WO2015085554A1 - 一种天线和终端 - Google Patents

一种天线和终端 Download PDF

Info

Publication number
WO2015085554A1
WO2015085554A1 PCT/CN2013/089280 CN2013089280W WO2015085554A1 WO 2015085554 A1 WO2015085554 A1 WO 2015085554A1 CN 2013089280 W CN2013089280 W CN 2013089280W WO 2015085554 A1 WO2015085554 A1 WO 2015085554A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
antenna
frequency band
bandwidth
parasitic
Prior art date
Application number
PCT/CN2013/089280
Other languages
English (en)
French (fr)
Inventor
余冬
尤佳庆
侯猛
王吉康
宋博
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to PCT/CN2013/089280 priority Critical patent/WO2015085554A1/zh
Publication of WO2015085554A1 publication Critical patent/WO2015085554A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground

Definitions

  • the present invention relates to the field of mobile communications technologies, and in particular, to an antenna and a terminal. Background technique
  • the inherent bandwidth of the antenna in the mobile terminal is relatively narrow.
  • the inverted antenna Inverted-F Antenna, IF A
  • IF A Inverted-F Antenna
  • the conventional inverted-F antenna manufactured by a thin wire has only a resonant frequency.
  • One percent for example, the antenna bandwidth with a resonant frequency of 2000 MHz is only 20 Mhz
  • the improved planar inverted-F antenna bandwidth is generally less than 10%.
  • the method of adding parasitic branches is often used to increase the working bandwidth of the antenna.
  • some working frequency bands each antenna has its central resonant frequency
  • the efficiency of the antenna in another part will be reduced, and even the working frequency band of another part will disappear due to coupling. Therefore, the overall working bandwidth of the antenna does not necessarily increase, and the antenna still has a problem of narrow working bandwidth.
  • embodiments of the present invention provide an antenna and a terminal including the antenna for solving the problem that the efficiency of the antenna is reduced in a part of the bandwidth after the parasitic branch is increased.
  • the first aspect provides an antenna, a feeding point, a feeding branch, a parasitic branch, and a filtering unit; the feeding branch and the feeding point are electrically connected; the feeding branch has a plurality of working frequency bands, The working frequency band has a respective bandwidth; the parasitic branch is used for coupling with the feeding branch; one end of the filtering unit is electrically connected to the parasitic branch, and the other end is grounded; the filtering unit is used to make An operating frequency band in which the bandwidth of the parasitic branch is coupled with the power feeding branch is widened in a pass band of the filtering unit, so that the parasitic branch is The working frequency band in which the bandwidth is narrowed after the feeding branch is coupled operates in the stop band of the filtering unit.
  • the filtering unit is configured to operate a working frequency band in which the bandwidth of the parasitic branch is coupled to the power feeding branch to be widened in a pass band of the filtering unit, so that
  • the operation band of the filtering unit operating in the working frequency band in which the bandwidth of the parasitic branch is coupled to the power feeding branch is specifically: the working frequency ratio of the bandwidth widened when the parasitic branch is coupled with the feeding branch
  • the filtering unit is a high-pass filter, and a cutoff frequency of the filtering unit is in a working frequency band in which the bandwidth is widened and the bandwidth is Narrowed between working bands.
  • the filtering unit is configured to operate a working frequency band in which the bandwidth of the parasitic branch and the power feeding branch is widened, and the working frequency band of the filtering unit is The working frequency band in which the bandwidth of the parasitic branch is coupled to the power feeding branch is narrowed, and the working band of the filtering unit specifically includes:
  • the filtering unit When the operating frequency band in which the bandwidth is widened after the parasitic branch is coupled with the feeding branch is lower than the working frequency band in which the bandwidth is narrowed after the parasitic branch is coupled with the feeding branch, the filtering unit is a low pass filter.
  • the cutoff frequency of the filtering unit is between the operating band in which the bandwidth is widened and the operating band in which the bandwidth is narrowed.
  • a terminal in a second aspect, includes any of the antennas and the radio frequency chip of the first aspect, and the radio frequency chip is electrically connected to the antenna.
  • An embodiment of the present invention provides an antenna and a terminal including the antenna.
  • the antenna provided by the embodiment of the present invention adds a filtering unit between the parasitic branch and the ground plane, and the filtering unit couples the parasitic branch and the feeding branch.
  • the frequency band in which the working frequency band is broadened is a passband
  • the frequency band in which the working frequency band is narrowed after the coupling of the parasitic branch and the feeding branch is a stop band, so that the antenna further increases the working frequency band of the antenna after increasing the parasitic branch.
  • FIG. 1 is a schematic diagram of a combination of a parasitic branch and a feed branch in the prior art
  • FIG. 2 is a schematic diagram of an antenna for adding a filtering unit according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of electrical connection of a feed branch and a feeder
  • FIG. 4 is a schematic view showing attachment of a feed branch and a parasitic branch on a dielectric substrate
  • FIG. 5 is a schematic block diagram of a terminal structure according to an embodiment of the present invention. detailed description
  • FIG. 1 is a schematic diagram showing a combination of a parasitic branch and a feed branch of an antenna for use in the prior art.
  • the antenna includes: a feed point 102, a feed stub 101, a feed stub 101, and a feed point 102.
  • the parasitic branch 103 is not electrically connected to the feeding point 102, that is, the signal is not directly transmitted to the parasitic branch 103, due to the coupling relationship between the parasitic branch 103 and the feeding branch 101, when feeding An electromagnetic field is generated around the electric branch 101. Under the action of the electromagnetic field, an induced current appears on the parasitic branch 103, thereby generating an electromagnetic field, and the latter electromagnetic field is superimposed on the previous electromagnetic field to form a new electromagnetic field.
  • the resonant frequency of the antenna is generated, and a working frequency band that satisfies the communication quality requirement is generated near the resonant frequency, and the width of the working frequency band is the working bandwidth.
  • the antenna operates at the natural resonant frequency of the feed branch and the corresponding operating frequency band.
  • the scheme of adding parasitic branches 103 is compared with the scheme without parasitic branches, and the antenna is operated in another working frequency band.
  • simply adding parasitic branches can achieve a part of the working bandwidth broadening, but the other part of the resonant frequency is deteriorating due to coupling, can not meet the communication needs, for example, an inverted F antenna, itself at the basic resonant frequency
  • the working bandwidth around 2100MHz may be wider than before, but the working bandwidth around 700MHz disappears. Overall, the antenna The working bandwidth does not necessarily increase.
  • the antenna includes: a feeding point 102, a feeding branch 101, a parasitic branch 103, and a filtering unit 201.
  • the feeding branch 101 and the feeding point 102 Electrically connected, the feeding branch 101 has a plurality of working frequency bands; one end 201a of the filtering unit 201 is electrically connected to the parasitic branch, and the other end 201b is grounded; the parasitic branch 103 is used for the feeding
  • the electrical branch 101 is coupled to generate an operating frequency band of the antenna; the frequency band operates in the pass band of the filtering unit, and the working frequency band in which the bandwidth is narrowed after the parasitic branch and the feeding branch are combined is operated in the blocking unit. Belt.
  • the antenna shown in Figure 2 is at the parasitic branch 103 and the ground point.
  • a filtering unit 201 is added between the 104s, and the filtering unit is designed to be a passband in a frequency band in which the working frequency band is widened after the parasitic branch and the feeding branch are resonated, and is deteriorated due to coupling, and the frequency band in which the operating frequency band is narrowed is in a high impedance state.
  • the filtering unit is Qualcomm a filter
  • the cutoff frequency of the filtering unit is between an operating frequency band in which the bandwidth is widened and an operating frequency band in which the bandwidth is narrowed.
  • an antenna with only feeder nodes can be found during debugging.
  • the working frequency of the antenna is 650MHz ⁇ 750MHz, 1400MHz ⁇ 1500MHz. After the parasitic branch is added, the working frequency of the antenna is 700MHz ⁇ 750MHz.
  • a high-pass filter with a cutoff frequency of 1000 MHz can be added to the ground of the parasitic branch, so that the parasitic branch and the feed branch are decoupled below 1000 MHz, so that the antenna can form a work of 650 MHz to 750 MHz, 1350 MHz to 1600 MHz.
  • the operating band of the bandwidth is wider than
  • the filtering unit is a low pass filter, and the cutoff frequency of the filtering unit is in the working frequency band in which the bandwidth is widened and the bandwidth is changed.
  • the working frequency range of the antenna is 650MHz ⁇ 750MHz, 1400MHz ⁇ 1500MHz.
  • the working frequency band of the antenna is 550MHz ⁇ 800MHz.
  • 1450MHz ⁇ 1500MHz that is, the low frequency working frequency band is broadened, and the high frequency working frequency band is narrowed.
  • a low-pass filter with a cutoff frequency of 1100 MHz can be added to the ground of the parasitic branch, so that the parasitic branch and the feed branch are decoupled above 1100 MHz, so that the antenna can form 550 MHz to 800 MHz, 1400 MHz to 1500 MHz.
  • the working frequency band makes the antenna have a good working frequency band in both high frequency and low frequency bands.
  • the embodiment of the present invention has no limitation on the form of the feeding branch 101, and may be an inverted F antenna, a Planar Inverted-F Antenna (PIFA), a monopole antenna, or a loop antenna. (loop antenna) and so on.
  • PIFA Planar Inverted-F Antenna
  • monopole antenna a monopole antenna
  • loop antenna loop antenna
  • filtering units 201 between the parasitic branch 103 and the grounding point 104.
  • the internal structure of the plurality of filtering units 201 It can be the same or it can be different. However, it should be noted that, for a mass-produced terminal, the number of the filtering units 201 can be minimized as much as possible for cost considerations while satisfying the use requirements.
  • the frequency band in which the antenna efficiency is maintained and the frequency band in which the antenna efficiency is deteriorated after the parasitic branch is added can be found, and then the filtering unit can be designed to resonate after the parasitic branch and the feeding branch
  • the frequency band maintained by the antenna efficiency is in the pass band, and the frequency band deteriorated due to the coupling is in a high impedance state, so that the antenna has better efficiency in a wider working bandwidth after increasing the parasitic branch.
  • the shape, position, and the like of the parasitic branch 103 are also different depending on the shape of the different feed branches 101.
  • the antenna impedance trajectory in the Smith chart can be observed by changing the length, the width, the trace of the parasitic branch 103, or the distance between the parasitic branch 103 and the feeding branch 101, when the impedance trajectory is close to the ideal state. Then, the shape, position, and the like of the corresponding parasitic branch 103 in this case are selected to be optimal.
  • the method for observing the impedance track of the antenna through the Smith chart is well known to those skilled in the art and will not be described herein.
  • the antenna provided by the embodiment of the present invention is between the parasitic branch 103 and the grounding point 104.
  • a filtering unit 201 is added, and the filtering unit can be designed to be a passband in a frequency band in which the antenna efficiency is maintained after the parasitic branch and the feeding branch are resonated, and the frequency band which is deteriorated due to the coupling is in a high impedance state, thereby causing the antenna to increase parasitic After the branch, there is still better efficiency throughout the working bandwidth.
  • the feeding branch 101 may be connected to the feeder 301 (see FIG. 3) through the feeding point 102, and the feeding line is a transmission line for feeding the electric energy to the antenna, which is opposite to the ordinary conductor.
  • the feeder 301 has a small high-frequency attenuation of the received signal, strong anti-interference ability, and is not easily interfered by external high-frequency signals.
  • the output of the transmitter module transmits power through the feeder 301 to the feed stub 101, which converts the electrical energy into electromagnetic waves that can propagate in free space; when receiving the signal, receiving The input of the machine module (not shown) transmits the electromagnetic waves in the free space captured by the antenna to the receiver through the feeder 301.
  • the above-mentioned transmitter module or receiver module can be understood as a separate radio frequency chip, a combination of discrete components, etc., and may further include a filter circuit, a power amplifying circuit, a modulation and demodulation circuit and the like.
  • the feed branch 101, the parasitic branch 103, and the ground plane 104 may be airborne. Further, in order to reduce the size of the antenna, the feeding branch 101 and the parasitic branch 103 may be attached to the dielectric substrate 401 (see FIG. 4), and the dielectric constant of the dielectric substrate 401 is greater than the dielectric constant of the air.
  • the material of the dielectric substrate 401 may include plastic, glass, ceramic, or a composite material such as silicon or a hydrocarbon. In the application environment of a mobile terminal such as a mobile phone, the thickness of the dielectric substrate 401 is about several millimeters.
  • the feeding branch 101 and the parasitic branch 103 may be made of a metal material, and the metal material is composed of (or includes) copper, aluminum, gold, or the like.
  • the feeding branch 101 and the parasitic branch 103 may be plated to the dielectric substrate 401 by using a laser direct structuring technique or other techniques, or the feeding branch 101 and the parasitic branch 103 may be attached to the medium by an adhesive or other means.
  • a filtering unit is added between the parasitic branch and the ground, and the filtering unit can be designed to be a passband in a frequency band in which the antenna efficiency is maintained after the parasitic branch and the feeding branch are resonated.
  • the frequency band that is degraded by coupling is in a high-impedance state, so that the antenna still has better efficiency in the entire working bandwidth after increasing the parasitic branch.
  • Figure 8 provides a terminal, which may be a mobile phone, a pager, a communicator, an electronic organizer, a smart phone, a PDA personal digital assistant, a car radio communication device, a computer, a printer, a fax machine, etc., including in the terminal Any of the above embodiments may An antenna that can be realized.
  • the terminal 801 includes an antenna 802 and a radio frequency chip 803.
  • the antenna includes a feeding point, a feeding branch, a parasitic branch, and a filtering unit.
  • the feeding branch and the feeding point are electrically connected.
  • One end of the filtering unit is The parasitic branch is electrically connected, and the other end is grounded; the parasitic branch is used to couple with the feeding branch to generate a resonant frequency of the antenna; and the filtering unit is designed to be antenna efficiency after the parasitic branch and the feeding branch are resonated
  • the frequency band maintained is a passband, and is in a high impedance state in a frequency band deteriorated by coupling; the RF chip and the antenna are electrically connected, and are used for transmitting signals to or receiving signals from the antenna.
  • the antenna in the terminal may be an antenna in any of the foregoing possible implementation manners, the alternative manners are not described herein again.
  • the antenna adds a filtering unit between the parasitic branch and the ground, and the filtering unit can be designed to be a passband in a frequency band in which the antenna efficiency is maintained after the parasitic branch and the feeding branch are resonated.
  • the frequency band deteriorating due to coupling is in a high-impedance state, so that the antenna still has better efficiency in the entire working bandwidth after increasing the parasitic branch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

 本发明实施例涉及移动通信技术领域,尤其涉及一种天线和终端。所述天线包括:馈电点,馈电枝节,寄生枝节和滤波单元;所述馈电枝节和所述馈电点电性连接;所述滤波单元的一端与所述寄生枝节电性连接,另一端接地;所述寄生枝节用于和所述馈电枝节耦合产生所述天线的谐振频率;所述滤波单元设计为在寄生枝节与馈电枝节耦合后工作频段展宽的频段呈通带,在因耦合而恶化的频段呈高阻态;釆用本发明实施例提供的终端,天线在寄生枝节与地之间增加了滤波单元,由于滤波单元的设计,从而使天线在增加寄生枝节后,进一步的增加天线的工作频段。

Description

一种天线和终端 技术领域 本发明涉及移动通信技术领域, 尤其涉及一种天线和终端。 背景技术
目前在移动终端中的天线固有带宽较窄, 比如手机中普遍使用的 倒 F天线 ( Inverted-F Antenna , IF A ) 就属于窄频带天线, 常规的用细 导线制造的倒 F 天线带宽只有谐振频率的百分之一 (比如, 谐振频率 为 2000MHz的天线带宽只有 20Mhz )甚至更低, 改进后的平面倒 F天 线带宽一般也小于 10%。
现有技术中常釆用增加寄生枝节的方法, 来增加天线的工作带宽, 然而, 根据理论和实践的经验, 当天线增加寄生枝节后, 虽然一部分工 作频段 (每个天线都有其中心谐振频率, 在偏离中心谐振频率时, 天线 的某些电性能将会下降, 电性能下降到容许值的频率始末范围, 就是天 线的工作频段, 工作频段的宽度即工作带宽, 简称带宽)的带宽会增加, 但另一部分的天线效率却会降低, 甚至另一部分的工作频段因耦合而消 失, 由此天线整体工作带宽未必增加, 天线依然存在工作带宽较窄的问 题。 发明内容
有鉴于此, 本发明的实施例提供了一种天线和包含该天线的终端, 用来解决在增加寄生枝节后, 天线在部分带宽内效率降低的问题。
为达到上述目的, 本发明的实施例釆用如下技术方案:
第一方面, 提供了一种天线, 馈电点, 馈电枝节, 寄生枝节和滤 波单元; 所述馈电枝节和所述馈电点电性连接; 所述馈电枝节具有多 个工作频段, 所述工作频段具有各自的带宽; 所述寄生枝节用于和所 述馈电枝节耦合; 所述滤波单元的一端与所述寄生枝节电性连接, 另 一端接地; 所述滤波单元用于使所述寄生枝节与所述馈电枝节耦合后 带宽变宽的工作频段工作在所述滤波单元的通带, 使所述寄生枝节与 所述馈电枝节耦合后带宽变窄的工作频段工作在所述滤波单元的阻带。 在第一方面的第一种可能的实现方式中, 所述滤波单元用于使所 述寄生枝节与所述馈电枝节耦合后带宽变宽的工作频段工作在所述滤 波单元的通带, 使所述寄生枝节与所述馈电枝节耦合后带宽变窄的工 作频段工作在所述滤波单元的阻带具体包括: 当所述寄生枝节与所述 馈电枝节耦合后带宽变宽的工作频段比所述寄生枝节与所述馈电枝节 耦合后带宽变窄的工作频段高时, 所述滤波单元为高通滤波器, 所述 滤波单元的截止频率在所述带宽变宽的工作频段和所述带宽变窄的工 作频段之间。
在第一方面的第二种可能的实现方式中, 所述滤波单元用于使所 述寄生枝节与所述馈电枝节耦合后带宽变宽的工作频段工作在所述滤 波单元的通带, 使所述寄生枝节与所述馈电枝节耦合后带宽变窄的工 作频段工作在所述滤波单元的阻带具体包括:
当所述寄生枝节与所述馈电枝节耦合后带宽变宽的工作频段比所 述寄生枝节与所述馈电枝节耦合后带宽变窄的工作频段低时, 所述滤 波单元为低通滤波器, 所述滤波单元的截止频率在所述带宽变宽的工 作频段和所述带宽变窄的工作频段之间。
第二方面, 提供了一种终端, 所述终端包括第一方面任——种天 线与射频芯片, 所述射频芯片电性连接所述天线。
本发明实施例提供了一种天线和包含该天线的终端, 釆用本发明实 施例提供的天线在寄生枝节与接地面之间增加了滤波单元, 该滤波单 元对寄生枝节和馈电枝节耦合后工作频段展宽的频段呈通带, 在寄生 枝节和馈电枝节耦合后工作频段变窄的频段呈阻带, 从而使天线在增 加寄生枝节后, 进一步增加天线的工作频段。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。 图 1为现有技术中寄生枝节和馈电枝节组合的示意图;
图 2为本发明实施例提供的一种增加滤波单元的天线示意图;
图 3为馈电枝节和馈线电性连接的示意图;
图 4为在介质基板上附着馈电枝节、 寄生枝节的示意图;
图 5为为本发明实施例提供的一种终端结构示意框图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案 进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实 施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术 人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本 发明保护的范围。
虽然, 以下说明和附图以天线适用在移动电话为主。 但是,要理解, 本发明不限于这种应用, 而是可以应用到实现根据本发明实施例提供的 天线方案设计的许多其它通信终端, 包括移动电话、 寻呼机、 通信器、 电子管理器、 智能电话、 PDA个人数字助理、 车载无线电通信装置、 计 算机、 打印机、 传真机等。
图 1 所示提供了现有技术中天线釆用寄生枝节和馈电枝节组合的示 意图, 该天线包括: 馈电点 (feed point ) 102 , 馈电枝节 101 , 馈电枝节 101和馈电点 102电性连接; 寄生枝节 103 , 用于和所述馈电枝节 101耦 合产生所述天线的谐振频率; 接地点 104 ; 寄生枝节 103 和接地点 104 电性连接。 需要说明的是, 寄生枝节 103虽然与馈电点 102间没有电性 连接, 也就是说信号并不直接传输到寄生枝节 103 , 但由于寄生枝节 103 与馈电枝节 101 间的耦合关系, 当馈电枝节 101 周围产生一个电磁场, 在这个电磁场的作用下, 寄生枝节 103 上就会出现感应电流, 从而也产 生一个电磁场, 后一个电磁场叠加在前一个电磁场上, 就形成了一个新 的电磁场, 从而产生了天线的谐振频率, 并且, 在该谐振频率附近会产 生一段能够满足通信质量要求的工作频段, 工作频段的宽度即工作带宽。
对于不带寄生枝节的天线, 天线工作在馈电枝节的固有谐振频率以 及对应的工作频段。 而现有技术中增加寄生枝节 103的方案与没有寄生 枝节的方案比较, 让天线工作在了另一个工作频段上。 但根据理论和实 践的经验, 单单增加寄生枝节的方法, 可以实现一部分工作带宽展宽, 但是另一部分的谐振频率反而因耦合而恶化, 无法满足通信的需求, 例 如, 某一个倒 F天线, 其本身在基本谐振频率 700MHz附近有一个工作 带宽, 同时在 2100MHz也有一个工作带宽, 在增加了寄生天线后, 2100MHz附近的工作带宽有可能会比之前更宽, 但 700MHz附近的工作 带宽消失, 总的来看, 天线的工作带宽未必增加。
图 2所示为本发明实施例提供的一种天线,该天线包括:馈电点 102 , 馈电枝节 101 , 寄生枝节 103和滤波单元 201 ; 所述馈电枝节 101和所述 馈电点 102电性连接, 所述馈电枝节 101具有多个工作频段; 所述滤波 单元 201的一端 201a与所述寄生枝节电性连接, 另一端 201b接地; 所 述寄生枝节 103用于和所述馈电枝节 101耦合产生所述天线的工作频段; 作频 ^工作在所述滤波单元的通带 "使所述寄生枝节与 馈电枝节 合后带宽变窄的工作频段工作在所述滤波单元的阻带。
和图 1所示天线的区别, 图 2所示的天线在寄生枝节 103和接地点
104之间增加了滤波单元 201 , 所述滤波单元设计为在寄生枝节与馈电枝 节谐振后工作频段展宽的频段呈通带, 在因耦合而恶化, 工作频段变窄 的频段呈高阻态。
具体的, 当所述寄生枝节与所述馈电枝节耦合后带宽变宽的工作频 段比所述寄生枝节与所述馈电枝节耦合后带宽变窄的工作频段高时, 所 述滤波单元为高通滤波器, 所述滤波单元的截止频率在所述带宽变宽的 工作频段和所述带宽变窄的工作频段之间。 如一个只有馈电枝节的天线, 在调试时发现,天线的工作频段是 650MHz~750MHz, 1400MHz~1500MHz, 在增加了寄生枝节后, 天线的工作频段是 700MHz~750MHz ,
1350ΜΗζ~1600ΜΗζ, 即高频工作频段展宽, 低频工作频段变窄。 则可以 再寄生枝节的接地端增加一个截止频率为 1000MHz的高通滤波器, 从而 使寄生枝节与馈电枝节在低于 1000MHz是去耦合, 这样, 天线就可能形 成 650MHz~750MHz, 1350MHz~1600MHz的工作频段, 从而使得天线在 高频和低频段都有较好的工作频段。 可以理解的, 以上举例仅为示例性 的, 高通滤波器的截止频率可以在 750MHz~1350MHz间任选一个。
当所述寄生枝节与所述馈电枝节耦合后带宽变宽的工作频段比所述 寄生枝节与所述馈电枝节耦合后带宽变窄的工作频段低时, 所述滤波单 元为低通滤波器, 所述滤波单元的截止频率在所述带宽变宽的工作频段 和所述带宽变窄的工作频段之间。 如一个只有馈电枝节的天线, 在调试 时发现, 天线的工作频段是 650MHz~750MHz, 1400MHz~1500MHz, 在 增加了寄生枝节后, 天线的工作频段是 550MHz~800MHz,
1450MHz~1500MHz, 即低频工作频段展宽, 高频工作频段变窄。 则可以 再寄生枝节的接地端增加一个截止频率为 1100MHz的低通滤波器, 从而 使寄生枝节与馈电枝节在高于 1100MHz是去耦合, 这样, 天线就可能形 成 550MHz~800MHz, 1400MHz~1500MHz的工作频段, 从而使得天线在 高频和低频段都有较好的工作频段。
需要说明的是, 本发明实施例对馈电枝节 101的形式没有限制, 可 以是倒 F天线、 平面倒 F天线 ( Planar Inverted-F Antenna, PIFA ) 、 单 极子天线 ( monopole antenna )、 环天线 ( loop antenna )等。 可以理解的 , 为了获得最佳的谐振频率, 寄生枝节 103与接地点 104间可以有一个或 者多个滤波单元 201 , 在存在多个滤波单元 201的情况下, 这多个滤波单 元 201的内部结构可以是相同的, 也可以是不同的。 但需要说明的是, 对于大量生产的终端, 在满足使用需要的前提下, 出于成本的考虑, 可 尽可能的使滤波单元 201的数量最少。
可以理解的, 在终端设计和调试时, 可以发现在增加寄生枝节后, 天线效率保持的频段和天线效率恶化的频段, 继而, 所述滤波单元就可 以设计为在寄生枝节与馈电枝节谐振后天线效率保持的频段呈通带, 在 因耦合而恶化的频段呈高阻态, 从而使天线在增加寄生枝节后, 在较宽 的工作带宽内有较好的效率。
另外, 为了使天线辐射和接收的效果最佳, 根据不同的馈电枝节 101 形状, 寄生枝节 103的形状、 位置等也是不同的。 具体的, 可以通过改 变寄生枝节 103的长度、 宽度、 走线, 或者是寄生枝节 103和馈电枝节 101间的距离等, 观察史密斯图 (Smith ) 中天线阻抗轨迹, 当阻抗轨迹 接近理想状态时, 则选定这种情况下对应的寄生枝节 103的形状、 位置 等为最佳的。 其中, 通过 Smith图观察天线阻抗轨迹的方法是本领域技 术人员熟知的, 在此不再赘述。
釆用本发明实施例提供的天线, 在寄生枝节 103与接地点 104之间 增加了滤波单元 201 ,所述滤波单元就可以设计为在寄生枝节与馈电枝节 谐振后天线效率保持的频段呈通带, 在因耦合而恶化的频段呈高阻态, 从而使天线在增加寄生枝节后, 在整个工作带宽内依然有较好的效率。
进一步的, 为了减少外来信号对天线工作的干扰, 馈电枝节 101可 以通过馈电点 102与馈线(feeder ) 301 (参见图 3 )相连接, 馈线是指向 天线馈送电能的传输线, 与普通导线相比, 馈线 301对接收信号的高频 衰减较小, 抗干扰能力强, 不易受到外来高频信号的干扰。 当发送信号 时, 发射机模块 (图中未示出) 的输出端通过馈线 301将电能传输到馈 电枝节 101 , 由天线将电能转换成可以在自由空间传播的电磁波; 当接收 信号时, 接收机模块 (图中未示出) 的输入端通过馈线 301将天线捕获 的自由空间中的电磁波传输到接收机。 可以理解的, 上面提到的发射机 模块或接收机模块可以理解为单独的射频芯片、 分立元件的组合等, 具 体的又可以包括滤波电路、 功率放大电路、 调制解调电路等。
馈电枝节 101、 寄生枝节 103和接地点 104所在平面(一般是主板所 在的印刷线路板) 间可以以空气为介质。 进一步的, 为了减小天线的尺 寸,馈电枝节 101、寄生枝节 103可以附着到介质基板 401上(参见图 4 ), 介质基板 401的介电常数大于空气的介电常数。 介质基板 401的材料可 包括塑料、 玻璃、 陶瓷、 或者诸如包含硅或碳氢化合物的复合材料形成。 在手机等移动终端的应用环境下, 介质基板 401的厚度在几毫米左右。
可选的, 馈电枝节 101、 寄生枝节 103都可以是金属材质的, 所述的 金属材质由 (或者包括) 铜、 铝、 金等组成。
可选的, 可以使用激光直接成型技术或其它技术把馈电枝节 101、 寄 生枝节 103镀形到介质基板 401 ,也可以用粘合剂或其他方式使馈电枝节 101、 寄生枝节 103附着到介质基板 401。
釆用本发明实施例提供的天线, 在寄生枝节与地之间增加了滤波单 元, 所述滤波单元就可以设计为在寄生枝节与馈电枝节谐振后天线效率 保持的频段呈通带, 在因耦合而恶化的频段呈高阻态, 从而使天线在增 加寄生枝节后, 在整个工作带宽内依然有较好的效率。
图 8 提供了一种终端, 该终端可以是移动电话、 寻呼机、 通信器、 电子管理器、 智能电话、 PDA个人数字助理、 车载无线电通信装置、 计 算机、 打印机、 传真机等, 在该终端中包括了以上实施例中任意一种可 能实现的天线。
该终端 801 包括天线 802和射频芯片 803 , 天线包括馈电点, 馈电枝 节, 寄生枝节和滤波单元; 所述馈电枝节和所述馈电点电性连接; 所述 滤波单元的一端与所述寄生枝节电性连接, 另一端接地; 所述寄生枝节 用于和所述馈电枝节耦合产生所述天线的谐振频率; 所述滤波单元设计 为在寄生枝节与馈电枝节谐振后天线效率保持的频段呈通带, 在因耦合 而恶化的频段呈高阻态; 射频芯片和天线电性连接, 用于向天线发送信 号或者从天线接收信号。
由于该终端中的天线可以是上述任意一种可能实现方式中的天线, 因此这里对其可选的方式不再进行赘述。
釆用本发明实施例提供的终端, 天线在寄生枝节与地之间增加了滤 波单元, 所述滤波单元就可以设计为在寄生枝节与馈电枝节谐振后天线 效率保持的频段呈通带, 在因耦合而恶化的频段呈高阻态, 从而使天线 在增加寄生枝节后, 在整个工作带宽内依然有较好的效率。
在上述实施例中,对各个实施例的描述都各有侧重, 某个实施例中没有详 述的部分, 可以参见其他实施例的相关描述。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不 局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本 发明的保护范围应以所述权利要求的保护范围为准。

Claims

权 利 要求 书
1、 一种天线, 其特征在于, 所述天线包括:
馈电点, 馈电枝节, 寄生枝节和滤波单元;
所述馈电枝节和所述馈电点电性连接; 所述馈电枝节具有多个工 作频段, 所述工作频段具有各自的带宽;
所述寄生枝节用于和所述馈电枝节耦合;
所述滤波单元的一端与所述寄生枝节电性连接, 另一端接地; 所述滤波单元用于使所述寄生枝节与所述馈电枝节耦合后带宽变 宽的工作频段工作在所述滤波单元的通带, 使所述寄生枝节与所述馈 电枝节耦合后带宽变窄的工作频段工作在所述滤波单元的阻带。
2、 根据权利要求 1所述的天线, 其特征在于, 所述滤波单元用于 使所述寄生枝节与所述馈电枝节耦合后带宽变宽的工作频段工作在所 述滤波单元的通带, 使所述寄生枝节与所述馈电枝节耦合后带宽变窄 的工作频段工作在所述滤波单元的阻带具体包括:
当所述寄生枝节与所述馈电枝节耦合后带宽变宽的工作频段比所 述寄生枝节与所述馈电枝节耦合后带宽变窄的工作频段高时, 所述滤 波单元为高通滤波器, 所述滤波单元的截止频率在所述带宽变宽的工 作频段和所述带宽变窄的工作频段之间。
3、 根据权利要求 1所述的天线, 其特征在于, 所述滤波单元用于 使所述寄生枝节与所述馈电枝节耦合后带宽变宽的工作频段工作在所 述滤波单元的通带, 使所述寄生枝节与所述馈电枝节耦合后带宽变窄 的工作频段工作在所述滤波单元的阻带具体包括:
当所述寄生枝节与所述馈电枝节耦合后带宽变宽的工作频段比所 述寄生枝节与所述馈电枝节耦合后带宽变窄的工作频段低时, 所述滤 波单元为低通滤波器, 所述滤波单元的截止频率在所述带宽变宽的工 作频段和所述带宽变窄的工作频段之间。
4、 一种终端, 其特征在于, 所述终端包括权利要求 1 -3任一所述 的天线与射频芯片, 所述射频芯片电性连接所述天线。
PCT/CN2013/089280 2013-12-12 2013-12-12 一种天线和终端 WO2015085554A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/089280 WO2015085554A1 (zh) 2013-12-12 2013-12-12 一种天线和终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/089280 WO2015085554A1 (zh) 2013-12-12 2013-12-12 一种天线和终端

Publications (1)

Publication Number Publication Date
WO2015085554A1 true WO2015085554A1 (zh) 2015-06-18

Family

ID=53370510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089280 WO2015085554A1 (zh) 2013-12-12 2013-12-12 一种天线和终端

Country Status (1)

Country Link
WO (1) WO2015085554A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101095262A (zh) * 2004-12-29 2007-12-26 索尼爱立信移动通讯股份有限公司 用于改进无线终端中的多频带天线的性能的方法和设备
CN101308950A (zh) * 2007-05-18 2008-11-19 英资莱尔德无线通信技术(北京)有限公司 天线装置
EP2026407A1 (en) * 2007-08-14 2009-02-18 Mobinnova Hong Kong Limited Multi-band planar inverted-F antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101095262A (zh) * 2004-12-29 2007-12-26 索尼爱立信移动通讯股份有限公司 用于改进无线终端中的多频带天线的性能的方法和设备
CN101308950A (zh) * 2007-05-18 2008-11-19 英资莱尔德无线通信技术(北京)有限公司 天线装置
EP2026407A1 (en) * 2007-08-14 2009-02-18 Mobinnova Hong Kong Limited Multi-band planar inverted-F antenna

Similar Documents

Publication Publication Date Title
US10819031B2 (en) Printed circuit board antenna and terminal
CN110137671B (zh) 天线结构及具有该天线结构的无线通信装置
CN107181045B (zh) 一种移动终端的天线及具有该天线的移动终端
TWI499132B (zh) 天線模組
US7187338B2 (en) Antenna arrangement and module including the arrangement
US6218992B1 (en) Compact, broadband inverted-F antennas with conductive elements and wireless communicators incorporating same
WO2014098024A1 (ja) アンテナ装置および電子機器
CN106816706B (zh) 天线结构及应用该天线结构的无线通信装置
WO2004109857A1 (ja) アンテナとそれを用いた電子機器
TWI619314B (zh) 多頻天線
EP2219265A1 (en) An antenna device, an antenna system and a portable radio communication device comprising such an antenna device
US20150364820A1 (en) Multiband antenna apparatus and methods
WO2015074251A1 (zh) 一种可调天线及终端
US10014574B2 (en) Antenna device
CN102110899A (zh) 一种集成滤波器的超宽带天线
WO2013175903A1 (ja) アンテナ装置及びmimo無線装置
WO2011103327A1 (en) Field-confined printed circuit board-printed antenna for radio frequency front end integrated circuits
CN108511890B (zh) 一种5g多频段手机天线
EP2234205A1 (en) An antenna device and a portable radio communication device comprising such antenna device
CN104916921B (zh) 无线通讯设备及其天线装置
CN111771305B (zh) 一种带陷波器的天线布置和用户设备
TWI581508B (zh) Lte天線結構
WO2015085554A1 (zh) 一种天线和终端
JP2008172602A (ja) アンテナ装置
TWI566466B (zh) 天線組件及具有該天線組件之無線通訊裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899214

Country of ref document: EP

Kind code of ref document: A1