WO2015083026A1 - System for culturing photosynthetic microorganisms with improved yield - Google Patents

System for culturing photosynthetic microorganisms with improved yield Download PDF

Info

Publication number
WO2015083026A1
WO2015083026A1 PCT/IB2014/066186 IB2014066186W WO2015083026A1 WO 2015083026 A1 WO2015083026 A1 WO 2015083026A1 IB 2014066186 W IB2014066186 W IB 2014066186W WO 2015083026 A1 WO2015083026 A1 WO 2015083026A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
culture system
particles
fluid
enclosure
Prior art date
Application number
PCT/IB2014/066186
Other languages
French (fr)
Inventor
Gatien Fleury
Florian DELRUE
Jean-Antoine Gruss
Olivier Poncelet
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2015083026A1 publication Critical patent/WO2015083026A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/06Means for regulation, monitoring, measurement or control, e.g. flow regulation of illumination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/10Means for providing, directing, scattering or concentrating light by light emitting elements located inside the reactor, e.g. LED or OLED
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/20Working fluids specially adapted for solar heat collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a photosynthetic microorganism culture system combined with low temperature heat production.
  • the invention aims first and foremost to improve the yield of the photosynthetic microorganism culture. It also allows the simultaneous production of heat that can be exploited in various possible forms, in particular for the production of domestic hot water, for air conditioning by thermodynamic cycle, for the heating of greenhouses or buildings, for the desalination of water sea.
  • photosynthetic micro-organisms is meant the usual meaning, as given in the publication [1], namely algae and cyanobacteria, ie eukaryotic or prokaryotic organisms whose growth is mainly through photosynthesis, and microscopic size, typically between 1 and 100 ⁇ .
  • Photosynthetic microorganisms are unicellular photosynthetic organisms, the main components of phytoplankton, that have inhabited oceans and rivers for more than three and a half billion years.
  • micro-algae and cyanobacteria have recently become very popular due to the many fields of application among which, in a decreasing valuation range, the pharmaceutical and cosmetics, food and animal feed, fertilizers, biobased materials, bio-remediation and biofuels (liquid or gaseous).
  • cyanobacteria of the genus Arthrospira which represents approximately 50% of world production, followed by microalgae. of the genera Chlorella, Dunaliella, Haematococcus, Nannochloropsis and the diatoms of the genus Odonte ⁇ a.
  • photo-bioreactors closed architecture systems, known by the name "photo-bioreactors", constituted by one or more chambers, that is to say the interior of which is not in contact with the 'ambiant air.
  • photo-bioreactors allow, compared to open ones, to reach better productivities and to cultivate crops under better controlled conditions, in particular by avoiding contaminations, pollution and losses. of C0 2 .
  • the patent application WO2010 / 086310 proposes, among other things, to put inside the algae culture medium, particles in which are integrated fluorophores or phosphors. These particles are suspended and move according to the displacement movement of the algae. In another embodiment, it is provided to integrate the phosphor particles directly into the polymer walls forming the chamber of the photo-bioreactor.
  • a major disadvantage of the proposed solution is to provide no thermal management to regulate the temperature of the algae culture medium.
  • the patent DE19746343 proposes a circulation of phosphor particles in a concentric tube to the walls of the enclosure within which the culture medium of a biomass circulates.
  • a solar concentrating device consisting of a cylindro-parabolic mirror, which makes it possible to increase the radiation received by the biomass.
  • no thermal management of the culture medium is disclosed.
  • US Patent 7985338 discloses a wastewater purification system using algae, comprising a bioreactor with a stack of several materials including a luminescent above several types of quantum dots placed one above the other, which allows to make a spectral modulation of the incident solar radiation.
  • the solution does not make it possible to reduce solar radiation inside the bioreactor, nor to regulate its operating temperature.
  • US Patent 4135537 discloses such a system, comprising a housing with a light-ray-transparent surface and photovoltaic sensors for converting the light radiation into electricity.
  • the housing is connected to a fluid circuit provided with a heat exchanger.
  • a fluid charged with luminescent particles circulates in the housing and then in exchanger to enhance the heat from the housing.
  • the function of the luminescent particles is to re-emit the light captured in all directions and at optimum wavelengths.
  • US Pat. No. 7,173,179 discloses a similar system with in addition a solar concentrating device.
  • the collection of concentrated light and the conversion of photons / electrons are ensured within the same enclosure, using photovoltaic cells lining its walls.
  • a luminescent or photoluminescent fluid makes it possible to convert the surface flux of concentrated light into a volume flow and also the filtering of infrared radiation.
  • the cooling of the fluid is also ensured by circulating it through a separate heat exchanger.
  • the patent FR2941566 discloses a photovoltaic conversion system with a solar thermal collector whose enclosure is connected to another chamber enclosing cells by means of a fluid circuit, the coolant flowing in the circuit of the sensor to the cells being charged with phosphorescent particles which thereby carry the photons from one chamber to another.
  • the general object of the invention is to meet at least part of this need.
  • a particular aim is to propose a photosynthetic micro-organism culture system that meets the general goal and which also makes it possible to recover the heat in excess so as to enhance it elsewhere.
  • the subject of the invention is a system for cultivating photosynthetic microorganisms, comprising:
  • a solar collector adapted to capture the photons brought by the solar radiation
  • circuit of a coolant in which phosphorescent phosphor particles are in suspension the circuit connecting the sensor to the culture zone
  • a heat exchanger adapted to regulate the temperature of the fluid in the culture zone
  • the particles having captured the photons in the sensor and suspended in the fluid at the controlled temperature, are intended to re-emit in the volume of the culture zone light radiation suitable for the culture of microorganisms.
  • solar collector adapted to capture the photons brought by solar radiation is meant here and in the context of the invention, a device designed to collect at least a portion of the solar energy transmitted by radiation and communicate it by light exposure to a heat transfer fluid charged with phosphorescent phosphor particles.
  • a solar sensor in the sense of the invention thus comprises at least one wall transparent to solar radiation and behind which circulates the heat transfer fluid charged with phosphorescent phosphor particles.
  • a solar collector according to the invention may be of concentration type, that is to say comprising a device, such as a mirror or a Fresnel lens, allowing a concentration of solar radiation.
  • a solar collector according to the invention may or may not include displacement means to best follow the sun.
  • culture zone is meant both an open-air zone, ie in the open air, and a photo-bioreactor, that is to say an architectural culture reactor closed with one or more pregnant, that is to say, thanks to which the culture is not in contact with the ambient air or not in the open air.
  • an open-air basin with pipes immersed in the bottom of the basin can be provided for the circulation of phosphor particles.
  • the open pit may be loop type (s), as commonly called “raceway".
  • the coolant can circulate well and advantageously in submerged tubes in the bottom of the loop basin (s), that is to say in the part of the basin where it naturally lacks the most photons directly from the sun. Thanks to this, one can achieve "raceways” according to the invention, the depth of the basin is greater than that of "raceways" according to the state of the art.
  • “raceways” according to the invention can be obtained within which the quantum division phenomenon can be implemented. Finally, it is possible to obtain a light remanence effect in the raceways according to the invention.
  • the invention essentially consists in transporting and regulating, by means of a heat transfer fluid comprising phosphorescent particles in suspension at the same time the heat of the solar radiation captured by the fluid and the photons captured by the particles, towards the zone of culture of the microorganisms and within it, that is to say in its volume, which allows excellent control of culture conditions.
  • the photons captured by the particles illuminate the internal volume of the culture zone.
  • photoinhibition phenomena ie overexposure of the biomass to the light intensity, which occur for direct sunlight of relatively low value are avoided.
  • an algae cell when it receives sunshine beyond a certain threshold, it sets up various mechanisms of energy dissipation. Of these, heat dissipation is the most common, but other mechanisms can also lead to the destruction of parts of the cell.
  • a cell may for example also allow the production of molecules of interest such as hydrogen. In other words, the photosynthesis by the cell has reached its maximum, so there is photo-inhibition of it.
  • the mechanisms of energy dissipation, such as photon thermalization take place well before the appearance of photoinhibition, which is the threshold from which the light will stop the growth of the culture, if it is a diminution of the culture.
  • the culture system according to the invention can better control the production of photosynthetic micro-organisms and thus promote the production of molecules of particular interests.
  • the heat regulated by the exchange fluid of the heat exchanger to optimize the temperature of the microalgae culture medium can be removed and recovered for recovery.
  • a system according to the invention can be integrated into a building, the recovered heat to improve its energy efficiency.
  • micro-algae culture conditions including the temperature and illumination conditions that can be controlled during complete cycles of 24 hours, without undergoing day / night alternations; the homogeneous distribution of energy radiation in a given volume, rather than having a surface homogeneity, as is the case for a culture in systems according to the state of the art.
  • the zone containing a culture medium of the microorganisms to be cultivated consists of a closed container (enclosure) for a photo-bioreactor, it can advantageously be produced in the form of a very compact exchanger. alternating a large number of thin channels of algae culture and luminescent particle circulation channels, which also makes it possible to reduce photosynthetic conversion losses;
  • the photo-bioreactor from low-cost polymer materials, which furthermore are not subjected to very energetic radiation, in particular in the UV spectrum, which makes it possible to prolong their life and to lower their maintenance cost, that is to say in other words a culture system with reduced investment and operating costs.
  • the relative extra cost related to the investment in particular of the solar collector and the heat exchanger compared to a state-of-the-art photo-bioreactor system is offset by the not insignificant gain on the efficiency of photosynthesis of micro-algae.
  • a system according to the state of the art typically has a photosynthetic efficiency of the order of 1.5 to 2.5% of the solar energy incident, which a system according to the invention can easily exceed.
  • a system according to the invention does not use artificial light produced from electricity, used for example with neon lamps, fluorescent tubes or light-emitting diodes (LEDs), in photo-bioreactors according to the invention. 'state of the art.
  • the heat exchanger provides heat significantly improving the overall energy efficiency of a system according to the invention compared to photo-bioreactors according to the state of the art;
  • the culture zone is constituted by a photo-bioreactor.
  • the culture zone is an open-air zone, that is to say ambient air.
  • the heat exchanger is integrated in the fluid circuit of the coolant containing the phosphorescent phosphor particles in suspension.
  • the heat exchanger is integrated within the solar collector.
  • the heat exchanger is integrated within the culture zone.
  • the phosphorescent particles are sulphides or selenides or phosphors of the oxide type. More preferably, it is zinc sulphides or alkali-ferrous aluminates doped in particular with rare earths.
  • the coolant is water, or water with an antifreeze such as ethylene glycol, or propylene glycol.
  • the mass concentration of the photoluminescent particles in the coolant is between 0.1 and 30%.
  • the heat transfer fluid further comprises nanoparticles allowing the appearance of the quantum division phenomenon and / or allowing the wavelength conversion of the photons reemitted from the ultraviolet spectrum to that of the visible spectrum.
  • the (the) enclosure (s) of the solar collector is (are) advantageously made (s) of glass or polymer transparent to solar radiation.
  • the enclosure (s) of the solar collector may comprise a wall forming a bottom, opposite to a wall transparent to solar radiation, the bottom being black. With such a black background, the absorbed thermal energy that is transmitted to the fluid transporting the phosphorescent phosphors is further increased.
  • the outer face at least of the wall forming the bottom may be coated with a coating reflecting the infra-red from wavelengths greater than 2.5 ⁇ .
  • the photo-bioreactor chamber (s) is (are) preferably made from plates or tubes of material transparent to visible radiation, such as polyvinyl chloride (PVC) or polycarbonate .
  • PVC polyvinyl chloride
  • the (the) chamber (s) of photo-bioreactor is (are) constituted (s) of a tubular exchanger with channels of circulation of the fluid loaded with phosphorescent particles, elongated right shape according to the axis of the tube of the enclosure.
  • the photo-bioreactor chamber is (are) constituted by a superposed plate heat exchanger, with channels of circulation of the fluid charged with phosphorescent particles through the plates which extend according to the length of the plates as well as the circulation channels of the culture medium.
  • the solar collector may advantageously comprise a solar concentration device.
  • the invention also relates to the use of the heat output of the heat exchanger of the culture system which has just been described for the production of domestic hot water, for air conditioning by thermodynamic cycle or by absorption system, for heating greenhouse or building, for desalination of sea water, for electricity production per Rankine cycle.
  • the invention finally relates to the use of the phosphorescence of the particles of the culture system according to one of the preceding claims, for the display visible to the naked eye, particularly at night, slogans and / or logos luminous, including for advertising purposes.
  • FIG. 1 is a schematic view of a first example of a photosynthetic microorganism culture system according to the invention
  • FIG. 2 is a schematic view of a second example of a photosynthetic microorganism culture system according to the invention.
  • FIG. 3 is a schematic view of an example of a solar collector that can be implemented in the photosynthetic micro-organism culture system according to the invention
  • FIG. 4 is a schematic view of a first example of a photobioreactor that can be used in the photosynthetic microorganism culture system according to the invention
  • FIG. 4A is a schematic view of a second example of a photobioreactor that can be used in the photosynthetic microorganism culture system according to the invention.
  • FIG. 4B is a schematic view of a third example of a photobioreactor that can be used in the photosynthetic microorganism culture system according to the invention.
  • the terms "inlet”, “outlet”"upstream”,”downstream”, are used by reference with the flow direction of the heat transfer fluid charged phosphorescent phosphor particles within the system according to the invention.
  • FIG. 1 diagrammatically shows a first example of a photosynthetic micro-organism culture system 1 according to the present invention comprising a solar collector 2, a culture zone 3 constituted by a photobioreactor, a fluid circuit 4, connected to the solar collector 2 and the photo-bioreactor, to ensure loop circulation of a heat transfer fluid charged phosphorescent phosphor particles between the sensor 2 and the photo-bio-reactor 4, and a heat exchanger 5 between at least the two fluids E, F and which is integrated in the circuit 4.
  • the culture zone 3 could also be constituted by an open-air zone, advantageously one or more basins, lagoons or other containers, in particular one or more basins. loop usually called in English "raceway".
  • the culture zone 3 could also be constituted by an open-air zone, advantageously one or more basins, lagoons or other containers, in particular one or more basins. loop usually called in English "raceway".
  • FIG. 2 diagrammatically shows the second example of a photosynthetic micro-organism culture system 1 according to the present invention.
  • the system illustrated in FIG. 2 comprises the same elements as that of FIG. 1, only the heat exchanger 5 being integrated within the photo-bioreactor 3.
  • the solar collector 2 comprises an enclosure 20 delimiting an internal space intended to contain a fluid, and at least one wall 20 of which is transparent to the solar radiation R enabling the fluid circulating in the enclosure to be exposed to solar radiation.
  • the enclosure also includes a fluid supply port 10 and a fluid outlet port 12 for allowing fluid flow through the interior space.
  • the photo-bioreactor 3 comprises an enclosure 30 delimiting an interior space in which the fluid flowing from the solar collector 2 circulates.
  • This enclosure 30 comprises a fluid supply port 31 and a fluid discharge port 32.
  • the enclosure 30 contains a culture medium of microalgae to be cultivated.
  • the enclosure 30 of the photo-bioreactor according to the invention may not have a transparent outer wall, which makes it possible to increase the collection rate by the microorganisms. photosynthetic photons reemitted by phosphorescent particles.
  • the circulating circuit 4 for the coolant fluid charged with phosphorescent particles connects:
  • the fluid circuit 4 may comprise pipes for connecting these orifices to each other.
  • the pipes may be longer or shorter depending on the place of integration of the system.
  • the two enclosures 20, 30 may, in practice, be arranged closest to each other.
  • the coolant is charged with phosphorescent particles in suspension.
  • the fluid may be a gas or a liquid.
  • the coolant is water, or water added with antifreeze, such as ethylene glycol, propylene glycol or other products.
  • the heat exchanger 5 of the system 1 is adapted to take the heat transported by the heat transfer fluid F and thus to better regulate its temperature and therefore that of the culture medium of the photosynthetic microorganisms that one wishes to achieve in the photo- bioreactor.
  • the heat exchanger 5 is integrated in the circuit 4 and more exactly mounted between the solar collector 2 and the photo-bioreactor 3, upstream of the photobioreactor 3 in the direction of circulation of the coolant. F.
  • the exchanger 5 is integrated within the photobioreactor 3. This integration is advantageous because it makes it possible to eliminate the exchanger as an additional component, hence a cost saving, instead, and an improvement in the non-active dead volume of phosphorescent fluid in the exchanger.
  • a heat recovery is carried out so that it is recovered in various possible forms, in particular for the production of domestic hot water, for air conditioning by thermodynamic cycle or absorption system, for heating greenhouses or buildings, For desalination of seawater ...
  • thermodynamic cycle or absorption system for heating greenhouses or buildings, For desalination of seawater ...
  • energy efficiency is all the better.
  • the heat exchanger 5 may be of the coil type circulating in a hot water tank and making it possible to produce the hot water of a dwelling.
  • thermosiphon effect can be preferred to reduce the energy consumption of the system.
  • the volume of coolant charged with phosphorescent particles in the chamber 20 of the sensor 2 is exposed to solar radiation.
  • the photons whose wavelength is in the visible and ultraviolet spectra are absorbed by the phosphorescent particles at a time t0.
  • the volume of coolant is in further heated by infrared radiation.
  • the volume of fluid circulates in the circuit and joins the photo-bioreactor 3.
  • Phosphorescence is a particular type of photoluminescence in which the phenomenon of retransmission is temporally delayed.
  • the absorbed photons pass through intermediate energy states, typically triplets (forbidden) states, the inevitable return of the trapped photons of these forbidden states to the low energy level is kinetically disadvantaged, which has the effect of slowing down the light emission. This is how the re-emission of the energy absorbed for most phosphorescent materials is of the order of a millisecond. It is possible to have triplet states whose life span is several hours, which implies a re-emission of photons several hours after their absorption.
  • This deferred retransmission has the advantage of allowing the cultivation of microalgae in the absence of solar radiation, especially at night. Indeed, the photons captured by the phosphorescent particles during a period of sunshine, typically during the day, are reemitted at night in the photo-bioreactor, particularly in the case of a delayed re-emission of several hours.
  • the photo-bioreactor can operate continuously, using the strong remanence of phosphorescent materials, the photons being re-emitted up to 12 hours after their exposure.
  • the phosphorescent particles reemit at a time t 'equal to t0 + ⁇ photons in the visible spectrum, within the chamber 30 of the photo-bioreactor 3.
  • the re-emitted photons are in all directions of space, which optimizes the collection of photons in a photo-bioreactor 3 of any structure.
  • the heat exchanger 5 upstream of the photobioreactor 3 or integrated into it or integrated with the solar collector 2 makes it possible to reduce the temperature of the coolant F, prior to its entry into the photobioreactor 3.
  • the temperature is regulated to the nearest of the temperature required by the microalgae culture medium.
  • the culture system according to the invention allows a very good control of the culture conditions of the photosynthetic micro-organisms, that is to say their illumination conditions and the temperature of the culture medium. Also advantageously, it is possible to add nanoparticles in the fluid allowing the appearance of the quantum division phenomenon in order to further increase the photosynthetic efficiency of the microorganisms.
  • the quantum division is a mechanism allowing, for example from a photon emitting in the ultraviolet, to give two photons emitting in the visible or in a spectrum close to the infrared.
  • the phosphorescent materials chosen may be sulphides or selenides or phosphors of the oxide type.
  • zinc sulfides and alkaline earth aluminates (Sr) doped with rare earths can be selected.
  • the latter make it possible to control the emission domain of the photons, which makes it possible to adapt the emission of the photons as a function of the absorption band (s) in which the photosynthetic microorganisms contained in the photo- bioreactor are the most effective.
  • the most effective absorption bands are those between 420-500nm and 620-700 nm.
  • the size of the particles is advantageously between 0.1 ⁇ and 1 ⁇ , with a concentration for example of between 0.1% and 30% by weight.
  • FIG. 3 shows an exemplary embodiment of an enclosure 20 of a solar collector 2 defining the volume of heat transfer fluid charged with phosphorescent particles which receives the solar radiation R. More specifically, the top face 21 is transparent to the solar radiation but all faces can also be provided transparent to solar radiation. It can be a glass enclosure or transparent polymer.
  • the underside 24 may be provided in black, for example by means of a black paint, in order to increase the thermal energy absorbed and transmitted to the coolant F.
  • the shape of the enclosure 20 is a rectangular parallelepipedal shape in its central part 2a and of trapezoidal shape in the end portions 2b, 2c connected to the central part by their base.
  • the top of the trapezoidal shapes is pierced to define respectively the supply orifices 22 and discharge 23 of the fluid.
  • FIGS. 4 to 4B show different embodiments of the photo-bioreactor chamber 3 which may be suitable for the purposes of the invention. It's about :
  • bubbling of CO 2 and stirring of the culture medium is preferably carried out. Aeration by bubbling CO2 can also be used to prevent sedimentation or aggregation of microorganisms.
  • bubbling of CO 2 can be done from below the enclosure, via an addition of CO 2 at several places at the bottom of the cylinder 30.
  • CO2 is advantageously at the base of each plate or at the base of a plate on two superimposed, which advantageously allows to keep the microorganisms in suspension without sedimentation.
  • the extraction of the microorganisms obtained by cultivation is advantageously by opening an extraction valve provided for this purpose in the enclosure.
  • the extraction valve can be located anywhere.
  • the extraction valve is advantageously located at one of the ends of the channels 34.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Molecular Biology (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to a system (1) for culturing photosynthetic microorganisms, comprising: a solar collector (2), suitable for collecting the photons provided by solar radiation, a culture zone (3) containing a culture medium for the photosynthetic microorganisms to be cultured, a circuit (4) of a heat-transfer fluid in which particles of phosphorescent luminophores are in suspension, the circuit connecting the collector to the culture zone, a heat exchanger (5), suitable for regulating the temperature of the fluid in the culture zone, in which the particles, having collected the photons in the collector and in suspension in the fluid at the regulated temperature, are intended to re-emit, in the volume of the culture zone, a light radiation suitable for the culturing of the photosynthetic microorganisms.

Description

SYSTEME DE CULTURE DE MICRO-ORGANISMES PHOTOSYNTHETIQUES  PHOTOSYNTHETIC MICROORGANISM CULTURE SYSTEM
A RENDEMENT AMELIORE  IMPROVED YIELD
Domaine technique  Technical area
La présente invention concerne un système de culture de micro-organismes photosynthétiques combinée à une production de chaleur à basse température  The present invention relates to a photosynthetic microorganism culture system combined with low temperature heat production.
L'invention vise en premier lieu à améliorer le rendement de la culture de micro-organismes photosynthétiques. Elle permet en outre la production simultanée de chaleur qui peut être valorisée sous différentes formes possibles, notamment pour la production d'eau chaude sanitaire, pour la climatisation par cycle thermodynamique, pour le chauffage de serres ou de bâtiments, pour le dessalement d'eau de mer.  The invention aims first and foremost to improve the yield of the photosynthetic microorganism culture. It also allows the simultaneous production of heat that can be exploited in various possible forms, in particular for the production of domestic hot water, for air conditioning by thermodynamic cycle, for the heating of greenhouses or buildings, for the desalination of water sea.
Par « micro-organismes photosynthétiques», on entend le sens usuel, tel que donné dans la publication [1], à savoir des algues et des cyanobactéries, i.e. des organismes eucaryotes ou procaryotes dont la croissance s'effectue principalement par photosynthèse, et de taille microscopique, typiquement comprise entre 1 et 100 μιη.  By "photosynthetic micro-organisms" is meant the usual meaning, as given in the publication [1], namely algae and cyanobacteria, ie eukaryotic or prokaryotic organisms whose growth is mainly through photosynthesis, and microscopic size, typically between 1 and 100 μιη.
Etat de la technique  State of the art
A l'état naturel, les micro-organismes photosynthétiques (micro-algues et cyanobactéries), sont des organismes photosynthétiques unicellulaires, principaux composants du phytoplancton, qui peuplent les océans et cours d'eau depuis plus de trois milliards et demi d'années.  Photosynthetic microorganisms (microalgae and cyanobacteria) are unicellular photosynthetic organisms, the main components of phytoplankton, that have inhabited oceans and rivers for more than three and a half billion years.
La culture des micro-algues et des cyanobactéries à l'échelle industrielle connaît depuis peu un fort engouement du fait des nombreux champs d'application parmi lesquelles on peut citer, dans une échelle de valorisation décroissante, la pharmaceutique et la cosmétique, l'alimentation animale, l'alimentation humaine, les fertilisants, les matériaux biosourcés, la bio-rémédiation et les biocarburants (liquides ou gazeux).  The cultivation of micro-algae and cyanobacteria on an industrial scale has recently become very popular due to the many fields of application among which, in a decreasing valuation range, the pharmaceutical and cosmetics, food and animal feed, fertilizers, biobased materials, bio-remediation and biofuels (liquid or gaseous).
Les trois espèces de micro-organismes photosynthétiques actuellement les plus cultivées sont, par ordre de quantité décroissante, les cyanobactéries du genre Arthrospira plus connue sous l'appellation de « spiruline », qui représente environ 50% de la production mondiale, suivie par les microalgues vertes des genres Chlorella, Dunaliella, Haematococcus, Nannochloropsis et les diatomées du genre Odonteïïa.  The three species of photosynthetic microorganisms currently the most cultivated are, in order of decreasing quantity, cyanobacteria of the genus Arthrospira, better known under the name of "spirulina", which represents approximately 50% of world production, followed by microalgae. of the genera Chlorella, Dunaliella, Haematococcus, Nannochloropsis and the diatoms of the genus Odonteïïa.
De manière générale, en dehors de quelques espèces cultivées pour des marchés de niche, les méthodes de culture des micro-organismes photosynthétiques n'ont pas encore atteint leur niveau de maturité industrielle. Des problématiques de constance de qualité et de leur coût de production se posent encore, ce qui limite leur accès à de nombreux marchés commerciaux. En outre, la production de micro-organismes photosynthétiques nécessite de la lumière ainsi que de la chaleur pendant les périodes froides. Or, pour ne pas la limiter aux seules régions chaudes et ensoleillées, les solutions techniques retenues doivent permettre d'augmenter la productivité des micro-algues dans des pays situés aux latitudes des régions tempérées. In general, apart from a few species cultivated for niche markets, the methods of cultivation of photosynthetic micro-organisms have not yet reached their level of industrial maturity. Problems of constancy of quality and their cost of production still arise, which limits their access to many commercial markets. In addition, the production of photosynthetic micro-organisms requires light as well as heat during cold periods. However, in order not to limit it to hot, sunny regions, the technical solutions chosen should make it possible to increase the productivity of micro-algae in countries located at the latitudes of temperate regions.
Les systèmes de production par monoculture de micro-organismes photosynthétiques en suspension dans l'eau sont nombreux.  Systems for the monocrop production of photosynthetic micro-organisms suspended in water are numerous.
Pour la culture des micro-organismes photosynthétiques, on distingue notamment deux grandes familles de systèmes de culture [1]:  For the cultivation of photosynthetic micro-organisms, two main families of culture systems are distinguished [1]:
- les systèmes d'architecture de type ouverte, qui sont constitués par des bassins, le cas échéant en boucle également connus sous la dénomination « Raceway », lagunes, récipients à ciel ouvert, c'est-à-dire à l'air libre. Ils ont comme avantage principal de générer des coûts de production relativement faibles. Leurs inconvénients majeurs résident dans une productivité volumique faible, c'est-à-dire des tailles d'équipements requis qui sont importants pour une production de biomasse donnée, et une mauvaise maîtrise des conditions de culture (sensibilité aux contaminations notamment),  - open type architecture systems, which consist of basins, possibly looped also known as "Raceway", lagoons, open containers, that is to say in the open air . They have the main advantage of generating relatively low production costs. Their major drawbacks lie in a low volume productivity, that is to say, the sizes of equipment required which are important for a given biomass production, and poor control of the culture conditions (sensitivity to contamination, in particular),
- les systèmes d'architecture de type fermée, connus sous l'appellation « photo-bioréacteurs », constitués par une ou plusieurs enceinte(s), c'est-à-dire dont l'intérieur n'est pas en contact avec l'air ambiant. Bien que nécessitant un investissement initial important, les photo-bioréacteurs permettent comparativement à ceux ouverts, d'atteindre de meilleures productivités et de réaliser des cultures dans des conditions mieux maîtrisées, du fait notamment qu'on évite les contaminations, pollutions, et les pertes de C02. closed architecture systems, known by the name "photo-bioreactors", constituted by one or more chambers, that is to say the interior of which is not in contact with the 'ambiant air. Although requiring a large initial investment, photo-bioreactors allow, compared to open ones, to reach better productivities and to cultivate crops under better controlled conditions, in particular by avoiding contaminations, pollution and losses. of C0 2 .
La demande de brevet WO2010/086310 propose, entre autres, de mettre à l'intérieur du milieu de culture d'algues, des particules dans lesquelles sont intégrées des fluorophores ou des luminophores. Ces particules sont mises en suspension et se déplacent selon le mouvement de déplacement des algues. Dans un autre mode de réalisation, il est prévu d'intégrer les particules luminophores directement dans les parois en polymère formant l'enceinte du photo-bioréacteur. Un inconvénient important de la solution proposée est de ne prévoir aucune gestion thermique pour réguler la température du milieu de culture des algues. Le brevet DE19746343 propose une circulation de particules luminophores dans un tube concentrique aux parois de l'enceinte à l'intérieur duquel circule le milieu de culture d'une biomasse. Dans un mode de réalisation, il est prévu un dispositif à concentration solaire constitué par un miroir de forme cylindro-parabolique, qui permet d'augmenter le rayonnement reçu par la biomasse. Ici encore, aucune gestion thermique du milieu de culture n'est divulguée. The patent application WO2010 / 086310 proposes, among other things, to put inside the algae culture medium, particles in which are integrated fluorophores or phosphors. These particles are suspended and move according to the displacement movement of the algae. In another embodiment, it is provided to integrate the phosphor particles directly into the polymer walls forming the chamber of the photo-bioreactor. A major disadvantage of the proposed solution is to provide no thermal management to regulate the temperature of the algae culture medium. The patent DE19746343 proposes a circulation of phosphor particles in a concentric tube to the walls of the enclosure within which the culture medium of a biomass circulates. In one embodiment, there is provided a solar concentrating device consisting of a cylindro-parabolic mirror, which makes it possible to increase the radiation received by the biomass. Here again, no thermal management of the culture medium is disclosed.
Le brevet US 7985338 divulgue un système de purification des eaux usées au moyen d'algues, comportant un bioréacteur avec un empilement de plusieurs matériaux dont un luminescent au-dessus de plusieurs types de boites quantiques placées les unes au- dessus des autres, qui permet de faire une modulation spectrale du rayonnement solaire incident. La solution ne permet notamment pas de ramener du rayonnement solaire à l'intérieur du bioréacteur, ni de réguler sa température de fonctionnement.  US Patent 7985338 discloses a wastewater purification system using algae, comprising a bioreactor with a stack of several materials including a luminescent above several types of quantum dots placed one above the other, which allows to make a spectral modulation of the incident solar radiation. In particular, the solution does not make it possible to reduce solar radiation inside the bioreactor, nor to regulate its operating temperature.
Par ailleurs, il est connu des systèmes de conversion photovoltaïques utilisant un média fluide, liquide ou gaz, comprenant des colorants photoluminescents.  Furthermore, it is known photovoltaic conversion systems using a fluid medium, liquid or gas, comprising photoluminescent dyes.
Ainsi, le brevet US 4135537 divulgue un tel système, comportant un boîtier avec une face transparente aux rayons lumineux et des capteurs photovoltaïques pour convertir le rayonnement lumineux en électricité. Le boîtier est relié à un circuit de fluides muni d'un échangeur de chaleur. Un fluide chargé de particules luminescentes circule dans le boîtier puis dans échangeur pour valoriser la chaleur issue du boîtier. Les particules luminescentes ont pour fonction de réémettre la lumière captée dans toutes les directions et selon des longueurs d'onde optimales.  Thus, US Patent 4135537 discloses such a system, comprising a housing with a light-ray-transparent surface and photovoltaic sensors for converting the light radiation into electricity. The housing is connected to a fluid circuit provided with a heat exchanger. A fluid charged with luminescent particles circulates in the housing and then in exchanger to enhance the heat from the housing. The function of the luminescent particles is to re-emit the light captured in all directions and at optimum wavelengths.
Le brevet US 7173179 divulgue un système similaire avec en outre un dispositif à concentration solaire. La collecte de la lumière concentrée et la conversion photons/électrons sont assurées au sein d'une même enceinte, à l'aide de cellules photovoltaïques tapissant ses parois. Un fluide luminescent ou photoluminescent permet de convertir le flux surfacique de la lumière concentrée en flux volumique et également le filtrage des radiations infrarouges. Le refroidissement du fluide est par ailleurs assuré par circulation de celui-ci au travers d'un échangeur de chaleur séparé.  US Pat. No. 7,173,179 discloses a similar system with in addition a solar concentrating device. The collection of concentrated light and the conversion of photons / electrons are ensured within the same enclosure, using photovoltaic cells lining its walls. A luminescent or photoluminescent fluid makes it possible to convert the surface flux of concentrated light into a volume flow and also the filtering of infrared radiation. The cooling of the fluid is also ensured by circulating it through a separate heat exchanger.
Le brevet FR2941566 divulgue un système de conversion photovoltaïque avec un capteur solaire thermique dont l'enceinte est reliée à une autre enceinte renfermant des cellules au moyen d'un circuit de fluide, le fluide caloporteur circulant dans le circuit du capteur jusqu'aux cellules étant chargé en particules phosphorescentes qui transportent de ce fait les photons d'une enceinte à l'autre. The patent FR2941566 discloses a photovoltaic conversion system with a solar thermal collector whose enclosure is connected to another chamber enclosing cells by means of a fluid circuit, the coolant flowing in the circuit of the sensor to the cells being charged with phosphorescent particles which thereby carry the photons from one chamber to another.
Il existe un besoin pour améliorer les systèmes de culture de micro-organismes photosynthétiques, notamment en vue d'augmenter leur rendement par une meilleure maîtrise de leurs conditions de culture, en particulier le spectre du rayonnement utilisé pour la photosynthèse et la régulation de la température du milieu de culture.  There is a need to improve the photosynthetic microorganism culture systems, in particular with a view to increasing their yield by better control of their culture conditions, in particular the spectrum of the radiation used for photosynthesis and the regulation of the temperature. from the culture medium.
Le but général de l'invention est de répondre au moins en partie à ce besoin. The general object of the invention is to meet at least part of this need.
Un but particulier est de proposer un système de culture de micro-organismes photosynthétiques qui réponde au but général et qui en outre permet de récupérer la chaleur en excès afin de la valoriser par ailleurs. A particular aim is to propose a photosynthetic micro-organism culture system that meets the general goal and which also makes it possible to recover the heat in excess so as to enhance it elsewhere.
Exposé de l'invention  Presentation of the invention
Pour ce faire, l'invention a pour objet un système de culture de microorganismes photosynthétiques, comportant :  To do this, the subject of the invention is a system for cultivating photosynthetic microorganisms, comprising:
un capteur solaire, adapté pour capter les photons apportés par le rayonnement solaire,  a solar collector, adapted to capture the photons brought by the solar radiation,
une zone de culture contenant un milieu de culture des micro-organismes photosynthétiques à cultiver,  a culture zone containing a culture medium of the photosynthetic microorganisms to be grown,
un circuit d'un fluide caloporteur dans lequel des particules de luminophores phosphorescentes sont en suspension, le circuit reliant le capteur la zone de culture,  a circuit of a coolant in which phosphorescent phosphor particles are in suspension, the circuit connecting the sensor to the culture zone,
un échangeur de chaleur, adapté pour réguler la température du fluide dans la zone de culture,  a heat exchanger, adapted to regulate the temperature of the fluid in the culture zone,
dans lequel les particules, ayant captées les photons dans le capteur et en suspension dans le fluide à la température régulée, sont destinées à réémettre dans le volume de la zone de culture un rayonnement lumineux adapté à la culture des microorganismes.  wherein the particles, having captured the photons in the sensor and suspended in the fluid at the controlled temperature, are intended to re-emit in the volume of the culture zone light radiation suitable for the culture of microorganisms.
Par « capteur solaire, adapté pour capter les photons apportés par le rayonnement solaire», on entend ici et dans le cadre de l'invention, un dispositif conçu pour recueillir au moins une partie de l'énergie solaire transmise par rayonnement et la communiquer par exposition lumineuse à un fluide caloporteur chargé de particules luminophores phosphorescentes. Un capteur solaire au sens de l'invention comporte ainsi au moins une paroi transparente au rayonnement solaire et derrière laquelle circule le fluide caloporteur chargé des particules luminophores phosphorescentes. By "solar collector adapted to capture the photons brought by solar radiation" is meant here and in the context of the invention, a device designed to collect at least a portion of the solar energy transmitted by radiation and communicate it by light exposure to a heat transfer fluid charged with phosphorescent phosphor particles. A solar sensor in the sense of the invention thus comprises at least one wall transparent to solar radiation and behind which circulates the heat transfer fluid charged with phosphorescent phosphor particles.
Un capteur solaire selon l'invention peut être de type à concentration, c'est-à- dire comportant un dispositif, tel qu'un miroir ou une lentille de Fresnel, permettant une concentration du rayonnement solaire.  A solar collector according to the invention may be of concentration type, that is to say comprising a device, such as a mirror or a Fresnel lens, allowing a concentration of solar radiation.
Un capteur solaire selon l'invention peut comporter ou non des moyens de déplacement pour suivre au mieux le soleil.  A solar collector according to the invention may or may not include displacement means to best follow the sun.
Par « zone de culture», on entend aussi bien une zone à ciel ouvert, i.e. à l'air libre, qu'un photo-bioréacteur, c'est-à-dire un réacteur de culture d'architecture fermée avec une ou plusieurs enceintes, c'est-à-dire grâce auquel la culture est non en contact avec l'air ambiant ou encore non à ciel ouvert.  By "culture zone" is meant both an open-air zone, ie in the open air, and a photo-bioreactor, that is to say an architectural culture reactor closed with one or more pregnant, that is to say, thanks to which the culture is not in contact with the ambient air or not in the open air.
En tant que zone de culture à ciel ouvert, on peut tout-à-fait prévoir un bassin à ciel ouvert, comprenant des tuyaux immergés dans le fond du bassin, pour la circulation des particules luminophores. Le bassin à ciel ouvert peut être de type à boucle(s), comme appelé usuellement « raceway ». Dans cette configuration, on peut prévoir avantageusement de positionner le capteur solaire selon l'invention sur un terre-plein central du bassin à boucles. Le fluide caloporteur peut circuler ainsi avantageusement dans des tubes immergés dans le fond du bassin à boucle(s), c'est-à-dire dans la partie du bassin où il manque naturellement le plus de photons provenant directement du soleil. Grâce à cela, on peut réaliser des « raceways » selon l'invention dont la profondeur du bassin est plus importante que celle des « raceways » selon l'état de l'art. En outre, on peut obtenir des « raceways » selon l'invention à l'intérieur desquels le phénomène de division de quantum peut être mis en œuvre. Enfin, on peut obtenir un effet de rémanence lumineuse dans les « raceways » selon l'invention.  As an open-air cultivation area, an open-air basin with pipes immersed in the bottom of the basin can be provided for the circulation of phosphor particles. The open pit may be loop type (s), as commonly called "raceway". In this configuration, it is advantageous to position the solar collector according to the invention on a central reservation of the loop basin. The coolant can circulate well and advantageously in submerged tubes in the bottom of the loop basin (s), that is to say in the part of the basin where it naturally lacks the most photons directly from the sun. Thanks to this, one can achieve "raceways" according to the invention, the depth of the basin is greater than that of "raceways" according to the state of the art. In addition, "raceways" according to the invention can be obtained within which the quantum division phenomenon can be implemented. Finally, it is possible to obtain a light remanence effect in the raceways according to the invention.
Ainsi, l'invention consiste essentiellement, à transporter et réguler, au moyen d'un fluide caloporteur comportant des particules phosphorescentes en suspension à la fois la chaleur du rayonnement solaire captée par le fluide et les photons captés par les particules, vers la zone de culture des micro-organismes et au sein de celle-ci, c'est-à-dire dans son volume, ce qui permet une excellente maîtrise des conditions de culture.  Thus, the invention essentially consists in transporting and regulating, by means of a heat transfer fluid comprising phosphorescent particles in suspension at the same time the heat of the solar radiation captured by the fluid and the photons captured by the particles, towards the zone of culture of the microorganisms and within it, that is to say in its volume, which allows excellent control of culture conditions.
Autrement dit encore, les photons captés par les particules viennent éclairer le volume interne de la zone de culture. Outre la régulation de température du milieu de culture des micro-organismes, il s'avère particulièrement intéressant de pouvoir maîtriser le spectre de longueurs d'ondes auquel est exposé la biomasse algale, afin de ne pas exposer la biomasse à des rayonnements qui sont néfastes soit à sa croissance, soit à la production des molécules pour lesquelles elle est cultivée (lipides, protéines, pigments, glucides, gaz comme le H2). On évite notamment les phénomènes de photo-inhibition, c'est-à-dire la surexposition de la biomasse à l'intensité lumineuse, qui apparaissent pour des ensoleillements directs de valeur relativement faible. In other words, the photons captured by the particles illuminate the internal volume of the culture zone. In addition to controlling the temperature of the culture medium of the microorganisms, it is particularly interesting to be able to control the wavelength spectrum to which the algal biomass is exposed, so as not to expose the biomass to harmful radiation. either its growth or the production of the molecules for which it is grown (lipids, proteins, pigments, carbohydrates, gases such as H2). In particular, photoinhibition phenomena, ie overexposure of the biomass to the light intensity, which occur for direct sunlight of relatively low value are avoided.
En effet, lorsqu'une cellule d'algues reçoit un ensoleillement au-delà d'un certain seuil, elle met en place des mécanismes de dissipation de l'énergie variés. Parmi ceux-ci, la dissipation thermique est le plus courant, mais d'autres mécanismes peuvent aussi mener à la destruction de parties de la cellule. Dans certaines conditions, une cellule peut par exemple aussi permettre la production de molécules d'intérêt comme par exemple l'hydrogène. Autrement dit, la photosynthèse par la cellule a atteint son maximum, il y a donc photo-inhibition de celle-ci. Les mécanismes de dissipation de l'énergie, telle que la thermalisation des photons, se mettent en place bien avant l'apparition de photo-inhibition qui est le seuil à partir duquel la lumière va entraîner un arrêt de la croissance de la culture, si ce n'est une diminution de la culture.  Indeed, when an algae cell receives sunshine beyond a certain threshold, it sets up various mechanisms of energy dissipation. Of these, heat dissipation is the most common, but other mechanisms can also lead to the destruction of parts of the cell. Under certain conditions, a cell may for example also allow the production of molecules of interest such as hydrogen. In other words, the photosynthesis by the cell has reached its maximum, so there is photo-inhibition of it. The mechanisms of energy dissipation, such as photon thermalization, take place well before the appearance of photoinhibition, which is the threshold from which the light will stop the growth of the culture, if it is a diminution of the culture.
Grâce au système de culture selon l'invention on peut mieux contrôler la production de micro-organismes photosynthétiques et ainsi favoriser la production de molécules d'intérêts particulières.  Thanks to the culture system according to the invention can better control the production of photosynthetic micro-organisms and thus promote the production of molecules of particular interests.
En outre, la chaleur régulée par le fluide d'échange de l'échangeur de chaleur pour optimiser de la température du milieu de culture des micro-algues, peut être évacuée et récupérée afin d'être valorisée. En particulier, un système selon l'invention peut être intégré à un bâtiment, la chaleur récupérée permettant d'en améliorer son efficacité énergétique.  In addition, the heat regulated by the exchange fluid of the heat exchanger to optimize the temperature of the microalgae culture medium, can be removed and recovered for recovery. In particular, a system according to the invention can be integrated into a building, the recovered heat to improve its energy efficiency.
Les avantages d'un système de culture de micro-algues selon l'invention comparativement à ceux selon l'état de l'art, tels que présentés en préambule, sont nombreux, parmi lesquels on peut citer :  The advantages of a microalgae culture system according to the invention compared to those according to the state of the art, as presented in the preamble, are numerous, among which there may be mentioned:
une meilleure maîtrise des conditions de culture des micro-algues, notamment la température et les conditions d'illumination qui peuvent être maîtrisées au cours de cycles complets de 24 h, sans subir les alternances jours/nuit ; la répartition homogène du rayonnement énergétique dans un volume donné, plutôt que d'avoir une homogénéité surfacique, comme c'est le cas pour une culture dans les systèmes selon l'état de l'art. De ce fait, lorsque la zone contenant un milieu de culture des micro-organismes à cultiver, est constituée d'un récipient fermé (enceinte) de photo-bioréacteur, on peut réaliser avantageusement celui-ci sous la forme d'un échangeur très compact avec alternance d'un grand nombre de canaux minces de culture d'algues et de canaux de circulation de particules de luminophores, ce qui permet en outre de diminuer les pertes de conversion photosynthétique ; a better control of micro-algae culture conditions, including the temperature and illumination conditions that can be controlled during complete cycles of 24 hours, without undergoing day / night alternations; the homogeneous distribution of energy radiation in a given volume, rather than having a surface homogeneity, as is the case for a culture in systems according to the state of the art. As a result, when the zone containing a culture medium of the microorganisms to be cultivated consists of a closed container (enclosure) for a photo-bioreactor, it can advantageously be produced in the form of a very compact exchanger. alternating a large number of thin channels of algae culture and luminescent particle circulation channels, which also makes it possible to reduce photosynthetic conversion losses;
la valorisation possible de l'énergie thermique captée. Les systèmes actuels utilisent en effet soit un refroidissement actif grâce à de l'eau (ruissellement, dilution notamment), soit par une limitation de l'intensité lumineuse incidente (rideaux opaques), sans chercher à récupérer l'énergie thermique ;  the possible valorization of the collected thermal energy. Current systems indeed use either active cooling with water (runoff, dilution in particular), or by a limitation of the incident light intensity (opaque curtains), without seeking to recover thermal energy;
une réalisation possible du photo-bioréacteur à partir de matériaux polymères à bas-coûts, qui en outre ne sont pas soumis à des rayonnements très énergétiques, notamment dans le spectre des UV, ce qui permet de prolonger leur durée de vie et d'abaisser leur coût de maintenance, c'est-à-dire en d'autres termes un système de culture à coûts d'investissement et d'exploitation réduits. Sur ce dernier point, il est à noter que le surcoût relatif lié à l'investissement en particulier du capteur solaire et de l'échangeur de chaleur par rapport à un système à photo-bioréacteur selon l'état de l'art est compensé par le gain non négligeable sur l'efficacité de photosynthèse des micro-algues. A titre d'exemple, un système selon l'état de l'art présente typiquement un rendement de photosynthèse de l'ordre de 1,5 à 2,5% de l'énergie solaire incidente, ce qu'un système selon l'invention peut dépasser aisément. En outre, un système selon l'invention ne met pas en œuvre de lumière artificielle produite à partir d'électricité, utilisée par exemple avec des lampes à néons, tubes fluorescents ou à diodes électroluminescentes (LED), dans les photo-bioréacteurs selon l'état de l'art. Enfin, l'échangeur de chaleur fournit de la chaleur améliorant notablement le rendement énergétique global d'un système selon l'invention par rapport aux photo-bioréacteurs selon l'état de l'art ;  a possible realization of the photo-bioreactor from low-cost polymer materials, which furthermore are not subjected to very energetic radiation, in particular in the UV spectrum, which makes it possible to prolong their life and to lower their maintenance cost, that is to say in other words a culture system with reduced investment and operating costs. On this last point, it should be noted that the relative extra cost related to the investment in particular of the solar collector and the heat exchanger compared to a state-of-the-art photo-bioreactor system is offset by the not insignificant gain on the efficiency of photosynthesis of micro-algae. For example, a system according to the state of the art typically has a photosynthetic efficiency of the order of 1.5 to 2.5% of the solar energy incident, which a system according to the invention can easily exceed. In addition, a system according to the invention does not use artificial light produced from electricity, used for example with neon lamps, fluorescent tubes or light-emitting diodes (LEDs), in photo-bioreactors according to the invention. 'state of the art. Finally, the heat exchanger provides heat significantly improving the overall energy efficiency of a system according to the invention compared to photo-bioreactors according to the state of the art;
une intégration possible du capteur solaire dans un bâtiment afin d'une part d'améliorer son efficacité énergétique pour le chauffage et/ou la climatisation et d'autre part d'apporter une plus-value esthétique par un affichage lumineux rendu possible par les particules luminophores phosphorescents. Sur ce dernier point, il est possible d'afficher des lettres, slogans et/ou logos lumineux durant la nuit ; a possible integration of the solar collector in a building in order to improve its energy efficiency for heating and / or air conditioning and to add aesthetic added value through a luminous display made possible by the phosphorescent phosphor particles. On this last point, it is possible to display letters, slogans and / or bright logos during the night;
l'absence de mélange entre microorganismes et les particules luminophores avec une récupération en continu de ces dernières transportées dans le circuit.  the absence of mixing between the microorganisms and the phosphor particles with a continuous recovery of the latter transported in the circuit.
Avec un système de culture selon l'invention, on peut obtenir par l'intermédiaire du fluide caloporteur circulant depuis le capteur solaire, au travers de la zone de culture, des gammes de température optimales en fonction des espèces de microorganismes à cultiver. Ainsi, pour la culture des espèces de micro-algues et cyanobactéries ci-après, on peut obtenir les gammes préférentielles comme suit :  With a culture system according to the invention, it is possible to obtain, by means of the coolant circulating from the solar collector, through the culture zone, optimal temperature ranges depending on the species of microorganisms to be cultivated. Thus, for the cultivation of microalgae and cyanobacteria species below, the preferred ranges can be obtained as follows:
- Arthrospira platensis : 25 - 35 °C (température optimale = 30°C), - Arthrospira platensis: 25 - 35 ° C (optimum temperature = 30 ° C),
- Chlorella pyrenoidosa : 35 - 45°C (température optimale = 38,7°C),- Chlorella pyrenoidosa: 35 - 45 ° C (optimum temperature = 38.7 ° C),
- Chlorella vulgaris : 25 - 35 °C (température optimale = 30°C),- Chlorella vulgaris: 25 - 35 ° C (optimum temperature = 30 ° C),
- Chlamydomonas reinhardtii : 15 - 30°C (température optimale = 25°C),- Chlamydomonas reinhardtii: 15 - 30 ° C (optimum temperature = 25 ° C),
- Phaeodactylum tricornutum : 20 - 25 °C (température optimale = 22,5°C),- Phaeodactylum tricornutum: 20 - 25 ° C (optimum temperature = 22.5 ° C),
- Porphyridium cruentum : 15 - 30 °C (température optimale = 19, 1°C),- Porphyridium cruentum: 15 - 30 ° C (optimum temperature = 19, 1 ° C),
- Scenedesmus sp. : 20 - 33 °C (température optimale = 26,3°C),- Scenedesmus sp. : 20 - 33 ° C (optimum temperature = 26.3 ° C),
- Nannochloropsis oceanica : 20 - 33°C (température optimale = 26,7°C),- Nannochloropsis oceanica: 20 - 33 ° C (optimum temperature = 26.7 ° C),
- Dunaliella tertiolecta : 30 - 39°C (température optimale = 32,6°C). Comme évoqué ci-avant, selon un mode de réalisation avantageux, la zone de culture est constituée par un photo-bioréacteur. - Dunaliella tertiolecta: 30 - 39 ° C (optimum temperature = 32.6 ° C). As mentioned above, according to an advantageous embodiment, the culture zone is constituted by a photo-bioreactor.
Selon un autre mode de réalisation avantageux,_la zone de culture est une zone à ciel ouvert, c'est-à-dire à l'air ambiant.  According to another advantageous embodiment, the culture zone is an open-air zone, that is to say ambient air.
Selon une première variante de réalisation, l'échangeur de chaleur est intégré dans le circuit de fluide du fluide caloporteur contenant les particules de luminophores phosphorescentes en suspension.  According to a first variant embodiment, the heat exchanger is integrated in the fluid circuit of the coolant containing the phosphorescent phosphor particles in suspension.
Selon une deuxième variante de réalisation, l'échangeur de chaleur est intégré au sein du capteur solaire.  According to a second variant embodiment, the heat exchanger is integrated within the solar collector.
Selon une troisième variante de réalisation, l'échangeur de chaleur est intégré au sein de la zone de culture. De préférence, les particules phosphorescentes sont des sulfures ou des séléniures ou des phosphores de type oxyde. De préférence encore, il s'agit de sulfures de zinc ou des aluminates d'alcalino-ferreux dopé en particulier avec des terres rares. According to a third variant embodiment, the heat exchanger is integrated within the culture zone. Preferably, the phosphorescent particles are sulphides or selenides or phosphors of the oxide type. More preferably, it is zinc sulphides or alkali-ferrous aluminates doped in particular with rare earths.
Avantageusement, le fluide caloporteur est de l'eau, ou de l'eau additionnée d'un antigel comme de l'éthylène glycol, ou du propylène glycol.  Advantageously, the coolant is water, or water with an antifreeze such as ethylene glycol, or propylene glycol.
De préférence, la concentration massique des particules photoluminescentes dans le fluide caloporteur est comprise entre 0, 1 et 30%.  Preferably, the mass concentration of the photoluminescent particles in the coolant is between 0.1 and 30%.
Selon une variante avantageuse, le fluide caloporteur comporte en outre des nanoparticules permettant l'apparition du phénomène de division de quantum et/ou permettant la conversion de longueur d'onde des photons réémis du spectre ultra- violet vers celui du visible.  According to an advantageous variant, the heat transfer fluid further comprises nanoparticles allowing the appearance of the quantum division phenomenon and / or allowing the wavelength conversion of the photons reemitted from the ultraviolet spectrum to that of the visible spectrum.
L'(les) enceinte(s) du capteur solaire est (sont) avantageusement réalisée(s) en verre ou en polymère transparent au rayonnement solaire.  The (the) enclosure (s) of the solar collector is (are) advantageously made (s) of glass or polymer transparent to solar radiation.
L'(les) enceinte(s) du capteur solaire peut comporter une paroi formant un fond, opposée à une paroi transparente au rayonnement solaire, le fond étant de couleur noire. Avec un tel fond noir, on augmente encore l'énergie thermique absorbée et qui est transmise au fluide transportant les luminophores phosphorescentes.  The enclosure (s) of the solar collector may comprise a wall forming a bottom, opposite to a wall transparent to solar radiation, the bottom being black. With such a black background, the absorbed thermal energy that is transmitted to the fluid transporting the phosphorescent phosphors is further increased.
Selon une variante avantageuse, la face extérieure au moins de la paroi formant le fond peut être revêtue d'un revêtement réfléchissant l'infra-rouge à partir des longueurs d'ondes supérieures à 2,5 μιη.  According to an advantageous variant, the outer face at least of the wall forming the bottom may be coated with a coating reflecting the infra-red from wavelengths greater than 2.5 μιη.
L'(les) enceinte(s) de photo-bioréacteur est (sont) réalisée(s) de préférence à partir de plaques ou de tubes en matériau transparent au rayonnement du visible, tel que du polychlorure de vinyle (PVC) ou du polycarbonate.  The photo-bioreactor chamber (s) is (are) preferably made from plates or tubes of material transparent to visible radiation, such as polyvinyl chloride (PVC) or polycarbonate .
Selon une première variante de réalisation, l'(les) enceinte(s) de photo- bioréacteur est (sont) constituée(s) d'un échangeur tubulaire avec des canaux de circulation du fluide chargé en particules phosphorescentes, de forme droite allongée selon l'axe du tube de l'enceinte.  According to a first variant embodiment, the (the) chamber (s) of photo-bioreactor is (are) constituted (s) of a tubular exchanger with channels of circulation of the fluid loaded with phosphorescent particles, elongated right shape according to the axis of the tube of the enclosure.
Selon une deuxième variante de réalisation, l'enceinte de photo-bioréacteur est (sont) constituée(s) d'un échangeur à plaques superposées, avec des canaux de circulation du fluide chargé en particules phosphorescentes à travers les plaques qui s'étendent selon la longueur des plaques tout comme les canaux de circulation du milieu de culture. Comme déjà évoqué, le capteur solaire peut comporter avantageusement un dispositif de concentration solaire. According to a second variant embodiment, the photo-bioreactor chamber is (are) constituted by a superposed plate heat exchanger, with channels of circulation of the fluid charged with phosphorescent particles through the plates which extend according to the length of the plates as well as the circulation channels of the culture medium. As already mentioned, the solar collector may advantageously comprise a solar concentration device.
L'invention concerne également l'utilisation de la chaleur en sortie de l'échangeur de chaleur du système de culture qui vient d'être décrit pour la production d'eau chaude sanitaire, pour la climatisation par cycle thermodynamique ou par système à absorption, pour le chauffage de serre ou de bâtiment, pour le dessalement d'eau de mer, pour la production d'électricité par cycle Rankine.  The invention also relates to the use of the heat output of the heat exchanger of the culture system which has just been described for the production of domestic hot water, for air conditioning by thermodynamic cycle or by absorption system, for heating greenhouse or building, for desalination of sea water, for electricity production per Rankine cycle.
L'invention concerne enfin l'utilisation de la phosphorescence des particules du système de culture selon l'une des revendications précédentes, pour l'affichage visible à l'œil nu, en particulier la nuit, de slogans et/ou logos lumineux, notamment à des fins publicitaires.  The invention finally relates to the use of the phosphorescence of the particles of the culture system according to one of the preceding claims, for the display visible to the naked eye, particularly at night, slogans and / or logos luminous, including for advertising purposes.
Description détaillée  detailed description
D'autres avantages et caractéristiques de l'invention ressortiront mieux à la lecture de la description détaillée de l'invention faite à titre illustratif et non limitatif en référence aux figures suivantes parmi lesquelles :  Other advantages and features of the invention will emerge more clearly from a reading of the detailed description of the invention, given by way of illustration and without limitation with reference to the following figures among which:
la figure 1 est une vue schématique d'un premier exemple de système de culture de micro-organismes photosynthétiques selon l'invention ;  FIG. 1 is a schematic view of a first example of a photosynthetic microorganism culture system according to the invention;
la figure 2 est une vue schématique d'un deuxième exemple de système de culture de micro-organismes photosynthétiques selon l'invention;  FIG. 2 is a schematic view of a second example of a photosynthetic microorganism culture system according to the invention;
la figure 3 est une vue schématique d'un exemple de capteur solaire pouvant être mis en œuvre dans le système de culture de micro-organismes photosynthétiques selon l'invention;  FIG. 3 is a schematic view of an example of a solar collector that can be implemented in the photosynthetic micro-organism culture system according to the invention;
la figure 4 est une vue schématique d'un premier exemple de photo- bioréacteur pouvant être mis en œuvre dans le système de culture de micro-organismes photosynthétiques selon l'invention;  FIG. 4 is a schematic view of a first example of a photobioreactor that can be used in the photosynthetic microorganism culture system according to the invention;
la figure 4A est une vue schématique d'un deuxième exemple de photo- bioréacteur pouvant être mis en œuvre dans le système de culture de micro-organismes photosynthétiques selon l'invention;  FIG. 4A is a schematic view of a second example of a photobioreactor that can be used in the photosynthetic microorganism culture system according to the invention;
la figure 4B est une vue schématique d'un troisième exemple de photo- bioréacteur pouvant être mis en œuvre dans le système de culture de micro-organismes photosynthétiques selon l'invention. Dans la description qui va suivre les termes « entrée », « sortie » « amont », « aval », sont utilisés par référence avec la direction de circulation du fluide caloporteur chargé en particules luminophores phosphorescentes au sein du système selon l'invention. FIG. 4B is a schematic view of a third example of a photobioreactor that can be used in the photosynthetic microorganism culture system according to the invention. In the description which follows the terms "inlet", "outlet""upstream","downstream", are used by reference with the flow direction of the heat transfer fluid charged phosphorescent phosphor particles within the system according to the invention.
D'ailleurs dans toute la description qui va suivre, la circulation du fluide caloporteur chargé en particules luminophores phosphorescentes est symbolisée par les flèches F.  Moreover, throughout the description that follows, the circulation of the coolant charged phosphorescent phosphor particles is symbolized by the arrows F.
La circulation du fluide d'échange thermique avec le fluide caloporteur est quant à elle symbolisée par les flèches E.  The circulation of the heat exchange fluid with the coolant is symbolized by the arrows E.
Sur la figure 1, on a représenté schématiquement un premier exemple d'un système de culture de micro-organismes photosynthétiques 1 selon la présente invention comportant un capteur solaire 2, une zone de culture 3 constituée par un photo- bioréacteur, un circuit de fluide étanche 4, relié au capteur solaire 2 et au photo- bioréacteur, pour assurer la circulation en boucle d'un fluide caloporteur chargé en particules luminophores phosphorescentes entre le capteur 2 et le photo-bio-réacteur 4, et un échangeur de chaleur 5 entre au moins les deux fluides E, F et qui est intégré dans le circuit 4.  FIG. 1 diagrammatically shows a first example of a photosynthetic micro-organism culture system 1 according to the present invention comprising a solar collector 2, a culture zone 3 constituted by a photobioreactor, a fluid circuit 4, connected to the solar collector 2 and the photo-bioreactor, to ensure loop circulation of a heat transfer fluid charged phosphorescent phosphor particles between the sensor 2 and the photo-bio-reactor 4, and a heat exchanger 5 between at least the two fluids E, F and which is integrated in the circuit 4.
Dans toute la description qui va suivre, au lieu d'un photo-bioréacteur, la zone de culture 3 pourrait être également constituée par une zone à ciel ouvert, avantageusement un ou plusieurs bassins, lagunes ou autres récipients, notamment un ou plusieurs bassins en boucle usuellement dénommé en anglais « raceway». Dans le cadre de l'invention, il est toujours possible d'avoir une régulation thermique au sein d'un raceway. Ainsi :  Throughout the following description, instead of a photo-bioreactor, the culture zone 3 could also be constituted by an open-air zone, advantageously one or more basins, lagoons or other containers, in particular one or more basins. loop usually called in English "raceway". In the context of the invention, it is always possible to have a thermal regulation within a raceway. So :
en cas de surchauffe de la zone de culture, on peut refroidir et donc limiter les pertes d'eau par évaporation ;  in case of overheating of the culture zone, it is possible to cool down and thus to limit water losses by evaporation;
en cas de zone de culture trop froide : on peut réchauffer et donc permettre une culture sur une période plus longue (par temps plus froid).  in the case of a culture zone which is too cold: it is possible to warm up and thus to allow a crop over a longer period (in colder weather).
En outre, le système 1 comporte une pompe 6 permettant la circulation du fluide F dans le circuit 4 en boucle fermée. La circulation du fluide peut également se faire préférentiellement par effet thermosiphon afin de diminuer la consommation énergétique du système 1. L'utilisation d'une pompe 6 peut être requise selon le lieu d'intégration du système 1 et son degré d'automatisation. Sur la figure 2, on a représenté schématiquement le deuxième exemple d'un système de culture de micro-organismes photosynthétiques 1 selon la présente invention. Le système illustré en figure 2 comporte les mêmes éléments que celui de la figure 1, seul l'échangeur de chaleur 5 étant intégré au sein du photo-bioréacteur 3. In addition, the system 1 comprises a pump 6 for the circulation of the fluid F in the circuit 4 closed loop. Fluid circulation can also be preferably by thermosiphon effect to reduce the energy consumption of the system 1. The use of a pump 6 may be required depending on the location of integration of the system 1 and its degree of automation. FIG. 2 diagrammatically shows the second example of a photosynthetic micro-organism culture system 1 according to the present invention. The system illustrated in FIG. 2 comprises the same elements as that of FIG. 1, only the heat exchanger 5 being integrated within the photo-bioreactor 3.
Le capteur solaire 2 comporte une enceinte 20 délimitant un espace intérieur destiné à contenir un fluide, et dont au moins une paroi 20 est transparente au rayonnement solaire R permettant au fluide circulant dans l'enceinte d'être exposée au rayonnement solaire. L'enceinte comporte également un orifice d'alimentation 10 en fluide et un orifice d'évacuation 12 du fluide pour permettre la circulation du fluide à travers l'espace intérieur.  The solar collector 2 comprises an enclosure 20 delimiting an internal space intended to contain a fluid, and at least one wall 20 of which is transparent to the solar radiation R enabling the fluid circulating in the enclosure to be exposed to solar radiation. The enclosure also includes a fluid supply port 10 and a fluid outlet port 12 for allowing fluid flow through the interior space.
Le photo-bioréacteur 3 comporte une enceinte 30 délimitant un espace intérieur dans lequel circule le fluide provenant du capteur solaire 2. Cette enceinte 30 comporte un orifice d'alimentation 31 en fluide et un orifice d'évacuation 32 du fluide. L'enceinte 30 contient un milieu de culture de micro-algues à cultiver.  The photo-bioreactor 3 comprises an enclosure 30 delimiting an interior space in which the fluid flowing from the solar collector 2 circulates. This enclosure 30 comprises a fluid supply port 31 and a fluid discharge port 32. The enclosure 30 contains a culture medium of microalgae to be cultivated.
Contrairement aux enceintes des photo-bioréacteurs selon l'état de l'art, l'enceinte 30 du photo-bioréacteur selon l'invention peut ne pas comporter de paroi externe transparente, ce qui permet d'augmenter le taux de collecte par les microorganismes photosynthétiques des photons réémis par les particules phosphorescentes.  Unlike the speakers of photo-bioreactors according to the state of the art, the enclosure 30 of the photo-bioreactor according to the invention may not have a transparent outer wall, which makes it possible to increase the collection rate by the microorganisms. photosynthetic photons reemitted by phosphorescent particles.
Le circuit 4 de circulation du fluide caloporteur chargé en particules phosphorescentes relie :  The circulating circuit 4 for the coolant fluid charged with phosphorescent particles connects:
d'une part, l'orifice d'évacuation 23 de l'enceinte 20 du capteur solaire 2 à celui d'alimentation 31 de l'enceinte 30 du photo-bioréacteur 3, et,  on the one hand, the discharge orifice 23 of the chamber 20 of the solar collector 2 to that of the supply 31 of the chamber 30 of the photobioreactor 3, and
d'autre part, l'orifice d'évacuation 32 de l'enceinte 30 du photo-bioréacteur à celui d'alimentation 22 du capteur solaire 2.  on the other hand, the discharge orifice 32 of the enclosure 30 of the photo-bioreactor to that of the supply 22 of the solar collector 2.
Tel qu'illustré schématiquement, le circuit de fluides 4 peut comporter des tuyaux pour relier ces orifices entre eux. Les tuyaux peuvent être plus ou moins longs en fonction du lieu d'intégration du système. Bien entendu, les deux enceintes 20, 30 peuvent, en pratique, être disposées le plus proche l'une de l'autre.  As schematically illustrated, the fluid circuit 4 may comprise pipes for connecting these orifices to each other. The pipes may be longer or shorter depending on the place of integration of the system. Of course, the two enclosures 20, 30 may, in practice, be arranged closest to each other.
Le fluide caloporteur est chargé de particules phosphorescentes en suspension. Le fluide peut être un gaz ou un liquide. De préférence, le fluide caloporteur est de l'eau, ou de l'eau additionnée d'un antigel, comme de l'éthylène glycol, propylène glycol ou autres produits. L'échangeur de chaleur 5 du système 1 est adapté pour prélever la chaleur transportée par le fluide caloporteur F et ainsi réguler au mieux sa température et donc celle du milieu de culture des micro-organismes photosynthétiques que l'on souhaite atteindre dans le photo-bioréacteur. The coolant is charged with phosphorescent particles in suspension. The fluid may be a gas or a liquid. Preferably, the coolant is water, or water added with antifreeze, such as ethylene glycol, propylene glycol or other products. The heat exchanger 5 of the system 1 is adapted to take the heat transported by the heat transfer fluid F and thus to better regulate its temperature and therefore that of the culture medium of the photosynthetic microorganisms that one wishes to achieve in the photo- bioreactor.
Dans l'exemple illustré en figure 1, l'échangeur 5 est intégré dans le circuit 4 et plus exactement monté entre le capteur solaire 2 et le photo-bioréacteur 3, en amont du photo-bioréacteur 3 dans le sens de circulation du fluide caloporteur F.  In the example illustrated in FIG. 1, the heat exchanger 5 is integrated in the circuit 4 and more exactly mounted between the solar collector 2 and the photo-bioreactor 3, upstream of the photobioreactor 3 in the direction of circulation of the coolant. F.
Dans l'exemple illustré en figure 2, l'échangeur 5 est intégré au sein du photo- bioréacteur 3. Cette intégration est avantageuse car elle permet de supprimer l'échangeur en tant que composant supplémentaire, d'où une économie de coût, de place, et une amélioration du volume mort non actif de fluide phosphorescent dans l'échangeur.  In the example illustrated in FIG. 2, the exchanger 5 is integrated within the photobioreactor 3. This integration is advantageous because it makes it possible to eliminate the exchanger as an additional component, hence a cost saving, instead, and an improvement in the non-active dead volume of phosphorescent fluid in the exchanger.
Avantageusement, une récupération de chaleur est effectuée afin qu'elle soit valorisée sous différentes formes possibles, notamment pour la production d'eau chaude sanitaire, pour la climatisation par cycle thermodynamique ou par système à absorption, pour le chauffage de serres ou de bâtiments, pour le dessalement d'eau de mer... Par exemple, lorsque le système de culture selon l'invention est intégré à un bâtiment, l'efficacité énergétique est d'autant améliorée.  Advantageously, a heat recovery is carried out so that it is recovered in various possible forms, in particular for the production of domestic hot water, for air conditioning by thermodynamic cycle or absorption system, for heating greenhouses or buildings, For desalination of seawater ... For example, when the culture system according to the invention is integrated into a building, energy efficiency is all the better.
L'échangeur de chaleur 5 peut être du type serpentin circulant dans un ballon d'eau chaude et permettant de produire l'eau chaude d'une habitation.  The heat exchanger 5 may be of the coil type circulating in a hot water tank and making it possible to produce the hot water of a dwelling.
Le fluide circule dans le système entre le capteur solaire 2 et le photo- bioréacteur 3, par exemple au moyen d'une pompe 6 ou par effet thermosiphon. L'effet thermosiphon peut être privilégié afin de diminuer la consommation énergétique du système.  The fluid circulates in the system between the solar collector 2 and the photobioreactor 3, for example by means of a pump 6 or by thermosiphon effect. The thermosiphon effect can be preferred to reduce the energy consumption of the system.
L'utilisation d'une pompe 6 est envisageable, selon le lieu d'intégration du système et son degré d'automatisation. Cela permet d'assurer une circulation du fluide en permanence.  The use of a pump 6 is possible, depending on the place of integration of the system and its degree of automation. This ensures a continuous flow of fluid.
Le fonctionnement du système de culture de micro-organismes photosynthétiques selon la présente invention va maintenant être expliqué.  The operation of the photosynthetic microorganism culture system according to the present invention will now be explained.
Le volume de fluide caloporteur chargé en particules phosphorescentes se trouvant dans l'enceinte 20 du capteur 2 est exposé au rayonnement solaire. Les photons dont la longueur d'onde se trouve dans les spectres visible et ultraviolet sont absorbés par les particules phosphorescentes à un instant tO. Le volume de fluide caloporteur est en outre échauffé par le rayonnement infrarouge. Le volume de fluide circule dans le circuit et rejoint le photo-bioréacteur 3. The volume of coolant charged with phosphorescent particles in the chamber 20 of the sensor 2 is exposed to solar radiation. The photons whose wavelength is in the visible and ultraviolet spectra are absorbed by the phosphorescent particles at a time t0. The volume of coolant is in further heated by infrared radiation. The volume of fluid circulates in the circuit and joins the photo-bioreactor 3.
La phosphorescence est un type particulier de photoluminescence dans lequel le phénomène de réémission est différé temporellement. Les photons absorbés passent par des états d'énergie intermédiaire, typiquement des états triplets (interdits), le retour inévitable des photons piégés de ces états interdits au niveau de basse énergie est cinétiquement défavorisé, ce qui a pour effet de ralentir l'émission lumineuse, c'est ainsi que la réémission de l'énergie absorbée pour la plupart des matériaux phosphorescents est de l'ordre de la milliseconde. Il est possible d'avoir des états triplets dont la durée de vie est de plusieurs heures, ce qui implique une réémission des photons plusieurs heures après leur absorption.  Phosphorescence is a particular type of photoluminescence in which the phenomenon of retransmission is temporally delayed. The absorbed photons pass through intermediate energy states, typically triplets (forbidden) states, the inevitable return of the trapped photons of these forbidden states to the low energy level is kinetically disadvantaged, which has the effect of slowing down the light emission. this is how the re-emission of the energy absorbed for most phosphorescent materials is of the order of a millisecond. It is possible to have triplet states whose life span is several hours, which implies a re-emission of photons several hours after their absorption.
Cette réémission différée a pour avantage de permettre la culture des microalgues en l'absence de rayonnement solaire, et notamment la nuit. En effet, les photons captés par les particules phosphorescentes lors d'une période d'ensoleillement, typiquement le jour, sont réémis la nuit dans le photo-bioréacteur, ceci particulièrement dans le cas d'une réémission différée de plusieurs heures. Le photo-bioréacteur peut fonctionner en permanence, en utilisant la forte rémanence des matériaux phosphorescents, les photons étant réémis jusqu'à 12 heures après leur exposition.  This deferred retransmission has the advantage of allowing the cultivation of microalgae in the absence of solar radiation, especially at night. Indeed, the photons captured by the phosphorescent particles during a period of sunshine, typically during the day, are reemitted at night in the photo-bioreactor, particularly in the case of a delayed re-emission of several hours. The photo-bioreactor can operate continuously, using the strong remanence of phosphorescent materials, the photons being re-emitted up to 12 hours after their exposure.
Ainsi, les particules phosphorescentes réémettent à un instant t' égal à tO + Δΐ des photons dans le spectre visible, au sein de l'enceinte 30 du photo-bioréacteur 3.  Thus, the phosphorescent particles reemit at a time t 'equal to t0 + Δΐ photons in the visible spectrum, within the chamber 30 of the photo-bioreactor 3.
Les photons réémis le sont dans toutes les directions de l'espace, ce qui permet d'optimiser la collecte de photons dans un photo-bioréacteur 3 de n'importe quelle structure.  The re-emitted photons are in all directions of space, which optimizes the collection of photons in a photo-bioreactor 3 of any structure.
Simultanément, l'échangeur de chaleur 5 en amont du photo-bioréacteur 3 ou intégré à celui-ci ou encore intégré au capteur solaire 2, permet de diminuer la température du fluide caloporteur F, préalablement à son entrée dans le photo-bioréacteur 3. Ainsi, la température est régulée au plus proche de la température requise par le milieu de culture des micro-algues.  At the same time, the heat exchanger 5 upstream of the photobioreactor 3 or integrated into it or integrated with the solar collector 2 makes it possible to reduce the temperature of the coolant F, prior to its entry into the photobioreactor 3. Thus, the temperature is regulated to the nearest of the temperature required by the microalgae culture medium.
Autrement dit, le système de culture selon l'invention permet une très bonne maîtrise des conditions de culture des micro-organismes photosynthétiques, c'est-à-dire leurs conditions d'illumination et la température du milieu de culture. De manière également avantageuse, on peut prévoir d'ajouter dans le fluide des nanoparticules permettant l'apparition du phénomène de division de quantum afin d'augmenter encore le rendement photosynthétique des micro-organismes. La division de quantum est un mécanisme permettant, par exemple à partir d'un photon émettant dans l'ultraviolet, de donner deux photons émettant dans le visible ou dans un spectre proche de l'infrarouge. In other words, the culture system according to the invention allows a very good control of the culture conditions of the photosynthetic micro-organisms, that is to say their illumination conditions and the temperature of the culture medium. Also advantageously, it is possible to add nanoparticles in the fluid allowing the appearance of the quantum division phenomenon in order to further increase the photosynthetic efficiency of the microorganisms. The quantum division is a mechanism allowing, for example from a photon emitting in the ultraviolet, to give two photons emitting in the visible or in a spectrum close to the infrared.
Avantageusement, les matériaux phosphorescents choisis peuvent être des sulfures ou des séléniures ou des phosphores de type oxyde.  Advantageously, the phosphorescent materials chosen may be sulphides or selenides or phosphors of the oxide type.
De manière particulièrement avantageuse, on peut choisir les sulfures de zinc et les aluminates d'alcalino-terreux (Sr) dopé avec des terres rares. Ces derniers permettent de contrôler le domaine d'émission des photons, ce qui permet d'adapter l'émission des photons en fonction de la (des) bande(s) d'absorption dans laquelle les micro-organismes photosynthétiques contenus dans le photo-bioréacteur sont les plus efficaces. Typiquement, pour les chlorophylles, les bandes d'absorption les plus efficaces sont celles comprises entre 420-500nm et 620-700 nm.  Particularly advantageously, zinc sulfides and alkaline earth aluminates (Sr) doped with rare earths can be selected. The latter make it possible to control the emission domain of the photons, which makes it possible to adapt the emission of the photons as a function of the absorption band (s) in which the photosynthetic microorganisms contained in the photo- bioreactor are the most effective. Typically, for chlorophylls, the most effective absorption bands are those between 420-500nm and 620-700 nm.
On peut aussi utiliser des matériaux phosphorescents inorganiques présentant avantageusement des rendements quantiques plus élevés et étant peu sensibles à la chaleur. La taille des particules est avantageusement comprise entre 0, 1 μπι et 1 μπι, avec une concentration par exemple comprise entre 0,1% à 30% en masse.  It is also possible to use inorganic phosphorescent materials advantageously having higher quantum yields and being insensitive to heat. The size of the particles is advantageously between 0.1 μπι and 1 μπι, with a concentration for example of between 0.1% and 30% by weight.
On a représenté en figure 3, un exemple de réalisation d'une enceinte 20 d'un capteur solaire 2 définissant le volume de fluide caloporteur chargé de particules phosphorescentes qui reçoit le rayonnement solaire R. Plus précisément, la face de dessus 21 est transparente au rayonnement solaire mais l'ensemble des faces peut également être prévu transparent au rayonnement solaire. Il peut s'agir d'une enceinte en verre ou en polymère transparent. La face de dessous 24 peut être prévue de couleur noire, par exemple au moyen d'une peinture noire, afin d'augmenter l'énergie thermique absorbée et transmise au fluide caloporteur F.  FIG. 3 shows an exemplary embodiment of an enclosure 20 of a solar collector 2 defining the volume of heat transfer fluid charged with phosphorescent particles which receives the solar radiation R. More specifically, the top face 21 is transparent to the solar radiation but all faces can also be provided transparent to solar radiation. It can be a glass enclosure or transparent polymer. The underside 24 may be provided in black, for example by means of a black paint, in order to increase the thermal energy absorbed and transmitted to the coolant F.
Tel qu'illustrée en figure 3, la forme de l'enceinte 20 est une forme parallélépipédique droite dans sa partie centrale 2a et de forme trapézoïdale dans les parties d'extrémité 2b, 2c reliées à la partie centrale par leur base. Le sommet des formes trapézoïdales est percé pour définir respectivement les orifices d'alimentation 22 et d'évacuation 23 du fluide. On a représenté aux figures 4 à 4B différentes variantes de réalisation d'enceinte 30 de photo-bioréacteur 3 qui peuvent convenir dans le cadre de l'invention. Il s'agit : As illustrated in FIG. 3, the shape of the enclosure 20 is a rectangular parallelepipedal shape in its central part 2a and of trapezoidal shape in the end portions 2b, 2c connected to the central part by their base. The top of the trapezoidal shapes is pierced to define respectively the supply orifices 22 and discharge 23 of the fluid. FIGS. 4 to 4B show different embodiments of the photo-bioreactor chamber 3 which may be suitable for the purposes of the invention. It's about :
en figure 4, d'une enceinte 30 de forme tubulaire cylindrique avec des canaux 33 de circulation du fluide F de forme droite allongée selon l'axe du cylindre ;  in FIG. 4, an enclosure 30 of cylindrical tubular shape with channels 33 for circulating fluid F of elongated straight form along the axis of the cylinder;
en figure 4A, d'un échangeur 30 à plaques en verre ou en polymère superposées, avec des canaux 33 de circulation du fluide F de forme droite allongée selon la longueur des plaques tout comme ceux 34 de circulation du milieu de culture;  in FIG. 4A, an exchanger 30 with glass or polymer plates superimposed, with channels 33 for circulating the fluid F of elongated shape along the length of the plates as well as those for circulating the culture medium;
en figure 4B, d'une enceinte 30 de forme tubulaire cylindrique avec un circuit de circulation du milieu de culture, et le circuit 33 du fluide F étant réalisé par un serpentin en verre ou en polymère.  in FIG. 4B, an enclosure 30 of cylindrical tubular shape with a circulation circuit of the culture medium, and the circuit 33 of the fluid F being produced by a glass or polymer coil.
Dans toutes ces enceintes 30 de photo-bioréacteur, on met préférentiellement en œuvre un bullage de C02 et une agitation du milieu de culture. L'aération par le bullage de C02 peut d'ailleurs servir à empêcher la sédimentation ou l'agrégation des micro-organismes.  In all these photo-bioreactor chambers, bubbling of CO 2 and stirring of the culture medium is preferably carried out. Aeration by bubbling CO2 can also be used to prevent sedimentation or aggregation of microorganisms.
Dans les enceintes 30 des exemples illustrées des figures 4 et 4B, le bullage de C02 peut se faire par le dessous de l'enceinte, par l'intermédiaire d'un ajout de C02 à plusieurs endroits au bas du cylindre 30.  In the chambers 30 of the illustrated examples of FIGS. 4 and 4B, bubbling of CO 2 can be done from below the enclosure, via an addition of CO 2 at several places at the bottom of the cylinder 30.
L'ajout de C02 se fait avantageusement à la base de chaque plaque ou à la base d'une plaque sur deux superposées, ce qui permet avantageusement de garder les micro-organismes en suspension sans les faire sédimenter.  The addition of CO2 is advantageously at the base of each plate or at the base of a plate on two superimposed, which advantageously allows to keep the microorganisms in suspension without sedimentation.
L'extraction des micro-organismes obtenus par culture se fait avantageusement en ouvrant une vanne d'extraction prévue à cet effet dans l'enceinte.  The extraction of the microorganisms obtained by cultivation is advantageously by opening an extraction valve provided for this purpose in the enclosure.
Dans les enceintes 30 des exemples illustrées des figures 4 et 4B, la vanne d'extraction peut se situer n'importe où.  In the speakers 30 of the illustrated examples of FIGS. 4 and 4B, the extraction valve can be located anywhere.
Dans l'enceinte 30 de l'exemple illustré de la figure 4A, la vanne d'extraction se situe avantageusement à l'une des extrémités des canaux 34.  In the chamber 30 of the example illustrated in FIG. 4A, the extraction valve is advantageously located at one of the ends of the channels 34.
D'autres variantes et améliorations peuvent être prévues sans pour autant sortir du cadre de l'invention.  Other variants and improvements may be provided without departing from the scope of the invention.
L'invention n'est pas limitée aux exemples qui viennent d'être décrits ; on peut notamment combiner entre elles des caractéristiques des exemples illustrés au sein de variantes non illustrées. L'expression « comportant un » doit être comprise comme étant synonyme de « comportant au moins un », sauf si le contraire est spécifié. The invention is not limited to the examples which have just been described; it is possible in particular to combine with one another characteristics of the illustrated examples within non-illustrated variants. The expression "having one" shall be understood as being synonymous with "having at least one", unless the opposite is specified.
Référence citée Reference cited
[1] : J. Pruvost et Al. « Production industrielle de microalgues et cyanobactéries », Techniques de l'ingénieur, IN 200, 11/2011  [1]: J. Pruvost et al. "Industrial production of microalgae and cyanobacteria", Engineering Techniques, IN 200, 11/2011

Claims

REVENDICATIONS
1. Système (1) de culture de micro-organismes photosynthétiques, comportant : 1. System (1) for the cultivation of photosynthetic micro-organisms, comprising:
un capteur solaire (2), adapté pour capter les photons apportés par le rayonnement solaire,  a solar collector (2), adapted to capture the photons brought by the solar radiation,
une zone de culture (3) contenant un milieu de culture des microorganismes photosynthétiques à cultiver,  a culture zone (3) containing a culture medium for the photosynthetic microorganisms to be cultivated,
un circuit (4) d'un fluide caloporteur dans lequel des particules de luminophores phosphorescentes sont en suspension, le circuit reliant le capteur à la zone de culture,  a circuit (4) of a coolant in which phosphorescent phosphor particles are in suspension, the circuit connecting the sensor to the culture zone,
un échangeur de chaleur (5), adapté pour réguler la température du fluide dans la zone de culture,  a heat exchanger (5), adapted to regulate the temperature of the fluid in the culture zone,
dans lequel les particules, ayant captées les photons dans le capteur et en suspension dans le fluide à la température régulée, sont destinées à réémettre dans le volume de la zone de culture, un rayonnement lumineux adapté à la culture des microorganismes photosynthétiques.  wherein the particles, having captured the photons in the sensor and suspended in the fluid at the controlled temperature, are intended to re-emit into the volume of the culture zone, a light radiation suitable for the culture of photosynthetic microorganisms.
2. Système de culture selon la revendication 1, la zone de culture étant constituée par un photo-bioréacteur fermé (3).  2. Culture system according to claim 1, the culture zone being constituted by a closed photobioreactor (3).
3. Système de culture selon la revendication 1, la zone de culture étant une zone à ciel ouvert, c'est-à-dire à l'air ambiant.  3. Culture system according to claim 1, the culture zone being an open-air zone, that is to say to the ambient air.
4. Système de culture selon l'une des revendications précédentes, l'échangeur de chaleur (5) étant intégré dans le circuit de fluide (4) du fluide caloporteur contenant les particules de luminophores phosphorescentes en suspension.  4. Culture system according to one of the preceding claims, the heat exchanger (5) being integrated in the fluid circuit (4) of the coolant containing the phosphorescent phosphor particles in suspension.
5. Système de culture selon l'une des revendications 1 à 3, l'échangeur de chaleur (5) étant intégré au sein du capteur solaire (2).  5. Culture system according to one of claims 1 to 3, the heat exchanger (5) being integrated within the solar collector (2).
6. Système de culture selon l'une des revendications 1 à 3, l'échangeur de chaleur (5) étant intégré au sein de la zone de culture (3).  6. Culture system according to one of claims 1 to 3, the heat exchanger (5) being integrated within the culture zone (3).
7. Système de culture selon l'une des revendications précédentes, les particules phosphorescentes étant des sulfures ou des séléniures ou des phosphores de type oxyde. 7. Culture system according to one of the preceding claims, the phosphorescent particles being sulphides or selenides or phosphors of the oxide type.
8. Système de culture selon la revendication 7, les particules phosphorescentes étant des sulfures de zinc ou des aluminates d'alcalino-ferreux dopé en particulier avec des terres rares. 8. Culture system according to claim 7, the phosphorescent particles being zinc sulfides or alkali-ferrous aluminates doped in particular with rare earths.
9. Système de culture selon l'une des revendications précédentes, le fluide caloporteur étant de l'eau, ou de l'eau additionnée d'un antigel comme de l'éthylène glycol, ou du propylène glycol.  9. Culture system according to one of the preceding claims, the coolant is water, or water with an antifreeze such as ethylene glycol, or propylene glycol.
10. Système de culture selon l'une des revendications précédentes, la concentration massique des particules photoluminescentes dans le fluide caloporteur étant comprise entre 0,1 et 30%.  10. Culture system according to one of the preceding claims, the mass concentration of the photoluminescent particles in the coolant being between 0.1 and 30%.
11. Système de culture selon l'une des revendications précédentes, le fluide caloporteur comportant en outre des nanoparticules permettant l'apparition du phénomène de division de quantum et/ou permettant la conversion de longueur d'onde des photons réémis du spectre ultra-violet vers celui du visible.  11. The culture system according to one of the preceding claims, the heat transfer fluid further comprising nanoparticles allowing the appearance of the quantum division phenomenon and / or allowing the wavelength conversion of the re-transmitted photons of the ultraviolet spectrum. towards that of the visible.
12. Système de culture selon l'une des revendications précédentes, l'(les) enceinte(s) (20) du capteur solaire (2) étant réalisée(s) en verre ou en polymère transparent au rayonnement solaire.  12. Culture system according to one of the preceding claims, the (the) enclosure (s) (20) of the solar collector (2) being made (s) of glass or polymer transparent to solar radiation.
13. Système de culture selon l'une des revendications précédentes, l'(les) enceinte(s) (20) du capteur solaire (2) comportant une paroi (24) formant un fond, opposée à une paroi (21) transparente au rayonnement solaire, le fond étant de couleur noire.  13. Culture system according to one of the preceding claims, the (the) enclosure (s) (20) of the solar collector (2) having a wall (24) forming a bottom, opposite a wall (21) transparent to the solar radiation, the background being black.
14. Système de culture selon l'une des revendications 2 à 13, l'(les) enceinte(s) (30) de photo-bioréacteur (3) étant réalisée(s) à partir de plaques en matériau transparent au rayonnement du visible, tel que du polychlorure de vinyle (PVC) ou du polycarbonate.  14. Culture system according to one of claims 2 to 13, the (the) enclosure (s) (30) photo-bioreactor (3) being made (s) from plates of material transparent to visible radiation. , such as polyvinyl chloride (PVC) or polycarbonate.
15. Système de culture selon l'une des revendications 2 à 14, l'(les) enceinte(s) (30) de photo-bioréacteur (3) étant constituée(s) d'un échangeur tubulaire avec des canaux (33) de circulation du fluide chargé en particules phosphorescentes, de forme droite allongée selon l'axe du tube de l'enceinte.  15. Culture system according to one of claims 2 to 14, the (the) enclosure (s) (30) of photo-bioreactor (3) being constituted (s) of a tubular exchanger with channels (33). circulating fluid loaded with phosphorescent particles, of elongate straight shape along the axis of the tube of the enclosure.
16. Système de culture selon l'une des revendications 2 à 14, l'enceinte (30) de photo-bioréacteur (3) étant constituée d'un échangeur à plaques superposées, avec des canaux (33) de circulation du fluide chargé en particules phosphorescentes à travers les plaques qui s'étendent selon leur longueur des plaques tout comme les canaux (34) de circulation du milieu de culture. 16. Culture system according to one of claims 2 to 14, the enclosure (30) of photo-bioreactor (3) consisting of an overlapping plate heat exchanger, with channels (33) for circulating the fluid loaded with phosphorescent particles through the plates which extend along their length of the plates as well as the channels (34) of circulation of the culture medium.
17. Système de culture selon l'une des revendications précédentes, le capteur solaire (2) comportant un dispositif de concentration solaire. 17. Culture system according to one of the preceding claims, the solar collector (2) comprising a solar concentration device.
18. Utilisation de la chaleur en sortie de l'échangeur de chaleur (5) du système de culture selon l'une des revendications précédentes pour la production d'eau chaude sanitaire, pour la climatisation par cycle thermodynamique ou par système à absorption, pour le chauffage de serre ou de bâtiment, pour le dessalement d'eau de mer.  18. Use of heat output of the heat exchanger (5) of the culture system according to one of the preceding claims for the production of domestic hot water, for air conditioning by thermodynamic cycle or absorption system, for greenhouse or building heating, for desalination of sea water.
19. Utilisation de la phosphorescence des particules du système de culture selon l'une des revendications 1 à 17, pour l'affichage visible à l'œil nu, en particulier la nuit, de slogans et/ou logos lumineux, notamment à des fins publicitaires.  19. Use of the phosphorescence of the particles of the culture system according to one of claims 1 to 17 for the display visible to the naked eye, particularly at night, slogans and / or logos luminous, including for purposes advertising.
PCT/IB2014/066186 2013-12-04 2014-11-20 System for culturing photosynthetic microorganisms with improved yield WO2015083026A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1362122A FR3014113B1 (en) 2013-12-04 2013-12-04 PHOTOSYNTHETIC MICROORGANISM CULTURE SYSTEM WITH IMPROVED EFFICIENCY
FR1362122 2013-12-04

Publications (1)

Publication Number Publication Date
WO2015083026A1 true WO2015083026A1 (en) 2015-06-11

Family

ID=50473420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/066186 WO2015083026A1 (en) 2013-12-04 2014-11-20 System for culturing photosynthetic microorganisms with improved yield

Country Status (2)

Country Link
FR (1) FR3014113B1 (en)
WO (1) WO2015083026A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110986386A (en) * 2019-12-26 2020-04-10 西安石油大学 Forced convection solar heat flow density homogenizing device and method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135537A (en) 1978-03-20 1979-01-23 Atlantic Richfield Company Light collector
DE19746343A1 (en) 1997-10-21 1999-04-22 Deutsch Zentr Luft & Raumfahrt Method for photo chemical and biological reactions
US7173179B2 (en) 2002-07-16 2007-02-06 The Board Of Trustees Of The University Of Arkansas Solar co-generator
WO2010084145A1 (en) * 2009-01-26 2010-07-29 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photovoltaic converter with increased life span
WO2010085853A1 (en) * 2009-01-30 2010-08-05 Zero Discharge Pty Ltd Method and apparatus for cultivation of algae and cyanobacteria
WO2010086310A2 (en) 2009-01-27 2010-08-05 Photofuel Sas Method and device for culturing algae
US20110111490A1 (en) * 2009-11-09 2011-05-12 Wen-Chang Lu Light transformation particle and photobioreactor
US7985338B1 (en) 2010-12-24 2011-07-26 Chong Ning Algal purification system with efficient solar light utilization
WO2012107748A1 (en) * 2011-02-07 2012-08-16 Microsharp Corporation Limited Photobioreactor illumination system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135537A (en) 1978-03-20 1979-01-23 Atlantic Richfield Company Light collector
DE19746343A1 (en) 1997-10-21 1999-04-22 Deutsch Zentr Luft & Raumfahrt Method for photo chemical and biological reactions
US7173179B2 (en) 2002-07-16 2007-02-06 The Board Of Trustees Of The University Of Arkansas Solar co-generator
WO2010084145A1 (en) * 2009-01-26 2010-07-29 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photovoltaic converter with increased life span
FR2941566A1 (en) 2009-01-26 2010-07-30 Commissariat Energie Atomique PHOTOVOLTAIC CONVERTER WITH INCREASED LIFETIME.
WO2010086310A2 (en) 2009-01-27 2010-08-05 Photofuel Sas Method and device for culturing algae
WO2010085853A1 (en) * 2009-01-30 2010-08-05 Zero Discharge Pty Ltd Method and apparatus for cultivation of algae and cyanobacteria
US20110111490A1 (en) * 2009-11-09 2011-05-12 Wen-Chang Lu Light transformation particle and photobioreactor
US7985338B1 (en) 2010-12-24 2011-07-26 Chong Ning Algal purification system with efficient solar light utilization
WO2012107748A1 (en) * 2011-02-07 2012-08-16 Microsharp Corporation Limited Photobioreactor illumination system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. PRUVOST ET AL.: "Production industrielle de microalgues et cyanobactéries", TECHNIQUES DE L'INGÉNIEUR, November 2011 (2011-11-01)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110986386A (en) * 2019-12-26 2020-04-10 西安石油大学 Forced convection solar heat flow density homogenizing device and method thereof
CN110986386B (en) * 2019-12-26 2021-11-23 西安石油大学 Forced convection solar heat flow density homogenizing device and method thereof

Also Published As

Publication number Publication date
FR3014113B1 (en) 2016-01-01
FR3014113A1 (en) 2015-06-05

Similar Documents

Publication Publication Date Title
Nwoba et al. Light management technologies for increasing algal photobioreactor efficiency
EP2391705B1 (en) Method and apparatus for cultivation of algae and cyanobacteria
US8551769B2 (en) Method and apparatus for cultivation of algae and cyanobacteria
EP2391703A2 (en) Method and device for culturing algae
Moheimani et al. Sustainable solar energy conversion to chemical and electrical energy
Masojídek et al. A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: basic design and performance
Delavari Amrei et al. Using fluorescent material for enhancing microalgae growth rate in photobioreactors
Ritchie et al. Modelling photosynthesis in shallow algal production ponds
Vonshak et al. Sub‐optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta)
Nwoba et al. Pilot-scale self-cooling microalgal closed photobioreactor for biomass production and electricity generation
FR2944291A1 (en) FIRMLY PHOTOBIOREACTOR FOR THE CULTURE OF PHOTOSYNTHETIC MICROORGANISMS
WO2010142870A2 (en) Photobioreactor, in particular for growing and developing photosynthetic and heterotrophic micro-organisms
CA2786076A1 (en) Photobioreactor in a closed environment for cultivating photosynthetic micro-organisms
EP4103676A1 (en) Reactor having an optimized lighting device
Shen et al. Solar spectral management for natural photosynthesis: from photonics designs to potential applications
WO2015083026A1 (en) System for culturing photosynthetic microorganisms with improved yield
WO2012107701A1 (en) Sunlight modulating material
AU2011218633B9 (en) Method and apparatus for cultivation of algae and cyanobacteria
EP3545071A1 (en) Module for photobioreactor and associated photobioreactor
Matthes et al. Reliable production of microalgae biomass using a novel microalgae platform
WO2013135736A1 (en) Positive-energy photobioreactor device and method using such a photobioreactor
WO2012107748A1 (en) Photobioreactor illumination system
AU2011211390A1 (en) Apparatus and Method II
Hoeniges Theoretical and experimental investigation of light and culture intensification in solar microalgae cultivation systems
Nwoba Novel photobioreactor for the sustainable production of algal biomass and electricity

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14812643

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14812643

Country of ref document: EP

Kind code of ref document: A1