WO2015081849A1 - 500kV变电所35kV所用变压器串联电抗器的继电保护控制方法 - Google Patents

500kV变电所35kV所用变压器串联电抗器的继电保护控制方法 Download PDF

Info

Publication number
WO2015081849A1
WO2015081849A1 PCT/CN2014/092807 CN2014092807W WO2015081849A1 WO 2015081849 A1 WO2015081849 A1 WO 2015081849A1 CN 2014092807 W CN2014092807 W CN 2014092807W WO 2015081849 A1 WO2015081849 A1 WO 2015081849A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
transformer
protection
impedance
offset
Prior art date
Application number
PCT/CN2014/092807
Other languages
English (en)
French (fr)
Inventor
陈永明
汤大海
曹斌
Original Assignee
国家电网公司
江苏省电力公司
江苏省电力公司镇江供电公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 江苏省电力公司, 江苏省电力公司镇江供电公司 filed Critical 国家电网公司
Publication of WO2015081849A1 publication Critical patent/WO2015081849A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers

Definitions

  • the invention belongs to the technical field of power transmission and distribution network control, and particularly relates to a relay protection control method for a series reactor of a transformer used in a 500 kV substation.
  • the 500kV partial primary system designs of the 500kV transformer use a light-duty circuit breaker for the 35kV transformer branch and use a series reactor to limit the short-circuit current.
  • the 35kV transformer branch series reactor does not have a current transformer installed on the busbar side. Therefore, the 35kV transformer series reactor does not have its own special protection device, but the 35kV side composite voltage overcurrent protection protected by a 500kV transformer. Protection of series reactors for transformers used in 35kV.
  • the 500kV transformer protects the 35kV side composite voltage overcurrent protection. There is no sensitivity to various phase-to-phase short-circuits after the series reactor of the transformer used in the 500kV substation of the 500kV substation.
  • the object of the present invention is to provide a relay protection method for various phase short circuits after a series reactor of a transformer used in a 500 kV substation of 35 kV, and the invention is applicable to an electric power transmission and distribution network to greatly reduce the damage of the short-circuit current to the series reactor. .
  • the transmission and distribution network applied by the method of the present invention is a 35 kV system network in the primary main wiring of the existing 500 kV substation.
  • the main wiring of the 35kV system of the transmission and distribution network includes a 35kV transformer 500kV part, including two cases: 1.
  • the old 500kV substation 500kV transformer 35kV side generally has a circuit breaker, and a current transformer is connected in series (hereinafter referred to as TA); 2, the new 500kV substation 500kV transformer 35kV side generally does not have a circuit breaker, only the corresponding TA.
  • 35kV part is connected in series with 35kV bus
  • 35kV bus is connected with 35kV low voltage shunt reactor branch or 35kV capacitor branch
  • 35kV transformer branch is connected with 35kV voltage transformer and 35kV bus arrester.
  • the transformer branch used in 35kV is routed to the following partial groups. Into: busbar side isolation switch, series reactor, circuit breaker, TA, 35kV transformer.
  • the method of the invention comprises the following control steps:
  • Step 1 Add a 35kV impedance principle protection device to the 35kV side backup protection device of the 500kV transformer.
  • the impedance principle protection device is composed of one direction or offset phase distance protection and one direction or offset ground distance protection.
  • Directional or offset phase-to-phase protection protects the branch of the 35kV transformer and the phase-to-phase short-circuit fault of other 35kV branches, which are for two-phase ground faults with different phases for different 35kV branches protection;
  • Step 2 the one-direction or offset phase-to-phase distance protection and the one-direction direction or offset grounding distance protection point the impedance of the 35kV busbar portion, and the sensitivity is determined according to the sensitivity required for various phase-to-phase short circuits after the transformer series reactor used in 35kV;
  • Step 3 When the phase-to-phase short circuit occurs after the series reactor of the 35kV transformer is used, the fault is skipped after a predetermined delay of 500kV transformer 35kV side circuit breaker or other 500kV transformer side circuit breaker.
  • a further preferred solution for the relay protection method of various phase short circuits after the series reactor of the transformer used in the above-mentioned 500 kV substation of the present invention is:
  • the one-direction or offset phase-to-phase distance protection and the one-segment direction or offset ground distance protection described in the first step of the present invention are functional modules of the relay protection device controlled by the microcomputer integrated by the 500kV transformer main protection and backup protection. Complete; other impedance protection devices can be selected as needed.
  • the one-direction or offset phase-to-phase distance protection and the one-direction or offset ground distance protection described in step 2 of the present invention are directed to the impedance of the 35kV bus portion, and are adjusted according to the following formula:
  • Z zd is the impedance setting value of the 35kV side impedance principle protection of the 500kV transformer
  • K lm is the sensitivity coefficient required for the phase-to-phase short circuit
  • the impedance value of the transformer series reactor used for the Z L is 35kV
  • the sensitivity coefficient is 1.3 to 1.5; if the impedance value of the 35 kV transformer series reactor is 6.24 ⁇ , the one direction or offset phase distance protection and the one direction or offset ground distance protection point to the 35 kV bus portion
  • the impedance setting is 8.11 to 9.36 ⁇ .
  • the relay protection method for a series reactor of a transformer used in a 500 kV substation of the present invention has the following advantages:
  • the principle of direction or offset impedance is used to solve the problem that various phase-to-phase short-circuits are not protected after the series reactor of the transformer used in 35kV.
  • the protection of the phase-to-phase short circuit can be improved to 1.3 by the direction or offset impedance principle. 1.5, even up to 1.5; when a short circuit fault occurs after the 35kV series reactor, the protection can reliably and quickly remove the fault, greatly reducing the damage of the short circuit current to the reactor.
  • 35kV side impedance principle protection can also be used as a 35kV bus fault protection.
  • Figure 1 is a schematic diagram of a primary main wiring of a 35kV system of a conventional 500kV substation.
  • the transmission and distribution network applied in the method of the present invention is a 35 kV system network in a primary main line of a 500 kV substation.
  • the main wiring of the 35kV system of the transmission and distribution network includes the 35kV part of the 500kV transformer (the new 500kV substation 500kV transformer 35kV side generally has no circuit breaker, only the corresponding current transformer, the old 500kV substation 500kV transformer 35kV side generally has Circuit breaker), 35kV transformer 500kV part is connected in series with 35kV busbar, 35kV busbar is also connected with 35kV low voltage shunt reactor branch, 35kV capacitor branch, 35kV transformer branch and 35kV voltage transformer and 35kV busbar arrester.
  • the transformer branch used in 35kV consists of the following components: busbar side isolating switch, series reactor, circuit breaker, current transformer (TA), transformer used in 35kV.
  • the 35kV transformer 35kV side composite voltage overcurrent protection is set according to the maximum load current of the 35kV side of the transformer:
  • I zd K k I fh.max /K f (1)
  • I zd is the 35kV transformer 35kV side composite voltage overcurrent protection setting value
  • K k is the reliability coefficient, generally 1.2
  • I fh.max is the maximum load current of the transformer 35kV side, generally taking the rated current of the transformer side
  • K f is the return coefficient of the composite voltage overcurrent protection, generally taking 0.85-0.95.
  • the rated capacity of the 35kV side is 1/3 of the full capacity, the rated voltage is 36kV, and the K f is 0.85, then the I zd is 5600A and 7560A respectively; the operating time limit is 1.0s.
  • the impedance of the series reactor of the transformer used in 35kV is generally ⁇ 6 ⁇ .
  • the impedance of the series reactor of the 35kV transformer is 6.24 ⁇ , and the equivalent impedance of the 35kV bus system is 0.67 ⁇ 0.68 ⁇ .
  • the three-phase short-circuit current is only 3091A; even if the system impedance is ignored, the maximum operation is performed. In the mode, the three-phase short-circuit current is only 3423A.
  • the 35kV transformer 35kV side composite voltage overcurrent protection has no sensitivity to the short circuit of the transformer series reactor impedance used in 35kV, that is, the impedance of the series reactor of the transformer used in 35kV is not protected.
  • the impedance of the part pointing to the 500kV transformer is set to avoid the short-circuit fault on the other side of the 500kV transformer;
  • Z zd is the impedance setting value of the 35kV side impedance principle protection of 500kV transformer
  • K lm is the sensitivity coefficient required for phase-to-phase short circuit, which can be set to 1.3 ⁇ 1.5
  • Z L is the impedance value of transformer series reactor used for 35kV . The direction or offset component impedance is directed by the transformer to the 35kV bus.
  • a one-way or offset phase-to-phase distance protection device can be configured to cut the fault; if a 35kV transformer series reactor is used, a ground fault occurs on one phase, and another 35kV Another phase-to-earth fault has occurred in the branch.
  • the two-phase ground short-circuit fault can be configured to remove the fault by configuring a direction or offset ground distance protection device.
  • the protection setting is fixed. If the impedance of the series reactor of the transformer used in 35kV is 6.24 ⁇ , Z zd can be set to 8.11 ⁇ 9.36 ⁇ . Since the 35kV side distance protection of the 500kV transformer is 1.3 to 1.5 times the sensitivity of the phase-to-phase short circuit after the series reactor of the transformer used in 35kV, the protection can be operated to remove the fault, thus solving the problem of unprotected operation of the equipment failure. Since there is only reactive compensation capacitor branch or low voltage shunt reactor branch and 35kV transformer branch on the 35kV bus, there is no line branch. Therefore, the 35kV side distance protection of 500kV transformer can be well matched with each branch protection. At the same time, the 35kV side distance protection of the 500kV transformer can also be used as a 35kV bus fault protection.

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

一种500kV变电所35kV所用变压器串联电抗器的继电保护控制方法,包括以下控制步骤:步骤一,在500kV变压器35kV侧后备保护装置中增加一段35kV阻抗原理保护装置,该阻抗原理保护装置由一段方向或偏移相间距离保护和一段方向或偏移接地距离保护组成;步骤二,所述一段方向或偏移相间距离保护和所述一段方向或偏移接地距离保护指向35kV母线部分的阻抗,按35kV所用变压器串联电抗器后各种相间短路所要求的灵敏度进行整定;步骤三,当35kV所用变压器串联电抗器后发生相间短路时,经过预定的延时跳500kV变压器35kV侧断路器或跳500kV变压器其他侧断路器,切除该故障。该方法能够作为对500kV变电所35kV所用变压器串联电抗器后各种相间短路的继电保护。

Description

500kV变电所35kV所用变压器串联电抗器的继电保护控制方法 技术领域
本发明属于电力输配电网络控制技术领域,特别是涉及一种500kV变电所35kV所用变压器串联电抗器的继电保护控制方法。
背景技术
目前,许多500kV变压器35kV部分一次系统的设计中35kV所用变压器支路采用轻型断路器,并使用串联电抗器来限制短路电流。其中35kV所用变压器支路串联电抗器的母线侧没有安装电流互感器,因此,35kV所用变压器串联电抗器自己没有装设专门的保护装置,而是由500kV变压器保护的35kV侧复合电压过流保护作为35kV所用变压器串联电抗器的保护。但是500kV变压器保护35kV侧复合电压过流保护对500kV变电所35kV所用变压器串联电抗器后各种相间短路没有灵敏度,在35kV所用变压器串联电抗器后发生各种相间短路时,该保护不能够启动和切除该故障,只有等到该串联电抗器烧到使短路电流达到该保护有灵敏度能够启动切除该故障为止。因此,针对500kV变电所35kV所用变压器串联电抗器后各种相间短路,目前没有保护装置来保护该串联电抗器,这不符合相关电网运行规程关于“禁止任何电气设备无保护运行”的要求。
发明内容
本发明的目的在于提供一种500kV变电所35kV所用变压器串联电抗器后各种相间短路的继电保护方法,本发明适用于电力输配电网络,以大大减轻短路电流对串联电抗器的损害。
下面给出本发明方法的技术方案。
本发明的方法所应用的输配电网络为现有500kV变电所一次主接线中的35kV系统网络。该输配电网络的35kV系统一次主接线中包括有500kV变压器35kV部分,包括两种情形:1、旧500kV变电所500kV变压器35kV侧一般有断路器,并串接有电流互感器(下面简称TA);2、新500kV变电所500kV变压器35kV侧一般没有断路器,只有相应TA。此外,35kV部分串接有35kV母线,35kV母线还接有35kV低压并联电抗器支路或35kV电容器支路、35kV所用变压器支路和35kV电压互感器及35kV母线避雷器。35kV所用变压器支路由下列部分组 成:母线侧隔离开关、串联电抗器、断路器、TA、35kV所用变压器。
由于目前各500kV变压器配置的35kV侧复合电压过流保护对该变电所35kV所用变压器串联电抗器后各种相间短路没有灵敏度不能够启动和切除该故障,因此,需考虑采用其他原理的保护装置来解决这一问题。通过分析,可采用增加一段35kV侧距离保护可以来作为35kV所用变压器串联电抗器保护。基于此,本发明的方法包括以下控制步骤:
步骤1:在500kV变压器35kV侧后备保护装置中增加一段35kV阻抗原理保护装置,所述阻抗原理保护装置由一段方向或偏移相间距离保护和一段方向或偏移接地距离保护组成,其中所述一段方向或偏移相间距离保护针对35kV所用变压器的支路以及其它35kV支路的相间短路故障进行保护,所述一段方向或偏移接地距离保护针对不同35kV支路发生不同相的两点接地故障进行保护;
步骤2:所述一段方向或偏移相间距离保护和所述一段方向或偏移接地距离保护指向35kV母线部分的阻抗,按35kV所用变压器串联电抗器后各种相间短路所要求的灵敏度进行整定;
步骤3:当35kV所用变压器串联电抗器后发生相间短路时,经过预定的延时跳500kV变压器35kV侧断路器或跳500kV变压器其他侧断路器,切除该故障。
本发明上述的一种500kV变电所35kV所用变压器串联电抗器后各种相间短路的继电保护方法的进一步优选方案是:
本发明步骤1中所述的一段方向或偏移相间距离保护和所述一段方向或偏移接地距离保护,是由500kV变压器主保护和后备保护一体化的微机控制的继电保护装置的功能模块完成;根据需要也可选择其它阻抗原理的保护装置。
本发明步骤2中所述的一段方向或偏移相间距离保护和所述一段方向或偏移接地距离保护指向35kV母线部分的阻抗,是按照如下公式进行整定:
Zzd=KlmZL
上式中:Zzd为500kV变压器35kV侧阻抗原理保护的阻抗整定值、Klm为相间短路所要求的灵敏系数、ZL为35kV所用变压器串联电抗器的阻抗值;所述相间短路所要求的灵敏系数为1.3~1.5;若所述35kV所用变压器串联电抗器的阻抗值为6.24Ω,则所述一段方向或偏移相间距离保护和所述一段方向或偏移接地距离保护指向35kV母线部分的阻抗整定值为8.11~9.36Ω。
本发明所述的一种500kV变电所35kV所用变压器串联电抗器的继电保护方法与现有技术相比,具有如下优点:
1.采用方向或偏移阻抗原理保护解决了35kV所用变压器串联电抗器后发生各种相间短路却没有保护的问题,如采用方向或偏移阻抗原理保护可以使得检测相间短路的灵敏度提高到1.3~1.5,甚至达1.5以上;当35kV串联电抗器后发生短路故障时,保护可以可靠的快速的切除该故障,大大减轻了短路电流对电抗器的损害。
2.该方法在采用500kV变压器主保护和后备保护一体化设计的微机控制的继电保护装置的情况下,不需要增加硬件保护设备,只需在500kV变电所500kV变压器主保护和后备保护一体化设计的微机控制继电保护装置中的35kV侧后备保护中增加方向或偏移距离保护原理的软件功能模块即可,实施简单可靠,适合在全国各电力输配电网络上推广使用。
3.500kV变压器35kV侧阻抗原理保护还可以兼作为35kV母线故障的保护。
附图说明
图1是现有500kV变电所35kV系统一次主接线的示意图。
具体实施方案
如图1所示,在本发明的方法所应用的输配电网络为500kV变电所一次主接线中的35kV系统网络。该输配电网络的35kV系统一次主接线中包括有500kV变压器35kV部分(新500kV变电所500kV变压器35kV侧一般没有断路器,只有相应电流互感器,旧500kV变电所500kV变压器35kV侧一般有断路器),500kV变压器35kV部分串接有35kV母线,35kV母线还接有35kV低压并联电抗器支路、35kV电容器支路、35kV所用变压器支路和35kV电压互感器及35kV母线避雷器。35kV所用变压器支路由下列部分组成:母线侧隔离开关、串联电抗器、断路器、电流互感器(TA)、35kV所用变压器。
下面给出本发明方法的实施例:
1、500kV变压器35kV侧复合电压过流保护在35kV所用变压器串联电抗器后发生各种相间短路分析
(1)500kV变压器35kV侧复合电压过流保护整定
500kV变压器35kV侧复合电压过流保护按躲过变压器35kV侧最大负荷电流整定:
Izd=KkIfh.max/Kf  (1)
式(1)中,Izd为500kV变压器35kV侧复合电压过流保护整定值;Kk为可靠系数,一般为1.2;Ifh.max为变压器35kV侧最大负荷电流,一般取变压器该侧额定电流;Kf为复合电压过流保护的返回系数,一般取0.85-0.95。
以750MVA和1000MVA变压器为例,35kV侧额定容量为全容量的1/3、额定电压为36kV,Kf取0.85,则Izd分别为5600A和7560A;动作时限为1.0s。
(2)35kV所用变压器串联电抗器后发生各种相间短路
35kV所用变压器串联电抗器阻抗一般为≧6Ω。某500kV变电所,35kV所用变压器串联电抗器阻抗为6.24Ω,35kV母线系统等值阻抗为0.67~0.68Ω,在最大运行方式下,三相短路电流仅为3091A;即使忽略系统阻抗在最大运行方式下,三相短路电流仅为3423A。由此可见,500kV变压器35kV侧复合电压过流保护对35kV所用变压器串联电抗器阻抗后面短路没有灵敏度,即35kV所用变压器串联电抗器阻抗没有保护。
2、采用阻抗原理保护在35kV所用变压器串联电抗器后发生各种相间短路分析
(1)500kV变压器35kV侧距离保护整定
指向500kV变压器部分的阻抗按躲过500kV变压器其他侧短路故障整定;
指向35kV母线部分的阻抗,按35kV所用变压器串联电抗器后各种相间短路有足够的灵敏度整定:
Zzd=KlmZL  (2)
式(2)中Zzd为500kV变压器35kV侧阻抗原理保护的阻抗整定值;Klm为相间短路所要求的灵敏系数,可设为1.3~1.5;ZL为35kV所用变压器串联电抗器的阻抗值。方向或偏移元件阻抗由变压器指向35kV母线。
(2)500kV变压器35kV侧距离保护配置
对于35kV所用变压器串联电抗器后发生的相间短路,可配置一段方向或偏移相间距离保护装置来切除该故障;若35kV所用变压器串联电抗器后某相上发生一点接地故障,又在另一个35kV支路发生了另一相接地故障,此时为两相接地短路故障,可配置一段方向或偏移接地距离保护装置来切除该故障。
(3)500kV变压器35kV侧距离保护分析
按式(2)进行保护定值整定,若35kV所用变压器串联电抗器阻抗为6.24Ω,Zzd可整定为8.11~9.36Ω。由于500kV变压器35kV侧距离保护在35kV所用变压器串联电抗器后发生相间短路有1.3~1.5倍灵敏度,因此,该保护能够动作 切除故障,因而解决了该设备故障无保护运行的问题。由于35kV母线上只有无功补偿的电容器支路或低压并联电抗器支路和35kV所用变压器支路,没有线路支路,因此,500kV变压器35kV侧距离保护与各支路保护能够很好的配合。同时,500kV变压器35kV侧距离保护还可以兼作为35kV母线故障的保护。

Claims (4)

  1. 一种500kV变电所35kV所用变压器串联电抗器的继电保护控制方法,其特征在于该方法包括以下控制步骤:
    步骤1:在500kV变压器35kV侧后备保护装置中增加一段35kV阻抗原理保护装置,所述阻抗原理保护装置由一段方向或偏移相间距离保护和一段方向或偏移接地距离保护组成,其中所述一段方向或偏移相间距离保护是针对35kV所用变压器的支路以及其它35kV支路的相间短路故障进行保护,所述一段方向或偏移接地距离保护是针对不同35kV支路发生不同相的两点接地故障进行保护;
    步骤2:所述一段方向或偏移相间距离保护和所述一段方向或偏移接地距离保护指向35kV母线部分的阻抗,按35kV所用变压器串联电抗器后各种相间短路所要求的灵敏度进行整定;
    步骤3:当35kV所用变压器串联电抗器后发生相间短路时,经过预定的延时跳500kV变压器35kV侧断路器或跳500kV变压器其他侧断路器,切除该故障。
  2. 根据权利要求1所述的继电保护控制方法,步骤1中所述一段方向或偏移相间距离保护和所述一段方向或偏移接地距离保护,是由500kV变压器主保护和后备保护一体化的微机控制的继电保护装置的功能模块完成。
  3. 根据权利要求1或2所述的继电保护控制方法,步骤2中所述一段方向或偏移相间距离保护和所述一段方向或偏移接地距离保护指向35kV母线部分的阻抗,是按照如下公式进行整定:
    Zzd=KlmZL
    上式中:Zzd为500kV变压器35kV侧阻抗原理保护的阻抗整定值、Klm为相间短路所要求的灵敏系数、ZL为35kV所用变压器串联电抗器的阻抗值。
  4. 根据权利要求3所述的继电保护控制方法,所述相间短路所要求的灵敏系数为1.3~1.5,若所述35kV所用变压器串联电抗器的阻抗值为6.24Ω,则所述一段方向或偏移相间距离保护和所述一段方向或偏移接地距离保护指向35kV母线部分的阻抗整定值为8.11~9.36Ω。
PCT/CN2014/092807 2013-12-03 2014-12-02 500kV变电所35kV所用变压器串联电抗器的继电保护控制方法 WO2015081849A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310644136.1A CN103595022B (zh) 2013-12-03 2013-12-03 500kV变电所35kV所用变压器串联电抗器的继电保护控制方法
CN201310644136.1 2013-12-03

Publications (1)

Publication Number Publication Date
WO2015081849A1 true WO2015081849A1 (zh) 2015-06-11

Family

ID=50085057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092807 WO2015081849A1 (zh) 2013-12-03 2014-12-02 500kV变电所35kV所用变压器串联电抗器的继电保护控制方法

Country Status (2)

Country Link
CN (1) CN103595022B (zh)
WO (1) WO2015081849A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111668815A (zh) * 2020-04-29 2020-09-15 中国电力科学研究院有限公司 一种用于确定交流电力系统距离保护定值的方法及系统
CN112653110A (zh) * 2021-01-11 2021-04-13 中国能源建设集团华东电力试验研究院有限公司 一种海上风电继电保护整定计算系统的计算方法
CN112993944A (zh) * 2021-02-05 2021-06-18 西安热工研究院有限公司 一种发电机变压器组并网断路器闪络保护方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595022B (zh) * 2013-12-03 2017-11-28 国家电网公司 500kV变电所35kV所用变压器串联电抗器的继电保护控制方法
CN105022905B (zh) * 2014-04-16 2018-04-06 国家电网公司 电力系统系统阻抗的更新方法和装置
CN106099856B (zh) * 2016-07-28 2018-10-12 国网江苏省电力公司镇江供电公司 500kV变电站35kV所用变压器串联电抗器保护装置及保护方法
CN106169737B (zh) * 2016-08-29 2019-02-26 国网江苏省电力公司镇江供电公司 大电流启动500kV变电站35kV简易母线保护继电保护方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091433A (en) * 1977-02-10 1978-05-23 General Electric Company Protective relay circuit for interphase faults
CN101614779A (zh) * 2008-12-30 2009-12-30 许继集团有限公司 判别并联电抗器匝间短路、两相短路和单相短路的方法
CN202471886U (zh) * 2012-03-07 2012-10-03 华北电网有限公司唐山供电公司 一种串联电抗器在线监测及保护装置
CN102882188A (zh) * 2012-08-10 2013-01-16 国电南瑞科技股份有限公司 500kv变电站集中式数字化35kV单母线单元保护测控系统
CN103595022A (zh) * 2013-12-03 2014-02-19 国家电网公司 500kV变电所35kV所用变压器串联电抗器的继电保护控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3790053B2 (ja) * 1998-10-14 2006-06-28 株式会社東芝 距離継電器
CN101227085B (zh) * 2008-01-02 2011-09-14 朱声石 确保距离保护后备段不受过负荷影响的方法
CN102082423B (zh) * 2011-01-21 2013-07-31 华北电力大学 一种线路相间故障继电保护方法
CN102545174B (zh) * 2012-01-10 2014-08-27 广东省电力调度中心 一种超高压线路距离后备保护整定方法
CN102969696A (zh) * 2012-11-14 2013-03-13 国家电网公司 一种电力系统继电保护处理方法
CN103346544B (zh) * 2013-07-22 2016-06-08 深圳供电局有限公司 电力线路距离iii段保护误动隐患消除方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091433A (en) * 1977-02-10 1978-05-23 General Electric Company Protective relay circuit for interphase faults
CN101614779A (zh) * 2008-12-30 2009-12-30 许继集团有限公司 判别并联电抗器匝间短路、两相短路和单相短路的方法
CN202471886U (zh) * 2012-03-07 2012-10-03 华北电网有限公司唐山供电公司 一种串联电抗器在线监测及保护装置
CN102882188A (zh) * 2012-08-10 2013-01-16 国电南瑞科技股份有限公司 500kv变电站集中式数字化35kV单母线单元保护测控系统
CN103595022A (zh) * 2013-12-03 2014-02-19 国家电网公司 500kV变电所35kV所用变压器串联电抗器的继电保护控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111668815A (zh) * 2020-04-29 2020-09-15 中国电力科学研究院有限公司 一种用于确定交流电力系统距离保护定值的方法及系统
CN111668815B (zh) * 2020-04-29 2022-09-20 中国电力科学研究院有限公司 一种用于确定交流电力系统距离保护定值的方法及系统
CN112653110A (zh) * 2021-01-11 2021-04-13 中国能源建设集团华东电力试验研究院有限公司 一种海上风电继电保护整定计算系统的计算方法
CN112993944A (zh) * 2021-02-05 2021-06-18 西安热工研究院有限公司 一种发电机变压器组并网断路器闪络保护方法
CN112993944B (zh) * 2021-02-05 2022-10-21 西安热工研究院有限公司 一种发电机变压器组并网断路器闪络保护方法

Also Published As

Publication number Publication date
CN103595022A (zh) 2014-02-19
CN103595022B (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
WO2015081849A1 (zh) 500kV变电所35kV所用变压器串联电抗器的继电保护控制方法
US9054557B2 (en) Voltage balancing of symmetric HVDC monopole transmission lines after earth faults
WO2019119886A1 (zh) 一种串联补偿器及控制方法
CN109861180B (zh) 防分段断路器死区故障母差保护闭锁备自投保护方法
US20130271888A1 (en) Photovoltaic System and Apparatus for Operating a Photovoltaic System
CN110011285B (zh) 一种高压大容量柔性直流工程的接地系统及方法
EP3036813B1 (en) Electric protection on ac side of hvdc
CN109936121B (zh) 110kV单母线分段接线母差保护闭锁备自投保护方法
EP2530804A1 (en) Improved ground fault handling in power distribution systems with mixed underground and aerial power lines
CN107317308A (zh) 单母线分段110kV母差保护自适应闭锁备自投保护方法
Kuchanskyy The prevention measure of resonance overvoltges in extra high voltage transmission lines
WO2019149385A1 (en) Surge arrestor dimensioning in a dc power transmission system
CN104852361A (zh) 配电网故障切除加速方法和继电保护装置
CN105098734B (zh) 一种防10kV开关越级跳闸的方法及保护控制装置
US9917475B2 (en) Variable neutral impedance for multi-source system
Shobole et al. Protection Coordination Practices for Industrial Ring Distribution Network Case Study of Organized Industrial Zone (GEBZE, Turkey)
CN113889985B (zh) 一种钻石型电网的继电保护系统
Basu et al. Maintaining balanced three‐phase load voltage during single‐phase auto‐reclosing in medium voltage distribution lines
CN109494701A (zh) 一种变电站用过电压防护电路及其应用
CN205283094U (zh) 用于继电保护装置的插接式电流切换端子
Panasetsky et al. On the problem of shunt reactor tripping during single-and three-phase auto-reclosing
EP2330709B1 (en) Ground fault handling in power distribution systems with mixed underground and aerial power lines
KR100961171B1 (ko) 발전기 비동기투입 보호 장치
CN103762553A (zh) 基于断路器分闸位置加速切除的变压器死区故障继电保护方法
CN105024347B (zh) 阻塞滤波器保护设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867206

Country of ref document: EP

Kind code of ref document: A1