WO2015087569A1 - Liquid rapid cooling device - Google Patents

Liquid rapid cooling device Download PDF

Info

Publication number
WO2015087569A1
WO2015087569A1 PCT/JP2014/067338 JP2014067338W WO2015087569A1 WO 2015087569 A1 WO2015087569 A1 WO 2015087569A1 JP 2014067338 W JP2014067338 W JP 2014067338W WO 2015087569 A1 WO2015087569 A1 WO 2015087569A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
wall
cooling pipe
gap
cooling
Prior art date
Application number
PCT/JP2014/067338
Other languages
French (fr)
Japanese (ja)
Inventor
洋司 細野
善典 佐藤
小林 隆秀
Original Assignee
日本軽金属株式会社
アサヒビール株式会社
株式会社テックスイージー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社, アサヒビール株式会社, 株式会社テックスイージー filed Critical 日本軽金属株式会社
Publication of WO2015087569A1 publication Critical patent/WO2015087569A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/06Tubular elements of cross-section which is non-circular crimped or corrugated in cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/0857Cooling arrangements
    • B67D1/0858Cooling arrangements using compression systems
    • B67D1/0861Cooling arrangements using compression systems the evaporator acting through an intermediate heat transfer means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/0857Cooling arrangements
    • B67D1/0858Cooling arrangements using compression systems
    • B67D1/0861Cooling arrangements using compression systems the evaporator acting through an intermediate heat transfer means
    • B67D1/0865Cooling arrangements using compression systems the evaporator acting through an intermediate heat transfer means by circulating a cooling fluid along beverage supply lines, e.g. pythons
    • B67D1/0867Cooling arrangements using compression systems the evaporator acting through an intermediate heat transfer means by circulating a cooling fluid along beverage supply lines, e.g. pythons the cooling fluid being a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/14Apparatus for shaping or finishing ice pieces, e.g. ice presses
    • F25C5/142Apparatus for shaping or finishing ice pieces, e.g. ice presses extrusion of ice crystals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • F28F13/125Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation by stirring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F5/00Elements specially adapted for movement
    • F28F5/02Rotary drums or rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/0003Apparatus or devices for dispensing beverages on draught the beverage being a single liquid
    • B67D1/0004Apparatus or devices for dispensing beverages on draught the beverage being a single liquid the beverage being stored in a container, e.g. bottle, cartridge, bag-in-box, bowl
    • B67D1/0005Apparatus or devices for dispensing beverages on draught the beverage being a single liquid the beverage being stored in a container, e.g. bottle, cartridge, bag-in-box, bowl the apparatus comprising means for automatically controlling the amount to be dispensed
    • B67D1/0008Apparatus or devices for dispensing beverages on draught the beverage being a single liquid the beverage being stored in a container, e.g. bottle, cartridge, bag-in-box, bowl the apparatus comprising means for automatically controlling the amount to be dispensed based on weighing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/0857Cooling arrangements
    • B67D1/0869Cooling arrangements using solid state elements, e.g. Peltier cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/0872Aesthetics, advertising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D2210/00Indexing scheme relating to aspects and details of apparatus or devices for dispensing beverages on draught or for controlling flow of liquids under gravity from storage containers for dispensing purposes
    • B67D2210/00028Constructional details
    • B67D2210/00099Temperature control
    • B67D2210/00104Cooling only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0042Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for foodstuffs

