WO2015083731A1 - Nucleic acid aptamer for microvesicle - Google Patents

Nucleic acid aptamer for microvesicle Download PDF

Info

Publication number
WO2015083731A1
WO2015083731A1 PCT/JP2014/081954 JP2014081954W WO2015083731A1 WO 2015083731 A1 WO2015083731 A1 WO 2015083731A1 JP 2014081954 W JP2014081954 W JP 2014081954W WO 2015083731 A1 WO2015083731 A1 WO 2015083731A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
microvesicle
aptamer
acid aptamer
seq
Prior art date
Application number
PCT/JP2014/081954
Other languages
French (fr)
Japanese (ja)
Inventor
真 宮岸
和由 村上
山崎 和彦
光志 池本
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2015551533A priority Critical patent/JP6128621B2/en
Publication of WO2015083731A1 publication Critical patent/WO2015083731A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/10Applications; Uses in screening processes
    • C12N2320/11Applications; Uses in screening processes for the determination of target sites, i.e. of active nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature

Definitions

  • the present invention relates to a nucleic acid aptamer having an ability to bind to microvesicles.
  • the present invention provides a method for detecting a microvesicle using a nucleic acid aptamer capable of binding to a microvesicle, a method for isolating a microvesicle, and a nucleic acid aptamer capable of binding to a microvesicle. Containing drug delivery system.
  • Microvesicles are vesicles having a diameter of about 10 nm to about 1000 nm that are secreted from cells.
  • exosomes have a diameter of about 30 to 100 nm and are derived from endosomes.
  • the exosome is composed of a lipid membrane containing a large amount of ceramide and has a very hard structure. Exosomes are produced in multivesicular endosomes and secreted out of the cell by fusing with the plasma membrane. Therefore, an endosome specific marker such as CD63 is included on the membrane.
  • Microvesicles typified by exosomes are secreted from various cells and are observed in body fluids such as blood, urine and saliva.
  • body fluids such as blood, urine and saliva.
  • biomolecules such as mRNA, microRNA, DNA, and protein derived from cells that secrete microvesicles are contained in microvesicles, and microvesicles are important for communication between cells.
  • the possibility of playing a role is pointed out. For this reason, research is being actively conducted to isolate microvesicles from body fluids and analyze biomolecular information contained in the microvesicles, thereby applying them to disease diagnosis.
  • an ultracentrifugation method is known as a conventional method for detecting and isolating microvesicles.
  • a conventional method for detecting and isolating exosomes a method using an antibody that recognizes an antigen specific to exosomes is known.
  • antigens specific to exosome are limited such as CD63, and it takes a lot of time and money to produce antibodies.
  • Non-Patent Document 1 a method using a liposome
  • Non-Patent Document 2 a method using nanoparticles
  • the drug is mainly delivered to the liver and difficult to deliver to the target tissue of interest.
  • artificial lipids are used, cytotoxicity becomes a problem.
  • microvesicles are membrane vesicles that have a stable structure and are not cytotoxic because they are composed of biological materials, and are suitable for drug delivery systems. Therefore, if a drug can be bound to the microvesicle, it is considered that the drug can be delivered to a target target tissue, a disease site, a cancer tumor, or the like (Non-Patent Document 3). There are expectations for the development of drug delivery systems.
  • the present invention has been made to solve such problems of the prior art, has an excellent binding ability to microvesicles, has high stability, and has processability for various applications.
  • the object is to provide an excellent nucleic acid aptamer.
  • the present inventors have succeeded in obtaining a nucleic acid aptamer having a binding ability to microvesicles.
  • the base sequence 5′-X 1 -M s -X 2 -3 ′ (where M s is 80% or more identical to YRCGGHGWRWGGGGRN (SEQ ID NO: 207)).
  • Y is C or T or U
  • R is independently A or G
  • H is A, C or T or U
  • W is independent A, T, or U
  • K is G, T, or U
  • N is each independently A, C, G, T, or U
  • X 1 and X 2 are each 0 to Providing a nucleic acid aptamer having the ability to bind to microvesicles, comprising 50 nucleotides, and X 1 and X 2 bind complementarily to form a 0-50 base pair stem) It is.
  • the M s is preferably a base sequence having 90% or more identity with SEQ ID NO: 207.
  • the M s is preferably a base sequence represented by SEQ ID NO: 207.
  • the base sequence 5′-X 3- (N) m -M k- (N) n -X 4 -3 ′ (where M k is RRRDDRNDRGRKW ( SEQ ID NO: 208) or RVDDGGGHTCTAC (SEQ ID NO: 211), a base sequence having 80% or more identity, R is independently A or G, and D is independently A, G or T Or U, N is A, C, G or T or U, K is G or T or U, W is A or T or U, and V is A, C or G H is A, C or T or U, m is any integer from 0 to 20, n is any integer from 0 to 20, X 3 and X 4, each from 0 to 50 nucleotides And, and, X 3 and X 4 includes a stem to form) 0-50 base pairs complementarily bound, there is provided a nucleic acid aptamer capable of binding to the microvesicle.
  • M k is RRRDDRNDRGRKW ( SEQ ID NO
  • the Mk is preferably a nucleotide sequence having 90% or more identity with SEQ ID NO: 208 or SEQ ID NO: 211.
  • the M k is preferably a base sequence represented by SEQ ID NO: 208 or SEQ ID NO: 211.
  • the stem can contain mismatches or bulges.
  • the M s or the M k preferably forms a G quartet structure.
  • a base sequence selected from the group consisting of SEQ ID NOs: 107 to 206 or (b) a base sequence selected from the group consisting of SEQ ID NOs: 107 to 206
  • the present invention provides a nucleic acid aptamer having binding ability to a base sequence or microvesicle in which 1 to 5 bases are substituted, deleted, inserted or added.
  • the nucleic acid aptamer is preferably modified at the 3 'and / or 5' end.
  • the micro vesicle preferably has a diameter of 10 to 200 nm.
  • the microvesicle is preferably an exosome.
  • the present invention provides a method for detecting a microvesicle using the nucleic acid aptamer, a method for isolating the microvesicle, and a drug delivery system including the nucleic acid aptamer. is there.
  • the nucleic acid aptamer capable of binding to the microvesicle according to the present invention has a binding ability equal to or higher than that of the existing anti-microvesicle antibody, and can be used as a substitute for the existing anti-microvesicle antibody. It is.
  • nucleic acid since nucleic acid is used as a raw material, (1) chemical synthesis is easy and a large amount can be prepared at low cost, (2) aptamer itself has low antigenicity and high safety, (3) It is superior to antibodies in that it is highly stable and can be stored for a long period of time, and (4) it is easy to further improve aptamers by using modified nucleic acids.
  • nucleic acid aptamer in the case of a nucleic acid aptamer, it is possible to prepare a nucleic acid aptamer having a binding ability superior to that of an existing anti-microvesicle antibody because it can be prepared by targeting an epitope with low antigenicity that cannot produce an antibody. .
  • nucleic acid aptamer having binding ability to the microvesicle according to the present invention can be used for detection and isolation of microvesicles and drug delivery systems.
  • nucleic acid aptamer having binding ability to the microvesicle according to the present invention can be used as a blocking agent when further screening is performed for a novel nucleic acid aptamer having binding ability to the microvesicle.
  • FIG. 4 shows sequence alignment of aptamers enriched from S pool.
  • FIG. 4 shows sequence alignment of aptamers enriched from K pool. It is a figure which shows the result of having predicted the secondary structure about the aptamer of sequence number 114. It is a figure which shows the result of having predicted secondary structure about the aptamer of sequence number 159.
  • FIG. It is a figure which shows the result of the filter binding assay which confirmed the coupling
  • the present invention is a nucleic acid aptamer having binding ability to microvesicles.
  • a nucleic acid aptamer capable of binding to a microvesicle is referred to as a “microvesicle-binding nucleic acid aptamer”.
  • Nucleic acid aptamer means an oligonucleic acid that can specifically bind to a target molecule with high affinity.
  • the length of the oligonucleic acid is not particularly limited, but is preferably 10 to 200 bases, more preferably 17 to 100 bases.
  • a short nucleic acid aptamer is preferable because it can be easily and inexpensively produced and has high stability. However, if the length of the nucleic acid aptamer is shorter than 10 bases, the ability to bind to microvesicles may not be maintained.
  • nucleic acids constituting aptamers include DNA, RNA, LNA (Locked Nucleic Acid), peptide nucleic acids (PNA), artificial nucleic acids (Kimoto, M., et al., Nat. Biotechnol., Vol. 31, No. 5). , Pp. 453-457, 2013), modified nucleic acids (for example, those added with amino acid side chains), or a mixture of these nucleic acids partially.
  • Each nucleic acid may contain a base modified with fluorine or a methyl group, if necessary, or may contain a modification such as thiolation in the phosphate moiety.
  • nucleic acid constituting the aptamer is described as RNA, but can be appropriately read as other nucleic acid such as DNA.
  • thymine (T) and uracil (U) can be appropriately substituted for each other.
  • Microvesicle means a lipid bilayer vesicle secreted from a cell having a diameter of about 10 nm to about 1000 nm.
  • the microvesicle may be, for example, one secreted from a cultured cell into a culture solution or one secreted from a cell in a living body into a body fluid such as blood.
  • Cells that secrete microvesicles are not particularly limited. For example, dendritic cells, T cells, B cells, epithelial cells, epithelial cells, nerve cells, brain blood barrier epithelial cells, tumor cells, tumor stem cells, iPS cells, ES cells Or stem cells. These cells may be derived from any animal species.
  • the microvesicle-binding nucleic acid aptamer of the first embodiment has a base sequence: 5′-X 1 -M s -X 2 -3 ′ (where M s is YRCGGHGGWRWKGGGRN (SEQ ID NO: 207) and 80% or more) Is a nucleotide sequence having identity, Y is C or T or U, R is independently A or G, H is A, C or T or U, and W is each Independently, A or T or U, K is G or T or U, N is independently A, C, G or T or U, and X 1 and X 2 are each 0 Represents 1-50 nucleotides, and X 1 and X 2 bind complementarily to form a 0-50 base pair stem).
  • the aptamer has a structure in which M s is a loop part, and has a high binding affinity for microvesicles.
  • a sequence obtained as a nucleic acid aptamer having a high binding affinity for a target molecule can be introduced with mutation to further optimize the base sequence. That is, a nucleic acid aptamer in which a mutation is introduced in a range having 80% or more identity with respect to M s and a base sequence is optimized is equivalent to or more than an aptamer having M s as a loop portion. Has a high binding affinity for.
  • 80% or more identity means at least 80%, for example at least 80%, 85%, 90%, 95%, 97%, 98%, 99%, when comparing two base sequences It means a base sequence in which 100% of bases are identical.
  • the microvesicle-binding nucleic acid aptamer of the present embodiment includes a base sequence having preferably 80%, more preferably 90%, particularly preferably 100% identity with the base sequence shown in SEQ ID NO: 207.
  • the mutation introduced for optimization may include deletion or insertion of 1 to several bases.
  • the number of bases to be deleted or inserted by optimization is not particularly limited, but is preferably within 5 bases, within 4 bases, within 3 bases, and particularly preferably with 2 bases or 1 base.
  • a nucleic acid aptamer forms a three-dimensional structure such as a stem-loop structure, a guanine (G) quartet structure, or a pseudoknot structure, and this specific three-dimensional structure determines the recognition ability and binding ability of a nucleic acid aptamer to a target molecule.
  • G guanine
  • pseudoknot structure this specific three-dimensional structure determines the recognition ability and binding ability of a nucleic acid aptamer to a target molecule.
  • X 1 and X 2 have a specific base sequence. It is understood that is not limited.
  • X 1 and X 2 are arbitrary base sequences each having a length of 0 to 50 nucleotides, and X 1 and X 2 are complementarily bound to form a stem of 0 to 50 base pairs.
  • X 1 and X 2 may be the same length or different lengths.
  • X 1 and X 2 may be completely complementary or partially complementary.
  • the length of the stem portion can be freely changed. Furthermore, even in the absence of the stem portion, ie, when X 1 or X 2 is 0 nucleotides in length, the loop portion of M s can be maintained, and the ability of nucleic acid aptamers to recognize microvesicles and Binding ability can be maintained.
  • the length of the stem of the microvesicle-binding nucleic acid aptamer of the present embodiment is not particularly limited, but is preferably 5 to 45, 10 to 40, 10 to 35, or 10 to 30 base pairs, more preferably 5 It can be ⁇ 25 base pairs.
  • the microvesicle-binding nucleic acid aptamer of the second embodiment has a base sequence: 5′-X 3- (N) m -M k- (N) n -X 4 -3 ′ (where M k is RRRDDRNDRGRKW (SEQ ID NO: 208) or RVDDGGGHTCTAC (SEQ ID NO: 211) and a nucleotide sequence having 80% or more identity, R is independently A or G, and D is independently A, G or Is T or U, N is A, C, G or T or U, K is G or T or U, W is A or T or U, and V is A, C or G, H is A, C or T or U, m is any integer from 9 to 15, n is any integer from 0 to 4, X 3 and X 4, respectively 0 to 50 Represent nucleotides, and, X 3 and X 4 includes a stem to form) 0-50 base pairs complementarily bound.
  • M k is RRRDDRNDRGR
  • the aptamer has a structure in which (N) m -M k- (N) n is a loop portion, and has a high binding affinity for microvesicles.
  • a nucleic acid aptamer in which a mutation is introduced in a range having 80% or more identity with respect to M k and the base sequence is optimized is equivalent to or more than an aptamer including M k in the loop part.
  • the microvesicle-binding nucleic acid aptamer of the present embodiment has a base sequence having preferably 80%, more preferably 90%, particularly preferably 100% identity with the base sequence shown in SEQ ID NO: 208 or SEQ ID NO: 211.
  • the mutation introduced for optimization may include deletion or insertion of 1 to several bases.
  • the number of bases to be deleted or inserted by optimization is not particularly limited, but is preferably within 5 bases, within 4 bases, within 3 bases, and particularly preferably with 2 bases or 1 base.
  • the loop portion of the microvesicle-binding nucleic acid aptamer of the second embodiment includes Mk, and includes (N) m and (N) n consisting of an arbitrary base sequence at both ends thereof.
  • N The length of m is 0 to 20 nucleotides, preferably 7 to 17 nucleotides.
  • the length of n is 0 to 20 nucleotides, preferably 0 to 10 nucleotides.
  • the structure of M k is important for the ability to recognize and bind to this microvesicle, and if the structure of M k is maintained, a nucleic acid aptamer The ability to recognize and bind to microvesicles can be maintained. That, (N) m and (N) n is equivalent to a linker with the stem portion formed by the X 3 and X 4, it is not limited to nucleotide chain consisting of a specific nucleotide sequence. In addition, (N) m and (N) n may be non-nucleotide chains. The non-nucleotide chain may be composed of an organic group such as a substituted or unsubstituted linear alkyl chain, an ethylene glycol chain, an amino linker, a peptide chain, and a sugar chain.
  • An arbitrary base sequence having a length of 0 to 50 nucleotides can be used for X 3 and X 4 of the microvesicle-binding nucleic acid aptamer of the second embodiment.
  • the structure of the loop part consisting of (N) m -M k- (N) n is important for the ability of the nucleic acid aptamer of the present embodiment to recognize and bind to the microvesicle, and X 3 and X 4 are specific nucleotide sequences. It is understood that this is not a limitation.
  • X 3 and X 4 are arbitrary base sequences each having a length of 0 to 50 nucleotides, and X 3 and X 4 are complementarily bonded to form a stem of 0 to 50 base pairs.
  • X 3 and X 4 may have the same length or different lengths.
  • X 3 and X 4 may be completely complementary or partially complementary.
  • the length of the stem portion can be freely changed.
  • the structure of M k can be maintained even in the absence of a stem portion, ie, when X 3 or X 4 is 0 nucleotides in length, and the recognition ability and binding of nucleic acid aptamers to microvesicles Performance can be maintained.
  • the length of the stem of the microvesicle-binding nucleic acid aptamer of the present embodiment is not particularly limited, but is preferably 5 to 45, 10 to 40, 10 to 35, or 10 to 30 base pairs, more preferably 5 It can be ⁇ 25 base pairs.
  • the stem portion of the microvesicle-binding nucleic acid aptamer of this embodiment can contain a mismatch or a bulge.
  • the stem portion has a small influence on the recognition ability and binding ability of the nucleic acid aptamer to the target molecule, and the base sequence of the stem portion has a small number of nucleotides, such as, but not limited to, 1, 2, 3 It is well known that there may be deletions, insertions, substitutions of up to 4, or 5 nucleotides.
  • the recognition ability and binding ability of the nucleic acid aptamer of the present embodiment to the microvesicle are determined by the structure of the loop portion of M s and (N) m -M k- (N) n , and depend on the structure of the stem portion. Is not affected. That is, X 1 and X 2 or X 3 and X 4 of the microvesicle-binding nucleic acid aptamer of the present embodiment do not have to be completely complementary and contain mismatches or bulges. It's okay.
  • M s or M k forms a G quartet structure.
  • the G quartet structure is a square planar structure in which four guanines are formed as tetramers, and two or more planes overlap to form a guanine quadruplex structure (G-quadruplex).
  • a nucleic acid aptamer in which M s or M k forms a G quartet structure can have a recognition ability and a high binding ability to a microvesicle.
  • the microvesicle-binding nucleic acid aptamer of the third embodiment includes any base sequence selected from the group consisting of SEQ ID NOs: 107 to 206.
  • An aptamer containing any base sequence selected from the group consisting of SEQ ID NOs: 107 to 206 has a high binding affinity for microvesicles.
  • the microvesicle-binding nucleic acid aptamer of the present embodiment preferably, 1 to 5 bases are substituted, deleted, inserted or added in any base sequence selected from the group consisting of SEQ ID NOs: 107 to 206.
  • Base sequence Generally, for a sequence obtained as a nucleic acid aptamer having a high binding affinity for a target molecule, it is possible to introduce a mutation and further optimize the base sequence. That is, for a microvesicle-binding nucleic acid aptamer containing any one of the nucleotide sequences of SEQ ID NOs: 107 to 206, a nucleic acid aptamer optimized by substitution, deletion, insertion or addition of one to several bases is also available. It can have a high binding affinity for vesicles.
  • the number of bases substituted, deleted, inserted or added by optimization is not particularly limited, but is preferably within 5 bases, within 4 bases, within 3 bases, and particularly preferably with 2 bases or 1 base.
  • the microvesicle-binding nucleic acid aptamer of the present embodiment is not limited to a nucleic acid consisting only of the specific base sequence. That is, it may be a nucleic acid to which an arbitrary base sequence is added as long as it contains the specific base sequence and has a binding ability to microvesicles.
  • the nucleic acid constituting the aptamer may be, for example, DNA, RNA, LNA, PNA, artificial nucleic acid, modified nucleic acid (for example, with an amino acid side chain added), or a mixture of these nucleic acids. It may be.
  • Each nucleic acid may contain a base modified with fluorine or a methyl group as necessary, or may contain a modification such as thiolation in the phosphate moiety.
  • either one or both of the 3 'end and the 5' end may be modified. This is to improve the stability of the nucleic acid.
  • the binding affinity of a nucleic acid aptamer to a target substance is generally provided by the nucleic acid aptamer three-dimensional structure, as long as the three-dimensional structure is maintained, another base sequence or a modifying substance is added to the end of the nucleic acid aptamer. Even so, it is well known that the binding affinity of the nucleic acid aptamer to the target substance is maintained.
  • terminal modifications include biotin, polyethylene glycol (PEG), fluorescent materials, luminescent materials, carboxyfluorescein (FAM), peptides, amino acids, lipids and the like.
  • the said modification may be couple
  • the spacer sequence can be of any length, but can preferably be 0-20 bases.
  • the nucleic acid aptamer according to the present invention can be obtained by, for example, the Systematic Evolution of Ligands by the exponential enrichment (SELEX) method (Tuerk, C. and Gold, L., Science, Vol. 249, p. 249, p. 249, p. 249, p. 249). 1990).
  • SELEX Systematic Evolution of Ligands by the exponential enrichment
  • only a nucleic acid that binds to a target molecule with high affinity is selected by repeating a cycle of selecting and amplifying a nucleic acid that binds to the target molecule from a nucleic acid library containing random sequences, for example, 5 to 20 times. It is a method of sorting. That is, the microvesicle-binding nucleic acid aptamer of this embodiment can be obtained by performing the SELEX method using the microvesicle as a target molecule.
  • the microvesicle used as the target molecule can be obtained from a biological sample or a cell culture solution.
  • the microvesicles those obtained by ultrafiltration, density gradient centrifugation, size exclusion chromatography, ultracentrifugation, immunoprecipitation, liquid chromatography and the like can be used.
  • the microvesicle targeted by the nucleic acid aptamer according to the present invention preferably has a diameter of 10 to 200 nm, particularly preferably an exosome.
  • the “exosome” means a lipid bilayer vesicle secreted from a cell that is derived from an endosome and has a diameter of about 30 to 100 nm.
  • nucleic acid aptamer obtained by the SELEX method can be prepared by various conventionally known synthetic methods after determining its base sequence.
  • nucleic acid aptamers can be prepared by chemical synthesis methods.
  • the chemical synthesis method is preferable in that the same nucleic acid aptamer can be prepared in large quantities.
  • microvesicle-binding nucleic acid aptamer of this embodiment has a binding affinity for microvesicles that is equivalent to that of existing anti-microvesicle antibodies. Therefore, it is useful for applications such as detection and isolation of microvesicles.
  • the present invention is a method for detecting a microvesicle using a microvesicle-binding nucleic acid aptamer.
  • the detection method of the present embodiment can be performed by the same method as the immunological method except that a microvesicle-binding nucleic acid aptamer is used instead of the antibody. Therefore, by using a microvesicle-binding nucleic acid aptamer instead of the existing anti-microvesicle antibody, for example, enzyme immunoassay (EIA), radioimmunoassay (RIA), western blotting, immunohistochemical staining method
  • EIA enzyme immunoassay
  • RIA radioimmunoassay
  • the micro vesicle can be detected by the same procedure as the above method. It can also be performed by a method using a combination of microchannels or a method using surface plasmon resonance.
  • the present invention is a method for isolating a microvesicle using a microvesicle-binding nucleic acid aptamer.
  • the isolation method of the present embodiment can be performed by the same method as the immunological method except that a microvesicle-binding nucleic acid aptamer is used instead of the antibody. Therefore, microvesicles can be isolated by, for example, immunoprecipitation, affinity column purification, flow cytometry sorting, etc., by using a microvesicle-binding nucleic acid aptamer instead of the existing anti-microvesicle antibody. it can.
  • the present invention is a drug delivery system comprising a microvesicle-binding nucleic acid aptamer and a drug.
  • the drug delivery system of this embodiment contains a microvesicle-binding nucleic acid aptamer conjugated with one or more drugs.
  • the drug delivery system of the present embodiment improves the stability and retention of the drug in the living body of the subject to which the drug delivery system is administered, for example, the microvesicle in the blood, and improves the in vivo stability and retention.
  • the drug is specifically delivered only to cells targeted by the vesicle.
  • the drug contained in the drug delivery system of the present embodiment may be a normal drug component, for example, an anticancer drug, an anti-inflammatory drug, or a therapeutic drug for infectious diseases, immune diseases, neurological diseases or degenerative diseases. Can be mentioned.
  • the drug delivery system of this embodiment can include one or more drugs conjugated to a microvesicle-binding nucleic acid aptamer.
  • the drug when the drug is composed of, for example, a nucleic acid drug such as siRNA or antisense nucleic acid, it may be directly linked to the nucleic acid aptamer.
  • the microvesicle-binding nucleic acid aptamer and the drug can be bound at a molar ratio of 1: 1 to 1: 100.
  • the drug delivery system of this aspect may include a foreign microvesicle in advance.
  • an exogenous microvesicle derived from a preferable cell type can be appropriately selected according to the tissue or cell that is the target of drug delivery.
  • a microvesicle derived from any animal species or cell type can be used as the exogenous microvesicle.
  • the drug delivery system of this embodiment can improve the stability and retention of the drug in vivo by combining with the microvesicle, the dose and frequency of the drug can be reduced, and side effects can be reduced. Also useful.
  • the drug can be selectively delivered only to the cells targeted by the microvesicles. It is useful because it can only act on drugs.
  • Example 1 Purification of microvesicles> Microvesicles in the culture medium were prepared with some modifications based on the method of Sokolova et al. (Sokolova, V., et al., Colloids Surf B Biointerfaces, Vol. 87, pp. 146-150, 2011). The culture solution (10% FBS / DMEM) of 293T cells cultured in a 10 cm petri dish was replaced with serum-free Advanced DMEM (manufactured by Life Technologies) and cultured for 3 days, and then the culture supernatant was collected. The collected culture supernatant was filtered with a filter having a pore size of 0.22 ⁇ m to remove substances of 200 nm or more.
  • Sokolova, V., et al. Colloids Surf B Biointerfaces, Vol. 87, pp. 146-150, 2011.
  • the culture solution (10% FBS / DMEM) of 293T cells cultured in a 10 cm petri dish was replaced with serum-free
  • Example 2 Screening of microvesicle-binding nucleic acid aptamer by SELEX method> A microvesicle-binding nucleic acid aptamer was produced by the SELEX method.
  • the SELEX method is based on the method of Ellington et al. (Ellington, AD. And Szostak, JW., Nature, Vol. 346, pp. 818-822, 1990) and the method of Gold et al. (Tuerk, C. and Gold, L., Science). , Vol. 249, pp.
  • the RNA pool used in the first round was prepared by performing in vitro transcription using chemically synthesized DNA as a template and using DuraScribe TM T7 Transcription Kit (manufactured by Epicenter Technologies).
  • the RNA pool is a DNA template containing a 21-mer region at each end of the 55- mer randomized region (n 55 ) (S pool), and a 15-mer region at each end of the 30- mer randomized region (n 30 ).
  • Two types were prepared using DNA containing DNA as a template (K pool).
  • the template DNA and primer sequences are as follows.
  • S pool Template DNA (S): 5′-gggagggtggaactgaaggaga-n 55 -actctgcaatcgctctacgca-3 ′ (SEQ ID NO: 1)
  • Reverse (Rev) primer S): 5'-tgcgttagagcgattgcgaagt-3 '(SEQ ID NO: 3)
  • K pool Template DNA (K): 5'-ggtagatacgaggga-n 30 -catgacgggcaccca-3 '(SEQ ID NO: 4)
  • RNA product was purified with a biogel P-30 packed micro bio spin column (manufactured by Bio-Rad).
  • the obtained RNA is one in which the 2 ′ position of ribose of pyrimidine nucleotides (c and u) is fluorinated. Moreover, the variation of RNA contained in the obtained RNA pool is 1 ⁇ 10 33 for the S pool and 1 ⁇ 10 18 for the K pool.
  • a binding reaction between the microvesicle prepared in Example 1 and the RNA pool was performed.
  • a binding buffer (20 mM Tris hydrochloride (pH 7.5), 150 mM sodium chloride, 5 mM potassium chloride, 0.5 mM magnesium chloride, 1.5 mM calcium chloride) is used.
  • the test was carried out at room temperature under the conditions shown in Table 1 below.
  • the microvesicle-RNA complex was recovered on the membrane by filtering through a 0.45 ⁇ m pore size nitrocellulose membrane (Millipore). This membrane was placed in a 7M urea / 10 mM EDTA solution and heated at 98 ° C. for 5 minutes, and then the solution was recovered and RNA was purified by ethanol precipitation.
  • the purified RNA was subjected to a reverse transcription reaction using PrimeScript II single-stranded cDNA synthesis kit (manufactured by Takara Bio Inc.). Specifically, 1.25 ⁇ mol of dNTP, 25 pmol each of Fwd primer and Rev primer were added to the purified RNA ( ⁇ several tens ⁇ g), reacted at 65 ° C. for 5 minutes, and then cooled to 4 ° C. Then, the buffer, RNase inhibitor, and reverse transcriptase (100 U) attached to the kit were added, 10 minutes at 30 ° C., 10 minutes at 37 ° C., 40 minutes at 42 ° C., 30 minutes at 52 ° C., 5 minutes at 98 ° C. Reacted.
  • PrimeScript II single-stranded cDNA synthesis kit manufactured by Takara Bio Inc.
  • the obtained reverse transcription product was subjected to PCR reaction to amplify DNA.
  • a buffer attached to TaKaRa Ex Taq manufactured by Takara Bio Inc.
  • a final concentration of 0.8 mM dNTP a final concentration of 1.25 ⁇ M Fwd primer and a Rev primer
  • 0.5 U Ex Taq was added, and after 94 ° C. for 60 seconds, a PCR reaction was performed by repeating a cycle of 98 ° C. for 10 seconds, 55 ° C. for 30 seconds, and 72 ° C. for 60 seconds.
  • the number of cycles was determined by confirming the amplification product by agarose gel electrophoresis.
  • the obtained PCR product was purified by ethanol precipitation. From the purified PCR product, reverse transcribed RNA was obtained by in vitro transcription using the DuraScribe TM T7 Transcription Kit. The obtained RNA product was purified with a biogel P-30 packed micro bio spin column (manufactured by Bio-Rad).
  • the purified RNA product was passed through a nitrocellulose membrane (negative selection).
  • the base sequence was comprehensively analyzed using the next-generation sequencer MiSeq (manufactured by Illumina) and its kit MiSeq Reagent Kit v2.
  • the actual aptamer sequence is an Fwd primer sequence (however, a sequence upstream from the transcription start point of the T7 promoter: except for UGUAAAUACGAUCACACUAUA) -randomized region sequence-reverse primer complementary sequence.
  • Fwd primer sequence a sequence upstream from the transcription start point of the T7 promoter: except for UGUAAAUACGAUCACACUAUA
  • all base sugars are ribose
  • t is 2'-FU
  • c is 2'-FC.
  • Tables 4 and 5 show the base sequences of actual RNA aptamers.
  • FIG. 1 is a display conforming to MEME, in which the vertical axis indicates the appearance frequency (bit score) of the base at each position of the motif sequence, and the horizontal axis indicates the base sequence.
  • FIG. 1 (a) shows the analysis results for the top 50 sequences of aptamers obtained from the S pool.
  • FIG. 1 (b) to FIG. 1 (d) show the analysis results for the top 50 sequences of aptamers obtained from the K pool.
  • FIG. 1 (a) Based on the results of FIG. 1 (a), the aptamers concentrated from the S pool are aligned and aligned.
  • FIG. 2 shows the results of alignment and aptamers concentrated from the K pool based on the results of FIG. 1 (c).
  • FIG. 3 shows the result of alignment and alignment. From this result, it was confirmed that aptamers obtained from the S pool have the motif M s in common, and aptamers concentrated from the K pool have the motif M k in common.
  • Example 4 Prediction of secondary structure of motif> Subsequently, secondary structure prediction of the above-described motifs M s and M k was performed.
  • the CentroidFold program (Nucl. Acids Res., Vol. 37 (Suppl. 2), pp. W277-W280) is used for the aptamer having the motif M s , SEQ ID NO: 114, and the aptamer having the motif M k , SEQ ID NO: 159. , 2009) to predict secondary structure.
  • the structure of the aptamer estimated is as follows.
  • Aptamers with a motif M s 5′-X 1 -M s -X 2 -3 ′ (where M s is YRCGGHGWRWGGGGRN (SEQ ID NO: 207), R is independently A or G, and Y is C or T Or U, W is each independently A or T or U, N is each independently A, C, G or T or U, and X 1 and X 2 are each 0 to 50 Represents X nucleotides, and X 1 and X 2 bind complementarily to form a 0-50 base pair stem)
  • Aptamers with motif Mk 5′-X 3- (N) m -M k- (N) n -X 4 -3 ′ (where M k is RRRDDRNDRGRKW (SEQ ID NO: 208), and each R is independently A or G, D are each independently A, G or T or U; N is A, C,
  • Example 5 Evaluation of binding ability of motif to microvesicle>
  • the following aptamers with the stem structure portion shortened were synthesized in order to analyze in more detail the loop structure portion important for the microvesicle binding ability.
  • a biotin label was introduced at the 5 ′ end.
  • S-motif aptamer 5′-ggccACGA CGCGGGAGGUGUGGGGGA UCGUggcc-3 ′ (SEQ ID NO: 209)
  • K motif aptamer 5′-GGUAGAUACGAUGGAAGAG GGAAAGGGAGGGGU UCUACC-3 ′ (SEQ ID NO: 210) (Here, lowercase letters represent DNA, uppercase letters represent RNA. U and C are modified with fluorine.
  • Underlined motif M s SEQ ID NO: 207) or motif M k (SEQ ID NO: 208)) (The part corresponding to is shown.)
  • the binding ability of the aptamer to microvesicles was evaluated by a filter binding assay.
  • 0 0.1% Tween 20
  • the S motif aptamer or K motif aptamer 100 pmol each
  • the microvesicle (10 mg) prepared in Example 1.
  • 1% Tween20-containing binding buffer for 2 hours at room temperature. Thereafter, the reaction solution was filtered through a 0.45 ⁇ m pore size nitrocellulose membrane (Millipore). The filter was then washed by passing through 5 ml of a binding buffer containing 0.1% Tween20.
  • the washed filter was blocked with a binding buffer containing 3% BSA / 0.1% Tween 20 containing 100 ⁇ g / ml tRNA and washed once with 4.5 ml of a binding buffer containing 0.1% Tween 20 for 10 minutes. Thereafter, the reaction was carried out at room temperature for 1 hour with horseradish peroxidase (HRP) -labeled avidin (Thermo Scientific) diluted 1/1000 with a binding buffer containing 0.3% BSA / 0.1% Tween20. Thereafter, chemiluminescence reaction was performed using an ECL kit (manufactured by GE Healthcare Japan) to detect binding.
  • HRP horseradish peroxidase
  • Example 6 Comparison of binding ability of motif and anti-microvesicle antibody to microvesicle>
  • An anti-CD63 antibody (MX-49.129.5, manufactured by Santa Cruz Biotechnology) was used as the anti-microvesicle antibody.
  • CD63 is known as an exosome marker protein, and anti-CD63 antibodies are generally used for detection and isolation of exosomes.
  • Example 2 ⁇ l of the microvesicle fraction obtained in Example 1 was dropped on the nitrocellulose membrane and air-dried at room temperature for 30 minutes to fix the microvesicle, and then 100 ⁇ g / ml tRNA.
  • 1% BSA / 0.1% Tween20-containing binding buffer (hereinafter referred to as “blocking buffer”) was used for blocking at room temperature for 1 hour. Then, the binding reaction was performed by incubating the nitrocellulose membrane in an S motif aptamer / blocking buffer (final concentration 200 nM) at room temperature for 1 hour.
  • the nitrocellulose membrane was washed with a binding buffer containing 0.1% Tween 20, and then the S motif aptamer bound to the microvesicle was immobilized by UV crosslinking. Thereafter, the mixture was reacted with HRP-labeled avidin (Thermo Scientific) diluted 1/4000 with a binding buffer containing 0.1% Tween 20 at room temperature for 1 hour. After washing three times with a binding buffer containing 0.1% Tween 20, a chemiluminescence reaction was performed using an ECL kit (manufactured by GE Healthcare Japan) to detect binding.
  • HRP-labeled avidin Thermo Scientific
  • the above-mentioned anti-CD63 antibody was used as the primary antibody (1: 1000 dilution / 1 % BSA / 0.1% Tween 20 / TBS) and incubation at room temperature for 1 hour to perform the binding reaction. After washing with 0.1% Tween 20 / TBS three times for 15 minutes, HRP-labeled anti-mouse IgG (manufactured by GE Healthcare Japan) was used as the secondary antibody (1: 2000 dilution / 1% BSA / 0.1% Tween 20).
  • the binding reaction was carried out by incubation at room temperature for 1 hour. After washing with 0.1% Tween20 / TBS three times for 15 minutes, the binding of the anti-CD63 antibody to the microvesicle was detected by chemiluminescence in the same manner as the S motif aptamer.
  • a dot blot was performed on the denaturated microvesicle sample.
  • the microvesicles prepared in Example 1 were boiled for 2 minutes in (1) binding buffer and (2) boiled for 2 minutes in 2% SDS-containing sample buffer. did.
  • the microvesicles can be denatured partially according to the condition (1) and completely according to the condition (2).
  • the dot blot was performed by the same procedure as described above.
  • Example 7 Evaluation of binding ability of aptamer to microvesicle by surface plasmon resonance method> The binding ability of the S motif aptamer (SEQ ID NO: 209) and the K motif aptamer (SEQ ID NO: 210) to microvesicles was evaluated by the surface plasmon resonance method. Specifically, a surface plasmon resonance measuring apparatus BIACORE X (manufactured by GE Healthcare Japan) and a sensor chip coated with streptavidin (sensor chip SA, manufactured by GE Healthcare Japan) were used. About 150 RU of S motif aptamer or K motif aptamer was bound to the chip.
  • the 293T cell-derived or HeLa S3 cell-derived microvesicles used as the analyte were prepared by the same procedure as in Example 1, and about 1 mg / ml, 1/40, 1/80, 1/120, Concentrations of 1/140 and 1/160 were prepared and used to measure binding levels.
  • As the running buffer 0.005% Tween 20 / binding buffer was used (flow rate 10 ⁇ l / ml).
  • the dissociation constant (Kd) determined from the binding reaction curve is as follows: the Kd between the S motif aptamer and the 293T cell-derived microvesicle is 2.37 ⁇ 10 2 ⁇ g / ml, and the S motif aptamer and the HeLa S3 cell-derived microvesicle. Kd is 1.23 ⁇ 10 2 ⁇ g / ml, Kd between K motif aptamer and 293T cell-derived microvesicle is 1.38 ⁇ 10 2 ⁇ g / ml, Kd between K motif aptamer and HeLa S3 cell-derived microvesicle was 0.57 ⁇ 10 2 ⁇ g / ml. From this value, it was revealed that both the S motif aptamer and the K motif aptamer have a very high binding affinity for microvesicles over that of a general antibody.
  • Example 8 Structural analysis of aptamer by circular dichroism spectrum measurement> The three-dimensional structure of the motif was analyzed by measuring the circular dichroism (CD) spectrum of the S motif aptamer (SEQ ID NO: 209) and the K motif aptamer (SEQ ID NO: 210). Specifically, measurement was performed at 25 ° C. and 220 to 320 nm using a quartz cell having an optical path length of 0.1 cm by J-820 (manufactured by JASCO Corporation).
  • CD circular dichroism
  • the buffer is based on 20 mM Tris hydrochloride (pH 7.5), 150 mM sodium chloride, 0.5 mM magnesium chloride, 1.5 mM calcium chloride, with potassium chloride at a final concentration of 0.0, 0.1, 0.3, 1 Add to 0.0, 5.0, 10.0, 50.0 and 100 mM.
  • the buffer is 20 mM Tris hydrochloride (pH 7.5), and the potassium chloride is adjusted to a final concentration of 0.0, 0.1, 0.3, 1.0, 5.0, 10.0, 50.0 and 100 mM. The case where it added so was evaluated.
  • melting temperatures of the S motif aptamer and the K motif aptamer were determined. Specifically, in a buffer (20 mM Tris hydrochloride (pH 7.5), 150 mM sodium chloride, 0.5 mM magnesium chloride, 1.5 mM calcium chloride, 100 mM potassium chloride) while changing the temperature from 25 ° C. to 95 ° C. It was determined by measuring the fluorescence intensity at 270 nm. The same measurement was performed when the buffer was 20 mM Tris hydrochloride (pH 7.5) and 100 mM potassium chloride.
  • FIGS. 12 and 14 the structure of the S motif aptamer changed depending on the potassium ion concentration, and the maximum value of ellipticity ⁇ (around 260 to 280 nm) increased as the potassium ion concentration increased.
  • the K motif aptamer the same potassium ion concentration-dependent structural change as that of the S motif aptamer was observed (FIGS. 13 and 15). Further, from the results of FIG. 15, it has been clarified that when the potassium ion concentration is 0.1 mM or more, the maximum ellipticity ⁇ shifts to the longer wavelength side. From these results, it was suggested that both the S motif aptamer and the K motif aptamer form a parallel guanine quadruplex structure (Parallel G-quadruplex) in a potassium ion-dependent manner.
  • Example 9 Effect of potassium ion concentration on aptamer binding ability to microvesicles> Subsequently, whether the binding ability of the S motif aptamer (SEQ ID NO: 209) and the K motif aptamer (SEQ ID NO: 210) to the microvesicle changes depending on the potassium ion concentration was analyzed by a surface plasmon resonance method. Measurement was performed under the same conditions as in Example 7, using 293T cell-derived microvesicles (81 mg / ml) prepared by the same procedure as in Example 1 and a binding buffer with or without 10 mM potassium chloride. .
  • FIG. A binding reaction curve in the presence of potassium ions is indicated by a solid line, and a binding reaction curve in the absence of potassium ions is indicated by a broken line. It was shown that both the S motif aptamer (the upper part of FIG. 20) and the K motif aptamer (the lower part of FIG. 20) increase the binding ability to microvesicles in a potassium ion-dependent manner. From this result, both the S motif aptamer and the K motif aptamer form a parallel guanine quadruplex structure, and the parallel guanine quadruplex structure is stabilized in a potassium ion concentration-dependent manner. It was suggested that the binding ability was enhanced.
  • FIG. 21 shows the three-dimensional structure of the microvesicle-binding nucleic acid aptamer according to the present invention, which is assumed from the above results.
  • the arrow indicates the 5 ′ ⁇ 3 ′ direction of the nucleic acid, and the two-dot chain line indicates a tetramer plane (G quartet structure) formed by four guanines.
  • the motif portion of the microvesicle-binding nucleic acid aptamer according to the present invention has a parallel guanine quadruplex structure in which two G quartet structures overlap each other, and binds to the microvesicle via this parallel guanine quadruplex structure.
  • the microvesicle-binding nucleic acid aptamer according to the present invention has a high binding affinity for microvesicles and can capture microvesicles.
  • a microvesicle detection method and isolation method, and a drug delivery system can be provided.

Abstract

Provided is a nucleic acid aptamer exhibiting binding capacity with respect to a microvesicle. Also provided are: a microvesicle detection/isolation method using said aptamer exhibiting binding capacity with respect to the microvesicle; and a drug delivery system. This nucleic acid aptamer includes: 5'-X1-Ms-X2-3' (Ms represents a base sequence which is at least 80% identical to YRCGGNGGWGTWGGGGR (SED IQ NO: 209)), and X1 and X2 bind complementarily to form stems of 0-50 base pairs); or 5'-X3-(N)m-Mk-(N)n-X4-3' (Mk represents a base sequence which is at least 80% identical to either RRRDDRNDRGRKW (SED ID NO: 208) or RVDDGGGHTCTAC (SEQ ID NO: 211), m and n each represent an integer from 0 to 20, and X3 and X4 bind complementarily to form stems of 0-50 base pairs).

Description

マイクロベシクルに対する核酸アプタマーNucleic acid aptamers for microvesicles
 本発明は、マイクロベシクルに対して結合能を有する核酸アプタマーに関する。本発明は、特には、マイクロベシクルに対して結合能を有する核酸アプタマーを用いてマイクロベシクルを検出する方法、マイクロベシクルを単離する方法、および、マイクロベシクルに対して結合能を有する核酸アプタマーを含有する薬物送達システムに関する。 The present invention relates to a nucleic acid aptamer having an ability to bind to microvesicles. In particular, the present invention provides a method for detecting a microvesicle using a nucleic acid aptamer capable of binding to a microvesicle, a method for isolating a microvesicle, and a nucleic acid aptamer capable of binding to a microvesicle. Containing drug delivery system.
 マイクロベシクルとは、細胞から分泌される直径約10nm~約1000nmの大きさの小胞である。その中で、直径が約30~100nmの大きさであり、かつ、エンドソームに由来するものがエキソソームである。エキソソームは、セラミドを多く含む脂質膜により構成されており、非常に硬い構造を有している。エキソソームは、多胞性エンドソームの中で産生され、多胞性エンドソームが細胞膜と融合することにより細胞外に分泌される。そのため、CD63などのエンドソーム特異的マーカーを膜上に含む。 Microvesicles are vesicles having a diameter of about 10 nm to about 1000 nm that are secreted from cells. Among them, exosomes have a diameter of about 30 to 100 nm and are derived from endosomes. The exosome is composed of a lipid membrane containing a large amount of ceramide and has a very hard structure. Exosomes are produced in multivesicular endosomes and secreted out of the cell by fusing with the plasma membrane. Therefore, an endosome specific marker such as CD63 is included on the membrane.
 エキソソームに代表されるマイクロベシクルは、種々の細胞から分泌され、血液、尿、唾液などの体液中に観察される。近年、マイクロベシクルを分泌した細胞に由来するmRNA、マイクロRNA、DNA、タンパク質などの様々な生体分子がマイクロベシクル内に含まれていることが報告され、マイクロベシクルが細胞間の情報伝達に重要な役割を担っている可能性が指摘されている。そのため、マイクロベシクルを体液から単離し、マイクロベシクルに含まれる生体分子情報を解析することにより、疾患の診断に応用しようと研究が盛んに行われている。 Microvesicles typified by exosomes are secreted from various cells and are observed in body fluids such as blood, urine and saliva. In recent years, it has been reported that various biomolecules such as mRNA, microRNA, DNA, and protein derived from cells that secrete microvesicles are contained in microvesicles, and microvesicles are important for communication between cells. The possibility of playing a role is pointed out. For this reason, research is being actively conducted to isolate microvesicles from body fluids and analyze biomolecular information contained in the microvesicles, thereby applying them to disease diagnosis.
 マイクロベシクルを検出・単離する従来の方法としては、例えば、超遠心分離法が知られている。しかし、超遠心分離法によりマイクロベシクルを分離する場合には、マイクロベシクルを含有するサンプルを大量に用意する必要があるため、時間と労力を要するという問題がある。また、超遠心分離を実施するための設備が必要となり、経済的にもコストがかかる。エキソソームを検出・単離する従来の方法としては、エキソソームに特異的な抗原を認識する抗体を用いる方法が知られている。しかし、エキソソームに特異的な抗原にはCD63など限られたものしかない上、抗体を作製するためには多大な時間的・経済的コストがかかるという問題がある。 For example, an ultracentrifugation method is known as a conventional method for detecting and isolating microvesicles. However, when microvesicles are separated by the ultracentrifugation method, it is necessary to prepare a large amount of samples containing microvesicles, and thus there is a problem that time and labor are required. Moreover, equipment for carrying out ultracentrifugation is required, which is costly. As a conventional method for detecting and isolating exosomes, a method using an antibody that recognizes an antigen specific to exosomes is known. However, there is a problem that antigens specific to exosome are limited such as CD63, and it takes a lot of time and money to produce antibodies.
 また、近年では、体内の薬物分布を量的・空間的・時間的に制御し、治療対象となる組織や細胞のみに薬物を作用させ、薬物の効果を最大限発揮させるための薬物送達システム(ドラッグデリバリーシステム、DDS)の研究が行われている。従来の薬物送達システムとしては、例えば、リポソームを用いた方法(非特許文献1)、ナノパーティクルを用いた方法(非特許文献2)などが知られている。しかし、これらの手法の場合、薬物は主に肝臓へと送達され、目的とする標的組織への送達が難しい。さらに、人工脂質を用いているため、細胞毒性が問題となる。 In recent years, drug delivery systems that control the distribution of drugs in the body quantitatively, spatially, and temporally, act only on tissues and cells to be treated, and maximize the effects of the drug ( Drug delivery systems (DDS) are being researched. As a conventional drug delivery system, for example, a method using a liposome (Non-Patent Document 1), a method using nanoparticles (Non-Patent Document 2), and the like are known. However, in these approaches, the drug is mainly delivered to the liver and difficult to deliver to the target tissue of interest. Furthermore, since artificial lipids are used, cytotoxicity becomes a problem.
 一方、マイクロベシクルは、生体物質から構成されているため細胞毒性がなく、安定な構造を有する膜小胞であり、薬物送達システムに適している。そのため、マイクロベシクルに薬物を結合させることができれば、目的とする標的組織や疾患部位、がん腫瘍などへの薬物送達が可能になると考えられており(非特許文献3)、マイクロベシクルを用いた薬物送達システムの開発に期待が寄せられている。 On the other hand, microvesicles are membrane vesicles that have a stable structure and are not cytotoxic because they are composed of biological materials, and are suitable for drug delivery systems. Therefore, if a drug can be bound to the microvesicle, it is considered that the drug can be delivered to a target target tissue, a disease site, a cancer tumor, or the like (Non-Patent Document 3). There are expectations for the development of drug delivery systems.
 本発明は、このような従来技術の諸問題を解消するためになされたものであり、マイクロベシクルに対して優れた結合能を有し、安定性が高く、かつ、様々な用途に加工性の優れた核酸アプタマーを提供することを目的とする。 The present invention has been made to solve such problems of the prior art, has an excellent binding ability to microvesicles, has high stability, and has processability for various applications. The object is to provide an excellent nucleic acid aptamer.
 本発明者らは、鋭意研究の結果、マイクロベシクルに対して結合能を有する核酸アプタマーを得ることに成功した。 As a result of intensive studies, the present inventors have succeeded in obtaining a nucleic acid aptamer having a binding ability to microvesicles.
 すなわち、本発明は、一実施形態によれば、塩基配列:5’-X-M-X-3’(ここで、Mは、YRCGGHGGWRWKGGGRN(配列番号207)と80%以上の同一性を有する塩基配列であり、Yは、CまたはTもしくはUであり、Rは、それぞれ独立に、AまたはGであり、Hは、A、CまたはTもしくはUであり、Wは、それぞれ独立に、AまたはTもしくはUであり、Kは、GまたはTもしくはUであり、Nは、それぞれ独立に、A、C、GまたはTもしくはUであり、XおよびXは、それぞれ0~50個のヌクレオチドを表し、かつ、XおよびXは相補的に結合して0~50塩基対のステムを形成する)を含む、マイクロベシクルに対して結合能を有する核酸アプタマーを提供するものである。 That is, according to one embodiment of the present invention, the base sequence: 5′-X 1 -M s -X 2 -3 ′ (where M s is 80% or more identical to YRCGGHGWRWGGGGRN (SEQ ID NO: 207)). Y is C or T or U, R is independently A or G, H is A, C or T or U, and W is independent A, T, or U, K is G, T, or U, N is each independently A, C, G, T, or U, and X 1 and X 2 are each 0 to Providing a nucleic acid aptamer having the ability to bind to microvesicles, comprising 50 nucleotides, and X 1 and X 2 bind complementarily to form a 0-50 base pair stem) It is.
 前記Mは、配列番号207と90%以上の同一性を有する塩基配列であることが好ましい。 The M s is preferably a base sequence having 90% or more identity with SEQ ID NO: 207.
 前記Mは、配列番号207に示される塩基配列であることが好ましい。 The M s is preferably a base sequence represented by SEQ ID NO: 207.
 また、本発明は、一実施形態によれば、塩基配列:5’-X-(N)-M-(N)-X-3’(ここで、Mは、RRRDDRNDRGRKW(配列番号208)またはRVDDGGGHTCTAC(配列番号211)と80%以上の同一性を有する塩基配列であり、Rは、それぞれ独立に、AまたはGであり、Dは、それぞれ独立に、A、GまたはTもしくはUであり、Nは、A、C、GまたはTもしくはUであり、Kは、GまたはTもしくはUであり、Wは、AまたはTもしくはUであり、Vは、A、CまたはGであり、Hは、A、CまたはTもしくはUであり、mは、0から20までのいずれかの整数であり、nは、0から20までのいずれかの整数であり、XおよびXは、それぞれ0~50個のヌクレオチドを表し、かつ、XおよびXは相補的に結合して0~50塩基対のステムを形成する)を含む、マイクロベシクルに対して結合能を有する核酸アプタマーを提供するものである。 According to one embodiment of the present invention, the base sequence: 5′-X 3- (N) m -M k- (N) n -X 4 -3 ′ (where M k is RRRDDRNDRGRKW ( SEQ ID NO: 208) or RVDDGGGHTCTAC (SEQ ID NO: 211), a base sequence having 80% or more identity, R is independently A or G, and D is independently A, G or T Or U, N is A, C, G or T or U, K is G or T or U, W is A or T or U, and V is A, C or G H is A, C or T or U, m is any integer from 0 to 20, n is any integer from 0 to 20, X 3 and X 4, each from 0 to 50 nucleotides And, and, X 3 and X 4 includes a stem to form) 0-50 base pairs complementarily bound, there is provided a nucleic acid aptamer capable of binding to the microvesicle.
 前記Mは、配列番号208または配列番号211と90%以上の同一性を有する塩基配列であることが好ましい。 The Mk is preferably a nucleotide sequence having 90% or more identity with SEQ ID NO: 208 or SEQ ID NO: 211.
 前記Mは、配列番号208または配列番号211に示される塩基配列であることが好ましい。 The M k is preferably a base sequence represented by SEQ ID NO: 208 or SEQ ID NO: 211.
 前記ステムは、ミスマッチまたはバルジを含むことができる。 The stem can contain mismatches or bulges.
 前記Mまたは前記MがGカルテット構造を形成することが好ましい。 The M s or the M k preferably forms a G quartet structure.
 また、本発明は、一実施形態によれば、(a)配列番号107~206からなる群から選択される塩基配列、または、(b)配列番号107~206からなる群から選択される塩基配列において、1~5個の塩基が置換、欠失、挿入または付加された塩基配列、マイクロベシクルに対して結合能を有する核酸アプタマーを提供するものである。 Further, according to one embodiment of the present invention, (a) a base sequence selected from the group consisting of SEQ ID NOs: 107 to 206, or (b) a base sequence selected from the group consisting of SEQ ID NOs: 107 to 206 The present invention provides a nucleic acid aptamer having binding ability to a base sequence or microvesicle in which 1 to 5 bases are substituted, deleted, inserted or added.
 前記核酸アプタマーは、3’および/または5’末端が修飾されていることが好ましい。 The nucleic acid aptamer is preferably modified at the 3 'and / or 5' end.
 前記マイクロベシクルは、直径が10~200nmのものであることが好ましい。 The micro vesicle preferably has a diameter of 10 to 200 nm.
 前記マイクロベシクルは、エキソソームであることが好ましい。 The microvesicle is preferably an exosome.
 また、本発明は、別の実施形態によれば、上記核酸アプタマーを用いてマイクロベシクルを検出する方法およびマイクロベシクルを単離する方法、ならびに、上記核酸アプタマーを含む薬物送達システムを提供するものである。 According to another embodiment, the present invention provides a method for detecting a microvesicle using the nucleic acid aptamer, a method for isolating the microvesicle, and a drug delivery system including the nucleic acid aptamer. is there.
 本発明に係るマイクロベシクルに対して結合能を有する核酸アプタマーは、既存の抗マイクロベシクル抗体と同等またはそれ以上の高い結合能を有し、既存の抗マイクロベシクル抗体の代替物としての使用が可能である。また、核酸を原料としているため、(1)化学合成が容易であり、安価に大量に調製することが可能である、(2)アプタマー自身の抗原性が低く、安全性が高い、(3)安定性が高く、長期保存が可能である、(4)修飾核酸を用いることにより、アプタマーのさらなる改良が容易である、といった点で抗体よりも優れている。さらに、核酸アプタマーの場合、抗体を作製できない抗原性の低いエピトープをも標的として調製することができるため、既存の抗マイクロベシクル抗体よりも優れた結合能を有する核酸アプタマーを調製できる可能性がある。 The nucleic acid aptamer capable of binding to the microvesicle according to the present invention has a binding ability equal to or higher than that of the existing anti-microvesicle antibody, and can be used as a substitute for the existing anti-microvesicle antibody. It is. In addition, since nucleic acid is used as a raw material, (1) chemical synthesis is easy and a large amount can be prepared at low cost, (2) aptamer itself has low antigenicity and high safety, (3) It is superior to antibodies in that it is highly stable and can be stored for a long period of time, and (4) it is easy to further improve aptamers by using modified nucleic acids. Furthermore, in the case of a nucleic acid aptamer, it is possible to prepare a nucleic acid aptamer having a binding ability superior to that of an existing anti-microvesicle antibody because it can be prepared by targeting an epitope with low antigenicity that cannot produce an antibody. .
 また、本発明に係るマイクロベシクルに対して結合能を有する核酸アプタマーは、マイクロベシクルの検出および単離、ならびに薬物送達システムのために使用し得る。また、本発明に係るマイクロベシクルに対して結合能を有する核酸アプタマーは、マイクロベシクルに対して結合能を有する新規の核酸アプタマーについてさらなるスクリーニングを行う際、ブロッキング剤として使用することができる。 Also, the nucleic acid aptamer having binding ability to the microvesicle according to the present invention can be used for detection and isolation of microvesicles and drug delivery systems. In addition, the nucleic acid aptamer having binding ability to the microvesicle according to the present invention can be used as a blocking agent when further screening is performed for a novel nucleic acid aptamer having binding ability to the microvesicle.
SELEX法により選択されたアプタマーについて、保存されたモチーフ配列をMEME Suiteにより検索した結果を示す図である。It is a figure which shows the result of having searched the preserve | saved motif arrangement | sequence about the aptamer selected by SELEX method by MEME Suite. Sプールから濃縮されたアプタマーの配列整列を示す図である。FIG. 4 shows sequence alignment of aptamers enriched from S pool. Kプールから濃縮されたアプタマーの配列整列を示す図である。FIG. 4 shows sequence alignment of aptamers enriched from K pool. 配列番号114のアプタマーについて、二次構造を予測した結果を示す図である。It is a figure which shows the result of having predicted the secondary structure about the aptamer of sequence number 114. 配列番号159のアプタマーについて、二次構造を予測した結果を示す図である。It is a figure which shows the result of having predicted secondary structure about the aptamer of sequence number 159. FIG. SモチーフアプタマーまたはKモチーフアプタマーとマイクロベシクルとの結合を確認したフィルターバインディングアッセイの結果を示す図である。It is a figure which shows the result of the filter binding assay which confirmed the coupling | bonding of S motif aptamer or K motif aptamer, and a micro vesicle. Sモチーフアプタマーのマイクロベシクルに対する結合能を評価したドットブロットの結果を示す図である。It is a figure which shows the result of the dot blot which evaluated the binding ability with respect to the micro vesicle of S motif aptamer. Sモチーフアプタマーと293T細胞由来のマイクロベシクルとの結合を示すセンサーグラムである。It is a sensorgram which shows the coupling | bonding of the S motif aptamer and the microvesicle derived from 293T cell. SモチーフアプタマーとHeLa S3細胞由来のマイクロベシクルとの結合を示すセンサーグラムである。It is a sensorgram which shows the coupling | bonding of the S motif aptamer and the micro vesicle derived from HeLa S3 cell. Kモチーフアプタマーと293T細胞由来のマイクロベシクルとの結合を示すセンサーグラムである。It is a sensorgram which shows the coupling | bonding of a K motif aptamer and the microvesicle derived from 293T cell. KモチーフアプタマーとHeLa S3細胞由来のマイクロベシクルとの結合を示すセンサーグラムである。It is a sensorgram which shows the coupling | bonding of K motif aptamer and the micro vesicle derived from HeLa S3 cell. トリス/ナトリウム/カルシウム/マグネシウムバッファーに種々の量の塩化カリウムを加えたときの、SモチーフアプタマーのCDスペクトルである。It is a CD spectrum of an S motif aptamer when various amounts of potassium chloride are added to a tris / sodium / calcium / magnesium buffer. トリス/ナトリウム/カルシウム/マグネシウムバッファーに種々の量の塩化カリウムを加えたときの、KモチーフアプタマーのCDスペクトルである。It is a CD spectrum of a K motif aptamer when various amounts of potassium chloride are added to a tris / sodium / calcium / magnesium buffer. トリスバッファーに種々の量の塩化カリウムを加えたときの、SモチーフアプタマーのCDスペクトルである。It is a CD spectrum of an S motif aptamer when various amounts of potassium chloride are added to Tris buffer. トリスバッファーに種々の量の塩化カリウムを加えたときの、KモチーフアプタマーのCDスペクトルである。It is a CD spectrum of a K motif aptamer when various amounts of potassium chloride are added to a tris buffer. トリス/ナトリウム/カルシウム/マグネシウム/カリウムバッファーにおける、Sモチーフアプタマーの融解温度測定試験の結果を示す図である。It is a figure which shows the result of the melting temperature measurement test of S motif aptamer in a tris / sodium / calcium / magnesium / potassium buffer. トリス/ナトリウム/カルシウム/マグネシウム/カリウムバッファーにおける、Kモチーフアプタマーの融解温度測定試験の結果を示す図である。It is a figure which shows the result of the melting temperature measurement test of a K motif aptamer in a tris / sodium / calcium / magnesium / potassium buffer. トリス/カリウムバッファーにおける、Sモチーフアプタマーの融解温度測定試験の結果を示す図である。It is a figure which shows the result of the melting temperature measurement test of S motif aptamer in a tris / potassium buffer. トリス/カリウムバッファーにおける、Kモチーフアプタマーの融解温度測定試験の結果を示す図である。It is a figure which shows the result of the melting temperature measurement test of a K motif aptamer in a tris / potassium buffer. SモチーフアプタマーまたはKモチーフアプタマーと293T細胞由来のマイクロベシクルとの結合能に対するカリウムイオンの影響を確認した図である。It is the figure which confirmed the influence of the potassium ion with respect to the binding ability of an S motif aptamer or a K motif aptamer, and the microvesicle derived from 293T cell. マイクロベシクルに対して結合能を有する核酸アプタマーの立体構造の予測図である。It is a prediction figure of the three-dimensional structure of the nucleic acid aptamer which has a binding ability with respect to a micro vesicle.
 以下、本発明を詳細に説明するが、本発明は本明細書中に説明した実施形態に限定されるものではない。 Hereinafter, the present invention will be described in detail, but the present invention is not limited to the embodiments described in the present specification.
 本発明は、第一の態様によれば、マイクロベシクルに対して結合能を有する核酸アプタマーである。以降、本明細書では、マイクロベシクルに対して結合能を有する核酸アプタマーを「マイクロベシクル結合性核酸アプタマー」と記載する。 According to the first aspect, the present invention is a nucleic acid aptamer having binding ability to microvesicles. Hereinafter, in the present specification, a nucleic acid aptamer capable of binding to a microvesicle is referred to as a “microvesicle-binding nucleic acid aptamer”.
 「核酸アプタマー」とは、高い親和性で標的分子と特異的に結合できるオリゴ核酸を意味する。オリゴ核酸の長さは、特に限定されないが、好ましくは10~200塩基であり、より好ましくは17~100塩基であり得る。核酸アプタマーは、短いものの方が容易かつ安価に製造でき、安定性も高いため、好ましい。しかし、核酸アプタマーの長さが10塩基より短いと、マイクロベシクルに対する結合能を維持できなくなる場合がある。 “Nucleic acid aptamer” means an oligonucleic acid that can specifically bind to a target molecule with high affinity. The length of the oligonucleic acid is not particularly limited, but is preferably 10 to 200 bases, more preferably 17 to 100 bases. A short nucleic acid aptamer is preferable because it can be easily and inexpensively produced and has high stability. However, if the length of the nucleic acid aptamer is shorter than 10 bases, the ability to bind to microvesicles may not be maintained.
 アプタマーを構成する核酸は、例えば、DNA、RNA、LNA(Locked Nucleic Acid)、ペプチド核酸(PNA)、人工核酸(Kimoto,M., et al., Nat.Biotechnol., Vol.31, No.5, pp.453-457, 2013)、修飾核酸(例えばアミノ酸側鎖を付加したもの)などであってよく、部分的にこれらの核酸を混合したものであってもよい。各核酸は、必要に応じてフッ素やメチル基などにより修飾された塩基を含んでいてもよいし、リン酸部分にチオ化などの修飾を含んでいてもよい。なお、本明細書では、アプタマーを構成する核酸をRNAとして説明するが、適宜、DNAなどの他の核酸に読み替えることができる。また、その際、チミン(T)とウラシル(U)は適宜相互に置換され得る。 Examples of nucleic acids constituting aptamers include DNA, RNA, LNA (Locked Nucleic Acid), peptide nucleic acids (PNA), artificial nucleic acids (Kimoto, M., et al., Nat. Biotechnol., Vol. 31, No. 5). , Pp. 453-457, 2013), modified nucleic acids (for example, those added with amino acid side chains), or a mixture of these nucleic acids partially. Each nucleic acid may contain a base modified with fluorine or a methyl group, if necessary, or may contain a modification such as thiolation in the phosphate moiety. In this specification, the nucleic acid constituting the aptamer is described as RNA, but can be appropriately read as other nucleic acid such as DNA. At that time, thymine (T) and uracil (U) can be appropriately substituted for each other.
 「マイクロベシクル」とは、細胞から分泌される脂質二重膜小胞のうち、直径が約10nm~約1000nmの大きさのものを意味する。マイクロベシクルは、例えば培養細胞から培養液中に分泌されたものであってもよいし、生体内の細胞から血液などの体液中に分泌されたものであってもよい。マイクロベシクルを分泌する細胞は、特に限定されないが、例えば樹状細胞、T細胞、B細胞、上皮細胞、上皮細胞、神経細胞、脳血液関門上皮細胞、腫瘍細胞、腫瘍幹細胞、iPS細胞、ES細胞、幹細胞などであってよい。また、これらの細胞は、いかなる動物種由来のものであってよい。 “Microvesicle” means a lipid bilayer vesicle secreted from a cell having a diameter of about 10 nm to about 1000 nm. The microvesicle may be, for example, one secreted from a cultured cell into a culture solution or one secreted from a cell in a living body into a body fluid such as blood. Cells that secrete microvesicles are not particularly limited. For example, dendritic cells, T cells, B cells, epithelial cells, epithelial cells, nerve cells, brain blood barrier epithelial cells, tumor cells, tumor stem cells, iPS cells, ES cells Or stem cells. These cells may be derived from any animal species.
 第一の実施形態のマイクロベシクル結合性核酸アプタマーは、塩基配列:5’-X-M-X-3’(ここで、Mは、YRCGGHGGWRWKGGGRN(配列番号207)と80%以上の同一性を有する塩基配列であり、Yは、CまたはTもしくはUであり、Rは、それぞれ独立に、AまたはGであり、Hは、A、CまたはTもしくはUであり、Wは、それぞれ独立に、AまたはTもしくはUであり、Kは、GまたはTもしくはUであり、Nは、それぞれ独立に、A、C、GまたはTもしくはUであり、XおよびXは、それぞれ0~50個のヌクレオチドを表し、かつ、XおよびXは相補的に結合して0~50塩基対のステムを形成する)を含む。上記アプタマーは、Mはループ部分とする構造を有し、マイクロベシクルに対し高い結合親和性を有する。また、一般に、標的分子に対する高い結合親和性を有する核酸アプタマーとして取得された配列については、変異を導入し、さらなる塩基配列の最適化を行うことが可能である。すなわち、Mについて、80%以上の同一性を有する範囲で変異を導入し、塩基配列の最適化を行った核酸アプタマーも、Mをループ部分とするアプタマーと同等またはそれ以上の、マイクロベシクルに対する高い結合親和性を有する。「80%以上の同一性」とは、2つの塩基配列を整列比較した場合に、少なくとも80%、例えば少なくとも80%、85%、90%、95%、97%、98%、99%、または100%の塩基が同一である塩基配列を意味する。本実施形態のマイクロベシクル結合性核酸アプタマーは、配列番号207に示される塩基配列と、好ましくは80%、より好ましくは90%、特に好ましくは100%の同一性を有する塩基配列を含む。なお、最適化のために導入される変異は、1~数個の塩基の欠失または挿入を含んでもよい。最適化により欠失または挿入される塩基の数は、特に限定されないが、好ましくは5塩基以内、4塩基以内、3塩基以内であり、特に好ましくは2塩基または1塩基である。 The microvesicle-binding nucleic acid aptamer of the first embodiment has a base sequence: 5′-X 1 -M s -X 2 -3 ′ (where M s is YRCGGHGGWRWKGGGRN (SEQ ID NO: 207) and 80% or more) Is a nucleotide sequence having identity, Y is C or T or U, R is independently A or G, H is A, C or T or U, and W is each Independently, A or T or U, K is G or T or U, N is independently A, C, G or T or U, and X 1 and X 2 are each 0 Represents 1-50 nucleotides, and X 1 and X 2 bind complementarily to form a 0-50 base pair stem). The aptamer has a structure in which M s is a loop part, and has a high binding affinity for microvesicles. In general, a sequence obtained as a nucleic acid aptamer having a high binding affinity for a target molecule can be introduced with mutation to further optimize the base sequence. That is, a nucleic acid aptamer in which a mutation is introduced in a range having 80% or more identity with respect to M s and a base sequence is optimized is equivalent to or more than an aptamer having M s as a loop portion. Has a high binding affinity for. “80% or more identity” means at least 80%, for example at least 80%, 85%, 90%, 95%, 97%, 98%, 99%, when comparing two base sequences It means a base sequence in which 100% of bases are identical. The microvesicle-binding nucleic acid aptamer of the present embodiment includes a base sequence having preferably 80%, more preferably 90%, particularly preferably 100% identity with the base sequence shown in SEQ ID NO: 207. Note that the mutation introduced for optimization may include deletion or insertion of 1 to several bases. The number of bases to be deleted or inserted by optimization is not particularly limited, but is preferably within 5 bases, within 4 bases, within 3 bases, and particularly preferably with 2 bases or 1 base.
 第一の実施形態のマイクロベシクル結合性核酸アプタマーのXとXには、長さ0~50ヌクレオチドの任意の塩基配列を用いることができる。一般に、核酸アプタマーは、ステムループ構造、グアニン(G)カルテット構造、シュードノット構造、といった立体構造を形成し、この特定の立体構造が、核酸アプタマーの標的分子に対する認識能および結合能を決定することが知られ、核酸アプタマーの立体構造が維持される限り、核酸アプタマーの標的分子に対する認識能および結合能も維持されることが周知である。すなわち、核酸アプタマーのマイクロベシクルに対する認識能および結合能が維持されるためには、Mのループ部分の構造が維持されればよく、また同時に、XとXは、特定の塩基配列には限定されないことが理解される。 An arbitrary base sequence having a length of 0 to 50 nucleotides can be used for X 1 and X 2 of the microvesicle-binding nucleic acid aptamer of the first embodiment. In general, a nucleic acid aptamer forms a three-dimensional structure such as a stem-loop structure, a guanine (G) quartet structure, or a pseudoknot structure, and this specific three-dimensional structure determines the recognition ability and binding ability of a nucleic acid aptamer to a target molecule. As long as the three-dimensional structure of the nucleic acid aptamer is maintained, it is well known that the ability of the nucleic acid aptamer to recognize and bind to the target molecule is maintained. That is, in order to maintain the recognition ability and binding ability of a nucleic acid aptamer to a microvesicle, the structure of the loop portion of M s needs to be maintained, and at the same time, X 1 and X 2 have a specific base sequence. It is understood that is not limited.
 XとXは、それぞれ長さ0~50ヌクレオチドの任意の塩基配列であり、かつ、XとXは、相補的に結合して0~50塩基対のステムを形成する。XとXとは、互いに同じ長さであってもよいし、異なる長さであってもよい。また、XとXとは、完全に相補的であってもよいし、部分的に相補的であってもよい。ステム部分の長さは、自由に変更することができる。さらに、ステム部分がない場合、すなわちXまたはXが0ヌクレオチドの長さである場合であっても、Mのループ部分が維持されることができ、核酸アプタマーのマイクロベシクルに対する認識能および結合能は維持され得る。本実施形態のマイクロベシクル結合性核酸アプタマーのステムの長さは、特に限定されないが、好ましくは、5~45、10~40、10~35、または10~30塩基対であり、より好ましくは5~25塩基対であり得る。 X 1 and X 2 are arbitrary base sequences each having a length of 0 to 50 nucleotides, and X 1 and X 2 are complementarily bound to form a stem of 0 to 50 base pairs. X 1 and X 2 may be the same length or different lengths. X 1 and X 2 may be completely complementary or partially complementary. The length of the stem portion can be freely changed. Furthermore, even in the absence of the stem portion, ie, when X 1 or X 2 is 0 nucleotides in length, the loop portion of M s can be maintained, and the ability of nucleic acid aptamers to recognize microvesicles and Binding ability can be maintained. The length of the stem of the microvesicle-binding nucleic acid aptamer of the present embodiment is not particularly limited, but is preferably 5 to 45, 10 to 40, 10 to 35, or 10 to 30 base pairs, more preferably 5 It can be ˜25 base pairs.
 第二の実施形態のマイクロベシクル結合性核酸アプタマーは、塩基配列:5’-X-(N)-M-(N)-X-3’(ここで、Mは、RRRDDRNDRGRKW(配列番号208)またはRVDDGGGHTCTAC(配列番号211)と80%以上の同一性を有する塩基配列であり、Rは、それぞれ独立に、AまたはGであり、Dは、それぞれ独立に、A、GまたはTもしくはUであり、Nは、A、C、GまたはTもしくはUであり、Kは、GまたはTもしくはUであり、Wは、AまたはTもしくはUであり、Vは、A、CまたはGであり、Hは、A、CまたはTもしくはUであり、mは、9から15までのいずれかの整数であり、nは、0から4までのいずれかの整数であり、XおよびXは、それぞれ0~50個のヌクレオチドを表し、かつ、XおよびXは相補的に結合して0~50塩基対のステムを形成する)を含む。上記アプタマーは、(N)-M-(N)はループ部分とする構造を有し、マイクロベシクルに対し高い結合親和性を有する。また、Mについて、80%以上の同一性を有する範囲で変異を導入し、塩基配列の最適化を行った核酸アプタマーも、Mをループ部分に含むアプタマーと同等またはそれ以上の、マイクロベシクルに対する高い結合親和性を有する。本実施形態のマイクロベシクル結合性核酸アプタマーは、配列番号208または配列番号211に示される塩基配列と、好ましくは80%、より好ましくは90%、特に好ましくは100%の同一性を有する塩基配列を含む。なお、最適化のために導入される変異は、1~数個の塩基の欠失または挿入を含んでもよい。最適化により欠失または挿入される塩基の数は、特に限定されないが、好ましくは5塩基以内、4塩基以内、3塩基以内であり、特に好ましくは2塩基または1塩基である。 The microvesicle-binding nucleic acid aptamer of the second embodiment has a base sequence: 5′-X 3- (N) m -M k- (N) n -X 4 -3 ′ (where M k is RRRDDRNDRGRKW (SEQ ID NO: 208) or RVDDGGGHTCTAC (SEQ ID NO: 211) and a nucleotide sequence having 80% or more identity, R is independently A or G, and D is independently A, G or Is T or U, N is A, C, G or T or U, K is G or T or U, W is A or T or U, and V is A, C or G, H is A, C or T or U, m is any integer from 9 to 15, n is any integer from 0 to 4, X 3 and X 4, respectively 0 to 50 Represent nucleotides, and, X 3 and X 4 includes a stem to form) 0-50 base pairs complementarily bound. The aptamer has a structure in which (N) m -M k- (N) n is a loop portion, and has a high binding affinity for microvesicles. In addition, a nucleic acid aptamer in which a mutation is introduced in a range having 80% or more identity with respect to M k and the base sequence is optimized is equivalent to or more than an aptamer including M k in the loop part. Has a high binding affinity for. The microvesicle-binding nucleic acid aptamer of the present embodiment has a base sequence having preferably 80%, more preferably 90%, particularly preferably 100% identity with the base sequence shown in SEQ ID NO: 208 or SEQ ID NO: 211. Including. Note that the mutation introduced for optimization may include deletion or insertion of 1 to several bases. The number of bases to be deleted or inserted by optimization is not particularly limited, but is preferably within 5 bases, within 4 bases, within 3 bases, and particularly preferably with 2 bases or 1 base.
 第二の実施形態のマイクロベシクル結合性核酸アプタマーのループ部分は、Mを含み、その両端に、任意の塩基配列からなる(N)および(N)を含む。(N)の長さは、0から20ヌクレオチドであり、好ましくは7~17ヌクレオチドである。(N)の長さは、0から20ヌクレオチドであり、好ましくは0~10ヌクレオチドである。(N)-M-(N)からなるループ部分のうち、Mの構造が本マイクロベシクルに対する認識能および結合能に重要であり、Mの構造が維持されれば、核酸アプタマーのマイクロベシクルに対する認識能および結合能は維持され得る。すなわち、(N)および(N)は、XとXとにより形成されるステム部分とのリンカーに相当するものであり、特定の塩基配列からなるヌクレオチド鎖には限定されない。また、(N)および(N)は、非ヌクレオチド鎖であってもよい。非ヌクレオチド鎖は、例えば、置換または無置換の直鎖アルキル鎖、エチレングリコール鎖、アミノリンカー、ペプチド鎖、糖鎖などの有機基からなるものであり得る。 The loop portion of the microvesicle-binding nucleic acid aptamer of the second embodiment includes Mk, and includes (N) m and (N) n consisting of an arbitrary base sequence at both ends thereof. (N) The length of m is 0 to 20 nucleotides, preferably 7 to 17 nucleotides. (N) The length of n is 0 to 20 nucleotides, preferably 0 to 10 nucleotides. Of the loop portion consisting of (N) m -M k- (N) n , the structure of M k is important for the ability to recognize and bind to this microvesicle, and if the structure of M k is maintained, a nucleic acid aptamer The ability to recognize and bind to microvesicles can be maintained. That, (N) m and (N) n is equivalent to a linker with the stem portion formed by the X 3 and X 4, it is not limited to nucleotide chain consisting of a specific nucleotide sequence. In addition, (N) m and (N) n may be non-nucleotide chains. The non-nucleotide chain may be composed of an organic group such as a substituted or unsubstituted linear alkyl chain, an ethylene glycol chain, an amino linker, a peptide chain, and a sugar chain.
 第二の実施形態のマイクロベシクル結合性核酸アプタマーのXとXには、長さ0~50ヌクレオチドの任意の塩基配列を用いることができる。(N)-M-(N)からなるループ部分の構造が本実施形態の核酸アプタマーのマイクロベシクルに対する認識能および結合能に重要であり、XとXは、特定の塩基配列には限定されないことが理解される。 An arbitrary base sequence having a length of 0 to 50 nucleotides can be used for X 3 and X 4 of the microvesicle-binding nucleic acid aptamer of the second embodiment. The structure of the loop part consisting of (N) m -M k- (N) n is important for the ability of the nucleic acid aptamer of the present embodiment to recognize and bind to the microvesicle, and X 3 and X 4 are specific nucleotide sequences. It is understood that this is not a limitation.
 XとXは、それぞれ長さ0~50ヌクレオチドの任意の塩基配列であり、かつ、XとXは、相補的に結合して0~50塩基対のステムを形成する。XとXとは、互いに同じ長さであってもよいし、異なる長さであってもよい。また、XとXとは、完全に相補的であってもよいし、部分的に相補的であってもよい。ステム部分の長さは、自由に変更することができる。さらに、ステム部分がない場合、すなわちXまたはXが0ヌクレオチドの長さである場合であっても、Mの構造が維持されることができ、核酸アプタマーのマイクロベシクルに対する認識能および結合能は維持され得る。本実施形態のマイクロベシクル結合性核酸アプタマーのステムの長さは、特に限定されないが、好ましくは、5~45、10~40、10~35、または10~30塩基対であり、より好ましくは5~25塩基対であり得る。 X 3 and X 4 are arbitrary base sequences each having a length of 0 to 50 nucleotides, and X 3 and X 4 are complementarily bonded to form a stem of 0 to 50 base pairs. X 3 and X 4 may have the same length or different lengths. X 3 and X 4 may be completely complementary or partially complementary. The length of the stem portion can be freely changed. Furthermore, the structure of M k can be maintained even in the absence of a stem portion, ie, when X 3 or X 4 is 0 nucleotides in length, and the recognition ability and binding of nucleic acid aptamers to microvesicles Performance can be maintained. The length of the stem of the microvesicle-binding nucleic acid aptamer of the present embodiment is not particularly limited, but is preferably 5 to 45, 10 to 40, 10 to 35, or 10 to 30 base pairs, more preferably 5 It can be ˜25 base pairs.
 本実施形態のマイクロベシクル結合性核酸アプタマーのステム部分は、ミスマッチまたはバルジを含むことができる。一般に、ステム部分は、核酸アプタマーの標的分子に対する認識能および結合能に対する影響が小さいことが周知であり、ステム部分の塩基配列には、少数のヌクレオチド、例えば、限定されないが、1、2、3、4、または5個以下のヌクレオチドの、欠失、挿入、置換があってもよいことが周知である。本実施形態の核酸アプタマーのマイクロベシクルに対する認識能および結合能は、Mおよび(N)-M-(N)のループ部分の構造によって決定されるものであり、ステム部分の構造によっては影響されない。すなわち、本実施形態のマイクロベシクル結合性核酸アプタマーのXとX、または、XとXは、完全に相補的に結合するものでなくてもよく、ミスマッチまたはバルジを含むものであってよい。 The stem portion of the microvesicle-binding nucleic acid aptamer of this embodiment can contain a mismatch or a bulge. In general, it is well known that the stem portion has a small influence on the recognition ability and binding ability of the nucleic acid aptamer to the target molecule, and the base sequence of the stem portion has a small number of nucleotides, such as, but not limited to, 1, 2, 3 It is well known that there may be deletions, insertions, substitutions of up to 4, or 5 nucleotides. The recognition ability and binding ability of the nucleic acid aptamer of the present embodiment to the microvesicle are determined by the structure of the loop portion of M s and (N) m -M k- (N) n , and depend on the structure of the stem portion. Is not affected. That is, X 1 and X 2 or X 3 and X 4 of the microvesicle-binding nucleic acid aptamer of the present embodiment do not have to be completely complementary and contain mismatches or bulges. It's okay.
 本実施形態のマイクロベシクル結合性核酸アプタマーは、好ましくは、MまたはMがGカルテット構造を形成する。Gカルテット構造は、4つのグアニンが四量体となって形成される正方形の平面構造であり、これが2面以上重なってグアニン四重鎖構造(G-quadruplex)を形成する。MまたはMがGカルテット構造を形成する核酸アプタマーは、マイクロベシクルに対する認識能および高い結合能を有することができる。 In the microvesicle-binding nucleic acid aptamer of the present embodiment, preferably, M s or M k forms a G quartet structure. The G quartet structure is a square planar structure in which four guanines are formed as tetramers, and two or more planes overlap to form a guanine quadruplex structure (G-quadruplex). A nucleic acid aptamer in which M s or M k forms a G quartet structure can have a recognition ability and a high binding ability to a microvesicle.
 第三の実施形態のマイクロベシクル結合性核酸アプタマーは、配列番号107~206からなる群から選択されるいずれかの塩基配列を含む。配列番号107~206からなる群から選択されるいずれかの塩基配列を含むアプタマーは、マイクロベシクルに対し高い結合親和性を有する。 The microvesicle-binding nucleic acid aptamer of the third embodiment includes any base sequence selected from the group consisting of SEQ ID NOs: 107 to 206. An aptamer containing any base sequence selected from the group consisting of SEQ ID NOs: 107 to 206 has a high binding affinity for microvesicles.
 本実施形態のマイクロベシクル結合性核酸アプタマーは、好ましくは、配列番号107~206からなる群から選択されるいずれかの塩基配列において、1~5個の塩基が置換、欠失、挿入または付加された塩基配列を含む。一般に、標的分子に対する高い結合親和性を有する核酸アプタマーとして取得された配列については、変異を導入し、さらなる塩基配列の最適化を行うことが可能である。すなわち、配列番号107~206のいずれかの塩基配列を含むマイクロベシクル結合性核酸アプタマーについて、1~数個の塩基が置換、欠失、挿入または付加することにより最適化された核酸アプタマーも、マイクロベシクルに対し高い結合親和性を有することができる。最適化により置換、欠失、挿入または付加される塩基の数は、特に限定されないが、好ましくは5塩基以内、4塩基以内、3塩基以内であり、特に好ましくは2塩基または1塩基である。 In the microvesicle-binding nucleic acid aptamer of the present embodiment, preferably, 1 to 5 bases are substituted, deleted, inserted or added in any base sequence selected from the group consisting of SEQ ID NOs: 107 to 206. Base sequence. Generally, for a sequence obtained as a nucleic acid aptamer having a high binding affinity for a target molecule, it is possible to introduce a mutation and further optimize the base sequence. That is, for a microvesicle-binding nucleic acid aptamer containing any one of the nucleotide sequences of SEQ ID NOs: 107 to 206, a nucleic acid aptamer optimized by substitution, deletion, insertion or addition of one to several bases is also available. It can have a high binding affinity for vesicles. The number of bases substituted, deleted, inserted or added by optimization is not particularly limited, but is preferably within 5 bases, within 4 bases, within 3 bases, and particularly preferably with 2 bases or 1 base.
 なお、本実施形態のマイクロベシクル結合性核酸アプタマーは、配上記特定の塩基配列のみからなる核酸に限定されない。すなわち、上記特定の塩基配列を含み、マイクロベシクルに対して結合能を有する限り、任意の塩基配列が付加された核酸であってよい。また、アプタマーを構成する核酸は、例えば、DNA、RNA、LNA、PNA、人工核酸、修飾核酸(例えばアミノ酸側鎖を付加したもの)などであってよく、部分的にこれらの核酸を混合したものであってもよい。また、各核酸は、必要に応じてフッ素やメチル基などにより修飾された塩基を含んでいてもよいし、リン酸部分にチオ化などの修飾を含んでいてもよい。 Note that the microvesicle-binding nucleic acid aptamer of the present embodiment is not limited to a nucleic acid consisting only of the specific base sequence. That is, it may be a nucleic acid to which an arbitrary base sequence is added as long as it contains the specific base sequence and has a binding ability to microvesicles. In addition, the nucleic acid constituting the aptamer may be, for example, DNA, RNA, LNA, PNA, artificial nucleic acid, modified nucleic acid (for example, with an amino acid side chain added), or a mixture of these nucleic acids. It may be. Each nucleic acid may contain a base modified with fluorine or a methyl group as necessary, or may contain a modification such as thiolation in the phosphate moiety.
 本発明に係る核酸アプタマーは、3’末端と5’末端のいずれか一方またはそれらの両方が修飾されていてもよい。核酸の安定性を改善するためである。上述の通り、一般に、核酸アプタマーの標的物質に対する結合親和性は、核酸アプタマー立体構造によりもたらされるので、その立体構造が維持される限り、核酸アプタマーの末端に他の塩基配列や修飾物質が付加されていても、核酸アプタマーの標的物質に対する結合親和性は維持されることが周知である。末端修飾の例としては、ビオチン、ポリエチレングリコール(PEG)、蛍光物質、発光物質、カルボキシフルオレセイン(FAM)、ペプチド、アミノ酸、脂質などが挙げられる。また、上記修飾は、スペーサー配列を介して核酸アプタマーに対して結合されてもよい。スペーサー配列は任意の長さであり得るが、好ましくは0~20塩基であり得る。 In the nucleic acid aptamer according to the present invention, either one or both of the 3 'end and the 5' end may be modified. This is to improve the stability of the nucleic acid. As described above, since the binding affinity of a nucleic acid aptamer to a target substance is generally provided by the nucleic acid aptamer three-dimensional structure, as long as the three-dimensional structure is maintained, another base sequence or a modifying substance is added to the end of the nucleic acid aptamer. Even so, it is well known that the binding affinity of the nucleic acid aptamer to the target substance is maintained. Examples of terminal modifications include biotin, polyethylene glycol (PEG), fluorescent materials, luminescent materials, carboxyfluorescein (FAM), peptides, amino acids, lipids and the like. Moreover, the said modification may be couple | bonded with respect to a nucleic acid aptamer through a spacer sequence. The spacer sequence can be of any length, but can preferably be 0-20 bases.
 本発明に係る核酸アプタマーは、例えば、Systematic Evolution of Ligands by EXponential enrichment(SELEX)法により取得することができる(Tuerk,C. and Gold,L., Science, Vol.249, pp.505-510, 1990)。SELEX法は、ランダム配列を含む核酸ライブラリーから、標的分子と結合する核酸を選択し増幅するサイクルを複数回、例えば5~20回繰り返すことによって、標的分子と高い親和性で結合する核酸のみを選別する方法である。すなわち、本実施形態のマイクロベシクル結合性核酸アプタマーは、マイクロベシクルを標的分子としてSELEX法を実施することにより取得することができる。 The nucleic acid aptamer according to the present invention can be obtained by, for example, the Systematic Evolution of Ligands by the exponential enrichment (SELEX) method (Tuerk, C. and Gold, L., Science, Vol. 249, p. 249, p. 249, p. 249, p. 249). 1990). In the SELEX method, only a nucleic acid that binds to a target molecule with high affinity is selected by repeating a cycle of selecting and amplifying a nucleic acid that binds to the target molecule from a nucleic acid library containing random sequences, for example, 5 to 20 times. It is a method of sorting. That is, the microvesicle-binding nucleic acid aptamer of this embodiment can be obtained by performing the SELEX method using the microvesicle as a target molecule.
 上記標的分子として使用されるマイクロベシクルは、生体試料や細胞培養液から得ることができる。マイクロベシクルは、限外ろ過法、密度勾配遠心分離法、サイズ排除クロマトグラフィー、超遠心分離、免疫沈降法、液体クロマトグラフィーなどによって得たものを用いることができる。 The microvesicle used as the target molecule can be obtained from a biological sample or a cell culture solution. As the microvesicles, those obtained by ultrafiltration, density gradient centrifugation, size exclusion chromatography, ultracentrifugation, immunoprecipitation, liquid chromatography and the like can be used.
 本発明に係る核酸アプタマーが標的とするマイクロベシクルは、好ましくは、その直径が10~200nmのものであり、特に好ましくはエキソソームである。「エキソソーム」とは、細胞から分泌される脂質二重膜小胞のうち、エンドソームに由来し、かつ、その直径が約30~100nmの大きさのものを意味する。 The microvesicle targeted by the nucleic acid aptamer according to the present invention preferably has a diameter of 10 to 200 nm, particularly preferably an exosome. The “exosome” means a lipid bilayer vesicle secreted from a cell that is derived from an endosome and has a diameter of about 30 to 100 nm.
 SELEX法により取得した核酸アプタマーは、その塩基配列を決定した後、従来公知の種々の合成法によって調製することができる。例えば、核酸アプタマーは、化学合成法によって調製することができる。化学合成法は、同一の核酸アプタマーを大量に調製できる点で好ましい。 The nucleic acid aptamer obtained by the SELEX method can be prepared by various conventionally known synthetic methods after determining its base sequence. For example, nucleic acid aptamers can be prepared by chemical synthesis methods. The chemical synthesis method is preferable in that the same nucleic acid aptamer can be prepared in large quantities.
 本実施形態のマイクロベシクル結合性核酸アプタマーは、マイクロベシクルに対して、既存の抗マイクロベシクル抗体と同等の結合親和性を有する。そのため、マイクロベシクルの検出、単離などの用途に有用である。 The microvesicle-binding nucleic acid aptamer of this embodiment has a binding affinity for microvesicles that is equivalent to that of existing anti-microvesicle antibodies. Therefore, it is useful for applications such as detection and isolation of microvesicles.
 本発明は、第二の態様によれば、マイクロベシクル結合性核酸アプタマーを用いて、マイクロベシクルを検出する方法である。 According to the second aspect, the present invention is a method for detecting a microvesicle using a microvesicle-binding nucleic acid aptamer.
 本実施形態の検出方法は、抗体の代わりにマイクロベシクル結合性核酸アプタマーを用いること以外は、免疫学的方法と同様の方法により行われ得る。したがって、既存の抗マイクロベシクル抗体に代えて、マイクロベシクル結合性核酸アプタマーを用いることにより、例えば、酵素免疫測定法(EIA)、放射免疫測定法(RIA)、ウエスタンブロッティング、免疫組織化学的染色法などの方法と同様の手順により、マイクロベシクルの検出を行うことができる。また、マイクロ流路を組み合わせた方法や、表面プラズモン共鳴を用いた方法によっても行うことができる。 The detection method of the present embodiment can be performed by the same method as the immunological method except that a microvesicle-binding nucleic acid aptamer is used instead of the antibody. Therefore, by using a microvesicle-binding nucleic acid aptamer instead of the existing anti-microvesicle antibody, for example, enzyme immunoassay (EIA), radioimmunoassay (RIA), western blotting, immunohistochemical staining method The micro vesicle can be detected by the same procedure as the above method. It can also be performed by a method using a combination of microchannels or a method using surface plasmon resonance.
 本発明は、第三の態様によれば、マイクロベシクル結合性核酸アプタマーを用いて、マイクロベシクルを単離する方法である。 According to the third aspect, the present invention is a method for isolating a microvesicle using a microvesicle-binding nucleic acid aptamer.
 本実施形態の単離方法は、抗体の代わりにマイクロベシクル結合性核酸アプタマーを用いること以外は、免疫学的方法と同様の方法により行われ得る。したがって、既存の抗マイクロベシクル抗体に代えて、マイクロベシクル結合性核酸アプタマーを用いることにより、例えば、免疫沈降法、アフィニティーカラムによる精製、フローサイトメトリーによるソーティングなどにより、マイクロベシクルを単離することができる。 The isolation method of the present embodiment can be performed by the same method as the immunological method except that a microvesicle-binding nucleic acid aptamer is used instead of the antibody. Therefore, microvesicles can be isolated by, for example, immunoprecipitation, affinity column purification, flow cytometry sorting, etc., by using a microvesicle-binding nucleic acid aptamer instead of the existing anti-microvesicle antibody. it can.
 本発明は、第四の態様によれば、マイクロベシクル結合性核酸アプタマーと薬物とを含む、薬物送達システムである。本態様の薬物送達システムは、1つ以上の薬物をコンジュゲートさせたマイクロベシクル結合性核酸アプタマーを含有する。本態様の薬物送達システムは、薬物送達システムを投与した対象の生体内、例えば、血中のマイクロベシクルに対して結合することにより、薬物の生体内における安定性および滞留性を改善するとともに、マイクロベシクルが標的とする細胞にのみ特異的に薬物を送達するものである。 According to the fourth aspect, the present invention is a drug delivery system comprising a microvesicle-binding nucleic acid aptamer and a drug. The drug delivery system of this embodiment contains a microvesicle-binding nucleic acid aptamer conjugated with one or more drugs. The drug delivery system of the present embodiment improves the stability and retention of the drug in the living body of the subject to which the drug delivery system is administered, for example, the microvesicle in the blood, and improves the in vivo stability and retention. The drug is specifically delivered only to cells targeted by the vesicle.
 本態様の薬物送達システムに含まれる薬物は、通常の薬剤成分であってよく、例えば、抗がん剤、抗炎症剤、または、感染症、免疫疾患、神経疾患もしくは変性疾患の治療薬などが挙げられる。本態様の薬物送達システムは、1つ以上の薬物を、マイクロベシクル結合性核酸アプタマーにコンジュゲートさせたものを含むことができる。薬剤が、たとえばsiRNAやアンチセンス核酸などの核酸医薬を成分とする場合には、核酸アプタマーに直接連結させてもよい。マイクロベシクル結合性核酸アプタマーと薬物とは、1:1~1:100のモル比で結合させることができる。 The drug contained in the drug delivery system of the present embodiment may be a normal drug component, for example, an anticancer drug, an anti-inflammatory drug, or a therapeutic drug for infectious diseases, immune diseases, neurological diseases or degenerative diseases. Can be mentioned. The drug delivery system of this embodiment can include one or more drugs conjugated to a microvesicle-binding nucleic acid aptamer. When the drug is composed of, for example, a nucleic acid drug such as siRNA or antisense nucleic acid, it may be directly linked to the nucleic acid aptamer. The microvesicle-binding nucleic acid aptamer and the drug can be bound at a molar ratio of 1: 1 to 1: 100.
 本態様の薬物送達システムは、あらかじめ外来性のマイクロベシクルを含むものであってもよい。この場合には、薬物送達の標的となる組織や細胞に応じて、適宜好ましい細胞種に由来する外来性のマイクロベシクルを選択することができる。外来性のマイクロベシクルには、任意の動物種または細胞種に由来するマイクロベシクルを用いることができる。 The drug delivery system of this aspect may include a foreign microvesicle in advance. In this case, an exogenous microvesicle derived from a preferable cell type can be appropriately selected according to the tissue or cell that is the target of drug delivery. As the exogenous microvesicle, a microvesicle derived from any animal species or cell type can be used.
 本態様の薬物送達システムは、マイクロベシクルと結合することにより、薬剤の生体内での安定性および滞留性を改善することができるため、薬剤の投与量・回数を減らすことができ、副作用の低減にも有用である。また、薬物送達の標的となる組織や細胞に応じて選択したマイクロベシクルと結合させることにより、マイクロベシクルが標的とする細胞にのみ選択的に薬物を送達することができ、標的とする細胞に対してのみ薬物を作用させることができるために有用である。 Since the drug delivery system of this embodiment can improve the stability and retention of the drug in vivo by combining with the microvesicle, the dose and frequency of the drug can be reduced, and side effects can be reduced. Also useful. In addition, by binding to microvesicles selected according to the tissue or cell targeted for drug delivery, the drug can be selectively delivered only to the cells targeted by the microvesicles. It is useful because it can only act on drugs.
 以下に実施例を挙げ、本発明について更に説明する。なお、これらは本発明を何ら限定するものではない。 Hereinafter, the present invention will be further described with reference to examples. In addition, these do not limit this invention at all.
<実施例1:マイクロベシクルの精製>
 培養液中のマイクロベシクルはSokolovaらの方法(Sokolova,V., et al., Colloids Surf B Biointerfaces, Vol.87, pp.146-150, 2011)に基づき、若干の改変を加えて調製した。10cmシャーレで培養した293T細胞の培養液(10%FBS/DMEM)を、無血清のAdvanced DMEM(ライフテクノロジーズ社製)に置換し、3日間培養した後、培養上清を回収した。回収した培養上清を0.22μmの孔径のフィルターでろ過し、200nm以上の物質を除いた。続いて、10kDaの孔径の限外ろ過フィルター(Amicon Ultra、ミリポア社製)を用いて、40mlのPBS(-)により3回バッファー交換を行った後、サンプル溶液量を約1mlに濃縮した。その後、100kDaの孔径の限外ろ過フィルター(VIVACON 500、ザルトリウス・ステディム社製)を用いて、500μlのPBS(-)により3回バッファー交換を行った。得られたサンプルを、セファロース2B(GEヘルスケア・ジャパン社製)を充填したカラムで分画し、マイクロベシクル画分を取得した。タンパク質量のプロファイルと、抗CD63抗体によるドットブロットの結果から、得られたマイクロベシクルの大半がエキソソームであることが確認された(図5)。
<Example 1: Purification of microvesicles>
Microvesicles in the culture medium were prepared with some modifications based on the method of Sokolova et al. (Sokolova, V., et al., Colloids Surf B Biointerfaces, Vol. 87, pp. 146-150, 2011). The culture solution (10% FBS / DMEM) of 293T cells cultured in a 10 cm petri dish was replaced with serum-free Advanced DMEM (manufactured by Life Technologies) and cultured for 3 days, and then the culture supernatant was collected. The collected culture supernatant was filtered with a filter having a pore size of 0.22 μm to remove substances of 200 nm or more. Subsequently, using an ultrafiltration filter (Amicon Ultra, manufactured by Millipore) having a pore size of 10 kDa, buffer exchange was performed three times with 40 ml of PBS (−), and then the amount of the sample solution was concentrated to about 1 ml. Thereafter, buffer exchange was performed three times with 500 μl of PBS (−) using an ultrafiltration filter (VIVACON 500, manufactured by Sartorius Stedim) with a pore size of 100 kDa. The obtained sample was fractionated with a column packed with Sepharose 2B (manufactured by GE Healthcare Japan) to obtain a microvesicle fraction. From the protein amount profile and the results of dot blots with anti-CD63 antibody, it was confirmed that most of the obtained microvesicles were exosomes (FIG. 5).
<実施例2:SELEX法によるマイクロベシクル結合性核酸アプタマーのスクリーニング>
 マイクロベシクル結合性核酸アプタマーは、SELEX法により作製した。SELEX法は、Ellingtonらの方法(Ellington,AD. and Szostak,JW., Nature, Vol.346, pp.818-822, 1990)およびGoldらの方法(Tuerk,C. and Gold,L., Science, Vol.249, pp.505-510, 1990)を参考にし、西川らの方法に基づいて行った(Murakami,K., Nishikawa,F., Noda,K., Yokoyama,T., and Nishikawa,S., Prion, Vol.2, pp.73-80, 2008)。
<Example 2: Screening of microvesicle-binding nucleic acid aptamer by SELEX method>
A microvesicle-binding nucleic acid aptamer was produced by the SELEX method. The SELEX method is based on the method of Ellington et al. (Ellington, AD. And Szostak, JW., Nature, Vol. 346, pp. 818-822, 1990) and the method of Gold et al. (Tuerk, C. and Gold, L., Science). , Vol. 249, pp. 505-510, 1990) (Murakami, K., Nishikawa, F., Noda, K., Yokoyama, T., and Nishikawa, S., Prion, Vol. 2, pp. 73-80, 2008).
 最初のラウンドで使用したRNAプールは、化学合成されたDNAを鋳型とし、DuraScribeTM T7 Transcription Kit(Epicentre Technologies社製)を用いてインビトロ転写を行うことにより調製した。RNAプールは、55merのランダム化領域(n55)の両端に各21merの領域を含むDNAを鋳型としたもの(Sプール)と、30merのランダム化領域(n30)の両端に各15merの領域を含むDNAを鋳型としたもの(Kプール)の2種類を調製した。 The RNA pool used in the first round was prepared by performing in vitro transcription using chemically synthesized DNA as a template and using DuraScribe T7 Transcription Kit (manufactured by Epicenter Technologies). The RNA pool is a DNA template containing a 21-mer region at each end of the 55- mer randomized region (n 55 ) (S pool), and a 15-mer region at each end of the 30- mer randomized region (n 30 ). Two types were prepared using DNA containing DNA as a template (K pool).
 鋳型DNAとプライマーの配列は、以下の通りである。
(Sプール)
 鋳型DNA(S): 5’-gggaggtggaactgaaggaga-n55-acttcgcaatcgctctacgca-3’(配列番号1)
 フォワード(Fwd)プライマー(S): 5’-tgtaatacgactcactatagggaggtggaactgaaggaga-3’(配列番号2)
 リバース(Rev)プライマー(S): 5’-tgcgtagagcgattgcgaagt-3’(配列番号3)
(Kプール)
 鋳型DNA(K): 5’-ggtagatacgatgga-n30-catgacgcgcagcca-3’(配列番号4)
 フォワード(Fwd)プライマー(K): 5’-tgtaatacgactcactataggtagatacgatgga-3’(配列番号5)
 リバース(Rev)プライマー(K): 5’-tggctgcgcgtcatg-3’(配列番号6)
 nは、a,c,gまたはtを示す。Fwdプライマーは、T7 RNAポリメラーゼのプロモーター配列を含む。
The template DNA and primer sequences are as follows.
(S pool)
Template DNA (S): 5′-gggagggtggaactgaaggaga-n 55 -actctgcaatcgctctacgca-3 ′ (SEQ ID NO: 1)
Forward (Fwd) primer (S): 5′-tgtatacatgactcactatagggagggtggaactgaagga-3 ′ (SEQ ID NO: 2)
Reverse (Rev) primer (S): 5'-tgcgttagagcgattgcgaagt-3 '(SEQ ID NO: 3)
(K pool)
Template DNA (K): 5'-ggtagatacgaggga-n 30 -catgacgggcaccca-3 '(SEQ ID NO: 4)
Forward (Fwd) primer (K): 5′-tgtatacatgactcactataggtagatacgatagga-3 ′ (SEQ ID NO: 5)
Reverse (Rev) primer (K): 5'-tggctgcgcgtcatg-3 '(SEQ ID NO: 6)
n represents a, c, g, or t. The Fwd primer contains the promoter sequence for T7 RNA polymerase.
 上記鋳型DNAとプライマーに、DuraScribeTM T7 Transcription Kitに付属のバッファー、終濃度10mMのDTT、終濃度各5mMのrATP、rGTP、2’-F-rCTPおよび2’-F-rUTP、ならびに逆転写酵素を加え、37℃で6時間反応させた。その後、同Kitに付属のDNaseを加え、37℃で15分反応させることにより、鋳型DNAを分解した。得られたRNA産物は、バイオゲルP-30充填マイクロバイオスピンカラム(バイオ・ラッド社製)により精製した。 To the template DNA and primer, a buffer attached to the DuraScript T7 Transcription Kit, a final concentration of 10 mM DTT, a final concentration of 5 mM each of rATP, rGTP, 2′-F-rCTP and 2′-F-rUTP, and reverse transcriptase And reacted at 37 ° C. for 6 hours. Thereafter, DNase attached to the Kit was added and reacted at 37 ° C. for 15 minutes to decompose the template DNA. The obtained RNA product was purified with a biogel P-30 packed micro bio spin column (manufactured by Bio-Rad).
 得られたRNAは、ピリミジンヌクレオチド(cおよびu)のリボースの2’位がフルオロ化されたものである。また、得られたRNAプールに含まれるRNAのバリエーションは、Sプールについては1×1033、Kプールについては1×1018である。 The obtained RNA is one in which the 2 ′ position of ribose of pyrimidine nucleotides (c and u) is fluorinated. Moreover, the variation of RNA contained in the obtained RNA pool is 1 × 10 33 for the S pool and 1 × 10 18 for the K pool.
 続いて、実施例1において調製したマイクロベシクルと、上記RNAプールの結合反応を行った。結合反応は、結合バッファー(20mMトリス塩酸塩(pH7.5)、150mM塩化ナトリウム、5mM塩化カリウム、0.5mM塩化マグネシウム、1.5mM塩化カルシウム)を用い、必要に応じて競合物質(tRNA)の存在下、下記の表1の条件により、室温にて行った。反応後、0.45μm孔径ニトロセルロース膜(ミリポア社製)で濾過することにより、マイクロベシクル-RNA複合体を膜上に回収した。この膜を、7M尿素/10mMのEDTA溶液に入れ、98℃で5分間加熱した後、溶液を回収し、エタノール沈殿によりRNAを精製した。 Subsequently, a binding reaction between the microvesicle prepared in Example 1 and the RNA pool was performed. For the binding reaction, a binding buffer (20 mM Tris hydrochloride (pH 7.5), 150 mM sodium chloride, 5 mM potassium chloride, 0.5 mM magnesium chloride, 1.5 mM calcium chloride) is used. In the presence, the test was carried out at room temperature under the conditions shown in Table 1 below. After the reaction, the microvesicle-RNA complex was recovered on the membrane by filtering through a 0.45 μm pore size nitrocellulose membrane (Millipore). This membrane was placed in a 7M urea / 10 mM EDTA solution and heated at 98 ° C. for 5 minutes, and then the solution was recovered and RNA was purified by ethanol precipitation.
 精製されたRNAについて、PrimeScript II 1本鎖cDNA合成キット(タカラバイオ社製)を用いて逆転写反応を行った。具体的には、上記精製したRNA(~数十μg)に、dNTPを1.25μmol、FwdプライマーおよびRevプライマーを各25pmol加え、65℃で5分間反応させた後、4℃に冷却した。その後、キットに付属のバッファー、RNase阻害剤、逆転写酵素(100U)を加え、30℃で10分間、37℃で10分間、42℃で40分間、52℃で30分間、98℃で5分間反応させた。 The purified RNA was subjected to a reverse transcription reaction using PrimeScript II single-stranded cDNA synthesis kit (manufactured by Takara Bio Inc.). Specifically, 1.25 μmol of dNTP, 25 pmol each of Fwd primer and Rev primer were added to the purified RNA (˜several tens μg), reacted at 65 ° C. for 5 minutes, and then cooled to 4 ° C. Then, the buffer, RNase inhibitor, and reverse transcriptase (100 U) attached to the kit were added, 10 minutes at 30 ° C., 10 minutes at 37 ° C., 40 minutes at 42 ° C., 30 minutes at 52 ° C., 5 minutes at 98 ° C. Reacted.
 得られた逆転写産物について、PCR反応を行い、DNAを増幅した。具体的には、逆転写産物(~数十μg)に、TaKaRa Ex Taq(タカラバイオ社製)に付属のバッファー、終濃度0.8mMのdNTP、終濃度1.25μMのFwdプライマーおよびRevプライマー、0.5UのEx Taqを加え、94℃60秒間の反応の後、98℃10秒間、55℃30秒間、72℃60秒間のサイクルを繰り返すことによりPCR反応を行った。サイクル数は、アガロースゲル電気泳動により、増幅産物を確認することにより決定した。 The obtained reverse transcription product was subjected to PCR reaction to amplify DNA. Specifically, to the reverse transcription product (up to several tens of μg), a buffer attached to TaKaRa Ex Taq (manufactured by Takara Bio Inc.), a final concentration of 0.8 mM dNTP, a final concentration of 1.25 μM Fwd primer and a Rev primer, 0.5 U Ex Taq was added, and after 94 ° C. for 60 seconds, a PCR reaction was performed by repeating a cycle of 98 ° C. for 10 seconds, 55 ° C. for 30 seconds, and 72 ° C. for 60 seconds. The number of cycles was determined by confirming the amplification product by agarose gel electrophoresis.
 得られたPCR産物をエタノール沈殿により精製した。精製されたPCR産物から、DuraScribeTM T7 Transcription Kitを用いたインビトロ転写により、逆転写RNAを得た。得られたRNA産物は、バイオゲルP-30充填マイクロバイオスピンカラム(バイオ・ラッド社製)により精製した。 The obtained PCR product was purified by ethanol precipitation. From the purified PCR product, reverse transcribed RNA was obtained by in vitro transcription using the DuraScribe T7 Transcription Kit. The obtained RNA product was purified with a biogel P-30 packed micro bio spin column (manufactured by Bio-Rad).
 精製RNA産物から所望でないニトロセルロース膜結合性RNAを除去するために、精製RNA産物をニトロセルロース膜に通過させた(負の選択)。 In order to remove undesired nitrocellulose membrane-bound RNA from the purified RNA product, the purified RNA product was passed through a nitrocellulose membrane (negative selection).
 上記工程を1ラウンドとして、10回のスクリーニングラウンドを繰り返した。各スクリーニングラウンドにおける詳細な反応条件を、以下の表1に示す。 The above process was regarded as one round, and 10 screening rounds were repeated. Detailed reaction conditions in each screening round are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 10回のスクリーニングラウンドを繰り返して得られたDNAプールについて、次世代シークエンサーMiSeq(イルミナ社製)とそのキットMiSeq Reagent Kit v2を用いて、塩基配列を包括的に解析した。 For the DNA pool obtained by repeating 10 screening rounds, the base sequence was comprehensively analyzed using the next-generation sequencer MiSeq (manufactured by Illumina) and its kit MiSeq Reagent Kit v2.
 得られた塩基配列を表2および表3に示す。 The obtained base sequences are shown in Table 2 and Table 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実際のアプタマーの配列は、Fwdプライマー配列(ただし、T7プロモーターの転写開始点より上流の配列:UGUAAUACGACUCACUAUAを除く)-ランダム化領域配列-Revプライマーの逆向き相補配列である。また、アプタマー中、すべての塩基の糖はリボースであり、tは2’-F-Uであり、cは2’-F-Cである。 The actual aptamer sequence is an Fwd primer sequence (however, a sequence upstream from the transcription start point of the T7 promoter: except for UGUAAAUACGAUCACACUAUA) -randomized region sequence-reverse primer complementary sequence. In the aptamer, all base sugars are ribose, t is 2'-FU, and c is 2'-FC.
 実際のRNAアプタマーの塩基配列を表4および表5に示す。 Tables 4 and 5 show the base sequences of actual RNA aptamers.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<実施例3:モチーフ検索>
 上記SプールおよびKプールから得られたアプタマーの上位50配列に対して、MEME Suite(http://meme.nbcr.net/meme/)を使用してモチーフ検索を行った。
<Example 3: Motif search>
Motif search was performed on the top 50 aptamer sequences obtained from the S pool and K pool using MEME Suite (http://meme.nbcr.net/meme/).
 結果を図1に示す。図1は、MEMEに準拠した表示であり、縦軸はモチーフ配列の各位置における塩基の出現頻度(ビットスコア)を示し、横軸は塩基配列を示す。図1(a)は、Sプールから得られたアプタマーの上位50配列に対する解析結果を示す。図1(b)~図1(d)は、Kプールから得られたアプタマーの上位50配列に対する解析結果を示す。この結果から、Sプールから濃縮されたアプタマーとKプールから濃縮されたアプタマーの両方に保存されたモチーフM:YRCGGHGGWRWKGGGRN(配列番号207)と、Kプールから濃縮されたアプタマーのみに保存されたモチーフM:RRRDDRNDRGRKW(配列番号208)またはRVDDGGGHTCTAC(配列番号211)が存在することが明らかになった。 The results are shown in FIG. FIG. 1 is a display conforming to MEME, in which the vertical axis indicates the appearance frequency (bit score) of the base at each position of the motif sequence, and the horizontal axis indicates the base sequence. FIG. 1 (a) shows the analysis results for the top 50 sequences of aptamers obtained from the S pool. FIG. 1 (b) to FIG. 1 (d) show the analysis results for the top 50 sequences of aptamers obtained from the K pool. From this result, the motif M s : YRCGGHGGWRWGGGRN (SEQ ID NO: 207) conserved in both the aptamer enriched from the S pool and the aptamer enriched from the K pool, and the motif conserved only in the aptamer enriched from the K pool It was revealed that M k : RRRRDDRNDRGRKW (SEQ ID NO: 208) or RVDDGGGHTCTAC (SEQ ID NO: 211) was present.
 図1(a)の結果をもとに、Sプールから濃縮されたアプタマーについてアラインメントを行い整列した結果を図2に、図1(c)の結果をもとに、Kプールから濃縮されたアプタマーについてアラインメントを行い整列した結果を図3に示す。この結果から、Sプールから得られたアプタマーは共通してモチーフMを有し、Kプールから濃縮されたアプタマーは共通してモチーフMを有していることが確認された。 Based on the results of FIG. 1 (a), the aptamers concentrated from the S pool are aligned and aligned. FIG. 2 shows the results of alignment and aptamers concentrated from the K pool based on the results of FIG. 1 (c). FIG. 3 shows the result of alignment and alignment. From this result, it was confirmed that aptamers obtained from the S pool have the motif M s in common, and aptamers concentrated from the K pool have the motif M k in common.
<実施例4:モチーフの二次構造予測>
 続いて、上記のモチーフMおよびMの二次構造予測を行った。モチーフMを有するアプタマーである配列番号114、および、モチーフMを有するアプタマーである配列番号159について、CentroidFoldプログラム(Nucl.Acids Res., Vol.37(Suppl.2), pp.W277-W280, 2009)により二次構造を予測した。
<Example 4: Prediction of secondary structure of motif>
Subsequently, secondary structure prediction of the above-described motifs M s and M k was performed. The CentroidFold program (Nucl. Acids Res., Vol. 37 (Suppl. 2), pp. W277-W280) is used for the aptamer having the motif M s , SEQ ID NO: 114, and the aptamer having the motif M k , SEQ ID NO: 159. , 2009) to predict secondary structure.
 結果を図4および図5に示す。配列番号114と配列番号159のアプタマーは、いずれもステムループ構造を形成し、モチーフMとモチーフMは、いずれもループ構造を形成するものであることが示された。 The results are shown in FIG. 4 and FIG. It was shown that the aptamers of SEQ ID NO: 114 and SEQ ID NO: 159 all form a stem loop structure, and both the motif M s and the motif M k form a loop structure.
 実施例3および4の結果に基づき、推定されるアプタマーの構造は以下の通りである。
 モチーフMを有するアプタマー:
 5’-X-M-X-3’(ここで、Mは、YRCGGHGGWRWKGGGRN(配列番号207)であり、Rは、それぞれ独立に、AまたはGであり、Yは、CまたはTもしくはUであり、Wは、それぞれ独立に、AまたはTもしくはUであり、Nは、それぞれ独立に、A、C、GまたはTもしくはUであり、XおよびXは、それぞれ0~50個のヌクレオチドを表し、かつ、XおよびXは相補的に結合して0~50塩基対のステムを形成する)
 モチーフMを有するアプタマー:
 5’-X-(N)-M-(N)-X-3’(ここで、Mは、RRRDDRNDRGRKW(配列番号208)であり、Rは、それぞれ独立に、AまたはGであり、Dは、それぞれ独立に、A、GまたはTもしくはUであり、Nは、A、C、GまたはTもしくはUであり、Kは、GまたはTもしくはUであり、Wは、AまたはTもしくはUであり、mは、9から15までのいずれかの整数であり、nは、0から4までのいずれかの整数であり、XおよびXは、それぞれ0~50個のヌクレオチドを表し、かつ、XおよびXは相補的に結合して0~50塩基対のステムを形成する)
Based on the results of Examples 3 and 4, the structure of the aptamer estimated is as follows.
Aptamers with a motif M s:
5′-X 1 -M s -X 2 -3 ′ (where M s is YRCGGHGWRWGGGGRN (SEQ ID NO: 207), R is independently A or G, and Y is C or T Or U, W is each independently A or T or U, N is each independently A, C, G or T or U, and X 1 and X 2 are each 0 to 50 Represents X nucleotides, and X 1 and X 2 bind complementarily to form a 0-50 base pair stem)
Aptamers with motif Mk :
5′-X 3- (N) m -M k- (N) n -X 4 -3 ′ (where M k is RRRDDRNDRGRKW (SEQ ID NO: 208), and each R is independently A or G, D are each independently A, G or T or U; N is A, C, G or T or U; K is G or T or U; W is A or T or U, m is any integer from 9 to 15, n is any integer from 0 to 4, and X 3 and X 4 are each 0 to 50 And X 3 and X 4 bind complementarily to form a 0-50 base pair stem)
<実施例5:モチーフのマイクロベシクルに対する結合能評価>
 実施例3および4の結果から予測されたモチーフのうち、マイクロベシクル結合能に重要であるループ構造部分についてさらに詳細に解析するために、ステム構造部分を短くした以下のアプタマーを合成した。5’末端にはビオチン標識を導入した。
 Sモチーフアプタマー: 5’-ggccACGACGCGGAGGUGUGGGGGAUCGUggcc-3’(配列番号209)
 Kモチーフアプタマー: 5’-GGUAGAUACGAUGGAAGAGGGAAAGGGAGGGUUCUACC-3’(配列番号210)
(ここで、小文字はDNAを、大文字はRNAを表す。また、UとCはフッ素により修飾されている。また、下線は、モチーフM(配列番号207)またはモチーフM(配列番号208)に相当する部分を示す。)
<Example 5: Evaluation of binding ability of motif to microvesicle>
Of the motifs predicted from the results of Examples 3 and 4, the following aptamers with the stem structure portion shortened were synthesized in order to analyze in more detail the loop structure portion important for the microvesicle binding ability. A biotin label was introduced at the 5 ′ end.
S-motif aptamer: 5′-ggccACGA CGCGGGAGGUGUGGGGGA UCGUggcc-3 ′ (SEQ ID NO: 209)
K motif aptamer: 5′-GGUAGAUACGAUGGAAGAG GGAAAGGGAGGGGU UCUACC-3 ′ (SEQ ID NO: 210)
(Here, lowercase letters represent DNA, uppercase letters represent RNA. U and C are modified with fluorine. Underlined motif M s (SEQ ID NO: 207) or motif M k (SEQ ID NO: 208)) (The part corresponding to is shown.)
 フィルターバインディングアッセイにより、上記アプタマーのマイクロベシクルに対する結合能を評価した。SモチーフアプタマーまたはKモチーフアプタマー(各100pmol)と実施例1において調製したマイクロベシクル(10mg)とを、実施例2で用いた結合バッファーに0.1%のTween20を加えたバッファー(以下、「0.1%Tween20含有結合バッファー」と記載する)中にて、室温で2時間反応させた。その後、反応液を0.45μm孔径ニトロセルロース膜(ミリポア社製)により濾過した。その後、5mlの0.1%Tween20含有結合バッファーを通過させることにより、フィルターを洗浄した。洗浄後のフィルターを、100μg/mlのtRNAを含む3%BSA/0.1%Tween20含有結合バッファーでフィルターをブロッキングし、4.5mlの0.1%Tween20含有結合バッファーにより10分間1回洗浄した後、0.3%BSA/0.1%Tween20含有結合バッファーにより1/1000希釈されたホースラディッシュペルオキシダーゼ(HRP)標識アビジン(サーモサイエンティフィック社)と、室温で1時間反応させた。その後、ECLキット(GEヘルスケア・ジャパン社製)を用いて化学発光反応を行い、結合の検出を行った。 The binding ability of the aptamer to microvesicles was evaluated by a filter binding assay. A buffer in which 0.1% Tween 20 is added to the binding buffer used in Example 2 (hereinafter referred to as “0”), the S motif aptamer or K motif aptamer (100 pmol each) and the microvesicle (10 mg) prepared in Example 1. In 1% Tween20-containing binding buffer) for 2 hours at room temperature. Thereafter, the reaction solution was filtered through a 0.45 μm pore size nitrocellulose membrane (Millipore). The filter was then washed by passing through 5 ml of a binding buffer containing 0.1% Tween20. The washed filter was blocked with a binding buffer containing 3% BSA / 0.1% Tween 20 containing 100 μg / ml tRNA and washed once with 4.5 ml of a binding buffer containing 0.1% Tween 20 for 10 minutes. Thereafter, the reaction was carried out at room temperature for 1 hour with horseradish peroxidase (HRP) -labeled avidin (Thermo Scientific) diluted 1/1000 with a binding buffer containing 0.3% BSA / 0.1% Tween20. Thereafter, chemiluminescence reaction was performed using an ECL kit (manufactured by GE Healthcare Japan) to detect binding.
 結果を図6に示す。SモチーフアプタマーとKモチーフアプタマーのいずれも、マイクロベシクルに対する結合能を有するものであることが示された。 The results are shown in FIG. Both the S motif aptamer and the K motif aptamer were shown to have the ability to bind to microvesicles.
<実施例6:モチーフと抗マイクロベシクル抗体のマイクロベシクルに対する結合能の比較>
 Sモチーフアプタマーと、市販の抗マイクロベシクル抗体のマイクロベシクルに対する結合能を比較するために、ドットブロットを行った。抗マイクロベシクル抗体として、抗CD63抗体(MX-49.129.5、サンタクルーズバイオテクノロジー社製)を用いた。CD63はエキソソームのマーカータンパク質として知られており、抗CD63抗体は、エキソソームの検出・単離のために一般的に使用されている。
<Example 6: Comparison of binding ability of motif and anti-microvesicle antibody to microvesicle>
In order to compare the binding ability of the S motif aptamer and the commercially available anti-microvesicle antibody to microvesicles, a dot blot was performed. An anti-CD63 antibody (MX-49.129.5, manufactured by Santa Cruz Biotechnology) was used as the anti-microvesicle antibody. CD63 is known as an exosome marker protein, and anti-CD63 antibodies are generally used for detection and isolation of exosomes.
 ニトロセルロース膜上に、実施例1で得られたマイクロベシクル画分(フラクション3~10)を2μl滴下し、室温で30分風乾させることによって、マイクロベシクルを固定し、その後、100μg/mlのtRNAを含有する1%BSA/0.1%Tween20含有結合バッファー(以下、「ブロッキングバッファー」と記載する)にて、室温で1時間、ブロッキングを行った。その後、ニトロセルロース膜を、Sモチーフアプタマー/ブロッキングバッファー(終濃度200nM)中にて、室温で1時間インキュベーションすることにより、結合反応を行った。反応後のニトロセルロース膜を0.1%Tween20含有結合バッファーにより洗浄した後、UV架橋により、マイクロベシクルに結合したSモチーフアプタマーを固定した。その後、0.1%Tween20含有結合バッファーにより1/4000希釈されたHRP標識アビジン(サーモサイエンティフィック社)と、室温で1時間反応させた。0.1%Tween20含有結合バッファーによる3回の洗浄後、ECLキット(GEヘルスケア・ジャパン社製)を用いて化学発光反応を行い、結合の検出を行った。 2 μl of the microvesicle fraction obtained in Example 1 (fractions 3 to 10) was dropped on the nitrocellulose membrane and air-dried at room temperature for 30 minutes to fix the microvesicle, and then 100 μg / ml tRNA. 1% BSA / 0.1% Tween20-containing binding buffer (hereinafter referred to as “blocking buffer”) was used for blocking at room temperature for 1 hour. Then, the binding reaction was performed by incubating the nitrocellulose membrane in an S motif aptamer / blocking buffer (final concentration 200 nM) at room temperature for 1 hour. After the reaction, the nitrocellulose membrane was washed with a binding buffer containing 0.1% Tween 20, and then the S motif aptamer bound to the microvesicle was immobilized by UV crosslinking. Thereafter, the mixture was reacted with HRP-labeled avidin (Thermo Scientific) diluted 1/4000 with a binding buffer containing 0.1% Tween 20 at room temperature for 1 hour. After washing three times with a binding buffer containing 0.1% Tween 20, a chemiluminescence reaction was performed using an ECL kit (manufactured by GE Healthcare Japan) to detect binding.
 マイクロベシクルと抗CD63抗体との結合反応については、3%BSA/0.1%Tween20/TBSによる室温で1時間のブロッキング後、上記の抗CD63抗体を一次抗体として用い(1:1000希釈/1%BSA/0.1%Tween20/TBS)、室温で1時間インキュベーションすることにより、結合反応を行った。0.1%Tween20/TBSにより15分3回洗浄後、二次抗体としてHRP標識抗マウスIgG(GEヘルスケア・ジャパン社製)を用い(1:2000希釈/1%BSA/0.1%Tween20/TBS)、室温で1時間インキュベーションすることにより、結合反応を行った。0.1%Tween20/TBSにより15分3回洗浄後、Sモチーフアプタマーと同様に、化学発光により、マイクロベシクルに対する抗CD63抗体の結合を検出した。 For the binding reaction between the microvesicle and the anti-CD63 antibody, after blocking for 1 hour at room temperature with 3% BSA / 0.1% Tween20 / TBS, the above-mentioned anti-CD63 antibody was used as the primary antibody (1: 1000 dilution / 1 % BSA / 0.1% Tween 20 / TBS) and incubation at room temperature for 1 hour to perform the binding reaction. After washing with 0.1% Tween 20 / TBS three times for 15 minutes, HRP-labeled anti-mouse IgG (manufactured by GE Healthcare Japan) was used as the secondary antibody (1: 2000 dilution / 1% BSA / 0.1% Tween 20). / TBS), the binding reaction was carried out by incubation at room temperature for 1 hour. After washing with 0.1% Tween20 / TBS three times for 15 minutes, the binding of the anti-CD63 antibody to the microvesicle was detected by chemiluminescence in the same manner as the S motif aptamer.
 結果を図7(a)に示す。Sモチーフアプタマーのマイクロベシクルに対する検出感度は、市販の抗CD63抗体と同等であった。 The result is shown in FIG. The detection sensitivity of the S motif aptamer to microvesicles was equivalent to that of a commercially available anti-CD63 antibody.
 Sモチーフアプタマーがマイクロベシクルに対して結合していることをさらに確認するために、変性処理したマイクロベシクルサンプルに対するドットブロットを行った。変性処理したマイクロベシクルサンプルとして、実施例1において調製したマイクロベシクルを、(1)結合バッファー中で2分間煮沸したものと、(2)2%SDS含有サンプルバッファー中で2分間煮沸したものを作製した。なお、(1)の条件によれば部分的に、(2)の条件によれば完全にマイクロベシクルを変性させることができる。ドットブロットは、上記と同様の手順により行った。 In order to further confirm that the S motif aptamer was bound to the microvesicle, a dot blot was performed on the denaturated microvesicle sample. As denatured microvesicle samples, the microvesicles prepared in Example 1 were boiled for 2 minutes in (1) binding buffer and (2) boiled for 2 minutes in 2% SDS-containing sample buffer. did. The microvesicles can be denatured partially according to the condition (1) and completely according to the condition (2). The dot blot was performed by the same procedure as described above.
 結果を図7(b)に示す。変性処理をしていないマイクロベシクルサンプル(レーン1)と比較して、マイクロベシクルを緩やかに変性させたサンプル(上記(1)、レーン2)ではSモチーフアプタマーの結合が減少し、マイクロベシクルを完全に変性させたサンプル(上記(2)、レーン3)ではSモチーフアプタマーの結合が完全に消失した。この結果から、Sモチーフアプタマーはマイクロベシクルに対して特異的に結合していることが確認された。 The result is shown in FIG. Compared with the microvesicle sample (lane 1) that was not subjected to denaturation treatment, in the sample in which the microvesicle was gently denatured (above (1), lane 2), the binding of the S motif aptamer was reduced, and the microvesicle was completely removed. In the sample denatured in (Section (2), lane 3), the binding of the S motif aptamer completely disappeared. From this result, it was confirmed that the S motif aptamer specifically bound to the microvesicle.
<実施例7:表面プラズモン共鳴法によるアプタマーのマイクロベシクルに対する結合能の評価>
 Sモチーフアプタマー(配列番号209)とKモチーフアプタマー(配列番号210)の、マイクロベシクルに対する結合能を、表面プラズモン共鳴法により評価した。具体的には、表面プラズモン共鳴測定装置BIACORE X(GEヘルスケア・ジャパン社製)とストレプトアビジンでコートされたセンサーチップ(センサーチップSA、GEヘルスケア・ジャパン社製)を使用した。約150RUのSモチーフアプタマーまたはKモチーフアプタマーをチップに結合させた。アナライトとなる293T細胞由来またはHeLa S3細胞由来のマイクロベシクルは、実施例1と同様の手順により調製したものについて、約6mg/mlを1として、1/40、1/80、1/120、1/140、および1/160の濃度に調製し、結合レベルの測定に使用した。ランニングバッファーには、0.005%Tween20/結合バッファーを用いた(流速10μl/ml)。
<Example 7: Evaluation of binding ability of aptamer to microvesicle by surface plasmon resonance method>
The binding ability of the S motif aptamer (SEQ ID NO: 209) and the K motif aptamer (SEQ ID NO: 210) to microvesicles was evaluated by the surface plasmon resonance method. Specifically, a surface plasmon resonance measuring apparatus BIACORE X (manufactured by GE Healthcare Japan) and a sensor chip coated with streptavidin (sensor chip SA, manufactured by GE Healthcare Japan) were used. About 150 RU of S motif aptamer or K motif aptamer was bound to the chip. The 293T cell-derived or HeLa S3 cell-derived microvesicles used as the analyte were prepared by the same procedure as in Example 1, and about 1 mg / ml, 1/40, 1/80, 1/120, Concentrations of 1/140 and 1/160 were prepared and used to measure binding levels. As the running buffer, 0.005% Tween 20 / binding buffer was used (flow rate 10 μl / ml).
 結果を図8~11に示す。結合反応曲線から求めた解離定数(Kd)は、Sモチーフアプタマーと293T細胞由来のマイクロベシクルとのKdは2.37×10μg/ml、SモチーフアプタマーとHeLa S3細胞由来のマイクロベシクルとのKdは1.23×10μg/ml、Kモチーフアプタマーと293T細胞由来のマイクロベシクルとのKdは1.38×10μg/ml、KモチーフアプタマーとHeLa S3細胞由来のマイクロベシクルとのKdは0.57×10μg/mlであった。この値から、SモチーフアプタマーとKモチーフアプタマーのいずれも、マイクロベシクルに対し、一般的な抗体以上の極めて高い結合親和性を有するものであることが明らかになった。 The results are shown in FIGS. The dissociation constant (Kd) determined from the binding reaction curve is as follows: the Kd between the S motif aptamer and the 293T cell-derived microvesicle is 2.37 × 10 2 μg / ml, and the S motif aptamer and the HeLa S3 cell-derived microvesicle. Kd is 1.23 × 10 2 μg / ml, Kd between K motif aptamer and 293T cell-derived microvesicle is 1.38 × 10 2 μg / ml, Kd between K motif aptamer and HeLa S3 cell-derived microvesicle Was 0.57 × 10 2 μg / ml. From this value, it was revealed that both the S motif aptamer and the K motif aptamer have a very high binding affinity for microvesicles over that of a general antibody.
<実施例8:円偏光二色性スペクトル測定によるアプタマーの構造解析>
 Sモチーフアプタマー(配列番号209)とKモチーフアプタマー(配列番号210)について、円偏光二色性(CD)スペクトルを測定することにより、モチーフの立体構造を解析した。具体的には、J-820(日本分光社製)により、0.1cm光路長の石英セルを用いて、25℃、220~320nmにて測定した。バッファーは、20mMトリス塩酸塩(pH7.5)、150mM塩化ナトリウム、0.5mM塩化マグネシウム、1.5mM塩化カルシウムをベースとし、塩化カリウムを終濃度0.0、0.1、0.3、1.0、5.0、10.0、50.0および100mMになるように加えた。また、バッファーを20mMトリス塩酸塩(pH7.5)とし、塩化カリウムを終濃度0.0、0.1、0.3、1.0、5.0、10.0、50.0および100mMになるように加えた場合も評価した。
<Example 8: Structural analysis of aptamer by circular dichroism spectrum measurement>
The three-dimensional structure of the motif was analyzed by measuring the circular dichroism (CD) spectrum of the S motif aptamer (SEQ ID NO: 209) and the K motif aptamer (SEQ ID NO: 210). Specifically, measurement was performed at 25 ° C. and 220 to 320 nm using a quartz cell having an optical path length of 0.1 cm by J-820 (manufactured by JASCO Corporation). The buffer is based on 20 mM Tris hydrochloride (pH 7.5), 150 mM sodium chloride, 0.5 mM magnesium chloride, 1.5 mM calcium chloride, with potassium chloride at a final concentration of 0.0, 0.1, 0.3, 1 Add to 0.0, 5.0, 10.0, 50.0 and 100 mM. The buffer is 20 mM Tris hydrochloride (pH 7.5), and the potassium chloride is adjusted to a final concentration of 0.0, 0.1, 0.3, 1.0, 5.0, 10.0, 50.0 and 100 mM. The case where it added so was evaluated.
 次いで、SモチーフアプタマーとKモチーフアプタマーの融解温度を求めた。具体的には、バッファー(20mMトリス塩酸塩(pH7.5)、150mM塩化ナトリウム、0.5mM塩化マグネシウム、1.5mM塩化カルシウム、100mM塩化カリウム)において、温度を25℃から95℃まで変化させながら、270nmの蛍光強度を測定することにより求めた。また、バッファーを、20mMトリス塩酸塩(pH7.5)、100mM塩化カリウムとした場合も同様に測定した。 Next, melting temperatures of the S motif aptamer and the K motif aptamer were determined. Specifically, in a buffer (20 mM Tris hydrochloride (pH 7.5), 150 mM sodium chloride, 0.5 mM magnesium chloride, 1.5 mM calcium chloride, 100 mM potassium chloride) while changing the temperature from 25 ° C. to 95 ° C. It was determined by measuring the fluorescence intensity at 270 nm. The same measurement was performed when the buffer was 20 mM Tris hydrochloride (pH 7.5) and 100 mM potassium chloride.
 CDスペクトルの測定結果を図12~15に示す。図12および図14に示すように、Sモチーフアプタマーは、カリウムイオン濃度依存的に構造が変化し、カリウムイオン濃度が上昇するにつれて、楕円率θの極大値(260~280nm付近)が上昇した。Kモチーフアプタマーについても、Sモチーフアプタマーと同様のカリウムイオン濃度依存的な構造変化が見られた(図13および図15)。また、図15の結果から、カリウムイオン濃度が0.1mM以上の場合に、楕円率θの極大が長波長側へとシフトすることが明らかになった。これらの結果から、SモチーフアプタマーとKモチーフアプタマーはいずれも、カリウムイオン依存的に平行グアニン四重鎖構造(Parallel G-quadruplex)を形成することが示唆された。 CD measurement results are shown in FIGS. As shown in FIGS. 12 and 14, the structure of the S motif aptamer changed depending on the potassium ion concentration, and the maximum value of ellipticity θ (around 260 to 280 nm) increased as the potassium ion concentration increased. As for the K motif aptamer, the same potassium ion concentration-dependent structural change as that of the S motif aptamer was observed (FIGS. 13 and 15). Further, from the results of FIG. 15, it has been clarified that when the potassium ion concentration is 0.1 mM or more, the maximum ellipticity θ shifts to the longer wavelength side. From these results, it was suggested that both the S motif aptamer and the K motif aptamer form a parallel guanine quadruplex structure (Parallel G-quadruplex) in a potassium ion-dependent manner.
 融解温度測定の結果を図16~19に示す。SモチーフアプタマーもKモチーフアプタマーも、70~80℃の高温において楕円率θが極小を示しており、このことは、モチーフが単純な二重鎖構造ではない熱安定性の高い構造を形成していることを示唆するものである(J.Phys.Chem.B, Vol.177(23), pp.6896-6905)。すなわち、この結果から、SモチーフアプタマーとKモチーフアプタマーはいずれも平行四重鎖構造を形成していることが示唆された。また、低温域に極大が見られることから、SモチーフアプタマーとKモチーフアプタマーのいずれも、アプタマーの両末端の塩基配列が二重鎖構造を形成していることが予想された。 Results of melting temperature measurement are shown in FIGS. Both the S motif aptamer and the K motif aptamer have a minimum ellipticity θ at a high temperature of 70 to 80 ° C., which means that the motif forms a highly stable structure that is not a simple double-stranded structure. (J. Phys. Chem. B, Vol. 177 (23), pp. 6896-6905). That is, from this result, it was suggested that both the S motif aptamer and the K motif aptamer form a parallel quadruplex structure. Moreover, since the maximum was observed in the low temperature range, it was predicted that the base sequences at both ends of the aptamer formed a double chain structure in both the S motif aptamer and the K motif aptamer.
<実施例9:アプタマーのマイクロベシクルに対する結合能に対するカリウムイオン濃度の影響>
 次いで、Sモチーフアプタマー(配列番号209)とKモチーフアプタマー(配列番号210)のマイクロベシクルに対する結合能が、カリウムイオン濃度依存的に変化するかどうかを、表面プラズモン共鳴法により解析した。実施例1と同様の手順により調製した293T細胞由来のマイクロベシクル(81mg/ml)と、10mM塩化カリウムを含むまたは含まない結合バッファーとを用い、実施例7と同様の条件にて測定を行った。
<Example 9: Effect of potassium ion concentration on aptamer binding ability to microvesicles>
Subsequently, whether the binding ability of the S motif aptamer (SEQ ID NO: 209) and the K motif aptamer (SEQ ID NO: 210) to the microvesicle changes depending on the potassium ion concentration was analyzed by a surface plasmon resonance method. Measurement was performed under the same conditions as in Example 7, using 293T cell-derived microvesicles (81 mg / ml) prepared by the same procedure as in Example 1 and a binding buffer with or without 10 mM potassium chloride. .
 結果を図20に示す。カリウムイオン存在下における結合反応曲線を実線、カリウムイオン不在下における結合反応曲線を破線により示す。Sモチーフアプタマー(図20上段)とKモチーフアプタマー(図20下段)はいずれも、カリウムイオン依存的にマイクロベシクルに対する結合能が増加することが示された。この結果から、SモチーフアプタマーとKモチーフアプタマーはいずれも平行グアニン四重鎖構造を形成し、この平行グアニン四重鎖構造がカリウムイオン濃度依存的に安定化されることにより、アプタマーのマイクロベシクルに対する結合能が増強されることが示唆された。 The results are shown in FIG. A binding reaction curve in the presence of potassium ions is indicated by a solid line, and a binding reaction curve in the absence of potassium ions is indicated by a broken line. It was shown that both the S motif aptamer (the upper part of FIG. 20) and the K motif aptamer (the lower part of FIG. 20) increase the binding ability to microvesicles in a potassium ion-dependent manner. From this result, both the S motif aptamer and the K motif aptamer form a parallel guanine quadruplex structure, and the parallel guanine quadruplex structure is stabilized in a potassium ion concentration-dependent manner. It was suggested that the binding ability was enhanced.
 以上の結果から想定される、本発明に係るマイクロベシクル結合性核酸アプタマーの立体構造を図21に示す。矢印は、核酸の5’→3’方向を示しており、二点鎖線は、4つのグアニンにより形成された四量体平面(Gカルテット構造)を示す。本発明に係るマイクロベシクル結合性核酸アプタマーのモチーフ部分は、2面のGカルテット構造が重なった平行グアニン四重鎖構造をとり、この平行グアニン四重鎖構造を介してマイクロベシクルに結合する。 FIG. 21 shows the three-dimensional structure of the microvesicle-binding nucleic acid aptamer according to the present invention, which is assumed from the above results. The arrow indicates the 5 ′ → 3 ′ direction of the nucleic acid, and the two-dot chain line indicates a tetramer plane (G quartet structure) formed by four guanines. The motif portion of the microvesicle-binding nucleic acid aptamer according to the present invention has a parallel guanine quadruplex structure in which two G quartet structures overlap each other, and binds to the microvesicle via this parallel guanine quadruplex structure.
 このように、本発明に係るマイクロベシクル結合性核酸アプタマーは、マイクロベシクルに対し高い結合親和性を有しており、マイクロベシクルを捕捉できるものであることが確認された。また、本発明に係るマイクロベシクル結合性核酸アプタマーを使用することにより、マイクロベシクルの検出方法および単離方法、ならびに薬物送達システムを提供することができることが示唆された。 Thus, it was confirmed that the microvesicle-binding nucleic acid aptamer according to the present invention has a high binding affinity for microvesicles and can capture microvesicles. In addition, it was suggested that by using the microvesicle-binding nucleic acid aptamer according to the present invention, a microvesicle detection method and isolation method, and a drug delivery system can be provided.

Claims (16)

  1.  下記の塩基配列:
     5’-X-M-X-3’
    (ここで、Mは、YRCGGHGGWRWKGGGRN(配列番号207)と80%以上の同一性を有する塩基配列であり、Yは、CまたはTもしくはUであり、Rは、それぞれ独立に、AまたはGであり、Hは、A、CまたはTもしくはUであり、Wは、それぞれ独立に、AまたはTもしくはUであり、Kは、GまたはTもしくはUであり、Nは、それぞれ独立に、A、C、GまたはTもしくはUであり、
     XおよびXは、それぞれ0~50個のヌクレオチドを表し、かつ、XおよびXは相補的に結合して0~50塩基対のステムを形成する)
    を含む、マイクロベシクルに対して結合能を有する核酸アプタマー。
    The following base sequence:
    5'-X 1 -M s -X 2 -3 '
    (Here, M s is a base sequence having 80% or more identity with YRCGGHGGWRWKGGGRN (SEQ ID NO: 207), Y is C or T or U, and R is independently A or G. H is A, C or T or U; W is independently A or T or U; K is G or T or U; N is each independently A; C, G or T or U,
    X 1 and X 2 each represent 0-50 nucleotides, and X 1 and X 2 bind complementarily to form a 0-50 base pair stem)
    A nucleic acid aptamer having binding ability to microvesicles.
  2.  前記Mが、配列番号207と90%以上の同一性を有する塩基配列である、請求項1に記載の核酸アプタマー。 The nucleic acid aptamer according to claim 1, wherein the M s is a base sequence having 90% or more identity with SEQ ID NO: 207.
  3.  前記Mが、配列番号207に示される塩基配列である、請求項1に記載の核酸アプタマー。 The nucleic acid aptamer according to claim 1, wherein the M s is a base sequence represented by SEQ ID NO: 207.
  4.  下記の塩基配列:
     5’-X-(N)-M-(N)-X-3’
    (ここで、Mは、RRRDDRNDRGRKW(配列番号208)またはRVDDGGGHTCTAC(配列番号211)と80%以上の同一性を有する塩基配列であり、Rは、それぞれ独立に、AまたはGであり、Dは、それぞれ独立に、A、GまたはTもしくはUであり、Nは、A、C、GまたはTもしくはUであり、Kは、GまたはTもしくはUであり、Wは、AまたはTもしくはUであり、Vは、A、CまたはGであり、Hは、A、CまたはTもしくはUであり、
     mは、0から20までのいずれかの整数であり、
     nは、0から20までのいずれかの整数であり、
     XおよびXは、それぞれ0~50個のヌクレオチドを表し、かつ、XおよびXは相補的に結合して0~50塩基対のステムを形成する)
    を含む、マイクロベシクルに対して結合能を有する核酸アプタマー。
    The following base sequence:
    5'-X 3- (N) m -M k- (N) n -X 4 -3 '
    (Here, M k is a base sequence having 80% or more identity with RRRDDRNDRGRKW (SEQ ID NO: 208) or RVDDGGGHTCTAC (SEQ ID NO: 211), R is independently A or G, and D is Each independently A, G or T or U, N is A, C, G or T or U, K is G or T or U, and W is A or T or U. Yes, V is A, C or G, H is A, C or T or U;
    m is any integer from 0 to 20,
    n is any integer from 0 to 20,
    X 3 and X 4 each represent 0-50 nucleotides, and X 3 and X 4 bind complementarily to form a 0-50 base pair stem)
    A nucleic acid aptamer having binding ability to microvesicles.
  5.  前記Mが、配列番号208または配列番号211と90%以上の同一性を有する塩基配列である、請求項4に記載の核酸アプタマー。 The nucleic acid aptamer according to claim 4, wherein the Mk is a base sequence having 90% or more identity with SEQ ID NO: 208 or SEQ ID NO: 211.
  6.  前記Mが、配列番号208または配列番号211に示される塩基配列である、請求項4に記載の核酸アプタマー。 The nucleic acid aptamer according to claim 4, wherein Mk is a base sequence represented by SEQ ID NO: 208 or SEQ ID NO: 211.
  7.  前記ステムがミスマッチまたはバルジを含む、請求項1~6のいずれか1項に記載の核酸アプタマー。 The nucleic acid aptamer according to any one of claims 1 to 6, wherein the stem contains a mismatch or a bulge.
  8.  前記Mまたは前記MがGカルテット構造を形成する、請求項1~7のいずれか1項に記載の核酸アプタマー。 The nucleic acid aptamer according to any one of claims 1 to 7, wherein the M s or the M k forms a G quartet structure.
  9.  (a)配列番号107~206からなる群から選択される塩基配列、または、
     (b)配列番号107~206からなる群から選択される塩基配列において、1~5個の塩基が置換、欠失、挿入または付加された塩基配列
    を含む、マイクロベシクルに対して結合能を有する核酸アプタマー。
    (A) a base sequence selected from the group consisting of SEQ ID NOs: 107 to 206, or
    (B) a base sequence selected from the group consisting of SEQ ID NOs: 107 to 206, having a binding ability to microvesicles, including base sequences in which 1 to 5 bases are substituted, deleted, inserted or added; Nucleic acid aptamer.
  10.  3’および/または5’末端が修飾されている、請求項1~9のいずれか1項に記載の核酸アプタマー。 The nucleic acid aptamer according to any one of claims 1 to 9, wherein the 3 'and / or 5' end is modified.
  11.  前記マイクロベシクルの直径が10~200nmである請求項1~10のいずれか1項に記載の核酸アプタマー。 The nucleic acid aptamer according to any one of claims 1 to 10, wherein the microvesicle has a diameter of 10 to 200 nm.
  12.  前記マイクロベシクルがエキソソームである請求項11に記載の核酸アプタマー。 The nucleic acid aptamer according to claim 11, wherein the microvesicle is an exosome.
  13.  請求項1~12のいずれか1項に記載の核酸アプタマーを用いて、マイクロベシクルを検出する方法。 A method for detecting a microvesicle using the nucleic acid aptamer according to any one of claims 1 to 12.
  14.  請求項1~12のいずれか1項に記載の核酸アプタマーを用いて、マイクロベシクルを単離する方法。 A method for isolating a microvesicle using the nucleic acid aptamer according to any one of claims 1 to 12.
  15.  請求項1~12のいずれか1項に記載の核酸アプタマーと、薬物とを含む、薬物送達システム。 A drug delivery system comprising the nucleic acid aptamer according to any one of claims 1 to 12 and a drug.
  16.  マイクロベシクルをさらに含む、請求項15に記載の薬物送達システム。
     
    The drug delivery system of claim 15 further comprising a microvesicle.
PCT/JP2014/081954 2013-12-04 2014-12-03 Nucleic acid aptamer for microvesicle WO2015083731A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015551533A JP6128621B2 (en) 2013-12-04 2014-12-03 Nucleic acid aptamers for microvesicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013251093 2013-12-04
JP2013-251093 2013-12-04

Publications (1)

Publication Number Publication Date
WO2015083731A1 true WO2015083731A1 (en) 2015-06-11

Family

ID=53273493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081954 WO2015083731A1 (en) 2013-12-04 2014-12-03 Nucleic acid aptamer for microvesicle

Country Status (2)

Country Link
JP (1) JP6128621B2 (en)
WO (1) WO2015083731A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020145958A (en) * 2019-03-13 2020-09-17 国立大学法人 新潟大学 Nucleic acid aptamer and use thereof
CN116515844A (en) * 2023-06-30 2023-08-01 四川大学华西医院 Migration body aptamer and screening method and application thereof
JP7454225B2 (en) 2020-04-28 2024-03-22 国立大学法人神戸大学 Substrate for manufacturing a sensor for analyzing a detection target, a sensor for analyzing a detection target, and an analysis method for a detection target

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525177A (en) * 2003-04-21 2007-09-06 アーケミックス コーポレイション Stabilized aptamers against platelet-derived growth factor and their use as tumor therapeutics
JP2011510663A (en) * 2008-02-01 2011-04-07 ザ ジェネラル ホスピタル コーポレイション Use of microvesicles in the diagnosis, prognosis and treatment of medical diseases and conditions
WO2012002541A1 (en) * 2010-07-01 2012-01-05 独立行政法人産業技術総合研究所 Method for detection of target molecule
JP2012508577A (en) * 2008-11-12 2012-04-12 カリス ライフ サイエンシズ ルクセンブルク ホールディングス Method and system for using exosomes to determine phenotype
WO2014068408A2 (en) * 2012-10-23 2014-05-08 Caris Life Sciences Switzerland Holdings, S.A.R.L. Aptamers and uses thereof
WO2014100434A1 (en) * 2012-12-19 2014-06-26 Caris Science, Inc. Compositions and methods for aptamer screening

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525177A (en) * 2003-04-21 2007-09-06 アーケミックス コーポレイション Stabilized aptamers against platelet-derived growth factor and their use as tumor therapeutics
JP2011510663A (en) * 2008-02-01 2011-04-07 ザ ジェネラル ホスピタル コーポレイション Use of microvesicles in the diagnosis, prognosis and treatment of medical diseases and conditions
JP2012508577A (en) * 2008-11-12 2012-04-12 カリス ライフ サイエンシズ ルクセンブルク ホールディングス Method and system for using exosomes to determine phenotype
WO2012002541A1 (en) * 2010-07-01 2012-01-05 独立行政法人産業技術総合研究所 Method for detection of target molecule
WO2014068408A2 (en) * 2012-10-23 2014-05-08 Caris Life Sciences Switzerland Holdings, S.A.R.L. Aptamers and uses thereof
WO2014100434A1 (en) * 2012-12-19 2014-06-26 Caris Science, Inc. Compositions and methods for aptamer screening

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JANAS, T. ET AL.: "The Selection of Aptamers Specific for Membrane Molecular Targets", CELLULAR & MOLECULAR BIOLOGY LETTERS, vol. 16, 2010, pages 25 - 39, XP035994664, DOI: doi:10.2478/s11658-010-0023-3 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020145958A (en) * 2019-03-13 2020-09-17 国立大学法人 新潟大学 Nucleic acid aptamer and use thereof
JP7255852B2 (en) 2019-03-13 2023-04-11 国立大学法人 新潟大学 Nucleic acid aptamer and use thereof
JP7454225B2 (en) 2020-04-28 2024-03-22 国立大学法人神戸大学 Substrate for manufacturing a sensor for analyzing a detection target, a sensor for analyzing a detection target, and an analysis method for a detection target
CN116515844A (en) * 2023-06-30 2023-08-01 四川大学华西医院 Migration body aptamer and screening method and application thereof
CN116515844B (en) * 2023-06-30 2023-09-08 四川大学华西医院 Migration body aptamer and screening method and application thereof

Also Published As

Publication number Publication date
JPWO2015083731A1 (en) 2017-03-16
JP6128621B2 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
Darmostuk et al. Current approaches in SELEX: An update to aptamer selection technology
Teng et al. Identification and characterization of DNA aptamers specific for phosphorylation epitopes of tau protein
US20200222556A1 (en) Preparation of therapeutic exosomes using membrane proteins
Thiviyanathan et al. Aptamers and the next generation of diagnostic reagents
Orava et al. A short DNA aptamer that recognizes TNFα and blocks its activity in vitro
Tan et al. DNA aptamers that target human glioblastoma multiforme cells overexpressing epidermal growth factor receptor variant III in vitro
Maier et al. A new transferrin receptor aptamer inhibits new world hemorrhagic fever mammarenavirus entry
KR101535709B1 (en) Method for Dectecting of Target Molecules Using PNA Aptamers
Meyer et al. Stabilized Interleukin-6 receptor binding RNA aptamers
Cheng et al. Discovery of a transferrin receptor 1-binding aptamer and its application in cancer cell depletion for adoptive T-cell therapy manufacturing
JP2014500024A (en) Bispecific aptamers mediating tumor cell lysis
US20190010499A1 (en) Methods for improved aptamer selection
JP6128621B2 (en) Nucleic acid aptamers for microvesicles
Almasi et al. Development of a single stranded DNA aptamer as a molecular probe for lncap cells using cell-selex
AU2018265432A1 (en) Compositions and methods for loading extracellular vesicles with chemical and biological agents/molecules
Hornung et al. ADAPT identifies an ESCRT complex composition that discriminates VCaP from LNCaP prostate cancer cell exosomes
Zhang et al. Proteomic and transcriptome profiling of G-quadruplex aptamers developed for cell internalization
US20190101529A1 (en) Tau protein-binding dna aptamers with capture/detection and therapeutic utilities in tauopathy-related neurodegenerative disorders
Wang et al. X-aptamers targeting Thy-1 membrane glycoprotein in pancreatic ductal adenocarcinoma
K Tsae et al. Outlook for aptamers after twenty five years
EP4148132A1 (en) Novel nucleic acid ligand, and method for identifyng same
EP3173482B1 (en) Rna-protein complex, and rna and protein delivery system using same
KR20160029335A (en) Nucleic acid aptamer specifically binding to EpCAM and their uses
EP3029059B1 (en) Compound administration precursor and medicament carrier preparation
US20200131512A1 (en) Chemically modified polynucleotides and method for producing chemically modified polynucleotides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866864

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551533

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866864

Country of ref document: EP

Kind code of ref document: A1