WO2015087403A1 - Motor control system, motor control device, device being controlled, and motor control method - Google Patents

Motor control system, motor control device, device being controlled, and motor control method Download PDF

Info

Publication number
WO2015087403A1
WO2015087403A1 PCT/JP2013/083143 JP2013083143W WO2015087403A1 WO 2015087403 A1 WO2015087403 A1 WO 2015087403A1 JP 2013083143 W JP2013083143 W JP 2013083143W WO 2015087403 A1 WO2015087403 A1 WO 2015087403A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
communication
unit
motor control
control
Prior art date
Application number
PCT/JP2013/083143
Other languages
French (fr)
Japanese (ja)
Inventor
古賀 英嗣
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2013/083143 priority Critical patent/WO2015087403A1/en
Priority to PCT/JP2014/070126 priority patent/WO2015087577A1/en
Publication of WO2015087403A1 publication Critical patent/WO2015087403A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors

Definitions

  • the disclosed embodiment relates to a motor control system, a motor control device, a control target device, and a motor control method.
  • a control target device including a motor and a motor control device that controls the operation of the motor are received.
  • the motor control device receives information indicating the state of the motor from the control target device, and operates the motor based on the received information.
  • an information transmission signal line indicating the rotation position of the motor is provided by transmitting information indicating the rotation position of the motor from the control target apparatus to the motor control apparatus via a power line that supplies power to the motor.
  • the position detection device always transmits information indicating the rotational position of the motor to the motor control device.
  • the motor control device temporarily stops the switching operation of the circuit that drives the motor, and performs drive control of the motor based on information indicating the rotational position of the motor received during the stop period of the switching operation. Thereby, an adverse effect on the drive control due to the switching noise is reduced.
  • One aspect of the embodiments has been made in view of the above, and a motor control system, a motor control device, and a control target device that can improve the performance of drive control on a motor while reducing the influence of switching noise. And a motor control method.
  • a motor control system includes a control target device including a motor and a communication unit, and a motor control device that performs drive control of the motor based on a carrier signal whose signal value periodically changes.
  • the motor control device includes a communication unit and a specifying unit.
  • the communication unit communicates information with the communication unit of the device to be controlled.
  • the specifying unit specifies a communication period in which the communication unit of the motor control device performs communication of the information based on a periodic characteristic of the signal value.
  • a motor control system it is possible to provide a motor control system, a motor control device, a control target device, and a motor control method that can improve the performance of drive control on a motor while reducing the influence of switching noise. Can do.
  • FIG. 1 is an explanatory diagram illustrating an appearance of a motor control system according to the embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the robot and the motor control device according to the embodiment.
  • FIG. 3 is a circuit diagram illustrating an example of the configuration of the power conversion unit according to the embodiment.
  • FIG. 4 is an explanatory diagram for explaining the operation of the power conversion unit according to the embodiment.
  • FIG. 5 is a block diagram illustrating details of the configuration of the motor control device and the robot according to the embodiment.
  • FIG. 6 is an explanatory diagram for describing a procedure for specifying a communication period according to the embodiment.
  • FIG. 7 is a sequence diagram illustrating communication performed in the motor control system according to the embodiment.
  • FIG. 1 is an explanatory diagram illustrating an appearance of a motor control system according to the embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the robot and the motor control device according to the embodiment.
  • FIG. 3 is a circuit diagram illustrating an example
  • FIG. 8 is an explanatory diagram illustrating the timing of communication performed in the motor control system according to the embodiment.
  • FIG. 9 is a flowchart illustrating processing executed by the control unit of the motor control device according to the embodiment.
  • FIG. 10 is a flowchart illustrating processing executed by the state detection device according to the embodiment.
  • the control target of the motor control device according to the embodiment is not limited to the motor provided in the robot, and may be a motor provided in an arbitrary device.
  • FIG. 1 is an explanatory diagram showing an appearance of a motor control system 1 according to the embodiment.
  • the motor control system 1 includes a robot 2 and a motor control device 3.
  • the robot 2 is a single-arm robot arm having six degrees of freedom.
  • the robot 2 includes a base portion 20, a first arm 21, a second arm 22, a third arm 23, a fourth arm 24, a fifth arm 25, and an end effector 26.
  • the base unit 20 is installed on an installation surface such as a horizontal floor surface, and includes a motor that rotates the first arm 21 around the axis S as a rotation axis.
  • the first arm 21 is connected to the base portion 20 and includes therein a motor that swings the second arm 22 about the axis L as a swing axis.
  • the second arm 22 includes a motor whose base end is swingably connected to the first arm 21 and that rotates the third arm 23 about the axis U as a rotation axis inside the distal end.
  • the third arm 23 is rotatably connected to the tip of the second arm 22 and includes a motor that rotates the fourth arm 24 about the axis R as a rotation axis.
  • the fourth arm 24 includes a motor whose base end is rotatably connected to the third arm 23 and swings the fifth arm 25 about the axis B as a swing axis.
  • the fifth arm 25 includes a motor whose base end is swingably connected to the distal end of the fourth arm 24 and rotates the end effector 26 about the axis T as a rotation axis.
  • the end effector 26 is an arc welding torch whose base end portion is rotatably connected to the distal end portion of the fifth arm 25.
  • the robot 2 includes a total of six motors.
  • the number of motors provided in the robot 2 may be 7 or more, or may be less than 6.
  • the end effector 26 is not limited to an arc welding torch.
  • the motor control device 3 is a device that causes the robot 2 to perform a predetermined operation taught in advance by individually performing drive control of each motor included in the robot 2.
  • the motor control device 3 and the robot 2 are connected by a first cable 41 and a second cable 42.
  • the first cable 41 is a wiring for supplying electric power for driving the motor from the motor control device 3 to the robot 2.
  • the motor control device 3 adjusts the rotation speed, the rotation torque, and the like of each motor by controlling the voltage of the power supplied to each motor via the first cable 41.
  • the second cable 42 is a wiring for supplying electric power from the motor control device 3 to a state detection device E (see FIG. 2) described later included in the robot 2.
  • the second cable 42 is also used for information communication periodically performed between the motor control device 3 and the robot 2.
  • the robot 2 transmits information indicating the motor state such as the rotational position, rotational speed, and rotational acceleration of the motor to the motor control device 3.
  • Information indicating the state of the motor is used by the motor control device 3 for, for example, feedback control of the motor (hereinafter simply referred to as “drive control”).
  • the motor control device 3 transmits, for example, information that teaches the timing for transmitting information indicating the state of the motor from the robot 2 to the motor control device 3.
  • the motor control device 3 and the state detection device E modulate information related to drive control by, for example, OFDM (Orthogonal Frequency Division Multiplexing).
  • OFDM Orthogonal Frequency Division Multiplexing
  • the motor control device 3 and the state detection device E perform communication by superimposing information on the modulated drive control on the electric power supply current flowing through the second cable 42.
  • the second cable 42 is shared as the power supply wiring and the information communication wiring.
  • the motor control system 1 realizes wiring saving for wirings used exclusively for communication of information related to drive control.
  • FIG. 2 is a block diagram illustrating configurations of the robot 2 and the motor control device 3 according to the embodiment.
  • constituent elements necessary for drive control of the motor M are selectively illustrated, and the other constituent elements are not illustrated.
  • the robot 2 includes a first control target device 51, a second control target device 52, a third control target device 53, a fourth control target device 54, a fifth control target device 55, and a sixth control target.
  • a target device 56 is provided.
  • the first control target device 51 is provided in the base unit 20.
  • the second control target device 52 is provided on the first arm 21.
  • the third control target device 53 is provided on the second arm 22.
  • the fourth control target device 54 is provided on the third arm 23.
  • the fifth control target device 55 is provided on the fourth arm 24.
  • the sixth control target device 56 is provided on the fifth arm 25.
  • the arrangement positions of the first to sixth control target devices 51 to 56 are not limited to this.
  • the first control target device 51 includes a motor M, a state detection device E, and a coupler CP.
  • the coupler CP is, for example, a photocoupler.
  • the second to sixth control objects 52 to 56 have the same configuration as that of the first control object device 51 except that the sizes of the motors M are different. Therefore, the description of the configurations of the second to sixth control target devices 52 to 56 is omitted.
  • the first to sixth control target devices 51 to 56 will be referred to as the control target device 5 unless the first to sixth control target devices 51 to 56 are particularly distinguished.
  • the motor M is a rotating electrical machine that is connected to the motor control device 3 via the first cable 41 and rotates by three-phase AC power supplied from the motor control device 3.
  • the robot 2 operates the first to fifth arms 21 to 25 and the end effector 26 corresponding to each control target device 5 by rotating the motor M included in each control target device 5 to perform a predetermined work.
  • the state detection device E is a rotary encoder that is connected to the motor M and detects the rotational position of the motor M.
  • the state detection device E may be configured to detect any one or a plurality of states among the rotation position, rotation speed, and rotation acceleration of the motor M, and can detect the torque applied to the motor M. It may be a simple configuration.
  • the state detection device E is connected to the second cable 42 via the coupler CP, and operates with electric power supplied via the second cable 42.
  • the state detection device E transmits position information indicating the detected rotational position of the motor M to the motor control device 3 via the second cable 42.
  • position information is an example of information related to drive control.
  • the configuration of the state detection device E will be described later with reference to FIG.
  • the motor control device 3 includes a control unit 30, power conversion units 31 to 36, a motor power supply unit 37, a control power supply unit 38, and a coupler CP.
  • the motor power supply unit 37 is a power source that supplies three-phase AC power to each motor M of the robot 2 via the power conversion units 31 to 36 and the first cable 41.
  • the control power supply unit 38 is a power source that supplies power to the control unit 30 and also supplies power to each control target device 5 included in the robot 2 via the coupler CP and the second cable 42.
  • Each of the power conversion units 31 to 36 operates according to control by the control unit 30 to adjust the voltage of power input from the motor power supply unit 37 and output the voltage to each motor M of the robot 2. It is. Here, with reference to FIG. 3 and FIG. 4, the configuration and operation of the power converters 31 to 36 will be described.
  • FIG. 3 is a circuit diagram illustrating an example of the configuration of the power conversion unit 31 according to the embodiment
  • FIG. 4 is an explanatory diagram for explaining the operation of the power conversion unit 31 according to the embodiment.
  • the power conversion unit 31 includes a converter 31a, a smoothing circuit 31b, and an inverter 31c.
  • the converter 31 a is a general rectifier circuit that includes six diodes connected in a full bridge and rectifies three-phase AC power (current) input from the motor power supply unit 37.
  • the smoothing circuit 31b includes an inductor and a capacitor, and smoothes the pulsating current included in the current rectified by the converter 31a to a state closer to direct current.
  • the inverter 31c includes six switching elements a1, a2, b1, b2, c1, and c2 that are connected in a full bridge, and diodes that are connected in reverse parallel to the switching elements a1, a2, b1, b2, c1, and c2.
  • Each of the switching elements a1, a2, b1, b2, c1, and c2 is, for example, an IGBT (Insulated Gate Bipolar Transistor).
  • the inverter 31c performs switching for switching ON and OFF of the switching elements a1, a2, b1, b2, c1, and c2 according to control by the control unit 30, thereby converting the smoothed current into three-phase AC power. It is a circuit to convert.
  • each switching element a1, a2, b1, b2, c1, c2 performs a switching operation based on a control signal input from the control unit 30 to each gate.
  • the control unit 30 generates a control signal based on a so-called carrier comparison method, and outputs it to the gates of the switching elements a1, a2, b1, b2, c1, and c2.
  • control unit 30 compares the carrier signal ca indicated by the triangular wave in FIG. 4 with the voltage command values indicated by the three sine waves shown in FIG. 4 to determine the three control signals Sa, Sb, Sc shown in FIG. Is generated.
  • the carrier signal ca has a periodic characteristic in which the signal value (voltage value) periodically reaches an extreme value (maximum value and minimum value) between Vdc / 2 and ⁇ Vdc / 2. .
  • the voltage command value a indicated by the solid line is for the U phase.
  • the voltage command value b indicated by the dotted line is for the V phase.
  • the voltage command value c indicated by the alternate long and short dash line is for the W phase.
  • the control signal Sa is for the switching elements a1 and a2.
  • the control signal Sb is for the switching elements b1 and b2.
  • the control signal Sc is for the switching elements c1 and c2.
  • control unit 30 becomes “1 (high level)” in a period in which the voltage command value a is higher than the signal value of the carrier signal ca, and the voltage command value is higher than the signal value of the carrier signal ca.
  • a control signal Sa that becomes “0 (low level)” in a period in which a is low is generated.
  • control unit 30 compares the signal value of the carrier signal ca with the voltage command values b and c to generate control signals Sb and Sc. Then, the control unit 30 outputs the generated control signals Sa, Sb, Sc to the gates of the corresponding switching elements a1, a2, b1, b2, c1, c2.
  • the switching element a1 is turned on when the control signal Sa is “1” and turned off when the control signal Sa is “0”.
  • the switching element a2 is turned on when the control signal Sa is “0” and turned off when the control signal Sa is “1”.
  • the switching element b1 is turned on when the control signal Sb is “1” and turned off when the control signal Sb is “0”. Conversely, the switching element b2 is turned on when the control signal Sb is “0” and turned off when the control signal Sb is “1”.
  • the switching element c1 is turned on when the control signal Sc is “1” and turned off when the control signal Sc is “0”. Conversely, the switching element c2 is turned on when the control signal Sc is “0” and turned off when the control signal Sc is “1”.
  • control unit 30 is connected to each of the power conversion units 31 to 36 via the communication bus 43. Then, the control unit 30 outputs the control signals Sa, Sb, and Sc to the power conversion units 31 to 36 via the bus 43, thereby controlling each motor M of the robot 2 by PWM (Pulse Width Modulation). To do.
  • PWM Pulse Width Modulation
  • control unit 30 receives position information indicating the rotational position of each motor M from each state detection device E of the robot 2 via the coupler CP and the second cable 42 for each predetermined period, and the received position information. Based on the above, the operation of the motor M is feedback-controlled.
  • the control unit 30 may communicate various information regarding the drive control of each motor M with the control target device 5. For example, the control unit 30 also receives information indicating the rotational speed of the motor M and information indicating the rotational acceleration of the motor M from each control target device 5. In such a case, noise due to the switching operation of the switching elements a1, a2, b1, b2, c1, and c2 of the inverter 31c described above may be superimposed on information communicated via the second cable 42.
  • the noise superimposed on the information adversely affects the drive control of the motor M by the control unit 30.
  • the control unit 30 has a reduced feedback control performance for the motor M.
  • control unit 30 sets a communication period in which noise due to switching operations of at least the switching elements a1, a2, b1, b2, c1, and c2 is not superimposed within the period of the carrier signal ca to the period characteristic of the carrier signal ca. Identify based on.
  • control part 30 improves the performance of the drive control with respect to the motor M, reducing the influence of switching noise by communicating between the control object apparatuses 5 in the specified communication period.
  • FIG. 5 is a block diagram illustrating details of the configurations of the motor control device 3 and the robot 2 according to the embodiment.
  • FIG. 5 selectively illustrates the first control target device 31 and the components necessary for the control of the first control target device 31, and the components related to the second to sixth control target devices 52 to 56. About is omitted.
  • the same components as those shown in FIG. 2 are denoted by the same reference numerals as those shown in FIG.
  • the motor control device 3 includes a motor power supply unit 37, a power conversion unit 31, a control unit 30, a control power supply unit 38, and a coupler CP.
  • the control unit 30 includes a drive control unit 61, a specifying unit 62, a communication unit 63, and a communication control unit 66.
  • the communication unit 63 includes a transmission unit 64 and a reception unit 65.
  • the drive control unit 61 compares the carrier signal ca and the voltage command values a, b, and c to generate the control signals Sa, Sb, and Sc described above, and the generated control signals Sa, Sb, and Sc are converted into a power conversion unit.
  • 31 is a processing unit that outputs to 31.
  • the drive control unit 61 outputs the voltage command values a, b, and c to the specifying unit 62 at a predetermined cycle.
  • the specifying unit 62 Based on the periodic characteristics of the carrier signal ca, the specifying unit 62 performs a communication period in which noise due to at least the switching operation of the switching elements a1, a2, b1, b2, c1, and c2 is not superimposed within the period of the carrier signal ca. A processing unit to be identified.
  • the frequency of the carrier signal ca and the turn-on / off times of the switching elements a1, a2, b1, b2, c1, and c2 included in the inverter 31c are set in advance.
  • specification part 62 is the voltage command value a, b, c input from the drive control part 61 with a predetermined period, the frequency of carrier signal ca, and each switching element a1, a2, b1, b2, c1, c2
  • the communication period is specified based on the turn ON / OFF time.
  • FIG. 6 is an explanatory diagram for describing a procedure for specifying a communication period according to the embodiment.
  • FIG. 6 shows, in order from the top, the waveform of the carrier signal ca, the waveform of the voltage command value a, the waveform of the control signal Sa, and the waveform of the switching noise n.
  • the vertical axis of each waveform is a signal value, and the horizontal axis of each waveform is time t.
  • the waveform of the carrier signal ca and the voltage command value a shown on the left side of the one-dot chain line shown in FIG. 6 are the waveform of the carrier signal ca and the waveform of the voltage command value a at the minute time t0 shown on the right side of the one-dot chain line. Is an enlarged version.
  • the voltage command value a is larger than the signal value of the carrier signal ca, and during the period from time t2 to t5, A case where the value a is smaller than the signal value of the carrier signal ca will be described.
  • the drive control unit 61 generates a control signal Sa that falls from the high level to the low level at time t2 and rises from the low level to the high level at time t5, and outputs the control signal Sa to the switching element a1. Therefore, the switching element a1 switches from ON to OFF at time 2 and switches from OFF to ON at time t5.
  • switching noise occurs during a period of time T3 from time t2 to time t3.
  • the time T3 is substantially equal to the turn ON / OFF time of the switching element a1. Also, switching noise occurs at time t5.
  • the switching element a1 performs a switching operation at times t2 and t5 when the magnitude relationship between the voltage command value a and the signal value of the carrier signal ca is inverted. In other words, the switching element a1 performs a switching operation at times t2 and t5 at which the sine wave indicating the voltage command value a and the waveform of the carrier signal ca intersect. Such a switching operation is similarly performed in the other switching elements a2, b1, b2, c1, and c2.
  • the switching noise is generated at the time t3 when the signal value of the carrier signal ca reaches the maximum value or the period before and after the times t1 and t6 when the signal value reaches the minimum value, for example, from the time t3 to t5 in the example shown in FIG. It can be seen that it does not occur at time T0.
  • the time T0 in which such switching noise does not occur periodically arrives every period from when the signal value of the carrier signal ca reaches the minimum value until it reaches the next minimum value.
  • the time T0 when no switching noise occurs periodically arrives at every period from when the signal value of the carrier signal ca reaches the maximum value until it reaches the next maximum value.
  • the specifying unit 62 specifies the time T0 in which the switching noise that sequentially arrives sequentially does not occur as a communication period in which the communication unit 30 periodically performs communication with the first control target device 51.
  • the specifying unit 62 specifies the start point of the time T0 that sequentially arrives sequentially as the start point of the communication period.
  • the specifying unit 62 specifies the start point of the communication period, first, based on the frequency of the carrier signal ca, from the time t1 when the signal value of the carrier signal ca reaches a minimum value, then the signal value of the carrier signal ca The time T1 until time t4 when reaches the maximum value is calculated.
  • the specifying unit 62 specifies the time t2 at which the switching element a1 performs the switching operation based on the signal value of the carrier signal ca and the voltage command value a. Subsequently, the specifying unit 62 calculates the time from time t4 to time t2.
  • the specifying unit 62 uses the following equation (2) to determine the time until the time t3 when the switching noise of the switching element a1 that occurs next time t1 when the signal value of the carrier signal ca reaches the minimum value disappears. T4 is calculated.
  • T4 1 / (2 ⁇ fc) ⁇ ⁇ (1 ⁇ ) / 2 ⁇ 1 / fc ⁇ / 2 + ⁇ tr (2)
  • fc frequency ⁇ of the carrier signal
  • ca current voltage command values a, b, c when the maximum value of the voltage command values a, b, c is 1.
  • tr Turn ON / OFF time of the switching elements a1, a2, b1, b2, c1, c2
  • the time T4 calculated in this way is the time from when the signal value of the carrier signal ca reaches the minimum value to the start point of the second communication period. Therefore, the specifying unit 62 outputs the time T4 to the communication control unit 66 as information related to the second communication period.
