WO2015083973A1 - Charged particle beam probe forming device and method for using same - Google Patents

Charged particle beam probe forming device and method for using same Download PDF

Info

Publication number
WO2015083973A1
WO2015083973A1 PCT/KR2014/011388 KR2014011388W WO2015083973A1 WO 2015083973 A1 WO2015083973 A1 WO 2015083973A1 KR 2014011388 W KR2014011388 W KR 2014011388W WO 2015083973 A1 WO2015083973 A1 WO 2015083973A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged particle
particle beam
sample
region
aperture
Prior art date
Application number
PCT/KR2014/011388
Other languages
French (fr)
Korean (ko)
Inventor
조복래
배문섭
한철수
안상정
김주황
박인용
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Publication of WO2015083973A1 publication Critical patent/WO2015083973A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation

Definitions

  • the present invention relates to an apparatus for forming a charged particle beam probe, such as an electron beam or an ion beam, and a method of using the same, and more particularly, a beam in which charged particle beams emitted from a charged particle beam source are concentrated on a sample under atmospheric pressure or under a reduced atmosphere.
  • the present invention relates to a device capable of adjusting the formation position of a spot charged particle beam probe and a method of observing or processing a sample using the same.
  • a charged particle beam such as an electron beam or an ion beam can be used.
  • a charged particle beam such as an electron beam or an ion beam
  • an optical microscope to obtain information at a nano or atomic level for a material to be observed at a nano or atomic level.
  • it can be applied to the next-generation semiconductor materials and the like.
  • the charged particle beam when used under atmospheric pressure or under a low vacuum atmosphere as described above, a non-conductive sample that cannot be observed in a general high vacuum environment, or a sample containing volatile components can be easily obtained without a metal coating.
  • the surface of the sample can be processed.
  • the charged particle beam emitted from a charged particle beam source such as an electron beam or an ion beam in the vacuum chamber is lower than the pressure in the vacuum chamber.
  • Charged particle beam probes, which are beam spots, must be focused on a sample that is in a vacuum or at atmospheric pressure.
  • the apparatus for forming a charged particle beam probe for observing or processing the surface form or structure of a sample under atmospheric pressure or under a low vacuum atmosphere may be, for example, an Environmental Scanning Electron Microscope (E-SEM), air. It can be applied to a scanning electron microscope (Air Scanning Electron Microscope: Air-SEM), a focused ion beam device, a sample processing device using a particle beam.
  • E-SEM Environmental Scanning Electron Microscope
  • Air-SEM Air-SEM
  • a focused ion beam device a sample processing device using a particle beam.
  • the apparatus for forming a charged particle beam probe may be a charged particle source 10 in a vacuum chamber, an intermediate focusing lens 22 provided on the charged particle source side in the vacuum chamber, and a final focusing lens provided on the sample side.
  • a vacuum chamber 30 having a focusing lens group 20 including an objective lens 24, an aperture 35 which is a passage through which the charged particle beam emitted from the charged particle source is irradiated onto the sample through the objective lens;
  • a sample stage 50 provided between the intermediate focusing lens and the objective lens and capable of supporting and moving the deflector 40 for controlling and changing the irradiation direction of the charged particle beam and the sample 55 located outside the vacuum chamber. It may include.
  • the apparatus for forming a charged particle beam probe in FIG. 1 focuses a charged particle beam emitted from a charged particle source in a vacuum chamber into a plurality of focusing lens groups to form a beam spot that is focused on a sample, that is, a probe.
  • One or more deflectors are used to adjust the beam trajectory to move the position of the probe so that the beam is scanned on the sample to observe the shape of the sample or to process the shape.
  • the charged particle beam may collide with air molecules and be scattered
  • a space in the vacuum chamber including the charged particle source and the beam scanning region between the focusing lens group and the aperture may be used in a high vacuum environment using a vacuum pump. Exhaust is to be maintained.
  • a vacuum pump may be generally provided to have a pressure of 10 ⁇ 4 mbar or less, preferably 10 ⁇ 5 mbar or less.
  • the charged particle beam emitted from the charged particle source is focused by a rotationally symmetric electric or magnetic field induced from the focusing lens group about the optical axis indicated by a dotted line in FIG. 1.
  • the magnetic field formed by the electric field or the electric coil formed by the electrode unlike the optical system, serves as the focusing lens group.
  • the size of the probe which is a beam spot focused by the focusing lens group and formed on the surface of the sample, determines the resolution when observing the sample shape and the precision when the sample is processed. In general, the smaller the probe, the better the resolution and precision.
  • the electron beam lens has an aberration, and the size of the probe is determined by the aberration, and as the aberration increases, the probe size becomes large, resulting in a decrease in observation resolution and processing accuracy.
  • a deflector may be generally provided on the objective lens.
  • FIG. 2 shows a charged particle beam probe forming apparatus used for a sample in a low vacuum environment, and in FIG. The charged particle beam probe forming apparatus used for the sample is shown. 2 or 3, the beam trajectory is controlled so that the trajectory of the beam passes through the center of the lens by configuring a deflector between the objective lens and the intermediate focusing lens in order to reduce aberration when the beam is scanned on the sample. have.
  • the pressure in the sample chamber region including the sample may be maintained at a low vacuum of 1 ⁇ 10 ⁇ 2 mbar or more.
  • a separate vacuum pump may be provided to maintain a pressure difference from the vacuum chamber of the high vacuum area including the charged particle source and the focusing lens group.
  • the aperture may be formed to open in the form of an opening in the vacuum chamber, and includes a vacuum including the sample region and the charged particle source according to the diameter or surface area of the aperture, the capacity of each vacuum pump, and the like. The pressure difference between the inner regions of the chamber can be adjusted.
  • the sample in order to perform observation or processing of a biological sample, the sample is placed under atmospheric pressure in a sample chamber region including the sample without using a vacuum chamber.
  • the aperture forms a diaphragm having a predetermined thickness, not an opening, as shown in FIG. 3.
  • the diaphragm may be manufactured by, for example, etching a material such as SiN or using a thin film material such as graphene, and may have a thickness in a range of 1 to 2000 nm, preferably 2 to 500 nm.
  • the maximum formation area of the probe formed on the sample may be determined by the size of the aperture and the distance between the aperture and the objective lens.
  • the scanning range which is a region in which the probe can be formed in a fixed state without moving the sample using the deflector, will be widened. Can be.
  • fixing the sample and observing or processing the sample through the control of the focusing lens group and the deflector, etc. enlarges the viewing area rather than moving the sample while fixing the control conditions of the focusing lens group and the deflector. It is convenient for the user in reducing, and also has the advantage of finding a specific area quickly and easily.
  • European Patent Publication No. EP 0786145 B1 uses an environmental scanning electron microscope (E-SEM) that provides excellent spatial resolution even when a sample is accommodated in a gaseous environment of a sample chamber.
  • E-SEM environmental scanning electron microscope
  • J. Vac. Sci. Technol. B 9, 1557 (1991) describes an Air Scanning Electron Microscopy (Air SEM) in which a sample can be observed at atmospheric pressure using a silicon nitride thin film.
  • the charged particle beam probe forming apparatus in the related art which can be applied to an environmental scanning electron microscope (E-SEM) as shown in FIG. 2, maintains the pressure in the sample chamber region at a low vacuum of 1x10 -2 mbar or more. And an aperture communicating between the inside of the vacuum chamber of the high vacuum region and the sample chamber region of the low vacuum region such that the vacuum chamber including the charged particle source is not influenced to maintain a high vacuum of 1x10 -4 mbar or less. It should be provided with a very small diameter ( ⁇ 1 mm).
  • the charged particle beam probe forming apparatus in the prior art that can be applied to the air scanning electron microscope (Air-SEM) as shown in FIG. 3 maintains the pressure around the sample at atmospheric pressure, and also the charged particle source It should be provided with a thin film having a very small diameter ( ⁇ 1mm) and a constant thickness ( ⁇ hundreds of nm) so as not to affect the high vacuum state of 1x10 -4 mbar or less in a vacuum chamber including a.
  • Air-SEM air scanning electron microscope
  • the charged particle beam trajectory is such that the charged particle beam trajectory necessarily passes through the center of the objective lens in order to reduce aberration in the objective lens which is the final focusing lens.
  • the trajectory must be controlled via a deflector, and while the charged particle beam passes through the center of the objective lens and passes through the aperture in FIGS. 2 and 3, the scanning range must be narrowed.
  • the field of view that can be observed without moving is narrowed, and in the case of a sample processing device, there is a problem of causing a result that the processable area is narrowed without moving the sample.
  • an object of the present invention is to provide a charged particle beam charged particle beam probe forming apparatus that can be applied to an observation device that can observe a wide field of view without moving a sample in order to solve the above problems. .
  • Another object of the present invention is to provide a charged particle beam probe forming apparatus that can secure a wide processing range without moving a sample.
  • the present invention can provide a scanning electron microscope, a sample processing device or a focused ion beam device including the charged particle beam probe forming apparatus.
  • the present invention can provide a method for observing or processing a sample that can secure a wide field of view or a wide processing area without moving the sample using the charged particle beam probe forming apparatus.
  • the present invention is provided on the charged particle source for emitting a charged particle beam, the charged particle source side, at least one intermediate focusing lens for focusing the charged particle beam by an electric or magnetic field, and a final focusing lens on the sample side,
  • a focusing lens group including an objective lens for forming a charged particle beam probe that is a beam spot focused on a sample, the charged particle source and a focused lens group are provided therein, and the charged particle beam emitted from the charged particle source is an objective lens.
  • a vacuum chamber having an aperture, which is a passage irradiated to the sample through, one or more deflectors for controlling and changing the irradiation direction of the charged particle beam, and a sample capable of supporting the sample to be observed or processed and moving the sample.
  • a charged particle beam probe forming apparatus comprising a stage, wherein the charged particle beam probe forming apparatus comprises a true Charged particle beam probe, characterized in that the first region in the chamber and the second region having a relatively higher pressure than the first region and containing the sample, wherein the deflector is located between the objective lens and the sample Provided is a forming apparatus.
  • the present invention also provides a scanning electron microscope, a focused ion beam (FIB) device, or a sample processing device including the charged particle beam probe forming device.
  • FIB focused ion beam
  • the present invention also provides a charged particle source; And a charged particle beam probe provided at the charged particle source side, the at least one intermediate focusing lens for focusing the charged particle beam by an electric field or a magnetic field, and provided at the sample side as a final focusing lens, and a beam spot focused on the sample.
  • the charged particle beam probe forming apparatus uses a scanning electron microscope, a focused ion beam (FIB) device, or a charged particle beam, which can observe and process a wide field of view without moving a sample.
  • a charged particle beam charged particle beam probe forming apparatus that can be applied to an apparatus for processing a sample can be provided.
  • the charged particle beam charged particle beam probe forming apparatus of the present invention can control the direction of the beam trajectory by a single deflector of the charged particle beam irradiated to the sample after passing through the center of the objective lens, as in the prior art Likewise, there is an advantage in that the irradiation area of the sample can be easily controlled without the need for providing a plurality of deflectors between the objective lens and the intermediate focusing lens.
  • the charged particle beam charged particle beam probe forming apparatus of the present invention includes a deflector between the objective lens and the sample, and by controlling the distance between the deflector and the aperture, it is possible to widen or narrow the observation or processing area of the sample. There is an advantage.
  • the present invention can ensure a wide field of view or a wide processing area without moving the sample in the observation or processing of the sample using the charged particle beam probe forming apparatus, so that the process of the process requiring consumption and professional skills
  • the present invention can ensure a wide field of view or a wide processing area without moving the sample in the observation or processing of the sample using the charged particle beam probe forming apparatus, so that the process of the process requiring consumption and professional skills
  • FIG. 1 is a view showing a charged particle beam probe forming apparatus according to the prior art.
  • FIG. 2 is a view illustrating a device for forming a charged particle beam probe according to the related art, in which the charged particle beam probe is formed in a low vacuum environment.
  • the sample is a device in which the charged particle beam probe is formed in an environment of atmospheric pressure.
  • FIG. 4 is a diagram illustrating a device in which the charged particle beam probe is formed in a low vacuum environment according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an apparatus in which the charged particle beam probe is formed in an environment of a sample according to another embodiment of the present invention.
  • FIG. 6 is a view showing a detailed image of the lens portion and the deflector portion of the charged particle beam probe forming apparatus according to the present invention.
  • Figure 7a is a view showing the image range in the environmental scanning microscope according to the prior art
  • Figure 7b is a view showing the image range in the environmental scanning microscope obtained according to an embodiment of the present invention.
  • 4 and 5 are diagrams showing the emission image obtaining apparatus of the particle beam according to an embodiment of the present invention.
  • a charged particle source 10 for emitting a charged particle beam
  • at least one intermediate focusing lens 22 provided at the charged particle source and focusing the charged particle beam by an electric or magnetic field
  • a sample as a final focusing lens.
  • a focusing lens group 20 including the objective lens 24 for forming a charged particle beam probe that is a beam spot focused on a sample, the charged particle source and the focusing lens group provided therein, and the charged particles
  • a vacuum chamber 30 having an aperture 35 which is a passage through which the charged particle beam emitted from the source is irradiated to the sample through the objective lens, and at least one deflector 40 which controls and changes the irradiation direction of the charged particle beam.
  • a charged particle beam probe forming apparatus including a sample stage 50 capable of supporting the sample to be observed or processed and moving the sample.
  • the focusing lens group 20 including the charged particle source, the intermediate focusing lens 22 and the objective lens 24, the vacuum chamber 30 including the aperture, and the sample stage 50 are shown in FIGS. As described in FIG. 3, the components used in the prior art may be used as they are.
  • the charged particle beam used in the present invention is emitted from the charged particle source and the irradiation direction of the particle beam can be controlled by the focusing lens group 20 and the deflector 40, its kind Can be used without limitation.
  • the charged particle beam may be an electron beam or an ion beam.
  • ion beams When an ion beam is used as the charged particle beam, helium ion beams, neon ion beams, hydrogen ion beams, and the like may be used, but are not limited thereto.
  • ion beams such as Ga, In, Ar, and Ne can be used as the ion beams used as the use of the focused ion beam (FIB) device.
  • FIB focused ion beam
  • the charged particle beam source used in the present invention is a form capable of generating a charged particle beam, such as the electron beam or ion beam, which can emit the charged particle beam, hot electron emission source such as tungsten filament, metal tip And an extraction lens (not shown) for extracting the particle beam emitted from the metal tip to guide the focusing lens group 20.
  • a charged particle beam such as the electron beam or ion beam
  • hot electron emission source such as tungsten filament
  • metal tip and an extraction lens (not shown) for extracting the particle beam emitted from the metal tip to guide the focusing lens group 20.
  • the metal tip 11 capable of emitting the particles is preferably short, sharp and symmetrical in length.
  • Tungsten tip molybdenum, iridium, platinum-iridium alloy, etc. may be used as the metal tip because the material of the source tip of the particle beam satisfies such a condition and the metal tip having the characteristics of easy processing and long life is preferable. Can be.
  • filaments of tungsten, tantalum, iridium, and iridium-tungsten alloys having high melting point and relatively good electron emission, and yttrium, barium, cesium and its Oxide coated filaments may be used.
  • the focusing lens group 20 serves to focus the charged particle beam by an electric field or a magnetic field, and is provided on the sample side as one or more intermediate focusing lenses 22 and the final focusing lens provided on the charged particle source side.
  • an objective lens 24 for forming a charged particle beam probe which is a beam spot focused on a sample.
  • the focusing lens group 20 including the intermediate focusing lens 22 and the objective lens in the focusing lens group may slow down or accelerate or accelerate the charged particle beam emitted from the charged particle source through an electrode included therein. It can be changed and can exist in the form of multiple coils wound in various forms.
  • the charged particle beam may be controlled to pass through the center of the objective lens to reduce aberration. That is, the beam deflected by the deflector at the time of scanning can be controlled to pass through the center of the objective lens which is the final focusing lens.
  • the present invention may include a deflector used in the prior art between the intermediate focusing lens and the objective lens as in the prior art, and may control the irradiation direction of the charged particle beam by the deflector.
  • the charged particle beam probe forming apparatus may include a vacuum chamber having an aperture that is a passage through which the charged particle beam emitted from the charged particle source is irradiated onto the sample through the objective lens.
  • the charged particle beam probe forming apparatus of the present invention may be divided into a first region inside the vacuum chamber surrounded by the vacuum chamber and a second region including the sample, and the second region is relatively larger than the first region. Have high pressure.
  • the first region may be a high vacuum region having a range of 10 ⁇ 4 mbar or less, and preferably a high vacuum region having a range of 10 ⁇ 5 mbar or less.
  • a vacuum system having a high vacuum vacuum pump to maintain the pressure inside the vacuum chamber as described above.
  • the vacuum chamber forms a vacuum space in which high vacuum is maintained by a vacuum pump.
  • the vacuum pump may be a dry pump, a diffusion pump, a turbo molecular pump, an ion pump, a cryopump, a rotary pump, a scroll or a diaphragm pump, or the like. It may be provided including one or more selected from a dry pump (dry pump) of.
  • the second region is a region containing a sample, and may generally correspond to a region inside the sample chamber in which the sample is located, and the sample chamber independently corresponds to a region decompressed by a separate low vacuum vacuum pump. It may be a closed area or an open area under the same pressure as outside air, such as in an atmospheric environment.
  • the pressure difference between the first region and the second region may represent a pressure difference of 100 times or more, and preferably, a pressure difference of 1000 times or more.
  • the aperture may be a boundary that separates the first region and the second region. That is, the aperture communicates between the vacuum chamber internal region, which is the first region, and the second region, which includes the sample, and may be an opening having a circular, polygonal, ellipse, or arbitrary shape, and the sample region. According to the degree of vacuum of the two regions, the opening portion of the opening may be sealed by a thin membrane.
  • the aperture may have a diameter of 3000 um or less, preferably 2000 um or less, and more preferably 1000 um or less.
  • the vacuum chamber is partially sealed by an aperture having an opening or by an aperture including a diaphragm so that charged particles emitted from the charged particle source in the vacuum chamber can be irradiated onto the sample without scattering.
  • the pressure in the sample chamber including the sample is a low vacuum having a pressure range of 10 ⁇ 3 mbar or more, preferably a pressure range of 10 ⁇ 2 mbar or more
  • the apertures are opened to each other so as to have only an opening shape
  • the atmosphere of the second region, which is the sample region may freely flow into the first region inside the vacuum chamber.
  • the pressure in the first region and the second region may vary depending on the measurement point of the pressure, and is a position that is a reference point for the pressure measurement of each region.
  • the region may be near the charged particle source source and the second region may be near the sample on the sample stage.
  • the pressure in the second region including the sample is an atmospheric pressure environment
  • the aperture is formed only in the opening form, it may not be easy to control the pressure in the first region in the vacuum chamber including the charged particle source,
  • the emission of the charged particle beam may be scattered or disturbed by air particles present in atmospheric pressure, such that the aperture may be in the form of an opening sealed by a thin septum.
  • the first region can be isolated from the second region.
  • the thickness of the diaphragm may be 10 nm to 3000 nm, preferably 20 nm to 2000 nm, and more preferably 20 nm to 500 nm.
  • the diaphragm material may be any one selected from silicon nitride (SiN), graphene, or a composite layer thereof.
  • the sample is located in the sample chamber under the objective lens.
  • the sample chamber pressure may be maintained in an environment under atmospheric pressure or low vacuum pressure, and the surface of the sample may be exposed to the charged particle beam.
  • the sample chamber may include a sample stage on which the sample is to be placed, and the sample stage supports the sample below 0.1 to 100 mm, preferably 1 to 30 mm, of the aperture and is parallel to the ground. And it may be provided so that the position movement in the z-direction perpendicular to the y-direction and the ground.
  • the deflector in the present invention may include at least one coil device for generating a magnetic field used to deflect the charged particle beam.
  • the deflector is generally provided between the intermediate focusing lens 22 and the objective lens 24. Therefore, as shown in FIGS. 2 and 3, a plurality of deflectors are provided between the middle focusing lens 22 and the objective lens 24 at the upper end 41 and the lower end 42, so that the trajectory of the charged particle beam is controlled.
  • the beam trajectory is controlled to be set to pass through the center of the.
  • the maximum angle of the charged particle beam irradiated to the sample based on the optical axis may be limited according to the size of the aperture.
  • the charged particle beam irradiated onto the sample is limited within a spatial range having an angle smaller than the maximum angle so as to pass through the inner opening than the portion corresponding to the outermost portion of the aperture to irradiate the sample. If it is irradiated with an angle wider than this, it cannot pass through an aperture.
  • the deflector is provided to be positioned between the objective lens and the sample, so that the area irradiated with the charged particle beam is freely expandable.
  • the charged particle beam charged particle beam probe forming apparatus of the present invention includes a deflector between the objective lens and the sample, and by controlling the distance between the deflector and the aperture, it is possible to widen or narrow the observation or processing area of the sample. There is an advantage.
  • the deflector may be provided to enable height adjustment with respect to the Z direction in the optical axis direction.
  • the deflector When the deflector is provided at the position between the objective lens and the specimen as described above, after the charged particle beam passes through the center of the objective lens, the direction of the beam trajectory is controlled by the deflector to be controlled by the prior art in the desired irradiation direction. It is possible to perform beam irradiation of a much wider area than the area to be.
  • the deflector when the deflector is placed between the objective lens and the sample, the closer the deflection point corresponding to the position where the beam irradiation direction is changed by the deflector toward the sample from the objective lens, the wider the range of the sample can be observed or processed.
  • the beam irradiation range is also widened.
  • the second region which is the sample region
  • the deflector when the deflector is placed between the objective lens and the sample, the charged particle beam passing through the center of the objective lens is formed by changing the traveling direction by the deflector.
  • the area range and irradiation range of the sample that can be observed or processed at the deflection point become wider.
  • the second area which is the sample area
  • the second area is atmospheric pressure
  • the deflector When the deflector is placed between the objective lens and the sample, the deflection point formed by changing the traveling direction of the charged particle beam passing through the center of the objective lens may be observed or processed at the deflection point as it approaches the object lens from the objective lens.
  • the range of the sample and the range of irradiation are widened.
  • the deflector is not provided between the intermediate focusing lens and the objective lens, but is provided to be positioned near the aperture between the objective lens and the sample. .
  • the deflection point is formed at the same position as that of the deflector near the aperture, whereby the charged particle beam passing through the center of the objective lens can be irradiated with the irradiation direction being changed to the desired direction by the deflector.
  • the irradiation angle of the charged particle beam which can be changed by the deflector when the optical axis is referenced, is irradiated to the sample at an angle much larger than the maximum angle irradiated by the deflector in FIGS. 2 and 3 according to the prior art. It can be.
  • FIG. 6 is a view showing a detailed image of the lens portion and the deflector portion of the charged particle beam probe forming apparatus according to the present invention.
  • the charged particle beam probe forming apparatus of the present invention has a lens magnetic circuit 26 of soft magnetic material for the role of the intermediate focusing lens 22 in the focusing lens group 20 around the optical axis 60. ) Is provided on the upper end of the objective lens 24, and the lens magnetic circuit 26 of soft magnetic material is provided at the lower position of the intermediate focusing lens 22 to serve as the objective lens.
  • the aperture portion of the lower portion of the objective lens is a deflector 40 below the position of the aperture 35 having a predetermined (about 1 mm) width, as shown in the rectangular figure shown as the enlarged portion of FIG. 6. You can see that it is provided.
  • the deflector 40 is located between the objective lens and the sample in the present invention, but may be additionally provided between the objective lens and the intermediate focusing lens as described above.
  • the charged particle beam probe forming apparatus can be similarly applied to the case where the second region, which is the sample region, is at atmospheric pressure, as shown in FIG. 5.
  • the deflector may be positioned between the sample and the aperture in the vertical direction.
  • the position of the deflector may be provided at the same height as the aperture.
  • the vacuum chamber of the present invention may include at least one connector that is externally accessible.
  • the connector is a connection part for electrical connection between the vacuum chamber and the external environment, and supplies power and control signals to the charged particle source and focusing lens group in the vacuum chamber.
  • power supply and control of a detector capable of providing information on abnormalities of the charged particle source, focusing lens group, and deflector in (i) and (ii). have.
  • the charged particle beam probe forming apparatus in the present invention may be further provided with a gas injector capable of injecting additional gas containing water vapor, He, nitrogen, argon to enhance the detection or control of the sample.
  • a gas injector capable of injecting additional gas containing water vapor, He, nitrogen, argon to enhance the detection or control of the sample.
  • Such a gas mixture may be provided in proximity to the sample, but is not limited thereto.
  • the charged particle beam probe forming apparatus of the present invention may have various additional components according to its application.
  • various signals emitted from the surface of the sample that is, a low energy secondary electron signal, a high energy backscattered electron signal, a small angle reflected electron signal And an electronic detector of suitable geometry that serves to separate large angle reflective electronic signals.
  • the detector is connected to a display device such as a display device indicating the shape of the surface of the sample, and finally information is displayed in an image.
  • the charged particle beam probe forming apparatus of the present invention controls the emission intensity and the release time of the charged particles in the charged particle source, and additionally provided with a control unit for controlling the focusing lens group and the deflector, adjusting the position of the sample stage, etc. can do.
  • a controller for adjusting the vacuum degree of the vacuum chamber including the charged particle source and the vacuum degree in the sample chamber may be included in the controller individually or integrally, whereby the pressure of each region may be controlled. have.
  • the charged particle beam probe forming apparatus As the charged particle beam probe forming apparatus is entirely controlled by the controller, the charged particle beam probe may be formed on the sample.
  • the charged particle beam probe forming apparatus of the present invention can be used in a scanning electron microscope, a focused ion beam (FIB) device or a sample processing device.
  • FIB focused ion beam
  • the charged particle beam probe in the charged particle beam probe forming apparatus of the present invention first, it is emitted from the charged particle source.
  • the charged particle source may be an electron gun such as a tungsten-hairpin gun, a lanthanum-hexaboride gun, or an field-emission gun, and the electron beam may be subjected to an acceleration voltage supplied to the electron gun. Is accelerated by an electron gun.
  • the electron beam may be guided through the focusing lens group so that the beam may be reduced and irradiated onto the sample. .
  • the accelerated charged particle beam is focused by an electric or magnetic field formed by the intermediate focusing lens in the focusing lens group in the high vacuum state in the vacuum chamber, and passes through the objective lens which is the final focusing lens.
  • the charged particle beam may be irradiated toward the sample through the aperture while passing through the center of the objective lens to reduce aberration.
  • the charged particle beam irradiated on the surface of the sample generates various kinds of secondary particles emitted from the sample through various interactions with the surface of the sample, or the sample can be processed, and the secondary particles are detected or By processing the sample can be used for the desired use.
  • the present invention also provides a method for observing or processing a sample using a charged particle beam.
  • the pressure in each region is set such that the pressure in the first region, which is an internal region of the vacuum chamber 30 having the aperture 35, is lower than the pressure in the second region including the sample.
  • FIG. 7 is a result of applying to an environmental scanning electron microscope using a charged particle beam probe forming apparatus according to the present invention.
  • FIG. 7a a low magnification image obtained from an environmental scanning electron microscope according to the prior art is shown.
  • 7b) shows a low magnification image obtained by an environmental scanning electron microscope when the deflector is installed at the same height position as the aperture under the objective lens on the optical axis according to an embodiment of the present invention. It is.
  • the field of view limited by the conventional 1 mm aperture in the prior art is a general scanning electron microscope even in an environmental scanning electron microscope.
  • a low magnification image of a wide range of about 5 mm can be obtained, which is not limited by the aperture.
  • the charged particle beam probe forming apparatus of the present invention when used in a scanning electron microscope, the image can be obtained up to a portion where the viewing angle is restricted by the spreading in the prior art, so that the sample position desired for observation can be easily found. It can be confirmed that.
  • the present invention it is possible to provide a charged particle beam charged particle beam probe forming apparatus capable of observing a wide field of view or processing a sample without controlling the sample and controlling the direction of the beam trajectory.
  • the present invention can provide a charged particle beam charged particle beam probe forming apparatus which can easily control the irradiation area of the sample and control the distance between the deflector and the aperture to widen or narrow the observation or processing area of the sample. have.

Abstract

The present invention relates to a charged particle beam probe forming device and a method for observing or processing a sample using the same, the device comprising: a charged particle source for emitting a charged particle beam; a focusing lens group comprising at least one intermediate focusing lens, which is provided adjacent to the charged particle source to focus the charged particle beam by means of an electric field or a magnetic field, and an objective lens provided adjacent to a sample as a final focusing lens to form a charged particle beam probe, which is a beam spot focused on a sample; a vacuum chamber containing the charged particle source and the focusing lens group therein and having an aperture that serves as a passage, through which a charged particle beam emitted from the charged particle source is aimed at a sample via the objective lens; at least one deflector for controlling and changing the aiming direction of the charged particle beam; and a sample stage which supports a sample to be observed or processed, and which can move the sample.

Description

하전입자 빔 프로브 형성 장치 및 이의 이용방법Charged particle beam probe forming device and method of using the same
본 발명은 전자빔 또는 이온빔 등의 하전입자빔 프로브 형성 장치 및 이의 이용방법에 관한 것으로, 보다 상세하게는 대기압하에서 또는 감압된 분위기하에서 하전입자빔 소스로부터 방출되는 하전입자빔이 시료상에 집속되는 빔 스폿인 하전입자빔 프로브의 형성위치를 조절할 수 있는 장치 및 이를 이용하여 시료를 관찰하거나 또는 가공하는 방법에 관한 것이다. The present invention relates to an apparatus for forming a charged particle beam probe, such as an electron beam or an ion beam, and a method of using the same, and more particularly, a beam in which charged particle beams emitted from a charged particle beam source are concentrated on a sample under atmospheric pressure or under a reduced atmosphere. The present invention relates to a device capable of adjusting the formation position of a spot charged particle beam probe and a method of observing or processing a sample using the same.
대기압하에서, 또는 저진공 분위기하에서 재료의 표면형태 또는 구조를 나노스케일 또는 원자스케일로 관찰하거나 또는 상기 재료를 가공하기 위한 방법으로서, 전자빔 또는 이온빔과 같은 하전입자빔을 이용할 수 있다. As a method for observing the surface form or structure of a material on a nanoscale or atomic scale or processing the material under atmospheric pressure or under a low vacuum atmosphere, a charged particle beam such as an electron beam or an ion beam can be used.
상기 전자빔 또는 이온빔과 같은 하전입자빔을 이용하게 되면 광학현미경에 의한 분해능(分解能, resolution)의 한계를 넘게 확대가 가능하여 관찰하고자 하는 재료를 나노 또는 원자 수준에서 정보를 획득할 수 있는 고분해능의 현미경을 제작할 수 있고, 또한, 상기 재료에 관한 정보의 획득 뿐 만 아니라, 상기 재료의 표면 일부를 제거하거나 추가적인 구조를 제공함으로써, 차세대 반도체 재료 등에 응용할 수 있다. Using a charged particle beam, such as an electron beam or an ion beam, can be expanded beyond the limit of resolution by an optical microscope to obtain information at a nano or atomic level for a material to be observed at a nano or atomic level. In addition to obtaining the information on the material, by removing a portion of the surface of the material or to provide an additional structure, it can be applied to the next-generation semiconductor materials and the like.
이 경우에 상기와 같이 대기압하에서 또는 저진공 분위기하에서 하전입자빔을 이용하는 경우에는 일반적인 고진공 환경에서 관찰할 수 없는 비전도성 시료, 또는 휘발성 성분을 포함하고 있는 시료를 금속 코팅없이 이미지를 용이하게 얻거나 또는 시료의 표면을 가공할 수 있다. In this case, when the charged particle beam is used under atmospheric pressure or under a low vacuum atmosphere as described above, a non-conductive sample that cannot be observed in a general high vacuum environment, or a sample containing volatile components can be easily obtained without a metal coating. Alternatively, the surface of the sample can be processed.
상기와 같이 대기압하에서, 또는 저진공 분위기하에서 재료의 표면형태 또는 구조를 관찰하거나 또는 가공하기 위해서는 진공챔버내의 전자빔 또는 이온빔 등의 하전입자빔 소스로부터 방출되는 하전입자빔을 상기 진공챔버내의 압력보다는 저진공 상태이거나 대기압의 환경에 놓여있는 시료상에 집속시켜 빔 스폿인 하전입자빔 프로브를 형성시켜야 한다. As described above, in order to observe or process the surface form or structure of the material under atmospheric pressure or under a low vacuum atmosphere, the charged particle beam emitted from a charged particle beam source such as an electron beam or an ion beam in the vacuum chamber is lower than the pressure in the vacuum chamber. Charged particle beam probes, which are beam spots, must be focused on a sample that is in a vacuum or at atmospheric pressure.
상기와 같이 대기압하에서, 또는 저진공 분위기하에서 시료의 표면형태 또는 구조를 관찰하거나 또는 가공하기 위한 하전입자빔 프로브의 형성 장치는 예컨대, 환경주사전자현미경(Environmental Scanning Electron Microscope : E-SEM), 에어 주사전자현미경(Air Scanning Electron Microscope : Air-SEM), 집속 이온빔 장치, 입자빔을 이용한 시료가공장치 등에 응용될 수 있다.As described above, the apparatus for forming a charged particle beam probe for observing or processing the surface form or structure of a sample under atmospheric pressure or under a low vacuum atmosphere may be, for example, an Environmental Scanning Electron Microscope (E-SEM), air. It can be applied to a scanning electron microscope (Air Scanning Electron Microscope: Air-SEM), a focused ion beam device, a sample processing device using a particle beam.
도 1에서는 종래 기술에 따른 하전입자빔 프로브의 형성 장치를 도시하였다. 이를 보다 구체적으로 살펴보면, 상기 하전입자빔 프로브의 형성 장치는 진공챔버내의 하전입자 소스(10), 상기 진공챔버 내에 하전입자 소스쪽에 구비되는 중간 집속렌즈(22)와 시료쪽에 구비되는 최종 집속렌즈인 대물렌즈(24)를 포함하는 집속렌즈군(20), 상기 하전입자 소스로부터 방출된 하전입자 빔이 대물렌즈를 거쳐 시료에 조사되는 통로인 어퍼처(35)를 구비한 진공챔버(30)와 상기 중간 집속렌즈와 대물렌즈 사이에 구비되며, 하전입자 빔의 조사 방향을 제어하여 바꾸어 주는 편향기(40) 및 진공챔버 외부에 위치하는 시료(55)를 지지하고 이동할 수 있는 시료 스테이지(50)를 포함할 수 있다.  1 shows an apparatus for forming a charged particle beam probe according to the prior art. In more detail, the apparatus for forming a charged particle beam probe may be a charged particle source 10 in a vacuum chamber, an intermediate focusing lens 22 provided on the charged particle source side in the vacuum chamber, and a final focusing lens provided on the sample side. A vacuum chamber 30 having a focusing lens group 20 including an objective lens 24, an aperture 35 which is a passage through which the charged particle beam emitted from the charged particle source is irradiated onto the sample through the objective lens; A sample stage 50 provided between the intermediate focusing lens and the objective lens and capable of supporting and moving the deflector 40 for controlling and changing the irradiation direction of the charged particle beam and the sample 55 located outside the vacuum chamber. It may include.
여기서, 상기 도 1에서의 하전입자빔 프로브의 형성 장치는 진공챔버안의 하전입자소스에서 방출되는 하전입자빔을 복수의 집속렌즈군로 집속시켜 시료상에 집속되는 빔 스폿, 즉 프로브를 형성하되, 하나 또는 복수의 편향기를 이용하여 빔 궤도를 조절하여 상기 프로브의 위치를 이동시키는 방식으로 시료위에 빔을 주사시켜 시료의 형상을 관찰하거나 형상을 가공한다. 이때, 상기 하전입자빔은 공기분자와 충돌하여 산란될 수 있기 때문에, 상기 하전입자 소스와, 집속렌즈군과 어퍼처 사이의 빔 주사영역을 포함하는 진공챔버내 공간은 진공펌프를 사용하여 고진공 환경으로 유지하도록 배기하여야 한다. Here, the apparatus for forming a charged particle beam probe in FIG. 1 focuses a charged particle beam emitted from a charged particle source in a vacuum chamber into a plurality of focusing lens groups to form a beam spot that is focused on a sample, that is, a probe. One or more deflectors are used to adjust the beam trajectory to move the position of the probe so that the beam is scanned on the sample to observe the shape of the sample or to process the shape. In this case, since the charged particle beam may collide with air molecules and be scattered, a space in the vacuum chamber including the charged particle source and the beam scanning region between the focusing lens group and the aperture may be used in a high vacuum environment using a vacuum pump. Exhaust is to be maintained.
이때 상기 하전입자 소스와, 집속렌즈군을 포함하는 진공챔버내 압력을 고진공으로 유지하기 위해서 통상적으로 10-4 mbar 이하, 바람직하게는10-5 mbar 이하의 압력을 갖도록 진공펌프를 구비할 수 있다. In this case, in order to maintain the pressure in the vacuum chamber including the charged particle source and the focusing lens group at a high vacuum, a vacuum pump may be generally provided to have a pressure of 10 −4 mbar or less, preferably 10 −5 mbar or less. .
이때 하전입자 소스에서 방출되는 하전입자빔은 도 1에서 점선으로 표시되는 광축을 중심으로 집속렌즈군으로부터 유도되는 회전 대칭하는 전기장 또는 자기장에 의해 집속된다. 이때, 하전입자빔의 경우 광학계와는 달리 아닌 전극에 의해 형성되는 전기장 또는 전기코일에 의해 형성되는 자기장이 집속렌즈군의 역할을 한다. At this time, the charged particle beam emitted from the charged particle source is focused by a rotationally symmetric electric or magnetic field induced from the focusing lens group about the optical axis indicated by a dotted line in FIG. 1. In this case, in the case of the charged particle beam, the magnetic field formed by the electric field or the electric coil formed by the electrode, unlike the optical system, serves as the focusing lens group.
여기서 상기 집속렌즈군에 의해 집속되어 시료의 표면에 형성되는 빔 스폿인 상기 프로브의 크기는 시료 형상 관찰시 분해능을, 시료 가공시 그 정밀도를 결정한다. 일반적으로 프로브의 크기가 작아질수록 분해능과 정밀도는 향상된다. Here, the size of the probe, which is a beam spot focused by the focusing lens group and formed on the surface of the sample, determines the resolution when observing the sample shape and the precision when the sample is processed. In general, the smaller the probe, the better the resolution and precision.
한편, 전자빔 렌즈는 수차를 가지고 있으며, 상기 수차에 의해 프로브의 사이즈가 결정되고, 상기 수차가 커지면 프로브 사이즈가 커져서 관찰 분해능과 가공 정밀도가 저하된다. On the other hand, the electron beam lens has an aberration, and the size of the probe is determined by the aberration, and as the aberration increases, the probe size becomes large, resulting in a decrease in observation resolution and processing accuracy.
또한, 상기 하전입자빔의 궤도가 대물렌즈의 중심에서 벗어나면 수차가 급속히 증가하여 스폿사이즈가 커지게 된다. 따라서, 이를 방지하기 위해 일반적으로 대물렌즈 상부에 편향기를 구비할 수 있다. 도 2 및 도 3은 상기 편향기를 구비한 하전입자빔 프로브 형성 시스템을 도시한 것으로, 도 2에서는 저진공 환경에서의 시료에 사용되는 하전입자빔 프로브 형성 장치를 도시하였고, 도 3에서는 대기압하에 놓인 시료에 사용되는 하전입자빔 프로브 형성 장치를 도시하였다. 상기 도 2 또는 도 3에서는 빔을 시료위에 주사시킬 때 수차를 줄이기 위해 대물렌즈와 중간 집속렌즈의 사이에 상-하단으로 편향기를 구성하여 빔의 궤도가 렌즈의 중심을 통과하도록 빔 궤도를 제어하고 있다.In addition, when the trajectory of the charged particle beam is out of the center of the objective lens, the aberration rapidly increases to increase the spot size. Accordingly, in order to prevent this, a deflector may be generally provided on the objective lens. 2 and 3 show a charged particle beam probe forming system having the deflector. FIG. 2 shows a charged particle beam probe forming apparatus used for a sample in a low vacuum environment, and in FIG. The charged particle beam probe forming apparatus used for the sample is shown. 2 or 3, the beam trajectory is controlled so that the trajectory of the beam passes through the center of the lens by configuring a deflector between the objective lens and the intermediate focusing lens in order to reduce aberration when the beam is scanned on the sample. have.
일반적으로 도 2에서와 같이 저진공 환경에서 상기 시료상에 하전입자빔 프로브를 형성하는 경우, 상기 시료를 포함하는 시료실내 영역의 압력을 1x10-2 mbar 이상의 저진공 상태를 유지할 수 있고, 상기 시료실내 영역의 저진공을 유지하기 위해 별도의 진공펌프를 두어, 상기 하전입자 소스 및 집속렌즈군을 포함하는 고진공 영역의 진공챔버와는 압력차이를 유지할 수 있도록 한다. 이 경우에 상기 어퍼처는 상기 진공챔버내 개구부 형태로 개방되도록 형성될 수 있고, 상기 어퍼처의 지름 또는 표면적의 크기, 각각의 진공펌프의 용량 등에 따라 상기 시료영역과 하전입자 소스를 포함하는 진공챔버의 내부영역 사이의 압력차이가 조절될 수 있다. In general, in the case of forming a charged particle beam probe on the sample in a low vacuum environment, as shown in FIG. 2, the pressure in the sample chamber region including the sample may be maintained at a low vacuum of 1 × 10 −2 mbar or more. In order to maintain the low vacuum in the indoor area, a separate vacuum pump may be provided to maintain a pressure difference from the vacuum chamber of the high vacuum area including the charged particle source and the focusing lens group. In this case, the aperture may be formed to open in the form of an opening in the vacuum chamber, and includes a vacuum including the sample region and the charged particle source according to the diameter or surface area of the aperture, the capacity of each vacuum pump, and the like. The pressure difference between the inner regions of the chamber can be adjusted.
또한 도 3에서와 같이, 생물 시료 등의 관찰이나 가공을 수행하게 하기 위해서는 시료를 포함하는 시료실내 영역을 진공챔버를 사용하지 않고 대기압하에서 시료를 놓게 된다. 이 경우에 상기 어퍼처는 도 3에서와 같이 개구부가 아닌, 일정 두께를 갖는 격막을 형성하게 된다. 상기 격막은 예컨대, SiN과 같은 재료를 에칭하여 제작하거나 그라핀 같은 박막재료 자체를 사용할 수 있고, 두께는 1 내지 2000 nm, 바람직하게는 2 내지 500 nm의 범위를 가질 수 있다. In addition, as shown in FIG. 3, in order to perform observation or processing of a biological sample, the sample is placed under atmospheric pressure in a sample chamber region including the sample without using a vacuum chamber. In this case, the aperture forms a diaphragm having a predetermined thickness, not an opening, as shown in FIG. 3. The diaphragm may be manufactured by, for example, etching a material such as SiN or using a thin film material such as graphene, and may have a thickness in a range of 1 to 2000 nm, preferably 2 to 500 nm.
한편, 상기 어퍼처의 크기와 어퍼처와 대물렌즈사이의 거리에 의해 시료상에 형성되는 프로브의 최대 형성영역이 결정될 수 있다. Meanwhile, the maximum formation area of the probe formed on the sample may be determined by the size of the aperture and the distance between the aperture and the objective lens.
즉, 상기 어퍼처의 크기가 크거나 또는 어퍼처와 대물렌즈사이의 거리가 짧은 경우에는 상기 편향기를 이용하여 시료를 이동시키지 않고 고정된 상태에서 프로브를 형성할 수 있는 영역인 주사 범위를 넓게 가져갈 수 있다. That is, when the aperture size is large or the distance between the aperture and the objective lens is short, the scanning range, which is a region in which the probe can be formed in a fixed state without moving the sample using the deflector, will be widened. Can be.
일반적으로, 상기 시료를 고정하고 집속렌즈군 및 편향기 등의 제어를 통해 시료를 관찰하거나 가공하는 것이, 집속렌즈군 및 편향기 등의 제어조건을 고정하고 시료를 움직이는 것보다 관찰영역의 확대 및 축소에 있어 사용자에게 편리함을 주며, 또한 특정영역을 신속하고도 용이하게 찾을 수 있는 장점이 있다 In general, fixing the sample and observing or processing the sample through the control of the focusing lens group and the deflector, etc., enlarges the viewing area rather than moving the sample while fixing the control conditions of the focusing lens group and the deflector. It is convenient for the user in reducing, and also has the advantage of finding a specific area quickly and easily.
그러나, 상기 어퍼처의 크기가 커지는 경우에는 시료를 포함하는 영역과 하전입자 소스를 포함하는 진공챔버의 내부영역 사이의 압력차이를 유지하기 어려워 상기 하전입자빔이 공기분자와 충돌하여 산란될 수 있고, 심지어 시스템에 무리한 영향을 줄 수 있는 한계가 있다.However, when the size of the aperture is increased, it is difficult to maintain a pressure difference between the region including the sample and the inner region of the vacuum chamber including the charged particle source, so that the charged particle beam may scatter and collide with the air molecules. However, there is a limit that can have an unreasonable effect on the system.
이와 같은 하전입자 빔 프로브 형성 장치에 관한 종래 기술로서, 유럽특허공개공보 EP 0786145 B1에서는 시료가 시료실의 기체 환경 안에 수용되고 있는 경우에서도 우수한 공간분해능을 주는 환경 주사전자현미경(E-SEM)에 관해 기재되어 있고, 또한, J. Vac. Sci. Technol. B 9, 1557 (1991)에서는 실리콘 나이트라이드 박막을 이용하여 대기압하에서 시료를 관찰할 수 있는 에어 주사전자현미경(Air SEM)에 관해 기재되어 있다. As a prior art of such a charged particle beam probe forming apparatus, European Patent Publication No. EP 0786145 B1 uses an environmental scanning electron microscope (E-SEM) that provides excellent spatial resolution even when a sample is accommodated in a gaseous environment of a sample chamber. And J. Vac. Sci. Technol. B 9, 1557 (1991) describes an Air Scanning Electron Microscopy (Air SEM) in which a sample can be observed at atmospheric pressure using a silicon nitride thin film.
상기 도 2에 나타난 바와 같은 환경 주사전자현미경(E-SEM)에 응용될 수 있는 종래기술에서의 하전입자 빔 프로브 형성 장치에서는 상기 시료실내 영역의 압력을 1x10-2 mbar 이상의 저진공 상태로 유지하며, 또한 상기 하전입자 소스를 포함하는 진공챔버에서의 1x10-4 mbar 이하의 고진공상태를 유지하는데 영향이 미지치 않도록 상기 고진공 영역의 진공챔버내부와 저진공 영역의 시료실 영역을 연통하는 어퍼처의 지름을 매우 작도록( < 1mm)하여 구비해야 한다. The charged particle beam probe forming apparatus in the related art, which can be applied to an environmental scanning electron microscope (E-SEM) as shown in FIG. 2, maintains the pressure in the sample chamber region at a low vacuum of 1x10 -2 mbar or more. And an aperture communicating between the inside of the vacuum chamber of the high vacuum region and the sample chamber region of the low vacuum region such that the vacuum chamber including the charged particle source is not influenced to maintain a high vacuum of 1x10 -4 mbar or less. It should be provided with a very small diameter (<1 mm).
또한, 상기 도 3에 나타난 바와 같은 에어 주사전자현미경(Air-SEM)에 응용될 수 있는 종래기술에서의 하전입자 빔 프로브 형성 장치에서는 시료 주위의 압력을 대기압 상태로 유지하며, 또한 상기 하전입자 소스를 포함하는 진공챔버에서의 1x10-4 mbar 이하의 고진공상태를 유지하는데 영향이 미지치 않도록 어퍼처의 지름을 매우 작고( < 1mm) 일정한 두께이하( < 수백nm)를 갖는 박막을 구비해야 한다.In addition, the charged particle beam probe forming apparatus in the prior art that can be applied to the air scanning electron microscope (Air-SEM) as shown in FIG. 3 maintains the pressure around the sample at atmospheric pressure, and also the charged particle source It should be provided with a thin film having a very small diameter (<1mm) and a constant thickness (<hundreds of nm) so as not to affect the high vacuum state of 1x10 -4 mbar or less in a vacuum chamber including a.
그러나, 상기 선행기술을 포함하는 종래기술들에서는 최종집속렌즈인 대물렌즈에서의 수차를 줄이기 위해 상기 도 1 내지 3에서 도시된 바와 같이 하전입자빔 궤도가 반드시 대물렌즈의 중심을 지나도록 하전입자빔 궤도를 편향기를 통해 제어해야 하며, 상기 하전입자빔이 대물렌즈의 중심을 지나면서도, 도 2 및 도 3에서의 애퍼쳐를 지나기 위해서는 결국 주사범위를 좁혀야 되며, 이는 주사전자현미경의 경우 시료를 이동하지 않고 관측할 수 있는 시야가 좁아지며, 시료 가공장치의 경우에는 시료를 이동하지 않고 가공가능한 영역이 좁아지는 결과를 야기 시키는 문제점을 가지게 된다.However, in the prior arts including the prior art, the charged particle beam trajectory is such that the charged particle beam trajectory necessarily passes through the center of the objective lens in order to reduce aberration in the objective lens which is the final focusing lens. The trajectory must be controlled via a deflector, and while the charged particle beam passes through the center of the objective lens and passes through the aperture in FIGS. 2 and 3, the scanning range must be narrowed. The field of view that can be observed without moving is narrowed, and in the case of a sample processing device, there is a problem of causing a result that the processable area is narrowed without moving the sample.
따라서, 시료를 이동하지 않고 관측할 수 있는 넓은 시야를 확보하며, 또한 시료를 이동하지 않고 가공가능한 넓은 영역을 가질 수 있는 하전입자 빔 프로브 형성 장치의 개발에 대한 필요성은 지속적으로 요구되고 있다. Therefore, there is a continuing need for the development of a charged particle beam probe forming apparatus capable of securing a wide field of view that can be observed without moving a sample and having a wide area that can be processed without moving a sample.
따라서 상기 문제점을 해결하기 위하여 본 발명은 시료를 이동하지 않고도 넓은 시야를 확보하여 관측할 수 있는 관찰 장치에 응용될 수 있는 하전입자 빔 하전입자 빔 프로브 형성 장치를 제공하는 것을 본 발명의 목적으로 한다. Accordingly, an object of the present invention is to provide a charged particle beam charged particle beam probe forming apparatus that can be applied to an observation device that can observe a wide field of view without moving a sample in order to solve the above problems. .
또한, 본 발명은 시료를 이동하지 않고 넓은 영역의 가공범위를 확보할 수 있는 하전입자 빔 프로브 형성 장치를 제공하는 것을 본 발명의 또 다른 목적으로 한다. In addition, another object of the present invention is to provide a charged particle beam probe forming apparatus that can secure a wide processing range without moving a sample.
또한 본 발명은 상기 하전입자 빔 프로브 형성 장치를 포함하는 주사 전자 현미경, 시료 가공장치 또는 집속 이온 빔 장치를 제공할 수 있다.In another aspect, the present invention can provide a scanning electron microscope, a sample processing device or a focused ion beam device including the charged particle beam probe forming apparatus.
또한 본 발명은 상기 하전입자 빔 프로브 형성 장치를 이용하여 시료를 이동하지 않고도 넓은 시야 또는 넓은 가공영역을 확보할 수 있는 시료의 관찰방법 또는 가공방법을 제공할 수 있다. In addition, the present invention can provide a method for observing or processing a sample that can secure a wide field of view or a wide processing area without moving the sample using the charged particle beam probe forming apparatus.
본 발명은 하전입자 빔을 방출하는 하전입자 소스, 상기 하전입자 소스쪽에 구비되며, 전기장 또는 자기장에 의해 상기 하전입자 빔을 집속하여 주는 하나이상의 중간 집속렌즈, 및 최종 집속렌즈로서 시료쪽에 구비되며, 시료위에 집속되는 빔 스폿인 하전입자 빔 프로브를 형성시키는 대물렌즈를 포함하는 집속렌즈군, 상기 하전입자 소스 및 집속렌즈군을 내부에 구비하며, 상기 하전입자 소스로부터 방출된 하전입자 빔이 대물렌즈를 거쳐 시료에 조사되는 통로인 어퍼처를 구비하는 진공챔버, 상기 하전입자 빔의 조사 방향을 제어하여 바꾸어 주는 하나 이상의 편향기, 및 관찰 또는 가공하려는 시료를 지지하며, 상기 시료를 이동할 수 있는 시료 스테이지;를 포함하는 하전입자 빔 프로브 형성 장치로서, 상기 하전입자 빔 프로브 형성 장치는 진공챔버 내부의 제1 영역과, 상기 제1 영역보다 상대적으로 높은 압력을 가지며 상기 시료를 포함하는 제2 영역으로 구분되고, 상기 편향기는 대물렌즈와 시료 사이에 위치하는 것을 특징으로 하는 하전입자 빔 프로브 형성 장치를 제공한다.The present invention is provided on the charged particle source for emitting a charged particle beam, the charged particle source side, at least one intermediate focusing lens for focusing the charged particle beam by an electric or magnetic field, and a final focusing lens on the sample side, A focusing lens group including an objective lens for forming a charged particle beam probe that is a beam spot focused on a sample, the charged particle source and a focused lens group are provided therein, and the charged particle beam emitted from the charged particle source is an objective lens. A vacuum chamber having an aperture, which is a passage irradiated to the sample through, one or more deflectors for controlling and changing the irradiation direction of the charged particle beam, and a sample capable of supporting the sample to be observed or processed and moving the sample. A charged particle beam probe forming apparatus comprising a stage, wherein the charged particle beam probe forming apparatus comprises a true Charged particle beam probe, characterized in that the first region in the chamber and the second region having a relatively higher pressure than the first region and containing the sample, wherein the deflector is located between the objective lens and the sample Provided is a forming apparatus.
또한 본 발명은 상기 하전입자 빔 프로브 형성 장치를 포함하는 주사 전자 현미경, 집속 이온 빔(FIB) 장치, 또는 시료 가공 장치를 제공한다.The present invention also provides a scanning electron microscope, a focused ion beam (FIB) device, or a sample processing device including the charged particle beam probe forming device.
또한 본 발명은 하전입자 소스; 및 상기 하전입자 소스쪽에 구비되며, 전기장 또는 자기장에 의해 상기 하전입자 빔을 집속하여 주는 하나이상의 중간 집속렌즈와 최종 집속렌즈로서 시료쪽에 구비되며, 시료위에 집속되는 빔 스폿인 하전입자 빔 프로브를 형성시키는 대물렌즈를 포함하는 집속렌즈군;을 내부에 구비하며, 상기 하전입자 소스로부터 방출된 하전입자 빔이 상기 대물렌즈를 거쳐 시료에 조사되는 통로인 어퍼처를 구비하는 진공챔버;의 내부영역인 제1 영역의 압력이 상기 시료를 포함하는 제2 영역의 압력보다 상대적으로 낮은 압력을 가지도록 각각의 영역의 압력을 설정하여 유지하는 단계, 상기 하전입자 소스로부터 하전입자 빔을 방출시키는 단계, 상기 방출된 하전입자 빔을 집속렌즈군에 의해 집속시켜 어퍼처를 통과시키는 단계, 상기 대물렌즈와 시료 사이에 위치하며, 하전입자 빔의 조사 방향을 바꾸어 주는 하나 이상의 편향기를 제어하여 하전입자 빔의 조사 방향을 바꾸는 단계, 및 조사 방향이 바뀐 하전입자 빔이 상기 시료 스테이지 상의 시료에 조사되는 단계를 포함하는, 하전입자 빔을 이용하여 시료를 관찰하거나 또는 가공하는 방법을 제공한다. The present invention also provides a charged particle source; And a charged particle beam probe provided at the charged particle source side, the at least one intermediate focusing lens for focusing the charged particle beam by an electric field or a magnetic field, and provided at the sample side as a final focusing lens, and a beam spot focused on the sample. A vacuum chamber having an aperture therein, wherein the focused lens group includes an objective lens configured to provide an aperture through which the charged particle beam emitted from the charged particle source is irradiated onto the sample through the objective lens. Setting and maintaining a pressure in each region such that the pressure in the first region has a pressure that is relatively lower than the pressure in the second region comprising the sample, emitting a charged particle beam from the charged particle source, the Focusing the emitted charged particle beam by the focusing lens group to pass the aperture, between the objective lens and the sample Positioned to control one or more deflectors to change the irradiation direction of the charged particle beam to change the irradiation direction of the charged particle beam, and the charged particle beam of which the irradiation direction is changed is irradiated onto the sample on the sample stage, A method of observing or processing a sample using a charged particle beam is provided.
본 발명에 의한 하전입자 빔 프로브 형성 장치는 시료를 이동하지 않고도 넓은 시야를 확보하여 관측하거나 또는 시료를 가공할 수 있는, 주사전자현미경, 집속 이온 빔(FIB) 장치, 또는 하전입자 빔을 이용하여 시료를 가공하는 장치에 응용될 수 있는 하전입자 빔 하전입자 빔 프로브 형성 장치를 제공할 수 있다.The charged particle beam probe forming apparatus according to the present invention uses a scanning electron microscope, a focused ion beam (FIB) device, or a charged particle beam, which can observe and process a wide field of view without moving a sample. A charged particle beam charged particle beam probe forming apparatus that can be applied to an apparatus for processing a sample can be provided.
또한, 본 발명의 하전입자 빔 하전입자 빔 프로브 형성 장치는 대물렌즈의 중심을 통과한 후에 시료에 조사되는 하전입자 빔이 하나의 편향기에 의해 빔 궤도의 방향을 제어할 수 있어, 종래기술에서와 같이 대물렌즈와 중간 집속렌즈 사이에 복수의 편향기를 구비할 필요가 없이 간단하게 시료의 조사영역을 제어할 수 있는 장점이 있다.In addition, the charged particle beam charged particle beam probe forming apparatus of the present invention can control the direction of the beam trajectory by a single deflector of the charged particle beam irradiated to the sample after passing through the center of the objective lens, as in the prior art Likewise, there is an advantage in that the irradiation area of the sample can be easily controlled without the need for providing a plurality of deflectors between the objective lens and the intermediate focusing lens.
또한, 본 발명의 하전입자 빔 하전입자 빔 프로브 형성 장치는 대물렌즈와 시료 사이에 편향기를 구비하고, 상기 편향기와 어퍼처와의 거리를 제어함으로써, 시료의 관찰 또는 가공영역을 넓히거나 좁힐 수 있는 장점이 있다. In addition, the charged particle beam charged particle beam probe forming apparatus of the present invention includes a deflector between the objective lens and the sample, and by controlling the distance between the deflector and the aperture, it is possible to widen or narrow the observation or processing area of the sample. There is an advantage.
또한 본 발명은 상기 하전입자 빔 프로브 형성 장치를 이용하여 시료를 관찰하거나 또는 가공함에 있어, 시료를 이동하지 않고도 넓은 시야 또는 넓은 가공영역을 확보할 수 있어, 소비적이고, 전문적인 기술이 필요한 프로세스의 진행시간을 단축시킴과 더불어, 보다 편리하고 신속하게 시료를 관찰하거나 또는 가공할 수 있어, 사용자에게 편리함을 제공할 수 있으며, 또한 종래의기술과비교하여 하전입자 소스 등을 포함하는 하전입자 빔 프로브 형성 장치의수명단축을방지할 수 있다. In addition, the present invention can ensure a wide field of view or a wide processing area without moving the sample in the observation or processing of the sample using the charged particle beam probe forming apparatus, so that the process of the process requiring consumption and professional skills In addition to shortening the running time, it is possible to observe or process the sample more conveniently and quickly, thereby providing convenience to the user, and also charged particle beam probe including a charged particle source or the like in comparison with the prior art. It is possible to prevent shortening the life of the forming apparatus.
도 1은 종래 기술에 따른 하전입자빔 프로브 형성 장치를 도시한 그림이다. 1 is a view showing a charged particle beam probe forming apparatus according to the prior art.
도 2는 종래 기술에 따른 하전입자빔 프로브 형성 장치로서, 상기 시료가 저진공의 환경에서 상기 하전입자빔 프로브가 형성되는 장치를 도시한 그림이다. 2 is a view illustrating a device for forming a charged particle beam probe according to the related art, in which the charged particle beam probe is formed in a low vacuum environment.
도 3은 종래 기술에 따른 하전입자빔 프로브 형성 장치로서, 상기 시료가 대기압의 환경에서 상기 하전입자빔 프로브가 형성되는 장치를 도시한 그림이다. 3 is an apparatus for forming a charged particle beam probe according to the prior art, in which the sample is a device in which the charged particle beam probe is formed in an environment of atmospheric pressure.
도 4는 본 발명의 일 실시예에 따른, 시료가 저진공의 환경에서 상기 하전입자빔 프로브가 형성되는 장치를 도시한 그림이다. 4 is a diagram illustrating a device in which the charged particle beam probe is formed in a low vacuum environment according to an embodiment of the present invention.
도 5는 본 발명의 또 다른 일 실시예에 따른, 시료가 대기압의 환경에서 상기 하전입자빔 프로브가 형성되는 장치를 도시한 그림이다.FIG. 5 is a diagram illustrating an apparatus in which the charged particle beam probe is formed in an environment of a sample according to another embodiment of the present invention.
도 6은 본 발명에서의 하전입자빔 프로브 형성장치의 렌즈부분과 편향기 부분의 상세 이미지를 도시한 그림이다. 6 is a view showing a detailed image of the lens portion and the deflector portion of the charged particle beam probe forming apparatus according to the present invention.
도 7a)는 종래기술에 따른 환경주사현미경에서의 이미지 범위를 도시한 그림이고, 도 7b)는 본 발명의 일실시예에 따라 얻어지는 환경주사현미경에서의 이미지 범위를 도시한 그림이다. Figure 7a) is a view showing the image range in the environmental scanning microscope according to the prior art, Figure 7b) is a view showing the image range in the environmental scanning microscope obtained according to an embodiment of the present invention.
도 4 및 도 5는 본 발명의 일 실시예에 따른 입자 빔의 방출 이미지 획득 장치를 도시한 그림이다. 4 and 5 are diagrams showing the emission image obtaining apparatus of the particle beam according to an embodiment of the present invention.
이는 하전입자 빔을 방출하는 하전입자 소스(10), 상기 하전입자 소스쪽에 구비되며, 전기장 또는 자기장에 의해 상기 하전입자 빔을 집속하여 주는 하나이상의 중간 집속렌즈(22), 및 최종 집속렌즈로서 시료쪽에 구비되며, 시료위에 집속되는 빔 스폿인 하전입자 빔 프로브를 형성시키는 대물렌즈(24)를 포함하는 집속렌즈군(20), 상기 하전입자 소스 및 집속렌즈군을 내부에 구비하며, 상기 하전입자 소스로부터 방출된 하전입자 빔이 대물렌즈를 거쳐 시료에 조사되는 통로인 어퍼처(35)를 구비하는 진공챔버(30), 상기 하전입자 빔의 조사 방향을 제어하여 바꾸어 주는 하나 이상의 편향기(40), 및 관찰 또는 가공하려는 시료를 지지하며, 상기 시료를 이동할 수 있는 시료 스테이지(50)를 포함하는 하전입자 빔 프로브 형성 장치를 포함하여 이루어진다.It is provided with a charged particle source 10 for emitting a charged particle beam, at least one intermediate focusing lens 22 provided at the charged particle source and focusing the charged particle beam by an electric or magnetic field, and a sample as a final focusing lens. And a focusing lens group 20 including the objective lens 24 for forming a charged particle beam probe that is a beam spot focused on a sample, the charged particle source and the focusing lens group provided therein, and the charged particles A vacuum chamber 30 having an aperture 35 which is a passage through which the charged particle beam emitted from the source is irradiated to the sample through the objective lens, and at least one deflector 40 which controls and changes the irradiation direction of the charged particle beam. And a charged particle beam probe forming apparatus including a sample stage 50 capable of supporting the sample to be observed or processed and moving the sample.
여기서, 상기 하전입자 소스, 중간 집속렌즈(22) 및 대물렌즈(24)를 포함하는 집속렌즈군(20), 상기 어퍼처를 포함하는 진공챔버(30) 및 시료스테이지(50)는 도 2 및 도 3에서 기재된 바와 같은, 종래기술에서 사용되는 구성요소를 그대로 사용할 수 있다. Here, the focusing lens group 20 including the charged particle source, the intermediate focusing lens 22 and the objective lens 24, the vacuum chamber 30 including the aperture, and the sample stage 50 are shown in FIGS. As described in FIG. 3, the components used in the prior art may be used as they are.
이를 보다 상세히 설명하면, 본 발명에서 사용되는 하전입자빔은 하전입자 소스로부터 방출되어 상기 집속렌즈군(20)과 편향기(40)에 의해 입자빔의 조사방향이 제어될 수 있는 형태이면 그 종류에 제한되지 않고 사용할 수 있다. 일 실시예로서 상기 하전입자빔은 전자빔 또는 이온빔일 수 있다. In more detail, if the charged particle beam used in the present invention is emitted from the charged particle source and the irradiation direction of the particle beam can be controlled by the focusing lens group 20 and the deflector 40, its kind Can be used without limitation. In one embodiment, the charged particle beam may be an electron beam or an ion beam.
상기 하전입자빔으로서 이온빔이 사용되는 경우에 그 종류로서는 헬륨 이온빔, 네온 이온빔, 수소 이온빔 등이 사용가능하나, 이에 제한되지 않는다. 또한 집속 이온 빔(FIB) 장치의 용도로서 사용되는 이온빔으로서 Ga, In, Ar, Ne 등의 이온빔이 사용가능하다. When an ion beam is used as the charged particle beam, helium ion beams, neon ion beams, hydrogen ion beams, and the like may be used, but are not limited thereto. In addition, ion beams such as Ga, In, Ar, and Ne can be used as the ion beams used as the use of the focused ion beam (FIB) device.
또한 본 발명에서 사용되는 하전입자빔 소스는 상기 전자빔 또는 이온빔과 같은 하전입자빔을 생성할 수 있는 형태로서, 상기 하전입자빔을 방출할 수 있는, 텅스텐 필라멘트 등의 열전자 방출원, 금속팁(미도시)과 상기 금속팁로부터 방출하는 입자빔을 추출하여 집속렌즈군(20)으로 유도하는 익스트랙션(Extraction) 렌즈(미도시)를 포함할 수 있다. In addition, the charged particle beam source used in the present invention is a form capable of generating a charged particle beam, such as the electron beam or ion beam, which can emit the charged particle beam, hot electron emission source such as tungsten filament, metal tip And an extraction lens (not shown) for extracting the particle beam emitted from the metal tip to guide the focusing lens group 20.
또한 상기 입자를 방출할 수 있는 금속팁(11)은 길이가 짧고 뾰족하며 대칭적인 것이 바람직하다. In addition, the metal tip 11 capable of emitting the particles is preferably short, sharp and symmetrical in length.
이와 같은 조건을 만족하며, 상기 입자 빔의 소스 팁의 재료는 가공이 쉽고 수명이 긴 특징을 가진 금속 팁이 바람직하기 때문에 상기 금속 팁으로서 텅스텐 팁, 몰리브덴, 이리듐, 프라티늄-이리듐 합금 등이 사용될 수 있다.Tungsten tip, molybdenum, iridium, platinum-iridium alloy, etc. may be used as the metal tip because the material of the source tip of the particle beam satisfies such a condition and the metal tip having the characteristics of easy processing and long life is preferable. Can be.
또한, 열전자 방출원으로는 융점이 높으면서도 상대적으로 전자방출이 잘되는 텅스텐, 탄탈륨, 이리듐, 이리듐-텅스텐 합금의 필라멘트와, 상기 재료 표면에 전자가 더 낮은 온도에서 방출되도록 이트륨, 바륨, 세슘 및 그 산화물을 코팅한 필라멘트가 사용될 수 있다. In addition, filaments of tungsten, tantalum, iridium, and iridium-tungsten alloys having high melting point and relatively good electron emission, and yttrium, barium, cesium and its Oxide coated filaments may be used.
한편, 상기 집속렌즈군(20)은 전기장 또는 자기장에 의해 상기 하전입자 빔을 집속하여 주는 역할을 하며, 하전입자 소스쪽에 구비되는 하나이상의 중간 집속렌즈(22) 및 최종 집속렌즈로서 시료쪽에 구비되며, 시료위에 집속되는 빔 스폿인 하전입자 빔 프로브를 형성시키는 대물렌즈(24)를 포함한다. On the other hand, the focusing lens group 20 serves to focus the charged particle beam by an electric field or a magnetic field, and is provided on the sample side as one or more intermediate focusing lenses 22 and the final focusing lens provided on the charged particle source side. And an objective lens 24 for forming a charged particle beam probe, which is a beam spot focused on a sample.
상기 집속렌즈군내 중간집속렌즈(22)와 대물렌즈를 포함하는 집속렌즈군(20)은 내부에 포함된 전극을 통해, 하전입자 소스로부터 방출된 하전입자빔을 감속 시키거나 가속시키거나 조사방향을 변경시킬 수 있고, 다양한 형태로 감겨있는 다수의 코일 형태로 존재할 수 있다. The focusing lens group 20 including the intermediate focusing lens 22 and the objective lens in the focusing lens group may slow down or accelerate or accelerate the charged particle beam emitted from the charged particle source through an electrode included therein. It can be changed and can exist in the form of multiple coils wound in various forms.
이때, 상기 하전입자빔은 수차를 감소시키기 위해 상기 대물렌즈의 중심을 통과하도록 제어될 수 있다. 즉, 주사를 시킬 때 편향기에 의해 편향되는 빔이 최종 집속렌즈인 대물렌즈의 중심을 지나도록 제어될 수 있다.In this case, the charged particle beam may be controlled to pass through the center of the objective lens to reduce aberration. That is, the beam deflected by the deflector at the time of scanning can be controlled to pass through the center of the objective lens which is the final focusing lens.
이를 구현하기 위해 본 발명에서는 종래기술과 마찬가지로 중간집속렌즈와 대물렌즈 사이에 종래기술에서 사용되는 편향기를 구비할 수 있으며, 상기 편향기에 의해 하전입자빔의 조사방향을 제어할 수 있다. In order to achieve this, the present invention may include a deflector used in the prior art between the intermediate focusing lens and the objective lens as in the prior art, and may control the irradiation direction of the charged particle beam by the deflector.
또한 본 발명에서의 하전입자 빔 프로브 형성 장치는 상기 하전입자 소스로부터 방출된 하전입자 빔이 대물렌즈를 거쳐 시료에 조사되는 통로인 어퍼처를 구비하는 진공챔버를 포함할 수 있다. In addition, the charged particle beam probe forming apparatus according to the present invention may include a vacuum chamber having an aperture that is a passage through which the charged particle beam emitted from the charged particle source is irradiated onto the sample through the objective lens.
본 발명의 하전입자 빔 프로브 형성 장치는 상기 진공챔버에 의해 둘러싸인 진공챔버 내부의 제1 영역과, 상기 시료를 포함하는 제2 영역으로 구획될 수 있고, 상기 제1영역보다 제2 영역이 상대적으로 높은 압력을 가진다. The charged particle beam probe forming apparatus of the present invention may be divided into a first region inside the vacuum chamber surrounded by the vacuum chamber and a second region including the sample, and the second region is relatively larger than the first region. Have high pressure.
상기 제1 영역은 10-4 mbar 이하의 범위를 갖는 고진공 영역일 수 있고, 바람직하게는 10-5 mbar 이하의 범위를 갖는 고진공 영역일 수 있다. The first region may be a high vacuum region having a range of 10 −4 mbar or less, and preferably a high vacuum region having a range of 10 −5 mbar or less.
이를 위해서 상기 진공챔버 내부를 상기와 같은 압력을 유지할 수 있도록 고진공용 진공펌프를 구비하는 진공 시스템을 구비할 수 있다.To this end, it may be provided with a vacuum system having a high vacuum vacuum pump to maintain the pressure inside the vacuum chamber as described above.
예시적으로, 상기 진공챔버는 진공펌프에 의해 고진공이 유지되는 진공공간을 형성한다.In exemplary embodiments, the vacuum chamber forms a vacuum space in which high vacuum is maintained by a vacuum pump.
이때 상기 진공펌프는 드라이 펌프, 확산펌프(diffusion pump), 터보 분자펌프(Turbo molecular pump), 이온펌프 (ion pump), 크라이오펌프 (cryopump), 로터리펌프 (rotary pump), 스크롤 또는 다이어프램 펌프등의 드라이 펌프 (dry pump) 로부터 선택되는 하나 이상을 포함하여 구비될 수 있다. The vacuum pump may be a dry pump, a diffusion pump, a turbo molecular pump, an ion pump, a cryopump, a rotary pump, a scroll or a diaphragm pump, or the like. It may be provided including one or more selected from a dry pump (dry pump) of.
이때, 상기 제 2영역은 시료를 포함하는 영역으로서, 일반적으로 시료가 위치하는 시료실내부의 영역에 해당될 수 있으며, 상기 시료실은 별도의 저진공용 진공펌프에 의해 감압된 영역에 해당하는 독립적으로 폐쇄된 영역이 될 수도 있고, 대기압 환경에서와 같이 외기와 동일한 압력하의 개방된 영역이 될 수도 있다. In this case, the second region is a region containing a sample, and may generally correspond to a region inside the sample chamber in which the sample is located, and the sample chamber independently corresponds to a region decompressed by a separate low vacuum vacuum pump. It may be a closed area or an open area under the same pressure as outside air, such as in an atmospheric environment.
한편, 본 발명에서 상기 제1 영역과 제2 영역의 압력차이는 100배 이상의 압력차이를 나타낼 수 있고, 바람직하게는 1000배 이상의 압력차이를 나타낼 수 있다. Meanwhile, in the present invention, the pressure difference between the first region and the second region may represent a pressure difference of 100 times or more, and preferably, a pressure difference of 1000 times or more.
또한 본 발명에서, 상기 어퍼처는 제1 영역과 제2 영역을 구분하는 경계부가 될 수 있다. 즉, 상기 어퍼처는 제1 영역인 진공챔버 내부영역과 시료를 포함하는 제2 영역 사이를 연통시키며, 단면이 원형, 다각형, 타원 또는 임의의 형태를 가지는 개구부일 수 있고, 또한 시료영역인 제2 영역의 진공도에 따라 상기 개구부의 개구부분이 얇은 두께의 격막에 의해 밀봉된 형태를 가질 수 있다. In addition, in the present invention, the aperture may be a boundary that separates the first region and the second region. That is, the aperture communicates between the vacuum chamber internal region, which is the first region, and the second region, which includes the sample, and may be an opening having a circular, polygonal, ellipse, or arbitrary shape, and the sample region. According to the degree of vacuum of the two regions, the opening portion of the opening may be sealed by a thin membrane.
상기 어퍼처의 크기는 직경 3000 um 이하일 수 있고, 바람직하게는 2000 um이하일 수 있으며, 더욱 바람직하게는 1000 um이하일 수 있다.The aperture may have a diameter of 3000 um or less, preferably 2000 um or less, and more preferably 1000 um or less.
따라서, 상기 진공챔버는 개구부를 가진 어퍼처에 의해 부분적으로 밀봉되거나 또는 격막을 포함하는 어퍼처에 의해 밀봉되어 진공챔버내 하전입자 소스로부터 방출되는 하전입자가 산란되지 않고 시료에 조사될 수 있도록 한다. Thus, the vacuum chamber is partially sealed by an aperture having an opening or by an aperture including a diaphragm so that charged particles emitted from the charged particle source in the vacuum chamber can be irradiated onto the sample without scattering. .
본 발명에서 상기 시료를 포함하는 시료실내의 압력이 10-3 mbar 이상의 압력 범위, 바람직하게는 10-2 mbar 이상의 압력 범위를 갖는 저진공인 경우에는 상기 어퍼처가 개구형태만으로 이루어지도록 서로 개방됨으로써, 시료영역인 제2영역의 대기가 상기 진공챔버내부의 제1 영역으로 자유롭게 유입될 수 있다. In the present invention, when the pressure in the sample chamber including the sample is a low vacuum having a pressure range of 10 −3 mbar or more, preferably a pressure range of 10 −2 mbar or more, the apertures are opened to each other so as to have only an opening shape, The atmosphere of the second region, which is the sample region, may freely flow into the first region inside the vacuum chamber.
상기 어퍼처가 개구형태로 개방된 경우에, 상기 제1 영역과 제2 영역에서의 압력은 압력의 측정지점에 따라 달라질 수 있는 바, 상기 각각의 영역의 압력측정의 기준이 되는 위치로서, 제1 영역은 하전입자 소스원 부근이 될 수 있고, 제2 영역은 시료스테이지 상의 시료부근이 될 수 있다. When the aperture is opened in an open shape, the pressure in the first region and the second region may vary depending on the measurement point of the pressure, and is a position that is a reference point for the pressure measurement of each region. The region may be near the charged particle source source and the second region may be near the sample on the sample stage.
한편, 상기 시료를 포함하는 제2 영역내의 압력이 대기압 환경인 경우에는 상기 어퍼처가 개구형태만으로 이루어지는 경우에는 상기 하전입자 소스를 포함하는 진공챔버내 제1 영역의 압력조절이 용이하지 않을 수 있고, 또한 하전입자 빔의 방출이 대기압내 존재하는 공기 입자들에 의해 산란되거나 방해받을 수 있어, 어퍼처가 얇은 두께의 격막에 의해 밀봉된 개구형태일 수 있다. On the other hand, when the pressure in the second region including the sample is an atmospheric pressure environment, when the aperture is formed only in the opening form, it may not be easy to control the pressure in the first region in the vacuum chamber including the charged particle source, In addition, the emission of the charged particle beam may be scattered or disturbed by air particles present in atmospheric pressure, such that the aperture may be in the form of an opening sealed by a thin septum.
따라서, 상기와 같이 어퍼처가 격막에 의해 밀봉되는 경우에 상기 제1 영역은 제2 영역으로부터 격리될 수 있다. Thus, when the aperture is sealed by the diaphragm as described above, the first region can be isolated from the second region.
이때 상기 격막의 두께는 10 nm 내지 3000 nm 일 수 있고, 바람직하게는 20 nm 내지 2000 nm 일 수 있고, 더욱 바람직하게는 20 nm 내지 500 nm 일 수 있다. In this case, the thickness of the diaphragm may be 10 nm to 3000 nm, preferably 20 nm to 2000 nm, and more preferably 20 nm to 500 nm.
또한 상기 격막 재료로서는 질화 실리콘(SiN), 그래핀 등에서 선택되는 어느 하나 또는 이들의 복합층일 수 있다. The diaphragm material may be any one selected from silicon nitride (SiN), graphene, or a composite layer thereof.
본 발명에서 상기 시료는 대물렌즈 아래의 시료실에 위치하게 된다. 이때 상기 시료실내 압력은 앞서 살펴본 바와 같이, 대기압 또는 저진공 압력하의 환경으로 유지되며, 상기 시료의 표면을 하전입자 빔에 노출될 수 있게 할 수 있다. In the present invention, the sample is located in the sample chamber under the objective lens. In this case, as described above, the sample chamber pressure may be maintained in an environment under atmospheric pressure or low vacuum pressure, and the surface of the sample may be exposed to the charged particle beam.
또한 상기 시료실은 시료가 놓여질 시료스테이지를 구비할 수 있으며, 상기 시료스테이지는 상기 어퍼처의 0.1 내지 100 mm 아래에서, 바람직하게는 1 내지 30 mm 아래에서 시료를 지지하며, 지면에 평행인 x방향 및 y방향과 지면에 수직방향인 z방향으로 위치이동이 가능하도록 구비될 수 있다. In addition, the sample chamber may include a sample stage on which the sample is to be placed, and the sample stage supports the sample below 0.1 to 100 mm, preferably 1 to 30 mm, of the aperture and is parallel to the ground. And it may be provided so that the position movement in the z-direction perpendicular to the y-direction and the ground.
또한, 본 발명에서 상기 편향기는 하전 입자 빔을 편향시키는데 사용되는 자기장을 생성하는 적어도 하나의 코일 장치를 포함할 수 있다. In addition, the deflector in the present invention may include at least one coil device for generating a magnetic field used to deflect the charged particle beam.
상기 편향기는 종래 기술에 있어, 통상적으로 중간 집속렌즈(22)와 대물렌즈(24) 사이에 구비되는 것이 일반적이다. 따라서 도 2 및 도 3에서 도시된 바와 같이, 중간 집속렌즈(22)와 대물렌즈(24)사이에 상단(41) 및 하단(42)으로 편향기를 복수로 구비하여 하전입자 빔의 궤도가 대물렌즈의 중심을 통과하도록 빔 궤도가 설정될 수 있게 제어된다. In the prior art, the deflector is generally provided between the intermediate focusing lens 22 and the objective lens 24. Therefore, as shown in FIGS. 2 and 3, a plurality of deflectors are provided between the middle focusing lens 22 and the objective lens 24 at the upper end 41 and the lower end 42, so that the trajectory of the charged particle beam is controlled. The beam trajectory is controlled to be set to pass through the center of the.
이때, 상기 어퍼처의 크기에 따라, 광축을 기준으로 시료에 조사되는 하전입자빔의 최대 각도가 제한될 수 있다. 예컨대, 도 2를 참조하면, 상기 시료에 조사되는 하전입자빔은 어퍼처의 최외각부분에 해당하는 부분보다 안쪽의 개구부를 통과하도록 상기 최대각도보다 작은 각도를 갖는 공간범위내로 제한되어 시료에 조사될 수 있고, 이보다 각도가 더 벌어져서 조사되는 경우는 경우에는 어퍼처를 통과할 수 없게된다. In this case, the maximum angle of the charged particle beam irradiated to the sample based on the optical axis may be limited according to the size of the aperture. For example, referring to FIG. 2, the charged particle beam irradiated onto the sample is limited within a spatial range having an angle smaller than the maximum angle so as to pass through the inner opening than the portion corresponding to the outermost portion of the aperture to irradiate the sample. If it is irradiated with an angle wider than this, it cannot pass through an aperture.
그러나 본 발명에서는 상기 편향기가 대물렌즈와 시료 사이에 위치하도록 구비됨으로써, 상기 하전입자빔이 조사되는 영역을 자유롭게 확장가능한 것을 특징으로 한다. However, in the present invention, the deflector is provided to be positioned between the objective lens and the sample, so that the area irradiated with the charged particle beam is freely expandable.
즉, 본 발명의 하전입자 빔 하전입자 빔 프로브 형성 장치는 대물렌즈와 시료 사이에 편향기를 구비하고, 상기 편향기와 어퍼처와의 거리를 제어함으로써, 시료의 관찰 또는 가공영역을 넓히거나 좁힐 수 있는 장점이 있다. That is, the charged particle beam charged particle beam probe forming apparatus of the present invention includes a deflector between the objective lens and the sample, and by controlling the distance between the deflector and the aperture, it is possible to widen or narrow the observation or processing area of the sample. There is an advantage.
상기 편향기는 상기 광축방향인 Z방향에 대하여 높이 조절이 가능하게 구비될 수 있다. The deflector may be provided to enable height adjustment with respect to the Z direction in the optical axis direction.
상기와 같이 편향기를 대물렌즈와 시료 사이의 위치에 구비하게 되는 경우에 하전입자빔은 대물렌즈의 중심을 통과한 후 상기 편향기에 의해 빔 궤도의 방향이 제어되어 원하는 조사방향으로 종래기술에 의해 제어되는 영역보다 훨씬 넓은 영역의 빔 조사를 수행할 수 있다. When the deflector is provided at the position between the objective lens and the specimen as described above, after the charged particle beam passes through the center of the objective lens, the direction of the beam trajectory is controlled by the deflector to be controlled by the prior art in the desired irradiation direction. It is possible to perform beam irradiation of a much wider area than the area to be.
예컨대, 상기 편향기를 대물렌즈와 시료 사이에 놓으면 편향기에 의해 빔 조사방향이 변경되는 위치에 해당하는 편향점이 상기 대물렌즈에서 시료쪽으로 가까워질수록 관찰되거나 가공될 수 있는 시료의 영역 범위는 넓어지며, 또한 빔 조사범위도 넓어지게 된다. For example, when the deflector is placed between the objective lens and the sample, the closer the deflection point corresponding to the position where the beam irradiation direction is changed by the deflector toward the sample from the objective lens, the wider the range of the sample can be observed or processed. In addition, the beam irradiation range is also widened.
즉, 도 4에서와 같이 시료 영역인 제2 영역이 저진공인 경우, 상기 대물렌즈와 시료 사이에 편향기를 놓으면 대물렌즈의 중심을 통과한 하전입자빔이 상기 편향기에 의해 진행방향이 변경됨으로써 형성되는 편향점이 대물렌즈에서 시료쪽으로 가까워질수록 편향점에서 관찰되거나 가공될 수 있는 시료의 영역범위와 조사범위가 넓어지게 되며, 도 5에서도 시료 영역인 제2 영역이 대기압인 경우, 앞서 살펴본 바와 마찬가지로 상기 대물렌즈와 시료 사이에 편향기를 놓으면 대물렌즈의 중심을 통과한 하전입자빔이 상기 편향기에 의해 진행방향이 변경됨으로써 형성되는 편향점이 대물렌즈에서 시료쪽으로 가까워질수록 편향점에서 관찰되거나 가공될 수 있는 시료의 영역범위와 조사범위가 넓어지게 된다. That is, as shown in FIG. 4, when the second region, which is the sample region, is low vacuum, when the deflector is placed between the objective lens and the sample, the charged particle beam passing through the center of the objective lens is formed by changing the traveling direction by the deflector. As the deflection point becomes closer to the sample from the objective lens, the area range and irradiation range of the sample that can be observed or processed at the deflection point become wider. In FIG. 5, when the second area, which is the sample area, is atmospheric pressure, as described above, When the deflector is placed between the objective lens and the sample, the deflection point formed by changing the traveling direction of the charged particle beam passing through the center of the objective lens may be observed or processed at the deflection point as it approaches the object lens from the objective lens. The range of the sample and the range of irradiation are widened.
이를 도 4를 통해 보다 상세히 살펴보면, 상기 도 4에서는 도 2 및 도 3에서와 달리 상기 편향기가 중간 집속렌즈와 대물렌즈 사이에 구비되지 않고, 대물렌즈와 시료사이인 어퍼처 부근에 위치하도록 구비된다. 이에 의해 상기 편항점은 어퍼처 부근에 있는 편향기의 위치와 동일한 위치에 형성되고, 이에 의해 대물렌즈의 중심을 통과한 하전입자빔은 상기 편향기에 의해 조사방향이 원하는 방향으로 변경되어 조사될 수 있다. Referring to this in more detail with reference to FIG. 4, unlike FIG. 2 and FIG. 3, the deflector is not provided between the intermediate focusing lens and the objective lens, but is provided to be positioned near the aperture between the objective lens and the sample. . As a result, the deflection point is formed at the same position as that of the deflector near the aperture, whereby the charged particle beam passing through the center of the objective lens can be irradiated with the irradiation direction being changed to the desired direction by the deflector. have.
이 경우에 상기 광축을 기준으로 하였을 때 편향기에 의해 변경될 수 있는 하전입자빔의 조사 각도는 종래기술에 따른 도 2 및 도 3에서의 편향기에 의해 조사되는 최대각도보다 훨씬 큰 각도로 시료에 조사될 수 있는 것이다. In this case, the irradiation angle of the charged particle beam, which can be changed by the deflector when the optical axis is referenced, is irradiated to the sample at an angle much larger than the maximum angle irradiated by the deflector in FIGS. 2 and 3 according to the prior art. It can be.
도 6은 본 발명에서의 하전입자빔 프로브 형성장치의 렌즈부분과 편향기 부분의 상세 이미지를 도시한 그림이다. 6 is a view showing a detailed image of the lens portion and the deflector portion of the charged particle beam probe forming apparatus according to the present invention.
이를 보다 구체적으로 살펴보면, 본 발명의 하전입자빔 프로브 형성장치는 광축(60)을 중심으로 집속렌즈군(20)내의 중간 집속렌즈(22)의 역할을 위한, 연자성 재료의 렌즈 자기회로(26)가 대물렌즈(24) 상단에 구비되어 있고, 상기 중간 집속렌즈(22)의 하부위치에 대물렌즈의 역할을 위한, 연자성 재료의 렌즈 자기회로(26)가 구비되어 있는 것을 나타내고 있다.In more detail, the charged particle beam probe forming apparatus of the present invention has a lens magnetic circuit 26 of soft magnetic material for the role of the intermediate focusing lens 22 in the focusing lens group 20 around the optical axis 60. ) Is provided on the upper end of the objective lens 24, and the lens magnetic circuit 26 of soft magnetic material is provided at the lower position of the intermediate focusing lens 22 to serve as the objective lens.
이때 상기 대물렌즈 하부의 어퍼처 부분은 도 6의 확대부로서 도시된 사각형 도형내부에 도시된 바와 같이, 소정(1 mm정도)의 폭을 갖는 어퍼처(35) 위치 하부에 편향기(40)이 구비된 것을 볼 수 있다.At this time, the aperture portion of the lower portion of the objective lens is a deflector 40 below the position of the aperture 35 having a predetermined (about 1 mm) width, as shown in the rectangular figure shown as the enlarged portion of FIG. 6. You can see that it is provided.
상기 편향기(40)는 본 발명에서 대물렌즈와 시료 사이에 위치하지만, 전술한 바와 같이 대물렌즈와 중간집속렌즈 사이에 추가적으로 구비될 수도 있다. The deflector 40 is located between the objective lens and the sample in the present invention, but may be additionally provided between the objective lens and the intermediate focusing lens as described above.
한편, 본 발명에서의 하전입자 빔 프로브 형성 장치는 도 5에서 도시된 바와 같이, 시료 영역인 제2 영역이 대기압인 경우에서도 마찬가지로 적용되어 동일한 효과를 나타낼 수 있다. On the other hand, the charged particle beam probe forming apparatus according to the present invention can be similarly applied to the case where the second region, which is the sample region, is at atmospheric pressure, as shown in FIG. 5.
또한, 본 발명에서 상기 편향기는 수직 방향으로의 위치가 시료와 어퍼처의 사이에 위치할 수 있다. 바람직하게는 상기 편향기의 위치가 상기 어퍼처와 동일한 높이에 구비될 수 있다. In the present invention, the deflector may be positioned between the sample and the aperture in the vertical direction. Preferably, the position of the deflector may be provided at the same height as the aperture.
한편, 본 발명의 진공챔버는 외부에서 접근가능한 적어도 하나의 커넥터를 포함할 수 있다. 상기 커넥터는 진공챔버와 외부환경과의 전기적 연결을 위한 연결부로서, 진공 챔버내 하전입자 소스 및 집속렌즈군으로의 전원 및 제어신호 공급 (ii) 진공 챔버내 추가적인 편향기가 구비된 경우에 이의 제어 신호 및 전원 공급 및 (iii) 상기 (i) 및 (ii)에서의 하전입자 소스, 집속렌즈군 및 편향기의 이상 유무에 관한 정보를 제공할 수 있는 검출기의 전원공급 및 제어 등을 용이하게 할 수 있다. Meanwhile, the vacuum chamber of the present invention may include at least one connector that is externally accessible. The connector is a connection part for electrical connection between the vacuum chamber and the external environment, and supplies power and control signals to the charged particle source and focusing lens group in the vacuum chamber. (Ii) The control signal thereof when an additional deflector is provided in the vacuum chamber. And (iii) power supply and control of a detector capable of providing information on abnormalities of the charged particle source, focusing lens group, and deflector in (i) and (ii). have.
또한 본 발명에서의 상기 하전입자 빔 프로브 형성 장치는 추가적으로 시료의 검출 또는 대조를 강화하기위해 수증기, He, 질소, 아르곤을 포함하는 추가적인 가스를 주입할 수 있는 가스 주입기가 구비될 수도 있다. 이러한 가스 혼합물은 시료에 근접하게 제공될 수 있으나, 이에 제한되지 않는다. In addition, the charged particle beam probe forming apparatus in the present invention may be further provided with a gas injector capable of injecting additional gas containing water vapor, He, nitrogen, argon to enhance the detection or control of the sample. Such a gas mixture may be provided in proximity to the sample, but is not limited thereto.
또한 본 발명의 하전입자 빔 프로브 형성 장치는 그 응용분야에 따라 다양한 추가적 구성요소들을 구비할 수 있다. 예컨대, 상기 하전입자 빔 프로브 형성 장치가 환경 주사형 전자 현미경으로 이용되는 경우에, 시료의 표면에서 방사되는 여러 신호들, 즉 저에너지 이차 전자 신호, 고 에너지 후방산란 전자 신호, 작은 각도의 반사 전자신호, 및 큰 각도의 반사 전자 신호를 분리하는 역할을 하는 적당한 기하학적 형태의 전자 검출기를 추가적으로 포함할 수 있다.Also, the charged particle beam probe forming apparatus of the present invention may have various additional components according to its application. For example, when the charged particle beam probe forming apparatus is used as an environmental scanning electron microscope, various signals emitted from the surface of the sample, that is, a low energy secondary electron signal, a high energy backscattered electron signal, a small angle reflected electron signal And an electronic detector of suitable geometry that serves to separate large angle reflective electronic signals.
상기 검출기는 시료의 표면의 형태를 나타내주는 디스플레이 장치 등의 표시장치에 연결되어 최종적으로 이미지로 정보가 표시된다. The detector is connected to a display device such as a display device indicating the shape of the surface of the sample, and finally information is displayed in an image.
또한 본 발명의 하전입자 빔 프로브 형성 장치는 상기 하전입자 소스내 하전입자의 방출강도와 방출시기 등을 조절하며, 집속렌즈군 및 편향기의 제어, 시료 스테이지의 위치조절 등을 위한 제어부를 추가적으로 구비할 수 있다. In addition, the charged particle beam probe forming apparatus of the present invention controls the emission intensity and the release time of the charged particles in the charged particle source, and additionally provided with a control unit for controlling the focusing lens group and the deflector, adjusting the position of the sample stage, etc. can do.
이때, 상기 하전입자 소스를 포함하는 진공챔버의 진공도와 시료실내의 진공도를 조절하기 위한 컨트롤러가 각각 개별적으로, 또는 통합하여 상기 제어부에 포함될 수 있고, 이에 의해 각각의 영역의 압력이 각각 제어될 수 있다. In this case, a controller for adjusting the vacuum degree of the vacuum chamber including the charged particle source and the vacuum degree in the sample chamber may be included in the controller individually or integrally, whereby the pressure of each region may be controlled. have.
상기 제어부에 의해 하전입자 빔 프로브 형성 장치가 전체적으로 제어됨으로써, 하전입자 빔 프로브가 시료에 형성될 수 있다.As the charged particle beam probe forming apparatus is entirely controlled by the controller, the charged particle beam probe may be formed on the sample.
또한 본 발명의 상기 하전입자 빔 프로브 형성 장치는 주사 전자 현미경, 집속 이온 빔(FIB) 장치 또는 시료 가공 장치에 이용될 수 있다. In addition, the charged particle beam probe forming apparatus of the present invention can be used in a scanning electron microscope, a focused ion beam (FIB) device or a sample processing device.
본 발명에서의 하전입자 빔 프로브 형성 장치에서 하전입자 빔 프로브가 형성되는 과정을 살펴보면, 우선, 상기 하전입자 소스로부터 방출된다.Looking at the process of forming the charged particle beam probe in the charged particle beam probe forming apparatus of the present invention, first, it is emitted from the charged particle source.
예컨대, 하전입자빔으로서 전자빔이 사용되는 경우, 하전입자 소스는 텅스텐-헤어핀 총, 란탄-헥사보라이드 총, 또는 전계-방출 총 등의 전자총이 사용될 수 있고 상기 전자빔은 전자총으로 공급되는 가속 전압에 의해 가속된다. For example, when an electron beam is used as the charged particle beam, the charged particle source may be an electron gun such as a tungsten-hairpin gun, a lanthanum-hexaboride gun, or an field-emission gun, and the electron beam may be subjected to an acceleration voltage supplied to the electron gun. Is accelerated by
한편, 일반적으로 전자빔 소스에 의해 직접 형성된 빔의 직경은 너무 커서 높은 배율로 날카로운 이미지를 형성할 수 없기 때문에, 전자 빔은 상기 집속렌즈군을 통해 가이드되어, 빔이 축소되어 시료에 조사될 수 있다. On the other hand, in general, since the diameter of the beam directly formed by the electron beam source is too large to form a sharp image at a high magnification, the electron beam may be guided through the focusing lens group so that the beam may be reduced and irradiated onto the sample. .
즉, 상기 가속된 하전입자빔은 상기 진공챔버내의 고진공 상태에서 집속렌즈군내 중간 집속렌즈에 의해 형성된 전기장 또는 자기장에 의해 집속되어 최종 집속렌즈인 대물렌즈를 통과하게 된다. That is, the accelerated charged particle beam is focused by an electric or magnetic field formed by the intermediate focusing lens in the focusing lens group in the high vacuum state in the vacuum chamber, and passes through the objective lens which is the final focusing lens.
이때 수차를 감소시키기 위해 하전입자빔이 대물렌즈의 중심을 통과하면서 상기 어퍼처를 통과하여 시료쪽으로 조사될 수 있다. In this case, the charged particle beam may be irradiated toward the sample through the aperture while passing through the center of the objective lens to reduce aberration.
시료표면에 조사된 하전입자빔은 상기 시료 표면과의 다양한 상호작용을 통해 시료로부터 방출되는 다양한 종류의 2차 입자를 발생시키거나, 또는 시료가 가공될 수 있고, 상기 2차 입자를 검출하거나 또는 상기 시료가 가공됨으로써 원하는 용도로 이용될 수 있다. The charged particle beam irradiated on the surface of the sample generates various kinds of secondary particles emitted from the sample through various interactions with the surface of the sample, or the sample can be processed, and the secondary particles are detected or By processing the sample can be used for the desired use.
또한 본 발명은 하전입자 빔을 이용하여 시료를 관찰 또는 가공하는 방법을 제공한다. The present invention also provides a method for observing or processing a sample using a charged particle beam.
상기 방법을 상세히 살펴보면, 하전입자 소스(10); 및 상기 하전입자 소스쪽에 구비되며, 전기장 또는 자기장에 의해 상기 하전입자 빔을 집속하여 주는 하나이상의 중간 집속렌즈(22)와 최종 집속렌즈로서 시료쪽에 구비되며, 시료위에 집속되는 빔 스폿인 하전입자 빔 프로브를 형성시키는 대물렌즈(24)를 포함하는 집속렌즈군(20);을 내부에 구비하며, 상기 하전입자 소스(10)로부터 방출된 하전입자 빔이 상기 대물렌즈를 거쳐 시료에 조사되는 통로인 어퍼처(35)를 구비하는 진공챔버(30);의 내부영역인 제1 영역의 압력이 상기 시료를 포함하는 제2 영역의 압력보다 상대적으로 낮은 압력을 가지도록 각각의 영역의 압력을 설정하여 유지하는 단계, 상기 하전입자 소스(10)로부터 하전입자 빔을 방출시키는 단계, 상기 방출된 하전입자 빔을 집속렌즈군(20)에 의해 집속시켜 어퍼처를 통과시키는 단계, 상기 대물렌즈와 시료 사이에 위치하며, 하전입자 빔의 조사 방향을 바꾸어 주는 하나 이상의 편향기(40)를 제어하여 하전입자 빔의 조사 방향을 바꾸는 단계, 및 조사 방향이 바뀐 하전입자 빔이 상기 시료 스테이지(50) 상의 시료(55)에 조사되는 단계를 포함하여 이루어진다. Looking at the method in detail, the charged particle source (10); And a charged particle beam which is provided on the charged particle source side and is provided on the sample side as one or more intermediate focusing lenses 22 and final focusing lens that focus the charged particle beam by an electric or magnetic field, and is a beam spot focused on the sample. A focusing lens group 20 including an objective lens 24 for forming a probe; and having a passage therein, in which a charged particle beam emitted from the charged particle source 10 is irradiated onto a sample through the objective lens. The pressure in each region is set such that the pressure in the first region, which is an internal region of the vacuum chamber 30 having the aperture 35, is lower than the pressure in the second region including the sample. Maintaining, releasing a charged particle beam from the charged particle source 10, focusing the emitted charged particle beam by a focusing lens group 20 to pass an aperture; Changing the irradiation direction of the charged particle beam by controlling one or more deflectors 40 positioned between the water lens and the sample and changing the irradiation direction of the charged particle beam, and the charged particle beam having the changed irradiation direction And irradiating the sample 55 on the 50.
이는 앞서 기재된 본 발명의 상기 하전입자 빔 프로브 형성장치를 이용하되, 상기 편향기를 대물렌즈와 시료사이에 위치하도록 구비하여 하전입자 빔 프로브를 형성하는 방법을 기재한 것으로서, 구체적인 방법은 앞서 살펴본 바와 같다. This describes the method of forming the charged particle beam probe by using the charged particle beam probe forming apparatus of the present invention described above, wherein the deflector is positioned between the objective lens and the sample, and the specific method is as described above. .
도 7은 본 발명에서의 하전입자 빔 프로브 형성 장치를 이용하여 환경 주사전자현미경에 적용한 경우의 이미지를 도시한 결과로서, 도 7a)에서는 종래기술에 따른 환경 주사전자현미경에서 얻을 수 있는 저배율 이미지를 도시한 것이고, 도 7b)에서는 본 발명의 일 실시예에 따른, 광축상에서 대물렌즈 밑의 어퍼처와 동일한 높이의 위치에 편향기를 설치하게 되는 경우에 환경 주사전자현미경에서 얻을 수 있는 저배율 이미지를 도시한 것이다. FIG. 7 is a result of applying to an environmental scanning electron microscope using a charged particle beam probe forming apparatus according to the present invention. In FIG. 7a), a low magnification image obtained from an environmental scanning electron microscope according to the prior art is shown. 7b) shows a low magnification image obtained by an environmental scanning electron microscope when the deflector is installed at the same height position as the aperture under the objective lens on the optical axis according to an embodiment of the present invention. It is.
도 7b)에서 나타낸 바와 같이, 본 발명에서의 편향기를 대물렌즈와 시료 사이에 위치하도록 구비하게 되면, 종래기술에서 통상 1mm 어퍼처에 의해 제한되는 시야범위가, 환경 주사전자현미경에서도 일반 주사전자현미경과 보여주는 시야와 동일하게 상기 어퍼처에 의해 제한되지 않는 5mm 정도의 넓은 범위의 저배율 이미지를 얻을 수 있다. As shown in Fig. 7B), when the deflector in the present invention is provided to be positioned between the objective lens and the sample, the field of view limited by the conventional 1 mm aperture in the prior art is a general scanning electron microscope even in an environmental scanning electron microscope. In the same way as the visible field of view, a low magnification image of a wide range of about 5 mm can be obtained, which is not limited by the aperture.
따라서, 본 발명에서의 하전입자 빔 프로브 형성장치를 주사전자현미경에 사용하게 되는 경우에, 종래 기술에서 어펴쳐에 의해 시야각이 제약되던 부분까지 이미지를 얻을 수 있어 관찰을 원하는 시료 위치를 용이하게 찾을 수 있음을 확인할 수 있다. Therefore, when the charged particle beam probe forming apparatus of the present invention is used in a scanning electron microscope, the image can be obtained up to a portion where the viewing angle is restricted by the spreading in the prior art, so that the sample position desired for observation can be easily found. It can be confirmed that.
이상 본 발명의 구성을 세부적으로 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.While the configuration of the present invention has been described in detail, those skilled in the art can variously modify and change the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. You will understand.
본 발명에 의하면, 시료를 이동하지 않고도 넓은 시야를 확보하여 관측하거나 또는 시료를 가공하며, 빔 궤도의 방향을 제어할 수 있는 하전입자 빔 하전입자 빔 프로브 형성 장치를 제공할 수 있고, 또한, 본 발명은 간단하게 시료의 조사영역을 제어할 수 있으며, 편향기와 어퍼처와의 거리를 제어함으로써, 시료의 관찰 또는 가공영역을 넓히거나 좁힐 수 있는 하전입자 빔 하전입자 빔 프로브 형성 장치를 제공할 수 있다.According to the present invention, it is possible to provide a charged particle beam charged particle beam probe forming apparatus capable of observing a wide field of view or processing a sample without controlling the sample and controlling the direction of the beam trajectory. The present invention can provide a charged particle beam charged particle beam probe forming apparatus which can easily control the irradiation area of the sample and control the distance between the deflector and the aperture to widen or narrow the observation or processing area of the sample. have.

Claims (15)

  1. 하전입자 빔을 방출하는 하전입자 소스; A charged particle source emitting a charged particle beam;
    상기 하전입자 소스쪽에 구비되며, 전기장 또는 자기장에 의해 상기 하전입자 빔을 집속하여 주는 하나이상의 중간 집속렌즈, 및 최종 집속렌즈로서 시료쪽에 구비되며, 시료위에 집속되는 빔 스폿인 하전입자 빔 프로브를 형성시키는 대물렌즈를 포함하는 집속렌즈군; . At least one intermediate focusing lens provided on the charged particle source side to focus the charged particle beam by an electric or magnetic field, and a charged particle beam probe provided on the sample side as a final focusing lens and focused on the sample. A focusing lens group including an objective lens to be used; .
    상기 하전입자 소스 및 집속렌즈군을 내부에 구비하며, 상기 하전입자 소스로부터 방출된 하전입자 빔이 대물렌즈를 거쳐 시료에 조사되는 통로인 어퍼처를 구비하는 진공챔버;A vacuum chamber having the charged particle source and the focusing lens group therein and having an aperture that is a passage through which the charged particle beam emitted from the charged particle source is irradiated onto the sample through the objective lens;
    상기 하전입자 빔의 조사 방향을 제어하여 바꾸어 주는 하나 이상의 편향기; 및 At least one deflector for controlling and changing the irradiation direction of the charged particle beam; And
    관찰 또는 가공하려는 시료를 지지하며, 상기 시료를 이동할 수 있는 시료 스테이지;를 포함하는 하전입자 빔 프로브 형성 장치로서,A charged particle beam probe forming apparatus comprising; a sample stage for supporting a sample to be observed or processed and capable of moving the sample;
    상기 하전입자 빔 프로브 형성 장치는 진공챔버 내부의 제1 영역과, 상기 제1 영역보다 상대적으로 높은 압력을 가지며 상기 시료를 포함하는 제2 영역으로 구분되고, The charged particle beam probe forming apparatus is divided into a first region inside the vacuum chamber and a second region having the pressure higher than the first region and including the sample,
    상기 편향기는 대물렌즈와 시료 사이에 위치하는 것을 특징으로 하는 하전입자 빔 프로브 형성 장치.The deflector is charged particle beam probe forming apparatus, characterized in that located between the objective lens and the sample.
  2. 제1항에 있어서, The method of claim 1,
    상기 어퍼처의 크기는 직경 3000 um 이하인 인 것을 특징으로 하는 하전입자 빔 프로브 형성 장치.The size of the aperture is charged particle beam probe forming apparatus, characterized in that the diameter of less than 3000um.
  3. 제1항에 있어서, The method of claim 1,
    상기 하전 입자빔은 이온빔 또는 전자빔인 것을 특징으로 하는 하전입자 빔 프로브 형성 장치.The charged particle beam is a charged particle beam probe forming apparatus, characterized in that the ion beam or electron beam.
  4. 제1항에 있어서, The method of claim 1,
    상기 하전입자 빔은 대물렌즈의 중심을 통과함으로써, 수차를 감소시키는 것을 특징으로 하는 하전입자 빔 프로브 형성 장치.The charged particle beam probe forming apparatus, characterized in that for reducing the aberration by passing through the center of the objective lens.
  5. 제1항에 있어서, The method of claim 1,
    상기 제1 영역의 압력은 10-3 mbar 이하의 범위를 갖는 고진공 영역인 것을 특징으로 하는 하전입자 빔 프로브 형성 장치.Charged particle beam probe forming apparatus, characterized in that the high vacuum region having a range of 10 −3 mbar or less.
  6. 제1항에 있어서, The method of claim 1,
    상기 제2 영역의 압력은 10-2 mbar 이상의 범위를 갖는 저진공 영역인 것을 특징으로 하는 하전입자 빔 프로브 형성 장치.And the pressure in the second region is a low vacuum region having a range of 10 −2 mbar or more.
  7. 제1항에 있어서, The method of claim 1,
    상기 어퍼처는 구멍의 형태의 개구부로서, 상기 제1영역과 제2영역이 상기 어퍼처를 통해 서로 개방된 것을 특징으로 하는 하전입자 빔 프로브 형성 장치.And the aperture is an opening in the form of a hole, wherein the first region and the second region are open to each other through the aperture.
  8. 제1항에 있어서, The method of claim 1,
    상기 어퍼처는 두께 2000 nm 이하의 격막으로 형성되어 상기 제1 영역을 제2 영역으로부터 격리되는 것을 특징으로 하는 하전입자 빔 프로브 형성 장치.The aperture is formed of a diaphragm having a thickness of 2000 nm or less to isolate the first region from the second region.
  9. 제1항에 있어서, The method of claim 1,
    상기 편향기는 시료와 어퍼처의 사이에 위치하는 것을 특징으로 하는 하전입자 빔 프로브 형성 장치.And the deflector is positioned between the sample and the aperture.
  10. 제1항에 있어서, The method of claim 1,
    상기 편향기는 상기 어퍼처와 동일한 높이에 구비되는 것을 특징으로 하는 하전입자 빔 프로브 형성 장치.Charge deflector beam probe forming apparatus characterized in that the deflector is provided at the same height as the aperture.
  11. 제1항에 있어서, The method of claim 1,
    상기 제1 영역과 제2 영역의 압력차이는 100배 이상의 압력차이를 나타내는 것을 특징으로 하는 하전입자 빔 프로브 형성 장치.Charged particle beam probe forming apparatus, characterized in that the pressure difference between the first region and the second region represents a pressure difference of more than 100 times.
  12. 제1항 내지 제11항 중 어느 한 항에 기재된 하전입자 빔 프로브 형성 장치를 포함하는 주사 전자 현미경.The scanning electron microscope containing the charged particle beam probe formation apparatus of any one of Claims 1-11.
  13. 제1항 내지 제11항 중 어느 한 항에 기재된 하전입자 빔 프로브 형성 장치를 포함하는 시료 가공 장치.The sample processing apparatus containing the charged particle beam probe formation apparatus of any one of Claims 1-11.
  14. 제1항 내지 제11항 중 어느 한 항에 기재된 하전입자 빔 프로브 형성 장치를 포함하는 집속 이온 빔(FIB) 장치.A focused ion beam (FIB) device comprising the charged particle beam probe forming device according to any one of claims 1 to 11.
  15. 하전입자 빔을 이용하여 시료를 관찰 또는 가공하는 방법으로서, A method of observing or processing a sample using a charged particle beam,
    하전입자 소스; 및 상기 하전입자 소스쪽에 구비되며, 전기장 또는 자기장에 의해 상기 하전입자 빔을 집속하여 주는 하나이상의 중간 집속렌즈와 최종 집속렌즈로서 시료쪽에 구비되며, 시료위에 집속되는 빔 스폿인 하전입자 빔 프로브를 형성시키는 대물렌즈를 포함하는 집속렌즈군;을 내부에 구비하며, 상기 하전입자 소스로부터 방출된 하전입자 빔이 상기 대물렌즈를 거쳐 시료에 조사되는 통로인 어퍼처를 구비하는 진공챔버;의 내부영역인 제1 영역의 압력이 상기 시료를 포함하는 제2 영역의 압력보다 상대적으로 낮은 압력을 가지도록 각각의 영역의 압력을 설정하여 유지하는 단계, Charged particle source; And a charged particle beam probe provided at the charged particle source side, the at least one intermediate focusing lens for focusing the charged particle beam by an electric field or a magnetic field, and provided at the sample side as a final focusing lens, and a beam spot focused on the sample. A vacuum chamber having an aperture therein, wherein the focused lens group includes an objective lens configured to provide an aperture through which the charged particle beam emitted from the charged particle source is irradiated onto the sample through the objective lens. Setting and maintaining the pressure in each region so that the pressure in the first region has a pressure lower than that in the second region comprising the sample,
    상기 하전입자 소스로부터 하전입자 빔을 방출시키는 단계,Emitting a charged particle beam from the charged particle source,
    상기 방출된 하전입자 빔을 집속렌즈군에 의해 집속시켜 어퍼처를 통과시키는 단계, Focusing the emitted charged particle beam by a focusing lens group to pass an aperture;
    상기 대물렌즈와 시료 사이에 위치하며, 하전입자 빔의 조사 방향을 바꾸어 주는 하나 이상의 편향기를 제어하여 하전입자 빔의 조사 방향을 바꾸는 단계, 및 Changing the irradiation direction of the charged particle beam by controlling one or more deflectors positioned between the objective lens and the sample and changing the irradiation direction of the charged particle beam; and
    조사 방향이 바뀐 하전입자 빔이 상기 시료 스테이지 상의 시료에 조사되는 단계를 포함하는, 하전입자 빔을 이용하여 시료를 관찰하거나 또는 가공하는 방법.And irradiating the sample on the sample stage with the charged particle beam of which the irradiation direction is changed.
PCT/KR2014/011388 2013-12-02 2014-11-26 Charged particle beam probe forming device and method for using same WO2015083973A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0148855 2013-12-02
KR1020130148855A KR101554594B1 (en) 2013-12-02 2013-12-02 Apparatus for forming charged particle beam probe and method for using thereof

Publications (1)

Publication Number Publication Date
WO2015083973A1 true WO2015083973A1 (en) 2015-06-11

Family

ID=53273680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011388 WO2015083973A1 (en) 2013-12-02 2014-11-26 Charged particle beam probe forming device and method for using same

Country Status (2)

Country Link
KR (1) KR101554594B1 (en)
WO (1) WO2015083973A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104965217A (en) * 2015-06-26 2015-10-07 中国工程物理研究院核物理与化学研究所 Measuring device and method for pulsed ion beam cross section image
CN106525845A (en) * 2016-10-11 2017-03-22 聚束科技(北京)有限公司 Charged particle beam system and photoelectric combined detection system and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101725506B1 (en) * 2015-07-20 2017-04-12 한국표준과학연구원 Scanning electron microscopy capable of observing optical image of sample
KR101954328B1 (en) 2017-05-16 2019-03-06 (주)코셈 High-resolution scanning electron microscope

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020070386A (en) * 2000-01-27 2002-09-06 아이씨티 인티그레이티드 써킷 테스팅 게젤샤프트 퓌어 할프라이터프뤼프테크닉 엠베하 Objective lens for a charged particle beam device
JP2006260878A (en) * 2005-03-16 2006-09-28 Hitachi High-Technologies Corp Low-vacuum scanning electron microscope
JP2013175377A (en) * 2012-02-27 2013-09-05 Hitachi High-Technologies Corp Charged particle beam device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020070386A (en) * 2000-01-27 2002-09-06 아이씨티 인티그레이티드 써킷 테스팅 게젤샤프트 퓌어 할프라이터프뤼프테크닉 엠베하 Objective lens for a charged particle beam device
JP2006260878A (en) * 2005-03-16 2006-09-28 Hitachi High-Technologies Corp Low-vacuum scanning electron microscope
JP2013175377A (en) * 2012-02-27 2013-09-05 Hitachi High-Technologies Corp Charged particle beam device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104965217A (en) * 2015-06-26 2015-10-07 中国工程物理研究院核物理与化学研究所 Measuring device and method for pulsed ion beam cross section image
CN106525845A (en) * 2016-10-11 2017-03-22 聚束科技(北京)有限公司 Charged particle beam system and photoelectric combined detection system and method
CN106525845B (en) * 2016-10-11 2023-11-03 聚束科技(北京)有限公司 Charged particle beam system, photoelectric combined detection system and method

Also Published As

Publication number Publication date
KR101554594B1 (en) 2015-09-22
KR20150064311A (en) 2015-06-11

Similar Documents

Publication Publication Date Title
US10522327B2 (en) Method of operating a charged particle beam specimen inspection system
US7683319B2 (en) Charge control apparatus and measurement apparatus equipped with the charge control apparatus
US8168951B2 (en) Charged particle beam apparatus
JP4215282B2 (en) SEM equipped with electrostatic objective lens and electrical scanning device
US6943349B2 (en) Multi beam charged particle device
Mook et al. Construction and characterization of the fringe field monochromator for a field emission gun
US7326927B2 (en) Focusing lens and charged particle beam device for titled landing angle operation
US20130292568A1 (en) Scanning electron microscope and length measuring method using the same
JP2002507045A (en) Scanning electron microscope
WO2015083973A1 (en) Charged particle beam probe forming device and method for using same
WO2017014442A1 (en) Scanning electron microscope capable of obtaining optical image of sample
US7170068B2 (en) Method and system for discharging a sample
WO2017200124A1 (en) Electron beam device having monochrometer
US20160013012A1 (en) Charged Particle Beam System
US7112803B2 (en) Beam directing system and method for use in a charged particle beam column
JP2001148232A (en) Scanning electron microscope
US9245709B1 (en) Charged particle beam specimen inspection system and method for operation thereof
JP5690610B2 (en) Photoelectron microscope
US10325750B2 (en) Collision ionization source
KR100711198B1 (en) Scanning electron microscope
US10790112B2 (en) Focused ion beam apparatus
JP2004247321A (en) Scanning electron microscope
JP2001243904A (en) Scanning electron microscope
JPH10172495A (en) Environmental control type scan electron microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867801

Country of ref document: EP

Kind code of ref document: A1