Definitions

  • the present invention relates to a liquid quenching apparatus capable of pouring out at least a part of the liquid in a frozen state.
  • Patent Document 1 discloses a frozen dessert making machine having a cooling cylinder that cools food and a spiral stirring blade that scrapes and stirs the frozen food on the surface of the cooling pipe.
  • Patent Document 1 since the frozen food is stored in the tank, there is a possibility that the freshness is lowered at the time when it is poured out from the tank. For this reason, the aroma etc. may have deteriorated at the time of food provision.
  • This invention is made in view of said subject, Comprising: It aims at providing the liquid quenching apparatus which can pour out the frozen liquid in a fresh state.
  • a liquid quenching apparatus includes a cylindrical cooling pipe that can cool an outer wall, and a cylindrical cooling pipe that covers the cooling pipe and can rotate around a rotation axis. And a liquid introduction path capable of introducing a liquid into a gap between the outer wall of the cooling pipe and the inner wall of the cladding pipe, and the surface temperature of the outer wall of the cooling pipe has a freezing point of the liquid Cooled below, the cladding tube has a spiral convex portion on the inner wall.
  • the liquid introduced into the gap comes into contact with the convex portion and can be gently conveyed along the convex portion.
  • the liquid freezes and adheres to the outer wall of the cooling pipe by contacting the cooling pipe while being gently conveyed. Further, since the cladding tube can rotate, the liquid adhering to the outer wall of the cooling tube is scraped off and conveyed by the convex portion. Then, the frozen liquid is poured into the container. In this way, the liquid quenching apparatus can freeze the liquid immediately before pouring into the container. Therefore, the liquid quenching apparatus according to the present invention can dispense the frozen liquid in a fresh state.
  • one end of the liquid introduction path is disposed at one end of the gap, and the other end of the gap is disposed below the one end in the vertical direction. It is preferable.
  • a weight can be utilized as force for conveying the frozen liquid. Therefore, the liquid quenching apparatus according to the present invention can more efficiently pour the frozen liquid into the container.
  • the convex portion is provided from one end to the other end in the rotation axis direction in a portion of the inner wall of the cladding tube that faces the outer wall of the cooling tube.
  • the portion where the inner wall of the cladding tube and the outer wall of the cooling tube face each other is a portion where the width is relatively narrow and the liquid is likely to freeze. If the convex portion is provided partway along the rotation axis in the portion of the inner wall of the cladding tube that faces the outer wall of the cooling tube, the frozen liquid may remain in the portion where the convex portion is interrupted and may not be discharged. .
  • the convex portion is provided from one end to the other end of the portion where the inner wall of the cladding tube and the outer wall of the cooling tube face each other. Can be transported to the outside. For this reason, the liquid quenching apparatus according to the present invention can suppress a situation in which the frozen liquid accumulates in the middle of the gap and is not discharged.
  • the cladding tube is preferably transparent or translucent.
  • the operator can visually recognize the gap from the outside.
  • the liquid quenching apparatus according to the present invention can make it easy to find a location where a failure occurs during an inspection such as when a failure occurs.
  • the operator can visually recognize a series of states in which the liquid is introduced into the gap, freezes, is scraped off by the spiral convex portion, and is conveyed downward. It is highly possible that the liquid is frozen in an instant and transported by the spiral convex portion is unusual for the operator. Therefore, the liquid quenching apparatus according to the present invention can enhance the palatability by showing a state of pouring the liquid.
  • the liquid quenching apparatus can shorten the time until the liquid freezes in the gap. Therefore, the liquid quenching apparatus according to the present invention can more reliably freeze the liquid in the gap.
  • FIG. 1 is a perspective view of a liquid quenching apparatus according to the present embodiment.
  • FIG. 2 is a schematic diagram schematically showing the A-A ′ cross section in FIG. 1.
  • FIG. 3 is an explanatory diagram illustrating a configuration for rotating the cladding tube.
  • FIG. 4 is a cross-sectional view when the cladding tube is cut along a plane including the rotation axis.
  • FIG. 5 is an enlarged view of a gap formed between the outer wall of the cooling pipe and the inner wall of the cladding pipe in FIG.
  • FIG. 6 is a schematic diagram illustrating the configuration of the control unit.
  • FIG. 7 is a flowchart of a method for dispensing frozen liquid using a liquid quenching apparatus.
  • FIG. 7 is a flowchart of a method for dispensing frozen liquid using a liquid quenching apparatus.
  • FIG. 8 is a schematic diagram schematically illustrating the configuration of the liquid quenching apparatus according to the first modification.
  • FIG. 9 is a schematic diagram schematically showing a cross section of the liquid quenching apparatus according to the second modification.
  • FIG. 10 is an explanatory diagram illustrating the shape of the inner cylinder according to the second modification.
  • FIG. 1 is a perspective view of a liquid quenching apparatus according to the present embodiment.
  • FIG. 2 is a schematic diagram schematically showing the AA ′ cross section in FIG.
  • FIG. 3 is an explanatory diagram illustrating a configuration for rotating the cladding tube.
  • FIG. 4 is a cross-sectional view when the cladding tube is cut along a plane including the rotation axis.
  • FIG. 5 is an enlarged view of a gap formed between the outer wall of the cooling pipe and the inner wall of the cladding pipe in FIG.
  • summary of the liquid quenching apparatus 1 which concerns on this embodiment is demonstrated using FIGS.
  • the direction orthogonal to the rotation axis Zr is simply referred to as the radial direction.
  • the liquid quenching apparatus 1 is an apparatus for pouring an alcoholic beverage in a frozen state, for example.
  • the liquid quenching apparatus 1 includes a housing 100 and a container holding unit 101.
  • a container 91 is installed on the upper surface of the container holding unit 101, and an alcoholic beverage in a frozen state is supplied into the container 91.
  • the container holding unit 101 has a weight scale 57 inside.
  • the weight scale 57 can measure the weight of the container 91 placed on the upper surface of the container holding unit 101 and the poured alcoholic beverage.
  • the weight scale 57 is a strain gauge, for example.
  • a strain gauge is a sensor that can detect, as an electrical signal, strain generated by deformation when a load is applied.
  • the target to be poured out by the liquid quenching apparatus 1 is not limited to alcoholic drinks, and may be water, non-alcoholic drinks, or liquid foods such as juice for noodle dishes or dressings. May be.
  • the liquid quenching apparatus 1 includes a cooling pipe 31.
  • the cooling pipe 31 is a cylindrical member that can cool the outer wall.
  • the cooling pipe 31 has a cylindrical shape having end surfaces in the vertical direction, that is, a cylindrical shape having an axial direction in the vertical direction.
  • the cooling pipe 31 is made of stainless steel.
  • the cooling pipe 31 has a cap 32 on the upper end surface, and the upper end surface is closed.
  • the cooling pipe 31 has a bottom surface 31b on the lower end surface, and the lower end surface is closed.
  • the cooling pipe 31 is fixed to the housing 100 by, for example, joining a cap 32 to a bracket 36 protruding from the outer wall of the housing 100 with a screw or the like.
  • the cooling pipe 31 includes a temperature sensor 59 on the inner wall, for example.
  • the temperature sensor 59 can measure the surface temperature of the inner wall of the cooling pipe 31.
  • the cooling pipe 31 is made of stainless steel, which is a metal, the surface temperature of the inner wall of the cooling pipe 31 is substantially equal to or has a predetermined correlation with the surface temperature of the outer wall of the cooling pipe 31. In the following description, the surface temperature of the outer wall of the cooling pipe 31 and the surface temperature of the inner wall of the cooling pipe 31 are appropriately described as the surface temperature of the cooling pipe 31.
  • the liquid quenching apparatus 1 includes a cladding tube 21.
  • the cladding tube 21 is a cylindrical member that covers the cooling tube 31 and can rotate about the rotation axis Zr.
  • the cladding tube 21 has a cylindrical shape having end faces in the vertical direction, that is, a cylindrical shape having an axial direction in the vertical direction.
  • the cladding tube 21 is made of polycarbonate and is transparent.
  • the inner diameter of the cladding tube 21 is larger than the outer diameter of the cooling tube 31.
  • the cladding tube 21 may be formed of a light-transmitting material instead of being transparent, or may be formed of an opaque material such as a metal.
  • the cladding tube 21 has a spiral convex portion 22 on the inner wall.
  • the convex portion 22 has a spiral shape with a lower right shoulder when viewed from the inside of the cladding tube 21.
  • the convex portion 22 is formed integrally with the inner wall of the cladding tube 21.
  • the radial height L2 of the convex portion 22 is smaller than the width L1 of the gap G formed between the outer wall of the cooling pipe 31 and the inner wall of the cladding pipe 21.
  • the radial height L2 of the convex portion 22 is preferably 50% or more and less than 100% of the width L1 of the gap G.
  • the height L2 is more preferably 95% or more and less than 100% of the width L1. More specifically, in the present embodiment, the radial height L2 of the convex portion 22 is 5 mm, and the width L1 of the gap G is 5.1 mm or more and 5, 2 mm or less. Further, as shown in FIG. 2, the convex portion 22 is provided from one end to the other end in the direction of the rotation axis Zr in the portion of the inner wall of the cladding tube 21 that faces the outer wall of the cooling tube 31. A plurality of convex portions 22 may be formed on the inner wall of the cladding tube 21. Further, the convex portion 22 may have a spiral shape with a lower left shoulder when viewed from the inside of the cladding tube 21, and in this case, the rotation direction of the cladding tube 21 described later is reversed.
  • the cladding tube 21 includes a gear 23 that is fixed to the upper end portion of the outer wall, and a holding ring 24 that is disposed immediately below the gear 23.
  • the gear 23 is an annular member whose inner diameter is substantially equal to the outer diameter of the cladding tube 21, and is fixed to the cladding tube 21 with an adhesive or the like, for example.
  • the holding ring 24 is, for example, an annular member having an inner diameter larger than the outer diameter of the cladding tube 21 and is fixed to the bracket 26 protruding from the outer wall of the housing 100. Thereby, the cladding tube 21 is supported by the housing 100 via the gear 23, the holding ring 24 and the bracket 26.
  • the gear 23 may be formed integrally with the cladding tube 21.
  • the inner diameter of the cladding tube 21 is larger than the outer diameter of the cooling tube 31, a gap G is generated between the outer wall of the cooling tube 31 and the inner wall of the cladding tube 21 as shown in FIG.
  • the first end G1 that is one end of the gap G is closed by the seal member 33.
  • the seal member 33 is, for example, an O-ring, and prevents foreign matter from entering from the first end G1 of the gap G.
  • the cooling pipe 31 and the cladding pipe 21 have a cylindrical shape having an axial direction in the vertical direction, the second end G2 that is the other end of the gap G is more than the first end G1. Is also arranged below the vertical direction. Even if the cooling pipe 31 and the cladding pipe 21 are cylindrical having an axial direction in an angle with respect to the vertical direction, the second end G2 is more vertical than the first end G1. It will be placed below the direction.
  • the liquid quenching apparatus 1 has an attachment 21 a on the lower side of the cladding tube 21.
  • the attachment 21 a is a cylindrical member as a whole, and includes an attachment part 211, a throttle part 212, and a rectifying part 213.
  • the attachment portion 211 is, for example, an annular member having an inner diameter larger than the outer diameter of the cladding tube 21 and covers a part of the outer wall of the cladding tube 21.
  • the attachment portion 211 is fixed to the bracket 28 protruding from the outer wall of the housing 100. Thereby, attachment 21a is supported by case 100 so that a crevice may be formed between cladding tubes 21. Thereby, even when the cladding tube 21 rotates, the attachment 21a does not rotate.
  • the throttle part 212 is a cylindrical member whose upper end is joined to the attachment part 211.
  • the inner diameter of the throttle portion 212 decreases from the upper end toward the lower end.
  • the rectifying unit 213 is a cylindrical member whose upper end is joined to the lower end of the throttle unit 212.
  • the rectifying unit 213 has a constant inner diameter, and a lower end thereof opens toward the outside of the liquid quenching apparatus 1.
  • the attachment 21a may not be fixed to the housing 100, and may be fixed to the cladding tube 21, for example.
  • the attachment 21 a has a mounting portion 211, which is a female screw member having a thread groove on the inner wall, on the male screw portion provided at the lower end portion of the outer wall of the cladding tube 21. What is necessary is just to fix to the cladding tube 21 by screwing.
  • the attachment portion 211 is formed of synthetic rubber, and the attachment 21 a is fixed to the cladding tube 21 by the frictional force between the inner wall of the attachment portion 211 and the outer wall of the cladding tube 21. May be.
  • the cladding tube 21 can rotate about the rotation axis Zr by the driving force of the motor 41.
  • the motor 41 is fixed inside the housing 100 and has a shaft 42.
  • the shaft 42 is joined to the gear 43.
  • the teeth 43 g provided on the side surface of the gear 43 mesh with the teeth 23 g provided on the side surface of the gear 23.
  • the cladding tube 21 rotates about the rotation axis Zr via the shaft 42, the gear 43 and the gear 23.
  • the cladding tube 21 is rotated counterclockwise as viewed from above in the direction of the rotation axis Zr.
  • the convex portion 22 rotates as the cladding tube 21.
  • the convex portion 22 rotates in the same direction as the rotation direction of the cladding tube 21 and rotates at the same rotation speed as the rotation speed of the cladding tube 21.
  • the convex portion 22 has a spiral shape with a lower right shoulder when viewed from the inside of the cladding tube 21. For this reason, when an object is present at an arbitrary position in the gap G, when the cladding tube 21 rotates counterclockwise as viewed from above in the direction of the rotation axis Zr, the object Is pushed downward and gradually conveyed downward. As will be described later, the object in the present embodiment is a liquid frozen by the cooling pipe 31.
  • the cladding tube 21 can rotate smoothly.
  • the cladding tube 21 has a guide ring 25 at a position below the outer wall.
  • the guide ring 25 is an annular member having an inner diameter substantially equal to the outer diameter of the cladding tube 21 and is fixed to the cladding tube 21 with an adhesive or the like, for example.
  • the guide ring 25 is fitted in a groove formed between the two guide plates 27 protruding from the housing 100. Thereby, the cladding tube 21 can rotate more stably.
  • the liquid quenching apparatus 1 has a refrigerant introduction path 71 and a refrigerant discharge path 72.
  • the refrigerant introduction path 71 is a pipe for supplying the refrigerant to the inside of the cooling pipe 31, and is formed of, for example, stainless steel.
  • the refrigerant discharge path 72 is a pipe for discharging the refrigerant from the inside of the cooling pipe 31 to the outside, and is formed of, for example, stainless steel.
  • the refrigerant in the present embodiment is an aqueous solution with a freezing point lowered, for example, salt water that is an aqueous solution of a natural salt.
  • the refrigerant introduction path 71 passes through the bracket 36 and the cap 32 and reaches the vicinity of the bottom surface 31 b inside the cooling pipe 31.
  • the refrigerant introduction path 71 is connected to the refrigerant discharge path 72 via a connection path 74 near the bottom surface 31 b inside the cooling pipe 31.
  • the refrigerant discharge path 72 passes through the cap 32 and the bracket 36 from the vicinity of the bottom surface 31 b inside the cooling pipe 31 and reaches the outside of the cooling pipe 31.
  • the refrigerant may be a sodium chloride aqueous solution, a potassium chloride aqueous solution, an ammonium chloride aqueous solution, or the like.
  • the refrigerant may be a gas or a liquid other than an aqueous solution of a metal salt.
  • the refrigerant introduction path 71 and the refrigerant discharge path 72 have a reinforcing member 34 protruding from the outer wall.
  • the end of the reinforcing member 34 is fixed to the inner wall of the cooling pipe 31 by welding or the like, for example.
  • the connecting path 74 has a reinforcing member 35 protruding from the outer wall.
  • the end of the reinforcing member 35 is fixed to the bottom 31b of the cooling pipe 31, for example, by welding or the like.
  • the liquid quenching apparatus 1 has a cooling device 56 for cooling the refrigerant.
  • the cooling device 56 includes a compressor, for example, and can cool the refrigerant.
  • the cooling device 56 can cool the refrigerant in a range of ⁇ 50 ° C. or higher and ⁇ 10 ° C. or lower.
  • the temperature of the refrigerant can be changed according to the freezing point of the liquid introduced into the gap G described later.
  • the refrigerant introduction path 71 and the refrigerant discharge path 72 are connected to the cooling device 56.
  • the refrigerant cooled by the cooling device 56 is carried to the inside of the cooling pipe 31 by the refrigerant introduction path 71 and cools the cooling pipe 31 by taking heat of the cooling pipe 31.
  • the refrigerant that has received heat from the cooling pipe 31 is carried to the outside of the cooling pipe 31 by the refrigerant discharge path 72 and returned to the cooling device 56.
  • the refrigerant circulates through the refrigerant introduction path 71, the refrigerant discharge path 72, and the cooling device 56, whereby the surface temperature of the outer wall of the cooling pipe 31 is cooled below the freezing point of the liquid introduced into the gap G described later.
  • the cooling device 56 may not necessarily cool the refrigerant using a compressor, may cool the refrigerant using a Peltier element, or may cool the refrigerant using liquid nitrogen. Further, the cooling device 56 may be able to cool the temperature of the refrigerant to a temperature outside the range, not limited to ⁇ 50 ° C. or more and ⁇ 10 ° C. or less.
  • the refrigerant introduction path 71 and the refrigerant discharge path 72 are covered with a heat insulating material at a portion in contact with the air outside the liquid quenching apparatus 1.
  • the liquid quenching apparatus 1 includes a liquid tank 53 that stores a liquid and a liquid introduction path 73 that can introduce the liquid into the gap G.
  • the liquid tank 53 is disposed outside the housing 100 and stores alcoholic beverages.
  • the liquid introduction path 73 is, for example, a pipe formed of silicone.
  • One end of the liquid introduction path 73 is disposed at a first end G1 that is one end of the gap G.
  • the liquid introduction path 73 is disposed so as to penetrate the bracket 36 and the seal member 33 and have one end positioned at the first end G1. Since the liquid introduced into the gap G from the liquid introduction path 73 comes into contact with the convex portion 22, it gradually falls along the convex portion 22.
  • the end portion on the first end portion G1 side of the liquid introduction path 73 is open toward the inner wall of the cladding tube 21. Therefore, the liquid introduced into the gap G from the liquid introduction path 73 is likely to come into contact with the convex portion 22, and is more likely to descend along the convex portion 22.
  • the liquid quenching apparatus 1 includes a valve 55, a precooling apparatus 54, and a liquid tank connecting portion 75.
  • the other end of the liquid introduction path 73 is connected to one end of the liquid tank connecting portion 75 via the valve 55 and the precooling device 54.
  • the liquid tank connecting portion 75 is disposed on the outer wall of the housing 100 as shown in FIG.
  • the other end of the liquid tank connecting portion 75 is connected to the liquid tank 53 by a liquid supply path 76.
  • the end of the liquid supply path 76 on the liquid tank 53 side is disposed in the liquid inside the liquid tank 53.
  • the valve 55 is, for example, a ball valve equipped with a stepping motor, and the flow rate of the liquid can be adjusted by adjusting the valve opening degree by the stepping motor.
  • the pre-cooling device 54 includes, for example, a compressor, and can cool the liquid stored in the liquid tank 53 before sending it to the gap G.
  • the liquid quenching device 1 is preferably provided with the precooling device 54, but may not include the precooling device 54.
  • the liquid tank 53 is connected to a pressure cylinder 58 by a gas supply path 77.
  • the pressurizing cylinder 58 contains carbon dioxide inside at a high pressure, and can send carbon dioxide into the liquid tank 53 via the gas supply path 77.
  • the inside of the liquid tank 53 is a sealed space except for a connection portion with other members. For this reason, when carbon dioxide is fed into the liquid tank 53 from the pressure cylinder 58, the internal pressure of the liquid tank 53 increases. When the internal pressure of the liquid tank 53 increases, the liquid level of the liquid stored in the liquid tank 53 is pushed, so that the liquid is sent out of the liquid tank 53 via the liquid supply path 76.
  • the liquid is sent to the pre-cooling device 54 through the liquid tank connecting portion 75.
  • the liquid is cooled to a predetermined temperature by the precooling device 54 and then introduced into the gap G at a flow rate corresponding to the valve opening degree of the valve 55.
  • the gas built in the pressurizing cylinder 58 may be other gas instead of carbon dioxide.
  • the method of sending the liquid stored in the liquid tank 53 to the outside may not be a method using the pressurizing cylinder 58, for example, a method of pumping up and sending the liquid by a pump connected to the liquid tank 53. Also good.
  • the cooling pipe 31 When the liquid in the liquid tank 53 is introduced into the gap G, the cooling pipe 31 is cooled by the refrigerant, and the cladding pipe 21 is rotated by the motor 41.
  • the surface temperature of the cooling pipe 31 is below the freezing point of the liquid introduced into the gap G.
  • the liquid introduced into the gap G freezes by contacting the outer wall of the cooling pipe 31.
  • the liquid introduced into the gap G freezes up to a half position in the entire axial length of the cooling pipe 31.
  • the frozen liquid adheres to the outer wall of the cooling pipe 31.
  • the spiral convex portion 22 provided on the inner wall of the cladding tube 21 rotates.
  • the spiral convex portion 22 scrapes and conveys the liquid adhering to the outer wall of the cooling pipe 31 downward.
  • the liquid transported downward is discharged from the second end G2 of the gap G to the attachment 21a side and is rectified by the attachment 21a. Thereafter, the frozen liquid falls from the lower end of the attachment 21 a and is poured out into the container 91.
  • the cooling pipe 31 and the cladding pipe 21 have a cylindrical shape having an axial direction in the direction that makes an angle with respect to the vertical direction or a cylindrical shape having an axial direction in the horizontal direction, the liquid introduced into the gap G is gravity. Therefore, there is a possibility that the gap G is biased to the lower part in the vertical direction.
  • the cooling pipe 31 and the cladding pipe 21 have a cylindrical shape having an axial direction in the vertical direction, and the liquid introduced into the gap G gradually moves along the spiral convex portion 22. To descend. This makes it difficult for the liquid introduced into the gap G to partially bias in the gap G. For this reason, the liquid quenching apparatus 1 can freeze the liquid introduced into the gap G quickly and uniformly.
  • the frozen liquid may be difficult to drop from the lower end of the attachment 21a by being pressed against the inner wall of the attachment 21a by centrifugal force.
  • the attachment 21a when the cladding tube 21 is rotated by the motor 41, the attachment 21a does not rotate. Thereby, the frozen liquid does not receive a centrifugal force inside the attachment 21a. For this reason, the liquid quenching apparatus 1 can make it easy for the frozen liquid to fall from the lower end of the attachment 21a.
  • the convex portion 22 can more reliably scrape the liquid adhering to the outer wall of the cooling pipe 31.
  • the radial height L2 of the convex portion 22 is 5 mm
  • the width L1 of the gap G is 5.1 mm or more and 5, 2 mm or less.
  • the liquid quenching apparatus 1 can change the degree of icing of the liquid by adjusting the valve opening degree of the valve 55 and adjusting the flow rate of the liquid introduced into the gap G. For example, when the valve opening degree of the valve 55 increases, the flow rate of the liquid introduced into the gap G increases, so that the liquid is relatively difficult to freeze. For this reason, the frozen liquid when poured out into the container 91 is in a relatively soft state. On the other hand, when the valve opening degree of the valve 55 becomes small, the flow rate of the liquid introduced into the gap G decreases, so that the liquid is relatively easily frozen. For this reason, the frozen liquid when poured out into the container 91 is in a relatively hard state.
  • the liquid quenching apparatus 1 fixes the flow rate of the liquid introduced into the gap G by keeping the valve opening of the valve 55 constant, and controls the flow rate and temperature of the refrigerant, thereby reducing the degree of icing of the liquid. You may change it.
  • the degree of icing of the liquid may be adjusted by controlling the flow rate and temperature of the refrigerant circulated through the refrigerant introduction path 71 and the refrigerant discharge path 72.
  • the liquid quenching apparatus 1 can finely adjust the degree of icing of the liquid.
  • the liquid quenching apparatus 1 controls the flow rate of the liquid introduced into the gap G by adjusting the valve opening degree of the valve 55, and controls both the flow rate of the refrigerant and the temperature of the refrigerant. May be changed.
  • FIG. 6 is a schematic diagram illustrating the configuration of the control unit.
  • the liquid quenching apparatus 1 includes a control unit 51.
  • the control unit 51 is, for example, a PLC (Programmable Logic Controller).
  • the PLC is a control device that changes an output signal to be output in accordance with a change in an input signal that is input.
  • the control unit 51 includes an input circuit 51a, a central processing unit (CPU) 51b that is a central processing unit, a memory 51c that is a storage device, and an output circuit 51d. Conditions for changing the output signal are stored as a program in the memory 51c.
  • the program stored in the memory 51c is described by a ladder diagram that symbolizes an electric circuit diagram, for example.
  • the memory 51c stores a set value of the valve opening of the valve 55, a set value of the weight of the liquid poured into the container 91 as a threshold value, and a set value of the surface temperature of the cooling pipe 31. be able to.
  • the CPU 51b compares the input signal with the threshold value according to the program stored in the memory 51c, and changes the output signal according to the comparison result.
  • the control unit 51 can change the condition for changing the output signal by changing the program or setting value stored in the memory 51c.
  • the set value of the valve opening of the valve 55 and the set value of the weight of the liquid dispensed into the container 91 stored in the memory 51c can be adjusted by the valve setting unit 62 and the weight setting unit 63 connected to the control unit 51. It has become.
  • the valve setting unit 62 is arranged on the outer wall of the housing 100, and displays a display unit 62a in which the valve opening degree of the valve 55 is displayed in numbers, and two push buttons 62b and 62c for moving the numbers up and down. And have.
  • the valve setting unit 62 changes the set value of the valve opening of the valve 55 stored in the memory 51c in accordance with the operation of the push buttons 62b and 62c, and displays the valve opening as a number on the display unit 62a. The operator can be notified of the set value of the valve opening.
  • the weight setting unit 63 is, for example, a dial disposed on the outer wall of the housing 100 as shown in FIG. The weight setting unit 63 can change the set value of the weight of the liquid poured out into the container 91 that is stored in the memory 51c according to the rotation operation.
  • the weight setting unit 63 As the weight setting unit 63 is rotated clockwise, the set value of the weight of the liquid to be poured into the container 91 stored in the memory 51c increases, and the weight setting unit 63 is rotated counterclockwise. The set value of the weight of the liquid poured out into the container 91 stored in the memory 51c becomes smaller.
  • the positions and configurations of the valve setting unit 62 and the weight setting unit 63 are not limited to those described above.
  • the valve setting unit 62 and the weight setting unit 63 may be displayed on a liquid crystal display device with a touch panel.
  • valve setting unit 62 and the weight setting unit 63 are displayed on a liquid crystal display device with a touch panel, a finger or the like touches or comes close to the displayed valve setting unit 62 and the weight setting unit 63, so that the valve 55
  • the set value of the opening and the set value of the weight of the liquid poured out into the container 91 are changed.
  • the control unit 51 is connected to a weight scale 57, a temperature sensor 59, a motor 41, a valve 55, and a cooling device 56.
  • the weight scale 57 can send the measured weight to the control unit 51 as an electrical signal.
  • the temperature sensor 59 can send the measured surface temperature of the cooling pipe 31 to the control unit 51 as an electrical signal.
  • the motor 41 can receive an electric signal from the control unit 51 and can start or stop driving in accordance with the electric signal.
  • the valve 55 receives an electrical signal from the control unit 51, and a stepping motor provided in the valve 55 can be driven to perform an opening / closing operation in accordance with the electrical signal.
  • the electrical signal sent from the control unit 51 to the valve 55 changes according to the set value of the valve opening stored in the memory 51c.
  • the valve 55 can increase or decrease the valve opening according to a change in the electrical signal sent from the control unit 51.
  • the cooling device 56 can receive an electrical signal from the control unit 51 and start or stop cooling.
  • the cooling temperature of the cooling device 56 changes according to the set value of the surface temperature of the cooling pipe 31 stored in the memory 51c.
  • the set value of the surface temperature of the cooling pipe 31 stored in the memory 51c can be changed, for example, by changing a program stored in the memory 51c.
  • the liquid quenching apparatus 1 includes a power switch 60 and an operation switch 61.
  • the control unit 51 is connected to the power switch 60 and the operation switch 61.
  • the power switch 60 and the operation switch 61 are, for example, push buttons.
  • the liquid quenching apparatus 1 is connected to a power source, and when the power switch 60 is pressed, the conduction state with the power source is switched. For example, the liquid quenching apparatus 1 operates the cooling device 56 to cool the refrigerant in the cooling device 56 while the electrical connection with the power source is maintained.
  • the liquid quenching apparatus 1 starts the operation of dispensing the liquid when the operation switch 61 is pressed in a state where the electrical connection with the power source is maintained by the operation of the power switch 60.
  • FIG. 7 is a flowchart of a method for dispensing frozen liquid using a liquid quenching apparatus.
  • the liquid pouring method using the liquid quenching apparatus 1 according to the present embodiment includes a step of starting cooling of the cooling pipe 31 (step S1) and a step of measuring the surface temperature of the cooling pipe 31 using the temperature sensor 59.
  • Step S2 a step of comparing the surface temperature of the cooling pipe 31 and a threshold value (set value of the surface temperature of the cooling pipe 31) (Step S3), and a step of pouring the frozen liquid into the container 91 ( Step S4), the step of measuring the weight of the liquid poured out into the container 91 using the weighing scale 57 (Step S5), the weight of the liquid poured out into the container 91 and the threshold value (poured into the container 91) (Step S6) and a step of stopping the liquid dispensing (step S7).
  • the liquid quenching apparatus 1 can automatically perform steps S1 to S7 when the operation switch 61 is pressed in a state where the electrical connection with the power source is maintained.
  • the liquid quenching apparatus 1 starts cooling the cooling pipe 31 (step S1). Specifically, when the operation switch 61 is pressed, an electrical signal is sent from the control unit 51 to the cooling device 56. Then, the cooling device 56 that has received the electrical signal from the control unit 51 circulates the refrigerant cooled in the cooling device 56 through the refrigerant introduction path 71 and the refrigerant discharge path 72. As the refrigerant circulates, the cooling pipe 31 starts to be cooled.
  • the surface temperature of the cooling pipe 31 is measured using the temperature sensor 59 (step S2).
  • the temperature sensor 59 measures the surface temperature of the cooling pipe 31 at regular intervals, and sends the surface temperature as an electrical signal to the control unit 51.
  • the electrical signal sent to the control unit 51 is sent to the CPU 51b via the input circuit 51a.
  • the CPU 51b compares the surface temperature of the cooling pipe 31 sent as an electric signal with the set value of the surface temperature of the cooling pipe 31 stored in the memory 51c as a threshold value.
  • step S3 when the surface temperature of the cooling pipe 31 sent as an electrical signal to the CPU 51b is equal to or higher than a threshold value (set value of the surface temperature of the cooling pipe 31) (step S3, No), the process returns to step S2, and the temperature The sensor 59 measures the surface temperature of the cooling pipe 31 again. If the surface temperature of the cooling pipe 31 sent as an electrical signal to the CPU 51b is lower than the threshold value (set value of the surface temperature of the cooling pipe 31) (step S3, Yes), the process proceeds to step S4.
  • a threshold value set value of the surface temperature of the cooling pipe 31
  • valve 55 is opened to introduce liquid into the gap G, and then the frozen liquid is poured into the container 91 shown in FIG. 1 (step S4). Specifically, an electric signal is sent from the output circuit 51d of the control unit 51 to the valve 55 and the motor 41, whereby the valve 55 is opened and the motor 41 is driven.
  • the valve 55 is opened, the liquid stored in the liquid tank 53 is introduced into the gap G through the precooling device 54.
  • the liquid introduced into the gap G freezes to contact the outer wall of the cooling pipe 31 and adheres to the outer wall of the cooling pipe 31. Further, since the motor 41 is driven, the cladding tube 21 rotates about the rotation axis Zr.
  • the weight of the liquid poured out into the container 91 is measured using the weight scale 57 (step S5).
  • the weight scale 57 measures the weight of only the container 91 in the steps up to step S5 (for example, step S4) and stores the weight in advance in the memory 51c of the control unit 51.
  • the weigh scale 57 measures the weight of the container 91 and the liquid poured into the container 91 at regular intervals, for example, and sends the weight to the control unit 51 as an electrical signal.
  • the electrical signal sent to the control unit 51 is sent to the CPU 51b via the input circuit 51a.
  • the CPU 51b calculates the difference between the weight sent as an electrical signal and the weight of only the container 91 stored in advance in the memory 51c. The difference is the weight of the liquid poured out into the container 91.
  • step S5 when the weight of the liquid poured into the container 91 calculated in step S5 does not exceed a threshold value (a set value of the weight of the liquid poured into the container 91) (No in step S6), the process proceeds to step S5.
  • the weigh scale 57 again measures the combined weight of the container 91 and the poured liquid. If the weight of the liquid poured into the container 91 calculated in step S5 exceeds a threshold value (set value of the weight of the liquid poured into the container 91) (step S6, Yes), the process goes to step S7. move on.
  • the valve 55 is closed and the discharge of the liquid is stopped by stopping the rotation of the cladding tube 21 (step S7). Specifically, the valve 55 is closed by sending an electric signal from the output circuit 51 d of the control unit 51 to the valve 55.
  • the valve 55 is closed, the liquid stored in the liquid tank 53 is not introduced into the gap G. Then, after a predetermined time required for discharging the frozen liquid remaining in the gap G to the outside, an electric signal is sent from the output circuit 51d of the control unit 51 to the motor 41, so that the driving of the motor 41 is stopped. Then, the rotation of the cladding tube 21 stops.
  • the liquid quenching apparatus 1 includes the cylindrical cooling pipe 31 that can cool the outer wall, and the cylinder that covers the cooling pipe 31 and can rotate around the rotation axis Zr. And a liquid introduction path 73 through which liquid can be introduced into the gap G between the outer wall of the cooling pipe 31 and the inner wall of the cladding pipe 21. Further, the surface temperature of the outer wall of the cooling pipe 31 is cooled below the freezing point of the liquid.
  • the cladding tube 21 has a spiral convex portion 22 on the inner wall.
  • the liquid quenching apparatus 1 can freeze the liquid immediately before pouring into the container 91. Therefore, the liquid quenching apparatus 1 according to the present embodiment can dispense the frozen liquid in a fresh state.
  • one end of the liquid introduction path 73 is disposed at the first end G1 that is one end of the gap G.
  • the second end G2 which is the other end of the gap G, is disposed below the first end G1 in the vertical direction. Therefore, in addition to the pressing force by the convex part 22, weight can be utilized as force for conveying the frozen liquid. Therefore, the liquid quenching apparatus 1 according to the present embodiment can pour the frozen liquid into the container 91 more efficiently.
  • the convex portion 22 is provided from one end to the other end in the direction of the rotation axis Zr in the portion of the inner wall of the cladding tube 21 that faces the outer wall of the cooling tube 31.
  • the portion where the inner wall of the cladding tube 21 and the outer wall of the cooling tube 31 face each other is a portion where the width is relatively narrow and the liquid is likely to freeze. If the convex portion 22 is provided partway along the rotation axis Zr in the portion of the inner wall of the cladding tube 21 that faces the outer wall of the cooling tube 31, the frozen liquid stays and is discharged at the portion where the convex portion 22 is interrupted. There is a possibility of disappearing.
  • the liquid quenching apparatus 1 can convey the frozen liquid more reliably toward the exterior. For this reason, the liquid quenching apparatus 1 can suppress a situation in which the frozen liquid accumulates in the middle of the gap G and is not discharged.
  • the cladding tube 21 is transparent or translucent. Thereby, the operator can visually recognize the gap G from the outside. For this reason, the liquid quenching apparatus 1 can make it easy to find a location where a failure occurs during an inspection such as when a failure occurs. Further, the operator can visually recognize a series of states in which the liquid is introduced into the gap G, freezes, and is scraped off by the spiral convex portion 22 and conveyed downward. It is highly likely that the state in which the liquid freezes instantaneously and is conveyed by the spiral convex portion 22 is unusual for the operator. Therefore, the liquid quenching apparatus 1 can improve palatability by showing a mode that liquid is poured out.
  • the liquid quenching apparatus 1 includes a precooling apparatus that can cool the liquid introduced into the gap in advance.
  • a precooling apparatus that can cool the liquid introduced into the gap in advance.
  • the liquid quenching apparatus 1 can open and close the valve 55 according to information sent from the weighing scale 57 by the control unit 51. For this reason, the liquid quenching apparatus 1 can pour out a necessary amount of frozen liquid. Therefore, the liquid quenching apparatus 1 can suppress the amount of wasted liquid.
  • the liquid quenching apparatus 1 may include a cylindrical cover that covers the outer wall of the cladding tube 21 and the attachment 21a. By providing the cover, the liquid quenching apparatus 1 can improve heat insulation and can easily maintain the temperature inside the gap G.
  • the cover is preferably formed of a transparent resin such as polycarbonate. When the cover is transparent, the operator can visually recognize the gap G from the outside through the cover and the cladding tube 21.
  • the cooling pipe 31 and the cladding pipe 21 have a cylindrical shape having an axial direction in the vertical direction, but may have a cylindrical shape having an axial direction in a direction inclined with respect to the vertical direction. However, it may be cylindrical with an axial direction in the horizontal direction. However, as described above, in the case where the cooling pipe 31 and the cladding pipe 21 have a cylindrical shape having an axial direction in the vertical direction or a cylindrical shape having an axial direction in a direction inclined with respect to the vertical direction, the frozen liquid It is desirable in that the weight can be used in addition to the pressing force by the convex portion 22 as a force for conveying the sheet.
  • FIG. 8 is a schematic diagram schematically illustrating the configuration of the liquid quenching apparatus according to the first modification.
  • the liquid quenching apparatus 1A according to Modification 1 is characterized in that the shape of the cooling pipe 31A is different from the cooling pipe 31 of the above-described embodiment. Note that the same components as those described in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the liquid quenching apparatus 1A includes a cooling pipe 31A.
  • the cooling pipe 31A is a cylindrical member having an end face in the vertical direction.
  • the cooling pipe 31A is made of stainless steel.
  • the cooling pipe 31A has a constricted portion 31s whose outer diameter gradually decreases downward at the lower end.
  • the lower end surface of the throttle portion 31s is closed by the bottom portion 31bA.
  • the outer wall of the throttle part 31s faces the inner wall of the throttle part 212 of the attachment 21a.
  • a gap GA is generated between the outer wall of the throttle portion 31s and the inner wall of the throttle portion 212 of the attachment 21a.
  • the upper end of the gap GA is connected to the gap G, and the lower end of the gap GA is connected to the rectifying unit 213.
  • the width of the gap GA is equal to the width of the gap G.
  • the liquid quenching apparatus 1A according to Modification 1 since the internal space of the attachment 21a is large, there is a possibility that a fixed amount of liquid frozen in the internal space will pass through the rectifying unit 213.
  • the liquid quenching apparatus 1A according to Modification 1 has the gap GA, the amount of the frozen liquid that passes through the rectifying unit 213 can be further stabilized. As a result, the frozen liquid is easily poured into the container 91 by a certain amount. Therefore, the liquid quenching apparatus 1 ⁇ / b> A according to the modified example 1 can allow the frozen liquid to be placed in the container 91 without gaps.
  • FIG. 9 is a schematic diagram schematically showing a cross section of the liquid quenching apparatus according to the second modification.
  • FIG. 10 is an explanatory diagram illustrating the shape of the inner cylinder according to the second modification.
  • the liquid quenching apparatus 1B according to Modification 2 is characterized by having an inner cylinder 80 inside the cooling pipe 31.
  • the inner cylinder 80 is made of polycarbonate, for example, and is provided inside the cooling pipe 31.
  • the inner cylinder 80 has a side part 81, a lid part 82, and a bottom part 83. Note that the same components as those described in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the side part 81 has a cylindrical shape whose outer diameter is smaller than the inner diameter of the cooling pipe 31, and has a plurality of through holes 81h on the surface. Thereby, a gap GB is generated between the outer wall of the side portion 81 and the cooling pipe 31.
  • the lid portion 82 is a disk-shaped member whose outer diameter is substantially equal to the inner diameter of the cooling pipe 31, and closes the end portion on the upper side in the vertical direction of the side portion 81.
  • the bottom 83 is a disk-shaped member whose outer diameter is substantially equal to the inner diameter of the cooling pipe 31, and closes the end of the side portion 81 on the lower side in the vertical direction.
  • a support member 84 is provided on the lower surface of the bottom 83 in the vertical direction. The support member 84 supports the inner cylinder 80 in the axial direction by bringing one end into contact with the bottom 83 and the other end into contact with the bottom surface 31 b of the cooling pipe 31.
  • the liquid quenching apparatus 1B has a refrigerant introduction path 71B and a refrigerant discharge path 72B.
  • the refrigerant introduction path 71B is a pipe for supplying the refrigerant to the inside of the inner cylinder 80, and is formed of, for example, stainless steel.
  • the end portion 71Be of the refrigerant introduction path 71B located inside the inner cylinder 80 is open and reaches the vicinity of the bottom 83 as shown in FIG.
  • the refrigerant discharge path 72B is a pipe for discharging the refrigerant from the inside of the inner cylinder 80 to the outside, and is formed of, for example, stainless steel.
  • An end portion 72Be of the refrigerant discharge path 72B located inside the inner cylinder 80 is open and is located near the lid portion 82 as shown in FIG. Note that the positions of the end 71Be and the end 72Be are not limited to the positions described above.
  • the inside of the cooling pipe 31 including the inside of the inner cylinder 80 is filled with the refrigerant.
  • the refrigerant cooled by the cooling device 56 is supplied into the inner cylinder 80 from the end 71Be of the refrigerant introduction path 71B.
  • the refrigerant supplied into the inner cylinder 80 moves to the gap GB through the through hole 81h.
  • the refrigerant that has reached the gap GB takes the heat of the cooling pipe 31 to cool the cooling pipe 31.
  • the refrigerant that has received heat from the cooling pipe 31 returns to the inside of the inner cylinder 80 through the through hole 81h, is carried to the outside of the cooling pipe 31 from the end 72Be of the refrigerant discharge path 72B, and is returned to the cooling device 56.
  • the refrigerant circulates through the refrigerant introduction path 71B, the gap GB, the refrigerant discharge path 72B, and the cooling device 56, so that the surface temperature of the outer wall of the cooling pipe 31 is cooled below the freezing point of the liquid introduced into the gap G. Is done.
  • the cooling pipe 31 can be efficiently cooled. Further, since the refrigerant supplied to the inside of the inner cylinder 80 moves to the gap GB through the through hole 81h having a small cross-sectional area, the flow rate of the refrigerant in the gap GB is increased. Thereby, since the heat transfer coefficient in the gap GB is increased, the liquid quenching apparatus 1B can cool the cooling pipe 31 more efficiently.
  • the end 71Be of the refrigerant introduction path 71B and the end 72Be of the refrigerant discharge path 72B are at the same position in the axial direction, the end of the refrigerant discharged from the end 71Be before heat exchange with the cooling pipe 31 is completed. The possibility of reaching the portion 72Be and being discharged to the outside of the cooling pipe 31 is increased.
  • the end 71Be is located near the bottom 83 and the end 72Be is located near the lid 82, so the end 71Be and the end 72Be are separated from each other. .
  • the liquid quenching apparatus 1 ⁇ / b> B can suppress the possibility that the refrigerant is discharged to the outside of the cooling pipe 31 before exchanging heat with the cooling pipe 31.

Abstract

A liquid rapid cooling device (1) is provided with: a cylindrical cooling pipe (31) that is capable of cooling an outer wall; a cylindrical coat pipe (21), which covers the cooling pipe (31), and which is capable of rotating with a rotation axis (Zr) at the center; and a liquid introducing path (73) that is capable of introducing a liquid into a gap (G) between the outer wall of the cooling pipe (31) and an inner wall of the coat pipe (21). Furthermore, a surface temperature of the outer wall of the cooling pipe (31) is reduced to a temperature equal to or lower than a solidifying point of the liquid. The coat pipe (21) has a spiral protruding section (22) on the inner wall.

Description

液体急冷装置Liquid quenching equipment
 本発明は、液体の少なくとも一部を氷結させた状態で注出できる液体急冷装置に関する。 The present invention relates to a liquid quenching apparatus capable of pouring out at least a part of the liquid in a frozen state.
 従来から、飲料等の食品を氷結させた状態で所定量を注出できる装置が知られている。例えば、特許文献1には、食品を冷却する冷却筒と、冷却管の表面で氷結した食品を掻き取り撹拌させる螺旋状の撹拌翼とを有する冷菓製造機が開示されている。 Conventionally, a device that can dispense a predetermined amount in a state where food such as a beverage is frozen is known. For example, Patent Document 1 discloses a frozen dessert making machine having a cooling cylinder that cools food and a spiral stirring blade that scrapes and stirs the frozen food on the surface of the cooling pipe.
特開2001-37419号公報JP 2001-37419 A
 しかし、特許文献1においては、氷結させた食品をタンクに貯留させるため、タンクから注出した時点で鮮度が低下している可能性があった。このため、食品の提供時において香気等が劣化している可能性があった。 However, in Patent Document 1, since the frozen food is stored in the tank, there is a possibility that the freshness is lowered at the time when it is poured out from the tank. For this reason, the aroma etc. may have deteriorated at the time of food provision.
 本発明は、上記の課題に鑑みてなされたものであって、氷結した液体を新鮮な状態で注出することができる液体急冷装置を提供することを目的とする。 This invention is made in view of said subject, Comprising: It aims at providing the liquid quenching apparatus which can pour out the frozen liquid in a fresh state.
 上記の目的を達成するため、本発明に係る液体急冷装置は、外壁を冷却することができる筒状の冷却管と、前記冷却管を覆い回転軸を中心に回転運動することができる筒状の被覆管と、前記冷却管の外壁と前記被覆管の内壁との間の間隙に液体を導入することができる液体導入路と、を備え、前記冷却管の外壁の表面温度は、前記液体の凝固点以下に冷却され、前記被覆管は、内壁に螺旋状の凸部を有することを特徴とする。 In order to achieve the above object, a liquid quenching apparatus according to the present invention includes a cylindrical cooling pipe that can cool an outer wall, and a cylindrical cooling pipe that covers the cooling pipe and can rotate around a rotation axis. And a liquid introduction path capable of introducing a liquid into a gap between the outer wall of the cooling pipe and the inner wall of the cladding pipe, and the surface temperature of the outer wall of the cooling pipe has a freezing point of the liquid Cooled below, the cladding tube has a spiral convex portion on the inner wall.
 これにより、間隙に導入された液体は、凸部に接触するので凸部に沿って緩やかに搬送されることができる。液体は、緩やかに搬送されながら冷却管に接触することで、冷却管の外壁で氷結し付着する。また、被覆管が回転することができるので、冷却管の外壁に付着した液体は、凸部によって掻きとられて搬送される。そして、氷結した液体は、容器に注出される。このように、液体急冷装置は、容器に注出する直前に液体を氷結させることができる。よって、本発明に係る液体急冷装置は、氷結した液体を新鮮な状態で注出することができる。 Thereby, the liquid introduced into the gap comes into contact with the convex portion and can be gently conveyed along the convex portion. The liquid freezes and adheres to the outer wall of the cooling pipe by contacting the cooling pipe while being gently conveyed. Further, since the cladding tube can rotate, the liquid adhering to the outer wall of the cooling tube is scraped off and conveyed by the convex portion. Then, the frozen liquid is poured into the container. In this way, the liquid quenching apparatus can freeze the liquid immediately before pouring into the container. Therefore, the liquid quenching apparatus according to the present invention can dispense the frozen liquid in a fresh state.
 本発明の望ましい態様として、前記液体導入路の一端は、前記間隙の一方の端部に配置され、前記間隙の他方の端部は、前記一方の端部よりも鉛直方向の下側に配置されることが好ましい。これにより、氷結した液体を搬送するための力として凸部による押圧力に加えて重量を利用することができる。よって、本発明に係る液体急冷装置は、氷結した液体をより効率的に容器に注出することができる。 As a desirable mode of the present invention, one end of the liquid introduction path is disposed at one end of the gap, and the other end of the gap is disposed below the one end in the vertical direction. It is preferable. Thereby, in addition to the pressing force by a convex part, a weight can be utilized as force for conveying the frozen liquid. Therefore, the liquid quenching apparatus according to the present invention can more efficiently pour the frozen liquid into the container.
 本発明の望ましい態様として、前記凸部は、前記被覆管の内壁のうち前記冷却管の外壁と対向する部分において前記回転軸方向の一端から他端に亘って設けられることが好ましい。被覆管の内壁と冷却管の外壁とが対向する部分は、比較的幅が狭くなっており液体が氷結しやすい部分である。仮に、凸部が被覆管の内壁のうち冷却管の外壁と対向する部分において回転軸方向の途中まで設けられている場合、凸部が途切れる部分に氷結した液体が留まり排出されなくなる可能性がある。これに対して、本発明に係る液体急冷装置は、凸部が被覆管の内壁と冷却管の外壁とが対向する部分の一端から他端に亘って設けられるので、氷結した液体をより確実に外部に向けて搬送することができる。このため、本発明に係る液体急冷装置は、氷結した液体が間隙の途中で溜まり排出されなくなる事態を抑制することができる。 As a desirable aspect of the present invention, it is preferable that the convex portion is provided from one end to the other end in the rotation axis direction in a portion of the inner wall of the cladding tube that faces the outer wall of the cooling tube. The portion where the inner wall of the cladding tube and the outer wall of the cooling tube face each other is a portion where the width is relatively narrow and the liquid is likely to freeze. If the convex portion is provided partway along the rotation axis in the portion of the inner wall of the cladding tube that faces the outer wall of the cooling tube, the frozen liquid may remain in the portion where the convex portion is interrupted and may not be discharged. . On the other hand, in the liquid quenching apparatus according to the present invention, the convex portion is provided from one end to the other end of the portion where the inner wall of the cladding tube and the outer wall of the cooling tube face each other. Can be transported to the outside. For this reason, the liquid quenching apparatus according to the present invention can suppress a situation in which the frozen liquid accumulates in the middle of the gap and is not discharged.
 本発明の望ましい態様として、前記被覆管は、透明または透光性を有することが好ましい。これにより、操作者は、間隙を外部から視認することができる。このため、本発明に係る液体急冷装置は、故障が起こった場合等の点検の際に不具合が生じている箇所を見つけやすくすることができる。また、操作者は、間隙に液体が導入され氷結し、螺旋状の凸部によって掻きとられて下方へ搬送される一連の様子を視認することができる。このように液体が瞬時に氷結し、螺旋状の凸部によって搬送される様子は、操作者にとって物珍しいものである可能性が高い。よって、本発明に係る液体急冷装置は、液体を注出する様子を見せることで嗜好性を高めることができる。 As a desirable aspect of the present invention, the cladding tube is preferably transparent or translucent. Thereby, the operator can visually recognize the gap from the outside. For this reason, the liquid quenching apparatus according to the present invention can make it easy to find a location where a failure occurs during an inspection such as when a failure occurs. Further, the operator can visually recognize a series of states in which the liquid is introduced into the gap, freezes, is scraped off by the spiral convex portion, and is conveyed downward. It is highly possible that the liquid is frozen in an instant and transported by the spiral convex portion is unusual for the operator. Therefore, the liquid quenching apparatus according to the present invention can enhance the palatability by showing a state of pouring the liquid.
 本発明の望ましい態様として、前記間隙に導入する前記液体を予め冷却することができる予冷装置をさらに備えることが好ましい。これにより、液体導入路から間隙に導入される液体が予め低温になるので、液体急冷装置は、間隙において液体が氷結するまでの時間を短縮することができる。よって、本発明に係る液体急冷装置は、間隙における液体の氷結をより確実に行うことができる。 As a desirable aspect of the present invention, it is preferable to further include a precooling device that can cool the liquid introduced into the gap in advance. Thereby, since the liquid introduced into the gap from the liquid introduction path has a low temperature in advance, the liquid quenching apparatus can shorten the time until the liquid freezes in the gap. Therefore, the liquid quenching apparatus according to the present invention can more reliably freeze the liquid in the gap.
 本発明によれば、氷結した液体を新鮮な状態で注出することができる液体急冷装置を提供することができる。 According to the present invention, it is possible to provide a liquid quenching apparatus capable of pouring frozen liquid in a fresh state.
図1は、本実施形態に係る液体急冷装置の斜視図である。FIG. 1 is a perspective view of a liquid quenching apparatus according to the present embodiment. 図2は、図1におけるA-A’断面を模式的に表した模式図である。FIG. 2 is a schematic diagram schematically showing the A-A ′ cross section in FIG. 1. 図3は、被覆管を回転させる構成を説明する説明図である。FIG. 3 is an explanatory diagram illustrating a configuration for rotating the cladding tube. 図4は、回転軸を含む平面で被覆管を切った場合の断面図である。FIG. 4 is a cross-sectional view when the cladding tube is cut along a plane including the rotation axis. 図5は、図2における冷却管の外壁と被覆管の内壁との間に生ずる間隙の拡大図である。FIG. 5 is an enlarged view of a gap formed between the outer wall of the cooling pipe and the inner wall of the cladding pipe in FIG. 図6は、制御部の構成を示す模式図である。FIG. 6 is a schematic diagram illustrating the configuration of the control unit. 図7は、液体急冷装置を用いて、氷結した液体を注出する方法のフローチャートである。FIG. 7 is a flowchart of a method for dispensing frozen liquid using a liquid quenching apparatus. 図8は、変形例1に係る液体急冷装置の構成を模式的に表した模式図である。FIG. 8 is a schematic diagram schematically illustrating the configuration of the liquid quenching apparatus according to the first modification. 図9は、変形例2に係る液体急冷装置の断面を模式的に表した模式図である。FIG. 9 is a schematic diagram schematically showing a cross section of the liquid quenching apparatus according to the second modification. 図10は、変形例2に係る内筒の形状等を示す説明図である。FIG. 10 is an explanatory diagram illustrating the shape of the inner cylinder according to the second modification.
 本発明を実施するための実施形態について、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。また、一部の構成要素を用いない場合もある。 Embodiments for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited by the contents described in the following embodiments. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined. Some components may not be used.
(実施形態)
 図1は、本実施形態に係る液体急冷装置の斜視図である。図2は、図1におけるA-A’断面を模式的に表した模式図である。図3は、被覆管を回転させる構成を説明する説明図である。図4は、回転軸を含む平面で被覆管を切った場合の断面図である。図5は、図2における冷却管の外壁と被覆管の内壁との間に生ずる間隙の拡大図である。図1から図5を用いて、本実施形態に係る液体急冷装置1の概要を説明する。また、以下の説明において、回転軸Zrに対して直交する方向は、単に径方向と記載される。
(Embodiment)
FIG. 1 is a perspective view of a liquid quenching apparatus according to the present embodiment. FIG. 2 is a schematic diagram schematically showing the AA ′ cross section in FIG. FIG. 3 is an explanatory diagram illustrating a configuration for rotating the cladding tube. FIG. 4 is a cross-sectional view when the cladding tube is cut along a plane including the rotation axis. FIG. 5 is an enlarged view of a gap formed between the outer wall of the cooling pipe and the inner wall of the cladding pipe in FIG. The outline | summary of the liquid quenching apparatus 1 which concerns on this embodiment is demonstrated using FIGS. In the following description, the direction orthogonal to the rotation axis Zr is simply referred to as the radial direction.
(液体急冷装置)
 液体急冷装置1は、例えば、アルコール飲料を氷結した状態で注出するための装置である。液体急冷装置1は、筐体100と、容器保持部101とを有する。容器保持部101の上面には容器91が設置され、氷結した状態のアルコール飲料が容器91内に供給される。図2に示すように、容器保持部101は、内部に重量計57を有する。重量計57は、容器保持部101の上面に載っている容器91および注出したアルコール飲料の重量を測定することができる。重量計57は、例えばひずみゲージである。ひずみゲージは、荷重が加えられたときの変形で生ずる歪みを電気信号として検出することができるセンサである。なお、液体急冷装置1が注出する対象は、アルコール飲料に限らず、水であってもよいし、ノンアルコール飲料であってもよいし、麺料理用の汁またはドレッシング等の液状食品であってもよい。
(Liquid quenching device)
The liquid quenching apparatus 1 is an apparatus for pouring an alcoholic beverage in a frozen state, for example. The liquid quenching apparatus 1 includes a housing 100 and a container holding unit 101. A container 91 is installed on the upper surface of the container holding unit 101, and an alcoholic beverage in a frozen state is supplied into the container 91. As shown in FIG. 2, the container holding unit 101 has a weight scale 57 inside. The weight scale 57 can measure the weight of the container 91 placed on the upper surface of the container holding unit 101 and the poured alcoholic beverage. The weight scale 57 is a strain gauge, for example. A strain gauge is a sensor that can detect, as an electrical signal, strain generated by deformation when a load is applied. The target to be poured out by the liquid quenching apparatus 1 is not limited to alcoholic drinks, and may be water, non-alcoholic drinks, or liquid foods such as juice for noodle dishes or dressings. May be.
 図2に示すように、液体急冷装置1は冷却管31を備える。冷却管31は、外壁を冷却することができる円筒状の部材である。例えば、冷却管31は、鉛直方向の上下方向に端面を有する円筒状、すなわち鉛直方向に軸方向を有する円筒状である。例えば、冷却管31は、ステンレス鋼によって形成されている。冷却管31は、上側の端面にキャップ32を有しており、上側の端面が塞がれている。冷却管31は、下側の端面に底面31bを有しており、下側の端面が塞がれている。冷却管31は、例えば、筐体100の外壁から突出するブラケット36にキャップ32がネジ等によって接合されることによって、筐体100に固定されている。また、冷却管31は、例えば内壁に温度センサ59を備える。温度センサ59は、冷却管31の内壁の表面温度を測定することができる。また、冷却管31が金属であるステンレス鋼で形成されているため、冷却管31の内壁の表面温度は、冷却管31の外壁の表面温度に略等しいまたは所定の相関関係がある。以下の説明においては、冷却管31の外壁の表面温度および冷却管31の内壁の表面温度は、冷却管31の表面温度と適宜記載される。 As shown in FIG. 2, the liquid quenching apparatus 1 includes a cooling pipe 31. The cooling pipe 31 is a cylindrical member that can cool the outer wall. For example, the cooling pipe 31 has a cylindrical shape having end surfaces in the vertical direction, that is, a cylindrical shape having an axial direction in the vertical direction. For example, the cooling pipe 31 is made of stainless steel. The cooling pipe 31 has a cap 32 on the upper end surface, and the upper end surface is closed. The cooling pipe 31 has a bottom surface 31b on the lower end surface, and the lower end surface is closed. The cooling pipe 31 is fixed to the housing 100 by, for example, joining a cap 32 to a bracket 36 protruding from the outer wall of the housing 100 with a screw or the like. The cooling pipe 31 includes a temperature sensor 59 on the inner wall, for example. The temperature sensor 59 can measure the surface temperature of the inner wall of the cooling pipe 31. Further, since the cooling pipe 31 is made of stainless steel, which is a metal, the surface temperature of the inner wall of the cooling pipe 31 is substantially equal to or has a predetermined correlation with the surface temperature of the outer wall of the cooling pipe 31. In the following description, the surface temperature of the outer wall of the cooling pipe 31 and the surface temperature of the inner wall of the cooling pipe 31 are appropriately described as the surface temperature of the cooling pipe 31.
 図2に示すように、液体急冷装置1は被覆管21を備える。被覆管21は、冷却管31を覆い回転軸Zrを中心に回転運動することができる円筒状の部材である。例えば、被覆管21は、鉛直方向の上下方向に端面を有する円筒状、すなわち鉛直方向に軸方向を有する円筒状である。例えば、被覆管21は、ポリカーボネートで形成されており、透明である。また、被覆管21の内径は、冷却管31の外径よりも大きい。なお、被覆管21は、透明ではなく透光性を有する材料で形成されていてもよいし、金属等の不透明な材料で形成されていてもよい。 As shown in FIG. 2, the liquid quenching apparatus 1 includes a cladding tube 21. The cladding tube 21 is a cylindrical member that covers the cooling tube 31 and can rotate about the rotation axis Zr. For example, the cladding tube 21 has a cylindrical shape having end faces in the vertical direction, that is, a cylindrical shape having an axial direction in the vertical direction. For example, the cladding tube 21 is made of polycarbonate and is transparent. Further, the inner diameter of the cladding tube 21 is larger than the outer diameter of the cooling tube 31. The cladding tube 21 may be formed of a light-transmitting material instead of being transparent, or may be formed of an opaque material such as a metal.
 また、図2および図4に示すように、被覆管21は、内壁に螺旋状の凸部22を有する。例えば、図4に示すように、凸部22は、被覆管21の内部側から見た場合に右肩下がりの螺旋状である。例えば、凸部22は、被覆管21の内壁と一体に形成されている。また、図5に示すように、凸部22の径方向の高さL2は、冷却管31の外壁と被覆管21の内壁との間に生ずる間隙Gの幅L1よりも小さい。例えば、凸部22の径方向の高さL2は、間隙Gの幅L1の50%以上100%未満であることが好ましい。さらに、高さL2は、幅L1の95%以上100%未満であることがより好ましい。より具体的には、本実施形態において、凸部22の径方向の高さL2は、5mmであり、間隙Gの幅L1は、5.1mm以上5、2mm以下である。また、凸部22は、図2に示すように、被覆管21の内壁のうち冷却管31の外壁と対向する部分において回転軸Zr方向の一端から他端に亘って設けられている。なお、凸部22は、被覆管21の内壁に複数本形成されていてもよい。また、凸部22は、被覆管21の内部側から見た場合に左肩下がりの螺旋状であってもよく、その場合は後述する被覆管21の回転方向が逆方向になる。 Further, as shown in FIGS. 2 and 4, the cladding tube 21 has a spiral convex portion 22 on the inner wall. For example, as shown in FIG. 4, the convex portion 22 has a spiral shape with a lower right shoulder when viewed from the inside of the cladding tube 21. For example, the convex portion 22 is formed integrally with the inner wall of the cladding tube 21. Further, as shown in FIG. 5, the radial height L2 of the convex portion 22 is smaller than the width L1 of the gap G formed between the outer wall of the cooling pipe 31 and the inner wall of the cladding pipe 21. For example, the radial height L2 of the convex portion 22 is preferably 50% or more and less than 100% of the width L1 of the gap G. Furthermore, the height L2 is more preferably 95% or more and less than 100% of the width L1. More specifically, in the present embodiment, the radial height L2 of the convex portion 22 is 5 mm, and the width L1 of the gap G is 5.1 mm or more and 5, 2 mm or less. Further, as shown in FIG. 2, the convex portion 22 is provided from one end to the other end in the direction of the rotation axis Zr in the portion of the inner wall of the cladding tube 21 that faces the outer wall of the cooling tube 31. A plurality of convex portions 22 may be formed on the inner wall of the cladding tube 21. Further, the convex portion 22 may have a spiral shape with a lower left shoulder when viewed from the inside of the cladding tube 21, and in this case, the rotation direction of the cladding tube 21 described later is reversed.
 被覆管21は、外壁の上端部に固定される歯車23と、歯車23のすぐ下側に配置される保持リング24と、を有する。歯車23は、内径が被覆管21の外径に略等しい円環状の部材であって、例えば接着剤等によって被覆管21に固定されている。保持リング24は、例えば、内径が被覆管21の外径よりも大きい円環状の部材であって、筐体100の外壁から突出するブラケット26に固定される。これにより、被覆管21は、歯車23、保持リング24およびブラケット26を介して筐体100に支持されている。なお、歯車23は、被覆管21と一体に形成されていてもよい。 The cladding tube 21 includes a gear 23 that is fixed to the upper end portion of the outer wall, and a holding ring 24 that is disposed immediately below the gear 23. The gear 23 is an annular member whose inner diameter is substantially equal to the outer diameter of the cladding tube 21, and is fixed to the cladding tube 21 with an adhesive or the like, for example. The holding ring 24 is, for example, an annular member having an inner diameter larger than the outer diameter of the cladding tube 21 and is fixed to the bracket 26 protruding from the outer wall of the housing 100. Thereby, the cladding tube 21 is supported by the housing 100 via the gear 23, the holding ring 24 and the bracket 26. The gear 23 may be formed integrally with the cladding tube 21.
 被覆管21の内径が冷却管31の外径よりも大きいため、図2に示すように、冷却管31の外壁と被覆管21の内壁との間には間隙Gが生ずる。間隙Gの一方の端部である第1端部G1は、シール部材33によって塞がれている。シール部材33は、例えばOリングであり、間隙Gの第1端部G1から異物が侵入することを防いでいる。また、本実施形態においては冷却管31および被覆管21が鉛直方向に軸方向を有する円筒状であるため、間隙Gの他方の端部である第2端部G2は、第1端部G1よりも鉛直方向の下側に配置されている。また、仮に冷却管31および被覆管21が鉛直方向に対して角度をなす方向に軸方向を有する円筒状である場合であっても、第2端部G2は、第1端部G1よりも鉛直方向の下側に配置されることとなる。 Since the inner diameter of the cladding tube 21 is larger than the outer diameter of the cooling tube 31, a gap G is generated between the outer wall of the cooling tube 31 and the inner wall of the cladding tube 21 as shown in FIG. The first end G1 that is one end of the gap G is closed by the seal member 33. The seal member 33 is, for example, an O-ring, and prevents foreign matter from entering from the first end G1 of the gap G. Further, in the present embodiment, since the cooling pipe 31 and the cladding pipe 21 have a cylindrical shape having an axial direction in the vertical direction, the second end G2 that is the other end of the gap G is more than the first end G1. Is also arranged below the vertical direction. Even if the cooling pipe 31 and the cladding pipe 21 are cylindrical having an axial direction in an angle with respect to the vertical direction, the second end G2 is more vertical than the first end G1. It will be placed below the direction.
 また、図2に示すように、液体急冷装置1は、被覆管21の下側にアタッチメント21aを有する。アタッチメント21aは、全体が筒状の部材であって、取付部211と、絞り部212と、整流部213とを有する。取付部211は、例えば、内径が被覆管21の外径よりも大きい円環状の部材であって、被覆管21の外壁の一部を覆っている。取付部211は、筐体100の外壁から突出するブラケット28に固定される。これにより、アタッチメント21aは、被覆管21との間に隙間を生じるように筐体100に支持されている。これにより、被覆管21が回転するときでも、アタッチメント21aは回転しない。絞り部212は、上端が取付部211に接合される円筒状の部材である。絞り部212の内径は、上端から下端に向かって小さくなっている。整流部213は、上端が絞り部212の下端に接合される円筒状の部材である。整流部213は、内径が一定であって、下端部が液体急冷装置1の外部に向かって開口している。 Further, as shown in FIG. 2, the liquid quenching apparatus 1 has an attachment 21 a on the lower side of the cladding tube 21. The attachment 21 a is a cylindrical member as a whole, and includes an attachment part 211, a throttle part 212, and a rectifying part 213. The attachment portion 211 is, for example, an annular member having an inner diameter larger than the outer diameter of the cladding tube 21 and covers a part of the outer wall of the cladding tube 21. The attachment portion 211 is fixed to the bracket 28 protruding from the outer wall of the housing 100. Thereby, attachment 21a is supported by case 100 so that a crevice may be formed between cladding tubes 21. Thereby, even when the cladding tube 21 rotates, the attachment 21a does not rotate. The throttle part 212 is a cylindrical member whose upper end is joined to the attachment part 211. The inner diameter of the throttle portion 212 decreases from the upper end toward the lower end. The rectifying unit 213 is a cylindrical member whose upper end is joined to the lower end of the throttle unit 212. The rectifying unit 213 has a constant inner diameter, and a lower end thereof opens toward the outside of the liquid quenching apparatus 1.
 なお、アタッチメント21aは、筐体100に固定されなくてもよく、例えば被覆管21に固定されてもよい。アタッチメント21aが被覆管21に固定される場合、例えば、アタッチメント21aは、被覆管21の外壁の下端部に設けられた雄ネジ部に、内壁にネジ溝を有する雌ネジ部材である取付部211が螺合することによって、被覆管21に固定されればよい。また、アタッチメント21aが被覆管21に固定される場合、取付部211が合成ゴムで形成されており、取付部211の内壁と被覆管21の外壁との摩擦力によってアタッチメント21aが被覆管21に固定されていてもよい。 Note that the attachment 21a may not be fixed to the housing 100, and may be fixed to the cladding tube 21, for example. When the attachment 21 a is fixed to the cladding tube 21, for example, the attachment 21 a has a mounting portion 211, which is a female screw member having a thread groove on the inner wall, on the male screw portion provided at the lower end portion of the outer wall of the cladding tube 21. What is necessary is just to fix to the cladding tube 21 by screwing. Further, when the attachment 21 a is fixed to the cladding tube 21, the attachment portion 211 is formed of synthetic rubber, and the attachment 21 a is fixed to the cladding tube 21 by the frictional force between the inner wall of the attachment portion 211 and the outer wall of the cladding tube 21. May be.
 図3に示すように、被覆管21は、モータ41の駆動力によって回転軸Zrを中心に回転運動することができる。モータ41は、筐体100の内部に固定されており、シャフト42を有する。シャフト42は、歯車43に接合されている。歯車43の側面に設けられた歯43gは、歯車23の側面に設けられた歯23gに噛み合っている。これにより、モータ41が駆動すると、シャフト42、歯車43および歯車23を介して被覆管21が回転軸Zrを中心に回転する。例えば、被覆管21は、回転軸Zr方向の上方から見て反時計回りに回転させられる。被覆管21と凸部22とは一体に形成されているため、凸部22は、被覆管21となって回転する。凸部22は、被覆管21の回転方向と同じ方向に回転し、かつ被覆管21の回転速度と同じ回転速度で回転する。図4で示したように、凸部22は、被覆管21の内部側から見た場合に右肩下がりの螺旋状である。このため、間隙G内の任意の一箇所に物体があるとしたとき、被覆管21が回転軸Zr方向の上方から見て反時計回りに回転すると、当該物体は、凸部22の下側表面によって下方に押圧され、徐々に下方に搬送される。後述するように、本実施形態における当該物体は、冷却管31によって氷結された液体である。 As shown in FIG. 3, the cladding tube 21 can rotate about the rotation axis Zr by the driving force of the motor 41. The motor 41 is fixed inside the housing 100 and has a shaft 42. The shaft 42 is joined to the gear 43. The teeth 43 g provided on the side surface of the gear 43 mesh with the teeth 23 g provided on the side surface of the gear 23. Thus, when the motor 41 is driven, the cladding tube 21 rotates about the rotation axis Zr via the shaft 42, the gear 43 and the gear 23. For example, the cladding tube 21 is rotated counterclockwise as viewed from above in the direction of the rotation axis Zr. Since the cladding tube 21 and the convex portion 22 are integrally formed, the convex portion 22 rotates as the cladding tube 21. The convex portion 22 rotates in the same direction as the rotation direction of the cladding tube 21 and rotates at the same rotation speed as the rotation speed of the cladding tube 21. As shown in FIG. 4, the convex portion 22 has a spiral shape with a lower right shoulder when viewed from the inside of the cladding tube 21. For this reason, when an object is present at an arbitrary position in the gap G, when the cladding tube 21 rotates counterclockwise as viewed from above in the direction of the rotation axis Zr, the object Is pushed downward and gradually conveyed downward. As will be described later, the object in the present embodiment is a liquid frozen by the cooling pipe 31.
 また、上述したように、保持リング24の内径が被覆管21の外径よりも大きいため、被覆管21は、滑らかに回転することができる。また、図2に示すように、被覆管21は、外壁の下寄りの位置に案内リング25を有する。案内リング25は、内径が被覆管21の外径に略等しい円環状の部材であって、例えば接着剤等によって被覆管21に固定されている。案内リング25は、筐体100から突出する2つの案内板27の間に形成される溝に嵌まっている。これにより、被覆管21は、より安定して回転することができる。 Further, as described above, since the inner diameter of the holding ring 24 is larger than the outer diameter of the cladding tube 21, the cladding tube 21 can rotate smoothly. As shown in FIG. 2, the cladding tube 21 has a guide ring 25 at a position below the outer wall. The guide ring 25 is an annular member having an inner diameter substantially equal to the outer diameter of the cladding tube 21 and is fixed to the cladding tube 21 with an adhesive or the like, for example. The guide ring 25 is fitted in a groove formed between the two guide plates 27 protruding from the housing 100. Thereby, the cladding tube 21 can rotate more stably.
 図3に示すように、液体急冷装置1は、冷媒導入路71および冷媒排出路72を有する。冷媒導入路71は、冷媒を冷却管31の内部へ供給するための管であって、例えばステンレス鋼で形成されている。冷媒排出路72は、冷媒を冷却管31の内部から外部へ排出するための管であって、例えばステンレス鋼で形成されている。本実施形態における冷媒は、凝固点降下させた水溶液であって、例えば、天然塩の水溶液である塩水である。冷媒導入路71は、ブラケット36およびキャップ32を貫通して、冷却管31の内部の底面31b付近まで達する。冷媒導入路71は、冷却管31の内部の底面31b付近で連結路74を介して冷媒排出路72に接続される。冷媒排出路72は、冷却管31の内部の底面31b付近から、キャップ32およびブラケット36を貫通して、冷却管31の外部に達する。なお、冷媒は、塩化ナトリウム水溶液、塩化カリウム水溶液または塩化アンモニウム水溶液等であってもよい。また、冷媒は、気体であってもよいし、金属塩の水溶液以外の液体であってもよい。 As shown in FIG. 3, the liquid quenching apparatus 1 has a refrigerant introduction path 71 and a refrigerant discharge path 72. The refrigerant introduction path 71 is a pipe for supplying the refrigerant to the inside of the cooling pipe 31, and is formed of, for example, stainless steel. The refrigerant discharge path 72 is a pipe for discharging the refrigerant from the inside of the cooling pipe 31 to the outside, and is formed of, for example, stainless steel. The refrigerant in the present embodiment is an aqueous solution with a freezing point lowered, for example, salt water that is an aqueous solution of a natural salt. The refrigerant introduction path 71 passes through the bracket 36 and the cap 32 and reaches the vicinity of the bottom surface 31 b inside the cooling pipe 31. The refrigerant introduction path 71 is connected to the refrigerant discharge path 72 via a connection path 74 near the bottom surface 31 b inside the cooling pipe 31. The refrigerant discharge path 72 passes through the cap 32 and the bracket 36 from the vicinity of the bottom surface 31 b inside the cooling pipe 31 and reaches the outside of the cooling pipe 31. The refrigerant may be a sodium chloride aqueous solution, a potassium chloride aqueous solution, an ammonium chloride aqueous solution, or the like. The refrigerant may be a gas or a liquid other than an aqueous solution of a metal salt.
 また、冷媒導入路71および冷媒排出路72は、外壁から突出する補強部材34を有する。補強部材34の端部は、例えば溶接等によって冷却管31の内壁に固定されている。また、連結路74は、外壁から突出する補強部材35を有する。補強部材35の端部は、例えば溶接等によって冷却管31の底部31bに固定されている。これにより、冷却管31と冷媒導入路71、冷媒排出路72および連結路74とが補強部材34、35を介して連結されるため、冷却管31が径方向に振動する事態が抑制される。 Further, the refrigerant introduction path 71 and the refrigerant discharge path 72 have a reinforcing member 34 protruding from the outer wall. The end of the reinforcing member 34 is fixed to the inner wall of the cooling pipe 31 by welding or the like, for example. Further, the connecting path 74 has a reinforcing member 35 protruding from the outer wall. The end of the reinforcing member 35 is fixed to the bottom 31b of the cooling pipe 31, for example, by welding or the like. Thereby, since the cooling pipe 31, the refrigerant introduction path 71, the refrigerant discharge path 72, and the connection path 74 are connected via the reinforcing members 34 and 35, the situation where the cooling pipe 31 vibrates in the radial direction is suppressed.
 図2、3に示すように、液体急冷装置1は、冷媒を冷却するための冷却装置56を有する。冷却装置56は、例えばコンプレッサーを備えており、冷媒を冷却することができる。例えば本実施形態において、冷却装置56は、冷媒の温度を-50℃以上-10℃以下の範囲で冷却することができる。冷媒の温度は、後述する間隙Gに導入される液体の凝固点に応じて変化させることができる。冷媒導入路71および冷媒排出路72は、冷却装置56に接続される。冷却装置56にて冷却された冷媒は、冷媒導入路71によって冷却管31の内部へ運ばれ、冷却管31の熱を奪うことで冷却管31を冷却する。冷却管31から熱を受け取った冷媒は、冷媒排出路72によって冷却管31の外部へ運ばれ、冷却装置56に戻される。このように、冷媒が冷媒導入路71、冷媒排出路72および冷却装置56を循環することで、冷却管31の外壁の表面温度は、後述する間隙Gに導入される液体の凝固点以下に冷却される。なお、冷却装置56は、必ずしもコンプレッサーを用いて冷媒を冷却しなくてもよく、ペルチェ素子を用いて冷媒を冷却してもよいし、液体窒素を用いて冷媒を冷却してもよい。また、冷却装置56は、冷媒の温度を-50℃以上-10℃以下に限らず当該範囲外の温度に冷却することができてもよい。 2 and 3, the liquid quenching apparatus 1 has a cooling device 56 for cooling the refrigerant. The cooling device 56 includes a compressor, for example, and can cool the refrigerant. For example, in the present embodiment, the cooling device 56 can cool the refrigerant in a range of −50 ° C. or higher and −10 ° C. or lower. The temperature of the refrigerant can be changed according to the freezing point of the liquid introduced into the gap G described later. The refrigerant introduction path 71 and the refrigerant discharge path 72 are connected to the cooling device 56. The refrigerant cooled by the cooling device 56 is carried to the inside of the cooling pipe 31 by the refrigerant introduction path 71 and cools the cooling pipe 31 by taking heat of the cooling pipe 31. The refrigerant that has received heat from the cooling pipe 31 is carried to the outside of the cooling pipe 31 by the refrigerant discharge path 72 and returned to the cooling device 56. In this way, the refrigerant circulates through the refrigerant introduction path 71, the refrigerant discharge path 72, and the cooling device 56, whereby the surface temperature of the outer wall of the cooling pipe 31 is cooled below the freezing point of the liquid introduced into the gap G described later. The The cooling device 56 may not necessarily cool the refrigerant using a compressor, may cool the refrigerant using a Peltier element, or may cool the refrigerant using liquid nitrogen. Further, the cooling device 56 may be able to cool the temperature of the refrigerant to a temperature outside the range, not limited to −50 ° C. or more and −10 ° C. or less.
 また、冷媒導入路71および冷媒排出路72は、液体急冷装置1の外部の空気に接する部分が断熱材で覆われていることが望ましい。このようにすることで、外部の空気が有する熱が冷媒導入路71および冷媒排出路72を通る冷媒に伝わりにくくなる。このため、冷媒導入路71および冷媒排出路72は、冷媒の温度を保ちながら運ぶことができるため、効率的に冷却管31を冷却することができる。 In addition, it is desirable that the refrigerant introduction path 71 and the refrigerant discharge path 72 are covered with a heat insulating material at a portion in contact with the air outside the liquid quenching apparatus 1. By doing in this way, it becomes difficult for the heat which external air has to be transmitted to the refrigerant which passes through refrigerant introduction way 71 and refrigerant discharge way 72. For this reason, since the refrigerant introduction path 71 and the refrigerant discharge path 72 can be carried while maintaining the temperature of the refrigerant, the cooling pipe 31 can be efficiently cooled.
 図2、3に示すように、液体急冷装置1は、液体を貯留しておく液体タンク53と、間隙Gに当該液体を導入することができる液体導入路73を有する。本実施形態において液体タンク53は、筐体100の外部に配置されておりアルコール飲料を貯留している。液体導入路73は、例えば、シリコーンで形成された管である。液体導入路73の一端は、間隙Gの一方の端部である第1端部G1に配置される。例えば、液体導入路73は、ブラケット36およびシール部材33を貫通し、一端が第1端部G1に位置するように配置されている。液体導入路73から間隙Gに導入された液体は、凸部22に接触するので凸部22に沿って緩やかに降下する。また、液体導入路73の第1端部G1側の端部は、被覆管21の内壁に向かって開口している方が望ましい。これにより、液体導入路73から間隙Gに導入された液体は、凸部22により接触しやすくなり、凸部22に沿ってより緩やかに降下しやすくなる。 2 and 3, the liquid quenching apparatus 1 includes a liquid tank 53 that stores a liquid and a liquid introduction path 73 that can introduce the liquid into the gap G. In the present embodiment, the liquid tank 53 is disposed outside the housing 100 and stores alcoholic beverages. The liquid introduction path 73 is, for example, a pipe formed of silicone. One end of the liquid introduction path 73 is disposed at a first end G1 that is one end of the gap G. For example, the liquid introduction path 73 is disposed so as to penetrate the bracket 36 and the seal member 33 and have one end positioned at the first end G1. Since the liquid introduced into the gap G from the liquid introduction path 73 comes into contact with the convex portion 22, it gradually falls along the convex portion 22. Further, it is desirable that the end portion on the first end portion G1 side of the liquid introduction path 73 is open toward the inner wall of the cladding tube 21. Thereby, the liquid introduced into the gap G from the liquid introduction path 73 is likely to come into contact with the convex portion 22, and is more likely to descend along the convex portion 22.
 また、液体急冷装置1は、バルブ55と、予冷装置54と、液体タンク連結部75とを備える。液体導入路73の他端は、バルブ55および予冷装置54を介して液体タンク連結部75の一端に接続される。例えば、液体タンク連結部75は、図1に示すように筐体100の外壁に配置されている。液体タンク連結部75の他端は、液体供給路76によって液体タンク53に接続されている。また、例えば、液体供給路76の液体タンク53側の端部は、液体タンク53の内部で液体の中に配置されている。 Further, the liquid quenching apparatus 1 includes a valve 55, a precooling apparatus 54, and a liquid tank connecting portion 75. The other end of the liquid introduction path 73 is connected to one end of the liquid tank connecting portion 75 via the valve 55 and the precooling device 54. For example, the liquid tank connecting portion 75 is disposed on the outer wall of the housing 100 as shown in FIG. The other end of the liquid tank connecting portion 75 is connected to the liquid tank 53 by a liquid supply path 76. For example, the end of the liquid supply path 76 on the liquid tank 53 side is disposed in the liquid inside the liquid tank 53.
 バルブ55は、例えばステッピングモータを備えるボールバルブであり、ステッピングモータによってバルブ開度を調節することで液体の流量を調節することができる。予冷装置54は、例えばコンプレッサーを備えており、液体タンク53に貯留されている液体を間隙Gに送る前に予め冷却することができる。なお、液体急冷装置1は、予冷装置54を備える方が望ましいが、予冷装置54を備えていなくてもよい。 The valve 55 is, for example, a ball valve equipped with a stepping motor, and the flow rate of the liquid can be adjusted by adjusting the valve opening degree by the stepping motor. The pre-cooling device 54 includes, for example, a compressor, and can cool the liquid stored in the liquid tank 53 before sending it to the gap G. The liquid quenching device 1 is preferably provided with the precooling device 54, but may not include the precooling device 54.
 図2に示すように、例えば、液体タンク53は、ガス供給路77によって加圧ボンベ58に接続されている。例えば、加圧ボンベ58は、内部に二酸化炭素を高圧で内蔵しており、ガス供給路77を介して二酸化炭素を液体タンク53の内部に送り込むことができる。液体タンク53の内部は、他の部材との接続部分を除いて密閉された空間である。このため、加圧ボンベ58から液体タンク53の内部に二酸化炭素が送り込まれると、液体タンク53の内圧が高くなる。液体タンク53の内圧が高くなると液体タンク53内に貯留されている液体の液面が押されるので、液体は、液体供給路76を介して液体タンク53の外部へ送り出される。そして、液体は、液体タンク連結部75を経て予冷装置54に送られる。液体は、予冷装置54で所定の温度に冷却された後、バルブ55のバルブ開度に応じた流量で間隙Gに導入される。なお、加圧ボンベ58に内蔵されている気体は、二酸化炭素でなく他の気体であってもよい。また、液体タンク53に貯留されている液体を外部へ送り出す方法は、加圧ボンベ58による方法でなくてもよく、例えば、液体タンク53に接続されたポンプによって液体を汲み上げて送り出す方法であってもよい。 As shown in FIG. 2, for example, the liquid tank 53 is connected to a pressure cylinder 58 by a gas supply path 77. For example, the pressurizing cylinder 58 contains carbon dioxide inside at a high pressure, and can send carbon dioxide into the liquid tank 53 via the gas supply path 77. The inside of the liquid tank 53 is a sealed space except for a connection portion with other members. For this reason, when carbon dioxide is fed into the liquid tank 53 from the pressure cylinder 58, the internal pressure of the liquid tank 53 increases. When the internal pressure of the liquid tank 53 increases, the liquid level of the liquid stored in the liquid tank 53 is pushed, so that the liquid is sent out of the liquid tank 53 via the liquid supply path 76. Then, the liquid is sent to the pre-cooling device 54 through the liquid tank connecting portion 75. The liquid is cooled to a predetermined temperature by the precooling device 54 and then introduced into the gap G at a flow rate corresponding to the valve opening degree of the valve 55. The gas built in the pressurizing cylinder 58 may be other gas instead of carbon dioxide. Further, the method of sending the liquid stored in the liquid tank 53 to the outside may not be a method using the pressurizing cylinder 58, for example, a method of pumping up and sending the liquid by a pump connected to the liquid tank 53. Also good.
 液体タンク53の液体が間隙Gに導入されるとき、冷却管31が冷媒によって冷却され、被覆管21がモータ41によって回転する。冷却管31の表面温度は、間隙Gに導入される液体の凝固点以下となっている。間隙Gに導入された液体は、冷却管31の外壁に接触することで氷結する。例えば本実施形態において、間隙Gに導入された液体は、冷却管31の軸方向の全長のうち半分の位置までに氷結する。氷結した液体は、冷却管31の外壁に付着する。また、被覆管21が回転軸Zrを中心に回転しているので、被覆管21の内壁に設けられた螺旋状の凸部22が回転する。螺旋状の凸部22は、冷却管31の外壁に付着した液体を掻きとって下方へ搬送する。下方へ搬送された液体は、間隙Gの第2端部G2からアタッチメント21a側に排出され、アタッチメント21aで整流される。その後、氷結した液体は、アタッチメント21aの下端から落下し、容器91に注出される。 When the liquid in the liquid tank 53 is introduced into the gap G, the cooling pipe 31 is cooled by the refrigerant, and the cladding pipe 21 is rotated by the motor 41. The surface temperature of the cooling pipe 31 is below the freezing point of the liquid introduced into the gap G. The liquid introduced into the gap G freezes by contacting the outer wall of the cooling pipe 31. For example, in the present embodiment, the liquid introduced into the gap G freezes up to a half position in the entire axial length of the cooling pipe 31. The frozen liquid adheres to the outer wall of the cooling pipe 31. Further, since the cladding tube 21 rotates about the rotation axis Zr, the spiral convex portion 22 provided on the inner wall of the cladding tube 21 rotates. The spiral convex portion 22 scrapes and conveys the liquid adhering to the outer wall of the cooling pipe 31 downward. The liquid transported downward is discharged from the second end G2 of the gap G to the attachment 21a side and is rectified by the attachment 21a. Thereafter, the frozen liquid falls from the lower end of the attachment 21 a and is poured out into the container 91.
 仮に、冷却管31および被覆管21が鉛直方向に対して角度をなす方向に軸方向を有する円筒状または水平方向に軸方向を有する円筒状である場合、間隙Gに導入された液体は、重力によって間隙G内で鉛直方向の下側の部分に偏る可能性がある。これに対して、本実施形態においては、冷却管31および被覆管21が鉛直方向に軸方向を有する円筒状であり、かつ間隙Gに導入された液体が螺旋状の凸部22に沿って緩やかに降下する。これにより、間隙Gに導入された液体が間隙G内で一部に偏りにくくなる。このため、液体急冷装置1は、間隙Gに導入された液体を、迅速かつ均一に氷結させることができる。 If the cooling pipe 31 and the cladding pipe 21 have a cylindrical shape having an axial direction in the direction that makes an angle with respect to the vertical direction or a cylindrical shape having an axial direction in the horizontal direction, the liquid introduced into the gap G is gravity. Therefore, there is a possibility that the gap G is biased to the lower part in the vertical direction. On the other hand, in the present embodiment, the cooling pipe 31 and the cladding pipe 21 have a cylindrical shape having an axial direction in the vertical direction, and the liquid introduced into the gap G gradually moves along the spiral convex portion 22. To descend. This makes it difficult for the liquid introduced into the gap G to partially bias in the gap G. For this reason, the liquid quenching apparatus 1 can freeze the liquid introduced into the gap G quickly and uniformly.
 また、仮に、アタッチメント21aが被覆管21とともに回転する場合、氷結した液体は、遠心力によってアタッチメント21aの内壁に押し付けられることによりアタッチメント21aの下端から落下しにくくなる可能性がある。これに対して、本実施形態においては、被覆管21がモータ41によって回転するとき、アタッチメント21aは回転しない。これにより、氷結した液体は、アタッチメント21aの内部において遠心力を受けない。このため、液体急冷装置1は、氷結した液体がアタッチメント21aの下端から落下しやすくすることができる。 Also, if the attachment 21a rotates together with the cladding tube 21, the frozen liquid may be difficult to drop from the lower end of the attachment 21a by being pressed against the inner wall of the attachment 21a by centrifugal force. On the other hand, in this embodiment, when the cladding tube 21 is rotated by the motor 41, the attachment 21a does not rotate. Thereby, the frozen liquid does not receive a centrifugal force inside the attachment 21a. For this reason, the liquid quenching apparatus 1 can make it easy for the frozen liquid to fall from the lower end of the attachment 21a.
 また、凸部22は、冷却管31の外壁に付着した液体をより確実に掻きとれることが望ましい。上述したように、凸部22の径方向の高さL2が5mmであり、間隙Gの幅L1が5.1mm以上5、2mm以下である。これにより、凸部22は、冷却管31の外壁で氷結した液体の大部分を掻きとることができる。 Further, it is desirable that the convex portion 22 can more reliably scrape the liquid adhering to the outer wall of the cooling pipe 31. As described above, the radial height L2 of the convex portion 22 is 5 mm, and the width L1 of the gap G is 5.1 mm or more and 5, 2 mm or less. Thereby, the convex part 22 can scrape most of the liquid frozen on the outer wall of the cooling pipe 31.
 また、液体急冷装置1は、バルブ55のバルブ開度を調節して間隙Gに導入される液体の流量を調節することで、液体の氷結の程度を変えることができる。例えば、バルブ55のバルブ開度が大きくなると、間隙Gに導入される液体の流量が増加するので液体が比較的氷結しにくくなる。このため、容器91に注出されたときの氷結した液体は、比較的やわらかい状態となる。一方、バルブ55のバルブ開度が小さくなると、間隙Gに導入される液体の流量が減少するので液体が比較的氷結しやすくなる。このため、容器91に注出されたときの氷結した液体は、比較的かたい状態となる。なお、液体急冷装置1は、バルブ55のバルブ開度を一定とすることで間隙Gに導入される液体の流量を固定し、冷媒の流量および温度を制御することで、液体の氷結の程度を変えてもよい。このように、液体の氷結の程度は、冷媒導入路71および冷媒排出路72に循環させる冷媒の流量および温度を制御することによって、調節されてもよい。冷媒の流量および温度を制御することによって、液体急冷装置1は、液体の氷結の程度をより緻密に調節することができる。さらに、液体急冷装置1は、バルブ55のバルブ開度を調節して間隙Gに導入される液体の流量と、冷媒の流量および冷媒の温度との両方を制御することで、液体の氷結の程度を変えるようにしてもよい。 Also, the liquid quenching apparatus 1 can change the degree of icing of the liquid by adjusting the valve opening degree of the valve 55 and adjusting the flow rate of the liquid introduced into the gap G. For example, when the valve opening degree of the valve 55 increases, the flow rate of the liquid introduced into the gap G increases, so that the liquid is relatively difficult to freeze. For this reason, the frozen liquid when poured out into the container 91 is in a relatively soft state. On the other hand, when the valve opening degree of the valve 55 becomes small, the flow rate of the liquid introduced into the gap G decreases, so that the liquid is relatively easily frozen. For this reason, the frozen liquid when poured out into the container 91 is in a relatively hard state. The liquid quenching apparatus 1 fixes the flow rate of the liquid introduced into the gap G by keeping the valve opening of the valve 55 constant, and controls the flow rate and temperature of the refrigerant, thereby reducing the degree of icing of the liquid. You may change it. Thus, the degree of icing of the liquid may be adjusted by controlling the flow rate and temperature of the refrigerant circulated through the refrigerant introduction path 71 and the refrigerant discharge path 72. By controlling the flow rate and temperature of the refrigerant, the liquid quenching apparatus 1 can finely adjust the degree of icing of the liquid. Furthermore, the liquid quenching apparatus 1 controls the flow rate of the liquid introduced into the gap G by adjusting the valve opening degree of the valve 55, and controls both the flow rate of the refrigerant and the temperature of the refrigerant. May be changed.
(制御部)
 図6は、制御部の構成を示す模式図である。図2に示すように、液体急冷装置1は、制御部51を有する。制御部51は、例えば、PLC(Programmable Logic Controller)である。PLCは、入力される入力信号の変化に応じて、出力する出力信号を変化させる制御装置である。図6に示すように、制御部51は、入力回路51aと、中央演算処理装置であるCPU(Central Processing Unit)51bと、記憶装置であるメモリ51cと、出力回路51dと、を備える。出力信号を変化させる条件は、メモリ51cにプログラムとして記憶されている。メモリ51cに記憶させるプログラムは、例えば、電気回路図を記号化したラダー図で記述される。また、メモリ51cは、バルブ55のバルブ開度の設定値と、しきい値として容器91に注出する液体の重量の設定値と冷却管31の表面温度の設定値と、を記憶しておくことができる。CPU51bは、メモリ51cに記憶されたプログラムにしたがって、入力信号としきい値との比較を行い、比較結果に応じて出力信号を変化させる。制御部51は、メモリ51cに記憶させるプログラムや設定値を変更することで、出力信号を変化させる条件を変更することができる。
(Control part)
FIG. 6 is a schematic diagram illustrating the configuration of the control unit. As shown in FIG. 2, the liquid quenching apparatus 1 includes a control unit 51. The control unit 51 is, for example, a PLC (Programmable Logic Controller). The PLC is a control device that changes an output signal to be output in accordance with a change in an input signal that is input. As shown in FIG. 6, the control unit 51 includes an input circuit 51a, a central processing unit (CPU) 51b that is a central processing unit, a memory 51c that is a storage device, and an output circuit 51d. Conditions for changing the output signal are stored as a program in the memory 51c. The program stored in the memory 51c is described by a ladder diagram that symbolizes an electric circuit diagram, for example. Further, the memory 51c stores a set value of the valve opening of the valve 55, a set value of the weight of the liquid poured into the container 91 as a threshold value, and a set value of the surface temperature of the cooling pipe 31. be able to. The CPU 51b compares the input signal with the threshold value according to the program stored in the memory 51c, and changes the output signal according to the comparison result. The control unit 51 can change the condition for changing the output signal by changing the program or setting value stored in the memory 51c.
 メモリ51cに記憶させておくバルブ55のバルブ開度の設定値および容器91に注出する液体の重量の設定値は、制御部51に接続されたバルブ設定部62および重量設定部63によって調節可能になっている。バルブ設定部62は、図1に示すように筐体100の外壁に配置され、バルブ55のバルブ開度が数字で表示される表示部62aと、当該数字を上下させる2つの押しボタン62b、62cとを有する。バルブ設定部62は、押しボタン62b、62cの操作に応じてメモリ51cに記憶させておくバルブ55のバルブ開度の設定値を変更し、表示部62aにバルブ開度を数字として表示することで操作者にバルブ開度の設定値を知らせることができる。重量設定部63は、例えば、図1に示すように筐体100の外壁に配置されるダイヤルである。重量設定部63は、回転操作に応じてメモリ51cに記憶させておく容器91に注出する液体の重量の設定値を変更することができる。例えば、重量設定部63が時計回りに回転させられるほど、メモリ51cに記憶させておく容器91に注出する液体の重量の設定値が大きくなり、重量設定部63が反時計回りに回転させられるほど、メモリ51cに記憶させておく容器91に注出する液体の重量の設定値が小さくなる。なお、バルブ設定部62および重量設定部63の位置や構成は上述したものに限らない。例えば、バルブ設定部62および重量設定部63は、タッチパネル付き液晶表示装置に表示されてもよい。バルブ設定部62および重量設定部63がタッチパネル付き液晶表示装置に表示される場合、表示されたバルブ設定部62および重量設定部63に対して指等が接触または近接することによって、バルブ55のバルブ開度の設定値および容器91に注出する液体の重量の設定値が変更される。 The set value of the valve opening of the valve 55 and the set value of the weight of the liquid dispensed into the container 91 stored in the memory 51c can be adjusted by the valve setting unit 62 and the weight setting unit 63 connected to the control unit 51. It has become. As shown in FIG. 1, the valve setting unit 62 is arranged on the outer wall of the housing 100, and displays a display unit 62a in which the valve opening degree of the valve 55 is displayed in numbers, and two push buttons 62b and 62c for moving the numbers up and down. And have. The valve setting unit 62 changes the set value of the valve opening of the valve 55 stored in the memory 51c in accordance with the operation of the push buttons 62b and 62c, and displays the valve opening as a number on the display unit 62a. The operator can be notified of the set value of the valve opening. The weight setting unit 63 is, for example, a dial disposed on the outer wall of the housing 100 as shown in FIG. The weight setting unit 63 can change the set value of the weight of the liquid poured out into the container 91 that is stored in the memory 51c according to the rotation operation. For example, as the weight setting unit 63 is rotated clockwise, the set value of the weight of the liquid to be poured into the container 91 stored in the memory 51c increases, and the weight setting unit 63 is rotated counterclockwise. The set value of the weight of the liquid poured out into the container 91 stored in the memory 51c becomes smaller. The positions and configurations of the valve setting unit 62 and the weight setting unit 63 are not limited to those described above. For example, the valve setting unit 62 and the weight setting unit 63 may be displayed on a liquid crystal display device with a touch panel. When the valve setting unit 62 and the weight setting unit 63 are displayed on a liquid crystal display device with a touch panel, a finger or the like touches or comes close to the displayed valve setting unit 62 and the weight setting unit 63, so that the valve 55 The set value of the opening and the set value of the weight of the liquid poured out into the container 91 are changed.
 図2に示すように、制御部51は、重量計57と、温度センサ59と、モータ41と、バルブ55と、冷却装置56とに接続されている。重量計57は、測定した重量を電気信号として制御部51に送ることができる。温度センサ59は、測定した冷却管31の表面温度を電気信号として制御部51に送ることができる。モータ41は、制御部51から電気信号を受け取り、当該電気信号に応じて駆動を開始または停止することができる。バルブ55は、制御部51から電気信号を受け取り、当該電気信号に応じてバルブ55に備えられるステッピングモータが駆動し開閉動作を行うことができる。また、制御部51がバルブ55へ送る電気信号は、メモリ51cに記憶されたバルブ開度の設定値に応じて変化する。バルブ55は、制御部51から送られる電気信号の変化に応じて、バルブ開度を増減させることができる。冷却装置56は、制御部51から電気信号を受け取り、冷却を開始または停止することができる。冷却装置56の冷却温度は、例えば、メモリ51cに記憶された冷却管31の表面温度の設定値に応じて変化する。メモリ51cに記憶された冷却管31の表面温度の設定値は、例えば、メモリ51cに記憶されたプログラムを変更することによって変更することができる。 As shown in FIG. 2, the control unit 51 is connected to a weight scale 57, a temperature sensor 59, a motor 41, a valve 55, and a cooling device 56. The weight scale 57 can send the measured weight to the control unit 51 as an electrical signal. The temperature sensor 59 can send the measured surface temperature of the cooling pipe 31 to the control unit 51 as an electrical signal. The motor 41 can receive an electric signal from the control unit 51 and can start or stop driving in accordance with the electric signal. The valve 55 receives an electrical signal from the control unit 51, and a stepping motor provided in the valve 55 can be driven to perform an opening / closing operation in accordance with the electrical signal. The electrical signal sent from the control unit 51 to the valve 55 changes according to the set value of the valve opening stored in the memory 51c. The valve 55 can increase or decrease the valve opening according to a change in the electrical signal sent from the control unit 51. The cooling device 56 can receive an electrical signal from the control unit 51 and start or stop cooling. For example, the cooling temperature of the cooling device 56 changes according to the set value of the surface temperature of the cooling pipe 31 stored in the memory 51c. The set value of the surface temperature of the cooling pipe 31 stored in the memory 51c can be changed, for example, by changing a program stored in the memory 51c.
 また、図1に示すように、液体急冷装置1は、電源スイッチ60と、作動スイッチ61とを備える。制御部51は、電源スイッチ60および作動スイッチ61に接続されている。電源スイッチ60および作動スイッチ61は、例えば押しボタンである。液体急冷装置1は、電源に接続されており、電源スイッチ60が押圧されることによって電源との導通状態が切り換えられる。例えば、液体急冷装置1は、電源との導通状態を保たれている間は冷却装置56を稼働させて冷却装置56内の冷媒を冷却している。液体急冷装置1は、電源スイッチ60の操作によって電源との導通状態を保たれた状態で作動スイッチ61が押圧されることで、液体を注出する動作を開始する。 Further, as shown in FIG. 1, the liquid quenching apparatus 1 includes a power switch 60 and an operation switch 61. The control unit 51 is connected to the power switch 60 and the operation switch 61. The power switch 60 and the operation switch 61 are, for example, push buttons. The liquid quenching apparatus 1 is connected to a power source, and when the power switch 60 is pressed, the conduction state with the power source is switched. For example, the liquid quenching apparatus 1 operates the cooling device 56 to cool the refrigerant in the cooling device 56 while the electrical connection with the power source is maintained. The liquid quenching apparatus 1 starts the operation of dispensing the liquid when the operation switch 61 is pressed in a state where the electrical connection with the power source is maintained by the operation of the power switch 60.
(液体の注出方法)
 図7は、液体急冷装置を用いて、氷結した液体を注出する方法のフローチャートである。本実施形態に係る液体急冷装置1を用いた液体の注出方法は、冷却管31の冷却を開始する工程(ステップS1)と、温度センサ59を用いて冷却管31の表面温度を測定する工程(ステップS2)と、冷却管31の表面温度としきい値(冷却管31の表面温度の設定値)との比較を行う工程(ステップS3)と、氷結した液体が容器91に注出される工程(ステップS4)と、重量計57を用いて容器91に注出された液体の重量を測定する工程(ステップS5)と、容器91に注出された液体の重量としきい値(容器91に注出する液体の重量の設定値)との比較を行う工程(ステップS6)と、液体の注出を停止する工程(ステップS7)と、を含む。液体急冷装置1は、電源との導通状態が保たれた状態で作動スイッチ61が押圧されると、ステップS1からステップS7までを自動で行うことができる。
(Liquid pouring method)
FIG. 7 is a flowchart of a method for dispensing frozen liquid using a liquid quenching apparatus. The liquid pouring method using the liquid quenching apparatus 1 according to the present embodiment includes a step of starting cooling of the cooling pipe 31 (step S1) and a step of measuring the surface temperature of the cooling pipe 31 using the temperature sensor 59. (Step S2), a step of comparing the surface temperature of the cooling pipe 31 and a threshold value (set value of the surface temperature of the cooling pipe 31) (Step S3), and a step of pouring the frozen liquid into the container 91 ( Step S4), the step of measuring the weight of the liquid poured out into the container 91 using the weighing scale 57 (Step S5), the weight of the liquid poured out into the container 91 and the threshold value (poured into the container 91) (Step S6) and a step of stopping the liquid dispensing (step S7). The liquid quenching apparatus 1 can automatically perform steps S1 to S7 when the operation switch 61 is pressed in a state where the electrical connection with the power source is maintained.
 まず、液体急冷装置1は、冷却管31の冷却を開始する(ステップS1)。具体的には、作動スイッチ61が押圧されることによって制御部51から冷却装置56に電気信号が送られる。そして、制御部51から電気信号を受け取った冷却装置56は、冷却装置56内で冷却されていた冷媒を冷媒導入路71および冷媒排出路72によって循環させる。冷媒が循環することで、冷却管31が冷却され始める。 First, the liquid quenching apparatus 1 starts cooling the cooling pipe 31 (step S1). Specifically, when the operation switch 61 is pressed, an electrical signal is sent from the control unit 51 to the cooling device 56. Then, the cooling device 56 that has received the electrical signal from the control unit 51 circulates the refrigerant cooled in the cooling device 56 through the refrigerant introduction path 71 and the refrigerant discharge path 72. As the refrigerant circulates, the cooling pipe 31 starts to be cooled.
 次に、温度センサ59を用いて冷却管31の表面温度が測定される(ステップS2)。温度センサ59は、例えば、一定時間毎に冷却管31の表面温度を測定し、当該表面温度を電気信号として制御部51に送る。制御部51に送られた電気信号は、入力回路51aを介してCPU51bに送られる。CPU51bは、電気信号として送られてきた冷却管31の表面温度としきい値としてメモリ51cに記憶されている冷却管31の表面温度の設定値との比較を行う。 Next, the surface temperature of the cooling pipe 31 is measured using the temperature sensor 59 (step S2). For example, the temperature sensor 59 measures the surface temperature of the cooling pipe 31 at regular intervals, and sends the surface temperature as an electrical signal to the control unit 51. The electrical signal sent to the control unit 51 is sent to the CPU 51b via the input circuit 51a. The CPU 51b compares the surface temperature of the cooling pipe 31 sent as an electric signal with the set value of the surface temperature of the cooling pipe 31 stored in the memory 51c as a threshold value.
 次に、CPU51bに電気信号として送られてきた冷却管31の表面温度がしきい値(冷却管31の表面温度の設定値)以上である場合(ステップS3、No)、ステップS2に戻り、温度センサ59が再び冷却管31の表面温度を測定する。また、CPU51bに電気信号として送られてきた冷却管31の表面温度がしきい値(冷却管31の表面温度の設定値)より低い場合(ステップS3、Yes)、工程がステップS4に進む。 Next, when the surface temperature of the cooling pipe 31 sent as an electrical signal to the CPU 51b is equal to or higher than a threshold value (set value of the surface temperature of the cooling pipe 31) (step S3, No), the process returns to step S2, and the temperature The sensor 59 measures the surface temperature of the cooling pipe 31 again. If the surface temperature of the cooling pipe 31 sent as an electrical signal to the CPU 51b is lower than the threshold value (set value of the surface temperature of the cooling pipe 31) (step S3, Yes), the process proceeds to step S4.
 次に、バルブ55が開かれることで液体が間隙Gに導入され、その後氷結した液体が図1に示した容器91に注出される(ステップS4)。具体的には、制御部51の出力回路51dからバルブ55およびモータ41に電気信号が送られることで、バルブ55が開かれ、モータ41が駆動する。バルブ55が開かれると、液体タンク53に貯留された液体が予冷装置54を通って間隙Gに導入される。間隙Gに導入された液体は、冷却管31の外壁に接触するため氷結し、冷却管31の外壁に付着する。また、モータ41が駆動しているため、被覆管21が回転軸Zrを中心に回転している。これにより、螺旋状の凸部22が回転するので、冷却管31の外壁に付着した液体を掻きとって下方へ搬送する。下方へ搬送された液体は、間隙Gの第2端部G2からアタッチメント21a側に排出され、アタッチメント21aで整流される。その後、氷結した液体は、アタッチメント21aの下端から落下し、容器91に注出される。 Next, the valve 55 is opened to introduce liquid into the gap G, and then the frozen liquid is poured into the container 91 shown in FIG. 1 (step S4). Specifically, an electric signal is sent from the output circuit 51d of the control unit 51 to the valve 55 and the motor 41, whereby the valve 55 is opened and the motor 41 is driven. When the valve 55 is opened, the liquid stored in the liquid tank 53 is introduced into the gap G through the precooling device 54. The liquid introduced into the gap G freezes to contact the outer wall of the cooling pipe 31 and adheres to the outer wall of the cooling pipe 31. Further, since the motor 41 is driven, the cladding tube 21 rotates about the rotation axis Zr. Thereby, since the helical convex part 22 rotates, the liquid adhering to the outer wall of the cooling pipe 31 is scraped and conveyed below. The liquid transported downward is discharged from the second end G2 of the gap G to the attachment 21a side and is rectified by the attachment 21a. Thereafter, the frozen liquid falls from the lower end of the attachment 21 a and is poured out into the container 91.
 次に、重量計57を用いて容器91に注出された液体の重量が測定される(ステップS5)。重量計57は、例えば、ステップS5に至るまでのステップ(例えばステップS4)において容器91のみの重量を測定し、制御部51のメモリ51cに予め記憶させている。ステップS5において重量計57は、例えば、一定時間毎に容器91と容器91に注出された液体とを合わせた重量を測定し、当該重量を電気信号として制御部51に送る。制御部51に送られた電気信号は、入力回路51aを介してCPU51bに送られる。CPU51bは、電気信号として送られてきた重量とメモリ51cに予め記憶させていた容器91のみの重量との差分を算出する。当該差分は、容器91に注出された液体の重量である。 Next, the weight of the liquid poured out into the container 91 is measured using the weight scale 57 (step S5). For example, the weight scale 57 measures the weight of only the container 91 in the steps up to step S5 (for example, step S4) and stores the weight in advance in the memory 51c of the control unit 51. In step S5, the weigh scale 57 measures the weight of the container 91 and the liquid poured into the container 91 at regular intervals, for example, and sends the weight to the control unit 51 as an electrical signal. The electrical signal sent to the control unit 51 is sent to the CPU 51b via the input circuit 51a. The CPU 51b calculates the difference between the weight sent as an electrical signal and the weight of only the container 91 stored in advance in the memory 51c. The difference is the weight of the liquid poured out into the container 91.
 次に、ステップS5で算出した容器91に注出された液体の重量がしきい値(容器91に注出する液体の重量の設定値)を越えない場合(ステップS6、No)、ステップS5に戻り、重量計57が再び容器91と注出された液体とを合わせた重量を測定する。また、ステップS5で算出した容器91に注出された液体の重量がしきい値(容器91に注出する液体の重量の設定値)を越える場合(ステップS6、Yes)、工程がステップS7に進む。 Next, when the weight of the liquid poured into the container 91 calculated in step S5 does not exceed a threshold value (a set value of the weight of the liquid poured into the container 91) (No in step S6), the process proceeds to step S5. Returning, the weigh scale 57 again measures the combined weight of the container 91 and the poured liquid. If the weight of the liquid poured into the container 91 calculated in step S5 exceeds a threshold value (set value of the weight of the liquid poured into the container 91) (step S6, Yes), the process goes to step S7. move on.
 次に、バルブ55が閉じられ、被覆管21の回転が停止することで液体の注出が停止される(ステップS7)。具体的には、制御部51の出力回路51dからバルブ55に電気信号が送られることで、バルブ55が閉じられる。バルブ55が閉じられると、液体タンク53に貯留された液体が間隙Gに導入されなくなる。そして、間隙Gに残っている氷結した液体を外部に排出するために必要な所定時間の後、制御部51の出力回路51dからモータ41に電気信号が送られることで、モータ41の駆動が停止し、被覆管21の回転が停止する。 Next, the valve 55 is closed and the discharge of the liquid is stopped by stopping the rotation of the cladding tube 21 (step S7). Specifically, the valve 55 is closed by sending an electric signal from the output circuit 51 d of the control unit 51 to the valve 55. When the valve 55 is closed, the liquid stored in the liquid tank 53 is not introduced into the gap G. Then, after a predetermined time required for discharging the frozen liquid remaining in the gap G to the outside, an electric signal is sent from the output circuit 51d of the control unit 51 to the motor 41, so that the driving of the motor 41 is stopped. Then, the rotation of the cladding tube 21 stops.
 以上述べたように、本実施形態に係る液体急冷装置1は、外壁を冷却することができる筒状の冷却管31と、冷却管31を覆い回転軸Zrを中心に回転運動することができる筒状の被覆管21と、冷却管31の外壁と被覆管21の内壁との間の間隙Gに液体を導入することができる液体導入路73と、を備える。また、冷却管31の外壁の表面温度は、当該液体の凝固点以下に冷却される。また、被覆管21は、内壁に螺旋状の凸部22を有する。 As described above, the liquid quenching apparatus 1 according to the present embodiment includes the cylindrical cooling pipe 31 that can cool the outer wall, and the cylinder that covers the cooling pipe 31 and can rotate around the rotation axis Zr. And a liquid introduction path 73 through which liquid can be introduced into the gap G between the outer wall of the cooling pipe 31 and the inner wall of the cladding pipe 21. Further, the surface temperature of the outer wall of the cooling pipe 31 is cooled below the freezing point of the liquid. The cladding tube 21 has a spiral convex portion 22 on the inner wall.
 これにより、間隙Gに導入された液体は、凸部22に接触するので凸部22に沿って緩やかに搬送されることができる。液体は、緩やかに搬送されながら冷却管31に接触することで、冷却管31の外壁で氷結し付着する。また、被覆管21が回転することができるので、冷却管31の外壁に付着した液体は、凸部22によって掻きとられて搬送される。そして、氷結した液体は、容器91に注出される。このように、液体急冷装置1は、容器91に注出する直前に液体を氷結させることができる。よって、本実施形態に係る液体急冷装置1は、氷結した液体を新鮮な状態で注出することができる。 Thereby, since the liquid introduced into the gap G comes into contact with the convex portion 22, it can be gently conveyed along the convex portion 22. The liquid is frozen and adheres to the outer wall of the cooling pipe 31 by contacting the cooling pipe 31 while being gently conveyed. Moreover, since the cladding tube 21 can rotate, the liquid adhering to the outer wall of the cooling tube 31 is scraped by the convex part 22 and conveyed. Then, the frozen liquid is poured out into the container 91. Thus, the liquid quenching apparatus 1 can freeze the liquid immediately before pouring into the container 91. Therefore, the liquid quenching apparatus 1 according to the present embodiment can dispense the frozen liquid in a fresh state.
 また、本実施形態において、液体導入路73の一端は、間隙Gの一方の端部である第1端部G1に配置される。間隙Gの他方の端部である第2端部G2は、第1端部G1よりも鉛直方向の下側に配置される。これにより、氷結した液体を搬送するための力として凸部22による押圧力に加えて重量を利用することができる。よって、本実施形態に係る液体急冷装置1は、氷結した液体をより効率的に容器91に注出することができる。 Further, in the present embodiment, one end of the liquid introduction path 73 is disposed at the first end G1 that is one end of the gap G. The second end G2, which is the other end of the gap G, is disposed below the first end G1 in the vertical direction. Thereby, in addition to the pressing force by the convex part 22, weight can be utilized as force for conveying the frozen liquid. Therefore, the liquid quenching apparatus 1 according to the present embodiment can pour the frozen liquid into the container 91 more efficiently.
 また、本実施形態において、凸部22は、被覆管21の内壁のうち冷却管31の外壁と対向する部分において回転軸Zr方向の一端から他端に亘って設けられる。被覆管21の内壁と冷却管31の外壁とが対向する部分は、比較的幅が狭くなっており液体が氷結しやすい部分である。仮に、凸部22が被覆管21の内壁のうち冷却管31の外壁と対向する部分において回転軸Zr方向の途中まで設けられている場合、凸部22が途切れる部分に氷結した液体が留まり排出されなくなる可能性がある。これに対して、液体急冷装置1は、凸部22が当該部分の一端から他端に亘って設けられるので、氷結した液体をより確実に外部に向けて搬送することができる。このため、液体急冷装置1は、氷結した液体が間隙Gの途中で溜まり排出されなくなる事態を抑制することができる。 Further, in the present embodiment, the convex portion 22 is provided from one end to the other end in the direction of the rotation axis Zr in the portion of the inner wall of the cladding tube 21 that faces the outer wall of the cooling tube 31. The portion where the inner wall of the cladding tube 21 and the outer wall of the cooling tube 31 face each other is a portion where the width is relatively narrow and the liquid is likely to freeze. If the convex portion 22 is provided partway along the rotation axis Zr in the portion of the inner wall of the cladding tube 21 that faces the outer wall of the cooling tube 31, the frozen liquid stays and is discharged at the portion where the convex portion 22 is interrupted. There is a possibility of disappearing. On the other hand, since the convex part 22 is provided over the other end from the one end of the said part, the liquid quenching apparatus 1 can convey the frozen liquid more reliably toward the exterior. For this reason, the liquid quenching apparatus 1 can suppress a situation in which the frozen liquid accumulates in the middle of the gap G and is not discharged.
 また、本実施形態において、被覆管21は、透明または透光性を有する。これにより、操作者は、間隙Gを外部から視認することができる。このため、液体急冷装置1は、故障が起こった場合等の点検の際に不具合が生じている箇所を見つけやすくすることができる。また、操作者は、間隙Gに液体が導入され氷結し、螺旋状の凸部22によって掻きとられて下方へ搬送される一連の様子を視認することができる。このように液体が瞬時に氷結し、螺旋状の凸部22によって搬送される様子は、操作者にとって物珍しいものである可能性が高い。よって、液体急冷装置1は、液体を注出する様子を見せることで嗜好性を高めることができる。 In this embodiment, the cladding tube 21 is transparent or translucent. Thereby, the operator can visually recognize the gap G from the outside. For this reason, the liquid quenching apparatus 1 can make it easy to find a location where a failure occurs during an inspection such as when a failure occurs. Further, the operator can visually recognize a series of states in which the liquid is introduced into the gap G, freezes, and is scraped off by the spiral convex portion 22 and conveyed downward. It is highly likely that the state in which the liquid freezes instantaneously and is conveyed by the spiral convex portion 22 is unusual for the operator. Therefore, the liquid quenching apparatus 1 can improve palatability by showing a mode that liquid is poured out.
 また、本実施形態に係る液体急冷装置1は、間隙に導入する前記液体を予め冷却することができる予冷装置を備える。これにより、液体導入路73から間隙Gに導入される液体が予め低温になるので、液体急冷装置1は、間隙Gにおいて液体が氷結するまでの時間を短縮することができる。よって、液体急冷装置1は、間隙Gにおける液体の氷結をより確実に行うことができる。 Moreover, the liquid quenching apparatus 1 according to the present embodiment includes a precooling apparatus that can cool the liquid introduced into the gap in advance. Thereby, since the liquid introduced into the gap G from the liquid introduction path 73 has a low temperature in advance, the liquid quenching apparatus 1 can shorten the time until the liquid freezes in the gap G. Therefore, the liquid quenching apparatus 1 can more reliably freeze the liquid in the gap G.
 また、特許文献1のような従来技術においては、タンクに貯留される氷結した食品のすべてを注出することが困難であるため、タンクの底に残存した食品が無駄になる可能性があった。これに対して、本実施形態に係る液体急冷装置1は、制御部51によって重量計57から送られてくる情報に応じてバルブ55を開閉することができる。このため、液体急冷装置1は、氷結した液体を必要な量だけ注出することができる。よって、液体急冷装置1は、無駄になる液体の量を抑制することができる。 Further, in the conventional technology such as Patent Document 1, since it is difficult to pour out all the frozen food stored in the tank, the food remaining on the bottom of the tank may be wasted. . On the other hand, the liquid quenching apparatus 1 according to the present embodiment can open and close the valve 55 according to information sent from the weighing scale 57 by the control unit 51. For this reason, the liquid quenching apparatus 1 can pour out a necessary amount of frozen liquid. Therefore, the liquid quenching apparatus 1 can suppress the amount of wasted liquid.
 なお、液体急冷装置1は、被覆管21およびアタッチメント21aの外壁を覆う円筒状のカバーを備えていてもよい。液体急冷装置1は、カバーを備えることで、断熱性を向上させることができ、間隙Gの内部の温度を保ちやすくすることができる。また、例えば、カバーは、ポリカーボネート等の透明な樹脂によって形成されていることが望ましい。カバーが透明である場合、操作者は、カバーおよび被覆管21を通して間隙Gを外部から視認することができる。 The liquid quenching apparatus 1 may include a cylindrical cover that covers the outer wall of the cladding tube 21 and the attachment 21a. By providing the cover, the liquid quenching apparatus 1 can improve heat insulation and can easily maintain the temperature inside the gap G. For example, the cover is preferably formed of a transparent resin such as polycarbonate. When the cover is transparent, the operator can visually recognize the gap G from the outside through the cover and the cladding tube 21.
 また、本実施形態において、冷却管31および被覆管21は、鉛直方向に軸方向を有する円筒状であったが、鉛直方向に対して傾斜する方向に軸方向を有する円筒状であってもよいし、水平方向に軸方向を有する円筒状であってもよい。ただし、上述したように、冷却管31および被覆管21が鉛直方向に軸方向を有する円筒状または鉛直方向に対して傾斜する方向に軸方向を有する円筒状である場合の方が、氷結した液体を搬送するための力として凸部22による押圧力に加えて重量を利用することができる点で望ましい。 In the present embodiment, the cooling pipe 31 and the cladding pipe 21 have a cylindrical shape having an axial direction in the vertical direction, but may have a cylindrical shape having an axial direction in a direction inclined with respect to the vertical direction. However, it may be cylindrical with an axial direction in the horizontal direction. However, as described above, in the case where the cooling pipe 31 and the cladding pipe 21 have a cylindrical shape having an axial direction in the vertical direction or a cylindrical shape having an axial direction in a direction inclined with respect to the vertical direction, the frozen liquid It is desirable in that the weight can be used in addition to the pressing force by the convex portion 22 as a force for conveying the sheet.
(変形例1)
 図8は、変形例1に係る液体急冷装置の構成を模式的に表した模式図である。変形例1に係る液体急冷装置1Aは、冷却管31Aの形状が上述した実施形態の冷却管31と異なることを特徴としている。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
(Modification 1)
FIG. 8 is a schematic diagram schematically illustrating the configuration of the liquid quenching apparatus according to the first modification. The liquid quenching apparatus 1A according to Modification 1 is characterized in that the shape of the cooling pipe 31A is different from the cooling pipe 31 of the above-described embodiment. Note that the same components as those described in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.
 図8に示すように、変形例1に係る液体急冷装置1Aは冷却管31Aを備える。冷却管31Aは、鉛直方向の上下方向に端面を有する円筒状の部材である。例えば、冷却管31Aは、ステンレス鋼によって形成されている。冷却管31Aは、下方の端部に外径が下方に向かって漸減する絞り部31sを有する。絞り部31sの下方の端面は、底部31bAによって塞がれている。絞り部31sの外壁は、アタッチメント21aの絞り部212の内壁に対向している。これにより、絞り部31sの外壁とアタッチメント21aの絞り部212の内壁との間には、間隙GAが生じる。間隙GAの上端部は、間隙Gに接続され、間隙GAの下端部は、整流部213に接続されている。例えば、間隙GAの幅は、間隙Gの幅に等しくなっている。 As shown in FIG. 8, the liquid quenching apparatus 1A according to Modification 1 includes a cooling pipe 31A. The cooling pipe 31A is a cylindrical member having an end face in the vertical direction. For example, the cooling pipe 31A is made of stainless steel. The cooling pipe 31A has a constricted portion 31s whose outer diameter gradually decreases downward at the lower end. The lower end surface of the throttle portion 31s is closed by the bottom portion 31bA. The outer wall of the throttle part 31s faces the inner wall of the throttle part 212 of the attachment 21a. Thereby, a gap GA is generated between the outer wall of the throttle portion 31s and the inner wall of the throttle portion 212 of the attachment 21a. The upper end of the gap GA is connected to the gap G, and the lower end of the gap GA is connected to the rectifying unit 213. For example, the width of the gap GA is equal to the width of the gap G.
 上述した実施形態においては、アタッチメント21aの内部空間が大きいため、当該内部空間に氷結した液体が一定量溜まった後に整流部213を通過する可能性がある。これに対して、変形例1に係る液体急冷装置1Aは、間隙GAを有するため、整流部213を通過する氷結した液体の量をより安定させることができる。これにより、氷結した液体が容器91に一定量ずつ注出されやすくなる。よって、変形例1に係る液体急冷装置1Aは、氷結した液体が容器91内でより隙間なく盛り付けられるようにすることができる。 In the above-described embodiment, since the internal space of the attachment 21a is large, there is a possibility that a fixed amount of liquid frozen in the internal space will pass through the rectifying unit 213. On the other hand, since the liquid quenching apparatus 1A according to Modification 1 has the gap GA, the amount of the frozen liquid that passes through the rectifying unit 213 can be further stabilized. As a result, the frozen liquid is easily poured into the container 91 by a certain amount. Therefore, the liquid quenching apparatus 1 </ b> A according to the modified example 1 can allow the frozen liquid to be placed in the container 91 without gaps.
(変形例2)
 図9は、変形例2に係る液体急冷装置の断面を模式的に表した模式図である。図10は、変形例2に係る内筒の形状等を示す説明図である。変形例2に係る液体急冷装置1Bは、冷却管31の内側に内筒80を有することを特徴としている。内筒80は、例えばポリカーボネートで形成されており、冷却管31の内側に設けられる。内筒80は、側部81と、蓋部82と、底部83と、を有する。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
(Modification 2)
FIG. 9 is a schematic diagram schematically showing a cross section of the liquid quenching apparatus according to the second modification. FIG. 10 is an explanatory diagram illustrating the shape of the inner cylinder according to the second modification. The liquid quenching apparatus 1B according to Modification 2 is characterized by having an inner cylinder 80 inside the cooling pipe 31. The inner cylinder 80 is made of polycarbonate, for example, and is provided inside the cooling pipe 31. The inner cylinder 80 has a side part 81, a lid part 82, and a bottom part 83. Note that the same components as those described in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.
 側部81は、外径が冷却管31の内径よりも小さい円筒状であって、表面に複数の貫通孔81hを有している。これにより、側部81の外壁と冷却管31との間には間隙GBが生ずる。蓋部82は、外径が冷却管31の内径に略等しい円盤状の部材であって、側部81の鉛直方向上側の端部を塞いでいる。底部83は、外径が冷却管31の内径に略等しい円盤状の部材であって、側部81の鉛直方向下側の端部を塞いでいる。蓋部82および底部83が冷却管31の内壁に接触することで、内筒80の径方向の動きが規制されている。また、底部83の鉛直方向下側の面には、支持部材84が備えられている。支持部材84は、一端を底部83に接触させ他端を冷却管31の底面31bに接触させて、内筒80を軸方向に支持している。 The side part 81 has a cylindrical shape whose outer diameter is smaller than the inner diameter of the cooling pipe 31, and has a plurality of through holes 81h on the surface. Thereby, a gap GB is generated between the outer wall of the side portion 81 and the cooling pipe 31. The lid portion 82 is a disk-shaped member whose outer diameter is substantially equal to the inner diameter of the cooling pipe 31, and closes the end portion on the upper side in the vertical direction of the side portion 81. The bottom 83 is a disk-shaped member whose outer diameter is substantially equal to the inner diameter of the cooling pipe 31, and closes the end of the side portion 81 on the lower side in the vertical direction. The movement of the inner cylinder 80 in the radial direction is restricted by the lid portion 82 and the bottom portion 83 coming into contact with the inner wall of the cooling pipe 31. A support member 84 is provided on the lower surface of the bottom 83 in the vertical direction. The support member 84 supports the inner cylinder 80 in the axial direction by bringing one end into contact with the bottom 83 and the other end into contact with the bottom surface 31 b of the cooling pipe 31.
 変形例2に係る液体急冷装置1Bは、冷媒導入路71Bおよび冷媒排出路72Bを有する。冷媒導入路71Bは、冷媒を内筒80の内部へ供給するための管であって、例えばステンレス鋼で形成されている。内筒80の内部に位置する冷媒導入路71Bの端部71Beは、開口しており、図10に示すように底部83付近まで達している。冷媒排出路72Bは、冷媒を内筒80の内部から外部へ排出するための管であって、例えばステンレス鋼で形成されている。内筒80の内部に位置する冷媒排出路72Bの端部72Beは、開口しており、図10に示すように蓋部82付近に位置している。なお、端部71Beおよび端部72Beの位置は、上述した位置に限らない。 The liquid quenching apparatus 1B according to Modification 2 has a refrigerant introduction path 71B and a refrigerant discharge path 72B. The refrigerant introduction path 71B is a pipe for supplying the refrigerant to the inside of the inner cylinder 80, and is formed of, for example, stainless steel. The end portion 71Be of the refrigerant introduction path 71B located inside the inner cylinder 80 is open and reaches the vicinity of the bottom 83 as shown in FIG. The refrigerant discharge path 72B is a pipe for discharging the refrigerant from the inside of the inner cylinder 80 to the outside, and is formed of, for example, stainless steel. An end portion 72Be of the refrigerant discharge path 72B located inside the inner cylinder 80 is open and is located near the lid portion 82 as shown in FIG. Note that the positions of the end 71Be and the end 72Be are not limited to the positions described above.
 変形例2に係る液体急冷装置1Bにおいて、内筒80の内部を含めた冷却管31の内部は、冷媒で満たされている。冷却装置56によって冷却された冷媒は、冷媒導入路71Bの端部71Beから内筒80の内部に供給される。内筒80の内部に供給された冷媒は、貫通孔81hを通って間隙GBへ移動する。間隙GBに達した冷媒は、冷却管31の熱を奪うことで冷却管31を冷却する。冷却管31から熱を受け取った冷媒は、貫通孔81hを通って内筒80の内部に戻り、冷媒排出路72Bの端部72Beから冷却管31の外部へ運ばれ、冷却装置56に戻される。このように、冷媒が冷媒導入路71B、間隙GB、冷媒排出路72Bおよび冷却装置56を循環することで、冷却管31の外壁の表面温度は、間隙Gに導入される液体の凝固点以下に冷却される。 In the liquid quenching apparatus 1B according to Modification 2, the inside of the cooling pipe 31 including the inside of the inner cylinder 80 is filled with the refrigerant. The refrigerant cooled by the cooling device 56 is supplied into the inner cylinder 80 from the end 71Be of the refrigerant introduction path 71B. The refrigerant supplied into the inner cylinder 80 moves to the gap GB through the through hole 81h. The refrigerant that has reached the gap GB takes the heat of the cooling pipe 31 to cool the cooling pipe 31. The refrigerant that has received heat from the cooling pipe 31 returns to the inside of the inner cylinder 80 through the through hole 81h, is carried to the outside of the cooling pipe 31 from the end 72Be of the refrigerant discharge path 72B, and is returned to the cooling device 56. Thus, the refrigerant circulates through the refrigerant introduction path 71B, the gap GB, the refrigerant discharge path 72B, and the cooling device 56, so that the surface temperature of the outer wall of the cooling pipe 31 is cooled below the freezing point of the liquid introduced into the gap G. Is done.
 液体急冷装置1Bは、冷媒を冷却管31の内壁に直接接触させるので、効率的に冷却管31を冷却することができる。また、内筒80の内部に供給された冷媒が断面積の小さい貫通孔81hを通って間隙GBへ移動するので、間隙GBにおける冷媒の流速が大きくなる。これにより、間隙GBにおける熱伝達率が大きくなるので、液体急冷装置1Bは、より効率的に冷却管31を冷却することができる。 Since the liquid quenching apparatus 1B directly contacts the refrigerant with the inner wall of the cooling pipe 31, the cooling pipe 31 can be efficiently cooled. Further, since the refrigerant supplied to the inside of the inner cylinder 80 moves to the gap GB through the through hole 81h having a small cross-sectional area, the flow rate of the refrigerant in the gap GB is increased. Thereby, since the heat transfer coefficient in the gap GB is increased, the liquid quenching apparatus 1B can cool the cooling pipe 31 more efficiently.
 また、仮に冷媒導入路71Bの端部71Beと冷媒排出路72Bの端部72Beとが軸方向において同じ位置にある場合、端部71Beから放出された冷媒が冷却管31と熱交換する前に端部72Beに達して冷却管31の外部へ排出される可能性が高くなる。これに対して、液体急冷装置1Bにおいては、端部71Beが底部83付近に位置し、端部72Beが蓋部82付近に位置しているので、端部71Beと端部72Beとが離れている。このため、液体急冷装置1Bは、冷媒が冷却管31と熱交換する前に冷却管31の外部へ排出される可能性を抑制することができる。 Also, if the end 71Be of the refrigerant introduction path 71B and the end 72Be of the refrigerant discharge path 72B are at the same position in the axial direction, the end of the refrigerant discharged from the end 71Be before heat exchange with the cooling pipe 31 is completed. The possibility of reaching the portion 72Be and being discharged to the outside of the cooling pipe 31 is increased. On the other hand, in the liquid quenching apparatus 1B, the end 71Be is located near the bottom 83 and the end 72Be is located near the lid 82, so the end 71Be and the end 72Be are separated from each other. . For this reason, the liquid quenching apparatus 1 </ b> B can suppress the possibility that the refrigerant is discharged to the outside of the cooling pipe 31 before exchanging heat with the cooling pipe 31.
1、1A 液体急冷装置
21 被覆管
21a アタッチメント
211 取付部
212 絞り部
213 整流部
22 凸部
23 歯車
23g 歯
24 保持リング
25 案内リング
26 ブラケット
27 案内板
31、31A 冷却管
31b 底面
31s 絞り部
32 キャップ
33 シール部材
34、35 補強部材
36 ブラケット
41 モータ
42 シャフト
43 歯車
43g 歯
51 制御部
51a 入力回路
51b CPU
51c メモリ
51d 出力回路
53 液体タンク
54 予冷装置
55 バルブ
56 冷却装置
57 重量計
58 加圧ボンベ
59 温度センサ
60 電源スイッチ
61 作動スイッチ
62 バルブ設定部
62a 表示部
62b、62c 押しボタン
63 重量設定部
71、71B 冷媒導入路
71Be 端部
72、72B 冷媒排出路
72Be 端部
73 液体導入路
74 連結路
75 液体タンク連結部
76 液体供給路
77 ガス供給路
80 内筒
81 側部
81h 貫通孔
82 蓋部
83 底部
84 支持部材
91 容器
100 筐体
101 容器保持部
G、GA 間隙
G1 第1端部
G2 第2端部
Zr 回転軸
1, 1A Liquid quenching device 21 Cladding tube 21a Attachment 211 Attachment portion 212 Restriction portion 213 Rectification portion 22 Convex portion 23 Gear 23g Tooth 24 Holding ring 25 Guide ring 26 Bracket 27 Guide plate 31, 31A Cooling pipe 31b Bottom surface 31s Restriction portion 32 Cap 33 Seal member 34, 35 Reinforcement member 36 Bracket 41 Motor 42 Shaft 43 Gear 43g Teeth 51 Control unit 51a Input circuit 51b CPU
51c Memory 51d Output circuit 53 Liquid tank 54 Precooling device 55 Valve 56 Cooling device 57 Weigh scale 58 Pressure cylinder 59 Temperature sensor 60 Power switch 61 Operation switch 62 Valve setting unit 62a Display unit 62b, 62c Push button 63 Weight setting unit 71, 71B Refrigerant introduction path 71Be End part 72, 72B Refrigerant discharge path 72Be End part 73 Liquid introduction path 74 Connection path 75 Liquid tank connection part 76 Liquid supply path 77 Gas supply path 80 Inner cylinder 81 Side part 81h Through hole 82 Cover part 83 Bottom part 84 Support member 91 Container 100 Case 101 Container holding part G, GA Gap G1 First end G2 Second end Zr Rotating shaft

Claims (5)

  1.  外壁を冷却することができる筒状の冷却管と、
     前記冷却管を覆い回転軸を中心に回転運動することができる筒状の被覆管と、
     前記冷却管の外壁と前記被覆管の内壁との間の間隙に液体を導入することができる液体導入路と、
     を備え、
     前記冷却管の外壁の表面温度は、前記液体の凝固点以下に冷却され、
     前記被覆管は、内壁に螺旋状の凸部を有する
     ことを特徴とする液体急冷装置。
    A cylindrical cooling pipe capable of cooling the outer wall;
    A cylindrical cladding tube covering the cooling tube and capable of rotating around the rotation axis;
    A liquid introduction path capable of introducing liquid into the gap between the outer wall of the cooling pipe and the inner wall of the cladding pipe;
    With
    The surface temperature of the outer wall of the cooling pipe is cooled below the freezing point of the liquid,
    The said cladding tube has a spiral convex part in an inner wall. The liquid quenching apparatus characterized by the above-mentioned.
  2.  前記液体導入路の一端は、前記間隙の一方の端部に配置され、
     前記間隙の他方の端部は、前記一方の端部よりも鉛直方向の下側に配置される
     ことを特徴とする請求項1に記載の液体急冷装置。
    One end of the liquid introduction path is disposed at one end of the gap,
    The liquid quenching apparatus according to claim 1, wherein the other end of the gap is disposed below the one end in the vertical direction.
  3.  前記凸部は、前記被覆管の内壁のうち前記冷却管の外壁と対向する部分において前記回転軸方向の一端から他端に亘って設けられる
     ことを特徴とする請求項1または2に記載の液体急冷装置。
    The liquid according to claim 1, wherein the convex portion is provided from one end to the other end in the rotation axis direction in a portion of the inner wall of the cladding tube that faces the outer wall of the cooling tube. Quenching device.
  4.  前記被覆管は、透明または透光性を有することを特徴とする請求項1~3のうちいずれか1項に記載の液体急冷装置。 The liquid quenching apparatus according to any one of claims 1 to 3, wherein the cladding tube is transparent or translucent.
  5.  前記間隙に導入する前記液体を予め冷却することができる予冷装置をさらに備える
     ことを特徴とする請求項1~4のうちいずれか1項に記載の液体急冷装置。
    The liquid quenching device according to any one of claims 1 to 4, further comprising a precooling device capable of precooling the liquid introduced into the gap.
PCT/JP2014/067338 2013-12-10 2014-06-30 Liquid rapid cooling device WO2015087569A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-255412 2013-12-10
JP2013255412A JP6077985B2 (en) 2013-12-10 2013-12-10 Liquid quenching device

Publications (1)

Publication Number Publication Date
WO2015087569A1 true WO2015087569A1 (en) 2015-06-18

Family

ID=53370890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067338 WO2015087569A1 (en) 2013-12-10 2014-06-30 Liquid rapid cooling device

Country Status (3)

Country Link
JP (1) JP6077985B2 (en)
TW (1) TW201524367A (en)
WO (1) WO2015087569A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104027A (en) * 2016-12-26 2018-07-05 アサヒビール株式会社 Beverage server

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3238740A (en) * 1964-01-17 1966-03-08 Anthony J Ross Auger ice maker
JPH02213669A (en) * 1989-02-10 1990-08-24 Takenaka Komuten Co Ltd Refrigerator for making ice
JPH0656665U (en) * 1992-12-28 1994-08-05 アイスマン製氷機工業株式会社 Ice machine
JP2000111219A (en) * 1998-10-09 2000-04-18 Fuji Electric Co Ltd Auger type icemaker
JP2003028546A (en) * 2001-07-11 2003-01-29 Mayekawa Mfg Co Ltd Method and device for ice making and concentrating aqueous solution and method for operating the device and ice-melting method
JP2003042619A (en) * 2001-07-30 2003-02-13 Matsushita Refrig Co Ltd Ice making device
JP2006023068A (en) * 2004-06-08 2006-01-26 Hoshizaki Electric Co Ltd Ice making machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3238740A (en) * 1964-01-17 1966-03-08 Anthony J Ross Auger ice maker
JPH02213669A (en) * 1989-02-10 1990-08-24 Takenaka Komuten Co Ltd Refrigerator for making ice
JPH0656665U (en) * 1992-12-28 1994-08-05 アイスマン製氷機工業株式会社 Ice machine
JP2000111219A (en) * 1998-10-09 2000-04-18 Fuji Electric Co Ltd Auger type icemaker
JP2003028546A (en) * 2001-07-11 2003-01-29 Mayekawa Mfg Co Ltd Method and device for ice making and concentrating aqueous solution and method for operating the device and ice-melting method
JP2003042619A (en) * 2001-07-30 2003-02-13 Matsushita Refrig Co Ltd Ice making device
JP2006023068A (en) * 2004-06-08 2006-01-26 Hoshizaki Electric Co Ltd Ice making machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104027A (en) * 2016-12-26 2018-07-05 アサヒビール株式会社 Beverage server

Also Published As

Publication number Publication date
JP2015114025A (en) 2015-06-22
JP6077985B2 (en) 2017-02-08
TW201524367A (en) 2015-07-01

Similar Documents

Publication Publication Date Title
US11122816B2 (en) Viscous semi-liquid food dispenser and method and system for controlling food characteristics
US11821415B2 (en) Liquid product dispensing system and method
US10286368B2 (en) Mixing device with anti-spoilage monitor
US20090100847A1 (en) Ice maker for refrigerator and driving method thereof
JP2009542536A (en) Liquid food dispenser apparatus and method
KR20180092859A (en) Machine for making food products in liquid or semi-liquid form
JP2011057239A (en) Hydration support device
JP2001272266A (en) Ultrasonic level gauge
AU2015411493C1 (en) Refrigerator
JP6077985B2 (en) Liquid quenching device
US9897367B2 (en) Freezing detection device
JP6195744B2 (en) Liquid dispenser, cock operation member constituting the same, power control device, liquid dispenser control system
EP3280270B1 (en) Method for controlling an apparatus for dispensing food products
US11332357B2 (en) Liquid quality control device
JP6689079B2 (en) Beverage server
CN105427465A (en) Flow metering type discharge liquid metering system of automatic liquid selling machine and metering method thereof
EP2446750B1 (en) Machine for dispensing cold or iced drinks
EP3046866B1 (en) A calibration method for a beverage dispensing system, and a beverage dispensing system utilizing the calibration method
JP4506649B2 (en) Sparkling beverage sales equipment
JP6977950B2 (en) Liquid quality control equipment
EP3921273B1 (en) Control of frozen beverage dispenser
TWM508659U (en) Ice making device and ice making module thereof
JP4434087B2 (en) Electric hot water storage container
JP2012002376A (en) Beverage cooling device
JP2009137631A (en) Beverage dispenser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14870061

Country of ref document: EP

Kind code of ref document: A1