  • the communication control unit 66 is a processing unit that controls the transmission timing of information by the transmission unit 64. Specifically, the communication control unit 66 outputs, for example, information related to the second communication period input from the specifying unit 62 and a communication start command to be described later to the transmission unit 64, thereby transmitting the first from the transmission unit 64. Information on the second communication period and a communication start command to be described later are transmitted to the control target device 51.
  • the transmission unit 64 is a processing unit that OFDM-modulates information to be transmitted to the first control target device 51 and transmits the information to the first control target device 51 via the coupler CP and the second cable 42.
  • the transmitting unit 64 transmits information related to the second communication period input from the communication control unit 66 to the first control target device 51 during the first communication period specified by the specifying unit 62. In addition, the transmission unit 64 transmits a transmission start command to the first control target device 51 in the first communication period that arrives first after transmitting the information related to the second communication period.
  • the receiving unit 65 is a processing unit that receives information indicating the state of the motor from the first control target device 51, OFDM-demodulates the received information, and outputs the information to the drive control unit 61. For example, when receiving the state information indicating the rotational position of the motor M from the first control target device 51, the receiving unit 65 outputs the received state information to the drive control unit 61.
  • the communication timing of the communication unit 63 will be described later with reference to FIGS.
  • the communication unit 63 transmits to the control target device 5 at least in the first communication period that periodically arrives without noise caused by the switching operation of the switching elements a1, a2, b1, b2, c1, and c2. Send information.
  • the motor control device 3 can reduce the influence of noise on the control of the motor M.
  • the state detection device E included in the robot 2 includes a state detection unit 71, a communication unit 72, a timer unit 75, and a communication control unit 76.
  • the communication unit 72 includes a reception unit 73 and a transmission unit 74.
  • the state detection unit 71 is a processing unit that detects the rotational position of the motor M, and outputs the detected rotational position to the transmission unit 74 in the second communication period as information indicating the state of the motor M.
  • the receiving unit 73 is a processing unit that receives information from the motor control device 3 and performs OFDM demodulation in the first communication period.
  • the receiving unit 73 receives information related to the second communication period described above, a transmission start command, and the like from the motor control device 3.
  • the receiving unit 73 when receiving the information related to the second communication period, the receiving unit 73 performs OFDM demodulation on the received information, and outputs to the time measuring unit 75 for setting. In addition, when receiving a transmission start command, the receiving unit 73 performs OFDM demodulation on the received information and outputs it to the time measuring unit 75.
  • the timer unit 75 is a timer provided with a memory that stores information (time T4 shown in FIG. 6) related to the second communication period set by the receiving unit 73.
  • the time measuring unit 75 measures the time T4 (see FIG. 6) described above based on the information regarding the second communication period that has already been set by the receiving unit 73 (see FIG. 6). Countdown). Then, when the timing of time T4 is completed, the timing unit 75 outputs information indicating that to the communication control unit 76.
  • the communication control unit 76 is a processing unit that controls the transmission timing of information by the transmission unit 74. Specifically, when information indicating that the time measurement at time T4 has been completed is input from the time measurement unit 75, the communication control unit 76 outputs information indicating that to the transmission unit 74, thereby The state information is transmitted from the transmission unit 74 to the motor control device 1.
  • the transmission unit 74 is a processing unit that OFDM-modulates information and transmits it to the motor control device 3 during the second communication period in accordance with communication timing control by the communication control unit 76.
  • the transmission unit 74 performs OFDM modulation on the state information input from the state detection unit 71 and performs motor control. 3 to send.
  • the communication timing of the communication unit 72 will be described later with reference to FIGS.
  • the communication unit 72 transmits information to the motor control device 3 at least in the second communication period in which noise due to the switching operation of the switching elements a1, a2, b1, b2, c1, and c2 is not superimposed. Thereby, the motor control device 3 can reduce the influence of noise on the control of the motor M.
  • FIG. 7 is a sequence diagram illustrating communication performed in the motor control system 1 according to the embodiment
  • FIG. 8 is an explanatory diagram illustrating timing of communication performed in the motor control system 1 according to the embodiment.
  • the motor control device 3 first has information on the second communication period (time T4 shown in FIG. 6) in the period from the start point to the end point of the first communication period that comes first. Are transmitted to all the control target devices 5 during the first communication period (step S1). The first control target device 51 receives information related to the second communication period (step S2).
  • the second control target device 52 receives information related to the second communication period (step S3).
  • the information regarding the second communication period is sequentially received by all the control target devices 5.
  • Each control target device 5 sets the received information related to the second communication period in the timer unit 75.
  • the motor control device 3 sends a transmission start command to the first control target device 51 during a period from the start point to the end point of the first communication period that arrives first after transmitting the information related to the second communication period. (Step S4).
  • the first control target device 51 starts measuring time T4 (step S5).
  • the 1st control object apparatus 51 is the state of the motor M in the period from the start point of the 2nd communication period which arrives first after receiving a transmission start command, ie, the time point when time-measurement was completed.
  • Information is transmitted to the motor control device 3 (step S6).
  • the motor control device 3 sends a transmission start command to the second control in a period from the start point to the end point of the first communication period that comes first. It transmits to the object apparatus 52 (step S7).
  • the second control target device 52 When receiving the transmission start command, the second control target device 52 starts measuring time T4 (step S8). Then, the second control target device 52 performs the state of the motor M at the time from when the time measurement is completed, that is, from the start point to the end point of the second communication period that arrives first after receiving the transmission start command. Information is transmitted to the motor control device 3 (step S9).
  • transmission / reception of information on the second communication period, transmission / reception of a transmission start command, and the transmission / reception start command are sequentially performed between the motor control device 3 and the third to sixth control target devices 53-56. Status information is transmitted and received.
  • the noise caused by the switching operation of at least the switching elements a1, a2, b1, b2, c1, and c2 that sequentially arrive at the timing synchronized with the cycle of the carrier signal ca is not superimposed.
  • Information is communicated between the motor control device 3 and the first to sixth control target devices 51 to 56 in the first communication period and the second communication period (time T0).
  • times t10, t12, t14, t16, t18, t20, and t22 shown in FIG. 8 are times corresponding to the time t3 shown in FIG. That is, the time when the time T4 has elapsed after the signal value of the carrier signal ca reaches the minimum value. Also, times t11, t13, t15, t17, t19, and t21 shown in FIG. 8 are times when time T4 has elapsed since the signal value of the carrier signal ca reached the maximum value. 8 is the same as the time T4 shown in FIG. The time T0 shown in FIG. 8 is the same time as the time T0 shown in FIG.
  • the motor control system 1 can perform communication between the motor control device 3 and the control target device 5 for each cycle of the carrier signal ca without stopping the periodic switching operation of the inverter 31c. Therefore, according to the motor control system 1, it is possible to improve the drive control performance for the motor M while reducing the influence of switching noise.
  • FIG. 9 is a flowchart illustrating processing executed by the control unit 30 of the motor control device 3 according to the embodiment.
  • the specifying unit 62 specifies a communication period based on the periodic characteristics related to the signal value of the carrier signal ca (step S ⁇ b> 101).
  • the communication period as described above, the first communication period in which information is transmitted from the motor control device 3 to the control target device 5 and the second communication in which information is transmitted from the control target device 5 to the motor control device 3.
  • the specifying unit 62 outputs information regarding the specified communication period to the communication unit 63 of the control unit 30.
  • the communication control unit 66 of the control unit 30 determines whether or not it is the first communication period (step S102). If the communication control unit 66 determines that it is not the first communication period (No in step S102), the communication control unit 66 repeats the determination in step S102 until the first communication period is reached.
  • step S102 when the communication control unit 66 determines that it is the first communication period (Yes in step S102), all the control target devices 5 are set at the start point t10 of the first communication period specified by the specifying unit 62.
  • Information on the second communication period is transmitted to the transmitter 64 (step S103).
  • the information related to the second communication period transmitted here is information indicating the time T4 described above.
  • the specifying unit 62 may be configured to specify each time point when the signal value of the carrier signal ca reaches the maximum value or the minimum value as the start point of the first communication period or the second communication period. With this configuration, the specifying unit 62 can specify the start point of the first communication period or the second communication period by a simpler specifying algorithm.
  • the communication control unit 66 determines again whether or not it is the first communication period (step S104). That is, the communication control unit 66 determines whether or not it is the start point of the first communication period that comes first after the first communication period in which the information related to the second communication period is transmitted. And when it determines with the communication control part 66 not being a 1st communication period (step S104, No), it repeats the determination of step S104 until it becomes a 1st communication period.
  • the transmission unit 64 sends a transmission start command to the start point t11 of the first communication period. It transmits to the control object apparatus 5 (step S105). Thereafter, the receiving unit 65 of the control unit 30 receives the state information indicating the state of the motor M from the control target device 5 that is the transmission destination of the transmission start command at the start point t12 of the second communication period that comes next. It is determined whether or not (step S106).
  • step S106 determines with not receiving status information (step S106, No)
  • step S106 determines with not receiving status information (step S106, No)
  • step S106 determines that the state information has been received (step S106, Yes)
  • step S107 the process proceeds to step S107.
  • step S107 the communication control unit 66 of the control unit 30 determines whether a transmission start command has been transmitted to all the control target devices 5. If the communication control unit 66 determines that the transmission start command has not been transmitted to all the control target devices 5 (No in step S107), the communication control unit 66 moves the process to step S105, and starts the first communication period that comes next. At point t 13, the transmission start command is transmitted to the untransmitted control target device 5 by the transmission unit 64.
  • step S107 the communication control unit 66 determines that the transmission start command has been transmitted to all the control target devices 5 (step S107, Yes).
  • step S108 the drive control unit 61 of the control unit 30 determines whether or not the change amount of the voltage command value is equal to or greater than a threshold value.
  • step S108 Yes
  • the control part 30 complete
  • step S108 When the drive control unit 61 determines that the amount of change in the voltage command value is less than the threshold (No in step S108), the control unit 30 moves the process to step S104, and the amount of change in the voltage command value is The processing of steps S104 to S108 is repeated in a period less than the threshold value.
  • FIG. 10 is a flowchart illustrating processing executed by the state detection device according to the embodiment.
  • the state detection device E When the drive control of the motor M is performed, the state detection device E repeatedly executes the process shown in FIG.
  • the state detection unit 71 always detects information indicating the state of the motor M at a predetermined cycle during the period in which the process shown in FIG. 10 is being performed, and the state detection device E includes the detection result.
  • the data is output to the transmission unit 74 in the communication unit 72.
  • step S201 the receiving part 73 of the state detection apparatus E determines whether the information regarding the 2nd communication period was received from the motor control apparatus 3 (step S201). And when the receiving part 73 determines with not receiving the information regarding a 2nd communication period (step S201, No), it moves a process to step S203.
  • the receiving unit 73 outputs the received information related to the second communication period to the time measuring unit 75 and sets the information (step S202). ).
  • the receiving unit 73 determines whether or not a transmission start command is received from the motor control device 3 (step S203). And when the receiving part 73 determines with not receiving a transmission start command (step S203, No), it moves a process to step S201.
  • step S203 If the receiving unit 73 determines that a transmission start command has been received (step S203, Yes), the process proceeds to step S204.
  • step S204 the time measuring unit 75 of the state detection device E starts to time (count down) the time T4 set in step S202.
  • the time measuring unit 75 determines whether or not the time measurement is completed (step S205). Then, when it is determined that the time measurement is not completed (No at Step S205), the time measuring unit 75 repeats the determination at Step S205 until the time measurement is completed.
  • step S205 when it is determined that the timing has been completed (step S205, Yes), the timing unit 75 moves the process to step S206.
  • step S206 the communication control unit 76 of the state detection device E causes the transmission unit 74 to use the state detection unit 71 at the start point of the second communication period (for example, time t12, t14, t16, t18, t20, t22). State information indicating the state of the motor M input from is transmitted to the motor control device 3 and the process is terminated. Then, the state detection apparatus E starts a process again from step S201.
  • the motor control system includes a control target device including a motor and a communication unit, a motor control device that performs drive control of the motor based on a carrier signal whose signal value periodically changes, and including.
  • the motor control device includes a communication unit that communicates information with the communication unit of the control target device, and a communication period that causes the communication unit of the motor control device to periodically communicate information. And a specifying unit that specifies based on a periodic characteristic of the value.
  • Such a motor control device does not stop the drive control of the motor and based on the cycle of the carrier signal, at least during a period in which noise due to the operation of the switching element for motor drive control is not superimposed, Communication can be performed. Therefore, according to the motor control system, it is possible to improve the drive control performance for the motor while reducing the influence of the switching noise.
  • the motor control device performs drive control of the motor by the carrier comparison method, for example, switching for controlling the operation of the motor at the timing when the signal value of the carrier signal reaches the maximum value and the minimum value. No action is taken.
  • the specifying unit specifies the communication period based on periodic characteristics in which the signal value of the carrier signal periodically reaches a maximum value and a minimum value.
  • the specific unit sets an appropriate communication period in which at least noise caused by the operation of the switching element for motor drive control is not superimposed by using the timing at which the signal value of the carrier signal reaches the maximum value and the minimum value as a reference. Can be identified.
  • the switching operation for performing motor drive control is performed at the timing when the voltage command value for the motor and the signal value of the carrier signal match. Done.
  • the specifying unit specifies the start timing of the communication period based on the timing at which the voltage command value for the motor matches the signal value of the carrier signal. Therefore, the specifying unit can specify the start timing of the period in which noise is not superimposed from the timing at which the voltage command value for the motor matches the signal value of the carrier signal by a relatively simple process.
  • the specifying unit specifies the start timing of the communication period based on the switching characteristics of the switching element that is provided in the motor control device and controls the power supplied to the motor.
  • specification part can estimate more correctly the start timing of the communication period in which noise is not superimposed according to the switching characteristic of a switching element.
  • the communication unit of the motor control device transmits information to the communication unit of the control target device during the first communication period among the communication periods that come periodically. Thereby, at least from the motor control device to the control target device, it is possible to transmit information on which noise due to the operation of the motor drive control switching element is not superimposed.
  • the communication unit of the motor control device includes information related to a second communication period that causes information to be transmitted from the communication unit of the control target device to the communication unit of the motor control device among the communication periods that periodically arrive. It transmits to the communication part of a control object apparatus in the 1st communication period. And the communication part of a control object apparatus transmits information to the communication part of a motor control apparatus in a 2nd communication period based on the information regarding the 2nd communication period received from the communication part of a motor control apparatus.
  • bidirectional information communication performed between the motor control device and the control target device can be performed at least in a communication period in which noise due to the switching operation of the switching element for motor drive control is not superimposed.
  • control target device includes a state detection unit that detects the state of the motor.
  • the communication part of a control object apparatus transmits the information which shows the state of the motor detected by the state detection part in a 2nd communication period.
  • the motor control device performs drive control of the motor based on information indicating the state of the motor received from the communication unit of the control target device.
  • the motor control system can improve the feedback drive control performance of the motor according to the state of the motor while reducing the influence of the switching noise.
  • the same time is transmitted as information related to the second communication period from the motor control device to all the control target devices.
  • the information regarding the communication period may not be the same time.
  • the control target device having a long transmission path length causes information transmission delay, so the information is transmitted from the motor control device.
  • the time until reception is longer than that of the control target apparatus having a short transmission path length.
  • the motor control device shortens the transmission time as information related to the second communication period by the transmission delay as the control target device has a longer transmission path length.
  • each control object apparatus can transmit information to a motor control apparatus in the exact 2nd communication period, even if there is a difference in transmission path length.
  • each control target device transmits from the time received as information related to the second communication period.
  • a configuration may be used in which the time obtained by subtracting the delay is counted.
  • the motor control system when the state detection unit detects a plurality of types of states from the motor, specifies the communication for transmitting information from the motor control device to the control target device by the specifying unit.
  • the communication that is performed during one communication period and transmits information from the control target apparatus to the motor control apparatus may be performed during an arbitrary period.
  • the motor control device transmits, for example, information specifying the type of state of the motor to be transmitted from the control target device to the motor control device to the control target device in the first communication period specified by the specifying unit.
  • the motor control device does not necessarily have to perform feedback control on the motor, and may perform open loop control on the motor.
  • the motor control device when the motor control device performs open loop control and the control target device includes a display unit that displays information related to motor drive control as an integral or separate unit, the motor control device displays information to be displayed on the display unit. Is transmitted to the controlled device during the first communication period, but it is not necessary to receive information from the controlled device.
  • the motor control device includes a transmission unit that transmits information to the control target device in the first communication period specified by the specification unit, and the control target device receives information from the motor control device. What is necessary is just to provide the receiving part. According to such a motor control system, the receiving unit of the motor control device and the transmission unit of the control device can be omitted, and the system can be simplified.
  • the motor control device generates a control signal for driving the motor based on the carrier comparison method.
  • the method for generating the control signal is not limited to this.
  • the motor control device generates a control signal for driving the motor based on the carrier signal, for example, it generates a control signal for driving the motor based on another method such as a so-called space vector method. It may be.
  • each control target device 5 is provided in each arm of the robot 2
  • the base unit 20 is the first control target device. 51
  • the first arm 21 corresponds to the second control target device 52
  • the second arm 22 corresponds to the third control target device 53
  • the third arm 23 corresponds to the fourth control target device 54
  • the fourth arm 24 may correspond to the fifth control target device 55
  • the fifth arm 25 may correspond to the sixth control target device 56.
  • the control target device controlled by the motor control device may be the entire robot.

Abstract

A motor control system in one mode of an embodiment comprises a device being controlled, said device having a motor and a communication unit, and a motor control device that controls said motor on the basis of a carrier signal, the value of which varies cyclically. The motor control device has a communication unit and a specification unit. Said communication unit exchanges information with the communication unit in the device being controlled, and the specification unit specifies, on the basis of the cycle characteristics of the value of the carrier signal, a communication period in which to make the communication unit in the motor control device exchange the aforementioned information with the communication unit in the device being controlled.

Description

モータ制御システム、モータ制御装置、制御対象装置、およびモータ制御方法Motor control system, motor control device, control target device, and motor control method
 開示の実施形態は、モータ制御システム、モータ制御装置、制御対象装置、およびモータ制御方法に関する。 The disclosed embodiment relates to a motor control system, a motor control device, a control target device, and a motor control method.
 従来、モータを備える制御対象装置と、モータの動作を制御するモータ制御装置とを含み、モータ制御装置が制御対象装置からモータの状態を示す情報を受信し、受信した情報に基づいてモータの動作をフィードバック制御するモータ制御システムがある。 Conventionally, a control target device including a motor and a motor control device that controls the operation of the motor are received. The motor control device receives information indicating the state of the motor from the control target device, and operates the motor based on the received information. There is a motor control system for feedback control.
 かかるモータ制御システムとして、モータへ電力を供給する電力線を介し、制御対象装置からモータ制御装置へモータの回転位置を示す情報を伝送することで、モータの回転位置を示す情報伝送用の信号線を省配線化したものがある(例えば、特許文献1参照)。 As such a motor control system, an information transmission signal line indicating the rotation position of the motor is provided by transmitting information indicating the rotation position of the motor from the control target apparatus to the motor control apparatus via a power line that supplies power to the motor. Some have reduced wiring (for example, see Patent Document 1).
 このモータ制御システムでは、位置検出装置は、モータ制御装置へ常にモータの回転位置を示す情報を送信する。一方、モータ制御装置は、モータを駆動する回路のスイッチング動作を一時的に停止させ、スイッチング動作の停止期間に受信するモータの回転位置を示す情報に基づいてモータの駆動制御を行う。これにより、スイッチングノイズによる駆動制御への悪影響が低減される。 In this motor control system, the position detection device always transmits information indicating the rotational position of the motor to the motor control device. On the other hand, the motor control device temporarily stops the switching operation of the circuit that drives the motor, and performs drive control of the motor based on information indicating the rotational position of the motor received during the stop period of the switching operation. Thereby, an adverse effect on the drive control due to the switching noise is reduced.
特開2008-278657号公報JP 2008-278657 A
 しかしながら、スイッチング動作の停止期間に受信する情報に基づくモータの駆動制御では、駆動制御の応答性が損なわれるので、モータに対する駆動制御の性能が劣化するという問題がある。 However, in the drive control of the motor based on the information received during the stop period of the switching operation, the responsiveness of the drive control is impaired, and there is a problem that the performance of the drive control for the motor is deteriorated.
 実施形態の一態様は、上記に鑑みてなされたものであって、スイッチングノイズの影響を低減しつつ、モータに対する駆動制御の性能を向上させることができるモータ制御システム、モータ制御装置、制御対象装置、およびモータ制御方法を提供することを目的とする。 One aspect of the embodiments has been made in view of the above, and a motor control system, a motor control device, and a control target device that can improve the performance of drive control on a motor while reducing the influence of switching noise. And a motor control method.
 実施形態の一態様に係るモータ制御システムは、モータと通信部とを備える制御対象装置と、周期的に信号値が変化するキャリア信号に基づいて、前記モータの駆動制御を行うモータ制御装置とを含む。前記モータ制御装置は、通信部と、特定部とを備える。通信部は、前記制御対象装置の前記通信部との間で情報の通信を行う。特定部は、当該モータ制御装置の通信部に前記情報の通信を行わせる通信期間を前記信号値の周期特性に基づいて特定する。 A motor control system according to an aspect of an embodiment includes a control target device including a motor and a communication unit, and a motor control device that performs drive control of the motor based on a carrier signal whose signal value periodically changes. Including. The motor control device includes a communication unit and a specifying unit. The communication unit communicates information with the communication unit of the device to be controlled. The specifying unit specifies a communication period in which the communication unit of the motor control device performs communication of the information based on a periodic characteristic of the signal value.
 実施形態の一態様によれば、スイッチングノイズの影響を低減しつつ、モータに対する駆動制御の性能を向上させることができるモータ制御システム、モータ制御装置、制御対象装置、およびモータ制御方法を提供することができる。 According to one embodiment of the present invention, it is possible to provide a motor control system, a motor control device, a control target device, and a motor control method that can improve the performance of drive control on a motor while reducing the influence of switching noise. Can do.
図1は、実施形態に係るモータ制御システムの外観を示す説明図である。FIG. 1 is an explanatory diagram illustrating an appearance of a motor control system according to the embodiment. 図2は、実施形態に係るロボットおよびモータ制御装置の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of the robot and the motor control device according to the embodiment. 図3は、実施形態に係る電力変換部の構成の一例を示す回路図である。FIG. 3 is a circuit diagram illustrating an example of the configuration of the power conversion unit according to the embodiment. 図4は、実施形態に係る電力変換部の動作を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining the operation of the power conversion unit according to the embodiment. 図5は、実施形態に係るモータ制御装置およびロボットの構成の詳細を示すブロック図である。FIG. 5 is a block diagram illustrating details of the configuration of the motor control device and the robot according to the embodiment. 図6は、実施形態に係る通信期間の特定手順を説明するための説明図である。FIG. 6 is an explanatory diagram for describing a procedure for specifying a communication period according to the embodiment. 図7は、実施形態に係るモータ制御システムで行われる通信を示すシーケンス図である。FIG. 7 is a sequence diagram illustrating communication performed in the motor control system according to the embodiment. 図8は、実施形態に係るモータ制御システムで行われる通信のタイミングを示す説明図である。FIG. 8 is an explanatory diagram illustrating the timing of communication performed in the motor control system according to the embodiment. 図9は、実施形態に係るモータ制御装置の制御部が実行する処理を示すフローチャートである。FIG. 9 is a flowchart illustrating processing executed by the control unit of the motor control device according to the embodiment. 図10は、実施形態に係る状態検出装置が実行する処理を示すフローチャートである。FIG. 10 is a flowchart illustrating processing executed by the state detection device according to the embodiment.
 以下、添付図面を参照して、本願の開示するモータ制御システム、モータ制御装置、制御対象装置、およびモータ制御方法の実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a motor control system, a motor control device, a control target device, and a motor control method disclosed in the present application will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by embodiment shown below.
 以下では、モータ制御装置によって、ロボットが備えるモータの駆動制御を行うモータ制御システムを例に挙げて説明する。なお、実施形態に係るモータ制御装置の制御対象は、ロボットが備えるモータに限定されるものではなく、任意の装置が備えるモータであってもよい。 Hereinafter, a motor control system that performs drive control of a motor included in the robot by the motor control device will be described as an example. The control target of the motor control device according to the embodiment is not limited to the motor provided in the robot, and may be a motor provided in an arbitrary device.
 図1は、実施形態に係るモータ制御システム1の外観を示す説明図である。図1に示すように、モータ制御システム1は、ロボット2とモータ制御装置3とを含む。ロボット2は、6軸の自由度を有する単腕のロボットアームである。 FIG. 1 is an explanatory diagram showing an appearance of a motor control system 1 according to the embodiment. As shown in FIG. 1, the motor control system 1 includes a robot 2 and a motor control device 3. The robot 2 is a single-arm robot arm having six degrees of freedom.
 具体的には、ロボット2は、ベース部20、第1アーム21、第2アーム22、第3アーム23、第4アーム24、第5アーム25、およびエンドエフェクタ26を備える。ベース部20は、例えば、水平な床面等の設置面に設置され、軸Sを回転軸として第1アーム21を回転させるモータを内部に備える。 Specifically, the robot 2 includes a base portion 20, a first arm 21, a second arm 22, a third arm 23, a fourth arm 24, a fifth arm 25, and an end effector 26. The base unit 20 is installed on an installation surface such as a horizontal floor surface, and includes a motor that rotates the first arm 21 around the axis S as a rotation axis.
 第1アーム21は、ベース部20上に連結され、軸Lを揺動軸として第2アーム22を揺動させるモータを内部に備える。第2アーム22は、基端部が第1アーム21に揺動自在に連結され、先端部の内部に軸Uを回転軸として第3アーム23を回転させるモータを備える。 The first arm 21 is connected to the base portion 20 and includes therein a motor that swings the second arm 22 about the axis L as a swing axis. The second arm 22 includes a motor whose base end is swingably connected to the first arm 21 and that rotates the third arm 23 about the axis U as a rotation axis inside the distal end.
 第3アーム23は、第2アーム22の先端部に回転自在に連結され、軸Rを回転軸として第4アーム24を回転させるモータを内部に備える。第4アーム24は、基端部が第3アーム23に回転自在に連結され、軸Bを揺動軸として第5アーム25を揺動させるモータを備える。 The third arm 23 is rotatably connected to the tip of the second arm 22 and includes a motor that rotates the fourth arm 24 about the axis R as a rotation axis. The fourth arm 24 includes a motor whose base end is rotatably connected to the third arm 23 and swings the fifth arm 25 about the axis B as a swing axis.
 第5アーム25は、基端部が第4アーム24の先端部に揺動自在に連結され、軸Tを回転軸としてエンドエフェクタ26を回転させるモータを備える。エンドエフェクタ26は、基端部が第5アーム25の先端部に回転自在に連結されるアーク溶接用のトーチである。 The fifth arm 25 includes a motor whose base end is swingably connected to the distal end of the fourth arm 24 and rotates the end effector 26 about the axis T as a rotation axis. The end effector 26 is an arc welding torch whose base end portion is rotatably connected to the distal end portion of the fifth arm 25.
 このように、ロボット2は、内部に計6個のモータを備える。なお、ロボット2が備えるモータの個数は7個以上であってもよく、6個未満であってもよい。また、エンドエフェクタ26は、アーク溶接用のトーチに限定されるものではない。 Thus, the robot 2 includes a total of six motors. The number of motors provided in the robot 2 may be 7 or more, or may be less than 6. The end effector 26 is not limited to an arc welding torch.
 モータ制御装置3は、ロボット2が備える各モータの駆動制御をそれぞれ個別に行うことによって、予め教示された所定の動作をロボット2に行わせる装置である。かかるモータ制御装置3とロボット2とは、第1のケーブル41と、第2のケーブル42とによって接続される。 The motor control device 3 is a device that causes the robot 2 to perform a predetermined operation taught in advance by individually performing drive control of each motor included in the robot 2. The motor control device 3 and the robot 2 are connected by a first cable 41 and a second cable 42.
 第1のケーブル41は、モータ制御装置3からロボット2へモータ駆動用の電力を供給するための配線である。モータ制御装置3は、第1のケーブル41を介して各モータへ供給する電力の電圧を制御することによって、各モータの回転速度や回転トルクなどを調整する。 The first cable 41 is a wiring for supplying electric power for driving the motor from the motor control device 3 to the robot 2. The motor control device 3 adjusts the rotation speed, the rotation torque, and the like of each motor by controlling the voltage of the power supplied to each motor via the first cable 41.
 第2のケーブル42は、モータ制御装置3からロボット2が備える後述の状態検出装置E(図2参照)へ電力を供給するための配線である。また、第2のケーブル42は、モータ制御装置3とロボット2との間で周期的に行われる情報の通信にも使用される。 The second cable 42 is a wiring for supplying electric power from the motor control device 3 to a state detection device E (see FIG. 2) described later included in the robot 2. The second cable 42 is also used for information communication periodically performed between the motor control device 3 and the robot 2.
 例えば、ロボット2は、モータ制御装置3へモータの回転位置や回転速度、回転加速度などといったモータの状態を示す情報を送信する。モータの状態を示す情報は、モータ制御装置3によって、例えば、モータのフィードバック制御(以下、単に「駆動制御」と記載する)に使用される。また、モータ制御装置3は、例えば、ロボット2からモータ制御装置3へモータの状態を示す情報を送信させるタイミングを教示する情報を送信する。 For example, the robot 2 transmits information indicating the motor state such as the rotational position, rotational speed, and rotational acceleration of the motor to the motor control device 3. Information indicating the state of the motor is used by the motor control device 3 for, for example, feedback control of the motor (hereinafter simply referred to as “drive control”). In addition, the motor control device 3 transmits, for example, information that teaches the timing for transmitting information indicating the state of the motor from the robot 2 to the motor control device 3.
 モータ制御装置3および状態検出装置Eは、例えば、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重方式)によって、駆動制御に関する情報を変調する。 The motor control device 3 and the state detection device E modulate information related to drive control by, for example, OFDM (Orthogonal Frequency Division Multiplexing).
 そして、モータ制御装置3および状態検出装置Eは、第2のケーブル42を流れる電力供給用の電流に、変調した駆動制御に関する情報を重畳させることによって、通信を行う。このように、モータ制御システム1では、電力供給用の配線および情報通信用の配線として、第2のケーブル42を共用する。これにより、モータ制御システム1では、駆動制御に関する情報の通信専用に使用する配線の省配線化を実現している。 Then, the motor control device 3 and the state detection device E perform communication by superimposing information on the modulated drive control on the electric power supply current flowing through the second cable 42. As described above, in the motor control system 1, the second cable 42 is shared as the power supply wiring and the information communication wiring. As a result, the motor control system 1 realizes wiring saving for wirings used exclusively for communication of information related to drive control.
 次に、図2を参照し、実施形態に係るロボット2およびモータ制御装置3の構成について説明する。図2は、実施形態に係るロボット2およびモータ制御装置3の構成を示すブロック図である。なお、図2には、モータMの駆動制御に必要な構成要素を選択的に図示しており、他の構成要素については、図示を省略している。 Next, the configuration of the robot 2 and the motor control device 3 according to the embodiment will be described with reference to FIG. FIG. 2 is a block diagram illustrating configurations of the robot 2 and the motor control device 3 according to the embodiment. In FIG. 2, constituent elements necessary for drive control of the motor M are selectively illustrated, and the other constituent elements are not illustrated.
 図2に示すように、ロボット2は、第1制御対象装置51、第2制御対象装置52、第3制御対象装置53、第4制御対象装置54、第5制御対象装置55、および第6制御対象装置56を備える。 As shown in FIG. 2, the robot 2 includes a first control target device 51, a second control target device 52, a third control target device 53, a fourth control target device 54, a fifth control target device 55, and a sixth control target. A target device 56 is provided.
 第1制御対象装置51は、ベース部20に設けられる。また、第2制御対象装置52は、第1アーム21に設けられる。第3制御対象装置53は、第2アーム22に設けられる。第4制御対象装置54は、第3アーム23に設けられる。第5制御対象装置55は、第4アーム24に設けられる。第6制御対象装置56は、第5アーム25に設けられる。なお、第1~第6制御対象装置51~56の配設位置は、これに限定されるものではない The first control target device 51 is provided in the base unit 20. The second control target device 52 is provided on the first arm 21. The third control target device 53 is provided on the second arm 22. The fourth control target device 54 is provided on the third arm 23. The fifth control target device 55 is provided on the fourth arm 24. The sixth control target device 56 is provided on the fifth arm 25. The arrangement positions of the first to sixth control target devices 51 to 56 are not limited to this.
 また、第1制御対象装置51は、モータMと、状態検出装置Eと、カプラCPとを備える。カプラCPは、例えば、フォトカプラである。なお、第2~第6制御対象52~56は、モータMのサイズがそれぞれ異なる点を除き、第1制御対象装置51と同様の構成である。このため、これら第2~第6制御対象装置52~56の構成については、説明を省略する。また、以下では、第1~第6制御対象装置51~56を特に区別しない場合、第1~第6制御対象装置51~56を制御対象装置5と称する。 The first control target device 51 includes a motor M, a state detection device E, and a coupler CP. The coupler CP is, for example, a photocoupler. The second to sixth control objects 52 to 56 have the same configuration as that of the first control object device 51 except that the sizes of the motors M are different. Therefore, the description of the configurations of the second to sixth control target devices 52 to 56 is omitted. In the following description, the first to sixth control target devices 51 to 56 will be referred to as the control target device 5 unless the first to sixth control target devices 51 to 56 are particularly distinguished.
 モータMは、第1のケーブル41を介してモータ制御装置3と接続され、モータ制御装置3から供給される3相交流の電力によって回転する回転電機である。ロボット2は、各制御対象装置5が備えるモータMが回転することによって、各制御対象装置5に対応する第1~第5アーム21~25およびエンドエフェクタ26を動作させ、所定の作業を行う。 The motor M is a rotating electrical machine that is connected to the motor control device 3 via the first cable 41 and rotates by three-phase AC power supplied from the motor control device 3. The robot 2 operates the first to fifth arms 21 to 25 and the end effector 26 corresponding to each control target device 5 by rotating the motor M included in each control target device 5 to perform a predetermined work.
 状態検出装置Eは、モータMに接続され、モータMの回転位置を検出するロータリーエンコーダである。なお、状態検出装置Eは、モータMの回転位置、回転速度、および回転加速度のうち、いずれか一つまたは複数の状態を検出可能な構成であってもよく、モータMに掛るトルクを検知可能な構成であってもよい。また、状態検出装置Eは、カプラCPを介して第2のケーブル42に接続され、第2のケーブル42を介して供給される電力によって動作する。 The state detection device E is a rotary encoder that is connected to the motor M and detects the rotational position of the motor M. The state detection device E may be configured to detect any one or a plurality of states among the rotation position, rotation speed, and rotation acceleration of the motor M, and can detect the torque applied to the motor M. It may be a simple configuration. In addition, the state detection device E is connected to the second cable 42 via the coupler CP, and operates with electric power supplied via the second cable 42.
 そして、状態検出装置Eは、例えば、検出したモータMの回転位置を示す位置情報を、第2のケーブル42を介してモータ制御装置3へ送信する。かかる位置情報は、駆動制御に関する情報の一例である。なお、状態検出装置Eの構成については、図5を参照して後述する。 Then, for example, the state detection device E transmits position information indicating the detected rotational position of the motor M to the motor control device 3 via the second cable 42. Such position information is an example of information related to drive control. The configuration of the state detection device E will be described later with reference to FIG.
 モータ制御装置3は、制御部30、電力変換部31~36、モータ用電力供給部37、制御用電力供給部38、およびカプラCPを備える。モータ用電力供給部37は、電力変換部31~36および第1のケーブル41を介して、ロボット2の各モータMへ3相交流の電力を供給する電源である。また、制御用電力供給部38は、制御部30へ電力を供給すると共に、カプラCPおよび第2のケーブル42を介して、ロボット2が備える各制御対象装置5へ電力を供給する電源である。 The motor control device 3 includes a control unit 30, power conversion units 31 to 36, a motor power supply unit 37, a control power supply unit 38, and a coupler CP. The motor power supply unit 37 is a power source that supplies three-phase AC power to each motor M of the robot 2 via the power conversion units 31 to 36 and the first cable 41. The control power supply unit 38 is a power source that supplies power to the control unit 30 and also supplies power to each control target device 5 included in the robot 2 via the coupler CP and the second cable 42.
 各電力変換部31~36は、制御部30による制御に従って動作することにより、モータ用電力供給部37から入力される電力の電圧を調整して、ロボット2の各モータMへ出力する電圧調整回路である。ここで、図3および図4を参照し、電力変換部31~36の構成および動作について説明する。 Each of the power conversion units 31 to 36 operates according to control by the control unit 30 to adjust the voltage of power input from the motor power supply unit 37 and output the voltage to each motor M of the robot 2. It is. Here, with reference to FIG. 3 and FIG. 4, the configuration and operation of the power converters 31 to 36 will be described.
 なお、電力変換部31~36は、いずれも同様の構成および動作を行うため、ここでは、電力変換部31の構成および動作について説明し、電力変換部32~36については、その説明を省略する。図3は、実施形態に係る電力変換部31の構成の一例を示す回路図であり、図4は、実施形態に係る電力変換部31の動作を説明するための説明図である。 Since power converters 31 to 36 all have the same configuration and operation, the configuration and operation of power converter 31 will be described here, and the description of power converters 32 to 36 will be omitted. . FIG. 3 is a circuit diagram illustrating an example of the configuration of the power conversion unit 31 according to the embodiment, and FIG. 4 is an explanatory diagram for explaining the operation of the power conversion unit 31 according to the embodiment.
 図3に示すように、電力変換部31は、コンバータ31a、平滑回路31bおよびインバータ31cを備える。コンバータ31aは、フルブリッジ接続される6個のダイオードを備え、モータ用電力供給部37から入力される3相交流の電力(電流)を整流する一般的な整流回路である。平滑回路31bは、インダクタとキャパシタとを備え、コンバータ31aによって整流された電流に含まれる脈流をより直流に近い状態に平滑化する回路である。 As shown in FIG. 3, the power conversion unit 31 includes a converter 31a, a smoothing circuit 31b, and an inverter 31c. The converter 31 a is a general rectifier circuit that includes six diodes connected in a full bridge and rectifies three-phase AC power (current) input from the motor power supply unit 37. The smoothing circuit 31b includes an inductor and a capacitor, and smoothes the pulsating current included in the current rectified by the converter 31a to a state closer to direct current.
 インバータ31cは、フルブリッジ接続される6個のスイッチング素子a1,a2,b1,b2,c1,c2と、各スイッチング素子a1,a2,b1,b2,c1,c2に逆並列接続されるダイオードとを備える。各スイッチング素子a1,a2,b1,b2,c1,c2は、例えば、IGBT(Insulated Gate Bipolar Transistor)である。 The inverter 31c includes six switching elements a1, a2, b1, b2, c1, and c2 that are connected in a full bridge, and diodes that are connected in reverse parallel to the switching elements a1, a2, b1, b2, c1, and c2. Prepare. Each of the switching elements a1, a2, b1, b2, c1, and c2 is, for example, an IGBT (Insulated Gate Bipolar Transistor).
 かかるインバータ31cは、制御部30による制御に従って、各スイッチング素子a1,a2,b1,b2,c1,c2のONとOFFとを切り替えるスイッチングを行うことによって、平滑後の電流を3相の交流電力に変換する回路である。 The inverter 31c performs switching for switching ON and OFF of the switching elements a1, a2, b1, b2, c1, and c2 according to control by the control unit 30, thereby converting the smoothed current into three-phase AC power. It is a circuit to convert.
 つまり、各スイッチング素子a1,a2,b1,b2,c1,c2は、制御部30から各ゲートに入力される制御信号に基づいて、スイッチング動作を行う。制御部30は、所謂キャリア比較法に基づいて制御信号を生成して各スイッチング素子a1,a2,b1,b2,c1,c2のゲートへ出力する。 That is, each switching element a1, a2, b1, b2, c1, c2 performs a switching operation based on a control signal input from the control unit 30 to each gate. The control unit 30 generates a control signal based on a so-called carrier comparison method, and outputs it to the gates of the switching elements a1, a2, b1, b2, c1, and c2.
 例えば、制御部30は、図4に三角波で示すキャリア信号caと、図4に示す3つの正弦波で示す電圧指令値とを比較して、図4に示す3つの制御信号Sa,Sb,Scを生成する。図4に示すように、キャリア信号caは、信号値(電圧値)がVdc/2と-Vdc/2との間で、周期的に極値(極大値および極小値)に達する周期特性を有する。 For example, the control unit 30 compares the carrier signal ca indicated by the triangular wave in FIG. 4 with the voltage command values indicated by the three sine waves shown in FIG. 4 to determine the three control signals Sa, Sb, Sc shown in FIG. Is generated. As shown in FIG. 4, the carrier signal ca has a periodic characteristic in which the signal value (voltage value) periodically reaches an extreme value (maximum value and minimum value) between Vdc / 2 and −Vdc / 2. .
 ここで、実線で示す電圧指令値aはU相用である。点線で示す電圧指令値bは、V相用である。一点鎖線で示す電圧指令値cはW相用である。また、制御信号Saは、スイッチング素子a1,a2用である。制御信号Sbは、スイッチング素子b1,b2用である。制御信号Scは、スイッチング素子c1,c2用である。 Here, the voltage command value a indicated by the solid line is for the U phase. The voltage command value b indicated by the dotted line is for the V phase. The voltage command value c indicated by the alternate long and short dash line is for the W phase. The control signal Sa is for the switching elements a1 and a2. The control signal Sb is for the switching elements b1 and b2. The control signal Sc is for the switching elements c1 and c2.
 そして、制御部30は、図4に示すように、キャリア信号caの信号値よりも電圧指令値aが高い期間で「1(ハイレベル)」となり、キャリア信号caの信号値よりも電圧指令値aが低い期間で「0(ローレベル)」となる制御信号Saを生成する。 Then, as shown in FIG. 4, the control unit 30 becomes “1 (high level)” in a period in which the voltage command value a is higher than the signal value of the carrier signal ca, and the voltage command value is higher than the signal value of the carrier signal ca. A control signal Sa that becomes “0 (low level)” in a period in which a is low is generated.
 同様に、制御部30は、キャリア信号caの信号値と、電圧指令値b,cとを比較して、制御信号Sb,Scを生成する。そして、制御部30は、生成した制御信号Sa,Sb,Scを、対応する各スイッチング素子a1,a2,b1,b2,c1,c2のゲートへ出力する。 Similarly, the control unit 30 compares the signal value of the carrier signal ca with the voltage command values b and c to generate control signals Sb and Sc. Then, the control unit 30 outputs the generated control signals Sa, Sb, Sc to the gates of the corresponding switching elements a1, a2, b1, b2, c1, c2.
 これにより、スイッチング素子a1は、制御信号Saが「1」の期間にONとなり、「0」の期間に、OFFとなる。逆に、スイッチング素子a2は、制御信号Saが「0」の期間にONとなり、「1」の期間に、OFFとなる。 Thereby, the switching element a1 is turned on when the control signal Sa is “1” and turned off when the control signal Sa is “0”. Conversely, the switching element a2 is turned on when the control signal Sa is “0” and turned off when the control signal Sa is “1”.
 また、スイッチング素子b1は、制御信号Sbが「1」の期間にONとなり、「0」の期間に、OFFとなる。逆に、スイッチング素子b2は、制御信号Sbが「0」の期間にONとなり、「1」の期間に、OFFとなる。 In addition, the switching element b1 is turned on when the control signal Sb is “1” and turned off when the control signal Sb is “0”. Conversely, the switching element b2 is turned on when the control signal Sb is “0” and turned off when the control signal Sb is “1”.
 スイッチング素子c1は、制御信号Scが「1」の期間にONとなり、「0」の期間に、OFFとなる。逆に、スイッチング素子c2は、制御信号Scが「0」の期間にONとなり、「1」の期間に、OFFとなる。 The switching element c1 is turned on when the control signal Sc is “1” and turned off when the control signal Sc is “0”. Conversely, the switching element c2 is turned on when the control signal Sc is “0” and turned off when the control signal Sc is “1”.
 図2へ戻り、制御部30は、通信用のバス43を介して、各電力変換部31~36と接続される。そして、制御部30は、バス43を介して、各電力変換部31~36へ前述の制御信号Sa,Sb,Scを出力することによって、ロボット2の各モータMをPWM(Pulse Width Modulation)制御する。 Returning to FIG. 2, the control unit 30 is connected to each of the power conversion units 31 to 36 via the communication bus 43. Then, the control unit 30 outputs the control signals Sa, Sb, and Sc to the power conversion units 31 to 36 via the bus 43, thereby controlling each motor M of the robot 2 by PWM (Pulse Width Modulation). To do.
 また、制御部30は、カプラCPおよび第2のケーブル42を介して、ロボット2の各状態検出装置Eから各モータMの回転位置を示す位置情報を所定周期毎に受信し、受信した位置情報に基づいて、モータMの動作をフィードバック制御する。 Further, the control unit 30 receives position information indicating the rotational position of each motor M from each state detection device E of the robot 2 via the coupler CP and the second cable 42 for each predetermined period, and the received position information. Based on the above, the operation of the motor M is feedback-controlled.
 また、制御部30は、モータMの回転位置を示す位置情報以外にも、各モータMの駆動制御に関する様々な情報を制御対象装置5との間で通信する場合がある。例えば、制御部30は、各制御対象装置5からモータMの回転速度を示す情報やモータMの回転加速度を示す情報も受信する。かかる場合、前述したインバータ31cのスイッチング素子a1,a2,b1,b2,c1,c2のスイッチング動作に起因したノイズが、第2のケーブル42を介して通信される情報に重畳されることがある。 In addition to the position information indicating the rotational position of the motor M, the control unit 30 may communicate various information regarding the drive control of each motor M with the control target device 5. For example, the control unit 30 also receives information indicating the rotational speed of the motor M and information indicating the rotational acceleration of the motor M from each control target device 5. In such a case, noise due to the switching operation of the switching elements a1, a2, b1, b2, c1, and c2 of the inverter 31c described above may be superimposed on information communicated via the second cable 42.
 情報に重畳されるノイズは、制御部30によるモータMの駆動制御に悪影響を及ぼす。例えば、モータMの回転位置を示す位置情報にノイズが重畳される場合、制御部30は、モータMに対するフィードバック制御性能が低下する。 The noise superimposed on the information adversely affects the drive control of the motor M by the control unit 30. For example, when noise is superimposed on position information indicating the rotational position of the motor M, the control unit 30 has a reduced feedback control performance for the motor M.
 そこで、制御部30は、キャリア信号caの周期内で、少なくともスイッチング素子a1,a2,b1,b2,c1,c2のスイッチング動作に起因したノイズが重畳されない通信期間を、キャリア信号caの周期特性に基づいて特定する。 Therefore, the control unit 30 sets a communication period in which noise due to switching operations of at least the switching elements a1, a2, b1, b2, c1, and c2 is not superimposed within the period of the carrier signal ca to the period characteristic of the carrier signal ca. Identify based on.
 そして、制御部30は、特定した通信期間に、制御対象装置5との間で通信を行うことにより、スイッチングノイズの影響を低減しつつ、モータMに対する駆動制御の性能を向上させる。 And the control part 30 improves the performance of the drive control with respect to the motor M, reducing the influence of switching noise by communicating between the control object apparatuses 5 in the specified communication period.
 次に、図5を参照し、かかる制御部30の具体的な構成の一例を含め、モータ制御装置3およびロボット2の構成について、さらに詳しく説明する。図5は、実施形態に係るモータ制御装置3およびロボット2の構成の詳細を示すブロック図である。 Next, the configuration of the motor control device 3 and the robot 2 including an example of a specific configuration of the control unit 30 will be described in more detail with reference to FIG. FIG. 5 is a block diagram illustrating details of the configurations of the motor control device 3 and the robot 2 according to the embodiment.
 なお、前述したように、第1~第6制御対象装置51~56は、モータMのサイズが異なる点を除き、同様の構成である。このため、図5には、第1制御対象装置31と、第1制御対象装置31の制御に必要な構成要素を選択的に図示し、第2~第6制御対象装置52~56に関する構成要素については、図示を省略している。また、ここでは、図2に示す構成要素と同一の構成要素については、図2に示す符号と同一の符号を付することにより、その説明を省略する。 As described above, the first to sixth control target devices 51 to 56 have the same configuration except that the size of the motor M is different. For this reason, FIG. 5 selectively illustrates the first control target device 31 and the components necessary for the control of the first control target device 31, and the components related to the second to sixth control target devices 52 to 56. About is omitted. In addition, here, the same components as those shown in FIG. 2 are denoted by the same reference numerals as those shown in FIG.
 図5に示すように、モータ制御装置3は、モータ用電力供給部37、電力変換部31、制御部30、制御用電力供給部38、およびカプラCPを備える。制御部30は、駆動制御部61と、特定部62と、通信部63と、通信制御部66とを備える。また、通信部63は、送信部64と受信部65とを備える。 As shown in FIG. 5, the motor control device 3 includes a motor power supply unit 37, a power conversion unit 31, a control unit 30, a control power supply unit 38, and a coupler CP. The control unit 30 includes a drive control unit 61, a specifying unit 62, a communication unit 63, and a communication control unit 66. The communication unit 63 includes a transmission unit 64 and a reception unit 65.
 駆動制御部61は、キャリア信号caと電圧指令値a,b,cとを比較して、前述した制御信号Sa,Sb,Scを生成し、生成した制御信号Sa,Sb,Scを電力変換部31へ出力する処理部である。かかる駆動制御部61は、電圧指令値a,b,cを所定周期で特定部62へ出力する。 The drive control unit 61 compares the carrier signal ca and the voltage command values a, b, and c to generate the control signals Sa, Sb, and Sc described above, and the generated control signals Sa, Sb, and Sc are converted into a power conversion unit. 31 is a processing unit that outputs to 31. The drive control unit 61 outputs the voltage command values a, b, and c to the specifying unit 62 at a predetermined cycle.
 特定部62は、キャリア信号caの周期内で、少なくともスイッチング素子a1,a2,b1,b2,c1,c2のスイッチング動作に起因したノイズが重畳されない通信期間を、キャリア信号caの周期特性に基づいて特定する処理部である。 Based on the periodic characteristics of the carrier signal ca, the specifying unit 62 performs a communication period in which noise due to at least the switching operation of the switching elements a1, a2, b1, b2, c1, and c2 is not superimposed within the period of the carrier signal ca. A processing unit to be identified.
 かかる特定部62には、予め、キャリア信号caの周波数と、インバータ31cが備える各スイッチング素子a1,a2,b1,b2,c1,c2のターンON/OFF時間とが設定される。 In the specifying unit 62, the frequency of the carrier signal ca and the turn-on / off times of the switching elements a1, a2, b1, b2, c1, and c2 included in the inverter 31c are set in advance.
 そして、特定部62は、駆動制御部61から所定周期で入力される電圧指令値a,b,cと、キャリア信号caの周波数と、各スイッチング素子a1,a2,b1,b2,c1,c2のターンON/OFF時間とに基づいて、通信期間を特定する。 And the specific | specification part 62 is the voltage command value a, b, c input from the drive control part 61 with a predetermined period, the frequency of carrier signal ca, and each switching element a1, a2, b1, b2, c1, c2 The communication period is specified based on the turn ON / OFF time.
 ここで、図6を参照し、特定部62が通信期間を特定する手順について説明する。図6は、実施形態に係る通信期間の特定手順を説明するための説明図である。図6には、上から順に、キャリア信号caの波形、電圧指令値aの波形、制御信号Saの波形、およびスイッチングノイズnの波形を示している。なお、各波形の縦軸は信号値であり、各波形の横軸は時刻tである。 Here, with reference to FIG. 6, a procedure for the specifying unit 62 to specify the communication period will be described. FIG. 6 is an explanatory diagram for describing a procedure for specifying a communication period according to the embodiment. FIG. 6 shows, in order from the top, the waveform of the carrier signal ca, the waveform of the voltage command value a, the waveform of the control signal Sa, and the waveform of the switching noise n. The vertical axis of each waveform is a signal value, and the horizontal axis of each waveform is time t.
 また、図6に示す一点鎖線よりも左側に示すキャリア信号caの波形および電圧指令値aの波形は、一点鎖線よりも右側に示す微小時間t0におけるキャリア信号caの波形および電圧指令値aの波形を拡大したものである。 Further, the waveform of the carrier signal ca and the voltage command value a shown on the left side of the one-dot chain line shown in FIG. 6 are the waveform of the carrier signal ca and the waveform of the voltage command value a at the minute time t0 shown on the right side of the one-dot chain line. Is an enlarged version.
 ここでは、図6に示す時刻t1からt2までの期間および時刻t5からt6までの期間に、電圧指令値aがキャリア信号caの信号値よりも大きく、時刻t2からt5までの期間に、電圧指令値aがキャリア信号caの信号値よりも小さい場合について説明する。 Here, during the period from time t1 to t2 and the period from time t5 to t6 shown in FIG. 6, the voltage command value a is larger than the signal value of the carrier signal ca, and during the period from time t2 to t5, A case where the value a is smaller than the signal value of the carrier signal ca will be described.
 かかる場合、駆動制御部61は、時刻t2でハイレベルからローレベルへ立ち下がり、時刻t5でローレベルからハイレベルへ立ちあがる制御信号Saを生成してスイッチング素子a1へ出力する。したがって、スイッチング素子a1は、時刻2でONからOFFへ切り替わり、時刻t5でOFFからONへ切り替わる。 In such a case, the drive control unit 61 generates a control signal Sa that falls from the high level to the low level at time t2 and rises from the low level to the high level at time t5, and outputs the control signal Sa to the switching element a1. Therefore, the switching element a1 switches from ON to OFF at time 2 and switches from OFF to ON at time t5.
 これにより、時刻t2から時刻t3までの時間T3の期間にスイッチングノイズが発生する。なお、かかる時間T3は、スイッチング素子a1のターンON/OFF時間と略等しい。また、時刻t5にもスイッチングノイズが発生する。 As a result, switching noise occurs during a period of time T3 from time t2 to time t3. The time T3 is substantially equal to the turn ON / OFF time of the switching element a1. Also, switching noise occurs at time t5.
 このように、スイッチング素子a1は、電圧指令値aとキャリア信号caの信号値との大小関係が反転する時刻t2,t5に、スイッチング動作を行う。言い換えれば、スイッチング素子a1は、電圧指令値aを示す正弦波と、キャリア信号caの波形とが交差する時刻t2,t5でスイッチング動作を行う。かかるスイッチング動作は、他のスイッチング素子a2、b1,b2,c1,c2でも同様に行われる。 Thus, the switching element a1 performs a switching operation at times t2 and t5 when the magnitude relationship between the voltage command value a and the signal value of the carrier signal ca is inverted. In other words, the switching element a1 performs a switching operation at times t2 and t5 at which the sine wave indicating the voltage command value a and the waveform of the carrier signal ca intersect. Such a switching operation is similarly performed in the other switching elements a2, b1, b2, c1, and c2.
 このことから、スイッチングノイズは、キャリア信号caの信号値が極大値に達する時刻t3または極小値に達する時刻t1,t6の前後近傍の期間、図6に示す例では、例えば、時刻t3からt5までの時間T0には発生しないことが分かる。 Therefore, the switching noise is generated at the time t3 when the signal value of the carrier signal ca reaches the maximum value or the period before and after the times t1 and t6 when the signal value reaches the minimum value, for example, from the time t3 to t5 in the example shown in FIG. It can be seen that it does not occur at time T0.
 かかるスイッチングノイズが発生しない時間T0は、キャリア信号caの信号値が極小値に達してから、次の極小値に達するまでの期間毎に、周期的に到来する。若しくは、スイッチングノイズが発生しない時間T0は、キャリア信号caの信号値が極大値に達してから次の極大値に達するまでの期間毎に、周期的に到来する。 The time T0 in which such switching noise does not occur periodically arrives every period from when the signal value of the carrier signal ca reaches the minimum value until it reaches the next minimum value. Alternatively, the time T0 when no switching noise occurs periodically arrives at every period from when the signal value of the carrier signal ca reaches the maximum value until it reaches the next maximum value.
 そこで、特定部62は、周期的に順次到来するスイッチングノイズが発生しない時間T0を、通信部30によって第1制御対象装置51との通信を周期的に行わせる通信期間として特定する。 Therefore, the specifying unit 62 specifies the time T0 in which the switching noise that sequentially arrives sequentially does not occur as a communication period in which the communication unit 30 periodically performs communication with the first control target device 51.
 この周期的に到来する通信期間には、モータ制御装置3から第1制御対象装置51へ情報を送信する第1の通信期間と、第1制御対象装置51からモータ制御装置3へ情報を送信させる第2の通信期間とがある。 In this periodically arriving communication period, information is transmitted from the motor control device 3 to the first control target device 51, and information is transmitted from the first control target device 51 to the motor control device 3. There is a second communication period.
 さらに、特定部62は、周期的に順次到来する時間T0の開始点を、上記通信期間の開始点として特定する。特定部62は、通信期間の開始点を特定する場合に、まず、キャリア信号caの周波数に基づいて、キャリア信号caの信号値が極小値に達する時刻t1から、次にキャリア信号caの信号値が極大値に達する時刻t4までの時間T1を算出する。 Further, the specifying unit 62 specifies the start point of the time T0 that sequentially arrives sequentially as the start point of the communication period. When the specifying unit 62 specifies the start point of the communication period, first, based on the frequency of the carrier signal ca, from the time t1 when the signal value of the carrier signal ca reaches a minimum value, then the signal value of the carrier signal ca The time T1 until time t4 when reaches the maximum value is calculated.
 また、特定部62は、キャリア信号caの信号値と電圧指令値aとに基づいて、スイッチング素子a1がスイッチング動作を行う時刻t2を特定する。続いて、特定部62は、時刻t4から時刻t2までの時間を算出する。 Further, the specifying unit 62 specifies the time t2 at which the switching element a1 performs the switching operation based on the signal value of the carrier signal ca and the voltage command value a. Subsequently, the specifying unit 62 calculates the time from time t4 to time t2.
 これにより、次式(1)から、キャリア信号caの信号値が極小値に達する時刻t1から、次に発生するスイッチング素子a1のスイッチングノイズが消滅する時刻t3までの時間T4を算出することができる。 Thereby, from the following equation (1), it is possible to calculate the time T4 from the time t1 when the signal value of the carrier signal ca reaches the minimum value to the time t3 when the switching noise of the next switching element a1 disappears. .
 (時間T4)=(時間T1)-(時間T2)+(時間T3)・・・(1) (Time T4) = (Time T1) − (Time T2) + (Time T3) (1)
 より具体的には、特定部62は、次式(2)によって、キャリア信号caの信号値が極小値に達した時刻t1次に発生するスイッチング素子a1のスイッチングノイズが消滅する時刻t3までの時間T4を算出する。 More specifically, the specifying unit 62 uses the following equation (2) to determine the time until the time t3 when the switching noise of the switching element a1 that occurs next time t1 when the signal value of the carrier signal ca reaches the minimum value disappears. T4 is calculated.
 T4=1/(2×fc)-{(1-η)/2×1/fc}/2+πtr・・・(2)
fc:キャリア信号caの周波数
η:電圧指令値a,b,cの最大値を1とした場合の現時点の電圧指令値a,b,c
tr:スイッチング素子a1,a2,b1,b2,c1,c2のターンON/OFF時間
T4 = 1 / (2 × fc) − {(1−η) / 2 × 1 / fc} / 2 + πtr (2)
fc: frequency η of the carrier signal ca: current voltage command values a, b, c when the maximum value of the voltage command values a, b, c is 1.
tr: Turn ON / OFF time of the switching elements a1, a2, b1, b2, c1, c2
 こうして算出される時間T4は、キャリア信号caの信号値が極小値に達してから第2の通信期間の開始点までの時間である。そこで、特定部62は、かかる時間T4を第2の通信期間に関する情報として、通信制御部66へ出力する。 The time T4 calculated in this way is the time from when the signal value of the carrier signal ca reaches the minimum value to the start point of the second communication period. Therefore, the specifying unit 62 outputs the time T4 to the communication control unit 66 as information related to the second communication period.
 図5へ戻り、通信制御部66は、送信部64による情報の送信タイミングを制御する処理部である。具体的には、通信制御部66は、例えば、特定部62から入力される第2の通信期間に関する情報や、後述する通信開始指令を送信部64へ出力することによって、送信部64から第1制御対象装置51へ、第2の通信期間に関する情報や、後述する通信開始指令を送信させる。 Returning to FIG. 5, the communication control unit 66 is a processing unit that controls the transmission timing of information by the transmission unit 64. Specifically, the communication control unit 66 outputs, for example, information related to the second communication period input from the specifying unit 62 and a communication start command to be described later to the transmission unit 64, thereby transmitting the first from the transmission unit 64. Information on the second communication period and a communication start command to be described later are transmitted to the control target device 51.
 送信部64は、第1制御対象装置51へ送信する情報をOFDM変調してカプラCPおよび第2のケーブル42を介して、第1制御対象装置51へ送信する処理部である。 The transmission unit 64 is a processing unit that OFDM-modulates information to be transmitted to the first control target device 51 and transmits the information to the first control target device 51 via the coupler CP and the second cable 42.
 かかる送信部64は、通信制御部66から入力される第2の通信期間に関する情報を、特定部62によって特定された第1の通信期間に、第1制御対象装置51へ送信する。また、送信部64は、第2の通信期間に関する情報を送信後、最初に到来する第1の通信期間に、送信開始指令を第1制御対象装置51へ送信する。 The transmitting unit 64 transmits information related to the second communication period input from the communication control unit 66 to the first control target device 51 during the first communication period specified by the specifying unit 62. In addition, the transmission unit 64 transmits a transmission start command to the first control target device 51 in the first communication period that arrives first after transmitting the information related to the second communication period.
 また、受信部65は、第1制御対象装置51から、モータの状態を示す情報を受信し、受信した情報をOFDM復調して駆動制御部61へ出力する処理部である。かかる受信部65は、例えば、第1制御対象装置51からモータMの回転位置を示す状態情報を受信した場合、受信した状態情報を駆動制御部61へ出力する。通信部63の通信タイミングについては、図7および図8を参照して後述する。 The receiving unit 65 is a processing unit that receives information indicating the state of the motor from the first control target device 51, OFDM-demodulates the received information, and outputs the information to the drive control unit 61. For example, when receiving the state information indicating the rotational position of the motor M from the first control target device 51, the receiving unit 65 outputs the received state information to the drive control unit 61. The communication timing of the communication unit 63 will be described later with reference to FIGS.
 このように、通信部63は、少なくともスイッチング素子a1,a2,b1,b2,c1,c2のスイッチング動作に起因したノイズが重畳されない周期的に到来する第1の通信期間に、制御対象装置5へ情報を送信する。これにより、モータ制御装置3は、モータMの制御に対するノイズの影響を低減することができる。 As described above, the communication unit 63 transmits to the control target device 5 at least in the first communication period that periodically arrives without noise caused by the switching operation of the switching elements a1, a2, b1, b2, c1, and c2. Send information. Thereby, the motor control device 3 can reduce the influence of noise on the control of the motor M.
 一方、ロボット2が備える状態検出装置Eは、状態検出部71と通信部72と、計時部75と、通信制御部76とを備える。通信部72は、受信部73と送信部74とを備える。状態検出部71は、モータMの回転位置を検出し、検出した回転位置をモータMの状態を示す情報を状態情報として、第2の通信期間に送信部74へ出力する処理部である。 On the other hand, the state detection device E included in the robot 2 includes a state detection unit 71, a communication unit 72, a timer unit 75, and a communication control unit 76. The communication unit 72 includes a reception unit 73 and a transmission unit 74. The state detection unit 71 is a processing unit that detects the rotational position of the motor M, and outputs the detected rotational position to the transmission unit 74 in the second communication period as information indicating the state of the motor M.
 受信部73は、モータ制御装置3から第1の通信期間に、情報を受信してOFDM復調する処理部である。かかる受信部73は、モータ制御装置3から前述した第2の通信期間に関する情報や送信開始指令などを受信する。 The receiving unit 73 is a processing unit that receives information from the motor control device 3 and performs OFDM demodulation in the first communication period. The receiving unit 73 receives information related to the second communication period described above, a transmission start command, and the like from the motor control device 3.
 そして、受信部73は、第2の通信期間に関する情報を受信した場合、受信した情報をOFDM復調し、計時部75へ出力して設定する。また、受信部73は、送信開始指令を受信した場合、受信した情報をOFDM復調して計時部75へ出力する。 Then, when receiving the information related to the second communication period, the receiving unit 73 performs OFDM demodulation on the received information, and outputs to the time measuring unit 75 for setting. In addition, when receiving a transmission start command, the receiving unit 73 performs OFDM demodulation on the received information and outputs it to the time measuring unit 75.
 計時部75は、受信部73によって設定される第2の通信期間に関する情報(図6に示す時間T4)を格納するメモリを備えたタイマである。かかる計時部75は、受信部73から送信開始指令が入力される場合、既に受信部73によって設定された第2の通信期間に関する情報に基づいて、前述した時間T4(図6参照)の計時(カウントダウン)を開始する。そして、計時部75は、時間T4の計時が完了した場合、その旨を示す情報を通信制御部76へ出力する。 The timer unit 75 is a timer provided with a memory that stores information (time T4 shown in FIG. 6) related to the second communication period set by the receiving unit 73. When the transmission start command is input from the receiving unit 73, the time measuring unit 75 measures the time T4 (see FIG. 6) described above based on the information regarding the second communication period that has already been set by the receiving unit 73 (see FIG. 6). Countdown). Then, when the timing of time T4 is completed, the timing unit 75 outputs information indicating that to the communication control unit 76.
 通信制御部76は、送信部74による情報の送信タイミングを制御する処理部である。具体的には、通信制御部76は、計時部75から時間T4の計時が完了したことを示す情報が入力されると、その旨を示す情報を送信部74へ出力することによって、モータMの状態情報を送信部74からモータ制御装置1へ送信させる。 The communication control unit 76 is a processing unit that controls the transmission timing of information by the transmission unit 74. Specifically, when information indicating that the time measurement at time T4 has been completed is input from the time measurement unit 75, the communication control unit 76 outputs information indicating that to the transmission unit 74, thereby The state information is transmitted from the transmission unit 74 to the motor control device 1.
 送信部74は、通信制御部76による通信タイミング制御に従い、第2の通信期間に、情報をOFDM変調してモータ制御装置3へ送信する処理部である。かかる送信部74は、通信制御部76から計時部75による時間T4の計時が完了したことを示す情報が入力される場合、状態検出部71から入力される状態情報をOFDM変調してモータ制御装置3へ送信する。なお、通信部72の通信タイミングについては、図7および図8を参照して後述する。 The transmission unit 74 is a processing unit that OFDM-modulates information and transmits it to the motor control device 3 during the second communication period in accordance with communication timing control by the communication control unit 76. When the information indicating that the time counting by the time measuring unit 75 is completed is input from the communication control unit 76, the transmission unit 74 performs OFDM modulation on the state information input from the state detection unit 71 and performs motor control. 3 to send. The communication timing of the communication unit 72 will be described later with reference to FIGS.
 このように、通信部72は、少なくともスイッチング素子a1,a2,b1,b2,c1,c2のスイッチング動作に起因したノイズが重畳されない第2の通信期間に、モータ制御装置3へ情報を送信する。これにより、モータ制御装置3は、モータMの制御に対するノイズの影響を低減することができる。 As described above, the communication unit 72 transmits information to the motor control device 3 at least in the second communication period in which noise due to the switching operation of the switching elements a1, a2, b1, b2, c1, and c2 is not superimposed. Thereby, the motor control device 3 can reduce the influence of noise on the control of the motor M.
 次に、図7および図8を参照し、モータ制御装置3の通信部63および制御対象装置5の通信部72が行う通信タイミングについて説明する。図7は、実施形態に係るモータ制御システム1で行われる通信を示すシーケンス図であり、図8は、実施形態に係るモータ制御システム1で行われる通信のタイミングを示す説明図である。 Next, communication timings performed by the communication unit 63 of the motor control device 3 and the communication unit 72 of the control target device 5 will be described with reference to FIGS. FIG. 7 is a sequence diagram illustrating communication performed in the motor control system 1 according to the embodiment, and FIG. 8 is an explanatory diagram illustrating timing of communication performed in the motor control system 1 according to the embodiment.
 図7に示すように、モータ制御装置3は、まず、最初に到来する第1の通信期間の開始点から終了点までの期間に、第2の通信期間に関する情報(図6に示す時間T4)を全ての制御対象装置5へ向けて第1の通信期間に送信する(ステップS1)。第1制御対象装置51は、第2の通信期間に関する情報を受信する(ステップS2)。 As shown in FIG. 7, the motor control device 3 first has information on the second communication period (time T4 shown in FIG. 6) in the period from the start point to the end point of the first communication period that comes first. Are transmitted to all the control target devices 5 during the first communication period (step S1). The first control target device 51 receives information related to the second communication period (step S2).
 続いて、第2制御対象装置52が第2の通信期間に関する情報を受信する(ステップS3)。こうして、第2の通信期間に関する情報は、順次、全ての制御対象装置5によって受信される。各制御対象装置5は、受信した第2の通信期間に関する情報を計時部75へ設定する。 Subsequently, the second control target device 52 receives information related to the second communication period (step S3). In this way, the information regarding the second communication period is sequentially received by all the control target devices 5. Each control target device 5 sets the received information related to the second communication period in the timer unit 75.
 続いて、モータ制御装置3は、第2の通信期間に関する情報を送信後、最初に到来する第1の通信期間の開始点から終了点までの期間に、送信開始指令を第1制御対象装置51へ送信する(ステップS4)。第1制御対象装置51は、送信開始指令を受信すると、時間T4の計時を開始する(ステップS5)。 Subsequently, the motor control device 3 sends a transmission start command to the first control target device 51 during a period from the start point to the end point of the first communication period that arrives first after transmitting the information related to the second communication period. (Step S4). When receiving the transmission start command, the first control target device 51 starts measuring time T4 (step S5).
 そして、第1制御対象装置51は、計時が完了した時点、つまり、送信開始指令を受信した後、最初に到来する第2の通信期間の開始点から終了点までの期間に、モータMの状態情報をモータ制御装置3へ送信する(ステップS6)。続いて、モータ制御装置3は、第1制御対象装置51から状態情報を受信した後、最初に到来する第1の通信期間の開始点から終了点までの期間に、送信開始指令を第2制御対象装置52へ送信する(ステップS7)。 And the 1st control object apparatus 51 is the state of the motor M in the period from the start point of the 2nd communication period which arrives first after receiving a transmission start command, ie, the time point when time-measurement was completed. Information is transmitted to the motor control device 3 (step S6). Subsequently, after receiving the state information from the first control target device 51, the motor control device 3 sends a transmission start command to the second control in a period from the start point to the end point of the first communication period that comes first. It transmits to the object apparatus 52 (step S7).
 第2制御対象装置52は、送信開始指令を受信すると、時間T4の計時を開始する(ステップS8)。そして、第2制御対象装置52は、計時が完了した時点、つまり、送信開始指令を受信した後、最初に到来する第2の通信期間の開始点から終了点までの期間に、モータMの状態情報をモータ制御装置3へ送信する(ステップS9)。 When receiving the transmission start command, the second control target device 52 starts measuring time T4 (step S8). Then, the second control target device 52 performs the state of the motor M at the time from when the time measurement is completed, that is, from the start point to the end point of the second communication period that arrives first after receiving the transmission start command. Information is transmitted to the motor control device 3 (step S9).
 そして、モータ制御システム1では、モータ制御装置3と第3~第6制御対象装置53~56との間で、順次、上記した第2の通信期間に関する情報の送受信、送信開始指令の送受信、および状態情報の送受信が行われる。 In the motor control system 1, transmission / reception of information on the second communication period, transmission / reception of a transmission start command, and the transmission / reception start command are sequentially performed between the motor control device 3 and the third to sixth control target devices 53-56. Status information is transmitted and received.
 これにより、例えば、図8に示すように、キャリア信号caの周期に同期したタイミングで順次到来する少なくともスイッチング素子a1,a2,b1,b2,c1,c2のスイッチング動作に起因したノイズが重畳されない第1の通信期間および第2の通信期間(時間T0)に、モータ制御装置3と第1~第6制御対象装置51~56との間で、情報の通信が行われる。 As a result, for example, as shown in FIG. 8, the noise caused by the switching operation of at least the switching elements a1, a2, b1, b2, c1, and c2 that sequentially arrive at the timing synchronized with the cycle of the carrier signal ca is not superimposed. Information is communicated between the motor control device 3 and the first to sixth control target devices 51 to 56 in the first communication period and the second communication period (time T0).
 なお、図8に黒で示すパルスは、モータ制御装置3から各制御対象装置5へ情報が送信されるタイミングを示しており、白で示すパルスは、各制御対象装置5からモータ制御装置3へ情報が送信されるタイミングを示している。 8 indicates the timing at which information is transmitted from the motor control device 3 to each control target device 5, and the pulse shown in white indicates the pulse from each control target device 5 to the motor control device 3. The timing at which information is transmitted is shown.
 なお、図8に示す時刻t10,t12,t14,t16,t18,t20,t22は、図6に示す時刻t3に対応する時刻である。すなわち、キャリア信号caの信号値が極小値に達してから時間T4が経過した時点の時刻である。また、図8に示す時刻t11,t13,t15,t17,t19,t21は、キャリア信号caの信号値が極大値に達してから時間T4が経過した時点の時刻である。また、図8に示す時間T4は、図6に示す時間T4と同一の時間である。図8に示す時間T0は、図6に示す時間T0と同一の時間である。 Note that times t10, t12, t14, t16, t18, t20, and t22 shown in FIG. 8 are times corresponding to the time t3 shown in FIG. That is, the time when the time T4 has elapsed after the signal value of the carrier signal ca reaches the minimum value. Also, times t11, t13, t15, t17, t19, and t21 shown in FIG. 8 are times when time T4 has elapsed since the signal value of the carrier signal ca reached the maximum value. 8 is the same as the time T4 shown in FIG. The time T0 shown in FIG. 8 is the same time as the time T0 shown in FIG.
 図8に示すように、時刻t10において、最初の第1の通信期間が到来すると、モータ制御装置3から全ての制御対象装置5へ第2の通信期間に関する情報が送信され、時刻t11において、次の第1の通信期間が到来すると、モータ制御装置3から第1制御対象装置51へ送信開始指令が送信される。その後、時間T4が経過した時刻t12において、第2の通信期間が到来すると、第1制御対象装置51からモータ制御装置3へモータMの状態情報が送信される。 As shown in FIG. 8, when the first first communication period arrives at time t10, information related to the second communication period is transmitted from the motor control device 3 to all the control target devices 5, and at time t11, the next When the first communication period comes, a transmission start command is transmitted from the motor control device 3 to the first control target device 51. Thereafter, when the second communication period comes at time t12 when the time T4 has elapsed, the state information of the motor M is transmitted from the first control target device 51 to the motor control device 3.
 続いて、時刻t13において、第1の通信期間が到来すると、モータ制御装置3から第2制御対象装置52へ送信開始指令が送信される。その後、時間T4が経過した時刻t14において、第2の通信期間が到来すると、第2制御対象装置52からモータ制御装置3へモータMの状態情報が送信される。 Subsequently, when the first communication period arrives at time t13, a transmission start command is transmitted from the motor control device 3 to the second control target device 52. Thereafter, when the second communication period comes at time t14 when the time T4 has elapsed, the state information of the motor M is transmitted from the second control target device 52 to the motor control device 3.
 続いて、時刻t15において、第1の通信期間が到来すると、モータ制御装置3から第3制御対象装置53へ送信開始指令が送信される。その後、時間T4が経過した時刻t16において、第2の通信期間が到来すると、第3制御対象装置53からモータ制御装置3へモータMの状態情報が送信される。 Subsequently, when the first communication period arrives at time t15, a transmission start command is transmitted from the motor control device 3 to the third control target device 53. Thereafter, when the second communication period arrives at time t <b> 16 when the time T <b> 4 has elapsed, the state information of the motor M is transmitted from the third control target device 53 to the motor control device 3.
 続いて、時刻t17において、第1の通信期間が到来すると、モータ制御装置3から第4制御対象装置54へ送信開始指令が送信される。その後、時間T4が経過した時刻t18において、第2の通信期間が到来すると、第3制御対象装置53からモータ制御装置3へモータMの状態情報が送信される。 Subsequently, when the first communication period arrives at time t17, a transmission start command is transmitted from the motor control device 3 to the fourth control target device 54. Thereafter, when the second communication period comes at time t18 when the time T4 has elapsed, the state information of the motor M is transmitted from the third control target device 53 to the motor control device 3.
 続いて、時刻t19において、第1の通信期間が到来すると、モータ制御装置3から第5制御対象装置55へ送信開始指令が送信される。その後、時間T4が経過した時刻t20において、第2の通信期間が到来すると、第5制御対象装置55からモータ制御装置3へモータMの状態情報が送信される。 Subsequently, when the first communication period arrives at time t19, a transmission start command is transmitted from the motor control device 3 to the fifth control target device 55. Thereafter, when the second communication period comes at time t20 when the time T4 has elapsed, the state information of the motor M is transmitted from the fifth control target device 55 to the motor control device 3.
 続いて、時刻t21において、第1の通信期間が到来すると、モータ制御装置3から第6制御対象装置56へ送信開始指令が送信される。その後、時間T4が経過した時刻t22において、第2の通信期間が到来すると、第6制御対象装置56からモータ制御装置3へモータMの状態情報が送信される。そして、モータ制御システム1では、電圧指令値a,b,cの変化量が所定の閾値以上となるまで、時刻t10~t22で行われた通信と同様の通信が繰り返し実行される。 Subsequently, when the first communication period arrives at time t21, a transmission start command is transmitted from the motor control device 3 to the sixth control target device 56. Thereafter, when the second communication period comes at time t22 when the time T4 has elapsed, the state information of the motor M is transmitted from the sixth control target device 56 to the motor control device 3. In the motor control system 1, the same communication as that performed at times t10 to t22 is repeatedly executed until the amount of change in the voltage command values a, b, and c becomes equal to or greater than a predetermined threshold value.
 このように、モータ制御システム1は、インバータ31cの周期的なスイッチング動作を停止させずに、モータ制御装置3および制御対象装置5間の通信をキャリア信号caの周期毎に行うことができる。したがって、モータ制御システム1によれば、スイッチングノイズの影響を低減しつつ、モータMに対する駆動制御の性能を向上させることができる。 Thus, the motor control system 1 can perform communication between the motor control device 3 and the control target device 5 for each cycle of the carrier signal ca without stopping the periodic switching operation of the inverter 31c. Therefore, according to the motor control system 1, it is possible to improve the drive control performance for the motor M while reducing the influence of switching noise.
 次に、図9を参照し、モータ制御装置3の制御部30が実行する処理について説明する。図9は、実施形態に係るモータ制御装置3の制御部30が実行する処理を示すフローチャートである。 Next, the process executed by the control unit 30 of the motor control device 3 will be described with reference to FIG. FIG. 9 is a flowchart illustrating processing executed by the control unit 30 of the motor control device 3 according to the embodiment.
 図9に示すように、制御部30では、まず、特定部62がキャリア信号caの信号値に関する周期特性に基づいて、通信期間を特定する(ステップS101)。かかる通信期間には、前述のように、モータ制御装置3から制御対象装置5へ情報を送信する第1の通信期間と、制御対象装置5からモータ制御装置3へ情報を送信する第2の通信期間とがある。そして、特定部62は、特定した通信期間に関する情報を制御部30の通信部63へ出力する。 As shown in FIG. 9, in the control unit 30, first, the specifying unit 62 specifies a communication period based on the periodic characteristics related to the signal value of the carrier signal ca (step S <b> 101). In the communication period, as described above, the first communication period in which information is transmitted from the motor control device 3 to the control target device 5 and the second communication in which information is transmitted from the control target device 5 to the motor control device 3. There is a period. Then, the specifying unit 62 outputs information regarding the specified communication period to the communication unit 63 of the control unit 30.
 続いて、制御部30の通信制御部66は、第1の通信期間であるか否かを判定する(ステップS102)。そして、通信制御部66は、第1の通信期間でないと判定した場合(ステップS102,No)、第1の通信期間になるまで、ステップS102の判定を繰り返す。 Subsequently, the communication control unit 66 of the control unit 30 determines whether or not it is the first communication period (step S102). If the communication control unit 66 determines that it is not the first communication period (No in step S102), the communication control unit 66 repeats the determination in step S102 until the first communication period is reached.
 また、通信制御部66は、第1の通信期間であると判定した場合(ステップS102,Yes)、特定部62によって特定された第1の通信期間の開始点t10に、全ての制御対象装置5へ第2の通信期間に関する情報を送信部64に送信させる(ステップS103)。ここで送信される第2の通信期間に関する情報は、前述した時間T4を示す情報である。 Further, when the communication control unit 66 determines that it is the first communication period (Yes in step S102), all the control target devices 5 are set at the start point t10 of the first communication period specified by the specifying unit 62. Information on the second communication period is transmitted to the transmitter 64 (step S103). The information related to the second communication period transmitted here is information indicating the time T4 described above.
 なお、特定部62は、キャリア信号caの信号値が極大値または極小値に達した各時点を第1の通信期間または第2の通信期間の開始点として特定する構成であってもよい。かかる構成とすれば、特定部62は、より単純な特定アルゴリズムによって、第1の通信期間または第2の通信期間の開始点を特定することが可能となる。 The specifying unit 62 may be configured to specify each time point when the signal value of the carrier signal ca reaches the maximum value or the minimum value as the start point of the first communication period or the second communication period. With this configuration, the specifying unit 62 can specify the start point of the first communication period or the second communication period by a simpler specifying algorithm.
 その後、通信制御部66は、再度第1の通信期間であるか否かを判定する(ステップS104)。つまり、通信制御部66は、第2の通信期間に関する情報を送信した第1の通信期間の後に、最初に到来する第1の通信期間の開始点であるか否かを判定する。そして、通信制御部66は、第1の通信期間でないと判定した場合(ステップS104,No)、第1の通信期間になるまで、ステップS104の判定を繰り返す。 Thereafter, the communication control unit 66 determines again whether or not it is the first communication period (step S104). That is, the communication control unit 66 determines whether or not it is the start point of the first communication period that comes first after the first communication period in which the information related to the second communication period is transmitted. And when it determines with the communication control part 66 not being a 1st communication period (step S104, No), it repeats the determination of step S104 until it becomes a 1st communication period.
 また、通信制御部66は、第1の通信期間であると判定した場合(ステップS104,Yes)、第1の通信期間の開始点t11に、送信開始指令を送信部64によって、いずれか一つの制御対象装置5へ送信させる(ステップS105)。その後、制御部30の受信部65は、送信開始指令の送信先の制御対象装置5から、次に到来する第2の通信期間の開始点t12に、モータMの状態を示す状態情報を受信したか否かを判定する(ステップS106)。 Further, when the communication control unit 66 determines that it is the first communication period (step S104, Yes), the transmission unit 64 sends a transmission start command to the start point t11 of the first communication period. It transmits to the control object apparatus 5 (step S105). Thereafter, the receiving unit 65 of the control unit 30 receives the state information indicating the state of the motor M from the control target device 5 that is the transmission destination of the transmission start command at the start point t12 of the second communication period that comes next. It is determined whether or not (step S106).
 そして、受信部65は、状態情報を受信しないと判定した場合(ステップS106,No)、状態情報を受信するまで、ステップS106の判定を繰り返す。また、受信部65は、状態情報を受信したと判定した場合(ステップS106,Yes)、処理をステップS107へ移す。 And when the receiving part 65 determines with not receiving status information (step S106, No), it repeats determination of step S106 until it receives status information. If the receiving unit 65 determines that the state information has been received (step S106, Yes), the process proceeds to step S107.
 ステップS107において、制御部30の通信制御部66は、全制御対象装置5へ送信開始指令を送信済みか否かを判定する。そして、通信制御部66は、全制御対象装置5へ送信開始指令を送信済みでないと判定した場合(ステップS107,No)、処理をステップS105へ移し、次に到来する第1の通信期間の開始点t13に、送信開始指令を送信部64によって、未送信の制御対象装置5へ送信開始指令を送信させる。 In step S107, the communication control unit 66 of the control unit 30 determines whether a transmission start command has been transmitted to all the control target devices 5. If the communication control unit 66 determines that the transmission start command has not been transmitted to all the control target devices 5 (No in step S107), the communication control unit 66 moves the process to step S105, and starts the first communication period that comes next. At point t 13, the transmission start command is transmitted to the untransmitted control target device 5 by the transmission unit 64.
 また、通信制御部66は、全制御対象装置5へ送信開始指令を送信済みと判定した場合(ステップS107,Yes)、処理をステップS108へ移す。ステップS108において、制御部30の駆動制御部61は、電圧指令値の変化量が閾値以上か否かの判定を行う。 Further, when the communication control unit 66 determines that the transmission start command has been transmitted to all the control target devices 5 (step S107, Yes), the process proceeds to step S108. In step S108, the drive control unit 61 of the control unit 30 determines whether or not the change amount of the voltage command value is equal to or greater than a threshold value.
 そして、駆動制御部61によって、電圧指令値の変化量が閾値以上であると判定される場合(ステップS108,Yes)、制御部30は、処理を終了し、再度、ステップS101から処理を開始する。 And when it determines with the variation | change_quantity of a voltage command value being more than a threshold value by the drive control part 61 (step S108, Yes), the control part 30 complete | finishes a process and starts a process again from step S101. .
 また、駆動制御部61によって、電圧指令値の変化量が閾値未満であると判定される場合(ステップS108,No)、制御部30は、処理をステップS104へ移し、電圧指令値の変化量が閾値未満の期間において、ステップS104~S108の処理を繰り返す。 When the drive control unit 61 determines that the amount of change in the voltage command value is less than the threshold (No in step S108), the control unit 30 moves the process to step S104, and the amount of change in the voltage command value is The processing of steps S104 to S108 is repeated in a period less than the threshold value.
 次に、図10を参照し、実施形態に係る状態検出装置Eが実行する処理について説明する。図10は、実施形態に係る状態検出装置が実行する処理を示すフローチャートである。状態検出装置Eは、モータMの駆動制御が行われる場合、図10に示す処理を繰り返し実行する。 Next, processing executed by the state detection device E according to the embodiment will be described with reference to FIG. FIG. 10 is a flowchart illustrating processing executed by the state detection device according to the embodiment. When the drive control of the motor M is performed, the state detection device E repeatedly executes the process shown in FIG.
 なお、状態検出装置Eでは、図10に示す処理が実行されている期間に、状態検出部71が常時所定周期でモータMの状態を示す情報を検出し、検出結果を状態検出装置Eが備える通信部72内の送信部74へ出力する。 In the state detection device E, the state detection unit 71 always detects information indicating the state of the motor M at a predetermined cycle during the period in which the process shown in FIG. 10 is being performed, and the state detection device E includes the detection result. The data is output to the transmission unit 74 in the communication unit 72.
 そして、モータMの駆動制御が開始されると、状態検出装置Eの受信部73は、モータ制御装置3から第2の通信期間に関する情報を受信したか否かを判定する(ステップS201)。そして、受信部73は、第2の通信期間に関する情報を受信しないと判定した場合(ステップS201,No)、処理をステップS203へ移す。 And when the drive control of the motor M is started, the receiving part 73 of the state detection apparatus E determines whether the information regarding the 2nd communication period was received from the motor control apparatus 3 (step S201). And when the receiving part 73 determines with not receiving the information regarding a 2nd communication period (step S201, No), it moves a process to step S203.
 また、受信部73は、第2の通信期間に関する情報を受信したと判定した場合(ステップS201,Yes)、受信した第2の通信期間に関する情報を計時部75へ出力して設定する(ステップS202)。 In addition, when it is determined that the information related to the second communication period has been received (Yes in step S201), the receiving unit 73 outputs the received information related to the second communication period to the time measuring unit 75 and sets the information (step S202). ).
 続いて、受信部73は、モータ制御装置3から送信開始指令を受信したか否かを判定する(ステップS203)。そして、受信部73は、送信開始指令を受信しないと判定した場合(ステップS203,No)、処理をステップS201へ移す。 Subsequently, the receiving unit 73 determines whether or not a transmission start command is received from the motor control device 3 (step S203). And when the receiving part 73 determines with not receiving a transmission start command (step S203, No), it moves a process to step S201.
 また、受信部73は、送信開始指令を受信したと判定した場合(ステップS203,Yes)、処理をステップS204へ移す。ステップS204において、状態検出装置Eの計時部75は、ステップS202で設定された時間T4の計時(カウントダウン)を開始する。 If the receiving unit 73 determines that a transmission start command has been received (step S203, Yes), the process proceeds to step S204. In step S204, the time measuring unit 75 of the state detection device E starts to time (count down) the time T4 set in step S202.
 その後、計時部75は、計時が完了したか否かを判定する(ステップS205)。そして、計時部75は、計時が完了しないと判定した場合(ステップS205,No)、計時が完了するまで、ステップS205の判定を繰り返す。 Thereafter, the time measuring unit 75 determines whether or not the time measurement is completed (step S205). Then, when it is determined that the time measurement is not completed (No at Step S205), the time measuring unit 75 repeats the determination at Step S205 until the time measurement is completed.
 また、計時部75は、計時が完了したと判定した場合(ステップS205,Yes)、処理をステップS206へ移す。ステップS206において、状態検出装置Eの通信制御部76は、送信部74によって、第2の通信期間の開始点(例えば、時刻t12,t14,t16,t18,t20,t22)において、状態検出部71から入力されるモータMの状態を示す状態情報をモータ制御装置3へ送信させ、処理を終了する。その後、状態検出装置Eは、再度ステップS201から処理を開始する。 In addition, when it is determined that the timing has been completed (step S205, Yes), the timing unit 75 moves the process to step S206. In step S206, the communication control unit 76 of the state detection device E causes the transmission unit 74 to use the state detection unit 71 at the start point of the second communication period (for example, time t12, t14, t16, t18, t20, t22). State information indicating the state of the motor M input from is transmitted to the motor control device 3 and the process is terminated. Then, the state detection apparatus E starts a process again from step S201.
 上述したように、実施形態に係るモータ制御システムは、モータと通信部とを備える制御対象装置と、周期的に信号値が変化するキャリア信号に基づいて、モータの駆動制御を行うモータ制御装置とを含む。 As described above, the motor control system according to the embodiment includes a control target device including a motor and a communication unit, a motor control device that performs drive control of the motor based on a carrier signal whose signal value periodically changes, and including.
 そして、モータ制御装置は、制御対象装置の通信部との間で情報の通信を行う通信部と、モータ制御装置の通信部に情報の通信を周期的に行わせる通信期間を、キャリア信号の信号値の周期特性に基づいて特定する特定部とを備える。 Then, the motor control device includes a communication unit that communicates information with the communication unit of the control target device, and a communication period that causes the communication unit of the motor control device to periodically communicate information. And a specifying unit that specifies based on a periodic characteristic of the value.
 かかるモータ制御装置は、モータの駆動制御を停止させることなく、キャリア信号の周期に基づき、少なくともモータ駆動制御用のスイッチング素子の動作に起因したノイズが重畳されない期間に、制御対象装置との間で通信を行うことができる。したがって、モータ制御システムによれば、スイッチングノイズの影響を低減しつつ、モータに対する駆動制御の性能を向上させることができる。 Such a motor control device does not stop the drive control of the motor and based on the cycle of the carrier signal, at least during a period in which noise due to the operation of the switching element for motor drive control is not superimposed, Communication can be performed. Therefore, according to the motor control system, it is possible to improve the drive control performance for the motor while reducing the influence of the switching noise.
 また、実施形態に係るモータ制御装置が、例えば、キャリア比較法によってモータの駆動制御を行う場合、キャリア信号の信号値が極大値および極小値に達するタイミングでは、モータの動作を制御するためのスイッチング動作が行われない。 In addition, when the motor control device according to the embodiment performs drive control of the motor by the carrier comparison method, for example, switching for controlling the operation of the motor at the timing when the signal value of the carrier signal reaches the maximum value and the minimum value. No action is taken.
 そこで、実施形態に係る特定部は、キャリア信号の信号値が周期的に極大値および極小値に達する周期特性に基づいて、通信期間を特定する。これにより、特定部は、キャリア信号の信号値が極大値および極小値に達するタイミングを基準にすることによって、少なくともモータ駆動制御用のスイッチング素子の動作に起因したノイズが重畳されない適切な通信期間を特定することができる。 Therefore, the specifying unit according to the embodiment specifies the communication period based on periodic characteristics in which the signal value of the carrier signal periodically reaches a maximum value and a minimum value. Thereby, the specific unit sets an appropriate communication period in which at least noise caused by the operation of the switching element for motor drive control is not superimposed by using the timing at which the signal value of the carrier signal reaches the maximum value and the minimum value as a reference. Can be identified.
 また、モータ制御装置が、例えば、キャリア比較法によってモータの駆動制御を行う場合、モータの駆動制御を行うためのスイッチング動作は、モータに対する電圧指令値とキャリア信号の信号値とが一致するタイミングで行われる。 In addition, when the motor control device performs motor drive control by, for example, the carrier comparison method, the switching operation for performing motor drive control is performed at the timing when the voltage command value for the motor and the signal value of the carrier signal match. Done.
 そこで、実施形態に係る特定部は、モータに対する電圧指令値とキャリア信号の信号値とが一致するタイミングに基づいて、通信期間の開始タイミングを特定する。これにより、特定部は、モータに対する電圧指令値とキャリア信号の信号値とが一致するタイミングから、ノイズが重畳されない期間の開始タイミングを比較的簡単な処理によって特定することができる。 Therefore, the specifying unit according to the embodiment specifies the start timing of the communication period based on the timing at which the voltage command value for the motor matches the signal value of the carrier signal. Thereby, the specifying unit can specify the start timing of the period in which noise is not superimposed from the timing at which the voltage command value for the motor matches the signal value of the carrier signal by a relatively simple process.
 また、実施形態に係る特定部は、モータ制御装置が備に設けられてモータへ供給する電力を制御するスイッチング素子のスイッチング特性に基づいて、通信期間の開始タイミングを特定する。これにより、特定部は、スイッチング素子のスイッチング特性に応じて、ノイズが重畳されない通信期間の開始タイミングをより正確に推定することができる。 Also, the specifying unit according to the embodiment specifies the start timing of the communication period based on the switching characteristics of the switching element that is provided in the motor control device and controls the power supplied to the motor. Thereby, the specific | specification part can estimate more correctly the start timing of the communication period in which noise is not superimposed according to the switching characteristic of a switching element.
 また、実施形態に係るモータ制御装置の通信部は、周期的に到来する通信期間のうち、第1の通信期間に制御対象装置の通信部へ情報を送信する。これにより、少なくともモータ制御装置から制御対象装置へは、モータ駆動制御用のスイッチング素子の動作に起因したノイズが重畳されない情報を送信することができる。 In addition, the communication unit of the motor control device according to the embodiment transmits information to the communication unit of the control target device during the first communication period among the communication periods that come periodically. Thereby, at least from the motor control device to the control target device, it is possible to transmit information on which noise due to the operation of the motor drive control switching element is not superimposed.
 また、実施形態に係るモータ制御装置の通信部は、周期的に到来する通信期間のうち、制御対象装置の通信部からモータ制御装置の通信部へ情報を送信させる第2の通信期間に関する情報を制御対象装置の通信部へ第1の通信期間に送信する。そして、制御対象装置の通信部は、モータ制御装置の通信部から受信する第2の通信期間に関する情報に基づいて、第2の通信期間にモータ制御装置の通信部へ情報を送信する。 In addition, the communication unit of the motor control device according to the embodiment includes information related to a second communication period that causes information to be transmitted from the communication unit of the control target device to the communication unit of the motor control device among the communication periods that periodically arrive. It transmits to the communication part of a control object apparatus in the 1st communication period. And the communication part of a control object apparatus transmits information to the communication part of a motor control apparatus in a 2nd communication period based on the information regarding the 2nd communication period received from the communication part of a motor control apparatus.
 これにより、モータ制御システムでは、モータ制御装置および制御対象装置間で行う双方向の情報通信を、少なくともモータ駆動制御用のスイッチング素子のスイッチング動作に起因したノイズが重畳されない通信期間に行うことができる。 Accordingly, in the motor control system, bidirectional information communication performed between the motor control device and the control target device can be performed at least in a communication period in which noise due to the switching operation of the switching element for motor drive control is not superimposed. .
 また、実施形態に係る制御対象装置は、モータの状態を検出する状態検出部を備える。そして、制御対象装置の通信部は、状態検出部によって検出されるモータの状態を示す情報を第2の通信期間に送信する。また、モータ制御装置は、制御対象装置の通信部から受信するモータの状態を示す情報に基づいて、モータの駆動制御を行う。 Further, the control target device according to the embodiment includes a state detection unit that detects the state of the motor. And the communication part of a control object apparatus transmits the information which shows the state of the motor detected by the state detection part in a 2nd communication period. In addition, the motor control device performs drive control of the motor based on information indicating the state of the motor received from the communication unit of the control target device.
 これにより、実施形態に係るモータ制御システムは、スイッチングノイズの影響を低減しつつ、モータの状態に応じたモータのフィードバック駆動制御性能を向上させることができる。 Thereby, the motor control system according to the embodiment can improve the feedback drive control performance of the motor according to the state of the motor while reducing the influence of the switching noise.
 なお、上述した実施形態では、モータ制御装置から全ての制御対象装置へ、第2の通信期間に関する情報として、同一の時間を送信する場合について説明したが、各制御対象装置へ送信する第2の通信期間に関する情報は、同一の時間でなくてもよい。 In the above-described embodiment, the case where the same time is transmitted as information related to the second communication period from the motor control device to all the control target devices has been described. However, the second time to be transmitted to each control target device. The information regarding the communication period may not be the same time.
 例えば、モータ制御装置から各制御対象装置までの情報の伝送路長が同一でない場合、伝送路長が長い制御対象装置では、情報の伝送遅延が生じるので、モータ制御装置から情報が送信されてから受信するまでの時間は、伝送路長が短い制御対象装置よりも長くなる。 For example, if the transmission path length of information from the motor control device to each control target device is not the same, the control target device having a long transmission path length causes information transmission delay, so the information is transmitted from the motor control device. The time until reception is longer than that of the control target apparatus having a short transmission path length.
 このような場合には、モータ制御装置は、伝送路長が長い制御対象装置ほど、第2の通信期間に関する情報として送信する時間を伝送遅延の分短くする。これにより、各制御対象装置は、伝送路長に違いがあっても、正確な第2の通信期間に、モータ制御装置へ情報を送信することができる。 In such a case, the motor control device shortens the transmission time as information related to the second communication period by the transmission delay as the control target device has a longer transmission path length. Thereby, each control object apparatus can transmit information to a motor control apparatus in the exact 2nd communication period, even if there is a difference in transmission path length.
 また、モータ制御装置から全ての制御対象装置へ、第2の通信期間に関する情報として、同一の時間が送信される場合、各制御対象装置は、第2の通信期間に関する情報として受信する時間から伝送遅延の分を差し引いた時間を計時する構成であってもよい。これにより、各制御対象装置は、伝送路長に違いがあっても、正確な第2の通信期間に、モータ制御装置へ情報を送信することができる。 Further, when the same time is transmitted as information related to the second communication period from the motor control device to all the control target devices, each control target device transmits from the time received as information related to the second communication period. A configuration may be used in which the time obtained by subtracting the delay is counted. Thereby, each control object apparatus can transmit information to a motor control apparatus in the exact 2nd communication period, even if there is a difference in transmission path length.
 また、状態検出部がモータから複数種類の状態を検出するものである場合、実施形態に係るモータ制御システムは、モータ制御装置から制御対象装置へ情報を送信する通信を特定部によって特定される第1の通信期間に行い、制御対象装置からモータ制御装置へ情報を送信する通信については、任意の期間に行う構成であってもよい。 In addition, when the state detection unit detects a plurality of types of states from the motor, the motor control system according to the embodiment specifies the communication for transmitting information from the motor control device to the control target device by the specifying unit. The communication that is performed during one communication period and transmits information from the control target apparatus to the motor control apparatus may be performed during an arbitrary period.
 かかる場合、モータ制御装置は、特定部によって特定される第1の通信期間に、例えば、制御対象装置からモータ制御装置へ送信させるモータの状態の種類を指定する情報などを制御対象装置へ送信する。これにより、実施形態に係るモータ制御システムでは、少なくとも、制御対象装置へ送信する情報については、ノイズによる影響を低減した正確な状態で、モータ制御装置から制御対象装置へ送信させることができる。 In such a case, the motor control device transmits, for example, information specifying the type of state of the motor to be transmitted from the control target device to the motor control device to the control target device in the first communication period specified by the specifying unit. . Thereby, in the motor control system according to the embodiment, at least information to be transmitted to the control target device can be transmitted from the motor control device to the control target device in an accurate state in which the influence of noise is reduced.
 また、実施形態に係るモータ制御装置は、必ずしも、モータに対してフィードバック制御を行うものでなくてもよく、モータに対してオープンループ制御を行うものであってもよい。 Further, the motor control device according to the embodiment does not necessarily have to perform feedback control on the motor, and may perform open loop control on the motor.
 例えば、モータ制御装置がオープンループ制御を行うものであり、制御対象装置がモータの駆動制御に関する情報を表示する表示部を一体または別体に備える場合、モータ制御装置は、表示部に表示させる情報を制御対象装置へ第1の通信期間に送信するが、制御対象装置から情報を受信する必要はない。 For example, when the motor control device performs open loop control and the control target device includes a display unit that displays information related to motor drive control as an integral or separate unit, the motor control device displays information to be displayed on the display unit. Is transmitted to the controlled device during the first communication period, but it is not necessary to receive information from the controlled device.
 このため、かかる構成の場合、モータ制御装置が特定部によって特定される第1の通信期間に、制御対象装置へ情報を送信する送信部を備え、制御対象装置がモータ制御装置から情報を受信する受信部を備えていればよい。かかるモータ制御システムによれば、モータ制御装置の受信部および制御装置の送信部を省略することができ、システムの簡略化が可能となる。 For this reason, in such a configuration, the motor control device includes a transmission unit that transmits information to the control target device in the first communication period specified by the specification unit, and the control target device receives information from the motor control device. What is necessary is just to provide the receiving part. According to such a motor control system, the receiving unit of the motor control device and the transmission unit of the control device can be omitted, and the system can be simplified.
 また、上記した実施形態では、モータ制御装置がキャリア比較法に基づいてモータ駆動用の制御信号を生成する場合について説明したが、制御信号を生成する方法は、これに限定されるものではない。 In the above-described embodiment, the case where the motor control device generates a control signal for driving the motor based on the carrier comparison method has been described. However, the method for generating the control signal is not limited to this.
 すなわち、モータ制御装置は、キャリア信号に基づいてモータ駆動用の制御信号を生成するものであれば、例えば、所謂空間ベクトル法など、他の方法に基づいてモータ駆動用の制御信号を生成するものであってもよい。 That is, if the motor control device generates a control signal for driving the motor based on the carrier signal, for example, it generates a control signal for driving the motor based on another method such as a so-called space vector method. It may be.
 また、上述した実施形態では、各制御対象装置5がロボット2の各アームに設けられる場合を例に挙げて説明したが、実施形態に係るモータ制御システムは、ベース部20が第1制御対象装置51に相当し、第1アーム21が第2制御対象装置52に相当し、第2アーム22が第3制御対象装置53に相当し、第3アーム23が第4制御対象装置54に相当し、第4アーム24が第5制御対象装置55に相当し、第5アーム25が第6制御対象装置56に相当する構成であってもよい。また、モータ制御装置によって制御される制御対象装置は、ロボット全体であってもよい。 In the above-described embodiment, the case where each control target device 5 is provided in each arm of the robot 2 has been described as an example. However, in the motor control system according to the embodiment, the base unit 20 is the first control target device. 51, the first arm 21 corresponds to the second control target device 52, the second arm 22 corresponds to the third control target device 53, the third arm 23 corresponds to the fourth control target device 54, The fourth arm 24 may correspond to the fifth control target device 55, and the fifth arm 25 may correspond to the sixth control target device 56. Further, the control target device controlled by the motor control device may be the entire robot.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily derived by those skilled in the art. Thus, the broader aspects of the present invention are not limited to the specific details and representative embodiments shown and described above. Accordingly, various modifications can be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
 1 モータ制御装置
 2 ロボット
 3 モータ制御装置
 31~36 電力変換部
 61 駆動制御部
 62 特定部
 63,72 通信部
 64,74 送信部
 65,73 受信部
 71 状態検出部
 75 計時部
 66,76 通信制御部
 M モータ
 5,51~56 制御対象装置
 E 状態検出装置
DESCRIPTION OF SYMBOLS 1 Motor control apparatus 2 Robot 3 Motor control apparatus 31-36 Power conversion part 61 Drive control part 62 Identification part 63,72 Communication part 64,74 Transmission part 65,73 Reception part 71 State detection part 75 Time measurement part 66,76 Communication control Part M Motor 5, 51 to 56 Control target device E Status detection device

Claims (10)

  1.  モータと通信部とを備える制御対象装置と、
     周期的に信号値が変化するキャリア信号に基づいて、前記モータの駆動制御を行うモータ制御装置と
     を含み、
     前記モータ制御装置は、
     前記制御対象装置の前記通信部との間で情報の通信を行う通信部と、
     当該モータ制御装置の通信部に前記情報の通信を行わせる通信期間を前記信号値の周期特性に基づいて特定する特定部と
     を備えることを特徴とするモータ制御システム。
    A control target device comprising a motor and a communication unit;
    A motor control device that performs drive control of the motor based on a carrier signal whose signal value periodically changes, and
    The motor control device
    A communication unit that communicates information with the communication unit of the control target device;
    A motor control system comprising: a specifying unit that specifies a communication period for causing the communication unit of the motor control device to communicate the information based on a periodic characteristic of the signal value.
  2.  前記特定部は、
     前記キャリア信号の信号値が周期的に極値に達する前記周期特性に基づいて、前記通信期間を特定する
     ことを特徴とする請求項1に記載のモータ制御システム。
    The specific part is:
    The motor control system according to claim 1, wherein the communication period is specified based on the periodic characteristic in which a signal value of the carrier signal periodically reaches an extreme value.
  3.  前記特定部は、
     前記モータに対する電圧指令値と前記キャリア信号の信号値とが一致するタイミングに基づいて、前記通信期間の開始タイミングを特定する
     ことを特徴とする請求項1または請求項2に記載のモータ制御システム。
    The specific part is:
    The motor control system according to claim 1 or 2, wherein a start timing of the communication period is specified based on a timing at which a voltage command value for the motor matches a signal value of the carrier signal.
  4.  前記モータ制御装置は、
     前記モータへ供給する電力を制御するスイッチング素子を有し、
     前記特定部は、
     前記スイッチング素子のスイッチング特性に基づいて、前記通信期間の開始タイミングを特定する
     ことを特徴とする請求項1~3のいずれか一つに記載のモータ制御システム。
    The motor control device
    A switching element for controlling the power supplied to the motor;
    The specific part is:
    The motor control system according to any one of claims 1 to 3, wherein a start timing of the communication period is specified based on a switching characteristic of the switching element.
  5.  前記モータ制御装置は、
     前記通信期間のうち、当該モータ制御装置の通信部から前記制御対象装置の通信部へ情報を送信させる第1の通信期間に、前記制御対象装置への情報を、当該モータ制御装置の通信部に送信させる通信制御部
     をさらに備えることを特徴とする請求項1~4のいずれか一つに記載のモータ制御システム。
    The motor control device
    In the first communication period in which information is transmitted from the communication unit of the motor control device to the communication unit of the control target device during the communication period, the information to the control target device is transmitted to the communication unit of the motor control device. The motor control system according to any one of claims 1 to 4, further comprising a communication control unit for transmitting.
  6.  前記モータ制御装置の前記通信制御部は、
     前記通信期間のうち、前記制御対象装置の通信部から当該モータ制御装置の通信部へ情報を送信させる第2の通信期間に関する情報を、前記第1の通信期間に、当該モータ制御装置の通信部に送信させ、
     前記制御対象装置は、
     前記モータ制御装置の通信部から受信する前記第2の通信期間に関する情報に基づいて、前記モータ制御装置への情報を、当該制御対象装置の通信部に送信させる通信制御部
     をさらに備えることを特徴とする請求項5に記載のモータ制御システム。
    The communication control unit of the motor control device is
    Of the communication period, information related to a second communication period for transmitting information from the communication unit of the control target device to the communication unit of the motor control device is transmitted to the communication unit of the motor control device during the first communication period. Send to
    The device to be controlled is
    And a communication control unit that transmits information to the motor control device to the communication unit of the control target device based on information on the second communication period received from the communication unit of the motor control device. The motor control system according to claim 5.
  7.  前記制御対象装置は、
     前記モータの状態を検出する状態検出部を備え、
     前記制御対象装置の前記通信制御部は、
     前記状態検出部によって検出される前記モータの状態を示す情報を、前記第2の通信期間に、当該制御対象装置の通信部によって前記モータ制御装置の通信部へ送信させ、
     前記モータ制御装置は、
     前記制御対象装置の通信部から受信する前記モータの状態を示す情報に基づいて、前記駆動制御を行う
     ことを特徴とする請求項6に記載のモータ制御システム。
    The device to be controlled is
    A state detection unit for detecting the state of the motor;
    The communication control unit of the device to be controlled is
    Information indicating the state of the motor detected by the state detection unit is transmitted to the communication unit of the motor control device by the communication unit of the control target device during the second communication period,
    The motor control device
    The motor control system according to claim 6, wherein the drive control is performed based on information indicating a state of the motor received from a communication unit of the control target device.
  8.  周期的に信号値が変化するキャリア信号に基づいて、制御対象装置が備えるモータの駆動制御を行う駆動制御部と、
     前記制御対象装置との間で情報の通信を行う通信部と、
     当該モータ制御装置の通信部に前記情報の通信を行わせる通信期間を前記信号値の周期特性に基づいて特定する特定部と
     を備えることを特徴とするモータ制御装置。
    A drive control unit that performs drive control of a motor included in the control target device based on a carrier signal whose signal value periodically changes;
    A communication unit for communicating information with the control target device;
    A motor control device comprising: a specifying unit that specifies a communication period for causing the communication unit of the motor control device to communicate the information based on a periodic characteristic of the signal value.
  9.  周期的に信号値が変化するキャリア信号に基づいて、制御対象装置が備えるモータの駆動制御を行う駆動制御部と、前記制御対象装置との間で情報の通信を行う通信部と、当該通信部に前記情報の通信を行わせる通信期間を前記信号値の周期特性に基づいて特定する特定部とを備えるモータ制御装置との間で、前記情報の通信を行う通信部
     を備えることを特徴とする制御対象装置。
    Based on a carrier signal whose signal value periodically changes, a drive control unit that performs drive control of a motor included in the control target device, a communication unit that communicates information with the control target device, and the communication unit A communication unit that performs communication of the information with a motor control device including a specifying unit that specifies a communication period in which the communication of the information is performed based on a periodic characteristic of the signal value. Control target device.
  10.  モータ制御装置が、周期的に信号値が変化するキャリア信号に基づいて、制御対象装置が備えるモータの駆動制御を行うことと、
     前記モータ制御装置が、前記制御対象装置との間で情報の通信を行うことと、
     前記モータ制御装置が、当該モータ制御装置の通信部に前記情報の通信を行わせる通信期間を前記信号値の周期特性に基づいて特定することと
     を含むことを特徴とするモータ制御方法。
    The motor control device performs drive control of the motor included in the control target device based on a carrier signal whose signal value periodically changes; and
    The motor control device performs communication of information with the control target device;
    The motor control device includes: specifying a communication period for causing the communication unit of the motor control device to communicate the information based on a periodic characteristic of the signal value.
PCT/JP2013/083143 2013-12-10 2013-12-10 Motor control system, motor control device, device being controlled, and motor control method WO2015087403A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/083143 WO2015087403A1 (en) 2013-12-10 2013-12-10 Motor control system, motor control device, device being controlled, and motor control method
PCT/JP2014/070126 WO2015087577A1 (en) 2013-12-10 2014-07-30 Motor control system, motor control device, device being controlled, and motor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/083143 WO2015087403A1 (en) 2013-12-10 2013-12-10 Motor control system, motor control device, device being controlled, and motor control method

Publications (1)

Publication Number Publication Date
WO2015087403A1 true WO2015087403A1 (en) 2015-06-18

Family

ID=53370746

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/083143 WO2015087403A1 (en) 2013-12-10 2013-12-10 Motor control system, motor control device, device being controlled, and motor control method
PCT/JP2014/070126 WO2015087577A1 (en) 2013-12-10 2014-07-30 Motor control system, motor control device, device being controlled, and motor control method

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070126 WO2015087577A1 (en) 2013-12-10 2014-07-30 Motor control system, motor control device, device being controlled, and motor control method

Country Status (1)

Country Link
WO (2) WO2015087403A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189654A (en) * 2001-12-20 2003-07-04 Matsushita Electric Ind Co Ltd Serial communication device for controlling motor and motor driving gear
JP2006020374A (en) * 2004-06-30 2006-01-19 Fuji Electric Holdings Co Ltd Motor controller
JP2008125173A (en) * 2006-11-09 2008-05-29 Yaskawa Electric Corp Controller, control system for driving one motor by a plurality of controllers, and synchronization method in driving one motor by a plurality of controllers
JP5188656B1 (en) * 2012-06-18 2013-04-24 三菱電機株式会社 Inverter system and communication method
JP2013098959A (en) * 2011-11-07 2013-05-20 National Institute Of Information & Communication Technology Wireless communication method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5141416B2 (en) * 2008-07-18 2013-02-13 株式会社安川電機 Master / slave communication system
JP5782366B2 (en) * 2011-11-18 2015-09-24 ルネサスエレクトロニクス株式会社 Receiving device, signal processing device, and signal processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189654A (en) * 2001-12-20 2003-07-04 Matsushita Electric Ind Co Ltd Serial communication device for controlling motor and motor driving gear
JP2006020374A (en) * 2004-06-30 2006-01-19 Fuji Electric Holdings Co Ltd Motor controller
JP2008125173A (en) * 2006-11-09 2008-05-29 Yaskawa Electric Corp Controller, control system for driving one motor by a plurality of controllers, and synchronization method in driving one motor by a plurality of controllers
JP2013098959A (en) * 2011-11-07 2013-05-20 National Institute Of Information & Communication Technology Wireless communication method
JP5188656B1 (en) * 2012-06-18 2013-04-24 三菱電機株式会社 Inverter system and communication method

Also Published As

Publication number Publication date
WO2015087577A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
JP5331523B2 (en) Control device for three-phase synchronous motor with erroneous wiring detection function
WO2013031268A1 (en) Integrated servo system, motor system, and motor control method
WO2011034109A1 (en) Three-phase ac motor drive control device
US10608572B2 (en) Motor drive control device
JP5433658B2 (en) Motor control device
JP5325561B2 (en) Three-phase AC motor control device and control method thereof
JP2013085372A (en) Control device and control method of ac motor
US7436144B2 (en) Inverter apparatus
KR20080058070A (en) Controlling method and apparatus of bldc motor
WO2015087403A1 (en) Motor control system, motor control device, device being controlled, and motor control method
WO2017090350A1 (en) Control device for electric machine, and electric vehicle using same
JP6528138B2 (en) Motor control device, motor control method and motor control system
US8952636B2 (en) Data communication device that carries out serial communication in order to control motor
JP4611216B2 (en) AC motor control device and control method
JP2002315389A (en) Motor controller
JP6458684B2 (en) Power control method and power control apparatus
WO2020196390A1 (en) Motor control device, motor system, and motor control method
JP2012090429A (en) Motor drive device
US9203329B2 (en) Motor drive control system
JP2015095959A (en) Inverter controller
JP7078869B2 (en) Power conversion system
JP5675435B2 (en) Inverter control device
JP2017188999A (en) Power conversion control system
WO2019146311A1 (en) Motor control device and motor control system
JP2019216566A (en) Motor control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP