WO2015085214A1 - Sensor fitting for biotech process bag - Google Patents

Sensor fitting for biotech process bag Download PDF

Info

Publication number
WO2015085214A1
WO2015085214A1 PCT/US2014/068866 US2014068866W WO2015085214A1 WO 2015085214 A1 WO2015085214 A1 WO 2015085214A1 US 2014068866 W US2014068866 W US 2014068866W WO 2015085214 A1 WO2015085214 A1 WO 2015085214A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
receptacle
fitting
port plate
body portion
Prior art date
Application number
PCT/US2014/068866
Other languages
French (fr)
Inventor
James F. FUREY
Dennis C. ANNARELLI
Original Assignee
Pendo TECH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53274179&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015085214(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pendo TECH filed Critical Pendo TECH
Priority to EP14867894.9A priority Critical patent/EP3076917B2/en
Priority to US15/101,661 priority patent/US10041896B2/en
Publication of WO2015085214A1 publication Critical patent/WO2015085214A1/en
Priority to US15/909,556 priority patent/US10557811B2/en
Priority to US16/746,293 priority patent/US11143611B2/en
Priority to US16/906,361 priority patent/US11181496B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • G01N27/07Construction of measuring vessels; Electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1475Inlet or outlet ports
    • A61J1/1481Inlet or outlet ports with connection retaining means, e.g. thread or snap-fit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/30Supports specially adapted for an instrument; Supports specially adapted for a set of instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • A61J1/10Bag-type containers
    • A61J1/12Bag-type containers with means for holding samples of contents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1412Containers with closing means, e.g. caps
    • A61J1/1418Threaded type

Definitions

  • Process applications generally involve a series of actions or steps that are taken in a prescribed sequence in the development and/or manufacturing of a product. Such processes are repeatable and predictable, or at least are generally intended to be. In a wide range of fluid handling process applications knowledge of process conductivity or other fluid characteristics is a valuable piece of information. Such measurements are of particular interest in the technology field of biopharmaceutical process applications for both product development and manufacturing.
  • an in-line gauge is traditionally provided somewhere along the fluid flow path.
  • the use of an in-line gauge is not optimal in some process applications.
  • a gauge is inserted into a vessel port.
  • a bag insertion of a traditional gauge is not optimal
  • One method of maintaining an uncontaminated environment is to employ critical assembly elements that are designed for single-use (or limited use).
  • an assembly could contain a large variety of components such as flexible tubing, single use process containers, such as plastic/polymeric bags.
  • Such bags are commonly used in biotech processes for storage of fluids and mixing.
  • These process bags are typically made of polymeric film materials such as polyethylene (PE) film material and are often provided with port plates, which are attached to the film material before the material is made into a bag.
  • the plates are also made of a similar molded polymeric material and are melt-sealed to the film for the required penetrations for tubing, sample ports, etc.
  • the polymers used for fabricating innovative plastic in-line conductivity sensors may be of a material that cannot be heat sealed to the film material.
  • adhesives or glues of any type would not be desired in such contamination-free environments and would likely not even work.
  • many single-use process bags are not compatible with most heat sterilization temperatures so gamma or ethylene oxide (ETO) processing is typically used so the process sensors should be compatible with gamma or ETO processing.
  • a sensor connection for a fluid process application bag is provided.
  • the fluid process application bag is generally a flexible film body having an opening.
  • a port plate is sealed around the opening of the fluid process application bag and has a receptacle defining a passage in fluid
  • a sensor fitting having a body portion is seated within the passage of the receptacle and is coupled to the receptacle.
  • a sensor is contained within the sensor fitting and the sensor has at least one probe communicating with the interior of the fluid process application bag.
  • the senor is a conductivity sensor having two or more probes communicating with the interior of the fluid process application bag, wherein a temperature sensor is placed within one of the probes and the conductivity is measured by at least two of the probes.
  • the body portion of the sensor fitting includes a threaded portion for threadable engagement with a threaded portion provided in the receptacle of the port plate.
  • the body portion of the sensor fitting includes at least one tab extending radially outwardly from the body portion and the receptacle of the port plate includes a discontinuous rib extending radially inwardly into the passage. The tab engages the rib for releasably securing the sensor fitting in the port plate.
  • the body portion of the sensor fitting and the receptacle of the port plate include cooperating detent structure for providing snap-fit engagement between the sensor fitting and the port plate.
  • the detent structure may include a sloped flank extending radially outwardly from the body portion of the sensor fitting and an oppositely sloped flank extending radially inwardly into the passage of the receptacle of the port plate.
  • the sensor fitting preferably includes an O-ring fitted around the body portion, wherein the O-ring provides a seal between the body portion of the sensor fitting and the receptacle of the port plate.
  • the O-ring can be provided in the receptacle at a suitable location so as to provide a seal between the sensor fitting and the receptacle.
  • the body portion of the sensor fitting is cup- shaped and has a side wall and a bottom defining an internal compartment for receiving the sensor, wherein at least one of the probes of the sensor extends through the bottom.
  • the sensor fitting further preferably includes a head portion covering the internal compartment and an electrical lead of the sensor extends through the head portion.
  • the port plate further preferably includes a skirt portion extending outwardly from the receptacle, wherein the skirt portion is heat sealed to the fluid process application bag.
  • Figure 1 is an illustration of a sensor fitting attached to a biotech process bag in accordance with the subject invention.
  • Figure 2 is an enlarged view of the sensor fitting attached to the biotech process bag shown in Figure 1.
  • Figure 3 is a plan view of the port plate shown in Figures 1 and 2.
  • Figure 4 is a cross-sectional view of a first embodiment of the connection between the sensor fitting and the port plate.
  • Figure 4a is a cross-sectional view of the first embodiment shown in
  • Figure 5 is a cross-sectional view of a second embodiment of the connection between the sensor fitting and the port plate.
  • Figure 5a is a plan view of the port plate shown in Figure 5 taken along line 5a-5a.
  • Figure 6 is a cross-sectional view of a third embodiment of the connection between the sensor fitting and the port plate.
  • a flexible storage bag 10 is provided with a specially designed port plate 12 having a receptacle 14 to accept a sensor fitting 16 according to the present invention.
  • the sensor fitting 16 may contain any type of sensor desired for measuring a physical property of the fluid within the process bag.
  • sensors may include, but are not limited to conductivity sensors, temperature sensors, pressure sensors, pH sensors, and sensors for various types of absorbance measurements, such as UV, visible or near infrared light waves.
  • the sensor is typically hard wired for suitable connection to external measuring equipment (not shown) via a cable 18.
  • wireless communication with the sensor such as wireless communication or fiber optic connection for light-based measurements, may be employed.
  • the sensor fitting 16 is somewhat similar to the conductivity sensor connector shown and described in commonly owned U.S. Patent No. 8,302,496, the specification of which is incorporated herein by reference. However, the sensor fitting 16 of the present invention is specially made without the hose barb/fluid flow portion of the connector disclosed in the 496 patent. Thus, the sensor fitting 16 of the present invention generally includes a body portion 20 and a head portion 22 provided at one end of the body portion, which together form a housing defining an inner compartment for containing the desired sensor therein.
  • the body portion 20 is cup-shaped with a side wall and a bottom defining a compartment 21 therein for receiving the sensor 23.
  • the head portion 22 may be molded separately from the body portion 20 and may be fixed to the open end of the side wall, opposite the bottom, to seal the compartment 21.
  • the bottom may be provided with suitably sized apertures, through which one or more leads 24 of the sensor can extend and protrude outwardly from the body portion from the compartment.
  • the body portion 20 is designed to permit one or more probes or electrodes 24 of the sensor to extend outwardly from one end of the fitting in a fluid-tight manner, while the head portion 22 is designed to permit electrical connection between the external cable 18 and the sensor.
  • a conductivity/temperature sensor 23 is shown contained in the sensor fitting 16, which has three (3) conductivity probes 24 protruding from the bottom of the body portion 20 opposite the head portion 22.
  • One probe 24a contains a thermistor, or other temperature measuring element, such as a thermocouple or RTD, of the sensor 23 to measure temperature, while all probes are electrically connected to the conductivity measuring component of the sensor.
  • any type of sensor can be contained within the fitting,
  • the body portion 20 of the sensor fitting 16 is preferably generally cylindrically shaped and is sized to fit snugly within the correspondingly sized receptacle 14 of the port plate 12.
  • the sensor fitting 16 is preferably molded with tight tolerances from a high-performance polymer, such as polysulfone, so that the sensor fitting can be inserted and sealed into the receptacle 14 of the port plate 12 to prevent any fluid from leaking around the interface of the sensor.
  • the bottom of the compartment cylinder of the sensor fitting body portion 20 should be as close as possible to be flush with the wall of the bioprocess bag 10 so the electrodes 24 would protrude as much as possible into the bag and not sit in a dead leg.
  • the body portion 20 may be provided with a reduced diameter extension 20a at its bottom that is sized to fit through a hole 25 formed in the port plate. In this manner, the bottom of the sensor fitting will be flush with the wall of the bag and the electrodes 24 will protrude as far as permissible into the bag.
  • An O-ring 26 is also preferably provided between an inner surface of the receptacle 14 and an outer surface of the sensor fitting body portion 20 so as to provide a fluid tight seal therebetween.
  • the O-ring 26 may be seated in a groove formed in the body portion 20 of the sensor fitting 16 to prevent axial movement of the ring.
  • the receptacle 14 of the port plate 12 preferably has a circular cross-section and a thin skirt portion 28 of the port plate extends outwardly from the receptacle 14.
  • the skirt portion 28 is heat sealed around a hole 30 formed in the process bag 10 in a conventional manner.
  • the receptacle 14 and skirt portion 28 define an opening 25 communicating with the interior of the process bag 10 via the hole 30 formed in the process bag.
  • the receptacle 14 further forms a passage way 32 communicating with the opening 25 to receive the sensor fitting 12.
  • the sensor fitting 16 is seated within the passage way 32 and can be attached to the receptacle 14 in several ways.
  • Figures 4 and 4a show an embodiment where the inner surface of the receptacle 14 is provided with internal threads 34 and the outer surface of the sensor fitting body portion 20 is provided with external threads 36, which cooperatively engage the internal threads of the receptacle to attach the sensor fitting 16 to the receptacle.
  • Figure 4 shows an O-ring 26 seated in a groove formed in a radial surface of the body portion, while Figure 4a shows the O-ring seated in a groove formed in a sealing surface of the receptacle.
  • the O-ring 26 of Figure 4 will seal against an inner radial surface of the receptacle, while the O-ring 26 of Figure 4a will seal against an axial surface of the sensor fitting.
  • Figures 5 and 5a show an alternative embodiment, wherein the inner surface of the receptacle 14 is provided with one or more discontinuous ribs 38 extending radially into the passage way 32, and wherein the outer surface of the sensor body portion 20 is provided with one or more intermittent tabs 40 extending radially outward from the body portion.
  • the sensor fitting 16 is inserted into the receptacle so that the intermittent tabs 40 pass through gaps 41 of the discontinuous ribs 38 formed in the receptacle.
  • the ribs 38 engage the tabs 40 in a twist-lock manner to secure the sensor within the receptacle.
  • the O-ring 26 will then be captured between the ribs 38 of the receptacle 14 and a flange 27 provided on the outside surface of the body portion 20 of the fitting.
  • the structure for providing the twist-lock engagement of Figures 5 and 5a can be designed to allow removal of the sensor fitting 16 from the receptacle 14, or additional structure can be provided to ensure permanent engagement between the receptacle and the fitting.
  • a locking tab can be provided that allows only a one-way engagement of the fitting and the receptacle so that removal of the sensor fitting from the receptacle cannot be achieved without damaging one or both elements.
  • Figure 6 shows yet another alternative embodiment, wherein the inner surface of the receptacle 14 and the outer surface of the sensor fitting body portion 20 are provided with cooperating detent structure 42, 44 for providing an interference snap fit between the sensor fitting 16 and the receptacle 14 upon insertion of the sensor fitting 16 into the receptacle 14.
  • the detent structure 42, 44 can take the form of ridges having oppositely sloped flanks to permit one-way insertion of the sensor fitting 16 into the receptacle, but which will lock the fitting within the receptacle upon full insertion.
  • the port plate 12 and the sensor fitting 16 are preferably made of lightweight plastic, such as polyethylene, however other materials can be used that suit a particular application.
  • the port plate 12 and sensor fitting 16 can be made of parts that are compatible with both gamma radiation (using doses high enough for sterilization of process assemblies used in the industry, i.e., up to 45 KGy) or chemical sterilization (such as ethylene oxide (ETO)).
  • the sensor fitting 16 of the present invention does not have inlet and outlet ports with hose barbs for in-line coupling within process tubing.
  • the receptacle fitting design of the present invention can be used for many types of sensors to gain access for analytical measurements.
  • the sensors and related portions of the system described herein throughout can likewise be increased in size and/or capacity to provide appropriate measurement for systems of various sizes and performance capabilities.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • External Artificial Organs (AREA)

Abstract

A fluid process application bag includes a flexible film body having an opening, a port plate sealed around the opening of the flexible film body, a sensor fitting and a sensor contained within the sensor fitting. The port plate has a receptacle defining a passage in fluid communication with an interior of the flexible film body and the sensor fitting has a body portion seated within the passage of the receptacle and is coupled to the receptacle. The sensor has at least one probe communicating with the interior of the flexible film body.

Description

SENSOR FITTING FOR BIOTECH PROCESS BAG
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims the benefit of U.S. Provisional Application No.
61/912,884, filed December 6, 2013, which is incorporated herein by reference in its entirety for all purposes.
BACKGROUND
[0002] Process applications generally involve a series of actions or steps that are taken in a prescribed sequence in the development and/or manufacturing of a product. Such processes are repeatable and predictable, or at least are generally intended to be. In a wide range of fluid handling process applications knowledge of process conductivity or other fluid characteristics is a valuable piece of information. Such measurements are of particular interest in the technology field of biopharmaceutical process applications for both product development and manufacturing.
[0003] For example, in order to measure conductivity in a fluid stream, an in-line gauge is traditionally provided somewhere along the fluid flow path. However, the use of an in-line gauge is not optimal in some process applications. For example, when using lightweight flexible tubing, such in-line devices can be bulky, weighty or too intrusive. Alternatively, to measure conductivity and/or temperature in a vessel, a gauge is inserted into a vessel port. However, in a lightweight, collapsible thin-walled vessel, such a bag insertion of a traditional gauge is not optimal
[0004] Additionally, many fluid process applications in biotechnology require a fluid handling environment with minimal microbial contamination. It is important to ensure that an uncontaminated environment has been maintained throughout the process. Thus, in critical processes, such as production in bioreactors, filtration, chromatography, and formulation and filling of containers or vials, knowledge of the conductivity or other fluid characteristics in the process is critical, but an uncontaminated environment must be maintained.
[0005] One method of maintaining an uncontaminated environment is to employ critical assembly elements that are designed for single-use (or limited use). Thus, such an assembly could contain a large variety of components such as flexible tubing, single use process containers, such as plastic/polymeric bags. Such bags are commonly used in biotech processes for storage of fluids and mixing.
[0006] These process bags are typically made of polymeric film materials such as polyethylene (PE) film material and are often provided with port plates, which are attached to the film material before the material is made into a bag. The plates are also made of a similar molded polymeric material and are melt-sealed to the film for the required penetrations for tubing, sample ports, etc.
[0007] As mentioned above, there is often a need to measure a physical characteristic or parameter, such as conductivity and/or temperature, of the fluid within a process system, and such measurements are typically taken by sensors provided somewhere within the tubing defining the fluid flow path.
[0008] However, in certain instances, it would be desirable to measure such characteristic or parameter of the fluid within the process bag, particularly for mixing of fluids with salts for critical processes or making an addition to adjust a parameter of the fluid. However, the polymers used for fabricating innovative plastic in-line conductivity sensors may be of a material that cannot be heat sealed to the film material. Moreover, adhesives or glues of any type would not be desired in such contamination-free environments and would likely not even work. Also, if sterilization is required, many single-use process bags are not compatible with most heat sterilization temperatures so gamma or ethylene oxide (ETO) processing is typically used so the process sensors should be compatible with gamma or ETO processing. [0009] It is therefore desirable to provide a sensor that is suitable for simple and easy removable connection with a biotech process bag, while providing the ability to accurately measure properties, such as conductivity and/or temperature, of the fluid within the bag. Also, the sensor and bag fitting must be easy to use, inexpensive and universally adaptable to numerous applications.
SUMMARY
[0010] According to an aspect of the invention, a sensor connection for a fluid process application bag is provided. The fluid process application bag is generally a flexible film body having an opening. A port plate is sealed around the opening of the fluid process application bag and has a receptacle defining a passage in fluid
communication with an interior of the fluid process application bag, A sensor fitting having a body portion is seated within the passage of the receptacle and is coupled to the receptacle. A sensor is contained within the sensor fitting and the sensor has at least one probe communicating with the interior of the fluid process application bag.
[0011] In a preferred embodiment, the sensor is a conductivity sensor having two or more probes communicating with the interior of the fluid process application bag, wherein a temperature sensor is placed within one of the probes and the conductivity is measured by at least two of the probes.
[0012] In one embodiment, the body portion of the sensor fitting includes a threaded portion for threadable engagement with a threaded portion provided in the receptacle of the port plate.
[0013] In an alternative embodiment, the body portion of the sensor fitting includes at least one tab extending radially outwardly from the body portion and the receptacle of the port plate includes a discontinuous rib extending radially inwardly into the passage. The tab engages the rib for releasably securing the sensor fitting in the port plate. [0014] In another alternative embodiment, the body portion of the sensor fitting and the receptacle of the port plate include cooperating detent structure for providing snap-fit engagement between the sensor fitting and the port plate. The detent structure may include a sloped flank extending radially outwardly from the body portion of the sensor fitting and an oppositely sloped flank extending radially inwardly into the passage of the receptacle of the port plate.
[0015] The sensor fitting preferably includes an O-ring fitted around the body portion, wherein the O-ring provides a seal between the body portion of the sensor fitting and the receptacle of the port plate. Alternatively, the O-ring can be provided in the receptacle at a suitable location so as to provide a seal between the sensor fitting and the receptacle.
[0016] In a preferred embodiment, the body portion of the sensor fitting is cup- shaped and has a side wall and a bottom defining an internal compartment for receiving the sensor, wherein at least one of the probes of the sensor extends through the bottom. In this case, the sensor fitting further preferably includes a head portion covering the internal compartment and an electrical lead of the sensor extends through the head portion.
[0017] The port plate further preferably includes a skirt portion extending outwardly from the receptacle, wherein the skirt portion is heat sealed to the fluid process application bag.
[0018] Features of the disclosure will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed as an illustration only and not as a definition of the limits of this disclosure. BRIEF DESCRIPTION OF THE DRAWINGS
[0019] Figure 1 is an illustration of a sensor fitting attached to a biotech process bag in accordance with the subject invention.
[0020] Figure 2 is an enlarged view of the sensor fitting attached to the biotech process bag shown in Figure 1.
[0021] Figure 3 is a plan view of the port plate shown in Figures 1 and 2.
[0022] Figure 4 is a cross-sectional view of a first embodiment of the connection between the sensor fitting and the port plate.
[0023] Figure 4a is a cross-sectional view of the first embodiment shown in
Figure 4 with the O-ring seal provided at a different location.
[0024] Figure 5 is a cross-sectional view of a second embodiment of the connection between the sensor fitting and the port plate.
[0025] Figure 5a is a plan view of the port plate shown in Figure 5 taken along line 5a-5a.
[0026] Figure 6 is a cross-sectional view of a third embodiment of the connection between the sensor fitting and the port plate.
DETAILED DESCRIPTION
[0027] Looking first at Figures 1 and 2, a flexible storage bag 10 is provided with a specially designed port plate 12 having a receptacle 14 to accept a sensor fitting 16 according to the present invention. The sensor fitting 16 may contain any type of sensor desired for measuring a physical property of the fluid within the process bag. Such sensors may include, but are not limited to conductivity sensors, temperature sensors, pressure sensors, pH sensors, and sensors for various types of absorbance measurements, such as UV, visible or near infrared light waves. [0028] The sensor is typically hard wired for suitable connection to external measuring equipment (not shown) via a cable 18. However, other means for
communication with the sensor, such as wireless communication or fiber optic connection for light-based measurements, may be employed.
[0029] The sensor fitting 16 is somewhat similar to the conductivity sensor connector shown and described in commonly owned U.S. Patent No. 8,302,496, the specification of which is incorporated herein by reference. However, the sensor fitting 16 of the present invention is specially made without the hose barb/fluid flow portion of the connector disclosed in the 496 patent. Thus, the sensor fitting 16 of the present invention generally includes a body portion 20 and a head portion 22 provided at one end of the body portion, which together form a housing defining an inner compartment for containing the desired sensor therein.
[0030] The body portion 20 is cup-shaped with a side wall and a bottom defining a compartment 21 therein for receiving the sensor 23. The head portion 22 may be molded separately from the body portion 20 and may be fixed to the open end of the side wall, opposite the bottom, to seal the compartment 21. The bottom may be provided with suitably sized apertures, through which one or more leads 24 of the sensor can extend and protrude outwardly from the body portion from the compartment.
[0031] Thus, the body portion 20 is designed to permit one or more probes or electrodes 24 of the sensor to extend outwardly from one end of the fitting in a fluid-tight manner, while the head portion 22 is designed to permit electrical connection between the external cable 18 and the sensor. In a preferred embodiment shown in the drawings, a conductivity/temperature sensor 23 is shown contained in the sensor fitting 16, which has three (3) conductivity probes 24 protruding from the bottom of the body portion 20 opposite the head portion 22. One probe 24a contains a thermistor, or other temperature measuring element, such as a thermocouple or RTD, of the sensor 23 to measure temperature, while all probes are electrically connected to the conductivity measuring component of the sensor. However, as mentioned above, any type of sensor can be contained within the fitting,
[0032] The body portion 20 of the sensor fitting 16 is preferably generally cylindrically shaped and is sized to fit snugly within the correspondingly sized receptacle 14 of the port plate 12. Thus, the sensor fitting 16 is preferably molded with tight tolerances from a high-performance polymer, such as polysulfone, so that the sensor fitting can be inserted and sealed into the receptacle 14 of the port plate 12 to prevent any fluid from leaking around the interface of the sensor.
[0033] When fully seated in the bottom of the receptacle 14 in the port plate 12, the bottom of the compartment cylinder of the sensor fitting body portion 20 should be as close as possible to be flush with the wall of the bioprocess bag 10 so the electrodes 24 would protrude as much as possible into the bag and not sit in a dead leg. Thus, as shown in Figure 4, the body portion 20 may be provided with a reduced diameter extension 20a at its bottom that is sized to fit through a hole 25 formed in the port plate. In this manner, the bottom of the sensor fitting will be flush with the wall of the bag and the electrodes 24 will protrude as far as permissible into the bag.
[0034] An O-ring 26 is also preferably provided between an inner surface of the receptacle 14 and an outer surface of the sensor fitting body portion 20 so as to provide a fluid tight seal therebetween. The O-ring 26 may be seated in a groove formed in the body portion 20 of the sensor fitting 16 to prevent axial movement of the ring.
[0035] Referring additionally to Fig. 3, the receptacle 14 of the port plate 12 preferably has a circular cross-section and a thin skirt portion 28 of the port plate extends outwardly from the receptacle 14. The skirt portion 28 is heat sealed around a hole 30 formed in the process bag 10 in a conventional manner. The receptacle 14 and skirt portion 28 define an opening 25 communicating with the interior of the process bag 10 via the hole 30 formed in the process bag. The receptacle 14 further forms a passage way 32 communicating with the opening 25 to receive the sensor fitting 12. [0036] The sensor fitting 16 is seated within the passage way 32 and can be attached to the receptacle 14 in several ways. For example, Figures 4 and 4a show an embodiment where the inner surface of the receptacle 14 is provided with internal threads 34 and the outer surface of the sensor fitting body portion 20 is provided with external threads 36, which cooperatively engage the internal threads of the receptacle to attach the sensor fitting 16 to the receptacle.
[0037] Figure 4 shows an O-ring 26 seated in a groove formed in a radial surface of the body portion, while Figure 4a shows the O-ring seated in a groove formed in a sealing surface of the receptacle. The O-ring 26 of Figure 4 will seal against an inner radial surface of the receptacle, while the O-ring 26 of Figure 4a will seal against an axial surface of the sensor fitting.
[0038] Figures 5 and 5a show an alternative embodiment, wherein the inner surface of the receptacle 14 is provided with one or more discontinuous ribs 38 extending radially into the passage way 32, and wherein the outer surface of the sensor body portion 20 is provided with one or more intermittent tabs 40 extending radially outward from the body portion. As can be appreciated from Fig. 5a, the sensor fitting 16 is inserted into the receptacle so that the intermittent tabs 40 pass through gaps 41 of the discontinuous ribs 38 formed in the receptacle. Upon slight rotation of the sensor fitting 16 into the receptacle 14, the ribs 38 engage the tabs 40 in a twist-lock manner to secure the sensor within the receptacle. The O-ring 26 will then be captured between the ribs 38 of the receptacle 14 and a flange 27 provided on the outside surface of the body portion 20 of the fitting.
[0039] The structure for providing the twist-lock engagement of Figures 5 and 5a can be designed to allow removal of the sensor fitting 16 from the receptacle 14, or additional structure can be provided to ensure permanent engagement between the receptacle and the fitting. For example, a locking tab can be provided that allows only a one-way engagement of the fitting and the receptacle so that removal of the sensor fitting from the receptacle cannot be achieved without damaging one or both elements. [0040] Figure 6 shows yet another alternative embodiment, wherein the inner surface of the receptacle 14 and the outer surface of the sensor fitting body portion 20 are provided with cooperating detent structure 42, 44 for providing an interference snap fit between the sensor fitting 16 and the receptacle 14 upon insertion of the sensor fitting 16 into the receptacle 14. The detent structure 42, 44 can take the form of ridges having oppositely sloped flanks to permit one-way insertion of the sensor fitting 16 into the receptacle, but which will lock the fitting within the receptacle upon full insertion.
[0041] The port plate 12 and the sensor fitting 16 are preferably made of lightweight plastic, such as polyethylene, however other materials can be used that suit a particular application. For example, the port plate 12 and sensor fitting 16 can be made of parts that are compatible with both gamma radiation (using doses high enough for sterilization of process assemblies used in the industry, i.e., up to 45 KGy) or chemical sterilization (such as ethylene oxide (ETO)).
[0042] As mentioned above, unlike the sensor connector disclosed in U.S. Patent
No. 8,302,496, the sensor fitting 16 of the present invention does not have inlet and outlet ports with hose barbs for in-line coupling within process tubing. Furthermore the receptacle fitting design of the present invention can be used for many types of sensors to gain access for analytical measurements. The sensors and related portions of the system described herein throughout can likewise be increased in size and/or capacity to provide appropriate measurement for systems of various sizes and performance capabilities.
[0043] While various embodiments of the present invention are specifically illustrated and/or described herein, it will be appreciated that modifications and variations of the present invention may be effected by those skilled in the art without departing from the spirit and intended scope of the invention.

Claims

What is Claimed is:
1. A sensor connection for a fluid process application bag comprising:
a fluid process application bag having an opening;
a port plate sealed around said opening of the fluid process application bag, the port plate having a receptacle defining a passage in fluid communication with an interior of the fluid process application bag;
a sensor fitting having a body portion seated within said passage of said receptacle and being coupled to said receptacle; and
a sensor contained within said sensor fitting, said sensor having at least one probe communicating with the interior of the fluid process application bag.
2. A sensor connection as defined in Claim 1, wherein said sensor is a conductivity sensor.
3. A sensor connection as defined in Claim 2, wherein said conductivity sensor comprises at least two probes communicating with the interior of the fluid process application bag, within one of said probes an element for measuring temperature is provided and at least two of said probes being used to measure conductivity.
4. A sensor connection as defined in Claim 1, wherein said body portion of said sensor fitting comprises a threaded portion for threadable engagement with a threaded portion provided in said receptacle of said port plate.
5. A sensor connection as defined in Claim 1, wherein said body portion of said sensor fitting comprises at least one tab extending radially outwardly from said body portion and said receptacle of said port plate comprises a discontinuous rib extending radially inwardly into said passage, said tab engaging said rib for releasably securing said sensor fitting in said port plate.
6. A sensor connection as defined in Claim 1, wherein said body portion of said sensor fitting and said receptacle of said port plate comprise cooperating detent structure for providing snap-fit engagement between said sensor fitting and said port plate.
7. A sensor connection as defined in Claim 6, wherein said detent structure comprises a sloped flank extending radially outwardly from said body portion of said sensor fitting and an oppositely sloped flank extending radially inwardly into said passage of said receptacle of said port plate.
8. A sensor connection as defined in Claim 1, further comprising an O-ring in sealing engagement between an inner surface of said receptacle and an outer surface of said sensor fitting, said O-ring providing a seal between said body portion of said sensor fitting and said receptacle of said port plate.
9. A sensor connection as defined in Claim 1, wherein said body portion of said sensor fitting is cup-shaped having a side wall and a bottom defining an internal compartment for receiving said sensor, said probe of said sensor extending through said bottom.
10. A sensor connection as defined in Claim 9, wherein said sensor fitting further comprises a head portion covering said internal compartment.
11. A sensor connection as defined in Claim 10, wherein an electrical lead of said sensor extends through said head portion.
12. A sensor connection as defined in Claim 1, wherein said port plate further comprises a skirt portion extending outwardly from said receptacle, said skirt portion being heat sealed to said fluid process application bag.
13. A fluid process application bag comprising:
a flexible film body having an opening;
a port plate sealed around said opening of said flexible film body, the port plate having a receptacle defining a passage in fluid communication with an interior of the flexible film body;
a sensor fitting having a body portion seated within said passage of said receptacle and being coupled to said receptacle; and
a sensor contained within said sensor fitting, said sensor having at least one probe communicating with the interior of the flexible film body.
14. A fluid process application bag as defined in Claim 13, wherein said sensor is a conductivity sensor.
15. A fluid process application bag as defined in Claim 14, wherein said conductivity sensor comprises at least two probes communicating with the interior of the fluid process application bag, within one of said probes an element for measuring temperature is provided and at least two of said probes being used to measure conductivity.
PCT/US2014/068866 2013-12-06 2014-12-05 Sensor fitting for biotech process bag WO2015085214A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14867894.9A EP3076917B2 (en) 2013-12-06 2014-12-05 Sensor fitting for biotech process bag
US15/101,661 US10041896B2 (en) 2013-12-06 2014-12-05 Sensor fitting for biotech process bag
US15/909,556 US10557811B2 (en) 2013-12-06 2018-03-01 Sensor fitting for biotech process bag
US16/746,293 US11143611B2 (en) 2013-12-06 2020-01-17 Sensor fitting for biotech process bag
US16/906,361 US11181496B2 (en) 2013-12-06 2020-06-19 Sensor fitting for biotech process bag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361912884P 2013-12-06 2013-12-06
US61/912,884 2013-12-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/101,661 A-371-Of-International US10041896B2 (en) 2013-12-06 2014-12-05 Sensor fitting for biotech process bag
US15/909,556 Continuation-In-Part US10557811B2 (en) 2013-12-06 2018-03-01 Sensor fitting for biotech process bag

Publications (1)

Publication Number Publication Date
WO2015085214A1 true WO2015085214A1 (en) 2015-06-11

Family

ID=53274179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/068866 WO2015085214A1 (en) 2013-12-06 2014-12-05 Sensor fitting for biotech process bag

Country Status (3)

Country Link
US (1) US10041896B2 (en)
EP (1) EP3076917B2 (en)
WO (1) WO2015085214A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2550120A (en) * 2016-05-05 2017-11-15 Aber Instr Ltd Probe
FR3071724A1 (en) * 2017-10-02 2019-04-05 Sartorius Stedim Fmt Sas POUCH CONTAINING A BIOPHARMACEUTICAL PRODUCT AND PROBE SUPPORT PORT FOR SUCH A PRODUCT

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012106053A2 (en) * 2011-02-03 2012-08-09 Anderson Instrument Company Inc. Sensor assembly for hygenic material processing systems
ITMI20130495A1 (en) * 2013-03-29 2014-09-30 Atlas Copco Blm Srl ELECTRONIC CONTROL AND CONTROL DEVICE FOR SENSORS
DE102019117446A1 (en) * 2019-06-27 2020-12-31 Schott Ag Multi-sensor component for bioprocess control
WO2023055867A1 (en) * 2021-09-29 2023-04-06 Flexicon Corporation Adaptive sensor mount assembly
DE102022110499A1 (en) * 2022-04-29 2023-11-02 Raumedic Ag Bag for holding a medical or pharmaceutical medium, hose with a connector for connection to such a bag and arrangement with such a bag and with such a connector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE32354E (en) * 1980-07-21 1987-02-17 Scholle Corporation Container for holding and dispensing fluid
US20090290005A1 (en) * 2008-05-26 2009-11-26 Seiko Epson Corporation Liquid Container, and Method for Manufacturing the Same
US20110249526A1 (en) * 2010-03-09 2011-10-13 Dennis Wong Process bag container with sensors
US20120244608A1 (en) * 2006-08-02 2012-09-27 Finesse Solutions, Llc. Composite sensor assemblies for single use bioreactors
US20130036844A1 (en) * 2006-06-03 2013-02-14 Eldon James Corporation Universal Sensor Fitting for Process Applications
WO2013063550A1 (en) * 2011-10-28 2013-05-02 Xcellerex, Inc. Probe assembly

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315990A (en) 1980-06-11 1982-02-16 Eli Lilly And Company Fermentation system and probe detector holder
US4375864A (en) 1980-07-21 1983-03-08 Scholle Corporation Container for holding and dispensing fluid
US4408700A (en) 1981-05-28 1983-10-11 Owens-Illinois, Inc. Multi-part dispensing closure having a frangible connecting web
US4948014A (en) 1988-10-26 1990-08-14 Rapak, Inc. Two piece valved fluid dispenser
US5197634A (en) 1989-05-09 1993-03-30 Creative Packaging Corp. Side orifice dispensing closure
US5467806A (en) 1994-05-10 1995-11-21 Scholle Corporation Two-part coupling structure having cooperating parts effecting fluid flow upon connection an mutual resealing upon disconnection
IT1295486B1 (en) 1997-10-14 1999-05-12 Acqua Minerale S Benedetto Spa ASEPTIC CAP FOR LIQUID CONTAINERS
GB9805014D0 (en) 1998-03-11 1998-05-06 Siemens Plc Improved mechanical arrangement for water quality measuring apparatus
DE10003436B4 (en) 1999-02-18 2009-08-13 Ifm Electronic Gmbh Heat transfer control and / or meter
IT1306677B1 (en) 1999-06-29 2001-10-02 San Benedetto Acqua Minerale ASEPTIC CAP FOR LIQUID CONTAINERS.
US6374685B1 (en) 1999-10-14 2002-04-23 Siemens Automotive, Inc. Creep enhanced sensor attachment arrangement
US6852216B2 (en) 2002-10-28 2005-02-08 Pti Technologies, Inc. Sensing device using MEMS technology and prognostic health monitoring
WO2005068059A1 (en) 2004-01-07 2005-07-28 Levtech, Inc. Mixing bag with integral sparger and sensor receiver
US20050163667A1 (en) 2004-01-26 2005-07-28 Krause Richard J. Single-use biobags with sendors: DO, pH, CO2 and temperature
DE102004015703B4 (en) 2004-03-29 2023-03-02 Sartorius Stedim Biotech Gmbh Device for introducing sensors into a sterile environment
AU2005240969A1 (en) 2004-04-27 2005-11-17 Baxter Healthcare S.A. Stirred-tank reactor system
US7329338B2 (en) 2004-10-27 2008-02-12 General Electric Company Conductivity sensor for an ion exchange water softener
CN102126696B (en) 2005-06-06 2014-10-29 高级技术材料公司 Liquid supply system, liquid storage and dispensing systems and liquid supply method
US7226207B2 (en) 2005-09-09 2007-06-05 Feldmeier Robert H Temperature gauge for use with sanitary conduit
WO2008040567A1 (en) 2006-10-03 2008-04-10 Artelis Flexible mixing bag, mixing device and mixing system
DE202007000152U1 (en) 2006-01-11 2007-04-05 Sartorius Ag Hygienic mounting for an instrumentation sensor for a flexible wall container e.g. for pharmaceutical mixing, has a through-wall spigot and internal clamp ring
DE102006001610B4 (en) 2006-01-11 2009-06-10 Sartorius Stedim Biotech Gmbh Device for attaching a sensor to containers
DE102006001623B4 (en) 2006-01-11 2009-05-07 Sartorius Stedim Biotech Gmbh Container and method for mixing media
US7861608B2 (en) 2006-06-03 2011-01-04 Pendotech Universal sensor fitting for process applications
DK2155852T3 (en) 2007-06-15 2014-01-20 Cellution Biotech B V Improved flexible bioreactor
FR2924034B1 (en) 2007-11-27 2011-07-22 Sartorius Stedim Biotech DEVICE FOR CONNECTING AN ACCESSORY TO A CONTAINER FOR SIMPLIFIED INSERTION OF THE ACCESSORY IN THE CONTAINER
US7832296B2 (en) 2007-12-17 2010-11-16 Endress + Hauser Conducta Gesellschaft Fur Mess- Und Regeltechnik Mbh + Co. Kg Sterile single use measurement device
EP2274085B2 (en) 2008-03-19 2019-08-14 Sartorius Stedim Biotech GmbH Method of mixing comprising a magnetic stirrer
WO2011071897A2 (en) 2009-12-07 2011-06-16 Advanced Technology Materials, Inc. Configurable port fitment, kit, and related methods
JP5798568B2 (en) 2009-12-17 2015-10-21 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Sensor mounting device for flexible bag
DE102010001779A1 (en) 2010-02-10 2011-08-11 Hamilton Bonaduz Ag Calibratable sensor unit for reaction vessels
DE102010015813A1 (en) 2010-04-20 2011-10-20 Krohne Messtechnik Gmbh Sensor arrangement for a calorimetric mass flowmeter
GB2479783A (en) 2010-04-23 2011-10-26 Aber Instr Ltd A bioreactor with an impedance or biomass measuring probe.
DE102010063033B4 (en) 2010-12-14 2013-10-24 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Procedure for commissioning a measuring device
DE102011101107B4 (en) 2011-05-10 2013-08-14 Sartorius Stedim Biotech Gmbh Disposable sensor head and disposable container
FR2978131B1 (en) 2011-07-19 2013-09-13 Sartorius Stedim Biotech Sa IMPROVEMENT IN CONNECTING AN ACCESSORY TO A CONTAINER.
DE102011080956A1 (en) 2011-07-25 2013-01-31 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Method and measuring point for measuring at least one physical and / or chemical process variables of a measuring medium contained in a disposable container
DE102011080579A1 (en) 2011-08-08 2013-02-28 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Retractable housing
US20130145818A1 (en) 2011-12-09 2013-06-13 Mettler-Toledo Ag Sensor unit utilizing a clamping mechanism
US9388375B2 (en) 2012-04-18 2016-07-12 Life Technologies Corporation Methods and apparatus for gas stream mass transfer with a liquid
AU2014235553B2 (en) 2013-03-15 2019-04-18 Parker-Hannifin Corporation Single-use pH sensors in bioreactors, biotech purification and bio processing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE32354E (en) * 1980-07-21 1987-02-17 Scholle Corporation Container for holding and dispensing fluid
US20130036844A1 (en) * 2006-06-03 2013-02-14 Eldon James Corporation Universal Sensor Fitting for Process Applications
US20120244608A1 (en) * 2006-08-02 2012-09-27 Finesse Solutions, Llc. Composite sensor assemblies for single use bioreactors
US20090290005A1 (en) * 2008-05-26 2009-11-26 Seiko Epson Corporation Liquid Container, and Method for Manufacturing the Same
US20110249526A1 (en) * 2010-03-09 2011-10-13 Dennis Wong Process bag container with sensors
WO2013063550A1 (en) * 2011-10-28 2013-05-02 Xcellerex, Inc. Probe assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3076917A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2550120A (en) * 2016-05-05 2017-11-15 Aber Instr Ltd Probe
GB2550120B (en) * 2016-05-05 2020-09-16 Aber Instruments Ltd Probe
US10900012B2 (en) 2016-05-05 2021-01-26 Aber Instruments Limited Probe
FR3071724A1 (en) * 2017-10-02 2019-04-05 Sartorius Stedim Fmt Sas POUCH CONTAINING A BIOPHARMACEUTICAL PRODUCT AND PROBE SUPPORT PORT FOR SUCH A PRODUCT
WO2019068964A1 (en) * 2017-10-02 2019-04-11 Sartorius Stedim Fmt Sas Bag containing a biopharmaceutical product and probe holder port for such a product
US11633328B2 (en) 2017-10-02 2023-04-25 Sartorius Stedim Fmt Sas Bag containing a biopharmaceutical product and probe holder port for such a product

Also Published As

Publication number Publication date
US20160305897A1 (en) 2016-10-20
EP3076917A4 (en) 2017-07-12
EP3076917B1 (en) 2018-10-10
EP3076917B2 (en) 2021-06-02
US10041896B2 (en) 2018-08-07
EP3076917A1 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
EP3076917B1 (en) Sensor fitting for biotech process bag
US11143611B2 (en) Sensor fitting for biotech process bag
US11181496B2 (en) Sensor fitting for biotech process bag
US11892323B1 (en) Universal sensor fitting for process applications
US7861608B2 (en) Universal sensor fitting for process applications
EP2829598B1 (en) Sensor probe seal
JP6754695B2 (en) Disposable liquid chemical sensor system
SG184917A1 (en) Drain connector for fluid processing and storage containers
US11633328B2 (en) Bag containing a biopharmaceutical product and probe holder port for such a product
WO2021257949A1 (en) Sensor fitting for biotech process bag
CN111630361B (en) Compact sensor connector for disposable fluid measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867894

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014867894

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014867894

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15101661

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE