WO2015083857A1 - Surf hardware apparatus, and method for managing integral image - Google Patents

Surf hardware apparatus, and method for managing integral image Download PDF

Info

Publication number
WO2015083857A1
WO2015083857A1 PCT/KR2013/011270 KR2013011270W WO2015083857A1 WO 2015083857 A1 WO2015083857 A1 WO 2015083857A1 KR 2013011270 W KR2013011270 W KR 2013011270W WO 2015083857 A1 WO2015083857 A1 WO 2015083857A1
Authority
WO
WIPO (PCT)
Prior art keywords
integrated image
image
sub
memory
integrated
Prior art date
Application number
PCT/KR2013/011270
Other languages
French (fr)
Korean (ko)
Inventor
최병호
장성준
이상설
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2015083857A1 publication Critical patent/WO2015083857A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/60Memory management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to a speeded up robust feature (SURF) hardware device and an integrated image memory management method.
  • SURF speeded up robust feature
  • the SURF (Speeded Up Robust Feature) algorithm is one of representative algorithms for extracting feature points of objects.
  • the SURF algorithm performs object and scene recognition by regenerating an integrated image based on the input black and white image.
  • the integrated image memory is frequently accessed because it calculates the Hessian by reading the integral image value pixel by pixel.
  • performance deterioration is severe in terms of speed, so most implementations configure it as dual port-based memory internally.
  • An object of the present invention is to provide a Speed Up Robust Feature (SURF) hardware device and an integrated image memory management method operating at low power by minimizing integrated image memory power consumption.
  • SURF Speed Up Robust Feature
  • the SURF hardware device is a Speed Up Robust Feature (SURF) hardware device for calculating the feature points and descriptors of the image
  • the integrated image generation unit for generating an integrated image based on the input black and white image
  • the integral Multi-integrated image memory including a plurality of sub-integrated images
  • the clock and power of the plurality of sub-integrated image memories are sequentially managed based on the result of real-time monitoring of the pixel values of the integrated image.
  • a memory management unit a Speed Up Robust Feature
  • the plurality of sub-integrated image memories may be in a bit group unit.
  • the memory manager includes
  • the pixel value of the integrated image is stored, and the pixel value of the integrated image output from the integrated image generator is real-time monitored to satisfy a predetermined threshold value.
  • the power may be turned on by applying a clock to a second sub-integration image memory of the first sub-integration image memory.
  • an integrated image memory management method is a method of managing an integrated image memory by a SURF (Speeded Up Robust Feature) hardware device that calculates a feature point and a descriptor of an image. Generating and sequentially managing clocks and powers of the plurality of sub-integrated image memories based on a result of real-time monitoring of pixel values of the integrated image.
  • SURF Speeded Up Robust Feature
  • the plurality of sub-integrated image memories may include a multi-integrated image memory in units of bit groups.
  • the power consumption of the integrated image memory is minimized to operate the SURF hardware device at low power.
  • 1 is an exemplary diagram of an integral value for an arbitrary image applied to an embodiment of the present invention.
  • FIG. 2 illustrates a typical single integrated image memory structure.
  • FIG. 3 illustrates a bit group multi-integrated image memory structure according to an embodiment of the present invention.
  • FIG. 4 is a configuration diagram of a speeded up robust feature (SURF) hardware device according to an embodiment of the present invention.
  • SURF speeded up robust feature
  • FIG. 5 is a flowchart illustrating an integrated image memory management method according to an exemplary embodiment of the present invention.
  • FIG. 1 is a diagram illustrating an integrated value of an arbitrary image applied to an embodiment of the present invention
  • FIG. 2 illustrates a general single integrated image memory structure
  • FIG. 3 illustrates a bit group multi-integrated image memory structure according to an embodiment of the present invention
  • 4 is a configuration diagram of a speeded up robust feature (SURF) hardware device according to an embodiment of the present invention.
  • SURF speeded up robust feature
  • an image received by a SURF hardware device is an 8-bit gray-scale image.
  • the value of one pixel is represented by 8 bits, that is, it is between 0 and 255. At this time, the maximum value of one pixel is 255 when white, and the minimum value is 0 when black. In other words, the more colors close to black are in the frame, the smaller the total sum (integral value) becomes.
  • the integral value of the input image of FIG. 1A is '0xd1b2b0', and the integral value of the input image of FIG. 1B is '0x6529ab'.
  • the image of (B) has more colors closer to black than the image of (A). Accordingly, it can be seen that the integral value of FIG. 1B having more black pixels is smaller than that of FIG. 1A.
  • the hardware design always considers the worst case, i.e. for a 640x480 image, when the value of every pixel is 255, the final pixel value of the integrated image is 78,336,000, which is allocated 27 bits. However, in the general situation (picture), most of them need less than 27 bits.
  • an embodiment of the present invention manages the bit group multi-integrated image memory structure as shown in FIG. 3.
  • an image signal processor (ISP) 1 and a SURF feature extraction IP 3 are connected to a central processing processor (CPU) 7 and a high speed interface via a bus 5.
  • ISP image signal processor
  • CPU central processing processor
  • the central processing processor (CPU) 33 drives an operating system (OS) and firmware (Firmware) for operating the internal register setting and SURF in the SURF hardware device.
  • OS operating system
  • Firmware firmware for operating the internal register setting and SURF in the SURF hardware device.
  • High Speed Interfaces 35 are controller modules for providing high speed external interfaces such as USB.
  • Low Speed Interfaces 37 are controller modules for providing low speed external interfaces such as Universal Asynchronous Receiver / Transmitter (UART) and Serial Peripheral Interface (SPI).
  • UART Universal Asynchronous Receiver / Transmitter
  • SPI Serial Peripheral Interface
  • the external memory 13 includes an external memory PHY 15 in which a black and white image is stored and an external memory controller 17 that controls the operation of the external memory pie.
  • the image signal processing unit (ISP) 1 generates an RGB (Red-Green-Blue) / Y (luminance) U (difference between the luminance signal and the blue component) V (difference between the luminance signal and the red component) image.
  • the image signal processor (ISP) 1 includes a gray-scale image converter (Gray-Scale Image Converter) 19 and a write direct memory access (W-DMA) module 1 (21).
  • ISP image signal processor
  • W-DMA write direct memory access
  • the black and white image converter 19 converts the original image into a black and white image.
  • the converted black and white image is stored in the external memory 13 through the W-DMA module 1 (21).
  • the integrated image memory 23 is a dedicated memory for extracting feature points, and stores the integrated image generated by the integrated image generator 27.
  • the integrated image memory 23 is a memory shared by a plurality of Hessian calculators 31.
  • the memory manager 25 monitors the pixel integrated value in units of frames in real time and manages the clock and power of the integrated image memory 23 based on the real time monitoring.
  • the integrated image memory 23 is implemented as a bit group multi-integrated image memory structure as shown in FIG. 3. That is, the memory manager 25 manages a single integrated image memory as shown in FIG. 2 in a structure in which three integrated image memories are layered in bit groups (8-bit units) as shown in FIG. 3.
  • the memory manager 25 initially applies a clock only to the first integrated image memory 23-1 and turns on the power to store the integrated value.
  • a clock is applied to the next integrated image memory 23-3 and the power is turned on.
  • the pixel integrated value is monitored in real time on a frame basis, and when the pixel integrated value satisfies a predetermined threshold value, the clock is applied to the next integrated image memory 23-5 and the power is turned on.
  • the memory manager 25 monitors the integral value generated by the integrated image generator 23 in real time, and based on the threshold value, each sub-integral image memory (Sub-Integral Image MEM0, Sub-Integral Image MEM1,...) Manages the clock and power of Sub-Integral Image MEMn sequentially (Integral Image Monitor & Integral Image Memory Clock / Power Manager). At this time, the turn-on of the clock and the power supply and the settling time after the change are set to a margin.
  • the integrated image generator 27 reads a black and white image from the external memory 13 using a read direct memory access (R-DMA) module 29 to generate an integrated image.
  • R-DMA read direct memory access
  • the integrated image generator 27 regenerates and uses an integrated image obtained by integrating a monochrome image, which is an input image, for a quick box filtering operation.
  • a monochrome image which is an input image
  • the maximum value of one pixel can be 255, and when all pixels are 255, the maximum value of the integrated image is 78,336,000, which requires a maximum of 27 bits.
  • the plurality of Hessian calculation units 31 patch the integrated image pixel values from the integrated image memory 23 through the data fatching unit 33 according to the box filter pattern to perform a box filter operation. Perform.
  • the Hessian values calculated by the plurality of Hessian calculation units 31 are stored in each Hessian memory 35.
  • the feature point extractor 37 extracts the feature points based on the result of the box filtering operation stored in each of the Hessian memories 35. At this time, the pixel having the largest Hessian value is extracted as the feature point, compared to the result of the box filtering operation having another size.
  • the main controller 39 controls the added block, that is, the integrated image memory 23 and the memory manager 25, in addition to the function of controlling the entire block.
  • the integrated image memory 23, the memory manager 25, the integrated image generator 27, the R-DMA module 29, the Hessian calculator 31, the data patching unit 33, the Hessian memory ( 35), the SURF feature extraction IP including the feature extractor 37, the main controller 39, and the W-DMA module 2 41 may be implemented as a system-on-chip.
  • the integrated image memory management method is as follows.
  • FIG. 5 is a flowchart illustrating an integrated image memory management method according to an exemplary embodiment of the present invention.
  • the memory manager 25 monitors the pixel integrated value generated by the integrated image generator 23 in real time (S101).
  • the memory manager 25 determines whether the pixel integrated value satisfies a predefined threshold (S103).
  • the threshold is determined by how many sub-integrated image memories the integral image memory 23 is divided into.
  • the integrated image memory having a data width of 27 bits may be divided into two groups, a 7-bit memory (upper bit) and a 20-bit memory (lower bit). At this time, up to a value of 2 20 , that is, 0xFFFFF, may be stored in the 20- bit memory for the lower bit. If the integral is greater than that, you are turning on 7-bit memory for the higher bits.
  • the threshold may include a turn on margin. In other words, the time to stabilize by turning on a clock or power can be turned on earlier by margining at a threshold.
  • step S101 is restarted.
  • the power is turned on by applying the clock of the next sub-integrated image memory (S105).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Processing (AREA)

Abstract

Disclosed are a speeded-up robust feature (SURF) hardware apparatus and a method for managing integral images. The SURF hardware apparatus is an apparatus for calculating features and descriptors of an image and comprises: an integral image generation unit for generating an integral image on the basis of an input black and white image; a multi-integral image memory for storing the pixel values of the integral image, the memory comprising a plurality of sub-integral images; and a memory management unit for managing the clock and power source of the plurality of sub-integral image memories sequentially on the basis of results of real-time monitoring of the pixel values of the integral image.

Description

SURF 하드웨어 장치 및 적분 이미지 메모리 관리 방법SVR hardware and integrated image memory management methods
본 발명은 SURF(Speeded Up Robust Feature) 하드웨어 장치 및 적분 이미지 메모리 관리 방법에 관한 것이다.The present invention relates to a speeded up robust feature (SURF) hardware device and an integrated image memory management method.
SURF(Speeded Up Robust Feature) 알고리즘은 사물의 특징점을 추출하는 대표적인 알고리즘 중의 하나이다.SURF 알고리즘은 입력받은 흑백 영상을 토대로 적분 이미지를 재생성하여 객체·장면 인식을 수행한다.The SURF (Speeded Up Robust Feature) algorithm is one of representative algorithms for extracting feature points of objects. The SURF algorithm performs object and scene recognition by regenerating an integrated image based on the input black and white image.
SURF 알고리즘 특성상, 픽셀 바이 픽셀(pixel by pixel)로 적분 이미지 값을 읽어(Read) 헤이시안을 계산하기 때문에 적분 이미지 메모리의 접근 빈도는 상당히 높다. 그런데 외부 메모리에 적분 이미지를 저장할 경우, 속도 면에서 성능 열화가 심각하기 때문에 대부분의 구현이 내부에 듀얼(dual) 포트 기반의 메모리로 이를 구성한다. Due to the nature of the SURF algorithm, the integrated image memory is frequently accessed because it calculates the Hessian by reading the integral image value pixel by pixel. However, when the integrated image is stored in the external memory, performance deterioration is severe in terms of speed, so most implementations configure it as dual port-based memory internally.
하지만, 적분 이미지 저장을 위해 대용량의 메모리를 필요로 하고 이는 곧 심각한 전력 소모를 발생시키는 문제가 있다.However, a large amount of memory is required for the integrated image storage, which causes a serious power consumption problem.
본 발명이 해결하고자 하는 과제는 적분 이미지 메모리 소모 전력을 최소화하여 저전력으로 동작하는 SURF(Speeded Up Robust Feature) 하드웨어 장치 및 적분 이미지 메모리 관리 방법을 제공하는 것이다.An object of the present invention is to provide a Speed Up Robust Feature (SURF) hardware device and an integrated image memory management method operating at low power by minimizing integrated image memory power consumption.
본 발명의 하나의 특징에 따르면, SURF 하드웨어 장치는 영상의 특징점 및 서술자를 연산하는 SURF(Speeded Up Robust Feature) 하드웨어 장치로서, 입력받은 흑백 영상을 토대로 적분 이미지를 생성하는 적분 이미지 생성부, 상기 적분 이미지의 화소값을 저장하고, 복수의 서브 적분 이미지를 포함하는 멀티 적분 이미지 메모리, 그리고 기 적분 이미지의 화소값을 실시간 모니터링한 결과를 토대로 상기 복수의 서브 적분 이미지 메모리의 클록 및 전원을 순차적으로 관리하는 메모리 관리부를 포함한다.According to one aspect of the invention, the SURF hardware device is a Speed Up Robust Feature (SURF) hardware device for calculating the feature points and descriptors of the image, the integrated image generation unit for generating an integrated image based on the input black and white image, the integral Multi-integrated image memory including a plurality of sub-integrated images, and the clock and power of the plurality of sub-integrated image memories are sequentially managed based on the result of real-time monitoring of the pixel values of the integrated image. And a memory management unit.
상기 복수의 서브 적분 이미지 메모리는, 비트군 단위일 수 있다.The plurality of sub-integrated image memories may be in a bit group unit.
상기 메모리 관리부는,The memory manager,
제1 서브 적분 이미지 메모리에 클럭을 인가하고 전원을 턴온하여 상기 적분 이미지의 화소값을 저장하고, 상기 적분 이미지 생성부로부터 출력되는 적분 이미지의 화소값을 실시간 모니터링하여 기 정의된 임계값을 충족하면, 상기 제1 서브 적분 이미지 메모리의 다음 제2 서브 적분 이미지 메모리에 클럭을 인가하여 전원을 턴온할 수 있다.When the clock is applied to the first sub-integration image memory and the power is turned on, the pixel value of the integrated image is stored, and the pixel value of the integrated image output from the integrated image generator is real-time monitored to satisfy a predetermined threshold value. The power may be turned on by applying a clock to a second sub-integration image memory of the first sub-integration image memory.
본 발명의 다른 특징에 따르면, 적분 이미지 메모리 관리 방법은 영상의 특징점 및 서술자를 연산하는 SURF(Speeded Up Robust Feature) 하드웨어 장치가 적분 이미지 메모리를 관리하는 방법으로서, 입력받은 흑백 영상을 토대로 적분 이미지를 생성하는 단계, 그리고 상기 적분 이미지의 화소값을 실시간 모니터링한 결과를 토대로 복수의 서브 적분 이미지 메모리의 클록 및 전원을 순차적으로 관리하는 단계를 포함한다.According to another aspect of the present invention, an integrated image memory management method is a method of managing an integrated image memory by a SURF (Speeded Up Robust Feature) hardware device that calculates a feature point and a descriptor of an image. Generating and sequentially managing clocks and powers of the plurality of sub-integrated image memories based on a result of real-time monitoring of pixel values of the integrated image.
상기 관리하는 단계는,The managing step,
제1 서브 적분 이미지 메모리에 클럭을 인가하고 전원을 턴온하는 단계, 상기 제1 서브 적분 이미지 메모리에 상기 적분 이미지의 화소값을 저장하는 단계, 상기 적분 이미지의 화소값을 실시간 모니터링하여 기 정의된 임계값을 충족하는지 판단하는 단계, 그리고 상기 기 정의된 임계값을 충족하면, 상기 제1 서브 적분 이미지 메모리의 다음 제2 서브 적분 이미지 메모리에 클럭을 인가하여 전원을 턴온하는 단계 를 포함할 수 있다.Applying a clock to a first sub-integrated image memory and turning on power, storing pixel values of the integrated image in the first sub-integrated image memory, and real-time monitoring of pixel values of the integrated image to define a predetermined threshold Determining whether a value is satisfied, and applying a clock to a second sub-integration image memory of the first sub-integration image memory to turn on the power when the predetermined threshold is satisfied.
상기 복수의 서브 적분 이미지 메모리는 비트군 단위의 멀티 적분 이미지 메모리를 포함할 수 있다.The plurality of sub-integrated image memories may include a multi-integrated image memory in units of bit groups.
본 발명의 실시예에 따르면, 적분 이미지 메모리의 소모 전력을 최소화시켜 SURF 하드웨어 장치를 저전력으로 동작시킨다.According to an embodiment of the present invention, the power consumption of the integrated image memory is minimized to operate the SURF hardware device at low power.
도 1은 본 발명의 실시예에 적용되는 임의 영상에 대한 적분값 예시도이다.1 is an exemplary diagram of an integral value for an arbitrary image applied to an embodiment of the present invention.
도 2는 일반적인 단일 적분 이미지 메모리 구조를 나타낸다.2 illustrates a typical single integrated image memory structure.
도 3은 본 발명의 실시예에 따른 비트군 멀티 적분 이미지 메모리 구조를 나타낸다.3 illustrates a bit group multi-integrated image memory structure according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 SURF(Speeded Up Robust Feature) 하드웨어 장치의 구성도이다.4 is a configuration diagram of a speeded up robust feature (SURF) hardware device according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 적분 이미지 메모리 관리 방법을 도시한 순서도이다.5 is a flowchart illustrating an integrated image memory management method according to an exemplary embodiment of the present invention.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless specifically stated otherwise.
이하, 도면을 참조로 하여 본 발명의 실시예에 따른 SURF(Speeded Up Robust Feature) 하드웨어 장치 및 적분 이미지 메모리 관리 방법에 대하여 상세히 설명한다.Hereinafter, a SURF hardware apparatus and an integrated image memory management method according to an exemplary embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 적용되는 임의 영상에 대한 적분값 예시도이고, 도 2는 일반적인 단일 적분 이미지 메모리 구조를 나타내며, 도 3은 본 발명의 실시예에 따른 비트군 멀티 적분 이미지 메모리 구조를 나타내고, 도 4는 본 발명의 실시예에 따른 SURF(Speeded Up Robust Feature) 하드웨어 장치의 구성도이다.1 is a diagram illustrating an integrated value of an arbitrary image applied to an embodiment of the present invention, FIG. 2 illustrates a general single integrated image memory structure, and FIG. 3 illustrates a bit group multi-integrated image memory structure according to an embodiment of the present invention. 4 is a configuration diagram of a speeded up robust feature (SURF) hardware device according to an embodiment of the present invention.
도 1을 참조하면, SURF 하드웨어 장치가 입력받는 영상은 8 비트 흑백(gray-scale) 영상이다. Referring to FIG. 1, an image received by a SURF hardware device is an 8-bit gray-scale image.
한 픽셀의 값은 8비트로 표현되고, 즉 0~255 사이의 값을 가지게 된다. 이때, 한 픽셀의 최대값은 흰색일 때 255이고, 최소값은 검정색일 때 0이다. 즉, 프레임에 검정색에 가까운 색이 많을 수록 전체 합산값(적분값) 작아지게 된다. The value of one pixel is represented by 8 bits, that is, it is between 0 and 255. At this time, the maximum value of one pixel is 255 when white, and the minimum value is 0 when black. In other words, the more colors close to black are in the frame, the smaller the total sum (integral value) becomes.
도 1의 (A)의 입력 영상의 적분값은 '0xd1b2b0'이고, 도 1의 (B)의 입력 영상의 적분값은 '0x6529ab'이다. 이때, (B)의 영상이 (A)의 영상에 비해 검정색에 가까운 색들이 더 많은 것을 알 수 있다. 따라서, 상대적으로 검정색 픽셀이 더 많은 도 1의 (B)가 도 1의 (A)보다 적분값이 더 작음을 알 수 있다. The integral value of the input image of FIG. 1A is '0xd1b2b0', and the integral value of the input image of FIG. 1B is '0x6529ab'. At this time, it can be seen that the image of (B) has more colors closer to black than the image of (A). Accordingly, it can be seen that the integral value of FIG. 1B having more black pixels is smaller than that of FIG. 1A.
하드웨어 설계는 항상 최악 케이스(Worst Case)를 고려하는데, 즉, 640ㅧ480 크기 영상일 경우, 모든 픽셀의 값이 255일 때 적분 이미지의 최종 픽셀값은 78,336,000 이 되며 이를 위해 27 비트를 할당한다. 하지만, 일반적인 상황(영상)에서는 27 비트보다 적은 비트 필요하는 경우 대부분이다.The hardware design always considers the worst case, i.e. for a 640x480 image, when the value of every pixel is 255, the final pixel value of the integrated image is 78,336,000, which is allocated 27 bits. However, in the general situation (picture), most of them need less than 27 bits.
따라서, 도 2와 같이 종래에는 단일 적분 이미지 메모리 구조로 관리하던 것과 달리 본 발명의 실시예에서는 도 3과 같이 비트군 멀티 적분 이미지 메모리 구조를 관리한다. Therefore, unlike the conventional single integrated image memory structure as shown in FIG. 2, an embodiment of the present invention manages the bit group multi-integrated image memory structure as shown in FIG. 3.
도 4를 참조하면, 이미지 신호 처리부(Image Signal Processor, ISP)(1), SURF 특징 추출 IP(3)는 버스(5)를 통해 중앙 처리 프로세서(CPU)(7), 고속 스피드 인터페이스(High Speed Interfaces)(9), 저속 스피드 인터페이스(Low Speed Interfaces)(11) 및 외부 메모리(External Memory)(13)와 연결된다.Referring to FIG. 4, an image signal processor (ISP) 1 and a SURF feature extraction IP 3 are connected to a central processing processor (CPU) 7 and a high speed interface via a bus 5. Interfaces 9, Low Speed Interfaces 11 and External Memory 13.
중앙 처리 프로세서(CPU)(33)는 SURF 하드웨어 장치에 내부 레지스터 설정 및 SURF를 동작시키기 위한 OS(Operating System) 및 펌웨어(Firmware)를 구동시킨다.The central processing processor (CPU) 33 drives an operating system (OS) and firmware (Firmware) for operating the internal register setting and SURF in the SURF hardware device.
고속 스피드 인터페이스(High Speed Interfaces)(35)는 USB와 같은 고속의 외부 인터페이스를 제공하기 위한 제어기 모듈이다. High Speed Interfaces 35 are controller modules for providing high speed external interfaces such as USB.
저속 스피드 인터페이스(Low Speed Interfaces)(37)는 UART(Universal asynchronous receiver/transmitter), SPI(Serial Peripheral Interface)와 같은 저속의 외부 인터페이스를 제공하기 위한 제어기 모듈이다. Low Speed Interfaces 37 are controller modules for providing low speed external interfaces such as Universal Asynchronous Receiver / Transmitter (UART) and Serial Peripheral Interface (SPI).
외부 메모리(External Memory)(13)는 흑백 영상이 저장되는 외부 메모리 파이(External Memory PHY)(15) 및 외부 메모리 파이의 동작을 제어하는 외부 메모리 제어기(External Memory Controller)(17)를 포함한다.The external memory 13 includes an external memory PHY 15 in which a black and white image is stored and an external memory controller 17 that controls the operation of the external memory pie.
이미지 신호 처리부(ISP)(1)는 RGB(Red-Green-Blue)/Y(휘도)U(휘소 신호와 청색 성분의 차)V(휘도 신호와 적색 성분의 차) 영상을 생성한다.The image signal processing unit (ISP) 1 generates an RGB (Red-Green-Blue) / Y (luminance) U (difference between the luminance signal and the blue component) V (difference between the luminance signal and the red component) image.
이미지 신호 처리부(ISP)(1)는 흑백 영상 변환부(Gray-Scale Image Converter)(19) 및 W-DMA(Write Direct Memory Access) 모듈1(21)을 포함한다.The image signal processor (ISP) 1 includes a gray-scale image converter (Gray-Scale Image Converter) 19 and a write direct memory access (W-DMA) module 1 (21).
여기서, 흑백 영상 변환부(19)는 원본 영상을 흑백 영상으로 변환한다. 그리고 변환된 흑백 영상을 W-DMA 모듈1(21)을 통해 외부 메모리(13)에 저장한다. Here, the black and white image converter 19 converts the original image into a black and white image. The converted black and white image is stored in the external memory 13 through the W-DMA module 1 (21).
적분 이미지 메모리(23)는 특징점 추출을 위한 전용 메모리로서, 적분 이미지 생성부(27)가 생성한 적분 이미지를 저장한다. 그리고 적분 이미지 메모리(23)는 복수의 헤이시안 계산부(Hessian Calculator)(31)가 서로 공유하는 메모리이다. The integrated image memory 23 is a dedicated memory for extracting feature points, and stores the integrated image generated by the integrated image generator 27. The integrated image memory 23 is a memory shared by a plurality of Hessian calculators 31.
메모리 관리부(25)는 프레임 단위로 화소 적분값을 실시간 모니터링 해 이를 기반으로 적분 이미지 메모리(23)의 클록 및 전원을 관리한다.The memory manager 25 monitors the pixel integrated value in units of frames in real time and manages the clock and power of the integrated image memory 23 based on the real time monitoring.
이때, 적분 이미지 메모리(23)는 도 3과 같이 비트군 멀티 적분 이미지 메모리 구조로 구현된다. 즉, 메모리 관리부(25)는 도 2와 같은 단일 적분 이미지 메모리를 도 3과 같이 비트군(8비트 단위)으로 각각 3개의 적분 이미지 메모리가 계층화된 구조로 관리한다. 메모리 관리부(25)는 처음에는 제1 적분 이미지 메모리(23-1)에만 클럭을 인가하고 전원을 턴온하여 적분값을 저장하는 처리를 한다. 그리고 화소 적분값을 프레임 단위로 실시간 모니터링하여 화소 적분값이 기 정의된 임계값을 충족하면, 다음 제2 적분 이미지 메모리(23-3)에 클럭을 인가하고 전원을 턴온한다. 그리고 계속해서 화소 적분값을 프레임 단위로 실시간 모니터링하여 마찬가지로 화소 적분값이 기 정의된 임계값을 충족하면, 다음 제3 적분 이미지 메모리(23-5)에 클럭을 인가하고 전원을 턴온한다. In this case, the integrated image memory 23 is implemented as a bit group multi-integrated image memory structure as shown in FIG. 3. That is, the memory manager 25 manages a single integrated image memory as shown in FIG. 2 in a structure in which three integrated image memories are layered in bit groups (8-bit units) as shown in FIG. 3. The memory manager 25 initially applies a clock only to the first integrated image memory 23-1 and turns on the power to store the integrated value. When the pixel integrated value meets a predetermined threshold value by real-time monitoring of the pixel integrated value in a frame unit, a clock is applied to the next integrated image memory 23-3 and the power is turned on. Subsequently, the pixel integrated value is monitored in real time on a frame basis, and when the pixel integrated value satisfies a predetermined threshold value, the clock is applied to the next integrated image memory 23-5 and the power is turned on.
이와 같이, 메모리 관리부(25)는 적분 이미지 생성부(23)가 생성하는 적분값을 실시간 모니터링하고, 임계치에 기반하여 각각의 서브 적분 이미지 메모리(Sub-Integral Image MEM0, Sub-Integral Image MEM1, …, Sub-Integral Image MEMn)의 클록 및 전원을 순차적으로 관리(Integral Image Monitor & Integral Image Memory Clock/Power Manager)한다. 이때, 클록 및 전원의 턴-온(Turn-on) 및 변경 후 안정화 시간을 마진(Margin)으로 설정한다.In this way, the memory manager 25 monitors the integral value generated by the integrated image generator 23 in real time, and based on the threshold value, each sub-integral image memory (Sub-Integral Image MEM0, Sub-Integral Image MEM1,...) Manages the clock and power of Sub-Integral Image MEMn sequentially (Integral Image Monitor & Integral Image Memory Clock / Power Manager). At this time, the turn-on of the clock and the power supply and the settling time after the change are set to a margin.
적분 이미지 생성부(27)는 R-DMA(Read Direct Memory Access) 모듈(29)을 이용해 외부 메모리(13)로부터 흑백 영상을 리드(Read)하여 적분 이미지를 생성한다.The integrated image generator 27 reads a black and white image from the external memory 13 using a read direct memory access (R-DMA) module 29 to generate an integrated image.
이때, 적분 이미지 생성부(27)는 빠른 박스 필터링 연산을 위해 입력 영상인 흑백영상을 적분한 적분 이미지를 재생성하여 사용한다. 640ㅧ480 크기 및 8 비트 흑백 입력 영상인 경우, 한 픽셀이 가질 수 있는 최대값은 255이며 모든 픽셀이 255일 때 적분 이미지의 최대값은 78,336,000이 되어 이를 표현하기 위해서 최대 27비트가 요구된다. In this case, the integrated image generator 27 regenerates and uses an integrated image obtained by integrating a monochrome image, which is an input image, for a quick box filtering operation. In the case of 640 x 480 size and 8-bit black and white input image, the maximum value of one pixel can be 255, and when all pixels are 255, the maximum value of the integrated image is 78,336,000, which requires a maximum of 27 bits.
복수의 헤이시안 계산부(31)는 박스 필터 패턴에 따라 데이터 패칭 유닛(Data Fatching Unit)(33)을 통해 적분 이미지 메모리(23)로부터 적분 이미지 화소값을 패치하여 박스 필터(Box filter) 연산을 수행한다. 그리고 복수의 헤이시안 계산부(31)가 계산한 헤이시안 값들은 각각의 헤이시안 메모리(35)에 저장된다.The plurality of Hessian calculation units 31 patch the integrated image pixel values from the integrated image memory 23 through the data fatching unit 33 according to the box filter pattern to perform a box filter operation. Perform. The Hessian values calculated by the plurality of Hessian calculation units 31 are stored in each Hessian memory 35.
특징점 추출부(37)는 각각의 헤이시안 메모리(35)에 저장된 박스 필터링 연산 결과를 기반으로 특징점을 추출한다. 이때, 다른 크기의 박스 필터링 연산 결과와 비교하여 헤이시안 값이 최대인 픽셀을 특징점으로 추출한다.The feature point extractor 37 extracts the feature points based on the result of the box filtering operation stored in each of the Hessian memories 35. At this time, the pixel having the largest Hessian value is extracted as the feature point, compared to the result of the box filtering operation having another size.
메인 제어부(Main Controller)(39)는 전체 블록을 제어하는 기능 외에 추가된 블록, 즉, 적분 이미지 메모리(23), 메모리 관리부(25)를 제어한다.The main controller 39 controls the added block, that is, the integrated image memory 23 and the memory manager 25, in addition to the function of controlling the entire block.
또한, 적분 이미지 메모리(23), 메모리 관리부(25), 적분 이미지 생성부(27), R-DMA 모듈(29), 헤이시안 계산부(31), 데이터 패칭 유닛(33), 헤이시안 메모리(35), 특징 추출부(37),메인 제어부(39) 및 W-DMA모듈2(41)을 포함하는 SURF 특징 추출 IP는 시스템-온-칩(System-On-Chip)으로 구현될 수 있다.The integrated image memory 23, the memory manager 25, the integrated image generator 27, the R-DMA module 29, the Hessian calculator 31, the data patching unit 33, the Hessian memory ( 35), the SURF feature extraction IP including the feature extractor 37, the main controller 39, and the W-DMA module 2 41 may be implemented as a system-on-chip.
지금까지 설명한 내용을 토대로 적분 이미지 메모리를 관리하는 방법을 설명하면 다음과 같다.Based on the above description, the integrated image memory management method is as follows.
도 5는 본 발명의 실시예에 따른 적분 이미지 메모리 관리 방법을 도시한 순서도이다.5 is a flowchart illustrating an integrated image memory management method according to an exemplary embodiment of the present invention.
도 5를 참조하면, 메모리 관리부(25)는 적분 이미지 생성부(23)가 생성하는 화소 적분값을 실시간 모니터링한다(S101).Referring to FIG. 5, the memory manager 25 monitors the pixel integrated value generated by the integrated image generator 23 in real time (S101).
메모리 관리부(25)는 S101 단계에서 모니터링한 결과, 화소 적분값이 기 정의됨 임계치를 충족하는지 판단한다(S103). 여기서, 임계치는 적분 이미지 메모리(23)를 몇 개의 서브 적분 이미지 메모리로 분할하였는지에 의해 결정된다.As a result of monitoring in step S101, the memory manager 25 determines whether the pixel integrated value satisfies a predefined threshold (S103). Here, the threshold is determined by how many sub-integrated image memories the integral image memory 23 is divided into.
하나의 실시예에 따르면, 27bit의 데이터 넓이(data width)를 가지는 적분 이미지 메모리를 7bit짜리 메모리(상위 비트)와 20bit짜리 메모리(하위 비트), 두 그룹으로 분할할 수 있다. 이때, 하위 비트를 위한 20bit 메모리에, 220, 즉 0xFFFFF의 값까지 저장될 수 있다. 적분값이 그 이상이 된다면 상위 비트를 위한 7bit짜리 메모리를 턴온하는 것이다. 그리고 임계치에 턴온 마진(turn on margin)을 포함시킬 수 있다. 즉, 클럭(clock)이나 전원(power)을 켜서 안정화 되는 시간을 임계치에 마진(margin)으로 두어 좀 더 일찍 턴온시킬 수 있다.According to an embodiment, the integrated image memory having a data width of 27 bits may be divided into two groups, a 7-bit memory (upper bit) and a 20-bit memory (lower bit). At this time, up to a value of 2 20 , that is, 0xFFFFF, may be stored in the 20- bit memory for the lower bit. If the integral is greater than that, you are turning on 7-bit memory for the higher bits. In addition, the threshold may include a turn on margin. In other words, the time to stabilize by turning on a clock or power can be turned on earlier by margining at a threshold.
한편, S103 단계에서, 충족하지 않으면, S101 단계를 다시 시작한다.On the other hand, if it is not satisfied in step S103, step S101 is restarted.
반면, 충족하면, 다음 서브 적분 이미지 메모리의 클록을 인가하여 전원을 턴온한다(S105).On the other hand, if satisfied, the power is turned on by applying the clock of the next sub-integrated image memory (S105).
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (6)

  1. 영상의 특징점 및 서술자를 연산하는 SURF(Speeded Up Robust Feature) 하드웨어 장치로서,A speeded up robust feature (SURF) hardware device that computes feature points and descriptors in an image.
    입력받은 흑백 영상을 토대로 적분 이미지를 생성하는 적분 이미지 생성부,An integrated image generation unit generating an integrated image based on the input black and white image,
    상기 적분 이미지의 화소값을 저장하고, 복수의 서브 적분 이미지를 포함하는 멀티 적분 이미지 메모리, 그리고A multi-integrated image memory for storing pixel values of the integrated image and including a plurality of sub-integrated images, and
    상기 적분 이미지의 화소값을 실시간 모니터링한 결과를 토대로 상기 복수의 서브 적분 이미지 메모리의 클록 및 전원을 순차적으로 관리하는 메모리 관리부A memory manager configured to sequentially manage clocks and powers of the plurality of sub-integrated image memories based on a result of real-time monitoring of pixel values of the integrated image
    를 포함하는 SURF 하드웨어 장치.SURF hardware device comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 복수의 서브 적분 이미지 메모리는The plurality of sub-integrated image memories
    비트군 단위인 SURF 하드웨어 장치.SURF hardware device in bit family.
  3. 제2항에 있어서,The method of claim 2,
    상기 메모리 관리부는,The memory manager,
    제1 서브 적분 이미지 메모리에 클럭을 인가하고 전원을 턴온하여 상기 적분 이미지의 화소값을 저장하고, 상기 적분 이미지 생성부로부터 출력되는 적분 이미지의 화소값을 실시간 모니터링하여 기 정의된 임계값을 충족하면, 상기 제1 서브 적분 이미지 메모리의 다음 제2 서브 적분 이미지 메모리에 클럭을 인가하여 전원을 턴온하는 SURF 하드웨어 장치.When the clock is applied to the first sub-integration image memory and the power is turned on, the pixel value of the integrated image is stored, and the pixel value of the integrated image output from the integrated image generator is real-time monitored to satisfy a predetermined threshold value. And turning on a power by applying a clock to a second sub-integration image memory of the first sub-integration image memory.
  4. 영상의 특징점 및 서술자를 연산하는 SURF(Speeded Up Robust Feature) 하드웨어 장치가 적분 이미지 메모리를 관리하는 방법으로서,A method of managing an integrated image memory by a speeded up robust feature (SURF) hardware device that computes feature points and descriptors of an image,
    입력받은 흑백 영상을 토대로 적분 이미지를 생성하는 단계, 그리고Generating an integrated image based on the input black and white image, and
    상기 적분 이미지의 화소값을 실시간 모니터링한 결과를 토대로 복수의 서브 적분 이미지 메모리의 클록 및 전원을 순차적으로 관리하는 단계Sequentially managing clocks and power supplies of a plurality of sub-integrated image memories based on a result of real-time monitoring of pixel values of the integrated image;
    를 포함하는 적분 이미지 메모리 관리 방법.Integrated image memory management method comprising a.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 관리하는 단계는,The managing step,
    제1 서브 적분 이미지 메모리에 클럭을 인가하고 전원을 턴온하는 단계,Applying a clock to the first sub-integration image memory and turning on power;
    상기 제1 서브 적분 이미지 메모리에 상기 적분 이미지의 화소값을 저장하는 단계,상기 적분 이미지의 화소값을 실시간 모니터링하여 기 정의된 임계값을 충족하는지 판단하는 단계, 그리고Storing the pixel value of the integrated image in the first sub-integrated image memory, real-time monitoring of the pixel value of the integrated image to determine whether a predetermined threshold value is satisfied, and
    상기 기 정의된 임계값을 충족하면, 상기 제1 서브 적분 이미지 메모리의 다음 제2 서브 적분 이미지 메모리에 클럭을 인가하여 전원을 턴온하는 단계Turning on the power by applying a clock to a second sub-integration image memory of the first sub-integration image memory when the predefined threshold value is satisfied;
    를 포함하는 적분 이미지 메모리 관리 방법.Integrated image memory management method comprising a.
  6. 제5항에 있어서,The method of claim 5,
    상기 복수의 서브 적분 이미지 메모리는 비트군 단위의 멀티 적분 이미지 메모리를 포함하는 적분 이미지 메모리 관리 방법.And the plurality of sub-integrated image memories includes a multi-integrated image memory in units of bit groups.
PCT/KR2013/011270 2013-12-05 2013-12-06 Surf hardware apparatus, and method for managing integral image WO2015083857A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0150958 2013-12-05
KR1020130150958A KR101531038B1 (en) 2013-12-05 2013-12-05 Surf hardware apparatus and method for managing integral image memory thereof

Publications (1)

Publication Number Publication Date
WO2015083857A1 true WO2015083857A1 (en) 2015-06-11

Family

ID=53273598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011270 WO2015083857A1 (en) 2013-12-05 2013-12-06 Surf hardware apparatus, and method for managing integral image

Country Status (2)

Country Link
KR (1) KR101531038B1 (en)
WO (1) WO2015083857A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208806A1 (en) * 2015-06-26 2016-12-29 광운대학교 산학협력단 Integral image generation device using block structure and method therefor
CN108830831A (en) * 2018-05-11 2018-11-16 中南大学 One kind is based on the improvement matched zinc flotation froth nature velocity characteristic extracting method of SURF
CN110570444A (en) * 2019-09-06 2019-12-13 合肥工业大学 Threshold calculation method based on Box Filter algorithm

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100048791A (en) * 2008-10-31 2010-05-11 삼성전자주식회사 Apparatus and method for image processing
US20130272575A1 (en) * 2011-11-01 2013-10-17 Intel Corporation Object detection using extended surf features

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6510525B1 (en) * 1999-04-26 2003-01-21 Mediaq, Inc. Method and apparatus to power up an integrated device from a low power state
JP2003068076A (en) * 2001-08-27 2003-03-07 Elpida Memory Inc Power control method for semiconductor memory, and semiconductor memory

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100048791A (en) * 2008-10-31 2010-05-11 삼성전자주식회사 Apparatus and method for image processing
US20130272575A1 (en) * 2011-11-01 2013-10-17 Intel Corporation Object detection using extended surf features

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERIC LI ET AL.: "SURF Cascade Face Detect ion Acceleration on Sandy Bridge Processor", COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2012 IEEE COMPUTER SOCIETY CONFERENCE, 16 June 2012 (2012-06-16), PROVIDENCE, RHODE ISLAND, pages 41 - 47 *
KIM, SOO JIN ET AL.: "Design of High-performance Pedestrian and Vehicle Detect ion Circuit Using Haar-like Features", TENCON 2012 - 2012 IEEE REGION 10 CONFERENCE, 19 November 2012 (2012-11-19), CEBU *
NICO CORNEL IS ET AL.: "Fast Scale Invariant Feature Detect ion and Matching on Programmable Graphics Hardware", COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2008, IEEE COMPUTER SOCIETY CONFERENCE, 23 June 2008 (2008-06-23), ANCHORAGE, AI KSKA *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208806A1 (en) * 2015-06-26 2016-12-29 광운대학교 산학협력단 Integral image generation device using block structure and method therefor
CN108830831A (en) * 2018-05-11 2018-11-16 中南大学 One kind is based on the improvement matched zinc flotation froth nature velocity characteristic extracting method of SURF
CN110570444A (en) * 2019-09-06 2019-12-13 合肥工业大学 Threshold calculation method based on Box Filter algorithm
CN110570444B (en) * 2019-09-06 2023-03-21 合肥工业大学 Threshold calculation method based on Box Filter algorithm

Also Published As

Publication number Publication date
KR101531038B1 (en) 2015-06-23
KR20150065532A (en) 2015-06-15

Similar Documents

Publication Publication Date Title
US10212339B2 (en) Image generation method based on dual camera module and dual camera apparatus
CN110602488B (en) Day and night type camera device switching abnormity detection method and device and camera device
WO2021133001A1 (en) Semantic image inference method and device
WO2014069822A1 (en) Apparatus and method for face recognition
WO2015083857A1 (en) Surf hardware apparatus, and method for managing integral image
CN102111640B (en) Effective image area detection method and system
WO2020197268A1 (en) Method and electronic device for processing facial images
WO2014208817A1 (en) Histogram equalization apparatus using histogram compression
WO2024007948A1 (en) Stroboscopic image processing method and apparatus, electronic device and readable storage medium
EP2953340B1 (en) Image processing device, image processing method, program, and recording medium
CN111614892A (en) Face image acquisition method, shooting device and computer-readable storage medium
CN111626967A (en) Image enhancement method, image enhancement device, computer device and readable storage medium
WO2020067615A1 (en) Method for controlling video anonymization device for improving anonymization performance, and device therefor
CN110618852A (en) View processing method, view processing device and terminal equipment
CN113132639A (en) Image processing method and device, electronic equipment and storage medium
WO2020138630A1 (en) Display apparatus and image processing method thereof
WO2017086522A1 (en) Method for synthesizing chroma key image without requiring background screen
KR20160053632A (en) Local tone mapping circuit, and mobile computing device including the same
WO2016098943A1 (en) Image processing method and system for improving face detection capability
CN113391779B (en) Parameter adjusting method, device and equipment for paper-like screen
CN104917969A (en) Image processing method and mobile terminal
CN112070096B (en) Color recognition method, device, terminal equipment and storage medium
CN112686109B (en) Method and device for extracting offline video file, electronic equipment and storage medium
US20150046962A1 (en) Method of controlling physically separated network computers in one monitor and security system using the same.
CN106776393A (en) A kind of serial data method of reseptance and device without interruption

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898844

Country of ref document: EP

Kind code of ref document: A1