WO2015085642A1 - 一种单晶硅片 - Google Patents

一种单晶硅片 Download PDF

Info

Publication number
WO2015085642A1
WO2015085642A1 PCT/CN2014/000065 CN2014000065W WO2015085642A1 WO 2015085642 A1 WO2015085642 A1 WO 2015085642A1 CN 2014000065 W CN2014000065 W CN 2014000065W WO 2015085642 A1 WO2015085642 A1 WO 2015085642A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon wafer
single crystal
crystal silicon
diameter
distance
Prior art date
Application number
PCT/CN2014/000065
Other languages
English (en)
French (fr)
Inventor
李振国
钟宝申
邓良平
Original Assignee
西安隆基硅材料股份有限公司
李振国
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安隆基硅材料股份有限公司, 李振国 filed Critical 西安隆基硅材料股份有限公司
Publication of WO2015085642A1 publication Critical patent/WO2015085642A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the utility model relates to a monocrystalline silicon wafer used in the field of photovoltaics.
  • the manufacturing process, etc. aims to increase the power generation of the single cell by increasing the conversion efficiency, thereby reducing the power generation cost of the power.
  • the implementation of these methods is more complicated, at the cost of additional cost, and the manufacturing costs tend to rise sharply, which ultimately limits the actual cost of power generation.
  • a Chinese patent publication entitled "201120333107.x” describes a square sheet consisting of upper and lower parallel planes as shown in Fig. 1, that is, a solar grade of the body 10 as a single crystal silicon wafer.
  • the main feature of the single crystal silicon wafer is that the four corners 2 of the single crystal silicon wafer body 10 are circular arcs, so that the single crystal silicon wafer is cut without causing cornering, not easy to collapse, and processing the silicon wafer.
  • the edge surface quality is improved; the thickness of the silicon wafer is from the original 200 ⁇
  • the reduction of 20 ⁇ m to 160 ⁇ 4 m improves the wafer yield.
  • the rounded corners increase the available area of the wafer and improve the power generation efficiency.
  • the four arc angles used to increase the usable area of the silicon wafer are not concentric arcs, but only for the needs of the process and the shape structure of the monocrystalline silicon wafer body, and the four circles are limited.
  • the angle a of the arc angle is 90°.
  • the solar-grade single crystal silicon wafer described in the patent increases the available area of the silicon wafer by four arc angles, which is mainly because: four arcs
  • the angle is not a concentric arc (the figure 1 of the specification is more intuitive), so that the radius R of the arc is not too large, as the arc radius R of the patent document is between 15 and 16 mm, the corresponding arc
  • the area of the corners is also not too large, and therefore, the increased usable area of the wafer body is limited.
  • the purpose of the utility model is to improve the power generation of the single crystal silicon wafer and control the production cost while adapting to the existing production line of the photovoltaic cell sheet.
  • the present invention provides a single crystal silicon wafer comprising a rectangular body, the special feature of which is that the four corners of the body are arcs, and the four arcs are located on the same circle.
  • the cross section of the body is composed of two parallel opposite lateral sides, two parallel opposite longitudinal sides, and four circular arc edges connected between adjacent lateral sides and longitudinal sides; a spacing A between the two lateral sides : 156 ⁇ A ⁇ 157 mm; spacing between two longitudinal sides B: 156 ⁇ A ⁇ 157 mm; diameter of the circle D: 203 D 215 mm.
  • the distance B between the two longitudinal sides is equal to the distance A of the two lateral sides: 156.5 ⁇ A ⁇ 157 mm.
  • the diameter of the above circle D 204 ⁇ D ⁇ 206mm or 209 D 211mm.
  • the diameter of the above circle D 204.75 ⁇ D ⁇ 205.25mm or 209.75 D 210.25mm.
  • the spacing A of the two lateral sides is greater than the spacing B of the two longitudinal sides, and: 156.5 A 157 mm.
  • the distance between the above two longitudinal sides B 156.5 ⁇ B ⁇ 157 mm.
  • the diameter of the above circle D 204 ⁇ D ⁇ 206mm or 209 D 211mm.
  • the diameter of the above circle D 204.75 ⁇ D ⁇ 205.25mm or 209.75 D 210.25mm.
  • the distance B between the two lateral sides (11) and the distance B between the two longitudinal sides (12) are both 156.75 mm, and the diameter D of the circle is 205 mm;
  • the distance between the two lateral sides A and the distance between the two longitudinal sides B is 157 mm, and the diameter D of the circle is
  • the distance A between the two lateral sides is 156.75 mm
  • the distance B between the two longitudinal sides is 156.25 mm
  • the diameter D of the circle is 212 mm.
  • the utility model has the advantages that: adapting to the existing mainstream photovoltaic cell manufacturing production line, satisfying the maximum size redundancy of the production line in passability, and increasing the light receiving area on the basis of the size of the existing device, thereby being able to On the basis of increasing or increasing the manufacturing cost, a higher single-cell power generation amount is obtained, and the power generation cost is reduced.
  • Figure 1 is a schematic view of a prior art single crystal silicon wafer.
  • Embodiment 2 is a schematic view of a single crystal silicon wafer provided in Embodiment 1 of the present invention. DESCRIPTION OF REFERENCE NUMERALS: 1, body; 2, angle; a, angle; R, arc radius; D, diameter; 11, lateral edge; 12, longitudinal edge; 13, arc edge; A, horizontal margin; , vertical margins.
  • the embodiment provides a single crystal silicon wafer as shown in FIG. 2, including
  • the rectangular body 10 is special in that the four corners of the body 10 are arcs, and the four arcs are located on the same circle, so that the arc length of the four corners can be maximized, thereby effectively increasing the single crystal.
  • the available area of the silicon wafer increases the amount of power generated by the single cell.
  • the cross section of the body 10 of the crystalline silicon wafer is composed of two parallel opposite lateral edges 11, two parallel opposite longitudinal edges 12, and four circular arc edges 13 connected between adjacent lateral edges 11 and longitudinal edges 12; And the spacing A between the two lateral edges 11 (which can be called the horizontal margin): 156 ⁇ A ⁇ 157 mm; the spacing B between the two longitudinal sides 12 (which can be called the vertical margin): 156 A 157 mm The diameter of the circle D: 203 D 215 mm.
  • the main body 10 of the single crystal silicon wafer has a cross section of a quasi-square shape
  • the longitudinal margin B is equal to the lateral margin A
  • the horizontal margin A and the longitudinal margin B have a size of 156.5 to 157 mm, which may be 156.75 mm.
  • the diameter D has a size of 204 to 206 mm, and may be 205 mm.
  • the diameter D can also be 203.5 mm, 204.5 mm, 205.5 mm, 206.5 mm, 207 mm, 207.5 mm, 208 mm, 208.5 mm, 209 mm, 209.5 mm, 210 mm, 210.5 mm, 211 mm, 211.5 mm.
  • Specific values such as 212 mm, 212.5 mm, 213 mm, 213.5 mm, 214 mm or 214.5 mm, or in the range between any two of the above values.
  • the deviation value is not limited to ⁇ 0.25 mm.
  • the body 10 of the single crystal silicon wafer has a cross section of a quasi-square shape, and the longitudinal margin B is equal to the lateral margin A, and the horizontal
  • the margin A and the longitudinal margin B are 156.5 to 157 mm, specifically 157 mm, and the diameter D is 209 to 211 mm, and specifically 210 mm.
  • the diameter D can also be 203.5 mm, 204 mm, 204.5 mm, 205 mm, 205.5 mm, 206 mm, 206.5 mm, 207 mm, 207.5 mm, 208 mm, 208.5 mm, 209.5 mm, 210.5 mm, 211.5 mm.
  • Specific values such as 212 mm, 212.5 mm, 213 mm, 213.5 mm, 214 mm or 214.5 mm, or in the range between any two of the above values. It can be understood that due to the influence of the machining accuracy, the values of the margins, B and the diameter R described above are allowed to have a deviation of ⁇ 0.25 mm.
  • the lateral margin A is greater than the longitudinal margin B, the lateral margin A is 156.5 to 157 mm, and the longitudinal margin B is 156 to 157 mm.
  • the longitudinal margin B is 156.25 mm and the horizontal margin is 156.75 mm.
  • the diameter R is 212 mm.
  • the horizontal margin A and the longitudinal margin B may both be 156.5 to 157 mm.
  • the diameter D can also be 203.5 mm, 204 mm, 204.5 mm, 205 mm, 205.5 mm, 206 mm, 206.5 mm, 207 mm, 207.5 mm, 208 mm, 208.5 mm, 209 mm, 209.5 mm, 210 mm. Specific values such as 210.5 mm, 211 mm, 211.5 mm, 212.5 mm, 213 mm, 213.5 mm, 214 mm or 214.5 mm, or in the range between any two of the above values.
  • the values of the horizontal margin A, the longitudinal margin B and the diameter D allow a deviation of ⁇ 0.25 mm.
  • the deviation value is not limited to ⁇ 0.25
  • the longitudinal margin B is equal to the horizontal margin A, and 156.5 A 157 mm.
  • the diameter of the corresponding circle D 204 D 206mm or 209 D 211mm; it can also be 204.75 D 205.25mm or 209.75
  • the horizontal margin A and the longitudinal margin B are both 157 mm, and the diameter D of the corresponding circle is 210 mm.
  • the lateral margin A is greater than the longitudinal margin B, and: 156.5 A 157 mm, the longitudinal margin B: 156.5 ⁇ B ⁇ 157 mm, the diameter of the corresponding circle D: 204 D 206mm or 209 D 211mm; can also be 204.75 D 205.25 ⁇ or 209.75 D 210.25 mm.
  • the lateral margin A is 156.75 mm
  • the longitudinal side B is 156.25 mm
  • the diameter D of the circle is 212mm.
  • the single crystal silicon wafer provided by the above embodiments is suitable for the existing mainstream photovoltaic cell manufacturing line, and satisfies the production line in passability.
  • the maximum size redundancy can maximize the light-receiving area based on the size of the existing device, and the maximum light-receiving area can be increased by 2.95% compared with the ordinary silicon wafer, so that it can increase or increase the manufacturing cost without increasing or increasing the manufacturing cost.
  • a higher single-cell power generation capacity is obtained, and the power generation cost is reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种单晶硅片,包括矩形本体,本体的四角为圆弧,且该四个圆弧位于同一圆上。该单晶硅片适用于现有主流光伏电池片制造产线,在通过性上满足最大尺寸冗余,可在适用于现有装置尺寸的基础上增加受光面积,从而能够在不增加或增加极少制造成本的基础上获得更高的单电池片发电量,降低度电发电成本。

Description

一种单晶硅片
技术领域
本实用新型涉及一种用于光伏领域的单晶硅片。
背景技术
随着全球经济的不断发展, 人类对高效能源的需求持续增长。 光伏发电作为人 类可持续发展的主要绿色能源的一种, 日益受到世界各国的重视并得到大力发展。 目前, 光伏发电的最大问题仍在于度电成本偏高, 无法平价上网, 需要政府补贴支 持。 为了降低度电发电成本, 需要提高单电池片的发电量, 光伏产业的上下游厂家 投入了大量的人力物力, 或者开发高转化效率的半导体材料, 或者改善晶硅材料制 造工艺, 或者优化电池片制造工艺等, 其目的都是通过提高转效率来提高单电池片 的发电量, 实现度电的发电成本降低。 然而这些方法的实现都比较复杂, 都以额外 的成本投入为代价, 制造成本往往大幅上升, 最终又制约了度电发电成本的实际下 降。
为了解决上述问题, 专利号为 " 201120333107.x"的中国专利公开记载了, 一种 图 1所示的由上、 下两平行平面组成的方形薄片即作为单晶硅片的本体 10的太阳能 级单晶硅片, 其主要特点是, 单晶硅片本体 10的四个角 2为圆弧, 如此, 使得该单 晶硅片切割后不会造成缺角、 不易崩边, 且在加工硅片端面时, 不容易产生破坏性 的崩口, 提高了硅片生产的良品率和后期加工的使用率; 相对于倒角而言, 提高了 边缘表面质量; 将硅片的厚度由原来的 200±20 μ ιη 降低到 160 ±4 m, 提高了硅 片的出片率, 同时, 磨圆角后增大了硅片可用面积, 提高了发电效率。
单就该专利记载而言, 其用以增大硅片可用面积的四个圆弧角, 并非同心圆弧, 只是仅为了工艺和单晶硅片本体形状结构的需要, 限定了其四个圆弧角的角度 a为 90° , 由此, 不能看出, 该专利记载的太阳能级单晶硅片其借助四个圆弧角增大硅 片可用面积非常有限, 主要是因为: 四个圆弧角并非同心圆弧 (其说明书附图图 1 更为直观), 致使其所在圆弧半径 R不可能过大, 正如该专利文件记载的圆弧半径 R 在 15〜16mm之间, 相应的圆弧角的面积也不会太大, 因此, 其增加的硅片本体可 用面积受限。 因此, 不难看出, 该专利文件主要解决的问题是, 提供一种不易造成 缺角、 不易崩碎的太阳能级单晶硅片, 即改进工艺, 提高出产量, 在增加硅片可用 由此可见, 目前尚未有理想的提高单电池片发电量和降低发电成本的技术。 实用新型内容
本实用新型的目的在是适应于现有光伏电池片制造生产线的前提下, 较为明显 的提高单晶硅片的发电量、 同时又控制生产成本。
为达上述目的, 本实用新型提供了一种单晶硅片, 包括矩形本体, 其特殊之处 在于, 所述本体的四角为圆弧, 且该四个圆弧位于同一圆上。
上述本体的截面由两个平行相对的横边、 两个平行相对的纵边及连接在相邻的 横边和纵边之间的四个圆弧边构成; 两个横边之间的间距 A: 156^A^ 157 mm; 两 个纵边之间的间距 B: 156^A^ 157 mm; 所述圆的直径 D: 203 D 215mm。
上述两个纵边的间距 B等于所述两个横边的间距 A: 156.5^A^ 157 mm。 上述圆的直径 D: 204^D^206mm或 209 D 211mm。
上述圆的直径 D: 204.75^D^205.25mm或 209.75 D 210.25mm。
上述两个横边的间距 A大于所述两个纵边的间距 B, 且: 156.5 A 157 mm。 上述两个纵边的间距 B: 156.5^B^ 157 mm。
上述圆的直径 D: 204^D^206mm或 209 D 211mm。
上述圆的直径 D: 204.75^D^205.25mm或 209.75 D 210.25mm。
上述两个横边 (11 ) 的间距 A与两个纵边 (12) 的间距 B均为 156.75 mm, 所 述圆的直径 D为 205mm;
或两个横边的间距 A与两个纵边的间距 B均为 157mm, 所述圆的直径 D 为
210mm;
或所述两个横边的间距 A为 156.75mm, 两个纵边的间距 B为 156.25 mm, 圆的 直径 D为 212mm。
本实用新型的优点是: 适应于现有主流光伏电池片制造产线, 在通过性上满足 产线最大尺寸冗余, 可在适用于现有装置尺寸的基础上增加受光面积, 从而能够在 不增加或增加极少制造成本的基础上获得更高的单电池片发电量, 降低度电发电成 本。
附图说明
图 1是已有技术中的单晶硅片的示意图。
图 2是本实用新型的实施例一提供的单晶硅片的示意图。 附图标记说明: 1、 本体; 2、 角; a、 角度; R、 圆弧半径; D、 直径; 11、 横边; 12、 纵边; 13、 圆弧边; A、 横边距 ; B、 纵边距。
具体实施方式
为了适应于现有光伏电池片制造生产线的前提下, 较为明显的提高单晶硅片的 发电量、 同时又控制生产成本, 本实施例提供了一种图 2所示的单晶硅片, 包括矩 形本体 10, 特殊之处在于本体 10的四角为圆弧, 且该四个圆弧位于同一圆上, 如此 一来, 可以最大限度的增大四个角的弧长, 从而有效的增加单晶硅片的可用面积, 提高单电池片发电量。
基于该改进后的单晶硅片, 可以在满足光伏电池片制造生产线的前提下和成本 控制的前提下, 可以根据具体工艺设计, 制造不同尺寸的单晶硅片, 结合图 2, 可见 该单晶硅片的本体 10的截面由两个平行相对的横边 11、 两个平行相对的纵边 12及 连接在相邻的横边 11和纵边 12之间的四个圆弧边 13构成;且两个横边 11之间的间 距 A (可称为横边距): 156^A^ 157 mm; 两个纵边 12之间的间距 B (可称为纵边 距): 156 A 157 mm; 所述圆的直径 D: 203 D 215mm。
现举例详细说明, 在不同的工艺尺寸下, 该单晶硅片的发电量。
详例一:
本实施例中, 单晶硅片的本体 10的截面为准方形, 纵边距 B等于横边距 A, 横 边距 A、纵边距 B的大小为 156.5〜157毫米, 具体可以是 156.75毫米, 直径 D的大 小为 204〜206毫米, 具体可以是 205毫米。
此时, 相较于 A=B=156毫米, D=200毫米的普通单晶硅片, 面积增大 1.63%。 利用该单晶硅片 10加工太阳能电池片, 无需额外增加设备等投入, 即可获得更高的 单电池片发电量。
当然, 直径 D的大小还可以为 203.5毫米、 204.5毫米、 205.5毫米、 206.5毫米、 207毫米、 207.5毫米、 208毫米、 208.5毫米、 209毫米、 209.5毫米、 210毫米、 210.5 毫米、 211毫米、 211.5毫米、 212毫米、 212.5毫米、 213毫米、 213.5毫米、 214毫 米或 214.5毫米等具体值, 或者处于以上任意两个值之间的范围内。
可以理解, 由于加工精度的影响, 上述边距 、 B及直径 D的值, 允许存在士
0.25毫米的偏差。 并且, 随着加工精度的提高, 偏差值并不限于为 ±0.25毫米。
详例二:
本实施例中, 单晶硅片的本体 10的截面为准方形, 纵边距 B等于横边距 A, 横 边距 A、 纵边距 B的大小为 156.5〜157毫米, 具体可以是 157毫米, 直径 D的大小 为 209〜211毫米, 具体可以是 210毫米。 此时, 相较于 A=B=156毫米, D=200毫 米的普通单晶硅片, 面积增大 2.54%。
当然, 直径 D的大小还可以为 203.5毫米、 204毫米、 204.5毫米、 205毫米、 205.5毫米、 206毫米、 206.5毫米、 207毫米、 207.5毫米、 208毫米、 208.5毫米、 209.5毫米、 210.5毫米、 211.5毫米、 212毫米、 212.5毫米、 213毫米、 213.5毫米、 214毫米或 214.5毫米等具体值,或者处于以上任意两个值之间的范围内。可以理解, 由于加工精度的影响, 上述边距 、 B及直径 R的值, 允许存在 ± 0.25毫米的偏差。
详例三:
本实施例中, 横边距 A大于纵边距 B, 横边距 A大小为 156.5〜157毫米, 纵边 距 B的大小为 156〜157毫米。 具体地, 纵边距 B为 156.25毫米, 横边距为 156.75 毫米。 直径 R为 212毫米。 此时, 相较于 A=B=156毫米, D=200毫米的一般单晶硅 片, 面积增大 2.13%。
当然, 横边距 A、 纵边距 B的大小也可以均为 156.5〜157毫米。 此外, 直径 D 的大小还可以为 203.5毫米、 204毫米、 204.5毫米、 205毫米、 205.5毫米、 206毫 米、 206.5毫米、 207毫米、 207.5毫米、 208毫米、 208.5毫米、 209毫米、 209.5毫 米、 210毫米、 210.5毫米、 211毫米、 211.5毫米、 212.5毫米、 213毫米、 213.5毫 米、 214毫米或 214.5毫米等具体值, 或者处于以上任意两个值之间的范围内。
可以理解, 由于加工精度的影响, 上述横边距 A、 纵边距 B及直径 D的值, 允 许存在 ± 0.25 毫米的偏差。 并且, 随着加工精度的提高, 偏差值并不限于为 ± 0.25
、 综上所述, 不难看出, 该四个角为圆弧且该四个圆弧在同一圆上的单晶硅片, 存在以下两种基本的尺寸选择:
一、纵边距 B等于横边距 A, 且 156.5 A 157 mm, 此时, 相应的圆的直径 D: 204 D 206mm或 209 D 211mm; 也可以是 204.75 D 205.25mm或 209.75
D 210.25mm。
具体地可以是横边距 A与纵边距 B均为 157 mm,相应的圆的直径 D为 210mm。 二、 横边距 A大于纵边距 B, 且: 156.5 A 157 mm, 纵边距 B: 156.5<B< 157 mm,相应的圆的直径 D: 204 D 206mm或 209 D 211mm;还可以是 204.75 D 205.25匪或 209.75 D 210.25mm。
具体地可以是: 横边距 A为 156.75mm, 纵边 B为 156.25 mm, 圆的直径 D为 212mm。
但不管选择哪种情形或哪种情形下的工艺尺寸, 都不难看出, 以上各实施例提 供的单晶硅片, 适应于现有主流光伏电池片制造产线, 在通过性上满足产线最大尺 寸冗余, 可在适用于现有装置尺寸的基础上最大限度的增加受光面积, 最大可使受 光面积相较于普通硅片增加 2.95%,从而能够在不增加或增加极少制造成本的基础上 获得更高的单电池片发电量, 降低度电发电成本。 而相对于专利号为 "201120333107.x" 的中国专利, 由于以上各实施例提供的单晶硅片的本体 10的四 个圆弧角都在同一个圆上, 明显地增大了圆弧的弧长, 有效的增加了单晶硅片的可 用面积, 提高了其发电量。
以上例举仅仅是对本实用新型的举例说明, 并不构成对本实用新型的保护范围 的限制, 凡是与本实用新型相同或相似的设计均属于本实用新型的保护范围之内。

Claims

权 利 要 求 书
1、 一种单晶硅片, 包括矩形本体 (10), 其特征在于: 所述本体 (10) 的四角 为圆弧, 且该四个圆弧位于同一圆上。
2、 如权利要求 1所述的单晶硅片, 其特征在于: 所述本体 (10) 的截面由两个 平行相对的横边 (11)、 两个平行相对的纵边 (12) 及连接在相邻的横边 (11) 和纵 边 (12) 之间的四个圆弧边 (13) 构成;
所述两个横边 (11) 之间的间距 A: 156^A^157mm; 两个纵边 (12) 之间的 间距 B: 156 A 157mm; 所述圆的直径 D: 203 D 215mm。
3、 如权利要求 1所述的单晶硅片, 其特征在于: 所述两个纵边 (12) 的间距 B 等于所述两个横边 (11) 的间距 A: 156.5 A 157mm。
4、如权利要求 3所述的单晶硅片,其特征在于:所述圆的直径 D:204 D 206mm 或 209 D 211mm。
5、 如权利要求 3或 4所述的单晶硅片, 其特征在于: 所述圆的直径 D: 204.75 ^D^205.25mm或 209.75 D 210.25mm。
6、 如权利要求 1所述的单晶硅片, 其特征在于: 所述两个横边 (11) 的间距 A 大于所述两个纵边 (12) 的间距 B, 且: 156.5 A 157mm。
7、 如权利要求 6所述的单晶硅片, 其特征在于: 所述两个纵边(12) 的间距 B: 156.5^B^157 mm。
8、 如权利要求 6或 7所述的单晶硅片, 其特征在于: 所述圆的直径 D: 204^D 206mm或 209 D 211mm。
9、 如权利要求 8所述的单晶硅片, 其特征在于: 所述圆的直径 D: 204.75^D ^205.25mm或 209.75 D 210.25mm。
10、 如权利要求 1所述的单晶硅片, 其特征在于: 所述两个横边(11) 的间距 A 与两个纵边 (12) 的间距 B均为 156.75 mm, 所述圆的直径 D为 205mm;
或两个横边(11) 的间距 A与两个纵边(12) 的间距 B均为 157 mm, 所述圆的 直径 D为 210mm;
或所述两个横边(11)的间距 A为 156.75mm,两个纵边( 12)的间距 B为 156.25 mm, 所述圆的直径 D为 212mm。
PCT/CN2014/000065 2013-12-12 2014-01-17 一种单晶硅片 WO2015085642A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201320814312.7 2013-12-12
CN201320814312.7U CN203787439U (zh) 2013-12-12 2013-12-12 一种单晶硅片

Publications (1)

Publication Number Publication Date
WO2015085642A1 true WO2015085642A1 (zh) 2015-06-18

Family

ID=51323595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000065 WO2015085642A1 (zh) 2013-12-12 2014-01-17 一种单晶硅片

Country Status (2)

Country Link
CN (1) CN203787439U (zh)
WO (1) WO2015085642A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021098227A1 (zh) * 2019-11-19 2021-05-27 常州时创能源股份有限公司 四倒角小片电池的制备方法
EP3836230A1 (en) * 2019-12-11 2021-06-16 Jinko Solar Co., Ltd Method for manufacturing monocrystalline silicon cell and monocrystalline silicon wafer, and photovoltaic module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298023A (ja) * 1998-04-06 1999-10-29 Shin Etsu Chem Co Ltd 単結晶シリコン太陽電池及びモジュールの作製方法
KR100933850B1 (ko) * 2007-09-05 2009-12-24 주식회사 실트론 태양전지용 잉곳의 코너부 가공방법 및 장치와 그에 따라제조된 태양전지용 잉곳 및 웨이퍼
CN201438468U (zh) * 2009-03-20 2010-04-14 嘉兴明通光能科技有限公司 一种180~186瓦72片单晶硅电池片组件及其使用的单晶硅电池片
CN201985115U (zh) * 2011-03-14 2011-09-21 宁波矽源达新能源有限公司 一种太阳能多晶电池片
CN202205765U (zh) * 2011-07-20 2012-04-25 浙江尖山光电股份有限公司 一种太阳能电池片

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298023A (ja) * 1998-04-06 1999-10-29 Shin Etsu Chem Co Ltd 単結晶シリコン太陽電池及びモジュールの作製方法
KR100933850B1 (ko) * 2007-09-05 2009-12-24 주식회사 실트론 태양전지용 잉곳의 코너부 가공방법 및 장치와 그에 따라제조된 태양전지용 잉곳 및 웨이퍼
CN201438468U (zh) * 2009-03-20 2010-04-14 嘉兴明通光能科技有限公司 一种180~186瓦72片单晶硅电池片组件及其使用的单晶硅电池片
CN201985115U (zh) * 2011-03-14 2011-09-21 宁波矽源达新能源有限公司 一种太阳能多晶电池片
CN202205765U (zh) * 2011-07-20 2012-04-25 浙江尖山光电股份有限公司 一种太阳能电池片

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021098227A1 (zh) * 2019-11-19 2021-05-27 常州时创能源股份有限公司 四倒角小片电池的制备方法
EP3836230A1 (en) * 2019-12-11 2021-06-16 Jinko Solar Co., Ltd Method for manufacturing monocrystalline silicon cell and monocrystalline silicon wafer, and photovoltaic module
US20210184068A1 (en) * 2019-12-11 2021-06-17 Jinko Solar Co., Ltd. Method for manufacturing monocrystalline silicon cell and monocrystalline silicon wafer, and photovoltaic module
US11742453B2 (en) 2019-12-11 2023-08-29 Jinko Solar Co., Ltd. Method for manufacturing monocrystalline silicon wafer containing arced side, method for manufacturing monocrystalline silicon cell, and photovoltaic module

Also Published As

Publication number Publication date
CN203787439U (zh) 2014-08-20

Similar Documents

Publication Publication Date Title
CN202585439U (zh) 单晶硅太阳能电池组件
CN103000711A (zh) 改进的晶体硅片、电池片及太阳能发电装置
CN202142545U (zh) 太阳能级单晶硅片
WO2015085642A1 (zh) 一种单晶硅片
CN103684236B (zh) 一种碟式太阳能聚光器及其设计方法
CN204558481U (zh) 一种弧形面太阳能电池片
CN207743234U (zh) 光伏组件
CN105489540A (zh) 双玻光伏组件的防错位装置及双玻光伏组件的封装方法
CN109920873A (zh) 一种全旁路保护晶体硅太阳电池组件
CN204651330U (zh) 一种太阳能电池结构
CN203910817U (zh) 太阳能电池正面电极结构
CN201985125U (zh) 一种拼接太阳能单晶电池片
CN203038935U (zh) 一种太阳能电池用硅片
CN203941916U (zh) 一种低遮光率太阳能电池片
CN104347458A (zh) 一种新型石墨舟
CN206432282U (zh) 一种perc电池镀膜用掩膜结构
CN203941919U (zh) 一种弯曲细栅线太阳能电池片
CN103928538A (zh) 单晶硅太阳能电池片
CN205404942U (zh) 应用于聚光光伏发电的七焦点叠加均匀聚光菲涅尔透镜
CN203250756U (zh) 晶体硅太阳能电池片
CN204145390U (zh) 一种聚光太阳能导光汇聚漏斗
CN202009010U (zh) 一种拼接太阳能多晶电池片
CN203733816U (zh) 多栅太阳能电池片
CN201985115U (zh) 一种太阳能多晶电池片
CN210156410U (zh) 一种mwt大尺寸电池网版

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869508

Country of ref document: EP

Kind code of ref document: A1