。
(Step S513)
Next, the system control unit 61a performs control so that the wavelength of the excitation light emitted from the light source 2 becomes the calculated emission wavelength λ1. Thereby, the fluorescence detection result based on the controlled excitation light is output from the measurement unit 3a to the distribution information generation unit 62a. Then, the distribution information generation unit 62a generates a fluorescence intensity distribution V11 based on the emission wavelength λ1 based on the acquired fluorescence detection result. The distribution information generation unit 62a outputs the generated fluorescence intensity distribution V11 to the system control unit 61a. As described above, the system control unit 61a acquires the fluorescence intensity distribution V11 based on the controlled excitation light from the distribution information generation unit 62a.
  (ステップS515)
 また、システム制御部61aは、光源2から出射される励起光の波長が、算出した発光波長λ2となるように制御する。これにより、測定部3aから、当該制御後の励起光に基づく蛍光の検出結果が分布情報生成部62aに出力される。そして、分布情報生成部62aは、取得した蛍光の検出結果に基づき、発光波長λ2に基づく蛍光の強度分布V12を生成する。分布情報生成部62aは、生成した蛍光の強度分布V12をシステム制御部61aに出力する。以上のようにして、システム制御部61aは、当該制御後の励起光に基づく蛍光の強度分布V12を、当該分布情報生成部62aから取得する。
(Step S515)
Further, the system control unit 61a performs control so that the wavelength of the excitation light emitted from the light source 2 becomes the calculated emission wavelength λ2. Thereby, the fluorescence detection result based on the controlled excitation light is output from the measurement unit 3a to the distribution information generation unit 62a. Then, the distribution information generation unit 62a generates a fluorescence intensity distribution V12 based on the emission wavelength λ2 based on the acquired fluorescence detection result. The distribution information generation unit 62a outputs the generated fluorescence intensity distribution V12 to the system control unit 61a. As described above, the system control unit 61a acquires the fluorescence intensity distribution V12 based on the controlled excitation light from the distribution information generation unit 62a.
  (ステップS517)
 システム制御部61aは、生成した発光波長λ1及びλ2それぞれに基づく蛍光の強度分布V11及びV12を基に、コントラストC(λ1,λ2)を算出する。
(Step S517)
The system control unit 61a calculates the contrast C (λ1, λ2) based on the fluorescence intensity distributions V11 and V12 based on the generated emission wavelengths λ1 and λ2, respectively.
  (ステップS521)
 システム制御部61aは、以上の処理を、発光波長λ1及びλ2を調整しながら、コントラストC(λ1,λ2)が最大となるまで継続し(ステップS519、NO)、コントラストC(λ1,λ2)が最大となったら一連の処理を終了する(ステップS519、YES)。
(Step S521)
The system control unit 61a continues the above processing until the contrast C (λ1, λ2) reaches the maximum while adjusting the emission wavelengths λ1 and λ2 (step S519, NO), and the contrast C (λ1, λ2) is When the maximum value is reached, the series of processing ends (step S519, YES).
 次に、システム制御部61aが、コントラストC(λ1,λ2)が最大となる発光波長λ1及びλ2を特定する方法の一例について説明する。 Next, an example of a method in which the system control unit 61a identifies the emission wavelengths λ1 and λ2 that maximize the contrast C (λ1, λ2) will be described.
 まず、システム制御部61aは、発光波長λ1及びλ2がともに初期値の場合を基準状態として、当該基準状態から発光波長λ1をプラス方向にλs変化させた場合と、マイナス方向にλs変化させた場合とについて蛍光の強度分布V11を取得する。そして、システム制御部61aは、取得した蛍光の強度分布V11それぞれに基づきコントラストC(λ1,λ2)を算出し、コントラストC(λ1,λ2)が増加する発光波長λ1の変化方向を特定する。 First, the system control unit 61a uses the case where the emission wavelengths λ1 and λ2 are both initial values as a reference state, and changes the emission wavelength λ1 from the reference state to λs in the plus direction, and changes from λs in the minus direction. A fluorescence intensity distribution V11 is obtained for. Then, the system control unit 61a calculates the contrast C (λ1, λ2) based on each of the acquired fluorescence intensity distributions V11, and identifies the changing direction of the emission wavelength λ1 in which the contrast C (λ1, λ2) increases.
 同様に、システム制御部61aは、基準状態から発光波長λ2をプラス方向にλs変化させた場合と、マイナス方向にλs変化させた場合とについて蛍光の強度分布V12を取得する。そして、システム制御部61aは、取得した蛍光の強度分布V12の分布それぞれに基づきコントラストC(λ1,λ2)を算出し、コントラストC(λ1,λ2)が増加する発光波長λ2の変化方向を特定する。 Similarly, the system control unit 61a acquires the fluorescence intensity distribution V12 when the emission wavelength λ2 is changed by λs in the positive direction and when λs is changed by the negative direction from the reference state. Then, the system control unit 61a calculates the contrast C (λ1, λ2) based on each of the acquired fluorescence intensity distributions V12, and specifies the change direction of the emission wavelength λ2 in which the contrast C (λ1, λ2) increases. .
 次いで、システム制御部61aは、基準状態から、発光波長λ1及びλ2それぞれについて、特定した方向にλsずつ複数回(例えば、2回)変化させて、当該変化ごとにコントラストC(λ1,λ2)を算出する。そして、システム制御部61aは、コントラストC(λ1,λ2)の算出結果に基づき、発光波長λ1及びλ2のうち、コントラストC(λ1,λ2)の変化量が大きい発光波長(即ち、制御前後においてコントラストC(λ1,λ2)の差が大きい発光波長)を特定する。なお、以降では、発光波長λ1を変化させた方が、発光波長λ2を変化させた場合に比べてコントラストC(λ1,λ2)の変化量が大きいものとして説明する。 Next, the system control unit 61a changes the light emission wavelengths λ1 and λ2 from the reference state a plurality of times (for example, twice) by λs in the specified direction, and changes the contrast C (λ1, λ2) for each change. calculate. Based on the calculation result of the contrast C (λ1, λ2), the system control unit 61a emits light having a large change amount of the contrast C (λ1, λ2) among the light emission wavelengths λ1 and λ2 (that is, the contrast before and after the control). Emission wavelength with a large difference between C (λ1, λ2) is specified. In the following description, it is assumed that the amount of change in contrast C (λ1, λ2) is larger when the emission wavelength λ1 is changed than when the emission wavelength λ2 is changed.
 システム制御部61aは、発光波長λ2側を固定し、発光波長λ1を特定した方向にλsずつ変化させながらコントラストC(λ1,λ2)を算出することで、コントラストC(λ1,λ2)が最大となる発光波長λ1を特定する。 The system control unit 61a fixes the emission wavelength λ2 side and calculates the contrast C (λ1, λ2) while changing the emission wavelength λ1 by λs in the specified direction, so that the contrast C (λ1, λ2) is maximized. The emission wavelength λ1 is specified.
 次いで、システム制御部61aは、発光波長λ1側を固定し、発光波長λ2を特定した方向にλsずつ変化させながらコントラストC(λ1,λ2)を算出することで、コントラストC(λ1,λ2)が最大となる発光波長λ2を特定する。 Next, the system control unit 61a calculates the contrast C (λ1, λ2) while fixing the emission wavelength λ1 side and changing the emission wavelength λ2 by λs in the specified direction, so that the contrast C (λ1, λ2) is obtained. The maximum emission wavelength λ2 is specified.
 以上のようにして、システム制御部61aは、コントラストC(λ1,λ2)が最大となる発光波長λ1及びλ2を特定する。なお、上記に示す例はあくまで一例であり、コントラストC(λ1,λ2)が最大となる発光波長λ1及びλ2を特定できれば、その方法は特に限定されないことは言うまでもない。 As described above, the system control unit 61a identifies the emission wavelengths λ1 and λ2 at which the contrast C (λ1, λ2) is maximized. Note that the example described above is merely an example, and it goes without saying that the method is not particularly limited as long as the emission wavelengths λ1 and λ2 that maximize the contrast C (λ1, λ2) can be specified.
 以上、図33~図36を参照しながら、本実施形態に係る制御部6aによる、光源2から出射されるレーザー光の波長の制御に係る動作の詳細について、複数の観測波長で試料の組成を識別する場合を例に説明した。 As described above, with reference to FIGS. 33 to 36, the details of the operation related to the control of the wavelength of the laser light emitted from the light source 2 by the control unit 6a according to the present embodiment will be described with reference to the composition of the sample at a plurality of observation wavelengths. The case of identifying has been described as an example.
  <<2.5.2.波長制御の一態様:単一の観測波長により資料を観測する場合>>
 次に、本実施形態に係るシステム制御部61aによる、光源2から出射されるレーザー光の波長の制御に係る動作の一態様として、単一の観測波長により資料を観測する場合について説明する。なお、本説明では、システム制御部61aは、サンプルS中の蛍光色素F1を対象とし、発光波長λ1を制御するものとして説明する。
<< 2.5.2. One aspect of wavelength control: When observing data with a single observation wavelength >>
Next, as an aspect of the operation related to the control of the wavelength of the laser light emitted from the light source 2 by the system control unit 61a according to the present embodiment, a case where the material is observed with a single observation wavelength will be described. In this description, the system control unit 61a is described assuming that the fluorescent dye F1 in the sample S is the target and controls the emission wavelength λ1.
 この場合には、まず、システム制御部61aは、蛍光相対効率E11=E(λ1,F1)が最大となるように、発光波長λ1の初期値を決定する。なお、システム制御部61aは、蛍光相対効率E11が最大となる発光波長λ1を、蛍光色素F1の励起スペクトルのピーク値に基づき算出すればよい。 In this case, first, the system control unit 61a determines an initial value of the emission wavelength λ1 so that the fluorescence relative efficiency E11 = E (λ1, F1) is maximized. The system control unit 61a may calculate the emission wavelength λ1 that maximizes the fluorescence relative efficiency E11 based on the peak value of the excitation spectrum of the fluorescent dye F1.
 次いで、システム制御部61aは、発光波長λ1が初期値の場合を基準状態として、当該基準状態から発光波長λ1をプラス方向にλs変化させた場合と、マイナス方向にλs変化させた場合とについて蛍光の強度分布V11を取得する。そして、システム制御部61aは、取得した蛍光の強度分布V11のコントラストを算出し、コントラストが増加する発光波長λ1の変化方向を特定する。なお、蛍光の強度分布V11のコントラストの算出方法としては、例えば、当該強度分布V11中の画素値の最大値及び最小値に基づくコントラストの算出方法のように、所謂、一般的なコントラストの算出方法適用することが可能である。 Next, the system control unit 61a uses the case where the emission wavelength λ1 is the initial value as a reference state, and changes the fluorescence when the emission wavelength λ1 is changed by λs in the plus direction and when the emission wavelength λ1 is changed by λs from the reference state. The intensity distribution V11 is acquired. Then, the system control unit 61a calculates the contrast of the acquired fluorescence intensity distribution V11 and identifies the changing direction of the emission wavelength λ1 in which the contrast increases. In addition, as a calculation method of the contrast of the fluorescence intensity distribution V11, for example, a so-called general contrast calculation method such as a contrast calculation method based on the maximum value and the minimum value of the pixel values in the intensity distribution V11. It is possible to apply.
 コントラストが増加する発光波長λ1の変化方向を特定したら、システム制御部61aは、発光波長λ1を当該変化方向にλsずつ変化させながらコントラストを算出し、当該コントラストが最大となる発光波長λ1を特定する。 When the change direction of the emission wavelength λ1 in which the contrast increases is specified, the system control unit 61a calculates the contrast while changing the emission wavelength λ1 by λs in the change direction, and specifies the emission wavelength λ1 that maximizes the contrast. .
 以上のようにして、システム制御部61aは、コントラストが最大となる発光波長λ1を特定する。なお、上記に示す例はあくまで一例であり、コントラストが最大となる発光波長λ1を特定できれば、その方法は特に限定されないことは言うまでもない。 As described above, the system control unit 61a specifies the light emission wavelength λ1 that maximizes the contrast. Note that the example described above is merely an example, and it is needless to say that the method is not particularly limited as long as the emission wavelength λ1 that maximizes the contrast can be specified.
 [2.6.まとめ]
 以上説明したように、本実施形態に係る画像取得装置1aは、出力されるレーザー光(励起光)の波長を制御可能なレーザーモジュールを光源2として使用し、観測された蛍光の強度分布に基づき当該レーザー光の波長を制御する。このような構成により、本実施形態に係る画像取得装置1aは、例えば、観測者(ユーザ)が、観測結果を確認しながら光源2の動作を制御したり、光源2自体を切り替えるといった煩雑な作業を要することなく、コントラストの高い画像の取得を可能とする。
[2.6. Summary]
As described above, the image acquisition device 1a according to the present embodiment uses the laser module that can control the wavelength of the output laser light (excitation light) as the light source 2, and based on the observed fluorescence intensity distribution. The wavelength of the laser beam is controlled. With such a configuration, the image acquisition device 1a according to the present embodiment enables the observer (user) to perform complicated work such as controlling the operation of the light source 2 while checking the observation result, or switching the light source 2 itself. Therefore, it is possible to obtain an image with high contrast.
 また、本実施形態に係る画像取得装置1aは、温度の上昇に伴いレーザー光の波長が変化するような状況下においても、取得される蛍光の強度分布のコントラストが最大となるようにレーザー光の波長を制御することが可能である。そのため、本実施形態に係る画像取得装置1は、例えば、光源2を同一筐体内に内蔵したとしても、レーザー光の波長を安定させることが可能なため、画像取得装置1a自体を小型化することが可能となる。 In addition, the image acquisition device 1a according to the present embodiment allows the laser light to be maximized so that the contrast of the acquired fluorescence intensity distribution is maximized even in a situation where the wavelength of the laser light changes as the temperature rises. It is possible to control the wavelength. For this reason, the image acquisition device 1 according to the present embodiment can stabilize the wavelength of the laser light even if the light source 2 is incorporated in the same housing, for example, and thus the image acquisition device 1a itself can be downsized. Is possible.
 <3.第3の実施形態>
 [3.1.画像取得装置の概要]
 次に、第3の実施形態に係る画像取得装置について説明する。前述した第1の実施形態では、光源2からの出射光の強度制御及び補正について説明し、第2の実施形態では、光源2からの出射光の波長制御について説明したが、これらを組み合わせて実行してもよいことは言うまでもない。そこで、第3の実施形態では、前述した第1の実施形態に係る画像取得装置1と、第2の実施形態に係る画像取得装置1aとを組み合わせた構成について説明する。なお、以降では、本実施形態に係る画像取得装置を、前述した第1の実施形態に係る画像取得装置1及び第2の実施形態に係る画像取得装置1aのそれぞれと区別するために、「画像取得装置1b」と記載する場合がある。
<3. Third Embodiment>
[3.1. Overview of image acquisition device]
Next, an image acquisition apparatus according to the third embodiment will be described. In the first embodiment described above, the intensity control and correction of the emitted light from the light source 2 have been described, and in the second embodiment, the wavelength control of the emitted light from the light source 2 has been described. Needless to say. Therefore, in the third embodiment, a configuration in which the image acquisition device 1 according to the first embodiment described above and the image acquisition device 1a according to the second embodiment are combined will be described. Hereinafter, in order to distinguish the image acquisition device according to the present embodiment from the image acquisition device 1 according to the first embodiment and the image acquisition device 1a according to the second embodiment described above, “image May be described as “acquiring device 1b”.
 [3.2.画像取得装置の構成]
  <<3.2.1.光学系の構成>>
 まず、本実施形態に係る画像取得装置1bの光学系の構成について説明する。本実施形態に係る画像取得装置1bの光学系の構成は、図14に示した第1の実施形態に係る画像取得装置1の光学系と同様である。
[3.2. Configuration of image acquisition apparatus]
<< 3.2.1. Configuration of optical system >>
First, the configuration of the optical system of the image acquisition device 1b according to the present embodiment will be described. The configuration of the optical system of the image acquisition device 1b according to this embodiment is the same as that of the optical system of the image acquisition device 1 according to the first embodiment shown in FIG.
 即ち、本実施形態に係る画像取得装置1bでは、光源2は、波長変換モジュール(OPO)250を備え、入力されたレーザー光(ポンプ光)を2つの波長のレーザー光(即ち、シグナル光及びアイドラー光)に変換して出力する。本実施形態に係る画像取得装置1bでは、光源2から出力されるシグナル光及びアイドラー光のうち、いずれか一方を励起光としてサンプルSに向けて照射する。なお、以降では、シグナル光を励起光としてサンプルSに向けて照射するものとして説明する。 That is, in the image acquisition device 1b according to the present embodiment, the light source 2 includes a wavelength conversion module (OPO) 250, and the input laser light (pump light) is converted into laser light having two wavelengths (that is, signal light and idler). Light) and output. In the image acquisition device 1b according to the present embodiment, one of the signal light and idler light output from the light source 2 is irradiated toward the sample S as excitation light. In the following description, it is assumed that the signal light is emitted toward the sample S as excitation light.
 また、励起光をサンプルSに向けて照射する構成については、前述した比較例に係る画像取得装置1wの光学系(図10参照)や各実施形態に係る画像取得装置の光学系(図14、図27参照)と同様である。即ち、光源2から出射された励起光は、ビーム整形用レンズ511、ガルバノミラー51、レンズ513、ミラー517、レンズ515及びダイクロイックミラー52を介して対物レンズ42に導光され、当該対物レンズ42によりサンプルSに向けて集光される。 Moreover, about the structure which irradiates excitation light toward the sample S, the optical system (refer FIG. 10) of the image acquisition apparatus 1w which concerns on the comparative example mentioned above, and the optical system of the image acquisition apparatus which concerns on each embodiment (FIG. 14, FIG. This is the same as in FIG. That is, the excitation light emitted from the light source 2 is guided to the objective lens 42 via the beam shaping lens 511, the galvano mirror 51, the lens 513, the mirror 517, the lens 515, and the dichroic mirror 52. It is condensed toward the sample S.
 また、サンプルSに励起光が照射されると、サンプルSのある分子が、当該励起光により励起されて蛍光を発し、当該蛍光が、対物レンズ42、ダイクロイックミラー52、結像レンズ521、及びエミッションフィルタ523を介してPMT53の検出面に結像する。このとき、エミッションフィルタ523により、上記対物レンズ42によって拡大された、発色光以外の光(外光)が吸収され(即ち、発光色のみが透過し)、当該外光が喪失された発色光の像が、PMT53上に結像される。 When the sample S is irradiated with excitation light, a molecule in the sample S is excited by the excitation light to emit fluorescence, and the fluorescence is emitted from the objective lens 42, the dichroic mirror 52, the imaging lens 521, and the emission. An image is formed on the detection surface of the PMT 53 via the filter 523. At this time, the emission filter 523 absorbs light (external light) other than the color light expanded by the objective lens 42 (that is, only the emitted color is transmitted), and the color light that has lost the external light is absorbed. An image is formed on the PMT 53.
  <<3.2.2.画像取得装置の機能構成>>
 次に、図37を参照しながら、本実施形態に係る画像取得装置1bの機能構成の一例について説明する。図37に示すように、本実施形態に係る画像取得装置1bは、光源2と、測定部3と、制御部6bと、I/F7とを含む。また、測定部3は、顕微鏡ユニット4と、走査系(検出系)5とを含む。なお、光源2、顕微鏡ユニット4、走査系(検出系)5、及びI/F7の構成は、述した第1の実施形態に係る画像取得装置1と同様である。そのため、以降では、以降では、特に、第1の実施形態に係る画像取得装置1と異なる、制御部6bの構成に着目して説明する。なお、図37に示す例において、走査系(検出系)5の各構成は、図14に示した光学系において同様の符号が付された構成に対応している。また、図37に示す例では、図14に示した構成のうち一部を省略している。
<< 3.2.2. Functional configuration of image acquisition device >>
Next, an example of a functional configuration of the image acquisition device 1b according to the present embodiment will be described with reference to FIG. As shown in FIG. 37, the image acquisition device 1b according to the present embodiment includes a light source 2, a measurement unit 3, a control unit 6b, and an I / F 7. The measurement unit 3 includes a microscope unit 4 and a scanning system (detection system) 5. The configurations of the light source 2, the microscope unit 4, the scanning system (detection system) 5, and the I / F 7 are the same as those of the image acquisition device 1 according to the first embodiment described above. Therefore, hereinafter, the description will be focused on the configuration of the control unit 6b that is different from the image acquisition device 1 according to the first embodiment. In the example shown in FIG. 37, each configuration of the scanning system (detection system) 5 corresponds to the configuration given the same reference numeral in the optical system shown in FIG. In the example shown in FIG. 37, a part of the configuration shown in FIG. 14 is omitted.
 図37に示すように、照射された励起光によりサンプルSから生じた蛍光は、顕微鏡ユニット4を介して走査系(検出系)5に導かれ、走査系(検出系)5のPMT53で検出される。PMT53は、あらかじめ設定されたサンプリングレートで、検出された蛍光を光電効果により電気信号に変換し、当該蛍光の強度を示すデータとして制御部6bに出力する。 As shown in FIG. 37, the fluorescence generated from the sample S by the irradiated excitation light is guided to the scanning system (detection system) 5 through the microscope unit 4 and detected by the PMT 53 of the scanning system (detection system) 5. The The PMT 53 converts the detected fluorescence into an electrical signal by a photoelectric effect at a preset sampling rate, and outputs the electrical signal to the control unit 6b as data indicating the intensity of the fluorescence.
 また、PD54は、アイドラー光の強度を、あらかじめ設定されたサンプリングレートで測定する。PD54は、測定したアイドラー光の強度を電気信号に変換し、当該アイドラー光の強度を示すデータとして制御部6に出力する。なお、PD54に替えて、励起光(シグナル光)の強度を測定するPD56を設けてもよい。このように、PMT53、PD54、及びPD56の構成は、前述した第1の実施形態に係る画像取得装置1と同様である。 The PD 54 measures the intensity of idler light at a preset sampling rate. The PD 54 converts the intensity of the measured idler light into an electric signal, and outputs it to the control unit 6 as data indicating the intensity of the idler light. Instead of the PD 54, a PD 56 that measures the intensity of excitation light (signal light) may be provided. As described above, the configurations of the PMT 53, the PD 54, and the PD 56 are the same as those of the image acquisition device 1 according to the first embodiment described above.
 また、図37に示すように、制御部6bは、システム制御部61bと、分布情報生成部62bと、補正処理部63と、画像処理部64と、RAW画像生成部65と、記憶部66と、表示制御部67と、通信制御部68とを含む。なお、本実施形態に係る制御部6bは、特に、システム制御部61b及び分布情報生成部62bの構成が、前述した第1の実施形態に係る制御部6(図15及び図16参照)や、第2の実施形態に係る制御部6a(図28及び図29参照)と異なる。 As shown in FIG. 37, the control unit 6b includes a system control unit 61b, a distribution information generation unit 62b, a correction processing unit 63, an image processing unit 64, a RAW image generation unit 65, and a storage unit 66. The display control unit 67 and the communication control unit 68 are included. The control unit 6b according to the present embodiment has a configuration in which the configuration of the system control unit 61b and the distribution information generation unit 62b is the control unit 6 (see FIGS. 15 and 16) according to the first embodiment described above, It differs from the control part 6a (refer FIG.28 and FIG.29) which concerns on 2nd Embodiment.
 ここで、図38を参照しながら、システム制御部61b及び分布情報生成部62bの詳細な構成について説明する。図38に示すように、分布情報生成部62bは、二次元化処理部621、強度補正分布決定部623、及び二次元化処理部625を含む。また、システム制御部61aは、強度制御量決定部611と、波長制御量決定部613とを含む。 Here, the detailed configuration of the system control unit 61b and the distribution information generation unit 62b will be described with reference to FIG. As illustrated in FIG. 38, the distribution information generation unit 62b includes a two-dimensionalization processing unit 621, an intensity correction distribution determination unit 623, and a two-dimensionalization processing unit 625. The system control unit 61 a includes an intensity control amount determination unit 611 and a wavelength control amount determination unit 613.
 なお、二次元化処理部621、強度補正分布決定部623、及び強度制御量決定部611の動作と、当該強度制御量決定部611の動作に基づくシステム制御部61bの動作とは、前述した第1の実施形態に係る画像取得装置1(図16参照)と同様である。 The operations of the two-dimensionalization processing unit 621, the intensity correction distribution determining unit 623, and the intensity control amount determining unit 611, and the operation of the system control unit 61b based on the operation of the intensity control amount determining unit 611 are described above. This is the same as the image acquisition device 1 according to the first embodiment (see FIG. 16).
 即ち、強度制御量決定部611は、二次元化処理部621からアイドラー光の強度分布を取得し、強度補正分布決定部623から補正量の最大幅の通知を受けて、取得したアイドラー光の強度分布と補正量の最大幅とに基づき、光源2の状態(特に、励起光の強度の変化)を監視する。また、強度制御量決定部611は、監視結果に基づき、光源2から出射されるレーザー光(ポンプ光)の強度を制御するための制御情報を生成する。そして、システム制御部61bは、強度制御量決定部611が生成した制御情報に基づき、光源2から出射されるレーザー光(ポンプ光)の強度を制御すればよい。 That is, the intensity control amount determination unit 611 acquires the idler light intensity distribution from the two-dimensional processing unit 621, receives the notification of the maximum correction amount width from the intensity correction distribution determination unit 623, and acquires the acquired idler light intensity. Based on the distribution and the maximum width of the correction amount, the state of the light source 2 (particularly, the change in the intensity of the excitation light) is monitored. Further, the intensity control amount determination unit 611 generates control information for controlling the intensity of the laser light (pump light) emitted from the light source 2 based on the monitoring result. And the system control part 61b should just control the intensity | strength of the laser beam (pump light) radiate | emitted from the light source 2 based on the control information which the intensity | strength control amount determination part 611 produced | generated.
 また、二次元化処理部625及び波長制御量決定部613と、当該波長制御量決定部613の動作に基づくシステム制御部61bの動作とは、前述した第2の実施形態に係る画像取得装置1a(図29参照)と同様である。 The two-dimensionalization processing unit 625, the wavelength control amount determination unit 613, and the operation of the system control unit 61b based on the operation of the wavelength control amount determination unit 613 are the image acquisition device 1a according to the second embodiment described above. (See FIG. 29).
 即ち、波長制御量決定部613は、二次元化処理部625から、生成された蛍光の強度分布を取得し、当該蛍光の強度分布のコントラストを向上させるように、光源2から出射されるレーザー光(励起光)の波長(周波数)の制御量を決定する。波長制御量決定部613によりレーザー光の波長の制御量が決定されると、当該制御量に基づき、システム制御部61bが、光源2を制御することで、当該光源2から出射されるレーザー光の波長を制御する。 That is, the wavelength control amount determination unit 613 obtains the generated fluorescence intensity distribution from the two-dimensional processing unit 625, and the laser light emitted from the light source 2 so as to improve the contrast of the fluorescence intensity distribution. The control amount of the wavelength (frequency) of (excitation light) is determined. When the control amount of the wavelength of the laser light is determined by the wavelength control amount determination unit 613, the system control unit 61b controls the light source 2 based on the control amount, so that the laser light emitted from the light source 2 is controlled. Control the wavelength.
 光源2から出射されるレーザー光の波長が制御されると、二次元化処理部625により、当該制御後のレーザー光に基づく蛍光の強度分布が取得され、取得された蛍光の強度分布が波長制御量決定部613に出力される。波長制御量決定部613は、改めて取得した蛍光の強度分布を評価し、当該蛍光の強度分布のコントラストを向上させるように、レーザー光の波長の制御量を算出する。 When the wavelength of the laser light emitted from the light source 2 is controlled, the two-dimensionalization processing unit 625 acquires the fluorescence intensity distribution based on the laser light after the control, and the acquired fluorescence intensity distribution is wavelength-controlled. The data is output to the quantity determining unit 613. The wavelength control amount determination unit 613 evaluates the newly acquired fluorescence intensity distribution, and calculates the control amount of the wavelength of the laser light so as to improve the contrast of the fluorescence intensity distribution.
 以上の動作を繰り返すことで、システム制御部61b及び波長制御量決定部613により、光源2から出射されるレーザー光の波長が、蛍光の強度分布のコントラストが最大となるように制御される。 By repeating the above operation, the wavelength of the laser light emitted from the light source 2 is controlled by the system control unit 61b and the wavelength control amount determination unit 613 so that the contrast of the fluorescence intensity distribution is maximized.
 また、本実施形態に係るRAW画像生成部65の動作は、前述した第1及び第2の実施形態に係るRAW画像生成部65と同様である。即ち、RAW画像生成部65は、二次元化処理部625から蛍光の強度分布を取得し、当該蛍光の強度分布を画像データ(RAW画像)として、所定のファイルフォーマットに整形することでRAWファイルを生成する。また、RAW画像生成部65は、当該蛍光の強度分布に関連する情報をシステム制御部61から取得し、取得した情報を関連情報として、生成したRAWファイルに関連付けてもよい。なお、RAWファイルに関連付けられる関連情報には、例えば、第1の実施形態で示した関連情報(図19参照)や、第2の実施形態で示した関連情報(図31参照)を含み得ることは言うまでもない。 The operation of the RAW image generation unit 65 according to the present embodiment is the same as that of the RAW image generation unit 65 according to the first and second embodiments described above. That is, the RAW image generation unit 65 acquires the fluorescence intensity distribution from the two-dimensionalization processing unit 625, and shapes the fluorescence intensity distribution as image data (RAW image) into a predetermined file format, thereby converting the RAW file. Generate. The RAW image generation unit 65 may acquire information related to the fluorescence intensity distribution from the system control unit 61 and associate the acquired information with the generated RAW file as related information. The related information associated with the RAW file can include, for example, the related information shown in the first embodiment (see FIG. 19) or the related information shown in the second embodiment (see FIG. 31). Needless to say.
 以上、図37及び図38を参照しながら、本実施形態に係る画像取得装置1bの構成について説明した。 The configuration of the image acquisition device 1b according to the present embodiment has been described above with reference to FIGS. 37 and 38.
 [3.3.まとめ]
 以上説明したように、第1の実施形態に係る画像取得装置1と、第2の実施形態に係る画像取得装置1aとを組み合わせることで、本実施形態に係る画像取得装置1bとして動作させることも可能である。なお、本実施形態に係る画像取得装置1bが、第1の実施形態に係る画像取得装置1と、第2の実施形態に係る画像取得装置1aとの双方の作用効果を同様に奏することは言うまでもない。
[3.3. Summary]
As described above, by combining the image acquisition device 1 according to the first embodiment and the image acquisition device 1a according to the second embodiment, the image acquisition device 1b according to the present embodiment may be operated. Is possible. In addition, it cannot be overemphasized that the image acquisition apparatus 1b which concerns on this embodiment has the effect of both the image acquisition apparatus 1 which concerns on 1st Embodiment, and the image acquisition apparatus 1a which concerns on 2nd Embodiment similarly. Yes.
 <4.第4の実施形態>
 [4.1.画像取得装置の概要]
 次に、第4の実施形態に係る画像取得装置について説明する。まず、図39及び図40を参照しながら、本実施形態に係る画像取得装置の課題について整理する。図39は、本実施形態に係る画像取得装置の概要について説明するための図である。また、図40は、本実施形態に係る補正処理の原理について説明するための説明図である。なお、以降では、本実施形態に係る画像処理装置を、他の実施形態に係る画像取得装置と区別するために、「画像取得装置1c」と記載する場合がある。
<4. Fourth Embodiment>
[4.1. Overview of image acquisition device]
Next, an image acquisition apparatus according to the fourth embodiment will be described. First, the problems of the image acquisition apparatus according to the present embodiment will be organized with reference to FIGS. 39 and 40. FIG. 39 is a diagram for explaining the outline of the image acquisition apparatus according to the present embodiment. FIG. 40 is an explanatory diagram for explaining the principle of the correction processing according to the present embodiment. Hereinafter, the image processing apparatus according to the present embodiment may be referred to as “image acquisition apparatus 1c” in order to distinguish it from the image acquisition apparatuses according to other embodiments.
 前述の第1の実施形態に係る画像取得装置1や、第3の実施形態に係る画像取得装置1bは、アイドラー光の強度分布に基づき補正データを生成し、生成した補正データに基づき、蛍光の強度分布上に顕在化した、レーザー光の強度変動に伴うノイズを補正する。 The image acquisition device 1 according to the first embodiment and the image acquisition device 1b according to the third embodiment generate correction data based on the intensity distribution of idler light, and generate fluorescence data based on the generated correction data. It corrects the noise caused by the fluctuation in the intensity of the laser beam, which is manifested on the intensity distribution.
 一方で、蛍光及びアイドラー光の強度は、それぞれ別々に検出されるため、生成される蛍光の強度分布と、アイドラー光の強度分布とには、レーザー光の強度変動には依存しないノイズが、それぞれ別々に発生する場合がある。例えば、図39は、生成された蛍光の強度分布D11と、アイドラー光の強度分布D21とに、それぞれ異なるノイズが発生している状態を模式的に示している。 On the other hand, since the intensity of fluorescence and idler light are detected separately, noise that does not depend on fluctuations in the intensity of laser light is included in the intensity distribution of the generated fluorescence and the intensity distribution of idler light, respectively. May occur separately. For example, FIG. 39 schematically shows a state in which different noises are generated in the generated fluorescence intensity distribution D11 and the idler intensity distribution D21.
 図39に示す例の場合には、アイドラー光の強度分布D21に基づき、蛍光の強度分布D11を補正した場合には、補正処理後の蛍光の強度分布D10には、補正前の蛍光の強度分布D11に発生したノイズに加えて、アイドラー光の強度分布D21に発生したノイズも重畳することとなる。即ち、図39に示す例の場合には、補正処理によりレーザー光の強度の変動に伴うノイズを補正されるが、一方で、蛍光の強度分布D11及び補正データD21それぞれに発生したノイズが低減されることなく、補正処理後の蛍光の強度分布D10に顕在化する。 In the case of the example shown in FIG. 39, when the fluorescence intensity distribution D11 is corrected based on the intensity distribution D21 of idler light, the fluorescence intensity distribution D10 after correction processing includes the fluorescence intensity distribution before correction. In addition to the noise generated in D11, the noise generated in the idler light intensity distribution D21 is also superimposed. That is, in the example shown in FIG. 39, the noise associated with the fluctuation in the intensity of the laser light is corrected by the correction process, but the noise generated in each of the fluorescence intensity distribution D11 and the correction data D21 is reduced. Without any actualization, it becomes apparent in the fluorescence intensity distribution D10 after the correction process.
 そこで、本実施形態に係る画像取得装置1cでは、図40に示すように、生成された蛍光の強度分布D11とアイドラー光の強度分布D21とのそれぞれにノイズ補正処理を施す。これにより、画像取得装置1cは、蛍光の強度分布D11及びアイドラー光の強度分布D21に顕在化した、レーザー光の強度変動には依存しないノイズを補正してノイズ補正後の蛍光の強度分布D11a及びアイドラー光の強度分布D21aを生成する。 Therefore, in the image acquisition device 1c according to the present embodiment, as shown in FIG. 40, noise correction processing is performed on each of the generated fluorescence intensity distribution D11 and idler light intensity distribution D21. As a result, the image acquisition apparatus 1c corrects the noise that does not depend on the intensity fluctuation of the laser beam, which is manifested in the fluorescence intensity distribution D11 and the idler intensity distribution D21, and corrects the fluorescence intensity distribution D11a and the noise after correction. An idler light intensity distribution D21a is generated.
 そして、本実施形態に係る画像取得装置1cは、蛍光の強度分布D11aを、アイドラー光の強度分布D21aで補正することで、蛍光の強度分布D11aに顕在化したレーザー光の強度変動に伴うノイズを補正して、補正処理後の蛍光の強度分布D10を生成する。このような構成により、画像取得装置1cは、蛍光の強度分布D11とアイドラー光の強度分布D21とのそれぞれに発生した、レーザー光の強度変動には依存しないノイズの顕在化を抑制することが可能となる。 The image acquisition apparatus 1c according to the present embodiment corrects the intensity distribution D11a of the fluorescence with the intensity distribution D21a of the idler light, so that noise associated with the intensity variation of the laser light that is manifested in the intensity distribution D11a of the fluorescence is obtained. It correct | amends and the fluorescence intensity distribution D10 after a correction process is produced | generated. With such a configuration, the image acquisition device 1c can suppress the occurrence of noise that does not depend on the intensity fluctuation of the laser light, which occurs in each of the fluorescence intensity distribution D11 and the idler intensity distribution D21. It becomes.
 また、本実施形態に係る画像取得装置1cは、ノイズ補正後の蛍光の強度分布D11a及びアイドラー光の強度分布D21aに基づき、RAWファイルD1を生成する。これにより、情報処理装置800のような外部装置において、同様に補正処理後の蛍光の強度分布D10を生成したとしても、レーザー光の強度変動には依存しないノイズの顕在化を抑制することが可能となる。以下に、本実施形態に係る画像取得装置1cの詳細について説明する。 Further, the image acquisition device 1c according to the present embodiment generates the RAW file D1 based on the fluorescence intensity distribution D11a and the idler intensity distribution D21a after noise correction. As a result, even when an external device such as the information processing device 800 similarly generates the fluorescence intensity distribution D10 after the correction process, it is possible to suppress the occurrence of noise that does not depend on the intensity fluctuation of the laser light. It becomes. Details of the image acquisition device 1c according to the present embodiment will be described below.
 [4.2.画像取得装置の構成]
 本実施形態に係る画像取得装置は、前述した第3の実施形態に係る画像取得装置1bにおける分布情報生成部62bに対応する分布情報生成部62cの構成が、画像取得装置1bと異なり、その他の構成については、基本的には当該画像取得装置1bと同様である。そのため、以降では、図41を参照しながら、本実施形態に係る分布情報生成部62cの構成に着目して説明する。図41は、本実施形態に係る分布情報生成部62c及びシステム制御部61cの詳細な機能構成について説明するための説明図である。
[4.2. Configuration of image acquisition apparatus]
The image acquisition device according to the present embodiment is different from the image acquisition device 1b in the configuration of the distribution information generation unit 62c corresponding to the distribution information generation unit 62b in the image acquisition device 1b according to the third embodiment described above. The configuration is basically the same as that of the image acquisition device 1b. Therefore, hereinafter, description will be given focusing on the configuration of the distribution information generation unit 62c according to the present embodiment with reference to FIG. FIG. 41 is an explanatory diagram for describing detailed functional configurations of the distribution information generation unit 62c and the system control unit 61c according to the present embodiment.
 図41に示すように、本実施形態に係る分布情報生成部62cは、補正処理部627と、補正処理部629とを含む点で、前述した第3の実施形態に係る分布情報生成部62b(図38参照)と異なる。 As shown in FIG. 41, the distribution information generation unit 62c according to the present embodiment includes a correction processing unit 627 and a correction processing unit 629, and thus the distribution information generation unit 62b ( Unlike FIG. 38).
 本実施形態に係る分布情報生成部62cでは、二次元化処理部621は、生成したアイドラー光の強度分布を補正処理部627に出力する。 In the distribution information generation unit 62c according to the present embodiment, the two-dimensionalization processing unit 621 outputs the generated idler light intensity distribution to the correction processing unit 627.
 補正処理部627は、二次元化処理部621からアイドラー光の強度分布を取得し、取得したアイドラー光の強度分布に対して、レーザー光の強度変動には依存しないノイズに対する補正処理を施す。このとき、補正処理部627は、取得したアイドラー光の強度分布に対して画素単位のフィルタを適用する。 The correction processing unit 627 acquires the idler light intensity distribution from the two-dimensional processing unit 621, and performs correction processing for noise that does not depend on the intensity fluctuation of the laser light, on the acquired idler light intensity distribution. At this time, the correction processing unit 627 applies a pixel-by-pixel filter to the acquired intensity distribution of idler light.
 画素単位のフィルタの一例としては、例えば、メディアンフィルタが挙げられる。この場合には、補正処理部627は、例えば、アイドラー光の強度分布中の画素それぞれを基準画素とし、当該基準画素の画素値を閾値として、周囲の他の画素(例えば、周囲8画素)に対して閾値処理を施す。そして、補正処理部627は、当該基準画素と周囲の他の画素との間で画素値を平滑化する。 An example of the pixel-by-pixel filter is a median filter. In this case, the correction processing unit 627 uses, for example, each pixel in the idler light intensity distribution as a reference pixel, and sets the pixel value of the reference pixel as a threshold value to other surrounding pixels (for example, surrounding 8 pixels). Threshold processing is performed on the image. Then, the correction processing unit 627 smoothes the pixel value between the reference pixel and other surrounding pixels.
 なお、補正処理部627は、基準画素と周囲の他の画素との間で画素値を平滑化する場合には、単純平均を用いてもよいし、所定の統計に従い各画素値を平滑化してもよい。 Note that when the pixel value is smoothed between the reference pixel and other surrounding pixels, the correction processing unit 627 may use a simple average, or smooth each pixel value according to predetermined statistics. Also good.
 また、補正処理部627は、周囲の他の画素に対する閾値処理や、基準画素と周囲の他の画素との間で画素値の平滑化に係る処理に対して異方性を持たせてもよい。具体的な一例として、補正処理部627は、横方向に対して縦方向よりも、より強いノイズ除去処理が施されるように、当該ノイズ除去処理のパラメタ(例えば、閾値)を制御してもよい。 Further, the correction processing unit 627 may add anisotropy to threshold processing for other surrounding pixels and processing related to smoothing of pixel values between the reference pixel and other surrounding pixels. . As a specific example, the correction processing unit 627 may control a parameter (for example, a threshold value) of the noise removal process so that a stronger noise removal process is performed in the horizontal direction than in the vertical direction. Good.
 補正処理部627は、ノイズ除去処理が施されたアイドラー光の強度分布を、強度補正分布決定部623及び強度制御量決定部611に出力する。なお、以降の処理、即ち、強度補正分布決定部623及び強度制御量決定部611の動作については、ノイズ除去処理後のアイドラー光の強度分布を対象としている点を除けば、前述した第1及び第3の実施形態に係る画像取得装置と同様である。 The correction processing unit 627 outputs the intensity distribution of the idler light subjected to the noise removal processing to the intensity correction distribution determining unit 623 and the intensity control amount determining unit 611. Note that the subsequent processing, that is, the operations of the intensity correction distribution determination unit 623 and the intensity control amount determination unit 611, except for the point that the target is the intensity distribution of the idler light after the noise removal processing, This is the same as the image acquisition apparatus according to the third embodiment.
 また、本実施形態に係る分布情報生成部62cでは、二次元化処理部625は、生成した蛍光の強度分布を補正処理部629に出力する。 In the distribution information generation unit 62c according to this embodiment, the two-dimensionalization processing unit 625 outputs the generated fluorescence intensity distribution to the correction processing unit 629.
 補正処理部629は、二次元化処理部625からアイドラー光の強度分布を取得し、取得した蛍光の強度分布に対して、レーザー光の強度変動には依存しないノイズに対する補正処理を施す。このとき、補正処理部629は、取得した蛍光の強度分布に対して周波数単位のフィルタ(即ち、周波数フィルタ)を適用する。 The correction processing unit 629 acquires the idler light intensity distribution from the two-dimensional processing unit 625, and performs correction processing on noise that does not depend on the intensity fluctuation of the laser light, on the acquired fluorescence intensity distribution. At this time, the correction processing unit 629 applies a frequency unit filter (that is, a frequency filter) to the acquired fluorescence intensity distribution.
 具体的には、補正処理部629は、所定の周波数を閾値として、当該閾値よりも高い周波数の信号をノイズと見做して除去する(即ち、高周波成分を除去する)。このように、補正処理部627と、補正処理部629とは、それぞれが取得した強度分布に対して、互いに方式の異なるノイズ除去処理を施す。 Specifically, the correction processing unit 629 uses a predetermined frequency as a threshold and removes a signal having a frequency higher than the threshold as noise (that is, removes a high-frequency component). As described above, the correction processing unit 627 and the correction processing unit 629 perform noise removal processing with different methods on the acquired intensity distributions.
 補正処理部629は、ノイズ除去処理が施された蛍光の強度分布を、波長制御量決定部613、補正処理部63、及びRAW画像生成部65に出力する。なお、以降の処理、即ち、波長制御量決定部613、補正処理部63、及びRAW画像生成部65の動作については、ノイズ除去処理後の蛍光の強度分布を対象としている点を除けば、前述した第2及び第3の実施形態に係る画像取得装置と同様である。 The correction processing unit 629 outputs the fluorescence intensity distribution subjected to the noise removal processing to the wavelength control amount determination unit 613, the correction processing unit 63, and the RAW image generation unit 65. The subsequent processing, that is, the operations of the wavelength control amount determination unit 613, the correction processing unit 63, and the RAW image generation unit 65 are the same as those described above except that the fluorescence intensity distribution after the noise removal processing is targeted. This is the same as the image acquisition device according to the second and third embodiments.
 また、本実施形態に係るRAW画像生成部65は、ノイズ除去後の蛍光の強度分布を画像データとしてRAWファイルを生成し、当該RAWファイルに対して、ノイズ除去後のアイドラー光の強度分布を関連情報として関連付けることは言うまでもない。 Also, the RAW image generation unit 65 according to the present embodiment generates a RAW file using the fluorescence intensity distribution after noise removal as image data, and relates the idler intensity distribution after noise removal to the RAW file. Needless to say, it is related as information.
 以上、図41を参照しながら、本実施形態に係る画像取得装置1cの構成について、特に、分布情報生成部62cの動作に着目して説明した。なお、補正処理部627及び629は、必ずしも双方を設ける必要はなく、いずれかのみが設けられていてもよい。 The configuration of the image acquisition device 1c according to the present embodiment has been described with particular attention to the operation of the distribution information generation unit 62c, with reference to FIG. Note that the correction processing units 627 and 629 are not necessarily provided, and only one of them may be provided.
 [4.3.RAWファイルのファイルフォーマット]
 次に、図42を参照しながら、本実施形態に係るRAWファイルD1cのファイルフォーマットの一例について説明する。図42は、本実施形態に係るRAWファイルD1cのファイルフォーマットの一例を示した図である。
[4.3. RAW file format]
Next, an example of the file format of the RAW file D1c according to the present embodiment will be described with reference to FIG. FIG. 42 is a diagram showing an example of the file format of the RAW file D1c according to the present embodiment.
 図42に示すように、本実施形態に係るRAWファイルD1cは、例えば、データ領域d10と、基本制御情報領域d30と、拡張領域d20cとを含む。なお、データ領域d10及び基本制御情報領域d30の構成については、前述した第1の実施形態に係るRAWファイルD1(図19参照)と同様のため、詳細な説明は省略する。 42, the RAW file D1c according to the present embodiment includes, for example, a data area d10, a basic control information area d30, and an extension area d20c. The configurations of the data area d10 and the basic control information area d30 are the same as those of the RAW file D1 (see FIG. 19) according to the first embodiment described above, and detailed description thereof is omitted.
 図42に示すように、拡張領域d20cは、メーカーノートIFDd21を含む。メーカーノートIFDd21は、カメラ制御モードなどのEXIFに規定されていない情報を格納するためのIFDであり、画像取得装置1に固有の撮影情報や制御情報も格納される。 42, the extension area d20c includes a manufacturer note IFDd21. The manufacturer note IFDd21 is an IFD for storing information not specified in EXIF, such as a camera control mode, and also stores shooting information and control information unique to the image acquisition device 1.
 また、本実施形態に係るメーカーノートIFDd21は、例えば、撮影条件d211と、初期撮影画像d221と、ユーザが指定したターゲット画像d222と、ユーザの指定した可変範囲d223と、ノイズ分離に用いたデータd231と、ノイズ分離に適用したパラメタd232と、ノイズ補正後のアイドラー光の強度画像とを含む。なお、撮影条件d211、初期撮影画像d221、ユーザが指定したターゲット画像d222、及びユーザの指定した可変範囲d223は、前述した第2の実施形態に係るRAWファイルD1a(図31参照)と同様である。 In addition, the manufacturer note IFDd21 according to the present embodiment includes, for example, a shooting condition d211, an initial shot image d221, a target image d222 specified by the user, a variable range d223 specified by the user, and data d231 used for noise separation. And a parameter d232 applied to noise separation and an intensity image of idler light after noise correction. Note that the shooting condition d211, the initial shot image d221, the target image d222 specified by the user, and the variable range d223 specified by the user are the same as those of the RAW file D1a (see FIG. 31) according to the second embodiment described above. .
 ノイズ補正後のアイドラー光の強度画像d233は、補正処理部627によりノイズ除去処理が施されたアイドラー光の強度分布D21aを示している。なお、アイドラー光の強度分布D21aに替えて、当該アイドラー光の強度分布D21aに基づき算出された補正データを、ノイズ補正後のアイドラー光の強度画像d233としてRAWファイルD1cに記録してもよい。 The idler intensity image d233 after noise correction indicates the idler intensity distribution D21a that has been subjected to noise removal processing by the correction processing unit 627. Instead of the idler intensity distribution D21a, correction data calculated based on the idler intensity distribution D21a may be recorded in the RAW file D1c as an idler intensity image d233 after noise correction.
 ノイズ分離に用いたデータd231は、蛍光の強度分布D11に対してノイズ除去のために適用した周波数フィルタのデータを示している。なお、蛍光の強度分布D11に対して施されたノイズ除去処理の内容が特定できれば、ノイズ分離に用いたデータd231の形式は特に限定されない。具体的な一例として、ノイズ分離に用いたデータd231は、周波数フィルタの特性(周波数特性)を示すヒストグラムであってもよい。 Data d231 used for noise separation indicates frequency filter data applied to the fluorescence intensity distribution D11 for noise removal. Note that the format of the data d231 used for noise separation is not particularly limited as long as the content of the noise removal processing applied to the fluorescence intensity distribution D11 can be specified. As a specific example, the data d231 used for noise separation may be a histogram indicating the characteristics (frequency characteristics) of the frequency filter.
 このように、RAWファイルD1cにノイズ分離に用いたデータd231を記録しておくことで、当該RAWファイルD1cを読み出した外部装置(例えば、情報処理装置800)が、RAW本画像d11上のノイズを、本実施形態に係る画像取得装置1cと同様に補正することが可能となる。 In this way, by recording the data d231 used for noise separation in the RAW file D1c, the external device (for example, the information processing device 800) that has read the RAW file D1c detects the noise on the RAW main image d11. Correction can be performed in the same manner as in the image acquisition device 1c according to the present embodiment.
 ノイズ分離に適用したパラメタd232は、アイドラー光の強度分布に基づく補正データD21に対して施したノイズ除去処理の種別やその内容を示すパラメタ(例えば、適用したフィルタを示す情報やそのパラメタ)である。なお、補正データD21に対して施されたノイズ除去処理の種別やその内容が特定できれば、ノイズ分離に適用したパラメタd232の形式は特に限定されない。 The parameter d232 applied to the noise separation is a parameter indicating the type of noise removal processing performed on the correction data D21 based on the intensity distribution of idler light and the contents thereof (for example, information indicating the applied filter and its parameters). . Note that the format of the parameter d232 applied to the noise separation is not particularly limited as long as the type and contents of the noise removal processing performed on the correction data D21 can be specified.
 このように、RAWファイルD1cにノイズ分離に適用したパラメタd232を記録しておくことで、当該RAWファイルD1cを読み出した外部装置(例えば、情報処理装置800)が、ノイズ補正後のアイドラー光の強度画像に対して施されたノイズ除去処理の内容を特定することが可能となる。 In this way, by recording the parameter d232 applied to noise separation in the RAW file D1c, the external device (for example, the information processing device 800) that has read the RAW file D1c allows the intensity of idler light after noise correction. It is possible to specify the content of the noise removal process performed on the image.
 以上、図42を参照しながら、本実施形態に係るRAWファイルD1cのファイルフォーマットについて説明した。なお、上記に示すRAWファイルD1cのファイルフォーマットはあくまで一例であり、必ずしも全ての情報を含まなくてもよいことは言うまでもない。 The file format of the RAW file D1c according to the present embodiment has been described above with reference to FIG. Note that the file format of the RAW file D1c described above is merely an example, and it is needless to say that not all information may be included.
 [4.4.まとめ]
 以上説明したように、本実施形態に係る画像取得装置1cは、蛍光の強度分布D11とアイドラー光の強度分布D21とのそれぞれに対してノイズ補正処理を施して、ノイズ補正後の蛍光の強度分布D11a及びアイドラー光の強度分布D21aを生成する。そして、画像取得装置1cは、蛍光の強度分布D11aを、アイドラー光の強度分布D21aで補正することで、蛍光の強度分布D11aに顕在化したレーザー光の強度変動に伴うノイズを補正して、補正処理後の蛍光の強度分布D10を生成する。このような構成により、本実施形態に係る画像取得装置1cは、蛍光の強度分布D11とアイドラー光の強度分布D21とのそれぞれに発生した、レーザー光の強度変動には依存しないノイズの顕在化を抑制することが可能となる。
[4.4. Summary]
As described above, the image acquisition device 1c according to the present embodiment performs noise correction processing on each of the fluorescence intensity distribution D11 and the idler light intensity distribution D21, so that the fluorescence intensity distribution after noise correction is performed. D11a and idler intensity distribution D21a are generated. Then, the image acquisition device 1c corrects the noise accompanying the intensity fluctuation of the laser light that has become apparent in the fluorescence intensity distribution D11a by correcting the fluorescence intensity distribution D11a with the idler intensity distribution D21a. A fluorescence intensity distribution D10 after processing is generated. With such a configuration, the image acquisition device 1c according to the present embodiment makes manifestation of noise generated in each of the fluorescence intensity distribution D11 and the idler intensity distribution D21 independent of the intensity fluctuation of the laser beam. It becomes possible to suppress.
 また、本実施形態に係る画像取得装置1cは、ノイズ補正後の蛍光の強度分布D11a及びアイドラー光の強度分布D21aに基づき、RAWファイルD1cを生成する。これにより、情報処理装置800のような外部装置において、同様に補正処理後の蛍光の強度分布D10を生成したとしても、レーザー光の強度変動には依存しないノイズの顕在化を抑制することが可能となる。 Also, the image acquisition device 1c according to the present embodiment generates a RAW file D1c based on the fluorescence intensity distribution D11a and the idler intensity distribution D21a after noise correction. As a result, even when an external device such as the information processing device 800 similarly generates the fluorescence intensity distribution D10 after the correction process, it is possible to suppress the occurrence of noise that does not depend on the intensity fluctuation of the laser light. It becomes.
 <5.ハードウェア構成>
 次に、図43を参照して、本実施形態に係る画像取得装置1のハードウェア構成の一例について説明する。図43は、本実施形態に係る画像取得装置1のハードウェア構成の一例を示した図である。
<5. Hardware configuration>
Next, an example of a hardware configuration of the image acquisition device 1 according to the present embodiment will be described with reference to FIG. FIG. 43 is a diagram illustrating an example of a hardware configuration of the image acquisition device 1 according to the present embodiment.
 図43に示すように、本実施形態に係る画像取得装置1は、プロセッサ901と、メモリ903と、ストレージ905と、光源ユニット907と、測定ユニット909と、操作デバイス911と、表示デバイス913と、通信デバイス915と、バス917とを含む。 As shown in FIG. 43, the image acquisition apparatus 1 according to the present embodiment includes a processor 901, a memory 903, a storage 905, a light source unit 907, a measurement unit 909, an operation device 911, a display device 913, A communication device 915 and a bus 917 are included.
 プロセッサ901は、例えばCPU(Central Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)又はSoC(System on Chip)であってよく、画像取得装置1の様々な処理を実行する。プロセッサ901は、例えば、各種演算処理を実行するための電子回路により構成することが可能である。なお、前述した制御部6に含まれる各構成は、プロセッサ901により構成され得る。 The processor 901 may be, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a DSP (Digital Signal Processor), or a SoC (System on Chip), and executes various processes of the image acquisition device 1. The processor 901 can be configured by, for example, an electronic circuit for executing various arithmetic processes. Each configuration included in the control unit 6 described above can be configured by the processor 901.
 メモリ903は、RAM(Random Access Memory)及びROM(Read Only Memory)を含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ905は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。なお、前述した記憶部66は、例えば、メモリ903やストレージ905により構成され得る。 The memory 903 includes a RAM (Random Access Memory) and a ROM (Read Only Memory), and stores programs and data executed by the processor 901. The storage 905 can include a storage medium such as a semiconductor memory or a hard disk. Note that the storage unit 66 described above can be configured by, for example, the memory 903 and the storage 905.
 光源ユニット907は、サンプルSに対して励起光を照射するためのユニットであり、前述した光源2に対応している。光源ユニット907は、出射される励起光の強度及び波長が、プロセッサ901により制御する。 The light source unit 907 is a unit for irradiating the sample S with excitation light, and corresponds to the light source 2 described above. In the light source unit 907, the intensity and wavelength of the emitted excitation light are controlled by the processor 901.
 測定ユニット909は、光源ユニット907から出射された励起光をサンプルSに向けて導光させるとともに、サンプルSからの蛍光を検出するユニットであり、前述した測定部3に対応している。測定ユニット909は、プロセッサ901の制御に従い、光源ユニット907から出射された光の光路を制御し、当該光によりサンプルS上を走査する。 The measurement unit 909 is a unit that guides the excitation light emitted from the light source unit 907 toward the sample S and detects the fluorescence from the sample S, and corresponds to the measurement unit 3 described above. The measurement unit 909 controls the optical path of the light emitted from the light source unit 907 according to the control of the processor 901, and scans the sample S with the light.
 操作デバイス911は、ユーザが所望の操作を行うための入力信号を生成する機能を有する。操作デバイス911は、例えばボタン及びスイッチなどユーザが情報を入力するための入力部と、ユーザによる入力に基づいて入力信号を生成し、プロセッサ901に供給する入力制御回路などから構成されてよい。なお、前述した条件指定部71は、操作デバイス911により構成され得る。 The operation device 911 has a function of generating an input signal for a user to perform a desired operation. The operation device 911 may include an input unit for a user to input information, such as buttons and switches, and an input control circuit that generates an input signal based on an input by the user and supplies the input signal to the processor 901. The above-described condition designating unit 71 can be configured by the operation device 911.
 表示デバイス913は、出力装置の一例であり、液晶ディスプレイ(LCD:Liquid Crystal Display)装置、有機EL(OLED:Organic Light Emitting Diode)ディスプレイ装置などの表示装置であってよい。表示デバイス913は、ユーザに対して画面を表示することにより情報を提供することができる。なお、前述した表示部72は、表示デバイス913により構成され得る。 The display device 913 is an example of an output device, and may be a display device such as a liquid crystal display (LCD) device, an organic EL (OLED: Organic Light Emitting Diode) display device, or the like. The display device 913 can provide information by displaying a screen to the user. The display unit 72 described above can be configured by the display device 913.
 通信デバイス915は、画像取得装置1が備える通信手段であり、ネットワークを介して情報処理装置800のような外部装置と通信する。通信デバイス915は、無線通信用のインタフェースであり、通信アンテナ、RF(Radio Frequency)回路、ベースバンドプロセッサなどを含んでもよい。 The communication device 915 is a communication unit included in the image acquisition apparatus 1 and communicates with an external apparatus such as the information processing apparatus 800 via a network. The communication device 915 is an interface for wireless communication, and may include a communication antenna, an RF (Radio Frequency) circuit, a baseband processor, and the like.
 通信デバイス915は、外部装置から受信した信号に各種の信号処理を行う機能を有し、受信したアナログ信号から生成したデジタル信号をプロセッサ901に供給することが可能である。なお、前述した通信部73は、通信デバイス915により構成され得る。 The communication device 915 has a function of performing various kinds of signal processing on a signal received from an external device, and can supply a digital signal generated from the received analog signal to the processor 901. The communication unit 73 described above can be configured by the communication device 915.
 バス917は、プロセッサ901、メモリ903、ストレージ905、光源ユニット907、測定ユニット909、操作デバイス911、表示デバイス913、及び通信デバイス915を相互に接続する。バス917は、複数の種類のバスを含んでもよい。 The bus 917 connects the processor 901, the memory 903, the storage 905, the light source unit 907, the measurement unit 909, the operation device 911, the display device 913, and the communication device 915 to each other. The bus 917 may include a plurality of types of buses.
 また、コンピュータに内蔵されるCPU、ROM及びRAMなどのハードウェアを、上記した画像取得装置1が有する構成と同等の機能を発揮させるためのプログラムも作成可能である。また、当該プログラムを記録した、コンピュータに読み取り可能な記憶媒体も提供され得る。 In addition, it is possible to create a program for causing hardware such as a CPU, ROM, and RAM incorporated in a computer to perform the same functions as the configuration of the image acquisition apparatus 1 described above. A computer-readable storage medium that records the program can also be provided.
 <6.まとめ>
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の制御例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
<6. Summary>
The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various control examples or modification examples within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 レーザー光を出射する光源と、
 前記光源と同一筐体内に設けられ、前記レーザー光によりサンプルを走査し、当該レーザー光を受けて前記サンプルからの測定対象光の強度を測定する測定部と、
 測定された前記測定対象光の強度分布に基づき、当該サンプルの画像を生成する制御部と、
 を備え、
 前記測定部は、前記光源から出射されたレーザー光の強度を測定し、
 前記制御部は、測定された当該レーザー光の強度に基づき、前記光源から出射されるレーザー光の強度の制御と、測定された前記測定対象光の強度分布の補正との、少なくともいずれかを実行する、画像取得装置。
(2)
 前記光源は、所定の周波数のポンプ光を出力するレーザー部と、光パラメトリック発振器とを備え、前記ポンプ光を前記光パラメトリック発振器に入射させることで、シグナル光とアイドラー光とを出射し、
 前記測定部は、
 前記シグナル光及び前記アイドラー光のうち、いずれか一方を第1の光とし、他方を第2の光として、当該第1の光によりサンプルを走査し、
 前記第1の光を受けて前記サンプルから生じる前記測定対象光の強度と、前記第2の光の強度とを測定し、
 前記制御部は、測定された前記第2の光の強度に基づき、前記ポンプ光の強度の制御に応じた前記第1の光の強度の制御と、測定された前記測定対象光の強度分布の補正との、少なくともいずれかを実行する、
 前記(1)に記載の画像取得装置。
(3)
 前記制御部は、
 前記光源のウォームアップ期間中における前記第2の光の強度の最大値と平均値とに基づき強度補正量の最大幅を算出し、
 前記強度補正量の最大幅と、前記測定対象光の測定可能最大値とに基づき、前記第2の光の制御目標最大値を算出し、
 前記第2の光の制御目標最大値と、前記測定対象光の強度分布の生成に係る前記走査の期間中に測定された前記第2の光の強度の平均とに基づき、当該期間以降における前記ポンプ光の強度を制御する、
 前記(2)に記載の画像取得装置。
(4)
 前記制御部は、前記光源のウォームアップ期間中において、当該ウォームアップ期間中の第1のタイミング以前に、測定された前記第2の光の強度分布に基づく前記光パラメトリック発振器の伝達関数を示す制御情報を蓄積し、蓄積した当該制御情報に応じた微分制御に基づき、当該ウォームアップ期間中の第1のタイミングより後における前記ポンプ光の強度を制御する、前記(2)または(3)に記載の画像取得装置。
(5)
 前記制御部は、前記ウォームアップ期間中の前記第1のタイミングより後に測定された前記測定対象光の強度分布を、当該第1のタイミング以前に蓄積した前記第2の光の強度分布に基づき補正する、前記(4)に記載の画像取得装置。
(6)
 前記制御部は、前記ウォームアップ期間中の第1のタイミングより後に測定された前記測定対象光の強度分布に基づき生成された前記画像に、当該第1のタイミング以前に蓄積した前記第2の光の強度分布を示す情報を関連付ける、前記(5)に記載の画像取得装置。
(7)
 前記制御部は、前記測定対象光の強度分布の生成に係る前記走査の期間中に測定された前記第2の光の強度分布に基づき強度補正分布を算出し、算出した前記強度補正分布に基づき、前記測定対象光の強度分布を補正して前記画像を生成する、前記(2)~(6)のいずれか一項に記載の画像取得装置。
(8)
 前記制御部は、前記測定対象光の強度分布の生成に係る前記走査の期間中に測定された前記第2の光の強度分布に対してノイズ除去処理を施し、当該ノイズ除去処理が施された当該第2の光の強度分布に基づき、前記第1の光の強度の制御と、測定された前記測定対象光の強度分布の補正との、少なくともいずれかを実行する、前記(2)~(7)のいずれか一項に記載の画像取得装置。
(9)
 前記制御部は、前記測定対象光の強度分布に対してノイズ除去処理を施し、当該ノイズ除去処理が施された当該測定対象光の強度分布に基づき、前記第1の光の強度の制御と、測定された前記測定対象光の強度分布の補正との、少なくともいずれかを実行する、前記(8)に記載の画像取得装置。
(10)
 前記制御部は、前記第2の光の強度分布に対するノイズ除去処理と、前記測定対象光の強度分布に対するノイズ除去処理とを、異なる方式で実行する、前記(9)に記載の画像取得装置。
(11)
 前記制御部は、前記第2の光の強度分布に対して画素単位のメディアンフィルタを適用することでノイズを除去し、前記測定対象光の強度分布に対して周波数フィルタを適用することでノイズを除去する、前記(10)に記載の画像取得装置。
(12)
 前記制御部は、前記測定対象光の強度分布の生成に係る前記走査の期間中に測定された前記第2の光の強度分布を示す情報を、当該測定対象光の強度分布に基づき生成された前記画像に関連付ける、前記(2)~(11)のいずれか一項に記載の画像取得装置。
(13)
 前記制御部は、前記測定対象光の強度分布の生成に係る前記走査の期間中に測定された前記第2の光の強度分布を、当該走査の内容を示す制御情報に基づき二次元化し、二次元化された当該第2の光の強度分布を示す情報を、当該測定対象光の強度分布に基づき生成された前記画像に関連付ける、前記(12)に記載の画像取得装置。
(14)
 前記光源は、前記レーザー光の波長を制御可能に構成されており、
 前記制御部は、測定された前記測定対象光の強度分布に基づき、前記レーザー光の波長を制御する、前記(1)~(13)のいずれか一項に記載の画像取得装置。
(15)
 同一筐体内に設けられた光源から出射されたレーザー光によりサンプルを走査し、当該レーザー光を受けて前記サンプルから生じる測定対象光の強度を測定することと、
 プロセッサが、測定された前記測定対象光の強度分布に基づき、当該サンプルの画像を生成することと、
 前記光源から出射されたレーザー光の強度を測定することと、
 測定された当該レーザー光の強度に基づき、前記光源から出射されるレーザー光の強度の制御と、測定された前記測定対象光の強度分布の補正との、少なくともいずれかを実行することと、
 を含む画像取得方法。
The following configurations also belong to the technical scope of the present disclosure.
(1)
A light source that emits laser light;
A measurement unit that is provided in the same housing as the light source, scans the sample with the laser light, receives the laser light, and measures the intensity of the measurement target light from the sample;
A control unit that generates an image of the sample based on the measured intensity distribution of the measurement target light;
With
The measurement unit measures the intensity of the laser light emitted from the light source,
The control unit executes at least one of control of the intensity of the laser light emitted from the light source and correction of the measured intensity distribution of the measurement target light based on the measured intensity of the laser light. An image acquisition device.
(2)
The light source includes a laser unit that outputs pump light of a predetermined frequency, and an optical parametric oscillator, and emits signal light and idler light by causing the pump light to enter the optical parametric oscillator.
The measuring unit is
One of the signal light and the idler light is a first light, the other is a second light, and the sample is scanned with the first light,
Receiving the first light, measuring the intensity of the measurement object light generated from the sample and the intensity of the second light,
The control unit controls the intensity of the first light according to the control of the intensity of the pump light based on the measured intensity of the second light, and the intensity distribution of the measured light to be measured. Perform at least one of the corrections,
The image acquisition apparatus according to (1).
(3)
The controller is
Calculating the maximum width of the intensity correction amount based on the maximum value and the average value of the intensity of the second light during the warm-up period of the light source;
Based on the maximum width of the intensity correction amount and the maximum measurable value of the measurement target light, the control target maximum value of the second light is calculated,
Based on the control target maximum value of the second light and the average of the intensity of the second light measured during the scanning period related to the generation of the intensity distribution of the measurement target light, Control the intensity of the pump light,
The image acquisition apparatus according to (2).
(4)
The control unit controls the transfer function of the optical parametric oscillator based on the measured intensity distribution of the second light before the first timing during the warm-up period during the warm-up period of the light source. The information according to (2) or (3), wherein information is stored and the intensity of the pump light after the first timing during the warm-up period is controlled based on differential control according to the stored control information. Image acquisition device.
(5)
The control unit corrects the intensity distribution of the measurement target light measured after the first timing during the warm-up period based on the intensity distribution of the second light accumulated before the first timing. The image acquisition device according to (4).
(6)
The control unit includes the second light accumulated before the first timing in the image generated based on the intensity distribution of the measurement target light measured after the first timing during the warm-up period. The image acquisition device according to (5), wherein information indicating an intensity distribution of the image is associated.
(7)
The control unit calculates an intensity correction distribution based on the intensity distribution of the second light measured during the scanning period related to generation of the intensity distribution of the measurement target light, and based on the calculated intensity correction distribution The image acquisition device according to any one of (2) to (6), wherein the image is generated by correcting an intensity distribution of the measurement target light.
(8)
The control unit performs a noise removal process on the intensity distribution of the second light measured during the scanning period related to the generation of the intensity distribution of the measurement target light, and the noise removal process is performed Based on the intensity distribution of the second light, at least one of the control of the intensity of the first light and the correction of the intensity distribution of the measured light to be measured is executed (2) to (2) The image acquisition device according to any one of 7).
(9)
The control unit performs a noise removal process on the intensity distribution of the measurement target light, and controls the intensity of the first light based on the intensity distribution of the measurement target light subjected to the noise removal process; The image acquisition device according to (8), wherein at least one of the measured intensity distribution correction of the measurement target light is executed.
(10)
The image acquisition device according to (9), wherein the control unit executes a noise removal process for the intensity distribution of the second light and a noise removal process for the intensity distribution of the measurement target light by different methods.
(11)
The control unit removes noise by applying a pixel-based median filter to the intensity distribution of the second light, and applies noise to the intensity distribution of the measurement target light by applying a frequency filter. The image acquisition device according to (10), wherein the image acquisition device is removed.
(12)
The control unit generates information indicating the intensity distribution of the second light measured during the scanning period related to generation of the intensity distribution of the measurement target light based on the intensity distribution of the measurement target light. The image acquisition device according to any one of (2) to (11), which is associated with the image.
(13)
The control unit converts the intensity distribution of the second light measured during the scanning period related to generation of the intensity distribution of the measurement target light into two dimensions based on control information indicating the content of the scanning, The image acquisition device according to (12), wherein information indicating the dimensioned second light intensity distribution is associated with the image generated based on the intensity distribution of the measurement target light.
(14)
The light source is configured to be able to control the wavelength of the laser light,
The image acquisition apparatus according to any one of (1) to (13), wherein the control unit controls the wavelength of the laser light based on the measured intensity distribution of the measurement target light.
(15)
Scanning a sample with a laser beam emitted from a light source provided in the same housing, receiving the laser beam, and measuring the intensity of light to be measured generated from the sample;
A processor generates an image of the sample based on the measured intensity distribution of the measurement target light;
Measuring the intensity of the laser light emitted from the light source;
Based on the measured intensity of the laser light, performing at least one of control of the intensity of the laser light emitted from the light source and correction of the measured intensity distribution of the measurement target light;
An image acquisition method including:
1、1a、1b、1c  画像取得装置
2  光源
3、3a 測定部
4  顕微鏡ユニット
41  非偏光ビームスプリッタ
42  対物レンズ
43  フィルタ
44  非偏光ビームスプリッタ
45  カメラ
46  アイピース
5、5a 走査系(検出系)
51  ガルバノミラー
52  ダイクロイックミラー
53  PMT
54  PD
55  ビームスプリッタ
6、6a、6b 制御部
61、61a、61b、61c  システム制御部
611 強度制御量決定部
613 波長制御量決定部
62、62a、62b、62c  分布情報生成部
621 二次元化処理部
623 強度補正分布決定部
625 二次元化処理部
627 補正処理部
629 補正処理部
63  補正処理部
64  画像処理部
65  RAW画像生成部
66  記憶部
67  表示制御部
68  通信制御部
7  I/F
71  条件指定部
72  表示部
73  通信部
800 情報処理装置
 
1, 1a, 1b, 1c Image acquisition device 2 Light source 3, 3a Measuring unit 4 Microscope unit 41 Non-polarization beam splitter 42 Objective lens 43 Filter 44 Non-polarization beam splitter 45 Camera 46 Eyepiece 5, 5a Scanning system (detection system)
51 Galvano mirror 52 Dichroic mirror 53 PMT
54 PD
55 Beam splitters 6, 6a, 6b Control units 61, 61a, 61b, 61c System control unit 611 Intensity control amount determination unit 613 Wavelength control amount determination units 62, 62a, 62b, 62c Distribution information generation unit 621 Two-dimensionalization processing unit 623 Intensity correction distribution determination unit 625 Two-dimensional processing unit 627 Correction processing unit 629 Correction processing unit 63 Correction processing unit 64 Image processing unit 65 RAW image generation unit 66 Storage unit 67 Display control unit 68 Communication control unit 7 I / F
71 Condition Specifying Unit 72 Display Unit 73 Communication Unit 800 Information Processing Device

Claims (15)

  1.  レーザー光を出射する光源と、
     前記光源と同一筐体内に設けられ、前記レーザー光によりサンプルを走査し、当該レーザー光を受けて前記サンプルからの測定対象光の強度を測定する測定部と、
     測定された前記測定対象光の強度分布に基づき、当該サンプルの画像を生成する制御部と、
     を備え、
     前記測定部は、前記光源から出射されたレーザー光の強度を測定し、
     前記制御部は、測定された当該レーザー光の強度に基づき、前記光源から出射されるレーザー光の強度の制御と、測定された前記測定対象光の強度分布の補正との、少なくともいずれかを実行する、画像取得装置。
    A light source that emits laser light;
    A measurement unit that is provided in the same housing as the light source, scans the sample with the laser light, receives the laser light, and measures the intensity of the measurement target light from the sample;
    A control unit that generates an image of the sample based on the measured intensity distribution of the measurement target light;
    With
    The measurement unit measures the intensity of the laser light emitted from the light source,
    The control unit executes at least one of control of the intensity of the laser light emitted from the light source and correction of the measured intensity distribution of the measurement target light based on the measured intensity of the laser light. An image acquisition device.
  2.  前記光源は、所定の周波数のポンプ光を出力するレーザー部と、光パラメトリック発振器とを備え、前記ポンプ光を前記光パラメトリック発振器に入射させることで、シグナル光とアイドラー光とを出射し、
     前記測定部は、
     前記シグナル光及び前記アイドラー光のうち、いずれか一方を第1の光とし、他方を第2の光として、当該第1の光によりサンプルを走査し、
     前記第1の光を受けて前記サンプルから生じる前記測定対象光の強度と、前記第2の光の強度とを測定し、
     前記制御部は、測定された前記第2の光の強度に基づき、前記ポンプ光の強度の制御に応じた前記第1の光の強度の制御と、測定された前記測定対象光の強度分布の補正との、少なくともいずれかを実行する、
     請求項1に記載の画像取得装置。
    The light source includes a laser unit that outputs pump light of a predetermined frequency, and an optical parametric oscillator, and emits signal light and idler light by causing the pump light to enter the optical parametric oscillator.
    The measuring unit is
    One of the signal light and the idler light is a first light, the other is a second light, and the sample is scanned with the first light,
    Receiving the first light, measuring the intensity of the measurement object light generated from the sample and the intensity of the second light,
    The control unit controls the intensity of the first light according to the control of the intensity of the pump light based on the measured intensity of the second light, and the intensity distribution of the measured light to be measured. Perform at least one of the corrections,
    The image acquisition apparatus according to claim 1.
  3.  前記制御部は、
     前記光源のウォームアップ期間中における前記第2の光の強度の最大値と平均値とに基づき強度補正量の最大幅を算出し、
     前記強度補正量の最大幅と、前記測定対象光の測定可能最大値とに基づき、前記第2の光の制御目標最大値を算出し、
     前記第2の光の制御目標最大値と、前記測定対象光の強度分布の生成に係る前記走査の期間中に測定された前記第2の光の強度の平均とに基づき、当該期間以降における前記ポンプ光の強度を制御する、
     請求項2に記載の画像取得装置。
    The controller is
    Calculating the maximum width of the intensity correction amount based on the maximum value and the average value of the intensity of the second light during the warm-up period of the light source;
    Based on the maximum width of the intensity correction amount and the maximum measurable value of the measurement target light, the control target maximum value of the second light is calculated,
    Based on the control target maximum value of the second light and the average of the intensity of the second light measured during the scanning period related to the generation of the intensity distribution of the measurement target light, Control the intensity of the pump light,
    The image acquisition device according to claim 2.
  4.  前記制御部は、前記光源のウォームアップ期間中において、当該ウォームアップ期間中の第1のタイミング以前に、測定された前記第2の光の強度分布に基づく前記光パラメトリック発振器の伝達関数を示す制御情報を蓄積し、蓄積した当該制御情報に応じた微分制御に基づき、当該ウォームアップ期間中の第1のタイミングより後における前記ポンプ光の強度を制御する、請求項2に記載の画像取得装置。 The control unit controls the transfer function of the optical parametric oscillator based on the measured intensity distribution of the second light before the first timing during the warm-up period during the warm-up period of the light source. The image acquisition apparatus according to claim 2, wherein information is stored, and the intensity of the pump light after the first timing during the warm-up period is controlled based on differential control corresponding to the stored control information.
  5.  前記制御部は、前記ウォームアップ期間中の前記第1のタイミングより後に測定された前記測定対象光の強度分布を、当該第1のタイミング以前に蓄積した前記第2の光の強度分布に基づき補正する、請求項4に記載の画像取得装置。 The control unit corrects the intensity distribution of the measurement target light measured after the first timing during the warm-up period based on the intensity distribution of the second light accumulated before the first timing. The image acquisition device according to claim 4.
  6.  前記制御部は、前記ウォームアップ期間中の第1のタイミングより後に測定された前記測定対象光の強度分布に基づき生成された前記画像に、当該第1のタイミング以前に蓄積した前記第2の光の強度分布を示す情報を関連付ける、請求項5に記載の画像取得装置。
     
    The control unit includes the second light accumulated before the first timing in the image generated based on the intensity distribution of the measurement target light measured after the first timing during the warm-up period. The image acquisition apparatus according to claim 5, wherein information indicating an intensity distribution of the image is associated.
  7.  前記制御部は、前記測定対象光の強度分布の生成に係る前記走査の期間中に測定された前記第2の光の強度分布に基づき強度補正分布を算出し、算出した前記強度補正分布に基づき、前記測定対象光の強度分布を補正して前記画像を生成する、請求項2に記載の画像取得装置。 The control unit calculates an intensity correction distribution based on the intensity distribution of the second light measured during the scanning period related to generation of the intensity distribution of the measurement target light, and based on the calculated intensity correction distribution The image acquisition device according to claim 2, wherein the image is generated by correcting an intensity distribution of the measurement target light.
  8.  前記制御部は、前記測定対象光の強度分布の生成に係る前記走査の期間中に測定された前記第2の光の強度分布に対してノイズ除去処理を施し、当該ノイズ除去処理が施された当該第2の光の強度分布に基づき、前記第1の光の強度の制御と、測定された前記測定対象光の強度分布の補正との、少なくともいずれかを実行する、請求項2に記載の画像取得装置。 The control unit performs a noise removal process on the intensity distribution of the second light measured during the scanning period related to the generation of the intensity distribution of the measurement target light, and the noise removal process is performed 3. The control unit according to claim 2, wherein at least one of control of the intensity of the first light and correction of the measured intensity distribution of the measurement target light is executed based on the intensity distribution of the second light. Image acquisition device.
  9.  前記制御部は、前記測定対象光の強度分布に対してノイズ除去処理を施し、当該ノイズ除去処理が施された当該測定対象光の強度分布に基づき、前記第1の光の強度の制御と、測定された前記測定対象光の強度分布の補正との、少なくともいずれかを実行する、請求項8に記載の画像取得装置。 The control unit performs a noise removal process on the intensity distribution of the measurement target light, and controls the intensity of the first light based on the intensity distribution of the measurement target light subjected to the noise removal process; The image acquisition device according to claim 8, wherein at least one of the measured intensity distribution correction of the measurement target light is executed.
  10.  前記制御部は、前記第2の光の強度分布に対するノイズ除去処理と、前記測定対象光の強度分布に対するノイズ除去処理とを、異なる方式で実行する、請求項9に記載の画像取得装置。 The image acquisition device according to claim 9, wherein the control unit executes a noise removal process for the intensity distribution of the second light and a noise removal process for the intensity distribution of the measurement target light by different methods.
  11.  前記制御部は、前記第2の光の強度分布に対して画素単位のメディアンフィルタを適用することでノイズを除去し、前記測定対象光の強度分布に対して周波数フィルタを適用することでノイズを除去する、請求項10に記載の画像取得装置。 The control unit removes noise by applying a pixel-based median filter to the intensity distribution of the second light, and applies noise to the intensity distribution of the measurement target light by applying a frequency filter. The image acquisition device according to claim 10, wherein the image acquisition device is removed.
  12.  前記制御部は、前記測定対象光の強度分布の生成に係る前記走査の期間中に測定された前記第2の光の強度分布を示す情報を、当該測定対象光の強度分布に基づき生成された前記画像に関連付ける、請求項2に記載の画像取得装置。 The control unit generates information indicating the intensity distribution of the second light measured during the scanning period related to generation of the intensity distribution of the measurement target light based on the intensity distribution of the measurement target light. The image acquisition apparatus according to claim 2, wherein the image acquisition apparatus is associated with the image.
  13.  前記制御部は、前記測定対象光の強度分布の生成に係る前記走査の期間中に測定された前記第2の光の強度分布を、当該走査の内容を示す制御情報に基づき二次元化し、二次元化された当該第2の光の強度分布を示す情報を、当該測定対象光の強度分布に基づき生成された前記画像に関連付ける、請求項12に記載の画像取得装置。 The control unit converts the intensity distribution of the second light measured during the scanning period related to generation of the intensity distribution of the measurement target light into two dimensions based on control information indicating the content of the scanning, The image acquisition apparatus according to claim 12, wherein information indicating the dimensioned distribution of the second light intensity is associated with the image generated based on the intensity distribution of the measurement target light.
  14.  前記光源は、前記レーザー光の波長を制御可能に構成されており、
     前記制御部は、測定された前記測定対象光の強度分布に基づき、前記レーザー光の波長を制御する、請求項1に記載の画像取得装置。
    The light source is configured to be able to control the wavelength of the laser light,
    The image acquisition apparatus according to claim 1, wherein the control unit controls the wavelength of the laser light based on the measured intensity distribution of the measurement target light.
  15.  同一筐体内に設けられた光源から出射されたレーザー光によりサンプルを走査し、当該レーザー光を受けて前記サンプルから生じる測定対象光の強度を測定することと、
     プロセッサが、測定された前記測定対象光の強度分布に基づき、当該サンプルの画像を生成することと、
     前記光源から出射されたレーザー光の強度を測定することと、
     測定された当該レーザー光の強度に基づき、前記光源から出射されるレーザー光の強度の制御と、測定された前記測定対象光の強度分布の補正との、少なくともいずれかを実行することと、
     を含む画像取得方法。
     
    Scanning a sample with a laser beam emitted from a light source provided in the same housing, receiving the laser beam, and measuring the intensity of light to be measured generated from the sample;
    A processor generates an image of the sample based on the measured intensity distribution of the measurement target light;
    Measuring the intensity of the laser light emitted from the light source;
    Based on the measured intensity of the laser light, performing at least one of control of the intensity of the laser light emitted from the light source and correction of the measured intensity distribution of the measurement target light;
    An image acquisition method including:
PCT/JP2014/078520 2013-12-10 2014-10-27 Image acquisition device and image acquisition method WO2015087629A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013255065 2013-12-10
JP2013-255065 2013-12-10

Publications (1)

Publication Number Publication Date
WO2015087629A1 true WO2015087629A1 (en) 2015-06-18

Family

ID=53370946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078520 WO2015087629A1 (en) 2013-12-10 2014-10-27 Image acquisition device and image acquisition method

Country Status (1)

Country Link
WO (1) WO2015087629A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292198A (en) * 1995-02-23 1996-11-05 Olympus Optical Co Ltd Confocal scanning optical microscope and measuring method using the microscope
JPH11174332A (en) * 1997-12-11 1999-07-02 Nikon Corp Laser microscope
JP2003195172A (en) * 2001-12-25 2003-07-09 Olympus Optical Co Ltd Scanning laser microscope
JP2004258547A (en) * 2003-02-27 2004-09-16 Olympus Corp Fluorescent microscopic system
JP2005148497A (en) * 2003-11-17 2005-06-09 Olympus Corp Scanning type laser microscope system
JP2007041120A (en) * 2005-08-01 2007-02-15 Keyence Corp Confocal scanning type microscope
JP2008170973A (en) * 2006-12-13 2008-07-24 Olympus Corp Confocal laser microscope
JP2011102970A (en) * 2009-10-16 2011-05-26 Olympus Corp Laser scanning microscope

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292198A (en) * 1995-02-23 1996-11-05 Olympus Optical Co Ltd Confocal scanning optical microscope and measuring method using the microscope
JPH11174332A (en) * 1997-12-11 1999-07-02 Nikon Corp Laser microscope
JP2003195172A (en) * 2001-12-25 2003-07-09 Olympus Optical Co Ltd Scanning laser microscope
JP2004258547A (en) * 2003-02-27 2004-09-16 Olympus Corp Fluorescent microscopic system
JP2005148497A (en) * 2003-11-17 2005-06-09 Olympus Corp Scanning type laser microscope system
JP2007041120A (en) * 2005-08-01 2007-02-15 Keyence Corp Confocal scanning type microscope
JP2008170973A (en) * 2006-12-13 2008-07-24 Olympus Corp Confocal laser microscope
JP2011102970A (en) * 2009-10-16 2011-05-26 Olympus Corp Laser scanning microscope

Similar Documents

Publication Publication Date Title
US8233039B2 (en) Microscope image pickup system
US20110226965A1 (en) Increased resolution microscopy
US10718715B2 (en) Microscopy system, microscopy method, and computer-readable storage medium
JP5814709B2 (en) Time-lapse observation method and time-lapse observation apparatus used therefor
US10753871B2 (en) Information processing device, image acquisition system, information processing method, and image information acquisition method
US11143854B2 (en) Method for imaging a sample using a fluorescence microscope with stimulated emission depletion
US20130070054A1 (en) Image processing apparatus, fluorescence microscope apparatus, and image processing program
US10416427B2 (en) Scan-based imaging with variable scan speed using predictions of region-of-interest positions
RU2747129C1 (en) Method and apparatus for image reconstruction and apparatus for image generation in microscope
JP2015103217A (en) Image processing device and image processing method
US9632300B2 (en) Image processing apparatus, microscope system, image processing method, and computer-readable recording medium
JP2014523545A (en) Microscope system and method for in vivo imaging
US11061215B2 (en) Microscope system
WO2018087820A1 (en) Image group generating device, spherical aberration correcting device, microscope, program, and method for correcting spherical aberration
WO2015087629A1 (en) Image acquisition device and image acquisition method
US20210318244A1 (en) Spectroscopic imaging apparatus and fluorescence observation apparatus
JP2015114420A (en) Image acquisition device and image acquisition method
JP6248491B2 (en) Imaging apparatus control apparatus, imaging apparatus, imaging method, imaging program, storage medium, and microscope apparatus
WO2013005765A1 (en) Microscope device
JP2011112780A (en) Scanning-type microscope
JP4844157B2 (en) Scanning microscope
JP5562582B2 (en) Fluorescence observation equipment
JP2006171028A (en) Laser scanning microscope and sensitivity setting method for photodetector
JP4468642B2 (en) Confocal laser scanning microscope apparatus and sample information recording method
JP6257294B2 (en) Microscope equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP