WO2015083475A1 - Receiving device, receiving method and receiving program - Google Patents

Receiving device, receiving method and receiving program Download PDF

Info

Publication number
WO2015083475A1
WO2015083475A1 PCT/JP2014/079265 JP2014079265W WO2015083475A1 WO 2015083475 A1 WO2015083475 A1 WO 2015083475A1 JP 2014079265 W JP2014079265 W JP 2014079265W WO 2015083475 A1 WO2015083475 A1 WO 2015083475A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
base
unit
receiving
minimum
Prior art date
Application number
PCT/JP2014/079265
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 勝也
良太 山田
梢 横枕
宏道 留場
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015083475A1 publication Critical patent/WO2015083475A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the present invention relates to a receiving device, a receiving method, and a receiving program.
  • FIG. 10 is a schematic diagram showing an example of the MIMO communication
  • the transmitting device a1 is provided with a transmitting antenna a1-1 ⁇ a1-N T
  • the receiving device b1 is equipped with a receiving antenna b1-1 ⁇ b1-N R
  • N T is the number of transmitting antennas
  • N R is the number of receiving antennas.
  • MLD Maximum Likelihood Detection
  • MLD is a reception method for selecting a transmission candidate that minimizes a square norm with respect to a reception signal among possible transmission candidates.
  • Non-Patent Document 1 has a problem that the number of multiplications and the circuit scale increase because it is necessary to multiply the transmission candidate and the channel value.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a MIMO receiving apparatus, receiving method, and receiving program capable of realizing excellent transmission characteristics with a low calculation amount and a low circuit scale. It is in.
  • the configuration of the receiving apparatus, receiving method, and receiving program according to the present invention is as follows.
  • the reception device uses at least one base signal, which is a product of a real part or an imaginary part of a modulation point, and a channel value as a start signal, and is not included in the start signal.
  • the signal is generated by bit shift and addition / subtraction to the start signal.
  • the start signal is a minimum base signal that is a product of a minimum value of a real part or an imaginary part of a modulation point and a channel value.
  • the start signal further includes a signal 12 times the minimum base signal.
  • the start signal includes the minimum base signal, a signal three times the minimum base signal, a signal five times the minimum base signal, and seven times the minimum base signal. And at least one of a signal, a signal 9 times the minimum base signal, a signal 11 times the minimum base signal, a signal 13 times the minimum base signal, and a signal 15 times the minimum base signal.
  • the start signal further includes at least one signal that is 16 times the base signal and not a power of two.
  • the receiving apparatus of the present invention is characterized in that a replica signal that is a product of each modulation point and the channel value is generated using addition / subtraction to the base signal.
  • a one-sided replica signal that is a product of the modulation point of two adjacent quadrants on the IQ plane and the channel value is generated, and the one-sided replica The replica signal not included in the one-side replica signal is generated by inverting the sign of the signal.
  • a signal that is 11 times the minimum base signal and a signal that is 13 times the minimum base signal are stored, and the start signal, the signal that is 11 times the minimum base signal, and the minimum base signal are stored.
  • the base signal is obtained based on a signal that is 13 times the signal.
  • At least one base signal that is a product of the real part or imaginary part of the modulation point and the channel value is used as a start signal,
  • the base signal not included is generated by bit shift and addition / subtraction to the start signal.
  • a reception program causes a computer to execute the reception method described above.
  • the receiving apparatus can realize good transmission characteristics with a low calculation amount and a low circuit scale.
  • a transmission apparatus performs data transmission using an OFDM (Orthogonal Frequency Division Multiplexing) scheme.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • DFT-s-OFDM Discrete Fourier Transform- A single carrier transmission scheme such as spread-OFDM (discrete Fourier transform spread OFDM) or a multicarrier transmission scheme such as MC-CDMA (Multiple Carrier-Code Division Multiple Access) may be used.
  • FIG. 1 is a schematic block diagram illustrating a configuration of the transmission device a1.
  • a transmission device a1 includes an S / P (Serial / Parallel) conversion unit a101, an encoding unit a102-v, a modulation unit a103-v, a layer mapping unit a104, a pilot generation unit a105, a precoding unit a106, an RE.
  • a (Resource Element) mapping unit a107-k, an OFDM (Orthogonal Frequency Division Multiplexing) signal generation unit a108-k, and a transmission unit a109-k are configured.
  • N C is the number of code words and represents the number to be encoded.
  • the resource element is a physical resource that represents one subcarrier in one OFDM symbol and arranges modulation symbols and pilot symbols.
  • FIG. 1 also shows the transmission antennas a1-k.
  • the S / P conversion unit a101 performs serial / parallel conversion on the input information bits and outputs the information bits to the encoding unit a102-v.
  • the encoding unit a102-v encodes the bits input from the S / P conversion unit a101 using an error correction code such as a convolutional code, a turbo code, or an LDPC (Low Density Parity Check) code. , Generate encoded bits.
  • the encoding unit a102-v outputs the encoded bits to the modulation unit a103-v.
  • the modulation unit a103-v outputs the generated modulation symbol to the layer mapping unit a104. Note that the modulation unit a103-v may have a function of rearranging and interleaving the generated modulation symbols.
  • log (M) / 2 bits can be assigned to each of the real part and the imaginary part.
  • log (x) represents the logarithm of x with 2 as the base.
  • One bit of log (M) / 2 bits represents the sign of the real part. Let this bit be b sign . If the number of bits other than b sign is N base , N base can be expressed by the following equation (1).
  • M base When the amplitude number is M base , M base can be expressed by the following equation (2).
  • n 0,..., N base ⁇ 1.
  • the layer mapping unit a104 allocates the modulation symbol input from the modulation unit a103-v to any one of 1,..., NT streams, and outputs it to the precoding unit a106.
  • Pilot generation section a105 generates a pilot symbol for the receiving apparatus to perform channel estimation, and outputs the pilot symbol to precoding section a106.
  • the precoding unit a106 precodes the modulation symbol input from the layer mapping unit a104 and the pilot symbol input from the pilot generation unit a105. Specifically, a unitary matrix based on a codebook or a submatrix of a unitary matrix can be multiplied. Alternatively, STBC (Space Time Block Code), SFBC (Space Frequency Block Code), or the like may be used.
  • STBC Space Time Block Code
  • SFBC Space Frequency Block Code
  • the RE mapping unit a107-k maps the modulation symbol and pilot symbol that have been precoded and input from the precoding unit a106, to resource elements.
  • the RE mapping unit a107-k outputs the mapped symbol of the resource element to the OFDM signal generation unit a108-k.
  • the OFDM signal generation unit a108-k performs frequency time conversion on the symbol input from the RE mapping unit a107-k to generate a time domain signal. Specifically, IFFT (Inverse Fast Fourier Transform) can be used for frequency time conversion.
  • the OFDM signal generation unit a108-k adds a CP (Cyclic Prefix) to the generated time domain signal to generate an OFDM signal.
  • CP is a part of the rear of the time domain signal obtained by frequency-time conversion, and the part of the signal is added in front of the signal of the time domain.
  • CP may be a partial copy of the front of the time domain signal, and the copy may be added after the time domain signal.
  • the CP may be a known sequence generated by a Golay code or the like.
  • the OFDM signal generation unit a108-k outputs the generated OFDM signal to the transmission unit a109-k.
  • the transmission unit a109-k performs digital / analog conversion on the OFDM signal input from the OFDM signal generation unit a108-k, and shapes the converted analog signal.
  • the transmission unit a109-k upconverts the waveform-shaped signal from the baseband to the radio frequency band, and transmits the signal from the transmission antenna a1-k to the reception device b1.
  • FIG. 2 shows a 64QAM modulation point arrangement.
  • M base 4
  • N base (2 in 64QAM) bits allocated to 201 to 204 are expressed by the following equation (6).
  • FIG. 3 shows an output example of the RE mapping unit a107-k.
  • the receiving device b1 can perform channel estimation using the received signals in these resource elements.
  • the pilot symbols of each stream may be code-multiplexed, for example.
  • FIG. 4 is a schematic block diagram showing the configuration of the receiving device b1 according to the first embodiment of the present invention.
  • the receiving device b1 includes a receiving unit b101-r, a time frequency converting unit b102-r, a demapping unit b103-r, a channel estimating unit b104, a MIMO signal detecting unit b105, and a decoding unit b106.
  • r 1,..., N R.
  • FIG. 4 also shows the receiving antenna b1-r.
  • the reception unit b101-r receives the OFDM transmission signal transmitted by the transmission device a1 via the reception antenna b1-r.
  • the receiving unit b101-r performs frequency conversion and analog-digital conversion on the received signal.
  • the reception unit b101-r outputs the converted reception signal to the time frequency conversion unit b102-r.
  • the time frequency conversion unit b102-r removes the CP from the reception signal input from the reception unit b101-r.
  • the time frequency conversion unit b102-r performs time frequency conversion on the signal from which the CP has been removed. Specifically, FFT (Fast Fourier Transform) can be used for time frequency conversion.
  • FFT Fast Fourier Transform
  • the time-frequency conversion unit b102-r outputs the converted received signal in the frequency domain to the demapping unit b103-r.
  • the demapping unit b103-r separates the resource element to which the data is transmitted and the resource element to which the pilot symbol is transmitted from the frequency domain signal input from the time-frequency conversion unit b102-r.
  • the demapping unit b103-r outputs the received signal of the resource element to which the data has been transmitted to the MIMO signal detection unit b105.
  • the demapping unit b103-r outputs the received signal of the resource element to which the pilot symbol is transmitted to the channel estimation unit b104.
  • the channel estimation unit b104 performs channel estimation using the received signal of the resource element to which the pilot symbol input from the demapping unit b103-r is transmitted, and calculates a channel value.
  • the channel estimation unit b104 outputs the calculated channel value to the MIMO signal detection unit b105.
  • the channel value is a complex number, but in the first embodiment, the channel value is divided into a real part and an imaginary part, and is output to the MIMO signal detection unit b105 as separate real numbers.
  • the MIMO signal detection unit b105 performs MIMO signal detection using MLD (Maximum Likelihood Detection), QRM (QR Decomposition and M-algorithm) -MLD, SD (Sphere Decoding), and the like. At this time, the MIMO signal detection unit b105 generates a minimum base signal that is a product of the channel value input from the channel estimation unit b104 and s base (0) expressed by Expression (3). The MIMO signal detection unit b105 uses the minimum base signal as a start signal. The MIMO signal detection unit b105 uses a bit shift to the start signal and addition / subtraction for the base signal, which is the product of the channel value input from the channel estimation unit b104 and s base (m) shown in Expression (3). Generate.
  • MLD Maximum Likelihood Detection
  • QRM QR Decomposition and M-algorithm
  • SD Sphere Decoding
  • the MIMO signal detection unit b105 calculates an LLR (Log Likelihood Ratio) of the transmission bits and outputs the LLR (Log Likelihood Ratio) to the decoding unit b106. This operation will be described later together with the operation principle.
  • LLR Log Likelihood Ratio
  • the decoding unit b106 Based on the LLR input from the MIMO signal detection unit b105, the decoding unit b106, for example, a maximum likelihood decoding method, maximum a posteriori probability (MAP), log-MAP, Max-log-MAP, SOVA ( Decoding processing is performed using Soft (Output (Viterbi Algorithm)).
  • a maximum likelihood decoding method for example, maximum a posteriori probability (MAP), log-MAP, Max-log-MAP, SOVA ( Decoding processing is performed using Soft (Output (Viterbi Algorithm)).
  • H is an N R ⁇ N T channel matrix, and the elements in the r-th row and k-th column are channel values from the transmission antenna a 1 -k to the reception antenna b 1 -r.
  • n represents a noise size N R.
  • Expression (7) is expressed separately for the real part and the imaginary part.
  • Re [z] is the real part of z
  • Im [z] is the imaginary part of z.
  • Re [y] and Im sizes arranged [y] of the order 2N vectors of R y ' is expressed by the following equation (8) to (11).
  • LLR ⁇ (b k, n ) of the n- th transmission bit b k, n of the k-th stream can be calculated as in the following equation (12).
  • Equation (12) b k, which means the minimum metric for fixed n to 1, b k, that is divided by the noise power subtraction between the minimum metric for fixed n to 0. Note that the minimum value may not be obtained, and the number of bits to be searched may be reduced.
  • Equation (12) since the amount of computation of the square Euclidean norm is enormous, QRM-MLD or SD can be used instead of MLD. However, it is necessary to calculate H's' many times, and there is still a problem that this calculation amount is large. In the present invention, the amount of computation for generating H's' is reduced.
  • a base signal vector y k, base (m) represented by the following equation (13) is generated.
  • h ′ k is the k-th column vector of H ′.
  • s base (m) is the amplitude shown by Formula (3).
  • b sign (k) represents b sign of the k-th element of s ′
  • m k represents the amplitude number represented by Expression (4) in the k-th element of s ′. Therefore, the amount of calculation can be reduced by efficiently generating y k, base (m).
  • y base (m) This base signal is expressed as y base (m).
  • the minimum base signal y base (0) is generated.
  • the minimum base signal y base (0) is used as a start signal, and a base signal not included in the start signal is generated using bit shift and addition / subtraction to the start signal. If bit shift and addition / subtraction are used, multiplication can be prevented.
  • y base (0) is omitted and indicated as y base .
  • bit sequence representing y base (m) may be a fixed point or a floating point. In the case of a floating point, x is added to the exponent part.
  • y base (1),..., Y base (6) may be stored and included in the start signal, and generated as in the following equations (34) to (39).
  • y base (21) and y base (22) have a large number of additions, these two may be calculated in advance and stored in a memory or the like.
  • 12y base may be included in the start signal and generated as in the following equations (48) and (49).
  • y base (1),..., Y base (7) may be stored and included in the start signal, and generated as in the following equations (50) to (56).
  • 48y base may be realized by calculating 2 5 y base +2 4 y base every time, or may be generated once and stored and included in the start signal. Up to 4096 QAM can be covered by the result of y base (17),..., y base (31).
  • y base (29) and y base (30) have a large number of additions, these two may be calculated in advance and stored in a memory or the like.
  • 12y base may be stored and included in the start signal, and generated as in the following equations (65) and (66).
  • y base (1),..., Y base (6) may be stored and included in the start signal, and generated as in the following equations (67) to (72).
  • y base (1),..., Y base (7) is stored and included in the start signal, and a signal that is 16 times y base (0) and not a power of 2 is stored in the start signal.
  • FIG. 5 is a flowchart showing the operation of the receiving apparatus according to this embodiment. The operation shown in this figure is processing after the demapping unit b103-r in FIG. 4 separates the received signal of the resource element to which data is transmitted from the received signal of the resource element to which the pilot symbol is transmitted. .
  • Step S101 The channel estimation unit b104 performs channel estimation based on the received signal of the resource element to which the pilot symbol is transmitted. Then, it progresses to step S102.
  • Step S102 The MIMO signal detection unit b105 generates a minimum base signal based on the channel value obtained in Step S101. Thereafter, the process proceeds to step S103.
  • Step S103 The MIMO signal detection unit b105 generates a base signal based on the minimum base signal obtained in Step S102. Thereafter, the process proceeds to step S104.
  • Step S104 The MIMO signal detection unit b105 calculates the LLR of the transmission bit based on the base signal obtained in step S103 and the received signal of the resource element to which the data is transmitted. Thereafter, the process proceeds to step S105.
  • Step S105 The decoding unit b106 performs decoding using the LLR obtained in step S104. Thereafter, the receiving device b1 ends the operation.
  • the minimum base signal y base is used as the start signal.
  • the reception device b1 uses the minimum base signal or the like as a start signal, generates a base signal using bit shift to the start signal, and addition / subtraction, and uses the base signal and the reception signal to transmit a transmission bit LLR.
  • the received signal, the channel matrix, and the transmitted signal were calculated separately for the real part and the imaginary part.
  • a method for calculating the LLR without dividing the real part and the imaginary part will be described.
  • the transmission device according to the second embodiment of the present invention has the same configuration as the transmission device a1 according to the first embodiment, and thus the description thereof is omitted.
  • FIG. 6 is a schematic block diagram showing the configuration of the receiving device b2 according to the second embodiment of the present invention.
  • the MIMO signal detecting unit b205 is different.
  • the functions of other components (reception unit b101-r, time frequency conversion unit b102-r, demapping unit b103-r, channel estimation unit b104, decoding unit b106) are the same as those in the first embodiment. . A description of the same functions as those in the first embodiment is omitted.
  • the MIMO signal detection unit b205 first generates a base signal as in the first embodiment. Next, the MIMO signal detection unit b205 generates a replica signal that is the product of each modulation point and the channel value by addition / subtraction to the base signal. The MIMO signal detection unit b205 calculates the LLR of the transmission bit using the generated replica signal and the reception signal.
  • the LLR ⁇ (b k, n ) of the nth transmission bits b k, n of the k- th stream can be calculated as in the following equation (73).
  • Equation (12) y, H, and s are complex numbers.
  • the metric in the equation (73) can be expressed as the following equation (74).
  • h k is the k-th column vector of H
  • s k is the k-th element of s.
  • s k is one of the modulation points. For example, when 64QAM is used, it is one of the 64 points in FIG. A method for efficiently calculating the replica signal h k s k will be described.
  • the channel value multiplied by s base (m) is a complex number.
  • the replica signal h k s k can be calculated by the following equation (76).
  • j is an imaginary unit
  • b i, sign (k) is the sign bit b sign of the real part of the k-th stream
  • mi k
  • k is the amplitude number of the real part of the k-th stream
  • b q, sign (k) is the k-th
  • the sign bits b sign , m q, k of the imaginary part of the stream represent the amplitude number of the imaginary part of the kth stream.
  • the amplitude number is expressed by equation (4). Since the multiplication of the imaginary number can be realized by the replacement of the real part and the imaginary part and the sign inversion, no multiplication actually occurs. Therefore, a replica signal can be generated by addition / subtraction to the base signal.
  • the LLR can be calculated by calculating the metric of Expression (74) using Expression (76).
  • FIG. 7 is a flowchart showing the operation of the receiving apparatus according to this embodiment. The operation shown in this figure is processing after the demapping unit b103-r in FIG. 6 separates the received signal of the resource element to which data is transmitted from the received signal of the resource element to which the pilot symbol is transmitted. .
  • Step S201 The channel estimation unit b104 performs channel estimation based on the received signal of the resource element to which the pilot symbol is transmitted. Thereafter, the process proceeds to step S202.
  • Step S202 The MIMO signal detection unit b205 generates a minimum base signal based on the channel value obtained in Step S201. Then, it progresses to step S203.
  • Step S203 The MIMO signal detection unit b205 generates a base signal based on the minimum base signal obtained in Step S202. Thereafter, the process proceeds to step S204.
  • Step S204 The MIMO signal detection unit b205 generates a replica signal based on the base signal obtained in step S203. Thereafter, the process proceeds to step S205.
  • Step S205 The MIMO signal detection unit b205 calculates the LLR of the transmission bit based on the replica signal obtained in step S204 and the reception signal of the resource element to which the data is transmitted. Thereafter, the process proceeds to step S206.
  • Step S206 The decoding unit b106 performs decoding using the LLR obtained in step S205. Thereafter, the receiving device b2 ends the operation.
  • a replica signal is generated by addition / subtraction to the base signal, and an LLR is calculated using the replica signal.
  • an LLR is calculated using the replica signal.
  • the receiving device b2 generates a replica signal by addition / subtraction to the base signal.
  • a one-sided replica signal that is the product of a modulation point in the first and fourth quadrants of the IQ plane and a channel value is generated, and the remaining replica signal is obtained by sign inversion to the one-sided replica signal.
  • the transmission apparatus according to the third embodiment of the present invention has the same configuration as the transmission apparatus a1 according to the first embodiment, and thus the description thereof is omitted.
  • FIG. 8 is a schematic block diagram showing the configuration of the receiving device b3 according to the third embodiment of the present invention.
  • the MIMO signal detecting unit b305 is different.
  • the functions of other components (reception unit b101-r, time frequency conversion unit b102-r, demapping unit b103-r, channel estimation unit b104, decoding unit b106) are the same as those in the first embodiment. . A description of the same functions as those in the first embodiment is omitted.
  • the MIMO signal detection unit b305 generates a one-sided replica signal that is the product of the modulation point in the first and fourth quadrants of the IQ plane and the channel value.
  • the one-side replica signal can be calculated by addition / subtraction to the base signal.
  • the MIMO signal detection unit b305 generates a replica signal not included in the one-side replica signal by sign inversion to the one-side replica.
  • the MIMO signal detection unit b305 calculates the LLR of the transmission bit using the replica signal.
  • FIG. 9 is a flowchart showing the operation of the receiving apparatus according to this embodiment. The operation shown in this figure is processing after the demapping unit b103-r in FIG. 8 separates the received signal of the resource element to which data is transmitted from the received signal of the resource element to which the pilot symbol is transmitted. .
  • Step S301 The channel estimation unit b104 performs channel estimation based on the received signal of the resource element to which the pilot symbol is transmitted. Thereafter, the process proceeds to step S302.
  • Step S302 The MIMO signal detection unit b305 generates a one-sided replica signal based on the channel value obtained in Step S301. Thereafter, the process proceeds to step S303.
  • Step S303 The MIMO signal detection unit b305 generates a replica signal based on the one-sided replica signal obtained in Step S302. Thereafter, the process proceeds to step S304.
  • Step S304 The MIMO signal detection unit b305 calculates the LLR of the transmission bit based on the replica signal obtained in step S303 and the received signal of the resource element to which the data is transmitted. Thereafter, the process proceeds to step S305.
  • Step S305 The decoding unit b106 performs decoding using the LLR obtained in step S304. Thereafter, the receiving device b3 ends the operation.
  • a replica signal that is not a one-side replica signal can be generated by sign inversion using the one-side replica signal, the required number of additions is reduced, and the amount of computation and the circuit scale are reduced. be able to.
  • the method for generating a replica signal has been described for the case where MLD is used. However, the method is applicable to all methods that use the product of a transmission candidate and a channel value, even if not MLD. Can do. Further, what is multiplied by the transmission candidate may not be a channel value.
  • the program that operates in the transmission device a1 and the reception devices b1, b2, and b3 related to the present invention is a program that controls the CPU or the like (a program that causes a computer to function) so as to realize the functions of the above-described embodiments related to the present invention. is there.
  • Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU as necessary, and corrected and written.
  • a recording medium for storing the program a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient.
  • the processing is performed in cooperation with the operating system or other application programs.
  • the functions of the invention may be realized.
  • the program when distributing to the market, the program can be stored and distributed on a portable recording medium, or transferred to a server computer connected via a network such as the Internet.
  • the storage device of the server computer is also included in the present invention.
  • a part or all of the transmission device a1 and the reception devices b1, b2, and b3 described with reference to the drawings may be realized as an LSI that is typically an integrated circuit.
  • Each functional block of the transmission device a1, the reception devices b1, b2, and b3 may be individually formed into chips, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.
  • the terminal device of the present invention is not limited to application to a mobile station device, but is a stationary or non-movable electronic device installed indoors or outdoors, such as AV equipment, kitchen equipment, cleaning / washing equipment Needless to say, it can be applied to air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • the present invention is suitable for use in a receiving device, a receiving method, and a receiving program.
  • a1 Transmitting devices a1-1 to a1- NT T transmitting antennas b1, b2, and b3 Receiving devices b1-1 to b1-N R receiving antennas a101 S / P conversion units a102-1 to a102-N C encoding unit a103-1 A103-N C modulation unit a104 layer mapping unit a105 pilot generation unit a106 precoding units a107-1 to a107-N T RE mapping units a108-1 to a108-N T OFDM signal generation units a109-1 to a109-N T Transmitters 201 to 208 Real part of modulation points b101-1 to b101-NR R receivers b102-1 to b102-NR R time frequency converters b103-1 to b103-NR R demapping unit b104 Channel estimation units b105 and b205 , B305 MIMO signal detection unit b106 decoding unit

Abstract

Provided are an MIMO receiving device, a receiving method, and a receiving program that can achieve exceptional transmission properties with a low amount of computation and reduced circuit scale. The receiving device is characterized by the following: using as a start signal at least one base signal that is the sum of a channel value and the size of a real part or imaginary part of a modulation point; and generating the base signals not included in the start signal by bit shift to the start signal and addition and subtraction. The present invention is also characterized in that the start signal is the smallest base signal that is the sum of the channel value and the smallest value for the size of the real part or imaginary part of the modulation point.

Description

受信装置、受信方法および受信プログラムReception device, reception method, and reception program
 本発明は、受信装置、受信方法および受信プログラムに関する。 The present invention relates to a receiving device, a receiving method, and a receiving program.
 近年、大容量高速情報通信を実現するための技術として、MIMO(Multiple Input Multiple Output)通信が注目されている。図10は、MIMO通信の一例を示す概略図であり、送信装置a1が送信アンテナa1-1~a1-Nを備え、受信装置b1が受信アンテナb1-1~b1-Nを備えている。Nは送信アンテナ数であり、Nは受信アンテナ数である。このMIMO通信では、異なる情報を同一時刻、同一周波数で送受信し、情報ビットレートを大幅に増大させることができる。 In recent years, MIMO (Multiple Input Multiple Output) communication has attracted attention as a technique for realizing large-capacity high-speed information communication. Figure 10 is a schematic diagram showing an example of the MIMO communication, the transmitting device a1 is provided with a transmitting antenna a1-1 ~ a1-N T, the receiving device b1 is equipped with a receiving antenna b1-1 ~ b1-N R . N T is the number of transmitting antennas, and N R is the number of receiving antennas. In this MIMO communication, different information can be transmitted and received at the same time and the same frequency, and the information bit rate can be greatly increased.
 下記非特許文献1には、MIMO通信における受信方法が記載されている。伝送特性の優れた受信方法として、MLD(Maximum Likelihood Detection)が記載されている。MLDは、取り得る送信候補の中で、受信信号との2乗ノルムを最小とするものを選択する受信方法である。 The following non-patent document 1 describes a reception method in MIMO communication. MLD (Maximum Likelihood Detection) is described as a reception method with excellent transmission characteristics. MLD is a reception method for selecting a transmission candidate that minimizes a square norm with respect to a reception signal among possible transmission candidates.
 しかしながら、非特許文献1の方式では、送信候補とチャネル値を乗算する必要があるため、乗算回数や回路規模が増大するという問題がある。 However, the method of Non-Patent Document 1 has a problem that the number of multiplications and the circuit scale increase because it is necessary to multiply the transmission candidate and the channel value.
 本発明は、このような事情を鑑みてなされたものであり、その目的は、低演算量、低回路規模で優れた伝送特性を実現できるMIMOの受信装置、受信方法および受信プログラムを提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a MIMO receiving apparatus, receiving method, and receiving program capable of realizing excellent transmission characteristics with a low calculation amount and a low circuit scale. It is in.
 上述した課題を解決するために本発明に係る受信装置、受信方法および受信プログラムの構成は、次の通りである。 In order to solve the above-described problems, the configuration of the receiving apparatus, receiving method, and receiving program according to the present invention is as follows.
 (1)本発明の一態様による受信装置は、変調点の実部又は虚部の大きさとチャネル値の積であるベース信号の少なくとも1つをスタート信号とし、前記スタート信号に含まれない前記ベース信号を、前記スタート信号へのビットシフトと加減算で生成することを特徴とする。 (1) The reception device according to one aspect of the present invention uses at least one base signal, which is a product of a real part or an imaginary part of a modulation point, and a channel value as a start signal, and is not included in the start signal. The signal is generated by bit shift and addition / subtraction to the start signal.
 (2)本発明の受信装置において、前記スタート信号は、変調点の実部又は虚部の大きさの最小値とチャネル値の積である最小ベース信号であることを特徴とする。 (2) In the receiving apparatus of the present invention, the start signal is a minimum base signal that is a product of a minimum value of a real part or an imaginary part of a modulation point and a channel value.
 (3)本発明の受信装置において、前記スタート信号は、前記最小ベース信号の12倍の信号をさらに含むことを特徴とする。 (3) In the receiving apparatus of the present invention, the start signal further includes a signal 12 times the minimum base signal.
 (4)本発明の受信装置において、前記スタート信号は、前記最小ベース信号、及び、前記最小ベース信号の3倍の信号、前記最小ベース信号の5倍の信号、前記最小ベース信号の7倍の信号、前記最小ベース信号の9倍の信号、前記最小ベース信号の11倍の信号、前記最小ベース信号の13倍の信号、前記最小ベース信号の15倍の信号のうち少なくとも1つを含むことを特徴とする。 (4) In the receiving apparatus of the present invention, the start signal includes the minimum base signal, a signal three times the minimum base signal, a signal five times the minimum base signal, and seven times the minimum base signal. And at least one of a signal, a signal 9 times the minimum base signal, a signal 11 times the minimum base signal, a signal 13 times the minimum base signal, and a signal 15 times the minimum base signal. Features.
 (5)本発明の受信装置において、前記スタート信号は、前記ベース信号の16倍の信号であって、2のべき乗倍ではない信号を少なくとも1つさらに含むことを特徴とする。 (5) In the receiving apparatus of the present invention, the start signal further includes at least one signal that is 16 times the base signal and not a power of two.
 (6)本発明の受信装置において、前記ベース信号への加減算を用いて各変調点と前記チャネル値の積であるレプリカ信号を生成することを特徴とする。 (6) The receiving apparatus of the present invention is characterized in that a replica signal that is a product of each modulation point and the channel value is generated using addition / subtraction to the base signal.
 (7)本発明の受信装置において、前記ベース信号への加減算を用いて、IQ平面上の隣り合う2つの象限の変調点と前記チャネル値の積である片側レプリカ信号を生成し、前記片側レプリカ信号を符号反転することで前記片側レプリカ信号に含まれない前記レプリカ信号を生成することを特徴とする。 (7) In the receiving apparatus of the present invention, by using addition / subtraction to the base signal, a one-sided replica signal that is a product of the modulation point of two adjacent quadrants on the IQ plane and the channel value is generated, and the one-sided replica The replica signal not included in the one-side replica signal is generated by inverting the sign of the signal.
 (8)本発明の受信装置において、前記最小ベース信号の11倍の信号と前記最小ベース信号の13倍の信号を記憶し、前記スタート信号と前記最小ベース信号の11倍の信号と前記最小ベース信号の13倍の信号とに基づいて前記ベース信号を求めることを特徴とする。 (8) In the receiving apparatus of the present invention, a signal that is 11 times the minimum base signal and a signal that is 13 times the minimum base signal are stored, and the start signal, the signal that is 11 times the minimum base signal, and the minimum base signal are stored. The base signal is obtained based on a signal that is 13 times the signal.
 (9)また、本発明の一態様による受信装置の受信方法は、変調点の実部又は虚部の大きさとチャネル値の積であるベース信号の少なくとも1つをスタート信号とし、前記スタート信号に含まれない前記ベース信号を、前記スタート信号へのビットシフトと加減算で生成することを特徴とする。 (9) In the reception method of the reception device according to the aspect of the present invention, at least one base signal that is a product of the real part or imaginary part of the modulation point and the channel value is used as a start signal, The base signal not included is generated by bit shift and addition / subtraction to the start signal.
 (10)また、本発明の一態様による受信プログラムは、上述した受信方法をコンピュータに実行させることを特徴とする。 (10) Further, a reception program according to an aspect of the present invention causes a computer to execute the reception method described above.
 本発明によれば、MIMO通信において、受信装置は低演算量、低回路規模で良好な伝送特性を実現することができる。 According to the present invention, in the MIMO communication, the receiving apparatus can realize good transmission characteristics with a low calculation amount and a low circuit scale.
本発明の第1の実施形態に係る送信装置a1の構成例を示す概略図である。It is the schematic which shows the structural example of the transmitter a1 which concerns on the 1st Embodiment of this invention. 64QAM(Quadrature Amplitude Modulation;直交振幅変調)の一例である。This is an example of 64QAM (Quadrature Amplitude Modulation). 本発明の第1の実施形態に係る送信装置a1が送信するパイロットシンボルの一例である。It is an example of the pilot symbol which transmission apparatus a1 which concerns on the 1st Embodiment of this invention transmits. 本発明の第1の実施形態に係る受信装置b1の構成例を示す概略図である。It is the schematic which shows the structural example of the receiver b1 which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る受信装置b1の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the receiver b1 which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る受信装置b2の構成例を示す概略図である。It is the schematic which shows the structural example of the receiver b2 which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る受信装置b2の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the receiver b2 which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る受信装置b3の構成例を示す概略図である。It is the schematic which shows the structural example of the receiver b3 which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る受信装置b3の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the receiver b3 which concerns on the 3rd Embodiment of this invention. MIMO通信システムの一例を示す概略図である。It is the schematic which shows an example of a MIMO communication system.
 以下、本発明の実施の形態について添付図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 以下の実施形態では、送信装置が、OFDM(Orthogonal Frequency Division Multiplexing;直交周波数分割多重)方式を用いてデータ伝送を行う例について説明する。ただし、以下の実施形態において、その他の伝送方式、例えば、シングルキャリア伝送、SC-FDMA(Single Carrier-Frequency Division Multiple Access;単一キャリア周波数分割多元アクセス)、DFT-s-OFDM(Discrete Fourier Transform-spread-OFDM;離散フーリエ変換拡散OFDM)等のシングルキャリア伝送方式や、MC-CDMA(Multiple Carrier-Code Division Multiple Access;多重キャリア符号分割多重アクセス)等のマルチキャリア伝送方式を用いてもよい。 In the following embodiment, an example will be described in which a transmission apparatus performs data transmission using an OFDM (Orthogonal Frequency Division Multiplexing) scheme. However, in the following embodiments, other transmission schemes such as single carrier transmission, SC-FDMA (Single Carrier-Frequency Division Multiple Access), DFT-s-OFDM (Discrete Fourier Transform- A single carrier transmission scheme such as spread-OFDM (discrete Fourier transform spread OFDM) or a multicarrier transmission scheme such as MC-CDMA (Multiple Carrier-Code Division Multiple Access) may be used.
 (第1の実施形態)
 以下、本発明の第1の実施形態について説明する。図1は、送信装置a1の構成を示す概略ブロック図である。この図において、送信装置a1は、S/P(Serial/Parallel)変換部a101、符号化部a102-v、変調部a103-v、レイヤーマッピング部a104、パイロット生成部a105、プリコーディング部a106、RE(Resource Element;リソースエレメント)マッピング部a107-k、OFDM(Orthogonal Frequency Division Multiplexing;直交周波数分割多重)信号生成部a108-k、送信部a109-kを含んで構成される。ここで、v=1、・・・、Nであり、k=1、・・・、Nである。また、Nはコードワード数であり、符号化する個数を表す。また、リソースエレメントは、1つのOFDMシンボルにおける1つのサブキャリアを表し、変調シンボルやパイロットシンボルを配置する物理リソースである。また、図1では送信アンテナa1-kを併せて示す。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described. FIG. 1 is a schematic block diagram illustrating a configuration of the transmission device a1. In this figure, a transmission device a1 includes an S / P (Serial / Parallel) conversion unit a101, an encoding unit a102-v, a modulation unit a103-v, a layer mapping unit a104, a pilot generation unit a105, a precoding unit a106, an RE. A (Resource Element) mapping unit a107-k, an OFDM (Orthogonal Frequency Division Multiplexing) signal generation unit a108-k, and a transmission unit a109-k are configured. Here, v = 1, ···, a N C, k = 1, ··· , a N T. N C is the number of code words and represents the number to be encoded. The resource element is a physical resource that represents one subcarrier in one OFDM symbol and arranges modulation symbols and pilot symbols. FIG. 1 also shows the transmission antennas a1-k.
 S/P変換部a101は、入力される情報ビットをシリアルパラレル変換し、符号化部a102-vに出力する。 The S / P conversion unit a101 performs serial / parallel conversion on the input information bits and outputs the information bits to the encoding unit a102-v.
 符号化部a102-vは、S/P変換部a101から入力されるビットを畳込み符号、ターボ符号、LDPC(Low Density Parity Check;低密度パリティ検査)符号などの誤り訂正符号を用いて符号化し、符号化ビットを生成する。符号化部a102-vは符号化ビットを変調部a103-vに出力する。 The encoding unit a102-v encodes the bits input from the S / P conversion unit a101 using an error correction code such as a convolutional code, a turbo code, or an LDPC (Low Density Parity Check) code. , Generate encoded bits. The encoding unit a102-v outputs the encoded bits to the modulation unit a103-v.
 変調部a103-vは、符号化部a102-vから入力される符号化ビットを、BPSK(Binary Phase Shift Keying;2相位相変調)、QPSK(Quadrature Phase Shift Keying;4相位相変調)、M-QAM(M-Quadrature Amplitude Modulation;M値直交振幅変調、例えば、M=4、16、64、256、1024、4096)などの変調方式を用いて変調することで、変調シンボルを生成する。ただし、QPSKと4QAMは同一である。変調部a103-vは、生成した変調シンボルをレイヤーマッピング部a104に出力する。なお、変調部a103-vは、生成した変調シンボルを並び替えてインターリーブする機能を有してもよい。 The modulation unit a103-v converts the encoded bits input from the encoding unit a102-v into BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying), M- A modulation symbol is generated by modulation using a modulation method such as QAM (M-Quadrature Amplitude Modulation; M = 4, 16, 64, 256, 1024, 4096). However, QPSK and 4QAM are the same. The modulation unit a103-v outputs the generated modulation symbol to the layer mapping unit a104. Note that the modulation unit a103-v may have a function of rearranging and interleaving the generated modulation symbols.
 なお、M-QAMは、実部と虚部それぞれに、log(M)/2ビットを割当てることができる。ただし、log(x)は2を底とするxの対数を表す。以後、実部のみで考える。log(M)/2ビットのうち1ビットは実部の正負を表す。このビットをbsignとする。bsign以外のビット数をNbaseとすると、Nbaseは次式(1)で表せる。 In M-QAM, log (M) / 2 bits can be assigned to each of the real part and the imaginary part. Where log (x) represents the logarithm of x with 2 as the base. Hereinafter, only the real part will be considered. One bit of log (M) / 2 bits represents the sign of the real part. Let this bit be b sign . If the number of bits other than b sign is N base , N base can be expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 振幅数をMbaseとすると、Mbaseは次式(2)で表せる。 When the amplitude number is M base , M base can be expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 振幅をsbase(m)とすると、次式(3)のようになる。ただし、m=0、・・・、Mbase-1である。 When the amplitude is s base (m), the following equation (3) is obtained. However, m = 0,..., M base −1.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 振幅と関連付けられるn番目のビットをb(n)とすると、b(n)と振幅番号mとを次式(4)と(5)のように関連付けることができる。ただし、n=0、・・・、Nbase-1である。 Assuming that the nth bit associated with the amplitude is b (n), b (n) and the amplitude number m can be associated as in the following equations (4) and (5). However, n = 0,..., N base −1.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ただし、+を円で囲んだ記号は排他的論理和を表し、上付き線は論理否定を表す。なお、QPSK(4QAM)の場合はNbase=0なので、常にm=0とする。なお、b’(0)からb’(Nbase-1)はmの2進数表記でもある。実部に割当てられるもう1つのビットが0の場合はsbase(m)が最終的な実部信号となる。そのビットが1の場合は-sbase(m)が最終的な実部信号となる。なお、これまでに説明したビットと信号点の割当ては一例に過ぎず、他の割当ての場合でも本発明に含まれる。 However, a symbol in which + is circled represents exclusive OR, and a superscript line represents logic negation. In the case of QPSK (4QAM), since N base = 0, m = 0 is always set. Note that b ′ (0) to b ′ (N base −1) are also binary representations of m. If the other bit assigned to the real part is 0, s base (m) is the final real part signal. -S base (m) is the final real part signal if the bit is a 1. The assignment of bits and signal points described so far is merely an example, and other assignments are also included in the present invention.
 レイヤーマッピング部a104は、変調部a103-vから入力される変調シンボルを、1、・・・、Nのストリームのいずれかに割り振り、プリコーディング部a106に出力する。 The layer mapping unit a104 allocates the modulation symbol input from the modulation unit a103-v to any one of 1,..., NT streams, and outputs it to the precoding unit a106.
 パイロット生成部a105は、受信装置がチャネル推定を行うためのパイロットシンボルを生成し、そのパイロットシンボルをプリコーディング部a106に出力する。 Pilot generation section a105 generates a pilot symbol for the receiving apparatus to perform channel estimation, and outputs the pilot symbol to precoding section a106.
 プリコーディング部a106は、レイヤーマッピング部a104から入力される変調シンボルとパイロット生成部a105から入力されるパイロットシンボルにプリコーディングを行う。具体的に、コードブックに基づいたユニタリ行列又はユニタリ行列の部分行列を乗算することができる。また、STBC(Space Time Block Code)やSFBC(Space Frequency Block Code)等を用いてもよい。 The precoding unit a106 precodes the modulation symbol input from the layer mapping unit a104 and the pilot symbol input from the pilot generation unit a105. Specifically, a unitary matrix based on a codebook or a submatrix of a unitary matrix can be multiplied. Alternatively, STBC (Space Time Block Code), SFBC (Space Frequency Block Code), or the like may be used.
 REマッピング部a107-kは、プリコーディング部a106から入力されるプリコーディングが行われた変調シンボルとパイロットシンボルを、リソースエレメントにマッピングする。REマッピング部a107-kは、マッピングしたリソースエレメントのシンボルをOFDM信号生成部a108-kに出力する。 The RE mapping unit a107-k maps the modulation symbol and pilot symbol that have been precoded and input from the precoding unit a106, to resource elements. The RE mapping unit a107-k outputs the mapped symbol of the resource element to the OFDM signal generation unit a108-k.
 OFDM信号生成部a108-kは、REマッピング部a107-kから入力されるシンボルに周波数時間変換を行い、時間領域の信号を生成する。具体的に、周波数時間変換にはIFFT(Inverse Fast Fourier Transform;逆高速フーリエ変換)を用いることができる。OFDM信号生成部a108-kは、生成した時間領域の信号にCP(Cyclic Prefix;サイクリックプリフィックス)を付加し、OFDM信号を生成する。ここで、CPとは、周波数時間変換で得られた時間領域の信号の後方の一部であり、その一部の信号はその時間領域の信号の前方に付加される。なお、CPが時間領域の信号の前方の一部のコピーであり、そのコピーが時間領域の信号の後方に付加されるようにしてもよい。なお、CPはGolay符号などで生成した既知系列であってもよい。OFDM信号生成部a108-kは、生成したOFDM信号を送信部a109-kに出力する。 The OFDM signal generation unit a108-k performs frequency time conversion on the symbol input from the RE mapping unit a107-k to generate a time domain signal. Specifically, IFFT (Inverse Fast Fourier Transform) can be used for frequency time conversion. The OFDM signal generation unit a108-k adds a CP (Cyclic Prefix) to the generated time domain signal to generate an OFDM signal. Here, CP is a part of the rear of the time domain signal obtained by frequency-time conversion, and the part of the signal is added in front of the signal of the time domain. Note that CP may be a partial copy of the front of the time domain signal, and the copy may be added after the time domain signal. Note that the CP may be a known sequence generated by a Golay code or the like. The OFDM signal generation unit a108-k outputs the generated OFDM signal to the transmission unit a109-k.
 送信部a109-kは、OFDM信号生成部a108-kから入力されるOFDM信号をデジタル・アナログ変換し、変換したアナログ信号を波形整形する。送信部a109-kは、波形整形した信号をベースバンド帯から無線周波数帯にアップコンバートし、送信アンテナa1-kから受信装置b1へ送信する。 The transmission unit a109-k performs digital / analog conversion on the OFDM signal input from the OFDM signal generation unit a108-k, and shapes the converted analog signal. The transmission unit a109-k upconverts the waveform-shaped signal from the baseband to the radio frequency band, and transmits the signal from the transmission antenna a1-k to the reception device b1.
 図2は、64QAMの変調点配置を表す。64QAMではMbase=4のため、201~204のように4通りの振幅が存在する。201~204に割当てられるNbase(64QAMでは2)個のビットは次式(6)のようになる。 FIG. 2 shows a 64QAM modulation point arrangement. In 64QAM, since M base = 4, there are four amplitudes 201-204. N base (2 in 64QAM) bits allocated to 201 to 204 are expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 なお、式(6)には205~208も記載されており、これらはbsignに割当てられるビットが201~204に割当てられるビットの反転ビットとなる。 Note that 205 to 208 are also described in Equation (6), and the bits assigned to b sign are inverted bits of the bits assigned to 201 to 204.
 以上、実部について説明したが、虚部についても同様である。 Although the real part has been described above, the same applies to the imaginary part.
 図3はREマッピング部a107-kの出力例である。例えば、N=8の場合において、リソースエレメント#1をk=1、2、5、7のパイロット位置とし、リソースエレメント#2をk=3、4、6、8のパイロット位置とすることができる。受信装置b1は、これらのリソースエレメントにおける受信信号を用いてチャネル推定を行うことができる。各ストリームのパイロットシンボルは、例えば、符号多重されてもよい。 FIG. 3 shows an output example of the RE mapping unit a107-k. For example, when N T = 8, resource element # 1 may be a pilot position of k = 1, 2, 5, 7 and resource element # 2 may be a pilot position of k = 3, 4, 6, 8 it can. The receiving device b1 can perform channel estimation using the received signals in these resource elements. The pilot symbols of each stream may be code-multiplexed, for example.
 図4は、本発明の第1の実施形態に係る受信装置b1の構成を示す概略ブロック図である。この図において、受信装置b1は、受信部b101-r、時間周波数変換部b102-r、デマッピング部b103-r、チャネル推定部b104、MIMO信号検出部b105、復号部b106を含んで構成される。ここで、r=1、・・・、Nである。また、図4では受信アンテナb1-rを併せて示す。 FIG. 4 is a schematic block diagram showing the configuration of the receiving device b1 according to the first embodiment of the present invention. In this figure, the receiving device b1 includes a receiving unit b101-r, a time frequency converting unit b102-r, a demapping unit b103-r, a channel estimating unit b104, a MIMO signal detecting unit b105, and a decoding unit b106. . Here, r = 1,..., N R. FIG. 4 also shows the receiving antenna b1-r.
 受信部b101-rは、送信装置a1が送信したOFDM送信信号を、受信アンテナb1-rを介して受信する。受信部b101-rは、周波数変換及びアナログ-デジタル変換を、受信した信号に対して行う。受信部b101-rは、変換した受信信号を時間周波数変換部b102-rに出力する。 The reception unit b101-r receives the OFDM transmission signal transmitted by the transmission device a1 via the reception antenna b1-r. The receiving unit b101-r performs frequency conversion and analog-digital conversion on the received signal. The reception unit b101-r outputs the converted reception signal to the time frequency conversion unit b102-r.
 時間周波数変換部b102-rは、CPを、受信部b101-rから入力される受信信号から除去する。時間周波数変換部b102-rは、CPを除去した信号に時間周波数変換を行う。具体的に、時間周波数変換にはFFT(Fast Fourier Transform;高速フーリエ変換)を用いることができる。時間周波数変換部b102-rは、変換した周波数領域の受信信号をデマッピング部b103-rに出力する。 The time frequency conversion unit b102-r removes the CP from the reception signal input from the reception unit b101-r. The time frequency conversion unit b102-r performs time frequency conversion on the signal from which the CP has been removed. Specifically, FFT (Fast Fourier Transform) can be used for time frequency conversion. The time-frequency conversion unit b102-r outputs the converted received signal in the frequency domain to the demapping unit b103-r.
 デマッピング部b103-rは、データが送信されたリソースエレメントとパイロットシンボルが送信されたリソースエレメントを、時間周波数変換部b102-rから入力される周波数領域の信号から分離する。デマッピング部b103-rは、データが送信されたリソースエレメントの受信信号をMIMO信号検出部b105に出力する。デマッピング部b103-rは、パイロットシンボルが送信されたリソースエレメントの受信信号をチャネル推定部b104に出力する。 The demapping unit b103-r separates the resource element to which the data is transmitted and the resource element to which the pilot symbol is transmitted from the frequency domain signal input from the time-frequency conversion unit b102-r. The demapping unit b103-r outputs the received signal of the resource element to which the data has been transmitted to the MIMO signal detection unit b105. The demapping unit b103-r outputs the received signal of the resource element to which the pilot symbol is transmitted to the channel estimation unit b104.
 チャネル推定部b104は、デマッピング部b103-rから入力されるパイロットシンボルが送信されたリソースエレメントの受信信号を用いてチャネル推定を行い、チャネル値を算出する。チャネル推定部b104は、算出したチャネル値をMIMO信号検出部b105に出力する。なお、一般にチャネル値は複素数であるが、第1の実施形態ではチャネル値を実部と虚部に分け、別々の実数としてMIMO信号検出部b105に出力する。 The channel estimation unit b104 performs channel estimation using the received signal of the resource element to which the pilot symbol input from the demapping unit b103-r is transmitted, and calculates a channel value. The channel estimation unit b104 outputs the calculated channel value to the MIMO signal detection unit b105. In general, the channel value is a complex number, but in the first embodiment, the channel value is divided into a real part and an imaginary part, and is output to the MIMO signal detection unit b105 as separate real numbers.
 MIMO信号検出部b105は、MLD(Maximum Likelihood Detection;最尤検出)やQRM(QR Decomposition and M-algorithm)-MLD、SD(Sphere Decoding)等を用いてMIMO信号検出を行う。その際、MIMO信号検出部b105は、チャネル推定部b104から入力されるチャネル値と式(3)で示したsbase(0)との積である最小ベース信号を生成する。MIMO信号検出部b105は、最小ベース信号をスタート信号として用いる。MIMO信号検出部b105は、チャネル推定部b104から入力されるチャネル値と式(3)で示したsbase(m)との積であるベース信号を、スタート信号へのビットシフトと加減算を用いて生成する。MIMO信号検出部b105は、送信ビットのLLR(Log Likelihood Ratio;対数尤度比)を算出し、復号部b106に出力する。なお、この動作は動作原理と併せて後述する。 The MIMO signal detection unit b105 performs MIMO signal detection using MLD (Maximum Likelihood Detection), QRM (QR Decomposition and M-algorithm) -MLD, SD (Sphere Decoding), and the like. At this time, the MIMO signal detection unit b105 generates a minimum base signal that is a product of the channel value input from the channel estimation unit b104 and s base (0) expressed by Expression (3). The MIMO signal detection unit b105 uses the minimum base signal as a start signal. The MIMO signal detection unit b105 uses a bit shift to the start signal and addition / subtraction for the base signal, which is the product of the channel value input from the channel estimation unit b104 and s base (m) shown in Expression (3). Generate. The MIMO signal detection unit b105 calculates an LLR (Log Likelihood Ratio) of the transmission bits and outputs the LLR (Log Likelihood Ratio) to the decoding unit b106. This operation will be described later together with the operation principle.
 復号部b106は、MIMO信号検出部b105から入力されるLLRに基づいて、例えば、最尤復号法、最大事後確率(MAP;Maximum A posteriori Probability)、log-MAP、Max-log-MAP、SOVA(Soft Output Viterbi Algorithm)等を用いて、復号処理を行う。 Based on the LLR input from the MIMO signal detection unit b105, the decoding unit b106, for example, a maximum likelihood decoding method, maximum a posteriori probability (MAP), log-MAP, Max-log-MAP, SOVA ( Decoding processing is performed using Soft (Output (Viterbi Algorithm)).
 <動作原理について>
 以下、本発明に係る第1の実施形態の動作原理について説明する。まず、MIMO信号検出部b105にデマッピング部b103-rから入力されるデータが送信されたリソースエレメントの受信信号を、r=1、・・・、Nについて並べたサイズNの受信信号ベクトルyは次式(7)で表される。
<About the operating principle>
The operation principle of the first embodiment according to the present invention will be described below. First, the reception signal vector of size N R of the reception signal of the resource element data input to the MIMO signal detection section b105 from demapping section b103-r was sent, aligned r = 1, · · ·, for N R y is expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ただし、リソースエレメントの位置についての情報は省略されている。また、HはN×Nのチャネル行列であり、その第r行k列の要素は送信アンテナa1-kから受信アンテナb1-rへのチャネル値である。また、sは送信アンテナa1-kから送信された送信信号をk=1、・・・、Nについて並べたサイズNの送信信号ベクトルである。また、nはサイズNの雑音である。 However, information about the position of the resource element is omitted. H is an N R × N T channel matrix, and the elements in the r-th row and k-th column are channel values from the transmission antenna a 1 -k to the reception antenna b 1 -r. Further, s is a transmission signal vector of size NT in which transmission signals transmitted from the transmission antennas a1-k are arranged for k = 1,..., NT . Further, n represents a noise size N R.
 次に、式(7)を実部と虚部に分けて表記する。あるスカラー又はベクトルzに対して、Re[z]をzの実部とし、Im[z]をzの虚部とする。Re[y]とIm[y]を順番に並べたサイズ2Nのベクトルy’は次式(8)~(11)で表される。 Next, Expression (7) is expressed separately for the real part and the imaginary part. For a scalar or vector z, Re [z] is the real part of z and Im [z] is the imaginary part of z. Re [y] and Im sizes arranged [y] of the order 2N vectors of R y 'is expressed by the following equation (8) to (11).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 MLDを用いると、第kストリームのn個目の送信ビットbk,nのLLRλ(bk,n)を次式(12)のように算出することができる。 When MLD is used, LLRλ (b k, n ) of the n- th transmission bit b k, n of the k-th stream can be calculated as in the following equation (12).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ただし、σは雑音電力である。式(12)は、bk,nを1に固定した場合の最小メトリックと、bk,nを0に固定した場合の最小メトリックとの減算を雑音電力で除算することを意味する。なお、最小値を求めなくてもよく、探索するビットを削減してもよい。 Where σ 2 is noise power. Equation (12), b k, which means the minimum metric for fixed n to 1, b k, that is divided by the noise power subtraction between the minimum metric for fixed n to 0. Note that the minimum value may not be obtained, and the number of bits to be searched may be reduced.
 式(12)において、二乗ユークリッドノルムの演算量が膨大となるため、MLDの代わりにQRM-MLDやSDを用いることができる。しかしながら、H’s’を何度も計算する必要があり、この演算量が大きいという問題が依然としてある。本発明ではH’s’生成の演算量を低減する。 In Equation (12), since the amount of computation of the square Euclidean norm is enormous, QRM-MLD or SD can be used instead of MLD. However, it is necessary to calculate H's' many times, and there is still a problem that this calculation amount is large. In the present invention, the amount of computation for generating H's' is reduced.
 まず、次式(13)で示すベース信号ベクトルyk,base(m)を生成する。ただし、m=0、・・・、Mbase-1、k=1、・・・、2Nである。 First, a base signal vector y k, base (m) represented by the following equation (13) is generated. However, m = 0, ···, M base -1, k = 1, ···, a 2N T.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ただし、h’はH’の第k列ベクトルである。また、sbase(m)は式(3)で示した振幅である。 Here, h ′ k is the k-th column vector of H ′. Moreover, s base (m) is the amplitude shown by Formula (3).
 式(13)を用いると、式(12)で計算するメトリックは次式(14)のようにすることができる。 Using the equation (13), the metric calculated by the equation (12) can be expressed by the following equation (14).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ただし、bsign(k)は、s’の第k要素のbsignを表し、mはs’の第k要素において式(4)で示される振幅番号を表す。したがって、yk,base(m)を効率的に生成することで演算量を低減することができる。以後は簡単のため、yk,base(m)の1つの要素だけで説明を行う。このベース信号をybase(m)と表現する。 Here, b sign (k) represents b sign of the k-th element of s ′, and m k represents the amplitude number represented by Expression (4) in the k-th element of s ′. Therefore, the amount of calculation can be reduced by efficiently generating y k, base (m). Hereinafter, for the sake of simplicity, only one element y k, base (m) will be described. This base signal is expressed as y base (m).
 まず、最小ベース信号ybase(0)を生成する。m=1、・・・、Mbase-1についてのベース信号ybase(m)はybase(0)の(2m+1)倍で実現できる。本発明では最小ベース信号ybase(0)をスタート信号とし、スタート信号に含まれないベース信号は、スタート信号へのビットシフトと加減算を用いて生成する。ビットシフトと加減算を用いれば、乗算の発生を防ぐことができる。m=1、・・・、7については、例えば、次式(15)~(21)で生成することができる。ただし、ybase(0)を省略して、ybaseと示した。 First, the minimum base signal y base (0) is generated. The base signal y base (m) for m = 1,..., M base −1 can be realized by (2m + 1) times y base (0). In the present invention, the minimum base signal y base (0) is used as a start signal, and a base signal not included in the start signal is generated using bit shift and addition / subtraction to the start signal. If bit shift and addition / subtraction are used, multiplication can be prevented. m = 1,..., 7 can be generated by the following equations (15) to (21), for example. However, y base (0) is omitted and indicated as y base .
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 ただし、2の乗算はxビットシフトで実現する。これは、実際は乗算を必要としないことを意味する。その際、ybase(m)を表すビット系列は固定小数点でもよいし、浮動小数点でもよい。浮動小数点の場合は指数部にxを加算する。なお、式(15)~(21)でMbase=8である256QAMまでをカバーできている。なお、ybase(5)とybase(6)は加算を2回必要とするため、回路の遅延が問題となる可能性がある。そこで、この2つについては事前に計算してメモリ等に保存するようにしてもよい。あるいは、12yi,baseを事前に生成してスタート信号に含ませ、次式(22)、(23)のように生成するようにしてもよい。 However, multiplication of 2 x is realized by x bit shift. This means that no multiplication is actually required. At this time, the bit sequence representing y base (m) may be a fixed point or a floating point. In the case of a floating point, x is added to the exponent part. Note that up to 256 QAM where M base = 8 can be covered in equations (15) to (21). Since y base (5) and y base (6) require two additions, circuit delay may be a problem. Therefore, these two may be calculated in advance and stored in a memory or the like. Alternatively, 12y i and base may be generated in advance and included in the start signal, and generated as in the following equations (22) and (23).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 このようにすると、ybase(5)とybase(6)の両方を保存するよりメモリ等の数を削減することができる。 In this way, the number of memories and the like can be reduced compared to storing both y base (5) and y base (6).
 次に、m=8、・・・、15については、例えば、次式(24)~(31)で生成することができる。 Next, m = 8,..., 15 can be generated by the following equations (24) to (31), for example.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 式(24)~(31)でMbase=16である1024QAMまでをカバーできる。なお、ybase(13)とybase(14)は加算回数が多いため、この2つについては事前に計算してメモリ等に保存するようにしてもよい。あるいは、12ybaseをスタート信号に含ませ、次式(32)、(33)のように生成するようにしてもよい。 It is possible to cover up to 1024 QAM where M base = 16 in equations (24) to (31). Since y base (13) and y base (14) have a large number of additions, these two may be calculated in advance and stored in a memory or the like. Alternatively, 12y base may be included in the start signal and generated as in the following equations (32) and (33).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 あるいは、ybase(1)、・・・、ybase(6)を保存してスタート信号に含ませ、次式(34)~(39)のように生成するようにしてもよい。 Alternatively, y base (1),..., Y base (6) may be stored and included in the start signal, and generated as in the following equations (34) to (39).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 このようにすると、加算回数を1とすることができ、回路規模を削減することができる。 In this way, the number of additions can be made 1, and the circuit scale can be reduced.
 次に、m=16、・・・、23については、例えば次式(40)~(47)で生成することができる。 Next, m = 16,..., 23 can be generated by the following equations (40) to (47), for example.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 なお、ybase(21)とybase(22)は加算回数が多いため、この2つについては事前に計算してメモリ等に保存するようにしてもよい。あるいは、12ybaseをスタート信号に含ませ、次式(48)、(49)のように生成するようにしてもよい。 Since y base (21) and y base (22) have a large number of additions, these two may be calculated in advance and stored in a memory or the like. Alternatively, 12y base may be included in the start signal and generated as in the following equations (48) and (49).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 あるいは、ybase(1)、・・・、ybase(7)を保存してスタート信号に含ませ、次式(50)~(56)のように生成するようにしてもよい。 Alternatively, y base (1),..., Y base (7) may be stored and included in the start signal, and generated as in the following equations (50) to (56).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 次に、m=24、・・・、31については、例えば、次式(57)~(64)で生成することができる。 Next, m = 24,..., 31 can be generated by the following equations (57) to (64), for example.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 ここで、48ybaseは、毎回2base+2baseを計算することで実現してもよいし、一度生成して保存し、スタート信号に含ませるようにしてもよい。ybase(17)、・・・、ybase(31)の結果により、4096QAMまでをカバーすることができる。 Here, 48y base may be realized by calculating 2 5 y base +2 4 y base every time, or may be generated once and stored and included in the start signal. Up to 4096 QAM can be covered by the result of y base (17),..., y base (31).
 なお、ybase(29)とybase(30)は加算回数が多いため、この2つについては事前に計算してメモリ等に保存するようにしてもよい。あるいは、12ybaseを保存してスタート信号に含ませ、次式(65)、(66)のように生成するようにしてもよい。 Since y base (29) and y base (30) have a large number of additions, these two may be calculated in advance and stored in a memory or the like. Alternatively, 12y base may be stored and included in the start signal, and generated as in the following equations (65) and (66).
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 あるいは、ybase(1)、・・・、ybase(6)を保存してスタート信号に含ませ、次式(67)~(72)のように生成するようにしてもよい。 Alternatively, y base (1),..., Y base (6) may be stored and included in the start signal, and generated as in the following equations (67) to (72).
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 なお、ybase(1)、・・・、ybase(7)を保存してスタート信号に含ませ、ybase(0)の16倍であって2のべき乗でない信号を保存してスタート信号に含ませることで、4096QAMより高い多値変調であっても加算1回で実現することができる。 Note that y base (1),..., Y base (7) is stored and included in the start signal, and a signal that is 16 times y base (0) and not a power of 2 is stored in the start signal. By including, even multi-level modulation higher than 4096QAM can be realized by one addition.
 <受信装置b1の動作について>
 図5は、本実施形態に係る受信装置の動作を示すフローチャートである。なお、この図が示す動作は、図4のデマッピング部b103-rが、データが送信されたリソースエレメントの受信信号とパイロットシンボルが送信されたリソースエレメントの受信信号を分離した後の処理である。
<Operation of Receiving Device b1>
FIG. 5 is a flowchart showing the operation of the receiving apparatus according to this embodiment. The operation shown in this figure is processing after the demapping unit b103-r in FIG. 4 separates the received signal of the resource element to which data is transmitted from the received signal of the resource element to which the pilot symbol is transmitted. .
 (ステップS101)チャネル推定部b104は、パイロットシンボルが送信されたリソースエレメントの受信信号に基づいてチャネル推定を行う。その後、ステップS102へ進む。 (Step S101) The channel estimation unit b104 performs channel estimation based on the received signal of the resource element to which the pilot symbol is transmitted. Then, it progresses to step S102.
 (ステップS102)MIMO信号検出部b105は、ステップS101で得られるチャネル値に基づいて最小ベース信号を生成する。その後、ステップS103へ進む。 (Step S102) The MIMO signal detection unit b105 generates a minimum base signal based on the channel value obtained in Step S101. Thereafter, the process proceeds to step S103.
 (ステップS103)MIMO信号検出部b105は、ステップS102で得られる最小ベース信号に基づいてベース信号を生成する。その後、ステップS104へ進む。 (Step S103) The MIMO signal detection unit b105 generates a base signal based on the minimum base signal obtained in Step S102. Thereafter, the process proceeds to step S104.
 (ステップS104)MIMO信号検出部b105は、ステップS103で得られるベース信号とデータが送信されたリソースエレメントの受信信号に基づいて送信ビットのLLRを算出する。その後、ステップS105へ進む。 (Step S104) The MIMO signal detection unit b105 calculates the LLR of the transmission bit based on the base signal obtained in step S103 and the received signal of the resource element to which the data is transmitted. Thereafter, the process proceeds to step S105.
 (ステップS105)復号部b106は、ステップS104で得られるLLRを用いて復号を行う。その後、受信装置b1は動作を終了する。 (Step S105) The decoding unit b106 performs decoding using the LLR obtained in step S104. Thereafter, the receiving device b1 ends the operation.
 このように、本実施形態によれば、MIMO信号検出に必要な演算量や回路規模を削減することができる。 Thus, according to the present embodiment, it is possible to reduce the amount of calculation and the circuit scale necessary for detecting the MIMO signal.
 なお、上記第1の実施形態において、最小ベース信号ybaseをスタート信号として用いる場合について説明したが、ybaseの2のべき乗倍をスタート信号として用いてもよい。2のべき乗はビットシフトで表せるので、最小ベース信号は保存してあるybaseの2のべき乗倍から容易に取り出すことができる。浮動小数点の場合も同様で、指数部の値を変更することで、容易に取り出すことができる。したがって、ybaseの2のべき乗倍を保存することは、ybaseを保存することと見なす。また、ベース信号ybase(m)のm=0でないものをスタート信号としてもよい。 In the first embodiment, the case where the minimum base signal y base is used as the start signal has been described. However, a power of 2 of y base may be used as the start signal. Since the power of 2 can be expressed by a bit shift, the minimum base signal can be easily extracted from the power of 2 of the stored y base . The same applies to the floating point, and it can be easily extracted by changing the value of the exponent part. Thus, saving the exponentiation of 2 y base is regarded as saving the y base. Further, the base signal y base (m) that is not m = 0 may be used as the start signal.
 (第2の実施形態)
 以下、図面を参照しながら本発明の第2の実施形態について詳しく説明する。第1の実施形態では、受信装置b1が、最小ベース信号等をスタート信号とし、スタート信号へのビットシフトと加減算を用いてベース信号を生成し、ベース信号と受信信号を用いて送信ビットのLLRを計算した。その際、受信信号、チャネル行列、および送信信号は実部と虚部に分けて計算していた。本実施形態では、実部と虚部に分けずにLLRを計算する方法を説明する。
(Second Embodiment)
Hereinafter, a second embodiment of the present invention will be described in detail with reference to the drawings. In the first embodiment, the reception device b1 uses the minimum base signal or the like as a start signal, generates a base signal using bit shift to the start signal, and addition / subtraction, and uses the base signal and the reception signal to transmit a transmission bit LLR. Was calculated. At that time, the received signal, the channel matrix, and the transmitted signal were calculated separately for the real part and the imaginary part. In the present embodiment, a method for calculating the LLR without dividing the real part and the imaginary part will be described.
 なお、本発明の第2の実施形態に係る送信装置は、第1の実施形態に係る送信装置a1と構成が同じのため、説明を省略する。 Note that the transmission device according to the second embodiment of the present invention has the same configuration as the transmission device a1 according to the first embodiment, and thus the description thereof is omitted.
 図6は、本発明の第2の実施形態に係る受信装置b2の構成を示す概略ブロック図である。本実施形態に係る受信装置b2(図6)と第1の実施形態に係る受信装置b1(図4)とを比較すると、MIMO信号検出部b205が異なる。しかし、その他の構成要素(受信部b101-r、時間周波数変換部b102-r、デマッピング部b103-r、チャネル推定部b104、復号部b106)が持つ機能は第1の実施形態と同じである。第1の実施形態と同じ機能の説明は省略する。 FIG. 6 is a schematic block diagram showing the configuration of the receiving device b2 according to the second embodiment of the present invention. When the receiving apparatus b2 (FIG. 6) according to the present embodiment is compared with the receiving apparatus b1 (FIG. 4) according to the first embodiment, the MIMO signal detecting unit b205 is different. However, the functions of other components (reception unit b101-r, time frequency conversion unit b102-r, demapping unit b103-r, channel estimation unit b104, decoding unit b106) are the same as those in the first embodiment. . A description of the same functions as those in the first embodiment is omitted.
 MIMO信号検出部b205は、まず、第1の実施形態と同様にベース信号を生成する。次に、MIMO信号検出部b205は、各変調点とチャネル値の積であるレプリカ信号を、ベース信号への加減算で生成する。MIMO信号検出部b205は、生成したレプリカ信号と受信信号を用いて送信ビットのLLRを計算する。 The MIMO signal detection unit b205 first generates a base signal as in the first embodiment. Next, the MIMO signal detection unit b205 generates a replica signal that is the product of each modulation point and the channel value by addition / subtraction to the base signal. The MIMO signal detection unit b205 calculates the LLR of the transmission bit using the generated replica signal and the reception signal.
 受信信号を実部と虚部に分けない場合、第kストリームのn個目の送信ビットbk,nのLLRλ(bk,n)は次式(73)のように計算できる。 When the received signal is not divided into a real part and an imaginary part, the LLRλ (b k, n ) of the nth transmission bits b k, n of the k- th stream can be calculated as in the following equation (73).
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 式(12)と異なり、y、H、sは複素数である。式(73)の中のメトリックは、次式(74)のように表すことができる。 Unlike equation (12), y, H, and s are complex numbers. The metric in the equation (73) can be expressed as the following equation (74).
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 hはHの第k列ベクトル、sはsの第k要素である。sは変調点の1つであり、例えば64QAMを用いる場合、図2の64点のうちいずれかである。レプリカ信号hを効率的に計算する方法を説明する。 h k is the k-th column vector of H, and s k is the k-th element of s. s k is one of the modulation points. For example, when 64QAM is used, it is one of the 64 points in FIG. A method for efficiently calculating the replica signal h k s k will be described.
 第2の実施形態においても、第1の実施形態のようにベース信号yk,base(m)を次式(15)のように計算する。ただし、m=0、・・・、Mbaseである。 Also in the second embodiment, the base signal y k, base (m) is calculated as in the following equation (15) as in the first embodiment. However, m = 0,..., M base .
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 第1の実施形態と異なり、sbase(m)に乗算されるチャネル値が複素数である。このようにすると、レプリカ信号hは次式(76)で計算することができる。 Unlike the first embodiment, the channel value multiplied by s base (m) is a complex number. In this way, the replica signal h k s k can be calculated by the following equation (76).
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 jは虚数単位、bi,sign(k)は第kストリームの実部の符号ビットbsign、mi,kは第kストリームの実部の振幅番号、bq,sign(k)は第kストリームの虚部の符号ビットbsign、mq,kは第kストリームの虚部の振幅番号を表す。振幅番号は式(4)で示されている。虚数の乗算は実部虚部の入れ替えと符号反転で実現できるので、実際には乗算が発生しない。したがって、ベース信号への加減算でレプリカ信号を生成することができる。式(76)を用いて式(74)のメトリックを計算し、LLRを算出することができる。 j is an imaginary unit, b i, sign (k) is the sign bit b sign of the real part of the k-th stream, mi , k is the amplitude number of the real part of the k-th stream, and b q, sign (k) is the k-th The sign bits b sign , m q, k of the imaginary part of the stream represent the amplitude number of the imaginary part of the kth stream. The amplitude number is expressed by equation (4). Since the multiplication of the imaginary number can be realized by the replacement of the real part and the imaginary part and the sign inversion, no multiplication actually occurs. Therefore, a replica signal can be generated by addition / subtraction to the base signal. The LLR can be calculated by calculating the metric of Expression (74) using Expression (76).
 <受信装置b2の動作について>
 図7は、本実施形態に係る受信装置の動作を示すフローチャートである。なお、この図が示す動作は、図6のデマッピング部b103-rが、データが送信されたリソースエレメントの受信信号とパイロットシンボルが送信されたリソースエレメントの受信信号を分離した後の処理である。
<Operation of Receiving Device b2>
FIG. 7 is a flowchart showing the operation of the receiving apparatus according to this embodiment. The operation shown in this figure is processing after the demapping unit b103-r in FIG. 6 separates the received signal of the resource element to which data is transmitted from the received signal of the resource element to which the pilot symbol is transmitted. .
 (ステップS201)チャネル推定部b104は、パイロットシンボルが送信されたリソースエレメントの受信信号に基づいてチャネル推定を行う。その後、ステップS202へ進む。 (Step S201) The channel estimation unit b104 performs channel estimation based on the received signal of the resource element to which the pilot symbol is transmitted. Thereafter, the process proceeds to step S202.
 (ステップS202)MIMO信号検出部b205は、ステップS201で得られるチャネル値に基づいて最小ベース信号を生成する。その後、ステップS203へ進む。 (Step S202) The MIMO signal detection unit b205 generates a minimum base signal based on the channel value obtained in Step S201. Then, it progresses to step S203.
 (ステップS203)MIMO信号検出部b205は、ステップS202で得られる最小ベース信号に基づいてベース信号を生成する。その後、ステップS204へ進む。 (Step S203) The MIMO signal detection unit b205 generates a base signal based on the minimum base signal obtained in Step S202. Thereafter, the process proceeds to step S204.
 (ステップS204)MIMO信号検出部b205は、ステップS203で得られるベース信号に基づいてレプリカ信号を生成する。その後、ステップS205へ進む。 (Step S204) The MIMO signal detection unit b205 generates a replica signal based on the base signal obtained in step S203. Thereafter, the process proceeds to step S205.
 (ステップS205)MIMO信号検出部b205は、ステップS204で得られるレプリカ信号とデータが送信されたリソースエレメントの受信信号に基づいて送信ビットのLLRを算出する。その後、ステップS206へ進む。 (Step S205) The MIMO signal detection unit b205 calculates the LLR of the transmission bit based on the replica signal obtained in step S204 and the reception signal of the resource element to which the data is transmitted. Thereafter, the process proceeds to step S206.
 (ステップS206)復号部b106は、ステップS205で得られるLLRを用いて復号を行う。その後、受信装置b2は動作を終了する。 (Step S206) The decoding unit b106 performs decoding using the LLR obtained in step S205. Thereafter, the receiving device b2 ends the operation.
 このように、本実施形態によれば、ベース信号への加減算でレプリカ信号を生成し、レプリカ信号を用いてLLRを計算する。これにより、演算量や回路規模を削減することができる。 Thus, according to the present embodiment, a replica signal is generated by addition / subtraction to the base signal, and an LLR is calculated using the replica signal. As a result, the amount of calculation and the circuit scale can be reduced.
 (第3の実施形態)
 以下、図面を参照しながら本発明の第3の実施形態について詳しく説明する。第2の実施形態では、受信装置b2が、ベース信号への加減算でレプリカ信号を生成した。第3の実施形態では、IQ平面の第1、4象限の変調点とチャネル値の積である片側レプリカ信号を生成し、残りのレプリカ信号に関しては、片側レプリカ信号への符号反転で得る場合について説明する。
(Third embodiment)
Hereinafter, the third embodiment of the present invention will be described in detail with reference to the drawings. In the second embodiment, the receiving device b2 generates a replica signal by addition / subtraction to the base signal. In the third embodiment, a one-sided replica signal that is the product of a modulation point in the first and fourth quadrants of the IQ plane and a channel value is generated, and the remaining replica signal is obtained by sign inversion to the one-sided replica signal. explain.
 なお、本発明の第3の実施形態に係る送信装置は、第1の実施形態に係る送信装置a1と構成が同じのため、説明を省略する。 Note that the transmission apparatus according to the third embodiment of the present invention has the same configuration as the transmission apparatus a1 according to the first embodiment, and thus the description thereof is omitted.
 図8は、本発明の第3の実施形態に係る受信装置b3の構成を示す概略ブロック図である。本実施形態に係る受信装置b3(図8)と第1の実施形態に係る受信装置b1(図4)とを比較すると、MIMO信号検出部b305が異なる。しかし、その他の構成要素(受信部b101-r、時間周波数変換部b102-r、デマッピング部b103-r、チャネル推定部b104、復号部b106)が持つ機能は第1の実施形態と同じである。第1の実施形態と同じ機能の説明は省略する。 FIG. 8 is a schematic block diagram showing the configuration of the receiving device b3 according to the third embodiment of the present invention. When the receiving apparatus b3 (FIG. 8) according to the present embodiment is compared with the receiving apparatus b1 (FIG. 4) according to the first embodiment, the MIMO signal detecting unit b305 is different. However, the functions of other components (reception unit b101-r, time frequency conversion unit b102-r, demapping unit b103-r, channel estimation unit b104, decoding unit b106) are the same as those in the first embodiment. . A description of the same functions as those in the first embodiment is omitted.
 MIMO信号検出部b305は、IQ平面の第1、4象限の変調点とチャネル値の積である片側レプリカ信号を生成する。片側レプリカ信号はベース信号への加減算で算出することができる。また、MIMO信号検出部b305は、片側レプリカ信号に含まれないレプリカ信号を、片側レプリカへの符号反転で生成する。MIMO信号検出部b305は、レプリカ信号を用いて送信ビットのLLRを算出する。 The MIMO signal detection unit b305 generates a one-sided replica signal that is the product of the modulation point in the first and fourth quadrants of the IQ plane and the channel value. The one-side replica signal can be calculated by addition / subtraction to the base signal. Further, the MIMO signal detection unit b305 generates a replica signal not included in the one-side replica signal by sign inversion to the one-side replica. The MIMO signal detection unit b305 calculates the LLR of the transmission bit using the replica signal.
 <受信装置b3の動作について>
 図9は、本実施形態に係る受信装置の動作を示すフローチャートである。なお、この図が示す動作は、図8のデマッピング部b103-rが、データが送信されたリソースエレメントの受信信号とパイロットシンボルが送信されたリソースエレメントの受信信号を分離した後の処理である。
<About the operation of the receiving device b3>
FIG. 9 is a flowchart showing the operation of the receiving apparatus according to this embodiment. The operation shown in this figure is processing after the demapping unit b103-r in FIG. 8 separates the received signal of the resource element to which data is transmitted from the received signal of the resource element to which the pilot symbol is transmitted. .
 (ステップS301)チャネル推定部b104は、パイロットシンボルが送信されたリソースエレメントの受信信号に基づいてチャネル推定を行う。その後、ステップS302へ進む。 (Step S301) The channel estimation unit b104 performs channel estimation based on the received signal of the resource element to which the pilot symbol is transmitted. Thereafter, the process proceeds to step S302.
 (ステップS302)MIMO信号検出部b305は、ステップS301で得られるチャネル値に基づいて片側レプリカ信号を生成する。その後、ステップS303へ進む。 (Step S302) The MIMO signal detection unit b305 generates a one-sided replica signal based on the channel value obtained in Step S301. Thereafter, the process proceeds to step S303.
 (ステップS303)MIMO信号検出部b305は、ステップS302で得られる片側レプリカ信号に基づいてレプリカ信号を生成する。その後、ステップS304へ進む。 (Step S303) The MIMO signal detection unit b305 generates a replica signal based on the one-sided replica signal obtained in Step S302. Thereafter, the process proceeds to step S304.
 (ステップS304)MIMO信号検出部b305は、ステップS303で得られるレプリカ信号とデータが送信されたリソースエレメントの受信信号に基づいて送信ビットのLLRを算出する。その後、ステップS305へ進む。 (Step S304) The MIMO signal detection unit b305 calculates the LLR of the transmission bit based on the replica signal obtained in step S303 and the received signal of the resource element to which the data is transmitted. Thereafter, the process proceeds to step S305.
 (ステップS305)復号部b106は、ステップS304で得られるLLRを用いて復号を行う。その後、受信装置b3は動作を終了する。 (Step S305) The decoding unit b106 performs decoding using the LLR obtained in step S304. Thereafter, the receiving device b3 ends the operation.
 このように、本実施形態によれば、片側レプリカ信号を用いて片側レプリカ信号ではないレプリカ信号を符号反転で生成することができ、必要な加算回数を減少させ、演算量と回路規模を削減することができる。 As described above, according to the present embodiment, a replica signal that is not a one-side replica signal can be generated by sign inversion using the one-side replica signal, the required number of additions is reduced, and the amount of computation and the circuit scale are reduced. be able to.
 なお、上記第1から3の実施形態において、MLDを用いる場合について、レプリカ信号の生成方法を説明したが、MLDでなくとも、送信候補とチャネル値との積を利用する方法全てに適用することができる。また、送信候補に乗算されるものはチャネル値でなくてもよい。 In the first to third embodiments, the method for generating a replica signal has been described for the case where MLD is used. However, the method is applicable to all methods that use the product of a transmission candidate and a channel value, even if not MLD. Can do. Further, what is multiplied by the transmission candidate may not be a channel value.
 本発明に関わる送信装置a1、受信装置b1、b2およびb3で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。 The program that operates in the transmission device a1 and the reception devices b1, b2, and b3 related to the present invention is a program that controls the CPU or the like (a program that causes a computer to function) so as to realize the functions of the above-described embodiments related to the present invention. is there. Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU as necessary, and corrected and written. As a recording medium for storing the program, a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient. In addition, by executing the loaded program, not only the functions of the above-described embodiment are realized, but also based on the instructions of the program, the processing is performed in cooperation with the operating system or other application programs. The functions of the invention may be realized.
 また市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明に含まれる。また、上述した実施形態において、図面を用いて説明した送信装置a1、受信装置b1、b2、およびb3の一部、または全部を典型的には集積回路であるLSIとして実現してもよい。送信装置a1、受信装置b1、b2、およびb3の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Also, when distributing to the market, the program can be stored and distributed on a portable recording medium, or transferred to a server computer connected via a network such as the Internet. In this case, the storage device of the server computer is also included in the present invention. In the above-described embodiment, a part or all of the transmission device a1 and the reception devices b1, b2, and b3 described with reference to the drawings may be realized as an LSI that is typically an integrated circuit. Each functional block of the transmission device a1, the reception devices b1, b2, and b3 may be individually formed into chips, or a part or all of them may be integrated into a chip. Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. In addition, when an integrated circuit technology that replaces LSI appears due to progress in semiconductor technology, an integrated circuit based on the technology can also be used.
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like without departing from the gist of the present invention. The present invention can be modified in various ways within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present invention. It is. Moreover, it is the element described in each said embodiment, and the structure which substituted the element which has the same effect is also contained.
 なお、本願発明は上述の実施形態に限定されるものではない。本願発明の端末装置は、移動局装置への適用に限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などに適用できることは言うまでもない。 Note that the present invention is not limited to the above-described embodiment. The terminal device of the present invention is not limited to application to a mobile station device, but is a stationary or non-movable electronic device installed indoors or outdoors, such as AV equipment, kitchen equipment, cleaning / washing equipment Needless to say, it can be applied to air conditioning equipment, office equipment, vending machines, and other daily life equipment.
 本発明は、受信装置、受信方法および受信プログラムに用いて好適である。 The present invention is suitable for use in a receiving device, a receiving method, and a receiving program.
 なお、本国際出願は、2013年12月6日に出願した日本国特許出願第2013-252667号に基づく優先権を主張するものであり、日本国特許出願第2013-252667号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2013-252667 filed on Dec. 6, 2013. The entire contents of Japanese Patent Application No. 2013-252667 are hereby incorporated by reference. Included in international applications.
a1 送信装置
a1-1~a1-N 送信アンテナ
b1、b2、b3 受信装置
b1-1~b1-N 受信アンテナ
a101 S/P変換部
a102-1~a102-N 符号化部
a103-1~a103-N 変調部
a104 レイヤーマッピング部
a105 パイロット生成部
a106 プリコーディング部
a107-1~a107-N REマッピング部
a108-1~a108-N OFDM信号生成部
a109-1~a109-N 送信部
201~208 変調点の実部
b101-1~b101-N 受信部
b102-1~b102-N 時間周波数変換部
b103-1~b103-N デマッピング部
b104 チャネル推定部
b105、b205、b305 MIMO信号検出部
b106 復号部
a1 Transmitting devices a1-1 to a1- NT T transmitting antennas b1, b2, and b3 Receiving devices b1-1 to b1-N R receiving antennas a101 S / P conversion units a102-1 to a102-N C encoding unit a103-1 A103-N C modulation unit a104 layer mapping unit a105 pilot generation unit a106 precoding units a107-1 to a107-N T RE mapping units a108-1 to a108-N T OFDM signal generation units a109-1 to a109-N T Transmitters 201 to 208 Real part of modulation points b101-1 to b101-NR R receivers b102-1 to b102-NR R time frequency converters b103-1 to b103-NR R demapping unit b104 Channel estimation units b105 and b205 , B305 MIMO signal detection unit b106 decoding unit

Claims (10)

  1.  変調点の実部又は虚部の大きさとチャネル値の積であるベース信号の少なくとも1つをスタート信号とし、
     前記スタート信号に含まれない前記ベース信号を、前記スタート信号へのビットシフトと加減算で生成する、
     ことを特徴とする受信装置。
    At least one base signal, which is the product of the real part or imaginary part of the modulation point and the channel value, is used as a start signal,
    The base signal not included in the start signal is generated by bit shift and addition / subtraction to the start signal.
    A receiving apparatus.
  2.  前記スタート信号は、変調点の実部又は虚部の大きさの最小値とチャネル値の積である最小ベース信号である、
     ことを特徴とする請求項1に記載の受信装置。
    The start signal is a minimum base signal that is a product of the minimum value of the real part or imaginary part of the modulation point and the channel value.
    The receiving apparatus according to claim 1.
  3.  前記スタート信号は、前記最小ベース信号の12倍の信号をさらに含む、
     ことを特徴とする請求項2に記載の受信装置。
    The start signal further includes a signal 12 times the minimum base signal,
    The receiving device according to claim 2.
  4.  前記スタート信号は、前記最小ベース信号、及び、前記最小ベース信号の3倍の信号、前記最小ベース信号の5倍の信号、前記最小ベース信号の7倍の信号、前記最小ベース信号の9倍の信号、前記最小ベース信号の11倍の信号、前記最小ベース信号の13倍の信号、前記最小ベース信号の15倍の信号のうち少なくとも1つを含む、
     ことを特徴とする請求項2に記載の受信装置。
    The start signal includes the minimum base signal, a signal three times the minimum base signal, a signal five times the minimum base signal, a signal seven times the minimum base signal, and a signal nine times the minimum base signal. At least one of a signal, a signal 11 times the minimum base signal, a signal 13 times the minimum base signal, and a signal 15 times the minimum base signal,
    The receiving device according to claim 2.
  5.  前記スタート信号は、前記ベース信号の16倍の信号であって、2のべき乗倍ではない信号を少なくとも1つさらに含む、
     ことを特徴とする請求項4に記載の受信装置。
    The start signal further includes at least one signal that is 16 times the base signal and not a power of 2;
    The receiving apparatus according to claim 4.
  6.  前記ベース信号への加減算を用いて各変調点と前記チャネル値の積であるレプリカ信号を生成する、
     ことを特徴とする請求項1から5のいずれかの項に記載の受信装置。
    Generating a replica signal that is the product of each modulation point and the channel value using addition and subtraction to the base signal;
    The receiving apparatus according to claim 1, wherein the receiving apparatus is a receiving apparatus.
  7.  前記ベース信号への加減算を用いて、IQ平面上の隣り合う2つの象限の変調点と前記チャネル値の積である片側レプリカ信号を生成し、
     前記片側レプリカ信号を符号反転することで前記片側レプリカ信号に含まれない前記レプリカ信号を生成する、
     ことを特徴とする請求項6に記載の受信装置。
    Using addition / subtraction to the base signal, a one-sided replica signal that is the product of the modulation point of two adjacent quadrants on the IQ plane and the channel value is generated,
    The replica signal not included in the one-side replica signal is generated by inverting the sign of the one-side replica signal,
    The receiving apparatus according to claim 6.
  8.  前記最小ベース信号の11倍の信号と前記最小ベース信号の13倍の信号を記憶し、前記スタート信号と前記最小ベース信号の11倍の信号と前記最小ベース信号の13倍の信号とに基づいて前記ベース信号を求める
     ことを特徴とする請求項2に記載の受信装置。
    A signal that is 11 times the minimum base signal and a signal that is 13 times the minimum base signal are stored, and based on the start signal, a signal that is 11 times the minimum base signal, and a signal that is 13 times the minimum base signal. The receiving apparatus according to claim 2, wherein the base signal is obtained.
  9.  変調点の実部又は虚部の大きさとチャネル値の積であるベース信号の少なくとも1つをスタート信号とし、
     前記スタート信号に含まれない前記ベース信号を、前記スタート信号へのビットシフトと加減算で生成する、
     ことを特徴とする受信方法。
    At least one base signal, which is the product of the real part or imaginary part of the modulation point and the channel value, is used as a start signal,
    The base signal not included in the start signal is generated by bit shift and addition / subtraction to the start signal.
    And a receiving method.
  10.  請求項9に記載の受信方法をコンピュータに実行させるための受信プログラム。 A reception program for causing a computer to execute the reception method according to claim 9.
PCT/JP2014/079265 2013-12-06 2014-11-04 Receiving device, receiving method and receiving program WO2015083475A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-252667 2013-12-06
JP2013252667A JP2017028335A (en) 2013-12-06 2013-12-06 Receiver, reception method and reception program

Publications (1)

Publication Number Publication Date
WO2015083475A1 true WO2015083475A1 (en) 2015-06-11

Family

ID=53273248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079265 WO2015083475A1 (en) 2013-12-06 2014-11-04 Receiving device, receiving method and receiving program

Country Status (2)

Country Link
JP (1) JP2017028335A (en)
WO (1) WO2015083475A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189372A (en) * 2006-01-12 2007-07-26 Fujitsu Ltd Method and device for replica operation of maximum likelihood estimation decoding
CN101674160A (en) * 2009-10-22 2010-03-17 复旦大学 Signal detection method and device for multiple-input-multiple-output wireless communication system
US20130052976A1 (en) * 2011-08-29 2013-02-28 Fujitsu Limited Radio apparatus and metric calculation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189372A (en) * 2006-01-12 2007-07-26 Fujitsu Ltd Method and device for replica operation of maximum likelihood estimation decoding
CN101674160A (en) * 2009-10-22 2010-03-17 复旦大学 Signal detection method and device for multiple-input-multiple-output wireless communication system
US20130052976A1 (en) * 2011-08-29 2013-02-28 Fujitsu Limited Radio apparatus and metric calculation method

Also Published As

Publication number Publication date
JP2017028335A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
CN109314682A (en) The iteration two-dimensional equalization of orthogonal spatial modulation signal
CN107210807B (en) Low complexity multiple access code detection method, detector and receiver
JP5326976B2 (en) Wireless communication apparatus, error correction method, and error correction program
CN106067869B (en) Method and apparatus for soft detection of high order QAM symbols
EP2974196B1 (en) Method and apparatus for encoding and decoding for frequency and quadrature-amplitude modulation in wireless communication system
US20080049863A1 (en) Apparatus, method and computer program product providing soft decision generation with lattice reduction aided MIMO detection
BR112012003377B1 (en) TRANSMISSION APPLIANCE, RECEPTION APPLIANCE, TRANSMISSION METHOD, RECEPTION METHOD, AND METHOD FOR GENERATING MULTIDIMENSIONAL CONSTELLATIONS
Fan et al. Improved orthogonal frequency division multiplexing with generalised index modulation
US9008211B2 (en) Receiving device, receiving method, and receiving program
WO2012105291A1 (en) Receiving device, receiving method, communication system and method of communication
WO2014175430A1 (en) Reception apparatus, reception method and reception program
CN117397215A (en) Generation and reception of pre-coded signals based on codebook linearization
WO2015083475A1 (en) Receiving device, receiving method and receiving program
CN102769600B (en) The method of zoom factor rectification and device in a kind of ofdm system receiver
KR102375186B1 (en) Apparatus and method for performing channel decoding operation in communication system
CN104301016B (en) A kind of MIMO parallel detecting methods and system based on multi-core DSP
US9191155B2 (en) Reception device, reception method, and program
CN113726710A (en) OFDM signal transmission method, OFDM signal reception device, storage medium, and electronic device
WO2016080355A1 (en) Receiving device, receiving method, and integrated circuit
US8862062B2 (en) Radio apparatus and metric calculation method
Liao et al. A cost-effective adaptive overlapped cluster-based MIMO detector in a frequency domain reconfigurable modem
JP6120595B2 (en) MIMO receiving apparatus and program
KR101666821B1 (en) Method for Calculating Soft Value
JP5397257B2 (en) Receiving apparatus and receiving method
JP2008103803A (en) Communication device, minimum euclidean distance estimating method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14868058

Country of ref document: EP

Kind code of ref document: A1