WO2015083791A1 - Method for detecting lung cancer and detection kit - Google Patents

Method for detecting lung cancer and detection kit Download PDF

Info

Publication number
WO2015083791A1
WO2015083791A1 PCT/JP2014/082122 JP2014082122W WO2015083791A1 WO 2015083791 A1 WO2015083791 A1 WO 2015083791A1 JP 2014082122 W JP2014082122 W JP 2014082122W WO 2015083791 A1 WO2015083791 A1 WO 2015083791A1
Authority
WO
WIPO (PCT)
Prior art keywords
lung cancer
antibody
amount
exosome
sample
Prior art date
Application number
PCT/JP2014/082122
Other languages
French (fr)
Japanese (ja)
Inventor
幸嗣 植田
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Publication of WO2015083791A1 publication Critical patent/WO2015083791A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57423Specifically defined cancers of lung
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants

Definitions

  • the present invention relates to a detection method and detection kit for lung cancer.
  • Non-patent Document 1 Non-patent Document 1
  • Non-Patent Documents 2 to 4 Delivery of therapeutic RNA via exosomes is already in the pioneering stage of cancer treatment.
  • Non-Patent Documents 7 to 9 Basically, a set of molecules expressed in the original solid tumor cells can be detected as an exosome component in the blood circulation.
  • exosome biomarkers are feasible, but it is difficult to separate exosomes from biological fluids, which significantly hinders efficient search for biomarker candidates.
  • ultracentrifugation-based methods are the most common method for separating exosomes from serum samples (Non-Patent Document 10), but their reproducibility, processing time and purity quantitatively analyze a large number of clinical samples. Not suitable for biomarker screening studies (Non-patent Document 11).
  • An object of the present invention is to provide a detection method and detection kit for lung cancer using a novel biomarker for lung cancer.
  • the detection method according to the present invention is a method for detecting lung cancer, and includes a step of measuring the amount of at least one of CD91 and CD317 in a sample collected from a living body.
  • the detection kit according to the present invention is a detection kit for detecting lung cancer, an antibody or peptide probe that recognizes CD91 in a sample collected from a living body, and an antibody that recognizes CD317 in a sample collected from a living body Or at least one of the peptide probes.
  • the present invention can provide a detection method and detection kit for lung cancer using a novel biomarker for lung cancer.
  • FIG. 1 is a schematic diagram of a workflow for searching an exosome biomarker in an example.
  • Exosomes were isolated from serum samples from 46 individuals by anti-CD9 antibody-conjugated monolithic chip (anti-CD9-MSIA chip) on a 12-channel automated pipetting platform.
  • the concentrated exosome fraction was analyzed by LC / MS / MS and subjected to label-free quantitative analysis by RefinerMS software on the Expressionist® proteome server system.
  • the quantified peptides were subjected to a two-step statistical analysis consisting of ANOVA and a feature exclusion method, and finally extracted biomarker candidate peptides were identified using a Sequest database search.
  • the identification threshold was set at a false positive rate (FDR) ⁇ 1%.
  • FDR false positive rate
  • FIG. 2 is a diagram illustrating a processing workflow used in biomarker screening analysis in the Expressionist® RefinerMS module in the embodiment.
  • FIG. 3 is a diagram showing the anti-CD9-MSIA chip in the example.
  • A is an enlarged view of an anti-CD9-MSIA chip in an example.
  • B shows the results of three measurements performed by LC / MS / MS after purifying the exosome fraction from a common serum sample using six independent anti-CD9-MSIA chips.
  • FIG. 4 shows a comprehensive overview of the proteome of 1601 identified exosomal proteins in the examples.
  • A is a pie chart showing the distribution of localization of proteins in cells.
  • B is the figure which used Fisher exact probability statistics (Fisher
  • FIG. 5 is a diagram showing a two-stage statistical selection of biomarker candidates in the examples.
  • a 3-group ANOVA was performed to compare NC, IP and ADC groups (a) or NC, IP and SCC groups (b). Peptides satisfying the reference value p ⁇ 0.001 were used for the second ranking selection.
  • the upport-vector-machine-recursive-feature-elimination (SVM-RFE) method based on cross confirmation was used for comparison of NC, IP and ADC groups, and the minimum biomarker set showing the minimum misclassification rate was calculated (c).
  • SVM-RFE upport-vector-machine-recursive-feature-elimination
  • FIG. 6 is a diagram showing 19 exosomal biomarker candidates identified in the examples. LC / MS / MS signal intensities for 19 biomarker candidates from 46 samples were represented in a box plot. UniProtKB entry protein names are shown at the top of the box plot.
  • N healthy control
  • IP interstitial pneumonia
  • ADC lung adenocarcinoma
  • SCC lung squamous cell carcinoma.
  • FIG. 7 is a diagram showing a verification test based on an exosome sandwich ELISA for CD91 in Examples.
  • A shows the principle of exosome sandwich ELISA.
  • SA-HRP Streptavidin-horseradish peroxidase. 212 independent serum samples were used to measure exosomal CD91 and CEA concentrations.
  • B shows the serum exosome concentration determined by CD9-CD9 sandwich ELISA.
  • C shows the concentration of CEA measured by a commercially available ELISA kit.
  • D shows the concentration of CD91 in exosomes determined by CD9-CD91 sandwich ELISA. The values are standardized using the exosome concentration calculated in (b).
  • the dashed line shows the cutoff value for CEA (c) at 5.0 ng / mL or exosomal CD91 (d) at 2.04 U / exosome.
  • Sensitivity (Sens) and specificity (Spec) for each small group of lung cancers are shown at the bottom of the box plot.
  • N Healthy control
  • IP Interstitial pneumonia
  • ADC_1_2 Stage I, II lung adenocarcinoma
  • ADC_3_4 Stage III, IV lung adenocarcinoma
  • SCC_1_2 Stage I, II lung squamous cell carcinoma
  • SCC_3_4 Stage III IV squamous cell carcinoma of the lung.
  • FIG. 8 is a diagram showing ROC curve analysis for exosomal CD91 and CEA in Examples.
  • the ROC curve for CEA (a), the ROC curve for CD91 of exosome (b), and the combined marker CEA + exosome CD91 (c) based on logistic regression are indicated by R, respectively.
  • Sensitivity (Sens), specificity (Spec), positive predictive value (PV +), negative predictive value (PV-) and area under the curve (AUC) are shown in each graph.
  • FIG. 9 is a diagram showing a verification test based on an exosome sandwich ELISA for CD317 in Examples. The OD450 value in CD9-CD317 sandwich ELISA is shown.
  • N Healthy control
  • ADC_1 Stage I lung adenocarcinoma
  • ADC_2 Stage II lung adenocarcinoma
  • ADC_3 Stage III lung adenocarcinoma
  • ADC_4 Stage IV lung adenocarcinoma
  • SCC_1 Stage I lung squamous epithelium Cancer
  • SCC_2 Stage II lung squamous cell carcinoma
  • SCC_3 Stage III lung squamous cell carcinoma
  • SCC_4 Stage IV lung squamous cell carcinoma.
  • the inventor of the present application has developed a chip that can purify exosomes in a short time with high reproducibility.
  • exosomes were purified using this chip, and an attempt was made to search for biomarkers in exosomes.
  • the present invention has been completed.
  • the lung cancer detection method according to the present invention includes a step of measuring the amount of at least one of CD91 and CD317 in a sample collected from a living body.
  • Other specific processes, and instruments and apparatuses to be used are not particularly limited.
  • sample used in the lung cancer detection method according to the present invention is a sample (biological sample) collected from a living body (subject).
  • samples collected from a living body include samples derived from body fluids such as blood, urine and saliva. Preferably, it is derived from blood.
  • samples derived from blood include whole blood, serum, and plasma.
  • sample is preferably whole blood, serum and plasma, more preferably serum and plasma.
  • One embodiment of the method for detecting lung cancer according to the present invention includes a step of collecting a sample from a living body (subject).
  • one embodiment of the lung cancer detection method according to the present invention includes a step of preprocessing a sample collected from a living body (subject). Examples of sample pretreatment include purification of collected whole blood to obtain serum, and purification of collected whole blood to obtain plasma.
  • Examples of the “living body (subject)” include mammals such as humans, mice, rats, rabbits, monkeys, and preferably humans.
  • Examples of the blood collection site include an axillary skin vein, a cephalic vein, and an ulnar skin vein.
  • lung cancer refers to lung adenocarcinoma, lung squamous cell carcinoma, small cell carcinoma, large cell carcinoma, and a mixture thereof.
  • the lung cancer detection method according to the present invention is particularly suitable for the detection of lung adenocarcinoma and lung squamous cell carcinoma, and is more suitable for the detection of lung adenocarcinoma.
  • stage of lung cancer is not particularly limited, in the method for detecting lung cancer according to the present invention, when measuring the amount of CD91, it is also possible to detect lung cancer at an early stage, for example, stage I and stage II, which has been difficult to detect conventionally. Can do.
  • stage III and stage VI lung cancer when measuring the amount of CD317, it is possible to suitably detect stage III and stage VI lung cancer.
  • CD91 Protein-density lipoprotein-receptor-related-protein-1
  • CD317 Breast-stromal-antigen-1
  • the accession numbers of UniProtKB for protein and human CD317 protein are shown respectively.
  • CD91 includes not only the full-length CD91 protein but also fragments thereof, and also includes the precursor of CD91 protein. That is, for example, “measuring the amount of CD91” means measuring the amount of at least one of full-length CD91 polypeptide, a fragment of CD91 polypeptide, and a precursor of CD91 polypeptide.
  • the CD91 whose amount is measured can be, for example, CD91 579-605 .
  • CD317 includes not only the full-length CD317 protein but also fragments thereof, and also includes the precursor of CD317 protein.
  • “measuring the amount of CD317” means measuring the amount of at least one of a full length CD317 polypeptide, a fragment of a CD317 polypeptide, and a precursor of a CD317 polypeptide.
  • the CD317 whose amount is measured can be, for example, CD317 137-147 .
  • “measuring the amount of CD91” is intended to measure the abundance or concentration of CD91 in a biological sample or a sample obtained by purifying it.
  • the “amount of CD91” may be an absolute amount (absolute mass or absolute concentration) or a relative amount (relative mass or relative concentration). Further, for example, it may be a peak area in mass spectrometry, a luminescence intensity in luminescence measurement, or the like, or a value indicating how many times it is with respect to a predetermined standard.
  • “Amount of CD91” is preferably the amount of CD91 present on the exosome surface. Further, it may be preferable that the “amount of CD91” is CD91 per exosome. The same can be said for CD317.
  • lung cancer marker those whose amounts can be measured are collectively referred to as “lung cancer marker” below.
  • the amount of CD91 in a biological sample derived from a subject is measured, the amount of CD91 in a biological sample derived from a control subject not having lung cancer is measured, By comparing these, lung cancer can be detected. Specifically, when the amount of CD91 in the sample derived from the subject is compared with the amount of CD91 in the sample derived from the control subject, and the amount of CD91 in the sample derived from the subject is significantly increased. Can be determined that the subject has lung cancer or is likely to have lung cancer. The amount of CD91 in the sample derived from the control subject can be determined in advance.
  • the amount of CD91 in a biological sample derived from a control subject who does not have lung cancer is measured in advance, and a normal concentration range is determined based on this, and the amount of CD91 in the biological sample derived from the subject is normal. It can also be determined that the patient has lung cancer or is likely to have lung cancer when increasing outside the concentration range. That is, in one embodiment of the method for detecting lung cancer according to the present invention, when the measured amount of CD91 is increased compared to a control subject not having lung cancer, Or the process of determining with the high possibility of having lung cancer is further included.
  • the control subjects may include both control subjects and lung cancer patients who do not have lung cancer, or only lung cancer patients.
  • the significant difference is determined by a statistical method such as t-test, F-test, chi-square test, or Mann-Whitney's U test. I can judge.
  • another example of the method for detecting lung cancer according to the present invention is to measure the amount of CD317 instead of CD91, and the same can be said. Therefore, in another embodiment of the method for detecting lung cancer according to the present invention, whether the measured amount of CD317 is increased compared to a control subject not having lung cancer, has lung cancer? Or a step of determining that the patient is likely to have lung cancer.
  • the method for measuring the amount of the lung cancer marker is not particularly limited as long as the abundance of the lung cancer marker can be quantitatively or semi-quantitatively determined.
  • an antibody that recognizes the lung cancer marker to be measured was used.
  • a method using an immunological technique, a method using a peptide probe that recognizes a lung cancer marker to be measured, a liquid column chromatography method, a mass spectrometry method, and the like can be used.
  • Examples of the method using an antibody include an ELISA method, a quantitative western blotting method, a radioimmunoassay method, an immunochromatography method, and an immunoprecipitation method.
  • the type of ELISA method is not particularly limited, but is a so-called antigen measurement system (measurement of the amount of antigen contained in a biological sample), ELISA by direct adsorption method, ELISA by competition method, ELISA by sandwich method, and micro flow An ELISA specialized for the measurement of a very small amount of sample using a road system or microbeads can be mentioned.
  • the antibody that recognizes the lung cancer marker to be measured may be a monoclonal antibody or a polyclonal antibody, but is preferably a monoclonal antibody. Based on information from public databases such as UniProt, those skilled in the art can easily determine an amino acid sequence suitable as an antigen for producing an antibody that recognizes CD91 and an antibody that recognizes CD317.
  • the antibody that recognizes CD91 is preferably an antibody specific to CD91.
  • the antibody that recognizes CD317 is preferably an antibody specific for CD317.
  • antibody is intended to mean a form including all classes and subclasses of immunoglobulins and functional fragments of antibodies.
  • the antibody is a concept including both natural antibodies of a polyclonal antibody and a monoclonal antibody, and includes an antibody produced using a gene recombination technique and a functional fragment of the antibody.
  • the “functional fragment of an antibody” refers to one having a partial region of the above-described antibody and having an antigen-binding ability (synonymous with a binding fragment).
  • Natural antibodies can be derived from any species including, but not limited to, humans, mice, rats, monkeys, goats, rabbits, camels, llamas, cows and chickens.
  • the antibody produced using gene recombination technology is not particularly limited, but chimeric antibodies such as humanized antibodies and primatized antibodies obtained by genetic modification of natural antibodies, synthetic antibodies, recombinant antibodies, Mutagenized antibodies and graft-bound antibodies (for example, antibodies to which other proteins and radioactive labels are conjugated or fused), and antibodies already produced using genetic recombination techniques are described above. These also include antibodies that have been modified in the same manner as when genetically modifying natural antibodies. Specific examples of functional fragments of antibodies include F (ab ′) 2 , Fab ′, Fab, Fv (variable fragment of antibody), sFv, dsFv (disulphide stabilized Fv) and dAb (single domain antibody). Etc.
  • the binding fragment includes an antibody fragment mutated in a range that maintains reactivity with the target lung cancer marker as a concept of the binding fragment.
  • the aforementioned mutation introduction is performed using a known technique such as a gene modification technique, which is appropriately selected by those skilled in the art.
  • the detection of the above-described antibody can be performed by forming a complex with a secondary antibody labeled with a reporter molecule capable of attracting a detectable signal.
  • the antibody described above may be pre-labeled with a reporter molecule.
  • the reporter molecule is, for example, an enzyme, a fluorophore-containing molecule, or a radionuclide-containing molecule.
  • Various reporter molecules are known and may be appropriately selected.
  • an enzyme for example, peroxidase, ⁇ -galactosidase, alkaline phosphatase, glucose oxidase, or acetylcholinesterase can be used as the enzyme.
  • a crosslinking agent such as a maleimide compound.
  • a known substance can be used according to the type of enzyme used. For example, when peroxidase is used as the enzyme, 3,3 ′, 5,5′-tetramethylbenzidine and the like can be used.
  • an alkaline phosphatase as an enzyme, paranitrol phenol etc. can be used.
  • radionuclide 125 I, 3 H, or the like can be used.
  • fluorescent dye fluoroless isothiocyanate (FITC) or tetramethylrhodamine isothiocyanate (TRITC) can be used.
  • a simple measurement system such as immunochromatography for detecting by aggregation of colloidal gold on which the secondary antibody is immobilized can also be used.
  • a peptide probe labeled with the above-mentioned reporter molecule can be used.
  • the peptide probe that recognizes CD91 is preferably a peptide probe specific for CD91.
  • the peptide probe that recognizes CD317 is preferably a peptide probe specific for CD317.
  • a luminescence measurement method including color development or fluorescence measurement, or a radiometric method can be used.
  • Mass spectrometry may be performed using a known mass spectrometer. Since mass spectrometry using a mass spectrometer is excellent in sensitivity and accuracy, accurate determination can be made. Furthermore, by using a multi-channel mass spectrometer capable of simultaneous multi-component analysis, the amount of two or more lung cancer markers (for example, CD91 and CD317) can be measured at a time. Furthermore, biomarkers relating to other diseases other than lung cancer can be simultaneously measured, and detection of various diseases can be attempted at once. In order to perform detection with higher accuracy, it is preferable to use a tandem mass spectrometer (MS / MS).
  • the mass spectrometer used in the detection method of the present invention is not particularly limited as long as it can be quantified, and conventionally known types of mass spectrometers such as a quadrupole type and a time-of-flight type can be used.
  • the ELISA method is preferable, and the sandwich ELISA is more preferable.
  • a sandwich ELISA for measuring the amount of CD91 present on the exosome surface will be described (see also FIG. 7 (a)).
  • an antibody capture antibody
  • a protein excluding CD91
  • Is bound Is bound, and then contacted with a sample containing exosomes to form a capture antibody-exosome complex. Further, it is brought into contact with a labeled anti-CD91 antibody (detection antibody) to form a capture antibody-exosome-detection antibody complex.
  • the capture antibody is preferably directed to a protein that has no significant difference in the expression level on the exosome surface between lung cancer patients and healthy individuals who do not have lung cancer.
  • proteins include CD9 (5H9 antigen, cell-growth-inhibiting gene-2 protein, leukocyte antigen-MIC3, Motility-related protein protein MRP-1, Tetraspanin-29; p24), CD63, CD81, and other molecules belonging to the tetraspanin family.
  • Anti-CD9 antibody, anti-CD63 antibody, anti-CD81 antibody and the like reference document: International Publication WO2013 / 099925.
  • the amount existing on the exosome surface can be measured by the same method as described above.
  • the amount of CD91 and / or CD317 per exosome it is preferable to measure the amount of CD91 and / or CD317 per exosome.
  • the amount of exosome in the biological sample or a sample obtained by purifying the same is measured, and the result is used to normalize the separately measured amount of CD91 and / or CD317 to obtain CD91 and / or per exosome.
  • the amount of CD317 is calculated.
  • the “amount of exosome” may be an absolute amount (absolute mass or absolute concentration) or a relative amount (relative mass or relative concentration). Since the amount of exosome varies depending on the subject, lung cancer can be detected more accurately by standardization.
  • the method includes a step of measuring the amount of exosome in a sample collected from a living body.
  • the method includes a step of calculating the amount of CD91 per exosome using the measured amount of exosome and the measured amount of CD91.
  • a step of calculating the amount of CD317 per exosome using the measured amount of exosome and the measured amount of CD317 is included.
  • sandwich ELISA As a method for measuring the amount of exosome, sandwich ELISA can be mentioned. An example of a sandwich ELISA for measuring the amount of exosome will be described (see also FIG. 7 (a)).
  • a substrate to which a first antibody (capture antibody) against a protein existing on the exosome surface is prepared is prepared. And then contacted with a sample containing exosomes to form a capture antibody-exosome complex. Furthermore, it is contacted with a labeled second antibody (detection antibody) to form a capture antibody-exosome-detection antibody complex. Then, the amount of exosome is measured by measuring the color intensity.
  • the first antibody and the second antibody are preferably against a protein that has no significant difference in the expression level on the exosome surface between a lung cancer patient and a healthy person who does not have lung cancer.
  • Examples include CD9, CD63, CD81, and other molecules belonging to the tetraspanin family, and examples of the antibody include anti-CD9 antibody, anti-CD63 antibody, and anti-CD81 antibody.
  • the first antibody and the second antibody may be the same type of antibody, or may be different types of antibodies.
  • the first antibody and the second antibody may be of the same type or different types from those used in the sandwich ELISA for measuring the amount of CD91 and / or CD317 present on the exosome surface. May be.
  • exosomes may be purified from a sample collected from a living body. That is, one embodiment of the lung cancer detection method according to the present invention includes a step of purifying exosomes from a sample collected from a living body.
  • the method for purifying exosomes include a method using an antibody against a protein existing on the exosome surface, a method using an ultracentrifuge, and a method using a commercially available purification kit.
  • a mass spectrometry immunoassay pipette chip to which the antibody (for example, anti-CD9 antibody) is immobilized is used (see also Examples).
  • the method for detecting lung cancer according to the present invention preferably further includes a step of measuring the amount of CEA (carcinoembryonic antigen) in a sample collected from a living body.
  • CEA Carcinoembryonic antigen
  • sensitivity and specificity are improved, and lung cancer can be detected more accurately (see also Examples).
  • CEA has a known amino acid sequence, and the accession number of UniProtKB is P06731.
  • the method for detecting lung cancer according to the present invention may include a step of measuring the amount of CD91 and the amount of CD317 in a sample collected from a living body. Combining the amount of CD91 and the amount of CD317 may improve sensitivity and specificity and enable more accurate detection of lung cancer.
  • CEA includes not only the full length of the CEA protein but also a fragment thereof, and also includes a precursor of the CEA protein. That is, for example, “measuring the amount of CEA” means measuring the amount of at least one of a full-length CEA polypeptide, a fragment of CEA polypeptide, and a precursor of CEA polypeptide.
  • sensitivity refers to a ratio (true positive ratio) indicating a positive (abnormal subject value) when a test is performed on a population developing a specific disease.
  • specificity refers to a ratio (a ratio of true negative) indicating a negative (normal value) when a test is performed on a population not suffering from a specific disease.
  • “Positive predictive value” refers to the proportion of individuals who actually have a disease among subjects who show a positive result in a test. Further, the “negative predictive value” means the proportion of individuals who do not actually have a disease among subjects who show a negative test result.
  • the logistic regression score is calculated using the amount of CD91 and the amount of CEA.
  • a calculation method for example, the methods described in the literature: Pepe, M. S., Cai, T., and Longton, G. (2006), Biometrics 62, 221-229. If there is a significant difference between the two for this logistic regression score, it can be determined that the subject has lung cancer or is likely to have lung cancer.
  • the amount of CEA in the sample derived from the control subject can be determined in advance.
  • the amount of CEA and the amount of CD91 in a biological sample derived from a control subject are measured in advance, a logistic regression score is calculated, and based on this, a normal value range of the logistic regression score is determined. It can also be determined that the patient has lung cancer when the logistic regression score is out of the normal value range in the biological sample.
  • the same method as described above is used when combining the amount of CD317 and the amount of CEA, when combining the amount of CD91 and the amount of CD317, and when combining the amount of CD91, the amount of CD317 and the amount of CEA. be able to.
  • the significant difference is determined by a statistical method such as t-test, F-test, chi-square test, or Mann-Whitney's U test. I can judge.
  • the method for measuring the amount of CEA is not particularly limited as long as these abundances can be determined quantitatively or semi-quantitatively.
  • an immunological technique using an antibody recognizing CEA was used.
  • a method, a method using a peptide probe recognizing CEA, a liquid column chromatography method, a mass spectrometry method and the like can be used (the details are the same as described above).
  • the sample for measuring the amount of CEA may be the same sample as the sample for measuring the amount of CD91 and / or CD317, or may be a different sample.
  • the antibody that recognizes CEA is preferably an antibody specific for CEA.
  • the peptide probe that recognizes CEA is preferably a peptide probe specific for CEA.
  • the detection kit for lung cancer is a detection kit for detecting lung cancer, and recognizes an antibody or peptide probe that recognizes CD91 in a sample collected from a living body and CD317 in a sample collected from a living body. At least one of an antibody or a peptide probe.
  • the amount of CD91 and / or CD317 can be measured. Using the amount of CD91 and / or CD317, for example, [1. Lung cancer can be detected according to the method described in the section “Lung cancer detection method”.
  • the lung cancer detection kit according to the present invention preferably further comprises an antibody or peptide probe that recognizes CEA in a sample collected from a living body.
  • the peptide probe refers to a peptide probe that recognizes CD91, CD317 or CEA, preferably a peptide probe that specifically binds to CD91, CD317 or CEA. Specific examples include peptide sequences that specifically bind to CD91, CD317, or CEA.
  • the peptide probe included in the detection kit may include a non-natural amino acid in addition to a natural amino acid.
  • the lung cancer detection kit according to the present invention preferably further includes a substrate to which an antibody (capture antibody) for capturing an exosome in the sample is bound.
  • antibodies for capturing exosomes include antibodies to proteins (excluding CD91 and CD317) present on the exosome surface.
  • the antibody is preferably directed to a protein having no significant difference in the expression level on the exosome surface between a lung cancer patient and a healthy person who does not have lung cancer. Examples of such a protein include CD9, CD63, CD81. And other molecules belonging to the tetraspanin family, and examples of the antibody include anti-CD9 antibody, anti-CD63 antibody, and anti-CD81 antibody.
  • the capture antibody and the substrate may be separately included.
  • either one of the capture antibody and the substrate may be included.
  • the base material examples include materials such as protein highly adsorbed polypropylene.
  • the substrate is preferably a microwell plate (eg, 96 well). This is because a large number of samples can be processed in parallel.
  • the lung cancer detection kit according to the present invention further includes various reagents (secondary antibodies, reporter molecules, buffers, etc.) and instruments (plates and pipettes) for immunologically detecting antibodies or peptide probes as necessary. Etc.), at least one of a use instruction of the detection kit, a control sample used at the time of measurement, control data used when analyzing the measurement result, and the like.
  • reagents secondary antibodies, reporter molecules, buffers, etc.
  • instruments plates and pipettes
  • the detection kit for lung cancer according to the present invention is preferably, for example, a detection kit based on the ELISA method, and more preferably a detection kit based on the sandwich ELISA method.
  • the result obtained by carrying out the detection method described in the section “Lung cancer detection method” can be used as one of diagnostic materials for diagnosis by a doctor.
  • treatment can be performed.
  • examples of treatment include chemotherapy, radiation treatment, and surgery performed by a doctor, and in some cases, a specialist other than the doctor.
  • the detection method according to the present invention can detect early lung cancer, early diagnosis and early treatment can be realized.
  • the detection method according to the present invention it can be detected that the cancer is stage I or II, or stage III or IV lung cancer, so that the result obtained by the doctor performing the method according to the present invention is used. Based on this, diagnosis or treatment suitable for each stage can be adopted.
  • a doctor determines that “possibility of having lung cancer” based on the result obtained by performing the method according to the present invention
  • other examination methods X-rays
  • CT examination CT examination
  • endoscopy etc.
  • smoking history subject age and family history, etc.
  • a definitive diagnosis of the presence or absence of lung cancer is made based on the result of a biopsy, and a treatment policy is established.
  • a doctor determines that "there is a possibility of having lung cancer"
  • a predetermined reference value is set in advance, and if the measured value of the subject exceeds the reference value, It may be determined that there is a possibility that
  • the detection method according to the present invention is a method for detecting lung cancer, and includes a step of measuring the amount of at least one of CD91 and CD317 in a sample collected from a living body.
  • the detection method according to the present invention has lung cancer when the amount of at least one of the measured CD91 and CD317 is increased compared to a control subject not having lung cancer, Alternatively, it is preferable to further include a step of determining that there is a high possibility of having lung cancer.
  • the amount of CD91 is the amount of CD91 present on the exosome surface
  • the amount of CD317 is preferably the amount of CD317 present on the exosome surface.
  • the detection method according to the present invention preferably further includes a step of measuring the amount of CEA in a sample collected from a living body.
  • the lung cancer may be stage I or II.
  • the lung cancer may be stage III or IV.
  • the detection method according to the present invention it is preferable to measure the amount of at least one of CD91 and CD317 by ELISA.
  • the sample is preferably whole blood, serum or plasma.
  • the detection kit according to the present invention is a detection kit for detecting lung cancer, an antibody or peptide probe that recognizes CD91 in a sample collected from a living body, and an antibody that recognizes CD317 in a sample collected from a living body Or at least one of the peptide probes.
  • the detection kit according to the present invention preferably further includes a base material to which an antibody for capturing the exosome in the sample is bound.
  • the antibody for capturing the exosome is preferably an anti-CD9 antibody.
  • the detection kit according to the present invention preferably further comprises an antibody or peptide probe that recognizes CEA in a sample collected from a living body.
  • biomarkers were searched and verified.
  • the outline of biomarker search is as shown in FIG.
  • the eluted peptide was ionized with a spray voltage of 2000 V, and MS data was acquired by the data-dependent fragment method.
  • the measurement scan was performed at m / z 400-1600, resolution 60,000, AGC target value 1.0 ⁇ 10 6 ion count.
  • the top 20 intensities of precursor ions in each measurement scan were subjected to low resolution MS / MS acquisition using a normal CID scan mode with an AGC target value of 5000 ion counts in a linear ion trap.
  • Exosome sandwich ELISA assay 1 An exosome capture antibody solution (5 ⁇ g / mL anti-CD9 antibody in PBS, 50 ⁇ L / well) was loaded onto a Nunc MaxiSorp flat-bottom 96 well plate (Thermo Fischer Scientific) and incubated at 4 ° C. overnight. Blocking solution (5% BSA in PBS, 150 ⁇ L / well) was added and incubated on a plate shaker for 60 minutes at ambient temperature. After three washes with PBS, (5 ⁇ L serum + 95 ⁇ L PBS) was loaded into the upper 48 wells and (30 ⁇ L serum + 70 ⁇ L PBS) were loaded into the lower 48 wells, respectively.
  • Exosome sandwich ELISA assay 2 Exosome capture antibody solution (5 ⁇ g / mL anti-CD9 antibody in PBS, 50 ⁇ L / well) was loaded onto a Nunc MaxiSorp flat-bottom 96 well plate (Thermo Fischer Scientific) and incubated for 60 minutes at ambient temperature. Blocking solution (5% BSA in PBS, 150 ⁇ L / well) was added and incubated on a plate shaker for 30 minutes at ambient temperature. After washing 3 times with PBS, (10 ⁇ L serum + 90 ⁇ L PBS) was loaded into the wells. After 3 hours incubation, the plates were washed 3 times with PBS.
  • HRP-labeled anti-CD317 antibody 250 ng / mL was loaded into the wells (100 ⁇ L / well). After incubation for 60 minutes, the plate was washed 3 times with PBS, followed by loading One-step Ultra TMB-ELISA Substrate Solution (Thermo Fischer Scientific) into the well (100 ⁇ L / well). After 15 min incubation, the reaction was stopped with 2N HCl (100 ⁇ L / well). The OD at 450 nm was measured immediately.
  • the true prediction rate in the ADC patient group is 181 peptides and the true prediction rate in the SCC patient group is 90.9% 32 peptides with 100% were determined as final candidate biomarkers (FIG. 5 (c) and FIG. 5 (d), respectively).
  • CD91, ITA2B (Integrin alpha-IIb) and CD317 are expressed on the surface of exosomes and can be easily measured by exosome sandwich ELISA. Therefore, preferred exosome biomarker candidates in subsequent large-scale verification tests Met.
  • the power of detection was particularly high in ADC patients. Furthermore, it was found that the amount of blood exosome CD317 increases depending on the stage of lung adenocarcinoma.
  • the present invention can be used for detection of lung cancer. Therefore, the present invention can be widely used in the diagnostic medical field and the health medical field.

Abstract

A method for detecting lung cancer, said method comprising a step for measuring the amount(s) of CD91 and/or CD317 in a sample collected from a living organism. A detection kit for detecting lung cancer, said detection kit comprising an antibody or peptide probe capable of recognizing CD91 in a sample collected from a living organism and/or an antibody or peptide probe capable of recognizing CD317 in a sample collected from a living organism.

Description

肺癌の検出方法および検出キットLung cancer detection method and detection kit
 本発明は、肺癌の検出方法および検出キットに関するものである。 The present invention relates to a detection method and detection kit for lung cancer.
 肺癌は、世界中で癌関連死の主要な原因であり、2011年では1,475,117人が死亡している(Global Health Observatory Data Repository,世界保健機関)。この死亡者数の多さは、末期段階に診断されることおよび効果的な治療法がないことに大きく起因する。実際、近年の癌のスクリーニングテストでは、早期段階であり手術で切除可能と診断される患者はわずか30%であった(非特許文献1)。したがって、臨床成果および全体的な生存率を改善するためには、肺癌の新規なバイオマーカーの開発および早期検出システムの確立が重要である。 Lung cancer is a leading cause of cancer-related deaths worldwide, with 1,475,117 deaths in 2011 (Global Health Health Observatory Data Repository, World Health Organization). This large number of deaths is largely due to the late diagnosis and lack of effective treatment. In fact, in recent cancer screening tests, only 30% of patients are diagnosed as being in an early stage and capable of being removed by surgery (Non-patent Document 1). Therefore, in order to improve clinical outcomes and overall survival, it is important to develop new biomarkers for lung cancer and establish early detection systems.
 近年、エクソソームの生物学的重要性および臨床的利用が広く議論されている。例えば、腫瘍由来のエクソソームが転移性の微環境の形成に寄与することは、それらの最も基本的な機能の1つであり、これは、癌の転移に対するより良い理解を提供し、また転移を防ぐための新規な治療法をも提供し得る(非特許文献2~4)。エクソソームを介した治療用RNAの送達が、既に、癌治療の先駆段階にある(非特許文献5および6)。 In recent years, the biological importance and clinical use of exosomes have been widely discussed. For example, the contribution of tumor-derived exosomes to the formation of a metastatic microenvironment is one of their most basic functions, which provides a better understanding of cancer metastasis and New treatments to prevent this can also be provided (Non-Patent Documents 2 to 4). Delivery of therapeutic RNA via exosomes is already in the pioneering stage of cancer treatment (Non-Patent Documents 5 and 6).
 癌の診断の分野において、エクソソームもその分子特性によりバイオマーカーの探索の魅力的なターゲットである(非特許文献7~9)。基本的には、オリジナルの固形腫瘍細胞で発現している分子のセットが、血液循環中でエクソソーム成分として検出され得る。理論上はエクソソームのバイオマーカーは実現可能であるが、生物の体液からエクソソームを分離することは困難であり、バイオマーカー候補の効率的な探索を顕著に妨げている。事実、超遠心分離に基づく方法は血清サンプルからエクソソームを分離する最も一般的な方法であるが(非特許文献10)、再現性、処理時間および純度が、多数の臨床サンプルを定量的に分析するバイオマーカーのスクリーニング研究に適切ではない(非特許文献11)。 In the field of cancer diagnosis, exosomes are also attractive targets for biomarker searches due to their molecular properties (Non-Patent Documents 7 to 9). Basically, a set of molecules expressed in the original solid tumor cells can be detected as an exosome component in the blood circulation. Theoretically, exosome biomarkers are feasible, but it is difficult to separate exosomes from biological fluids, which significantly hinders efficient search for biomarker candidates. In fact, ultracentrifugation-based methods are the most common method for separating exosomes from serum samples (Non-Patent Document 10), but their reproducibility, processing time and purity quantitatively analyze a large number of clinical samples. Not suitable for biomarker screening studies (Non-patent Document 11).
 本発明は、肺癌用の新規バイオマーカーによる、肺癌の検出方法および検出キットを提供することを目的とする。 An object of the present invention is to provide a detection method and detection kit for lung cancer using a novel biomarker for lung cancer.
 本発明に係る検出方法は、肺癌を検出する方法であって、生体から採取された試料において、CD91およびCD317のうちの少なくとも一方の量を測定する工程を含む。 The detection method according to the present invention is a method for detecting lung cancer, and includes a step of measuring the amount of at least one of CD91 and CD317 in a sample collected from a living body.
 本発明に係る検出キットは、肺癌を検出するための検出キットであって、生体から採取された試料におけるCD91を認識する抗体またはペプチドプローブ、および、生体から採取された試料におけるCD317を認識する抗体またはペプチドプローブのうちの少なくとも一方を含む。 The detection kit according to the present invention is a detection kit for detecting lung cancer, an antibody or peptide probe that recognizes CD91 in a sample collected from a living body, and an antibody that recognizes CD317 in a sample collected from a living body Or at least one of the peptide probes.
 本明細書は本願の優先権の基礎である日本国特許出願2013-251548号の明細書および/または図面に記載される内容を包含する。 This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2013-251548, which is the basis of the priority of the present application.
 本発明は、肺癌用の新規バイオマーカーによる、肺癌の検出方法および検出キットを提供することができる。 The present invention can provide a detection method and detection kit for lung cancer using a novel biomarker for lung cancer.
図1は、実施例におけるエクソソームのバイオマーカー探索のワークフローの概要図である。エクソソームを、12チャネルの自動ピペッティングプラットホーム上の、抗CD9抗体の結合したモノリスチップ(抗CD9-MSIAチップ)によって、46人からの血清サンプルから単離した。濃縮したエクソソーム画分をLC/MS/MSによって分析し、Expressionist proteomeサーバシステム上のRefinerMSソフトウェアによって、ラベルフリーの定量分析に供した。定量したペプチドはANOVAと、特徴排除法とからなる、2段階の統計学的な解析に供し、最終的に抽出されたバイオマーカーの候補のペプチドを、Sequestデータベース検索を用いて同定した。同定の閾値を偽陽性率(FDR)<1%において設定した。FIG. 1 is a schematic diagram of a workflow for searching an exosome biomarker in an example. Exosomes were isolated from serum samples from 46 individuals by anti-CD9 antibody-conjugated monolithic chip (anti-CD9-MSIA chip) on a 12-channel automated pipetting platform. The concentrated exosome fraction was analyzed by LC / MS / MS and subjected to label-free quantitative analysis by RefinerMS software on the Expressionist® proteome server system. The quantified peptides were subjected to a two-step statistical analysis consisting of ANOVA and a feature exclusion method, and finally extracted biomarker candidate peptides were identified using a Sequest database search. The identification threshold was set at a false positive rate (FDR) <1%. 図2は、実施例におけるExpressionist RefinerMSモジュールにおけるバイオマーカーのスクリーニング解析において用いられる処理のワークフローを示す図である。FIG. 2 is a diagram illustrating a processing workflow used in biomarker screening analysis in the Expressionist® RefinerMS module in the embodiment. 図3は、実施例における抗CD9-MSIAチップについて示す図である。(a)は、実施例における抗CD9-MSIAチップの拡大図である。(b)は、6個の独立した抗CD9-MSIAチップを用いて共通の血清サンプルからエクソソーム画分を精製して、LC/MS/MSで分析する測定を、3回行った際の結果を示す図である。CD9155-170ペプチド(GLAGGVEQFISDICPK, m/z = 845.9266;配列番号1)またはCD81149-171ペプチド(TFHETLDCCGSSTLTALTTSVLK, m/z = 848.0733;配列番号2)に対応するピーク強度の変動係数(CV)を示した。FIG. 3 is a diagram showing the anti-CD9-MSIA chip in the example. (A) is an enlarged view of an anti-CD9-MSIA chip in an example. (B) shows the results of three measurements performed by LC / MS / MS after purifying the exosome fraction from a common serum sample using six independent anti-CD9-MSIA chips. FIG. Shows coefficient of variation (CV) of peak intensity corresponding to CD9 155-170 peptide (GLAGGVEQFISDICPK, m / z = 845.9266; SEQ ID NO: 1) or CD81 149-171 peptide (TFHETLDCCGSSTLTALTTSVLK, m / z = 848.0733; SEQ ID NO: 2) It was. 図4は、実施例における1601個の同定されたエクソソームのタンパク質のプロテオームの包括的な概要を示す。(a)は、タンパク質の細胞内の局在の分布を示す円グラフである。(b)は、DAVIDシステムにおけるフィッシャー正確確率統計(Fisher Exact Statistics)を機能的なアノテーションクラスタ分析に用いた図である。1601個のエクソソームのタンパク質において検出された、10個の富んだ機能を、Expression Analysis Systematic Explorer(EASE)スコアを用いて示した。FIG. 4 shows a comprehensive overview of the proteome of 1601 identified exosomal proteins in the examples. (A) is a pie chart showing the distribution of localization of proteins in cells. (B) is the figure which used Fisher exact probability statistics (Fisher | Exact | Statistics) in a DAVID system for functional annotation cluster analysis. Ten rich functions detected in 1601 exosomal proteins were demonstrated using Expression® Analysis® Systematic® Explorer (EASE) score. 図5は、実施例におけるバイオマーカー候補の2段階の統計学的なセレクションを示す図である。第1の段階として、NC、IPおよびADC群(a)またはNC、IPおよびSCC群(b)を比較するために3群ANOVAを行った。基準値p<0.001を満たすペプチドを、第2のランキングセレクションに用いた。クロス確認に基づくupport vector machine recursive feature elimination(SVM-RFE)法を、NC、IPおよびADC群の比較のために用い、最小の誤分類率を示す最小のバイオマーカーセットを算出した(c)。同様に、SVM-SVM法を、NC、IPおよびADC群の比較のために用いた。セレクションしたバイオマーカーの数および誤分類率を示した。NC:健常なコントロール、IP:間質肺炎、ADC:肺腺癌、SCC:肺扁平上皮癌。FIG. 5 is a diagram showing a two-stage statistical selection of biomarker candidates in the examples. As a first step, a 3-group ANOVA was performed to compare NC, IP and ADC groups (a) or NC, IP and SCC groups (b). Peptides satisfying the reference value p <0.001 were used for the second ranking selection. The upport-vector-machine-recursive-feature-elimination (SVM-RFE) method based on cross confirmation was used for comparison of NC, IP and ADC groups, and the minimum biomarker set showing the minimum misclassification rate was calculated (c). Similarly, the SVM-SVM method was used for comparison of NC, IP and ADC groups. The number of selected biomarkers and the misclassification rate are shown. NC: healthy control, IP: interstitial pneumonia, ADC: lung adenocarcinoma, SCC: lung squamous cell carcinoma. 図6は、実施例における同定された19個のエクソソームのバイオマーカー候補を示す図である。46人のサンプルから得られた19個のバイオマーカーの候補についてのLC/MS/MSシグナル強度を、ボックスプロットにおいて表した。UniProtKBエントリータンパク質名を、ボックスプロットの上部に示した。N:健常なコントロール、IP:間質肺炎、ADC:肺腺癌、SCC:肺扁平上皮癌。FIG. 6 is a diagram showing 19 exosomal biomarker candidates identified in the examples. LC / MS / MS signal intensities for 19 biomarker candidates from 46 samples were represented in a box plot. UniProtKB entry protein names are shown at the top of the box plot. N: healthy control, IP: interstitial pneumonia, ADC: lung adenocarcinoma, SCC: lung squamous cell carcinoma. 図7は、実施例におけるCD91に対するエクソソームサンドイッチELISAに基づく検証試験を示す図である。(a)は、エクソソームサンドイッチELISAの原理を示す。SA-HRP:ストレプトアビジン-セイヨウワサビペルオキシダーゼ。212個の独立した血清サンプルを用いて、エクソソームのCD91およびCEAの濃度を測定した。(b)はCD9-CD9サンドイッチELISAによって決定した血清のエクソソーム濃度を示す。(c)は、市販のELISAキットによって測定したCEAの濃度を示す。(d)は、CD9-CD91サンドイッチELISAによって決定したエクソソームのCD91の濃度を示す。値は(b)において算出したエクソソームの濃度を用いて標準化したものである。破線は5.0ng/mLにおけるCEA(c)または2.04U/エクソソームにおけるエクソソームのCD91(d)についてのカットオフ値を示している。それぞれの肺癌の小群に対する感度(Sens)および特異度(Spec)を、ボックスプロットの下部に示した。N:健常なコントロール、IP:間質肺炎、ADC_1_2:ステージI、IIの肺腺癌、ADC_3_4:ステージIII、IVの肺腺癌、SCC_1_2:ステージI、IIの肺扁平上皮癌、SCC_3_4:ステージIII、IVの肺扁平上皮癌。FIG. 7 is a diagram showing a verification test based on an exosome sandwich ELISA for CD91 in Examples. (A) shows the principle of exosome sandwich ELISA. SA-HRP: Streptavidin-horseradish peroxidase. 212 independent serum samples were used to measure exosomal CD91 and CEA concentrations. (B) shows the serum exosome concentration determined by CD9-CD9 sandwich ELISA. (C) shows the concentration of CEA measured by a commercially available ELISA kit. (D) shows the concentration of CD91 in exosomes determined by CD9-CD91 sandwich ELISA. The values are standardized using the exosome concentration calculated in (b). The dashed line shows the cutoff value for CEA (c) at 5.0 ng / mL or exosomal CD91 (d) at 2.04 U / exosome. Sensitivity (Sens) and specificity (Spec) for each small group of lung cancers are shown at the bottom of the box plot. N: Healthy control, IP: Interstitial pneumonia, ADC_1_2: Stage I, II lung adenocarcinoma, ADC_3_4: Stage III, IV lung adenocarcinoma, SCC_1_2: Stage I, II lung squamous cell carcinoma, SCC_3_4: Stage III IV squamous cell carcinoma of the lung. 図8は、実施例におけるエクソソームのCD91およびCEAについてのROC曲線解析を示す図である。CEAについてのROC曲線(a)、エクソソームのCD91についてのROC曲線(b)、ロジスティック回帰に基づく組み合せマーカーであるCEA+エクソソームのCD91(c)を、それぞれRによって示した。NC+IP(n=73)と肺のADC患者(n=105)との間の診断効率を評価した。カットオフ値を、(感度、特異度)=(1、1)からの距離が最小値に到達したポイントに設定した。感度(Sens)、特異度(Spec)、陽性的中率(PV+)、陰性的中率(PV-)および曲線下面積(AUC)をそれぞれのグラフに示した。FIG. 8 is a diagram showing ROC curve analysis for exosomal CD91 and CEA in Examples. The ROC curve for CEA (a), the ROC curve for CD91 of exosome (b), and the combined marker CEA + exosome CD91 (c) based on logistic regression are indicated by R, respectively. The diagnostic efficiency between NC + IP (n = 73) and pulmonary ADC patients (n = 105) was evaluated. The cut-off value was set to the point where the distance from (sensitivity, specificity) = (1, 1) reached the minimum value. Sensitivity (Sens), specificity (Spec), positive predictive value (PV +), negative predictive value (PV-) and area under the curve (AUC) are shown in each graph. 図9は、実施例におけるCD317に対するエクソソームサンドイッチELISAに基づく検証試験を示す図である。CD9-CD317サンドイッチELISAにおけるOD450の値を示す。N:健常なコントロール、ADC_1:ステージIの肺腺癌、ADC_2:ステージIIの肺腺癌、ADC_3:ステージIIIの肺腺癌、ADC_4:ステージIVの肺腺癌、SCC_1:ステージIの肺扁平上皮癌、SCC_2:ステージIIの肺扁平上皮癌、SCC_3:ステージIIIの肺扁平上皮癌、SCC_4:ステージIVの肺扁平上皮癌。FIG. 9 is a diagram showing a verification test based on an exosome sandwich ELISA for CD317 in Examples. The OD450 value in CD9-CD317 sandwich ELISA is shown. N: Healthy control, ADC_1: Stage I lung adenocarcinoma, ADC_2: Stage II lung adenocarcinoma, ADC_3: Stage III lung adenocarcinoma, ADC_4: Stage IV lung adenocarcinoma, SCC_1: Stage I lung squamous epithelium Cancer, SCC_2: Stage II lung squamous cell carcinoma, SCC_3: Stage III lung squamous cell carcinoma, SCC_4: Stage IV lung squamous cell carcinoma.
 本願発明者は、今回、エクソソームを短時間で再現性よく精製し得るチップを独自に開発した。そして、肺癌用のバイオマーカーを同定するために、このチップを用いてエクソソームの精製を行い、エクソソームにおけるバイオマーカーの探索を試みた。その結果、肺癌患者のエクソソームにおいて特異的に発現しているタンパク質が存在することを見出し、本発明を完成させるに至った。 The inventor of the present application has developed a chip that can purify exosomes in a short time with high reproducibility. In order to identify biomarkers for lung cancer, exosomes were purified using this chip, and an attempt was made to search for biomarkers in exosomes. As a result, it was found that there is a protein specifically expressed in exosomes of lung cancer patients, and the present invention has been completed.
 〔1.肺癌の検出方法〕
 本発明に係る肺癌の検出方法は、生体から採取された試料において、CD91およびCD317のうちの少なくとも一方の量を測定する工程を含む。その他の具体的な工程、ならびに使用する器具および装置は特に限定されるものではない。
[1. (Lung cancer detection method)
The lung cancer detection method according to the present invention includes a step of measuring the amount of at least one of CD91 and CD317 in a sample collected from a living body. Other specific processes, and instruments and apparatuses to be used are not particularly limited.
 本発明に係る肺癌の検出方法において用いる「試料」は、生体(被検体)から採取された試料(生体試料)である。生体から採取された試料としては、例えば、血液、尿および唾液などの体液に由来する試料が挙げられる。好ましくは、血液に由来する。血液に由来する試料としては、例えば、全血液、血清および血漿などが挙げられる。「試料」は、中でも、全血液、血清および血漿が好ましく、血清および血漿がより好ましい。本発明に係る肺癌の検出方法の一実施形態は、生体(被検体)から試料を採取する工程を含む。また、本発明に係る肺癌の検出方法の一実施形態は、生体(被検体)から採取された試料を前処理する工程を含む。試料の前処理としては、例えば、採取された全血液を精製して血清を得ること、および採取された全血液を精製して血漿を得ることなどが挙げられる。 The “sample” used in the lung cancer detection method according to the present invention is a sample (biological sample) collected from a living body (subject). Examples of samples collected from a living body include samples derived from body fluids such as blood, urine and saliva. Preferably, it is derived from blood. Examples of the sample derived from blood include whole blood, serum, and plasma. Among these, “sample” is preferably whole blood, serum and plasma, more preferably serum and plasma. One embodiment of the method for detecting lung cancer according to the present invention includes a step of collecting a sample from a living body (subject). Moreover, one embodiment of the lung cancer detection method according to the present invention includes a step of preprocessing a sample collected from a living body (subject). Examples of sample pretreatment include purification of collected whole blood to obtain serum, and purification of collected whole blood to obtain plasma.
 「生体(被検体)」としては、例えば、ヒト、マウス、ラット、ウサギ、およびサルなど哺乳類が挙げられ、好ましくはヒトである。採血部位としては、例えば、肘窩皮静脈、橈側皮静脈、および尺側皮静脈などが挙げられる。 Examples of the “living body (subject)” include mammals such as humans, mice, rats, rabbits, monkeys, and preferably humans. Examples of the blood collection site include an axillary skin vein, a cephalic vein, and an ulnar skin vein.
 ここで、「肺癌」とは、肺腺癌、肺扁平上皮癌、小細胞癌、および大細胞癌、ならびにそれらの混成型を指す。本発明に係る肺癌の検出方法は、なかでも、肺腺癌および肺扁平上皮癌の検出に好適であり、肺腺癌の検出により好適である。 Here, “lung cancer” refers to lung adenocarcinoma, lung squamous cell carcinoma, small cell carcinoma, large cell carcinoma, and a mixture thereof. The lung cancer detection method according to the present invention is particularly suitable for the detection of lung adenocarcinoma and lung squamous cell carcinoma, and is more suitable for the detection of lung adenocarcinoma.
 肺癌のステージは特に限定されないが、本発明に係る肺癌の検出方法では、CD91の量を測定する場合、特に従来検出が困難であった早期段階、例えばステージIおよびステージIIの肺癌も検出することができる。CD317の量を測定する場合、ステージIIIおよびステージVIの肺癌を好適に検出することができる。 Although the stage of lung cancer is not particularly limited, in the method for detecting lung cancer according to the present invention, when measuring the amount of CD91, it is also possible to detect lung cancer at an early stage, for example, stage I and stage II, which has been difficult to detect conventionally. Can do. When measuring the amount of CD317, it is possible to suitably detect stage III and stage VI lung cancer.
 本発明に係る肺癌の検出方法において量が測定され得る、CD91(Prolow-densitylipoprotein receptor-related protein 1)およびCD317(Bone marrow stromal antigen 2)は、アミノ酸配列が公知であり、表2にヒトのCD91タンパク質およびヒトのCD317タンパク質のUniProtKBのアクセッション番号をそれぞれ示した。 CD91 (Prolow-density lipoprotein-receptor-related-protein-1) and CD317 (Bone-marrow-stromal-antigen-1), whose amounts can be measured in the method for detecting lung cancer according to the present invention, have known amino acid sequences. The accession numbers of UniProtKB for protein and human CD317 protein are shown respectively.
 「CD91」には、CD91タンパク質の全長だけでなく、そのフラグメントも包含され、また、CD91タンパク質の前駆体も包含される。すなわち、例えば、「CD91の量を測定する」とは、全長のCD91ポリペプチド、CD91ポリペプチドのフラグメント、およびCD91ポリペプチドの前駆体のうちの少なくとも1つの量を測定することを意味する。量が測定されるCD91は、例えば、CD91579-605であり得る。 “CD91” includes not only the full-length CD91 protein but also fragments thereof, and also includes the precursor of CD91 protein. That is, for example, “measuring the amount of CD91” means measuring the amount of at least one of full-length CD91 polypeptide, a fragment of CD91 polypeptide, and a precursor of CD91 polypeptide. The CD91 whose amount is measured can be, for example, CD91 579-605 .
 「CD317」には、CD317タンパク質の全長だけでなく、そのフラグメントも包含され、また、CD317タンパク質の前駆体も包含される。すなわち、例えば、「CD317の量を測定する」とは、全長のCD317ポリペプチド、CD317ポリペプチドのフラグメント、およびCD317ポリペプチドの前駆体のうちの少なくとも1つの量を測定することを意味する。量が測定されるCD317は、例えば、CD317137-147であり得る。 “CD317” includes not only the full-length CD317 protein but also fragments thereof, and also includes the precursor of CD317 protein. Thus, for example, “measuring the amount of CD317” means measuring the amount of at least one of a full length CD317 polypeptide, a fragment of a CD317 polypeptide, and a precursor of a CD317 polypeptide. The CD317 whose amount is measured can be, for example, CD317 137-147 .
 本明細書において、「CD91の量を測定する」とは、生体試料またはこれを精製して得られる試料におけるCD91の存在量または濃度を測定することを意図している。「CD91の量」は、絶対量(絶対質量または絶対濃度)あってもよいし、相対量(相対質量または相対濃度)であってもよい。また、例えば、質量分析におけるピーク面積、発光測定における発光強度などであってもよく、所定の基準に対して何倍であるかを示す値であってもよい。「CD91の量」は、好ましくは、エクソソーム表面に存在するCD91の量である。また、「CD91の量」は、エクソソームあたりのCD91であることが好ましい場合がある。CD317についてもこれと同様のことがいえる。 In this specification, “measuring the amount of CD91” is intended to measure the abundance or concentration of CD91 in a biological sample or a sample obtained by purifying it. The “amount of CD91” may be an absolute amount (absolute mass or absolute concentration) or a relative amount (relative mass or relative concentration). Further, for example, it may be a peak area in mass spectrometry, a luminescence intensity in luminescence measurement, or the like, or a value indicating how many times it is with respect to a predetermined standard. “Amount of CD91” is preferably the amount of CD91 present on the exosome surface. Further, it may be preferable that the “amount of CD91” is CD91 per exosome. The same can be said for CD317.
 なお、本発明において量が測定され得るものをまとめて、以下「肺癌マーカー」と称する。 In the present invention, those whose amounts can be measured are collectively referred to as “lung cancer marker” below.
 本発明に係る肺癌の検出方法の一例として、被験体由来の生体試料中におけるCD91の量を測定し、肺癌を有していない対照被験体由来の生体試料中におけるCD91の量を測定し、両者を比較することによって、肺癌を検出することができる。具体的には、被験体由来の試料におけるCD91の量と、対照被験体由来の試料におけるCD91の量とを比較して、被験体由来の試料におけるCD91の量が有意に増加している場合には、この被験体が肺癌を有しているか、または肺癌を有している可能性が高いと判定することができる。対照被験体由来の試料におけるCD91の量は予め測定したものを用いることが可能である。あるいは、予め肺癌を有していない対照被験体由来の生体試料におけるCD91の量を測定して、これに基づいて正常濃度範囲を定めておき、被験体由来の生体試料におけるCD91の量がその正常濃度範囲から外れて増加している場合に、肺癌を有しているか、または肺癌を有している可能性が高いと判定することも可能である。すなわち、本発明に係る肺癌の検出方法の一実施形態では、測定されたCD91の量が肺癌を有していない対照被験体と比較して増加している場合に、肺癌を有しているか、または肺癌を有している可能性が高いと判定する工程をさらに含む。なお、別の実施形態において、対照被験体として、肺癌を有していない対照被験体および肺癌患者の両方、または肺癌患者のみを含んでいてもよい。 As an example of a method for detecting lung cancer according to the present invention, the amount of CD91 in a biological sample derived from a subject is measured, the amount of CD91 in a biological sample derived from a control subject not having lung cancer is measured, By comparing these, lung cancer can be detected. Specifically, when the amount of CD91 in the sample derived from the subject is compared with the amount of CD91 in the sample derived from the control subject, and the amount of CD91 in the sample derived from the subject is significantly increased. Can be determined that the subject has lung cancer or is likely to have lung cancer. The amount of CD91 in the sample derived from the control subject can be determined in advance. Alternatively, the amount of CD91 in a biological sample derived from a control subject who does not have lung cancer is measured in advance, and a normal concentration range is determined based on this, and the amount of CD91 in the biological sample derived from the subject is normal. It can also be determined that the patient has lung cancer or is likely to have lung cancer when increasing outside the concentration range. That is, in one embodiment of the method for detecting lung cancer according to the present invention, when the measured amount of CD91 is increased compared to a control subject not having lung cancer, Or the process of determining with the high possibility of having lung cancer is further included. In another embodiment, the control subjects may include both control subjects and lung cancer patients who do not have lung cancer, or only lung cancer patients.
 被検体のCD91の量と対照被験体のCD91の量とを比較する場合、その有意差は、例えば、t検定、F検定、カイ二乗検定、またはMann-Whitney's U testなどの統計学的手法によって判断できる。 When comparing the amount of CD91 in a subject with the amount of CD91 in a control subject, the significant difference is determined by a statistical method such as t-test, F-test, chi-square test, or Mann-Whitney's U test. I can judge.
 また、本発明に係る肺癌の検出方法の別の一例は、CD91の代わりにCD317の量を測定するものであり、上記と同様のことがいえる。したがって、本発明に係る肺癌の検出方法の別の実施形態では、測定されたCD317の量が肺癌を有していない対照被験体と比較して増加している場合に、肺癌を有しているか、または肺癌を有している可能性が高いと判定する工程をさらに含む。 Further, another example of the method for detecting lung cancer according to the present invention is to measure the amount of CD317 instead of CD91, and the same can be said. Therefore, in another embodiment of the method for detecting lung cancer according to the present invention, whether the measured amount of CD317 is increased compared to a control subject not having lung cancer, has lung cancer? Or a step of determining that the patient is likely to have lung cancer.
 肺癌マーカーの量を測定する方法としては、肺癌マーカーの存在量を定量的もしくは半定量的に決定できる限り、特に限定されるものではなく、例えば、測定対象の肺癌マーカーを認識する抗体を用いた免疫学的手法を用いた方法、測定対象の肺癌マーカーを認識するペプチドプローブを用いた方法、液体カラムクロマトグラフィー法および質量分析法などを用いることができる。抗体を用いた方法としては、例えば、ELISA法、定量ウェスタンブロッティング法、ラジオイムノアッセイ法、イムノクロマトグラフィー法、および免疫沈降法などが挙げられる。ELISA法の種類としては、特に限定されないが、いわゆる抗原測定系(生物試料中に含まれる抗原量の測定)である、直接吸着法によるELISA、競合法によるELISA、サンドイッチ法によるELISA、およびマイクロ流路式またはマイクロビーズなどを利用した、微量試料の測定に特化したELISAなどが挙げられる。 The method for measuring the amount of the lung cancer marker is not particularly limited as long as the abundance of the lung cancer marker can be quantitatively or semi-quantitatively determined. For example, an antibody that recognizes the lung cancer marker to be measured was used. A method using an immunological technique, a method using a peptide probe that recognizes a lung cancer marker to be measured, a liquid column chromatography method, a mass spectrometry method, and the like can be used. Examples of the method using an antibody include an ELISA method, a quantitative western blotting method, a radioimmunoassay method, an immunochromatography method, and an immunoprecipitation method. The type of ELISA method is not particularly limited, but is a so-called antigen measurement system (measurement of the amount of antigen contained in a biological sample), ELISA by direct adsorption method, ELISA by competition method, ELISA by sandwich method, and micro flow An ELISA specialized for the measurement of a very small amount of sample using a road system or microbeads can be mentioned.
 測定対象の肺癌マーカーを認識する抗体は、モノクローナル抗体であってもよく、ポリクローナル抗体であってもよいが、モノクローナル抗体であることが好ましい。UniProtなどの公共データベースの情報に基づけば、当業者は容易にCD91を認識する抗体およびCD317を認識する抗体を作製するための抗原として適切なアミノ酸配列を決定することができる。CD91を認識する抗体は、CD91に特異的な抗体であることが好ましい。また、CD317を認識する抗体は、CD317に特異的な抗体であることが好ましい。 The antibody that recognizes the lung cancer marker to be measured may be a monoclonal antibody or a polyclonal antibody, but is preferably a monoclonal antibody. Based on information from public databases such as UniProt, those skilled in the art can easily determine an amino acid sequence suitable as an antigen for producing an antibody that recognizes CD91 and an antibody that recognizes CD317. The antibody that recognizes CD91 is preferably an antibody specific to CD91. The antibody that recognizes CD317 is preferably an antibody specific for CD317.
 本発明において「抗体」とは、免疫グロブリンのすべてのクラスおよびサブクラス、ならびに抗体の機能的断片を含む形態であることを意図している。当該抗体はポリクローナル抗体およびモノクローナル抗体の何れの天然型抗体も含む概念であり、その他に、遺伝子組換え技術を用いて製造される抗体、ならびに当該抗体の機能的断片を含む。「抗体の機能的断片」とは、前述の抗体の一部分の領域を有し、かつ抗原結合能を有しているもの(結合性断片と同義)を指す。天然型抗体は、特に限定はされないが、ヒト、マウス、ラット、サル、ヤギ、ウサギ、ラクダ、ラマ、ウシおよびニワトリなどを含む、あらゆる生物種に由来し得る。遺伝子組換え技術を用いて製造される抗体としては、特に限定はされないが、天然型抗体を遺伝子改変して得られるヒト化抗体および霊長類化抗体などのキメラ抗体、合成抗体、組換え抗体、変異導入抗体およびグラフト結合抗体(例えば、他のタンパク質および放射性標識などがコンジュゲートまたは融合している抗体)が挙げられ、既に遺伝子組換え技術を用いて製造された抗体に対して、上述のように天然型抗体を遺伝子改変する場合と同様の改変を施した抗体も含まれる。また、抗体の機能的断片としては、具体的には例えばF(ab’)、Fab’、Fab、Fv(variable fragment of antibody)、sFv、dsFv(disulphide stabilized Fv)およびdAb(single domain antibody)などが挙げられる。 In the present invention, “antibody” is intended to mean a form including all classes and subclasses of immunoglobulins and functional fragments of antibodies. The antibody is a concept including both natural antibodies of a polyclonal antibody and a monoclonal antibody, and includes an antibody produced using a gene recombination technique and a functional fragment of the antibody. The “functional fragment of an antibody” refers to one having a partial region of the above-described antibody and having an antigen-binding ability (synonymous with a binding fragment). Natural antibodies can be derived from any species including, but not limited to, humans, mice, rats, monkeys, goats, rabbits, camels, llamas, cows and chickens. The antibody produced using gene recombination technology is not particularly limited, but chimeric antibodies such as humanized antibodies and primatized antibodies obtained by genetic modification of natural antibodies, synthetic antibodies, recombinant antibodies, Mutagenized antibodies and graft-bound antibodies (for example, antibodies to which other proteins and radioactive labels are conjugated or fused), and antibodies already produced using genetic recombination techniques are described above. These also include antibodies that have been modified in the same manner as when genetically modifying natural antibodies. Specific examples of functional fragments of antibodies include F (ab ′) 2 , Fab ′, Fab, Fv (variable fragment of antibody), sFv, dsFv (disulphide stabilized Fv) and dAb (single domain antibody). Etc.
 さらに、本発明において結合性断片は、対象とする肺癌マーカーに対して反応性を維持する範囲において変異導入された抗体断片も結合性断片の概念として含んでいる。前述の変異導入は、当業者によって適宜選択される、遺伝子改変技術などの公知の技術を用いて行われる。 Furthermore, in the present invention, the binding fragment includes an antibody fragment mutated in a range that maintains reactivity with the target lung cancer marker as a concept of the binding fragment. The aforementioned mutation introduction is performed using a known technique such as a gene modification technique, which is appropriately selected by those skilled in the art.
 上述の抗体の検出は、検出可能なシグナルを誘引できるレポーター分子で標識した二次抗体と複合体を形成させることによって行い得る。あるいは、上述の抗体がレポーター分子で予め標識されていてもよい。レポーター分子は、例えば、酵素、発蛍光団含有分子、または放射性核種含有分子である。このようなレポーター分子は、様々なものが公知であり、適宜選択すればよい。 The detection of the above-described antibody can be performed by forming a complex with a secondary antibody labeled with a reporter molecule capable of attracting a detectable signal. Alternatively, the antibody described above may be pre-labeled with a reporter molecule. The reporter molecule is, for example, an enzyme, a fluorophore-containing molecule, or a radionuclide-containing molecule. Various reporter molecules are known and may be appropriately selected.
 レポーター分子として酵素を用いる場合、酵素としては、例えば、ペルオキシダーゼ、β-ガラクトシダーゼ、アルカリホスファターゼ、グルコースオキシダーゼ、またはアセチルコリンエステラーゼなどを用いることができる。これら酵素と抗体との結合は、マレイミド化合物などの架橋剤を用いる公知の方法によって行うことができる。基質としては、使用する酵素の種類に応じて公知の物質を用いることができる。例えば酵素としてペルオキシダーゼを使用する場合には、3,3’,5,5’-テトラメチルベンジシンなどを用いることができる。また、酵素としてアルカリホスファターゼを用いる場合には、パラニトルフェノールなどを用いることができる。放射性核種としては、125IまたはHなどを用いることができる。蛍光色素としては、フルオロレッセンスイソチオシアネート(FITC)またはテトラメチルローダミンイソチオシアネート(TRITC)などを用いることができる。 When an enzyme is used as the reporter molecule, for example, peroxidase, β-galactosidase, alkaline phosphatase, glucose oxidase, or acetylcholinesterase can be used as the enzyme. These enzymes and antibodies can be bound by a known method using a crosslinking agent such as a maleimide compound. As the substrate, a known substance can be used according to the type of enzyme used. For example, when peroxidase is used as the enzyme, 3,3 ′, 5,5′-tetramethylbenzidine and the like can be used. Moreover, when using an alkaline phosphatase as an enzyme, paranitrol phenol etc. can be used. As the radionuclide, 125 I, 3 H, or the like can be used. As the fluorescent dye, fluoroless isothiocyanate (FITC) or tetramethylrhodamine isothiocyanate (TRITC) can be used.
 二次抗体を固相化した金コロイドの凝集で検出するイムノクロマトグラフィーなどの簡便な測定系を用いることもできる。 A simple measurement system such as immunochromatography for detecting by aggregation of colloidal gold on which the secondary antibody is immobilized can also be used.
 また、ペプチドプローブを用いた方法では、例えば、上述のレポーター分子が標識されたペプチドプローブを用いることができる。CD91を認識するペプチドプローブは、CD91に特異的なペプチドプローブであることが好ましい。また、CD317を認識するペプチドプローブは、CD317に特異的なペプチドプローブであることが好ましい。 In the method using a peptide probe, for example, a peptide probe labeled with the above-mentioned reporter molecule can be used. The peptide probe that recognizes CD91 is preferably a peptide probe specific for CD91. The peptide probe that recognizes CD317 is preferably a peptide probe specific for CD317.
 このように、肺癌マーカーの量の測定においては、発色もしくは蛍光測定を包含する発光測定法、または放射測定法などを用いることができる。 Thus, in the measurement of the amount of the lung cancer marker, a luminescence measurement method including color development or fluorescence measurement, or a radiometric method can be used.
 質量分析法は、公知の質量分析装置を用いて行えばよい。質量分析装置を用いた質量分析法は、感度および精度に優れているため、正確な判定を行うことができる。さらに、多成分同時分析が可能なマルチチャネル型の質量分析装置を用いることにより、2以上の肺癌マーカー(例えば、CD91とCD317)の量を一度に測定することが可能となる。さらには、肺癌以外の他の疾患に関するバイオマーカーも同時に測定することが可能となり、一度に様々な疾患についての検出を試みることが可能となる。また、より精度よく検出をおこなうためには、タンデム質量分析装置(MS/MS)を用いることが好ましい。本発明の検出方法において用いられる質量分析装置としては定量可能であれば特に限定されず、四重極型および飛行時間型など従来公知の型の質量分析装置を用いることが可能である。 Mass spectrometry may be performed using a known mass spectrometer. Since mass spectrometry using a mass spectrometer is excellent in sensitivity and accuracy, accurate determination can be made. Furthermore, by using a multi-channel mass spectrometer capable of simultaneous multi-component analysis, the amount of two or more lung cancer markers (for example, CD91 and CD317) can be measured at a time. Furthermore, biomarkers relating to other diseases other than lung cancer can be simultaneously measured, and detection of various diseases can be attempted at once. In order to perform detection with higher accuracy, it is preferable to use a tandem mass spectrometer (MS / MS). The mass spectrometer used in the detection method of the present invention is not particularly limited as long as it can be quantified, and conventionally known types of mass spectrometers such as a quadrupole type and a time-of-flight type can be used.
 エクソソーム表面に存在する肺癌マーカーの量を測定する場合には、ELISA法が好ましく、サンドイッチELISAがより好ましい。一例として、エクソソーム表面に存在するCD91の量を測定するためのサンドイッチELISAを説明すると(図7の(a)も参照)、まず、エクソソーム表面に存在するタンパク質(CD91を除く)に対する抗体(捕捉抗体)が結合した基材を用意し、次いで、エクソソームを含む試料と接触させて、捕捉抗体-エクソソーム複合体を形成させる。さらに、標識された抗CD91抗体(検出抗体)と接触させて、捕捉抗体-エクソソーム-検出抗体複合体を形成させる。そして、発色強度などを測定することによって、エクソソーム表面に存在するCD91の量を測定することができる。上記の捕捉抗体は、肺癌患者と肺癌を有していない健常者とでエクソソーム表面における発現量に有意差がないタンパク質に対するものであることが好ましく、そのようなタンパク質としては、例えば、CD9(5H9 antigen;Cell growth-inhibiting gene2 protein;Leukocyte antigen MIC3;Motility-related protein MRP-1;Tetraspanin-29;p24)、CD63、CD81、およびその他テトラスパニンファミリーに属する分子などが挙げられ、その抗体としては、抗CD9抗体、抗CD63抗体、および抗CD81抗体などが挙げられる(参考文献:国際公開WO2013/099925号公報)。CD317についても上記と同様の方法で、エクソソーム表面に存在する量を測定することができる。 In the case of measuring the amount of lung cancer marker present on the exosome surface, the ELISA method is preferable, and the sandwich ELISA is more preferable. As an example, a sandwich ELISA for measuring the amount of CD91 present on the exosome surface will be described (see also FIG. 7 (a)). First, an antibody (capture antibody) against a protein (excluding CD91) present on the exosome surface. ) Is bound, and then contacted with a sample containing exosomes to form a capture antibody-exosome complex. Further, it is brought into contact with a labeled anti-CD91 antibody (detection antibody) to form a capture antibody-exosome-detection antibody complex. Then, the amount of CD91 present on the exosome surface can be measured by measuring the color development intensity and the like. The capture antibody is preferably directed to a protein that has no significant difference in the expression level on the exosome surface between lung cancer patients and healthy individuals who do not have lung cancer. Examples of such proteins include CD9 (5H9 antigen, cell-growth-inhibiting gene-2 protein, leukocyte antigen-MIC3, Motility-related protein protein MRP-1, Tetraspanin-29; p24), CD63, CD81, and other molecules belonging to the tetraspanin family. , Anti-CD9 antibody, anti-CD63 antibody, anti-CD81 antibody and the like (reference document: International Publication WO2013 / 099925). For CD317, the amount existing on the exosome surface can be measured by the same method as described above.
 本発明に係る肺癌の検出方法において、エクソソームあたりのCD91および/またはCD317の量を測定することが好ましい。この場合、生体試料またはこれを精製して得られる試料におけるエクソソームの量を測定し、その結果を用いて、別途測定したCD91および/またはCD317の量を標準化して、エクソソームあたりのCD91および/またはCD317の量を算出する。「エクソソームの量」は、絶対量(絶対質量または絶対濃度)あってもよいし、相対量(相対質量または相対濃度)であってもよい。被験体によりエクソソームの量にばらつきがあるため、標準化することによって、より正確に肺癌を検出することができる。すなわち、本発明に係る肺癌の検出方法の一実施形態では、生体から採取された試料において、エクソソームの量を測定する工程を含む。また、本発明に係る肺癌の検出方法の他の実施形態では、測定したエクソソームの量と、測定したCD91の量とを用いて、エクソソームあたりのCD91の量を算出する工程を含む。また、本発明に係る肺癌の検出方法の他の実施形態では、測定したエクソソームの量と、測定したCD317の量とを用いて、エクソソームあたりのCD317の量を算出する工程を含む。 In the method for detecting lung cancer according to the present invention, it is preferable to measure the amount of CD91 and / or CD317 per exosome. In this case, the amount of exosome in the biological sample or a sample obtained by purifying the same is measured, and the result is used to normalize the separately measured amount of CD91 and / or CD317 to obtain CD91 and / or per exosome. The amount of CD317 is calculated. The “amount of exosome” may be an absolute amount (absolute mass or absolute concentration) or a relative amount (relative mass or relative concentration). Since the amount of exosome varies depending on the subject, lung cancer can be detected more accurately by standardization. That is, in one embodiment of the lung cancer detection method according to the present invention, the method includes a step of measuring the amount of exosome in a sample collected from a living body. In another embodiment of the lung cancer detection method according to the present invention, the method includes a step of calculating the amount of CD91 per exosome using the measured amount of exosome and the measured amount of CD91. Further, in another embodiment of the lung cancer detection method according to the present invention, a step of calculating the amount of CD317 per exosome using the measured amount of exosome and the measured amount of CD317 is included.
 エクソソームの量を測定する方法としては、サンドイッチELISAが挙げられる。エクソソームの量を測定するためのサンドイッチELISAの一例を説明すると(図7の(a)も参照)、まず、エクソソーム表面に存在するタンパク質に対する第1の抗体(捕捉抗体)が結合した基材を用意し、次いで、エクソソームを含む試料と接触させて、捕捉抗体-エクソソーム複合体を形成させる。さらに、標識された第2の抗体(検出抗体)と接触させて、捕捉抗体-エクソソーム-検出抗体複合体を形成させる。そして、発色強度などを測定することによって、エクソソームの量を測定する。第1の抗体および第2の抗体は、肺癌患者と肺癌を有していない健常者とでエクソソーム表面における発現量に有意差がないタンパク質に対するものであることが好ましく、そのようなタンパク質としては、例えば、CD9、CD63、CD81、およびその他テトラスパニンファミリーに属する分子などが挙げられ、抗体としては、抗CD9抗体、抗CD63抗体、および抗CD81抗体などが挙げられる。第1の抗体と第2の抗体とは、同じ種類の抗体であってもよいし、異なる種類の抗体であってもよい。また、第1の抗体および第2の抗体は、エクソソーム表面に存在するCD91および/またはCD317の量を測定するためのサンドイッチELISAに用いる抗体と、同じ種類であってもよいし、異なる種類であってもよい。 As a method for measuring the amount of exosome, sandwich ELISA can be mentioned. An example of a sandwich ELISA for measuring the amount of exosome will be described (see also FIG. 7 (a)). First, a substrate to which a first antibody (capture antibody) against a protein existing on the exosome surface is prepared is prepared. And then contacted with a sample containing exosomes to form a capture antibody-exosome complex. Furthermore, it is contacted with a labeled second antibody (detection antibody) to form a capture antibody-exosome-detection antibody complex. Then, the amount of exosome is measured by measuring the color intensity. The first antibody and the second antibody are preferably against a protein that has no significant difference in the expression level on the exosome surface between a lung cancer patient and a healthy person who does not have lung cancer. Examples include CD9, CD63, CD81, and other molecules belonging to the tetraspanin family, and examples of the antibody include anti-CD9 antibody, anti-CD63 antibody, and anti-CD81 antibody. The first antibody and the second antibody may be the same type of antibody, or may be different types of antibodies. In addition, the first antibody and the second antibody may be of the same type or different types from those used in the sandwich ELISA for measuring the amount of CD91 and / or CD317 present on the exosome surface. May be.
 本発明に係る肺癌の検出方法において、生体から採取された試料からエクソソームを精製してもよい。すなわち、本発明に係る肺癌の検出方法の一実施形態では、生体から採取された試料からエクソソームを精製する工程を含む。エクソソームを精製する方法としては、エクソソーム表面に存在するタンパク質に対する抗体を用いる方法、超遠心機を用いる方法、および市販精製キットを用いる方法などが挙げられる。エクソソーム表面に存在するタンパク質に対する抗体を用いる方法の一例では、当該抗体(例えば、抗CD9抗体)を固定した質量分析イムノアッセイ用ピペットチップを用いる(実施例も参照)。この方法を用いれば、短時間で、高純度で、再現性がよく試料からエクソソームを精製することができる。 In the method for detecting lung cancer according to the present invention, exosomes may be purified from a sample collected from a living body. That is, one embodiment of the lung cancer detection method according to the present invention includes a step of purifying exosomes from a sample collected from a living body. Examples of the method for purifying exosomes include a method using an antibody against a protein existing on the exosome surface, a method using an ultracentrifuge, and a method using a commercially available purification kit. In an example of a method using an antibody against a protein present on the exosome surface, a mass spectrometry immunoassay pipette chip to which the antibody (for example, anti-CD9 antibody) is immobilized is used (see also Examples). By using this method, exosomes can be purified from a sample in a short time with high purity and good reproducibility.
 本発明に係る肺癌の検出方法は、生体から採取された試料において、CEA(carcinoembryonic antigen)の量を測定する工程をさらに含むことが好ましい。CD91および/またはCD317の量とCEAの量とを組み合わせることによって、感度および特異度が向上し、肺癌をより正確に検出することが可能となる(実施例も参照)。CEAは、アミノ酸配列が公知であり、UniProtKBのアクセッション番号はP06731である。 The method for detecting lung cancer according to the present invention preferably further includes a step of measuring the amount of CEA (carcinoembryonic antigen) in a sample collected from a living body. By combining the amount of CD91 and / or CD317 with the amount of CEA, sensitivity and specificity are improved, and lung cancer can be detected more accurately (see also Examples). CEA has a known amino acid sequence, and the accession number of UniProtKB is P06731.
 また、本発明に係る肺癌の検出方法は、生体から採取された試料において、CD91の量およびCD317の量を測定する工程とを含んでいてもよい。CD91の量とCD317の量とを組み合わせることによって、感度および特異度が向上し、肺癌をより正確に検出することが可能となり得る。 In addition, the method for detecting lung cancer according to the present invention may include a step of measuring the amount of CD91 and the amount of CD317 in a sample collected from a living body. Combining the amount of CD91 and the amount of CD317 may improve sensitivity and specificity and enable more accurate detection of lung cancer.
 「CEA」には、CEAタンパク質の全長だけでなく、そのフラグメントも包含され、また、CEAタンパク質の前駆体も包含される。すなわち、例えば、「CEAの量を測定する」とは、全長のCEAポリペプチド、CEAポリペプチドのフラグメント、およびCEAポリペプチドの前駆体のうちの少なくとも1つの量を測定することを意味する。 “CEA” includes not only the full length of the CEA protein but also a fragment thereof, and also includes a precursor of the CEA protein. That is, for example, “measuring the amount of CEA” means measuring the amount of at least one of a full-length CEA polypeptide, a fragment of CEA polypeptide, and a precursor of CEA polypeptide.
 なお、「感度」とは、特定の疾患を発症している集団に対して検査を行ったときの陽性(異常被験体値)を示す割合(真の陽性の割合)を指す。また、「特異度」とは、特定の疾患を罹患していない集団に対して検査を行ったときの陰性(正常値)を示す割合(真の陰性の割合)を指す。また、「陽性的中率」は、検査において陽性を示した被験体のうち、実際に疾患を罹患している個体の割合を指す。また、「陰性的中率」は、検査において陰性を示した被験体のうち、実際に疾患を罹患していない個体の割合を意味している。 In addition, “sensitivity” refers to a ratio (true positive ratio) indicating a positive (abnormal subject value) when a test is performed on a population developing a specific disease. In addition, “specificity” refers to a ratio (a ratio of true negative) indicating a negative (normal value) when a test is performed on a population not suffering from a specific disease. “Positive predictive value” refers to the proportion of individuals who actually have a disease among subjects who show a positive result in a test. Further, the “negative predictive value” means the proportion of individuals who do not actually have a disease among subjects who show a negative test result.
 複数種の肺癌マーカーの量を測定する場合、同一試料を用いて測定してもよいし、互いに異なる試料を用いて測定してもよい。 When measuring the amounts of multiple types of lung cancer markers, they may be measured using the same sample or different samples.
 CD91の量とCEAの量とを組み合わせる場合、例えば、CD91の量およびCEAの量を用いて、ロジスティック回帰スコアを算出する。算出方法は、例えば、文献:Pepe, M. S., Cai, T., and Longton, G. (2006), Biometrics 62, 221-229.に記載の方法を用いればよい。このロジスティック回帰スコアについて両者の間で有意な相違が見られた場合には、この被験体が肺癌を有しているか、または肺癌を有している可能性が高いと判定することができる。対照被験体由来の試料におけるCEAの量は予め測定したものを用いることが可能である。あるいは、予め対照被験体由来の生体試料におけるCEAの量およびCD91の量を測定し、ロジスティック回帰スコアを算出して、これに基づいてロジスティック回帰スコアの正常値範囲を定めておき、被験体由来の生体試料においてロジスティック回帰スコアがその正常値範囲から外れた場合に、肺癌を有していると判定することも可能である。CD317の量とCEAの量とを組み合わせる場合、CD91の量とCD317の量とを組み合わせる場合、およびCD91の量とCD317の量とCEAの量とを組み合わせる場合についても、上述と同様の方法を用いることができる。 When combining the amount of CD91 and the amount of CEA, for example, the logistic regression score is calculated using the amount of CD91 and the amount of CEA. As a calculation method, for example, the methods described in the literature: Pepe, M. S., Cai, T., and Longton, G. (2006), Biometrics 62, 221-229. If there is a significant difference between the two for this logistic regression score, it can be determined that the subject has lung cancer or is likely to have lung cancer. The amount of CEA in the sample derived from the control subject can be determined in advance. Alternatively, the amount of CEA and the amount of CD91 in a biological sample derived from a control subject are measured in advance, a logistic regression score is calculated, and based on this, a normal value range of the logistic regression score is determined. It can also be determined that the patient has lung cancer when the logistic regression score is out of the normal value range in the biological sample. The same method as described above is used when combining the amount of CD317 and the amount of CEA, when combining the amount of CD91 and the amount of CD317, and when combining the amount of CD91, the amount of CD317 and the amount of CEA. be able to.
 被検体のロジスティック回帰スコアと対照被験体のロジスティック回帰スコアとを比較する場合、その有意差は、例えば、t検定、F検定、カイ二乗検定、またはMann-Whitney's U testなどの統計学的手法によって判断できる。 When comparing a subject's logistic regression score to a control subject's logistic regression score, the significant difference is determined by a statistical method such as t-test, F-test, chi-square test, or Mann-Whitney's U test. I can judge.
 CEAの量を測定する方法は、これらの存在量を定量的もしくは半定量的に決定できる限り、特に限定されるものではなく、例えば、CEAを認識する抗体を用いた免疫学的手法を用いた方法、CEAを認識するペプチドプローブを用いた方法、液体カラムクロマトグラフィー法および質量分析法などを用いることができる(詳細は上述と同様)。CEAの量を測定するための試料は、CD91および/またはCD317の量を測定するための試料と同一試料でもよいし、異なる試料であってもよい。CEAを認識する抗体は、CEAに特異的な抗体であることが好ましい。また、CEAを認識するペプチドプローブは、CEAに特異的なペプチドプローブであることが好ましい。 The method for measuring the amount of CEA is not particularly limited as long as these abundances can be determined quantitatively or semi-quantitatively. For example, an immunological technique using an antibody recognizing CEA was used. A method, a method using a peptide probe recognizing CEA, a liquid column chromatography method, a mass spectrometry method and the like can be used (the details are the same as described above). The sample for measuring the amount of CEA may be the same sample as the sample for measuring the amount of CD91 and / or CD317, or may be a different sample. The antibody that recognizes CEA is preferably an antibody specific for CEA. The peptide probe that recognizes CEA is preferably a peptide probe specific for CEA.
 〔2.肺癌の検出キット〕
 本発明に係る肺癌の検出キットは、肺癌を検出するための検出キットであって、生体から採取された試料におけるCD91を認識する抗体またはペプチドプローブ、および、生体から採取された試料におけるCD317を認識する抗体またはペプチドプローブのうちの少なくとも一方を含んでいる。
[2. (Lung cancer detection kit)
The detection kit for lung cancer according to the present invention is a detection kit for detecting lung cancer, and recognizes an antibody or peptide probe that recognizes CD91 in a sample collected from a living body and CD317 in a sample collected from a living body. At least one of an antibody or a peptide probe.
 本発明に係る肺癌の検出キットを用いれば、CD91および/またはCD317の量を測定することができ、当該CD91および/またはCD317の量を用いて、例えば、上記〔1.肺癌の検出方法〕の欄で説明した方法に従って、肺癌を検出することができる。 If the lung cancer detection kit according to the present invention is used, the amount of CD91 and / or CD317 can be measured. Using the amount of CD91 and / or CD317, for example, [1. Lung cancer can be detected according to the method described in the section “Lung cancer detection method”.
 本発明に係る肺癌の検出キットは、生体から採取された試料におけるCEAを認識する抗体またはペプチドプローブをさらに含むことが好ましい。CD91および/またはCD317の量とCEAの量とを組み合わせることによって、感度および特異度が向上し、肺癌をより正確に検出することが可能となる。 The lung cancer detection kit according to the present invention preferably further comprises an antibody or peptide probe that recognizes CEA in a sample collected from a living body. By combining the amount of CD91 and / or CD317 and the amount of CEA, sensitivity and specificity are improved, and lung cancer can be detected more accurately.
 ペプチドプローブとは、CD91、CD317またはCEAを認識するペプチド性のプローブ、好ましくはCD91、CD317またはCEAと特異的に結合するペプチド性のプローブを指す。具体的には例えば、CD91、CD317またはCEAと特異的に結合するペプチド配列が挙げられる。検出キットに含まれるペプチドプローブは、天然アミノ酸の他に、非天然型アミノ酸を含んで構成されていてもよい。 The peptide probe refers to a peptide probe that recognizes CD91, CD317 or CEA, preferably a peptide probe that specifically binds to CD91, CD317 or CEA. Specific examples include peptide sequences that specifically bind to CD91, CD317, or CEA. The peptide probe included in the detection kit may include a non-natural amino acid in addition to a natural amino acid.
 本発明に係る肺癌の検出キットでは、試料中のエクソソームを捕捉するための抗体(捕捉抗体)が結合した基材をさらに含んでいることが好ましい。エクソソームを捕捉するための抗体としては、エクソソーム表面に存在するタンパク質(CD91およびCD317を除く)に対する抗体が挙げられる。当該抗体は、肺癌患者と肺癌を有していない健常者とでエクソソーム表面における発現量に有意差がないタンパク質に対するものであることが好ましく、そのようなタンパク質としては、例えば、CD9、CD63、CD81、およびその他テトラスパニンファミリーに属する分子などが挙げられ、その抗体としては、抗CD9抗体、抗CD63抗体、および抗CD81抗体などが挙げられる。なお、本発明に係る肺癌の検出キットの一実施形態では、上記捕捉抗体と基材とを別個に含んでいてもよい。また、本発明に係る肺癌の検出キットの他の実施形態では、上記捕捉抗体と基材との何れか一方を含んでいてもよい。 The lung cancer detection kit according to the present invention preferably further includes a substrate to which an antibody (capture antibody) for capturing an exosome in the sample is bound. Examples of antibodies for capturing exosomes include antibodies to proteins (excluding CD91 and CD317) present on the exosome surface. The antibody is preferably directed to a protein having no significant difference in the expression level on the exosome surface between a lung cancer patient and a healthy person who does not have lung cancer. Examples of such a protein include CD9, CD63, CD81. And other molecules belonging to the tetraspanin family, and examples of the antibody include anti-CD9 antibody, anti-CD63 antibody, and anti-CD81 antibody. In one embodiment of the detection kit for lung cancer according to the present invention, the capture antibody and the substrate may be separately included. In another embodiment of the lung cancer detection kit according to the present invention, either one of the capture antibody and the substrate may be included.
 基材としては、例えば、タンパク質高吸着ポリプロピレンなどの材質のものが挙げられる。基材は、マイクロウェルプレート(例えば、96ウェル)であることが好ましい。多数の試料を並行して処理することができるからである。 Examples of the base material include materials such as protein highly adsorbed polypropylene. The substrate is preferably a microwell plate (eg, 96 well). This is because a large number of samples can be processed in parallel.
 本発明に係る肺癌の検出キットは、さらに、必要に応じて、抗体またはペプチドプローブを免疫学的に検出するための各種試薬(二次抗体、レポーター分子、およびバッファーなど)および器具(プレートおよびピペットなど)、検出キットの使用説明書、測定の時に用いられる対照用となる試料、測定結果を解析するときに用いられる対照用のデータ、などのうちの少なくとも1つを含んでいてもよい。なお、検出キットの使用説明書には、上記〔1.肺癌の検出方法〕の欄で説明した、本発明に係る肺癌の検出方法の内容が記録されている。 The lung cancer detection kit according to the present invention further includes various reagents (secondary antibodies, reporter molecules, buffers, etc.) and instruments (plates and pipettes) for immunologically detecting antibodies or peptide probes as necessary. Etc.), at least one of a use instruction of the detection kit, a control sample used at the time of measurement, control data used when analyzing the measurement result, and the like. In addition, in the instruction manual of the detection kit, the above [1. The contents of the lung cancer detection method according to the present invention described in the section “Lung cancer detection method” are recorded.
 特に限定されないが、本発明に係る肺癌の検出キットは、例えば、ELISA法に基づく検出キットであることが好ましく、サンドイッチELISA法に基づく検出キットであることがより好ましい。 Although not particularly limited, the detection kit for lung cancer according to the present invention is preferably, for example, a detection kit based on the ELISA method, and more preferably a detection kit based on the sandwich ELISA method.
 〔3.その他〕
 上記〔1.肺癌の検出方法〕の欄で説明した検出方法を行うことによって得られた結果は、医師による診断を行う際の診断資料の1つとして利用することができる。また、上記〔1.肺癌の検出方法〕の欄で説明した検出方法を行うことによって、肺癌を有している可能性ありという結果が得られた被験体については、必要に応じて医師による診断の結果を伴った上で、治療を行うことができる。ここで、治療の一例としては、医師、場合によっては医師以外の専門家が行う、化学療法、放射線治療、および外科手術などを挙げることができる。特に、本発明に係る検出方法では、早期の肺癌を検出し得るため、早期診断および早期治療を実現し得る。また、本発明に係る検出方法によれば、ステージIもしくはII、または、ステージIIIもしくはIVの肺癌であることを検出し得るため、医師が本発明に係る方法を行うことによって得られた結果に基づきそれぞれのステージに適した診断または治療を採用することができる。
[3. Others]
[1. The result obtained by carrying out the detection method described in the section “Lung cancer detection method” can be used as one of diagnostic materials for diagnosis by a doctor. The above [1. For subjects whose results indicate that they may have lung cancer by performing the detection method described in the section `` Lung cancer detection method '', With this, treatment can be performed. Here, examples of treatment include chemotherapy, radiation treatment, and surgery performed by a doctor, and in some cases, a specialist other than the doctor. In particular, since the detection method according to the present invention can detect early lung cancer, early diagnosis and early treatment can be realized. Further, according to the detection method according to the present invention, it can be detected that the cancer is stage I or II, or stage III or IV lung cancer, so that the result obtained by the doctor performing the method according to the present invention is used. Based on this, diagnosis or treatment suitable for each stage can be adopted.
 より具体的には、例えば、本発明に係る方法を行うことによって得られた結果に基づき医師が「肺癌を有している可能性あり」と判断した場合には、他の検査方法(X線検査、CT検査、および内視鏡検査など)による所見、喫煙歴、被験体の年齢および家族歴なども考慮した上で、生検を行うことができる。通常、生検を行った結果に基づき肺癌の有無の確定診断がなされ、治療方針が立てられる。医師が「肺癌を有している可能性あり」と判断するに際しては、予め所定の基準値を設けておき、被験体の測定値がその基準値以上となった場合に「肺癌を有している可能性あり」と判断することができる。 More specifically, for example, when a doctor determines that “possibility of having lung cancer” based on the result obtained by performing the method according to the present invention, other examination methods (X-rays) Examination, CT examination, endoscopy, etc.), smoking history, subject age and family history, etc. can be taken into account for biopsy. Usually, a definitive diagnosis of the presence or absence of lung cancer is made based on the result of a biopsy, and a treatment policy is established. When a doctor determines that "there is a possibility of having lung cancer", a predetermined reference value is set in advance, and if the measured value of the subject exceeds the reference value, It may be determined that there is a possibility that
 〔4.まとめ〕
 このように、本発明に係る検出方法は、肺癌を検出する方法であって、生体から採取された試料において、CD91およびCD317のうちの少なくとも一方の量を測定する工程を含む。
[4. (Summary)
As described above, the detection method according to the present invention is a method for detecting lung cancer, and includes a step of measuring the amount of at least one of CD91 and CD317 in a sample collected from a living body.
 本発明に係る検出方法は、測定された上記CD91およびCD317のうちの少なくとも一方の量が肺癌を有していない対照被験体と比較して増加している場合に、肺癌を有しているか、または肺癌を有している可能性が高いと判定する工程をさらに含むことが好ましい。 The detection method according to the present invention has lung cancer when the amount of at least one of the measured CD91 and CD317 is increased compared to a control subject not having lung cancer, Alternatively, it is preferable to further include a step of determining that there is a high possibility of having lung cancer.
 本発明に係る検出方法において、上記CD91の量は、エクソソーム表面に存在するCD91の量であり、上記CD317の量は、エクソソーム表面に存在するCD317の量であることが好ましい。 In the detection method according to the present invention, the amount of CD91 is the amount of CD91 present on the exosome surface, and the amount of CD317 is preferably the amount of CD317 present on the exosome surface.
 本発明に係る検出方法は、生体から採取された試料において、CEAの量を測定する工程をさらに含むことが好ましい。 The detection method according to the present invention preferably further includes a step of measuring the amount of CEA in a sample collected from a living body.
 本発明に係る検出方法において、上記肺癌は、ステージIまたはIIであってもよい。 In the detection method according to the present invention, the lung cancer may be stage I or II.
 本発明に係る検出方法において、上記肺癌は、ステージIIIまたはIVであってもよい。 In the detection method according to the present invention, the lung cancer may be stage III or IV.
 本発明に係る検出方法において、ELISA法によって上記CD91およびCD317のうちの少なくとも一方の量を測定することが好ましい。 In the detection method according to the present invention, it is preferable to measure the amount of at least one of CD91 and CD317 by ELISA.
 本発明に係る検出方法において、上記試料は、全血液、血清または血漿であることが好ましい。 In the detection method according to the present invention, the sample is preferably whole blood, serum or plasma.
 本発明に係る検出キットは、肺癌を検出するための検出キットであって、生体から採取された試料におけるCD91を認識する抗体またはペプチドプローブ、および、生体から採取された試料におけるCD317を認識する抗体またはペプチドプローブのうちの少なくとも一方を含む。 The detection kit according to the present invention is a detection kit for detecting lung cancer, an antibody or peptide probe that recognizes CD91 in a sample collected from a living body, and an antibody that recognizes CD317 in a sample collected from a living body Or at least one of the peptide probes.
 本発明に係る検出キットは、上記試料中のエクソソームを捕捉するための抗体が結合した基材をさらに含むことが好ましい。 The detection kit according to the present invention preferably further includes a base material to which an antibody for capturing the exosome in the sample is bound.
 本発明に係る検出キットにおいて、上記エクソソームを捕捉するための抗体は、抗CD9抗体であることが好ましい。 In the detection kit according to the present invention, the antibody for capturing the exosome is preferably an anti-CD9 antibody.
 本発明に係る検出キットは、生体から採取された試料におけるCEAを認識する抗体またはペプチドプローブをさらに含むことが好ましい。 The detection kit according to the present invention preferably further comprises an antibody or peptide probe that recognizes CEA in a sample collected from a living body.
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。 Examples will be shown below, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail. Further, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and the present invention is also applied to the embodiments obtained by appropriately combining the disclosed technical means. It is included in the technical scope of the invention. Moreover, all the literatures described in this specification are used as reference.
 〔実験手順〕
 本実施例では、バイオマーカーの探索および検証を行った。バイオマーカーの探索の概要は、図1に示すとおりである。
[Experimental procedure]
In this example, biomarkers were searched and verified. The outline of biomarker search is as shown in FIG.
 (血清サンプル)
 肺癌患者(n=165)および間質肺炎患者(n=29)から得た血清サンプルを、試験承認の上で、広島大学病院において回収した。健常のコントロールの血清サンプル(n=64)を、広島NTT病院において回収した。文書化されたインフォームドコンセントをすべての協力者から得た。この研究は、理研の倫理委員会(承認コード:横浜H20-12)および広島大学病院の倫理委員会によって承認された。
(Serum sample)
Serum samples from lung cancer patients (n = 165) and interstitial pneumonia patients (n = 29) were collected at the Hiroshima University Hospital upon study approval. Healthy control serum samples (n = 64) were collected at Hiroshima NTT Hospital. Documented informed consent was obtained from all collaborators. This study was approved by the RIKEN Ethics Committee (approval code: Yokohama H20-12) and the Hiroshima University Hospital Ethics Committee.
 (CD9-MSIAチップによるエクソソームの精製)
 すべての手順は、Novus i 12チャネル電子ピペットおよび調節可能なピペットスタンド(Thermo Fisher Scientific社製、米国)において行った。MSIA D.A.R.T.'s, Protein Gチップ(Thermo Fisher Scientific社製)を、500μLのPBS中でピペッティング(300μL×10サイクル)して平衡化し、次いで50μLのPBS中の1μgの抗CD9抗体(塩野義製薬株式会社製)をピペッティング(25μL×100サイクル)して、抗CD9抗体を固定した。PBS中の0.25mMのBS3(Thermo Fisher Scientific社製)を用いてクロスリンク(100μL×100サイクル)した後、反応を50mMのエタノールアミン-HCl(pH8.0)を用いて停止(100μL×100サイクル)した。500μLのPBS中で平衡化(300μL×10サイクル)し、次いでCD9-MSIAチップを、350μLの7倍希釈した血清サンプルと共にインキュベートした(300μL×100サイクルのピペッティングによる)。このチップを、500μLのPBS中でピペッティング(300μL×25サイクル)によって3回洗浄した。最後に、30μLの8Mの尿素+50mMの重炭酸アンモニウム溶液中でピペッティング(20μL×100サイクル)し、捕捉されたエクソソームを溶出した。
(Exosome purification by CD9-MSIA chip)
All procedures were performed on a Novus i 12 channel electronic pipette and an adjustable pipette stand (Thermo Fisher Scientific, USA). MSIA DART's, Protein G chip (Thermo Fisher Scientific) was equilibrated by pipetting (300 μL × 10 cycles) in 500 μL of PBS, and then 1 μg of anti-CD9 antibody (Shiono Pharmaceutical Co., Ltd.) in 50 μL of PBS. The product was pipetted (25 μL × 100 cycles) to immobilize the anti-CD9 antibody. After cross-linking (100 μL × 100 cycles) using 0.25 mM BS3 (Thermo Fisher Scientific) in PBS, the reaction was stopped using 100 mM ethanolamine-HCl (pH 8.0) (100 μL × 100). Cycle). Equilibrated in 500 μL PBS (300 μL × 10 cycles) and then the CD9-MSIA chip was incubated with 350 μL of a 7-fold diluted serum sample (by pipetting 300 μL × 100 cycles). The chip was washed 3 times by pipetting (300 μL × 25 cycles) in 500 μL PBS. Finally, pipetting (20 μL × 100 cycles) in 30 μL 8M urea + 50 mM ammonium bicarbonate solution was performed to elute the captured exosomes.
 5mMのTCEPを用いて37℃で30分間還元し、25mMのヨードアセトアミドを用いて室温で45分間アルキル化した。その後、サンプルを50mM重炭酸アンモニウムで7倍希釈し、96ウェルフィルタープレートに入れ、5μLの固定化トリプシン(Thermo Fisher Scientific社製)と共に37℃で6時間振とうして、消化させた。トリプシン消化物を、Oasis HLB 96-well μElution Plate(Waters Corporation社製、米国)を用いて脱塩し、LC/MS/MS分析に供した。 Reduced for 30 minutes at 37 ° C. with 5 mM TCEP and alkylated with 25 mM iodoacetamide for 45 minutes at room temperature. The sample was then diluted 7-fold with 50 mM ammonium bicarbonate, placed in a 96-well filter plate, and digested by shaking with 5 μL of immobilized trypsin (Thermo Fisher Fisher Scientific) at 37 ° C. for 6 hours. The trypsin digest was desalted using Oasis HLB 96-well Elution Plate (Waters Corporation, USA) and subjected to LC / MS / MS analysis.
 (LC/MS/MS分析)
 乾燥したペプチドサンプルを、0.1%のトリフルオロ酢酸を含む、2%のアセトニトリル溶液に再懸濁し、Ultimate 3000 RSLC nano-flow HPLC system(DIONEX社製、米国)を備えるLTQ-Orbitrap-Velos mass spectrometer(Thermo Fisher Scientific社製)を用いて分析した。75 μm × 150 mm C18 tip-column(日京テクノス社製)において、溶媒A(0.1%のギ酸)および溶媒B(アセトニトリル中の0.1%ギ酸)を用い、流速250nL/分において、95分間で溶媒Bを6.4~30%、その後10分間で溶媒Bを30~95%とする多段階直線勾配で、サンプルを分離した。
(LC / MS / MS analysis)
LTQ-Orbitrap-Velos mass resuspended dry peptide sample in 2% acetonitrile solution containing 0.1% trifluoroacetic acid and equipped with Ultimate 3000 RSLC nano-flow HPLC system (DIONEX, USA) Analysis was performed using a spectrometer (manufactured by Thermo Fisher Scientific). In a 75 μm × 150 mm C18 tip-column (manufactured by Nikyo Technos), solvent A (0.1% formic acid) and solvent B (0.1% formic acid in acetonitrile) were used at a flow rate of 250 nL / min. Samples were separated by a multi-step linear gradient with solvent B 6.4-30% in 95 minutes and 30-95% solvent B in 10 minutes.
 溶出したペプチドを、2000Vのスプレー電圧でイオン化し、MSデータをデータ依存型フラグメント法で取得した。測定スキャン(survey scan)は、m/z400~1600、分解度60,000、AGCターゲット値1.0×10イオンカウントで行った。各測定スキャンにおける上位20の強度の前駆イオンを、リニアイオントラップでAGCターゲット値5000イオンカウントのノーマルCIDスキャンモードを用いた低分解能MS/MS取得に供した。 The eluted peptide was ionized with a spray voltage of 2000 V, and MS data was acquired by the data-dependent fragment method. The measurement scan was performed at m / z 400-1600, resolution 60,000, AGC target value 1.0 × 10 6 ion count. The top 20 intensities of precursor ions in each measurement scan were subjected to low resolution MS / MS acquisition using a normal CID scan mode with an AGC target value of 5000 ion counts in a linear ion trap.
 Proteome Discoverer 1.3 software(Thermo Fischer Scientific社製)を用いてSEQUESTデータベースサーチを行い、タンパク質の同定を試みた。MS/MSスペクトルをヒトタンパク質データベースSwissProt 2013_03(20,255 sequences)に対して検索した。検索パラメーターは次のとおりである:Enzyme Name = Semitrypsin、Precursor Mass Tolerance = 3 ppm、Fragment Mass Tolerance = 0.8 Da、Dynamic Modification = Oxidation (Met)、Static Modification = Carbamidomethyl (Cys)。SEQUEST Decoy Database SearchにおけるPeptide Validator activityによるFDR(false discovery rate)が1%未満である場合に、そのペプチドと同定した。 Protein identification was attempted by performing a SEQUEST database search using Proteome Discoverer 1.3 software (Thermo Fischer Scientific). MS / MS spectra were searched against the human protein database SwissProt 2013_03 (20,255 sequences). The search parameters are: Enzyme Name = Semitrypsin, Precursor Mass Tolerance = 3 ppm, Fragment Mass Tolerance = 0.8 Da, Dynamic Modification = Oxidation (Met), Static Modification = Carbamidomethyl (Cys). When FDR (false discovery rate) by Peptide Validator activity in SEQUEST Decoy Database Search was less than 1%, the peptide was identified.
 (Expressionistサーバーにおけるラベルフリー定量分析)
 LC/MS/MSのデータセットを、Expressionist RefinerMS module(Genedata AG社製、スイス)にロードし、データ処理およびフリー定量分析を行った。RefinerMS softwareの全体的なワークフローを図2に示す。2D MSクロマトグラム面(x = m/z 、y =RT)上の10個のデータポイント毎にSpectrum Gridをセッティングした。次いで、第1および第2のChemical Noise Subtractionにおいて、RT = 2 scansおよびm/z = 6 pointsで、Structure Removalを順次行った。続いて、第3のChemical Noise Subtractionにおいて、RT Window = 500 scansおよびQuantile = 90%でStructure Removalを行った。第4のChemical Noise Subtractionにおいて、RT = 2 scansでStructure Removalを行った。その後、2000未満の強度のシグナルを、Intensity Thresholdingを用いて排除した。最後に、第5および第6のChemical Noise Subtractionにおいて、ぞれぞれRT = 2 scansおよびm/z = 5 pointsでStructure Removal行った。
(Label-free quantitative analysis on Expressionist server)
The LC / MS / MS dataset was loaded into an Expressionist RefinerMS module (Genedata AG, Switzerland) for data processing and free quantitative analysis. The overall workflow of RefinerMS software is shown in Figure 2. A Spectrum Grid was set for every 10 data points on the 2D MS chromatogram plane (x = m / z, y = RT). Subsequently, Structure Removal was sequentially performed at RT = 2 scans and m / z = 6 points in the first and second chemical noise subtraction. Subsequently, in the third chemical noise subtraction, structure removal was performed at RT Window = 500 scans and Quantile = 90%. In the fourth Chemical Noise Subtraction, Structure Removal was performed at RT = 2 scans. Thereafter, signals of intensity less than 2000 were excluded using Intensity Thresholding. Finally, Structure Removal was performed at RT = 2 scans and m / z = 5 points in the fifth and sixth Chemical Noise Subtraction, respectively.
 次いで、Chromatogram Gridをノイズ減算データ上の10スキャン毎にセットし、次のパラメーターを用いてChromatogram RT Alignmentを行った:m/z Window = 11 points、RT Window = 11 scans、Gap Penalty = 1、RT Search Interval = 2 minutes、Alignment Scheme = pairwise alignment based tree。 Next, Chromatogram Grid was set every 10 scans on the noise subtraction data, and Chromatogram RT Alignment was performed using the following parameters: m / z Window = 11 points, RT Window = 11 scans, Gap Penalty = 1, RT Search Interval = 2 minutes, Alignment Scheme = pairwise alignment based tree.
 続いて、一時的平均化クロマトグラムにおけるピークを、次のパラメーターを用いて、Summed Peak Detection Activityによって検出した:Summation Window = 20 scans、Overlap = 10、Minimum Peak Size = 6 scans、Maximum Merge Distance = 1 data points、Gap/Peak Ratio = 5、Method = curvature-based peak detection、Peak Refinement Threshold = 5、Consistency Filter Threshold = 1。最後に、Summed Isotope Clustering Activityを用いて、1つの分子に由来する同位体ピークを同位体クラスターにグループ化した。このときのパラメーターは次のとおりである:Minimum Charge = 1、Maximum Charge = 6、Maximum Missing Peaks = 0、First Allowed Gap Position = 10、Ionization =protonation、RT Tolerance = 0.1 minute、m/z Tolerance = 0.01 Da、Minimum Cluster Size Ratio = 0.5。 Subsequently, peaks in the temporal averaged chromatogram were detected by Summed Peak Detection Activity using the following parameters: Summation Window = 20 scans, Overlap = 10, Minimum Peak Size = 6 scans, Maximum Merge Distance = 1 data points, Gap / Peak Ratio = 5, Method = curvature-based peak detection, Peak Refinement Threshold = 5, Consistency Filter Threshold = 1. Finally, using Ismed Isotope Clustering Activity, isotopic peaks derived from one molecule were grouped into isotope clusters. The parameters at this time are as follows: Minimum Charge = 1, Maximum Charge = 6, Maximum Missing Peaks = 0, First Allowed Gap Position = 10, Ionization = protonation, RT Tolerance = 0.1 minute, m / z Tolerance = 0.01 Da, Minimum Cluster Size Ratio = 0.5.
 (Expressionist Analystにおける統計学的解析)
 バイオマーカーの効率的な同定のために、2段階の統計学的セレクションを行った。第1の段階において、3群の分散分析(ANOVA)を行い、3つの臨床群(p<0.001)間で有意に離れた発現レベルを示す候補を大まかに抽出した。次に、バイオマーカー候補の最小の組合せを、Expressionist Analyst module (Genedata AG)におけるSupport Vector Machine-Recursive Feature Elimination(SVM-RFE)アルゴリズムまたはSVM-SVMアルゴリズムによって、取扱説明書に従い、見積もった。
(Statistical analysis in Expressionist Analyst)
A two-step statistical selection was performed for efficient identification of biomarkers. In the first stage, analysis of variance (ANOVA) of 3 groups was performed to roughly extract candidates showing expression levels significantly separated between the 3 clinical groups (p <0.001). Next, the minimum combination of biomarker candidates was estimated according to the instruction manual by the Support Vector Machine-Recursive Feature Elimination (SVM-RFE) algorithm or SVM-SVM algorithm in Expressionist Analyst module (Genedata AG).
 (エクソソームサンドイッチELISAアッセイ1)
 エクソソーム捕捉抗体溶液(PBS中の5μg/mLの抗CD9抗体、50μL/ウェル)をNunc MaxiSorp flat-bottom 96 well plate(Thermo Fischer Scientific社製)にロードし、4℃で一晩インキュベートした。ブロッキング溶液(PBS中の5%BSA、150μL/ウェル)を添加し、周囲温度で、60分間、プレート振盪器でインキュベートした。PBSで3回洗浄した後、(5μLの血清+95μLのPBS)を上側の48ウェルにロードし、(30μLの血清+70μLのPBS)を下側の48ウェルにそれぞれロードした。5時間インキュベーション後、プレートをPBSで3回洗浄した。1%BSA中のビオチン化抗CD9抗体(125ng/mL)を上側の48ウェルにロードし、1%BSA中のビオチン化抗CD91抗体(500ng/mL)を下側の48ウェルにロードした(100μL/ウェル)。60分間インキュベーションした後、プレートをPBSで3回洗浄し、続いて1%BSA中の1×HRP-ストレプトアビジン(Abcam)で覆った(100μL/ウェル)。30分間インキュベーションした後、プレートをPBSで3回洗浄し、続いてOne-step Ultra TMB-ELISA Substrate Solution(Thermo Fischer Scientific社製)をウェルにロードした(100μL/ウェル)。2NのHCl(100μ/ウェル)を用いて、10分間インキュベーション後に反応を停止させた。450nmにおけるODを直ちに測定した。CD9-CD9およびCD9-CD91ELISAアッセイを、一般的な胸水サンプルから得た勾配曲線(5、10、15、20および25μL)を用いて標準化した。最後に、上述のCD9-CD9ELISAを用いて算出したエクソソームの濃度を用いて、CD91の濃度を標準化した。
(Exosome sandwich ELISA assay 1)
An exosome capture antibody solution (5 μg / mL anti-CD9 antibody in PBS, 50 μL / well) was loaded onto a Nunc MaxiSorp flat-bottom 96 well plate (Thermo Fischer Scientific) and incubated at 4 ° C. overnight. Blocking solution (5% BSA in PBS, 150 μL / well) was added and incubated on a plate shaker for 60 minutes at ambient temperature. After three washes with PBS, (5 μL serum + 95 μL PBS) was loaded into the upper 48 wells and (30 μL serum + 70 μL PBS) were loaded into the lower 48 wells, respectively. After 5 hours incubation, the plates were washed 3 times with PBS. Biotinylated anti-CD9 antibody (125 ng / mL) in 1% BSA was loaded into the upper 48 wells and biotinylated anti-CD91 antibody (500 ng / mL) in 1% BSA was loaded into the lower 48 wells (100 μL). / Well). After 60 minutes incubation, the plates were washed 3 times with PBS and subsequently covered with 1 × HRP-streptavidin (Abcam) in 1% BSA (100 μL / well). After incubation for 30 minutes, the plate was washed 3 times with PBS, followed by loading One-step Ultra TMB-ELISA Substrate Solution (Thermo Fischer Scientific) into the well (100 μL / well). The reaction was stopped after 10 minutes incubation with 2N HCl (100 μ / well). The OD at 450 nm was measured immediately. CD9-CD9 and CD9-CD91 ELISA assays were standardized using gradient curves (5, 10, 15, 20, and 25 μL) obtained from common pleural effusion samples. Finally, the concentration of CD91 was normalized using the exosome concentration calculated using the CD9-CD9 ELISA described above.
 (エクソソームサンドイッチELISAアッセイ2)
 エクソソーム捕捉抗体溶液(PBS中の5μg/mLの抗CD9抗体、50μL/ウェル)をNunc MaxiSorp flat-bottom 96 well plate(Thermo Fischer Scientific社製)にロードし、周囲温度で60分間インキュベートした。ブロッキング溶液(PBS中の5%BSA、150μL/ウェル)を添加し、周囲温度で、30分間、プレート振盪器でインキュベートした。PBSで3回洗浄した後、(10μLの血清+90μLのPBS)をウェルにロードした。3時間インキュベーション後、プレートをPBSで3回洗浄した。1%BSA中のHRP標識抗CD317抗体(250ng/mL)をウェルにロードした(100μL/ウェル)。60分間インキュベーションした後、プレートをPBSで3回洗浄し、続いてOne-step Ultra TMB-ELISA Substrate Solution(Thermo Fischer Scientific社製)をウェルにロードした(100μL/ウェル)。15分間インキュベーション後に2NのHCl(100μL/ウェル)を用いて反応を停止させた。450nmにおけるODを直ちに測定した。
(Exosome sandwich ELISA assay 2)
Exosome capture antibody solution (5 μg / mL anti-CD9 antibody in PBS, 50 μL / well) was loaded onto a Nunc MaxiSorp flat-bottom 96 well plate (Thermo Fischer Scientific) and incubated for 60 minutes at ambient temperature. Blocking solution (5% BSA in PBS, 150 μL / well) was added and incubated on a plate shaker for 30 minutes at ambient temperature. After washing 3 times with PBS, (10 μL serum + 90 μL PBS) was loaded into the wells. After 3 hours incubation, the plates were washed 3 times with PBS. HRP-labeled anti-CD317 antibody (250 ng / mL) in 1% BSA was loaded into the wells (100 μL / well). After incubation for 60 minutes, the plate was washed 3 times with PBS, followed by loading One-step Ultra TMB-ELISA Substrate Solution (Thermo Fischer Scientific) into the well (100 μL / well). After 15 min incubation, the reaction was stopped with 2N HCl (100 μL / well). The OD at 450 nm was measured immediately.
 (ボックスプロット解析およびROC曲線解析)
 バイオマーカーペプチドの候補に対応する質量スペクトルピークの強度を、Rアルゴリズムを用いたボックスプロットによって表示した。それぞれの調査について、当該ボックスは、第一四分位点~第三四分位点に含まれるデータポイントの分布を示している。ボックスを縦断している線は中央値を示している。ボックスの上および下の線の長さは、それぞれ最大データ値および最小データ値によって規定される。当該データ値は、ボックスの1.5倍の広がりの範囲内に存在している。また、ROC曲線を、Rで示した。カットオフ値を、(感度、特異度)=(1、1)からの距離が最小値に到達したポイントに設定した。感度(Sens)、特異度(Spec)、陽性的中率(PV+)、陰性的中率(PV-)および曲線下面積(AUC)をそれぞれのグラフ上に示した。
(Box plot analysis and ROC curve analysis)
The intensity of the mass spectral peak corresponding to the biomarker peptide candidate was displayed by a box plot using the R algorithm. For each survey, the box shows the distribution of data points contained in the first to third quartiles. The line running through the box shows the median value. The length of the line above and below the box is defined by the maximum data value and the minimum data value, respectively. The data value exists within a range of 1.5 times the box. The ROC curve is indicated by R. The cut-off value was set to the point where the distance from (sensitivity, specificity) = (1, 1) reached the minimum value. Sensitivity (Sens), specificity (Spec), positive predictive value (PV +), negative predictive value (PV−) and area under the curve (AUC) are shown on each graph.
 〔結果〕
 (抗CD9-MSIAチップによる血清のエクソソームの単離)
 血清由来のエクソソームを再現可能かつ高純度で分離することはバイオマーカーの効率的な同定において不可欠である。そのため、自動化された12チャネルのピペットシステムにおいて、抗体を固定化した低背圧モノリスチップを用いた(図3の(a))。これは、同時に12個の血清サンプルからエクソソームの単離を45分間で行うことが可能である。ここで、エクソソーム捕捉抗体のターゲットとして、テトラスパニン分子であるCD9を選択した。CD9は、さまざまな種類の細胞から分泌されたエクソソームの表面において強く発現しているからである(参考文献:Keller S, Sanderson MP, Stoeck A, Altevogt P (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107: 102-108.)。
〔result〕
(Serum exosome isolation with anti-CD9-MSIA chip)
Separation of serum-derived exosomes with reproducible and high purity is essential for efficient biomarker identification. Therefore, a low back pressure monolith chip with immobilized antibody was used in an automated 12-channel pipette system ((a) of FIG. 3). This allows exosome isolation from 12 serum samples simultaneously in 45 minutes. Here, CD9 which is a tetraspanin molecule was selected as a target of the exosome capture antibody. This is because CD9 is strongly expressed on the surface of exosomes secreted from various types of cells (Reference: Keller S, Sanderson MP, Stoeck A, Altevogt P (2006) Exosomes: from biogenesis and secretion to biological. function. Immunol Lett 107: 102-108.).
 この新規なデバイスの使用について、46人からの血清サンプル(NCが10人、IPが10人、進行した段階のADCが14人、進行した段階のSCCが12人)を、LC/MS/MSによって包括的に解析し、統計学的なバイオマーカーのスクリーニングに供した(図1、表1)。重要なことに、抗CD9-MSIAチップを用いれば、ヒトの血清からエクソソームを再現性高く収集できることが確認されている(図3の(b))。6個の独立したチップを用いて、共通の血清サンプルからエクソソーム画分を精製して、LC/MS/MSで分析する測定を、3回行った。CD9155-170ペプチド(GLAGGVEQFISDICPK, m/z = 845.9266;配列番号1)およびCD81149-171ペプチド(TFHETLDCCGSSTLTALTTSVLK, m/z = 848.0733;配列番号2)に対応するピーク領域の変動係数(CV)は、それぞれ2.49%および2.87%であった。このことは、抗CD9-MSIAチップに基づく相対的な定量分析におけるエラーは、十分小さく、信頼度の高いバイオマーカーの同定に十分であることを示している。 Serum samples from 46 people (10 NCs, 10 IPs, 14 advanced stage ADCs, 12 advanced stage SCCs), LC / MS / MS for use of this new device And was subjected to statistical biomarker screening (FIG. 1, Table 1). Importantly, it has been confirmed that exosomes can be collected from human serum with high reproducibility by using an anti-CD9-MSIA chip (FIG. 3 (b)). Using 6 independent chips, the exosome fraction was purified from a common serum sample and analyzed by LC / MS / MS three times. The coefficient of variation (CV) of the peak region corresponding to the CD9 155-170 peptide (GLAGGVEQFISDICPK, m / z = 845.9266; SEQ ID NO: 1) and the CD81 149-171 peptide (TFHETLDCCGSSTLTALTTSVLK, m / z = 848.0733; SEQ ID NO: 2) is They were 2.49% and 2.87%, respectively. This indicates that the error in relative quantitative analysis based on the anti-CD9-MSIA chip is small enough and sufficient to identify a reliable biomarker.
 (ヒト血清のエクソソームのプロテオームの概要)
 抗CD9-MSIAチップの単離効率を評価するために、バイオマーカー探索段階における46個の血清サンプルのLC/MS/MS分析から同定された1601個のタンパク質を、細胞内局在に基づき分類した(図4)。DAVID GO解析による細胞成分分布では、非常に富んだ826個の細胞内タンパク質(51.6%)および333個の原形質膜タンパク質(20.8%)を示したが、一方で、146個の細胞外タンパク質(9.1%)しか、抗CD9-MSIAチップの溶出液から同定されなかった。これらの数値は、オリジナルの細胞由来の細胞成分に関連するエクソソームの高収率の濃縮を明確に示すものであった。重要なことに、少数のエクソソームタンパク質の、高感度な検出の著しい妨げとなる血清タンパク質の大部分は、MSIA精製の段階で効果的に除去されていた。さらに、血清のエクソソームの生理学的機能を包括的に解明するために、1601個の同定されたタンパク質が持つ機能的特徴を、Expression Analysis Systematic Explorer (EASE)スコアに基づいて評価した(図4の(b))。この機能の推定によって、エクソソームが、小胞輸送に加えて、免疫制御、細胞間相互作用および刺激応答と関連している可能性が示唆された。これらのデータは、腫瘍由来のエクソソームの生物学的機能についてのみでなく、正常なエクソソームの生物学的な機能についても新規な発見に貢献するものであろう。
(Overview of human serum exosome proteome)
To assess the isolation efficiency of anti-CD9-MSIA chips, 1601 proteins identified from LC / MS / MS analysis of 46 serum samples in the biomarker search stage were classified based on subcellular localization (FIG. 4). Cell component distribution by DAVID GO analysis showed very rich 826 intracellular proteins (51.6%) and 333 plasma membrane proteins (20.8%), whereas 146 Only extracellular protein (9.1%) was identified from the eluate of the anti-CD9-MSIA chip. These numbers clearly showed high yield enrichment of exosomes related to the cellular components from the original cells. Importantly, most of the serum proteins that significantly interfered with sensitive detection of a small number of exosomal proteins were effectively removed during the MSIA purification step. Furthermore, in order to comprehensively elucidate the physiological functions of serum exosomes, the functional characteristics of 1601 identified proteins were evaluated based on the Expression Analysis Systematic Explorer (EASE) score (Fig. 4 ( b)). This functional estimation suggested that exosomes may be associated with immune regulation, cell-cell interactions and stimulatory responses in addition to vesicular trafficking. These data will contribute to new discoveries not only about the biological function of tumor-derived exosomes, but also about the biological function of normal exosomes.
 (肺癌に対するエクソソームのバイオマーカーの統計学的な同定)
 Expressionist RefinerMS moduleにおけるラベルフリーな定量分析(図1および図2)により、46個の血清サンプルからの113,582個の重複していないペプチドを定量した。第1の統計学的なセレクションにおいて、ANOVAを用いて、ADC患者(230個のペプチド、p<0.001)またはSCC患者(316個のペプチド、p<0.001)に特異的な特性ペプチドを大まかに抽出した。それぞれ、図5の(a)および図5の(b)に示している。第2の段階として、クロス確認に基づく特徴排除法を用いて、最小の誤分類率を示す最小のバイオマーカーセットを算出した。ここで、support vector machine recursive feature elimination(SVM-RFE)法またはSVM-SVM法によって、ADC患者群における真の予測率が90.9%である181個のペプチドおよびSCC患者群における真の予測率が100%である32個のペプチドを、最終的な候補バイオマーカーとして決定した(それぞれ、図5の(c)および図5の(d))。
(Statistical identification of exosome biomarkers for lung cancer)
113,582 non-overlapping peptides from 46 serum samples were quantified by label-free quantitative analysis (Figures 1 and 2) in the Expressionist RefinerMS module. In the first statistical selection, using ANOVA, characteristic peptides specific to ADC patients (230 peptides, p <0.001) or SCC patients (316 peptides, p <0.001) Was roughly extracted. These are shown in FIG. 5 (a) and FIG. 5 (b), respectively. As a second step, a minimum biomarker set showing a minimum misclassification rate was calculated using a feature exclusion method based on cross validation. Here, according to the support vector machine recursive feature elimination (SVM-RFE) method or SVM-SVM method, the true prediction rate in the ADC patient group is 181 peptides and the true prediction rate in the SCC patient group is 90.9% 32 peptides with 100% were determined as final candidate biomarkers (FIG. 5 (c) and FIG. 5 (d), respectively).
 1601個のタンパク質同定データを参照することによって、19個のタンパク質由来の20個のペプチドを同定した(図6および表2)。これらのうち、CD91、ITA2B(Integrin alpha-IIb)およびCD317は、エクソソームの表面に発現しており、エクソソームサンドイッチELISAによる測定が容易であるため、続く大規模検証試験において好ましいエクソソームのバイオマーカー候補であった。 Referring to 1601 protein identification data, 20 peptides derived from 19 proteins were identified (FIG. 6 and Table 2). Among these, CD91, ITA2B (Integrin alpha-IIb) and CD317 are expressed on the surface of exosomes and can be easily measured by exosome sandwich ELISA. Therefore, preferred exosome biomarker candidates in subsequent large-scale verification tests Met.
 (エクソソームサンドイッチELISAを用いたCD91についての大規模検証試験)
 上述のシングルランスクリーニング解析および候補マーカーCD91の臨床的有用性における、ラベルフリー定量の結果の定量的再現性を評価するために、212個のさらなる血清サンプル(表1)を用いて、エクソソームサンドイッチELISAによって、検証試験を行った。このアッセイにおいて、エクソソーム捕捉抗体として抗CD9抗体を用い、検出抗体としてビオチン化抗CD9抗体または抗CD91抗体を用いた(図7の(a))。CD9-CD9サンドイッチELISAによって測定した血清エクソソームの濃度は、個々のばらつきが大きかったため(図7の(b))、CD9-CD91サンドイッチELISAの測定結果を、エクソソームの濃度によって標準化した(図7の(d)において、U/エクソソームで示している)。また、同一のサンプルセットについて、既存の臨床バイオマーカーであるCEAを試験し(図7の(c))、診断上の有効性について、エクソソームのCD91のものと比較した。
(Large-scale verification test for CD91 using exosome sandwich ELISA)
To assess the quantitative reproducibility of the results of label-free quantification in the single run screening analysis and clinical utility of candidate marker CD91 as described above, 212 additional serum samples (Table 1) were used to determine the exosome sandwich. A verification test was performed by ELISA. In this assay, an anti-CD9 antibody was used as an exosome capture antibody, and a biotinylated anti-CD9 antibody or anti-CD91 antibody was used as a detection antibody ((a) of FIG. 7). The concentration of serum exosomes measured by CD9-CD9 sandwich ELISA varied widely (FIG. 7 (b)), and the measurement results of CD9-CD91 sandwich ELISA were normalized by the concentration of exosomes (FIG. 7 (( d) in U / exosomes). In addition, CEA, an existing clinical biomarker, was tested on the same sample set (FIG. 7 (c)), and compared with that of exosome CD91 for diagnostic effectiveness.
 エクソソームのCD91については2.04U/エクソソームにおいて、またCFAについては5.0ng/mLにおいて、カットオフ値を設定した場合、ステージIIIおよびIVのADC患者における感度は、CEAでは66.3%、CD91では61.4%であり、CEAがわずかに高かった。しかしながら、ステージIおよびIIのADC患者における検出力は、CEAでは22.7%、CD91では54.5%であり、CD91はCEAと比較して著しく高かった。コントロール群(NCおよびIP、n=73)におけるエクソソームのCD91偽陽性率は11.0%であり、CEAの偽陽性率は8.2%であった。これらの結果は、エクソソームのCD91は、CEAと比較して、肺ADCの早期検出に対する、より良好な潜在能力を有していることを示すものであった。 Sensitivity in stage III and IV ADC patients was 66.3% for CEA and CD91 at a cutoff value of 2.04 U / exosome for exosome CD91 and 5.0 ng / mL for CFA. In 61.4%, CEA was slightly higher. However, the power in stage I and II ADC patients was 22.7% for CEA and 54.5% for CD91, which was significantly higher compared to CEA. The exosome CD91 false positive rate in the control group (NC and IP, n = 73) was 11.0%, and the CEA false positive rate was 8.2%. These results indicated that exosomal CD91 had a better potential for early detection of lung ADC compared to CEA.
 さらに、全てのコントロールのサンプル(n=73)およびすべてのADCのサンプル(n=105)を用いて、エクソソームのCD91とCEAとを組み合わせるによる、効果の向上を評価した。図8の(a)~(c)におけるROC曲線解析によって、組み合せたバイオマーカーは、それぞれ単独の場合と比較して、感度(71.4%)、特異度(91.8%)および曲線下面積(0.882)の全てにおいて、効果的に向上させることが明らかとなった。 Further, using all the control samples (n = 73) and all the ADC samples (n = 105), the improvement in the effect by combining exosomal CD91 and CEA was evaluated. The ROC curve analysis in (a) to (c) of FIG. 8 shows that the combined biomarkers are each sensitive (71.4%), specificity (91.8%), and under the curve compared to the case of each alone. It has been found that all areas (0.882) are effectively improved.
 (エクソソームサンドイッチELISAを用いたCD317についての大規模検証試験)
 上述のシングルランスクリーニング解析および候補マーカーCD317の臨床的有用性における、ラベルフリー定量の結果の定量的再現性を評価するために、89個のさらなる血清サンプル(表3)を用いて、エクソソームサンドイッチELISAによって、検証試験を行った。このアッセイにおいて、エクソソーム捕捉抗体として抗CD9抗体を用い、検出抗体としてHRP標識抗CD317抗体を用いた(図9)。
(Large-scale verification test for CD317 using exosome sandwich ELISA)
To assess the quantitative reproducibility of the results of label-free quantification in the single run screening analysis and clinical utility of candidate marker CD317 as described above, 89 additional serum samples (Table 3) were used to determine the exosome sandwich. A verification test was performed by ELISA. In this assay, anti-CD9 antibody was used as an exosome capture antibody, and HRP-labeled anti-CD317 antibody was used as a detection antibody (FIG. 9).
 その結果、特にADC患者における検出力が高かった。さらに、肺腺癌のステージ依存的に血中エクソソームCD317の量が増加することが判明した。 As a result, the power of detection was particularly high in ADC patients. Furthermore, it was found that the amount of blood exosome CD317 increases depending on the stage of lung adenocarcinoma.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明は、肺癌の検出に利用することができる。そのため、本発明は、診断医療分野および保健医学分野に広く利用することができる。 The present invention can be used for detection of lung cancer. Therefore, the present invention can be widely used in the diagnostic medical field and the health medical field.

Claims (12)

  1.  肺癌を検出する方法であって、
     生体から採取された試料において、CD91およびCD317のうちの少なくとも一方の量を測定する工程を含む、検出方法。
    A method for detecting lung cancer, comprising:
    A detection method comprising a step of measuring the amount of at least one of CD91 and CD317 in a sample collected from a living body.
  2.  測定された上記CD91およびCD317のうちの少なくとも一方の量が肺癌を有していない対照被験体と比較して増加している場合に、肺癌を有しているか、または肺癌を有している可能性が高いと判定する工程をさらに含む、請求項1に記載の検出方法。 May have lung cancer or have lung cancer if the measured amount of at least one of CD91 and CD317 is increased compared to a control subject not having lung cancer The detection method according to claim 1, further comprising a step of determining that the property is high.
  3.  上記CD91の量は、エクソソーム表面に存在するCD91の量であり、上記CD317の量は、エクソソーム表面に存在するCD317の量である、請求項1または2に記載の検出方法。 The detection method according to claim 1 or 2, wherein the amount of CD91 is the amount of CD91 present on the exosome surface, and the amount of CD317 is the amount of CD317 present on the exosome surface.
  4.  生体から採取された試料において、CEAの量を測定する工程をさらに含む、請求項1~3の何れか1項に記載の検出方法。 The detection method according to any one of claims 1 to 3, further comprising a step of measuring the amount of CEA in a sample collected from a living body.
  5.  上記肺癌は、ステージIまたはIIである、請求項1~4の何れか1項に記載の検出方法。 The detection method according to any one of claims 1 to 4, wherein the lung cancer is stage I or II.
  6.  上記肺癌は、ステージIIIまたはIVである、請求項1~4の何れか1項に記載の検出方法。 The detection method according to any one of claims 1 to 4, wherein the lung cancer is stage III or IV.
  7.  ELISA法によって上記CD91およびCD317のうちの少なくとも一方の量を測定する、請求項1~6の何れか1項に記載の検出方法。 The detection method according to any one of claims 1 to 6, wherein the amount of at least one of the CD91 and CD317 is measured by an ELISA method.
  8.  上記試料は、全血液、血清または血漿である、請求項1~7の何れか1項に記載の検出方法。 The detection method according to any one of claims 1 to 7, wherein the sample is whole blood, serum or plasma.
  9.  肺癌を検出するための検出キットであって、
     生体から採取された試料におけるCD91を認識する抗体またはペプチドプローブ、および、生体から採取された試料におけるCD317を認識する抗体またはペプチドプローブのうちの少なくとも一方を含む、検出キット。
    A detection kit for detecting lung cancer,
    A detection kit comprising at least one of an antibody or peptide probe that recognizes CD91 in a sample collected from a living body and an antibody or peptide probe that recognizes CD317 in a sample collected from a living body.
  10.  上記試料中のエクソソームを捕捉するための抗体が結合した基材をさらに含む、請求項9に記載の検出キット。 The detection kit according to claim 9, further comprising a base material to which an antibody for capturing exosomes in the sample is bound.
  11.  上記エクソソームを捕捉するための抗体は、抗CD9抗体である、請求項10に記載の検出キット。 The detection kit according to claim 10, wherein the antibody for capturing the exosome is an anti-CD9 antibody.
  12.  生体から採取された試料におけるCEAを認識する抗体またはペプチドプローブをさらに含む、請求項9~11の何れか1項に記載の検出キット。 The detection kit according to any one of claims 9 to 11, further comprising an antibody or peptide probe that recognizes CEA in a sample collected from a living body.
PCT/JP2014/082122 2013-12-04 2014-12-04 Method for detecting lung cancer and detection kit WO2015083791A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013251548 2013-12-04
JP2013-251548 2013-12-04

Publications (1)

Publication Number Publication Date
WO2015083791A1 true WO2015083791A1 (en) 2015-06-11

Family

ID=53273539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082122 WO2015083791A1 (en) 2013-12-04 2014-12-04 Method for detecting lung cancer and detection kit

Country Status (1)

Country Link
WO (1) WO2015083791A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655580A (en) * 2019-10-31 2020-01-07 中国科学院深圳先进技术研究院 Hybridoma cell strain and application thereof
WO2023176963A1 (en) * 2022-03-17 2023-09-21 株式会社島津製作所 Method for analyzing biomolecules present in vesicles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182661A (en) * 2004-12-27 2006-07-13 Univ Of Tokushima Immunotherapeutic agent for lung cancer
WO2013099925A1 (en) * 2011-12-26 2013-07-04 塩野義製薬株式会社 Monoclonal antibody for detecting exosomes
JP2013185921A (en) * 2012-03-07 2013-09-19 National Institute Of Biomedical Innovation Tumor marker for lung glandular squamous cell carcinoma and diagnostic kit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182661A (en) * 2004-12-27 2006-07-13 Univ Of Tokushima Immunotherapeutic agent for lung cancer
WO2013099925A1 (en) * 2011-12-26 2013-07-04 塩野義製薬株式会社 Monoclonal antibody for detecting exosomes
JP2013185921A (en) * 2012-03-07 2013-09-19 National Institute Of Biomedical Innovation Tumor marker for lung glandular squamous cell carcinoma and diagnostic kit

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KOJI UEDA ET AL.: "Antibody-coupled monolithic silica microtips for highthroughput molecular profiling of circulating exosomes", SCIENTIFIC REPORTS, vol. 4, no. 6232, 29 August 2014 (2014-08-29) *
TAKUYA YAMASHITA ET AL.: "Exosome Yurai Maku Tanpakushitsu no Proteome Kaiseki ni yoru Shinki Haigan Ketsueki Shindan Marker no Tansaku", ABSTRACTS OF ANNUAL MEETING OF PHARMACEUTICAL SOCIETY OF JAPAN, vol. 132 ND, no. 4, 2012, pages 187 *
TAKUYA YAMASHITA ET AL.: "Search for novel lung cancer biomarkers by proteomic analysis of exosomal membrane", JSBMS LETT, vol. 37, 2012, pages 51 *
TAVANO BARBARA ET AL.: "Ig-like Transcript 7, but Not Bone Marrow Stromal Cell Antigen 2 (Also Known as HM1.24, Tetherin, or CD 317), Modulates Plasmacytoid Dendritic Cell Function in Primary Human Blood Leukocytes", J IMMUNOL, vol. 190, no. 6, 15 March 2013 (2013-03-15), pages 2622 - 2630 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655580A (en) * 2019-10-31 2020-01-07 中国科学院深圳先进技术研究院 Hybridoma cell strain and application thereof
CN110655580B (en) * 2019-10-31 2021-04-09 中国科学院深圳先进技术研究院 Hybridoma cell strain and application thereof
WO2023176963A1 (en) * 2022-03-17 2023-09-21 株式会社島津製作所 Method for analyzing biomolecules present in vesicles

Similar Documents

Publication Publication Date Title
JP6029218B2 (en) Lung cancer differentiation marker
US10184943B2 (en) Multiple biomarker set for breast cancer diagnosis, method of detecting the same, and diagnosis kit for breast cancer using antibody against the same
JP6028960B2 (en) Glycan markers for liver disease condition indicators
Chen et al. Elevated level of anterior gradient-2 in pancreatic juice from patients with pre-malignant pancreatic neoplasia
JP6786499B2 (en) Pancreatic cancer biomarker
Cheng et al. Proteomics analysis for finding serum markers of ovarian cancer
JP2011501133A (en) Method for detecting major cardiovascular or cerebrovascular adverse events
JP2011501133A5 (en)
US8518654B2 (en) Lung cancer diagnostic polypeptide, method for detecting lung cancer, and method for evaluating therapeutic effect
JPWO2019004430A1 (en) Biomarkers for detecting colorectal cancer
EP2894477A1 (en) Method for determining breast cancer
WO2015083791A1 (en) Method for detecting lung cancer and detection kit
Wang et al. Different expression of S100A8 in malignant and benign gallbladder diseases
JP6294118B2 (en) Colorectal cancer marker and method for detecting colorectal cancer
JP5867834B2 (en) Lung cancer marker complement C3dg molecule and method for analyzing lung cancer marker
KR101219516B1 (en) Polypeptide markers for the diagnosis of cancers and methods for the diagnosis of cancers using the same
JP5429725B1 (en) Prostate cancer progression evaluation method, prostate cancer detection method, and test kit
KR101431067B1 (en) PROTEIN MARKER APOLIPOPROTEIN (a) FOR BREAST CANCER DIAGNOSIS, METHOD OF DETECTING THE SAME, AND DIAGNOSIS KIT FOR BREAST CANCER USING ANTIBODY AGAINST THE SAME
JP2015108515A (en) Inspection method for colon cancer diagnosis
JP2014020941A (en) Marker for colorectal cancer and diagnosis using the same
JP7336097B2 (en) Peptide markers for breast cancer
KR101431063B1 (en) Protein marker apolipoprotein c-1 for breast cancer diagnosis, method of detecting the same, and diagnosis kit for breast cancer using antibody against the same
JP2013245960A (en) Method for determining prognosis of breast cancer patient after treatment with surgery
JP2014025868A (en) Cancer metastasis marker and diagnosis using the same
US20220178924A1 (en) Systems and methods for identifying subtype, prognosis, and monitoring of breast cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP