WO2015081788A1 - 一种两级集中部署的供电电压自动采集系统及其方法 - Google Patents
一种两级集中部署的供电电压自动采集系统及其方法 Download PDFInfo
- Publication number
- WO2015081788A1 WO2015081788A1 PCT/CN2014/091855 CN2014091855W WO2015081788A1 WO 2015081788 A1 WO2015081788 A1 WO 2015081788A1 CN 2014091855 W CN2014091855 W CN 2014091855W WO 2015081788 A1 WO2015081788 A1 WO 2015081788A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- data
- monitoring
- power supply
- voltage monitoring
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00002—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00032—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
- H02J13/00034—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00006—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
- H02J13/00022—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
- H02J13/00026—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission involving a local wireless network, e.g. Wi-Fi, ZigBee or Bluetooth
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/30—State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/12—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
- Y04S40/126—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission
Definitions
- the invention belongs to the technical field of power system automatic monitoring, and more particularly relates to a two-stage centralized deployment power supply voltage automatic collecting system and a method thereof.
- voltage quality refers to a slowly changing voltage deviation value indicator, which is one of the important indicators of power quality.
- Voltage quality can be divided into two types: grid voltage quality and supply voltage quality.
- the acquisition system is established at the provincial company or the city level, or the voltage data is collected, transmitted and calculated by manual input, and the voltage data is connected through a firewall or an isolation device. Information intranet to achieve monitoring of voltage quality.
- the technology currently used mainly distributes the main station system in the provinces and cities, causing waste of hardware resources, and cannot be applied across enterprises, resulting in information islands.
- the current device communication mainly uses the wireless public network method based on GPRS and short message to send data into the power information intranet through a firewall or an isolation device, and there are lapped, forged, unauthorized terminal intrusion, transmission channel security, and terminal non- Authorize access to risks such as intranet business systems.
- the purpose of the invention is: for the power supply voltage collection technology of the wide-area distribution power enterprises in the country can not realize the automatic collection and monitoring of the supply voltage data, and there are information islands in the collection, transmission, storage and analysis, and the system is repeatedly constructed and cannot be unified.
- the application, information and communication resources waste and the security of the external network data access power information intranet provide a two-level centralized deployment of the power supply voltage automatic acquisition system and method thereof.
- the invention adopts a three-layer system framework of a device layer, an access layer and a main station layer, and centrally deploys a monitoring main station at a provincial power company and a headquarters level to realize real-time collection and transmission of voltage data, unified storage and service application; Make full use of the voltage data existing in the business information system such as scheduling and marketing, adopt a unified interface to ensure the stability of the system core, and adapt to the data access of heterogeneous systems, saving communication and information resources.
- the invention also installs a security chip in the device, is matched with the provincial security access platform, adopts policies of identity authentication, encrypted transmission and access control to realize voltage data security. Access to the power information intranet.
- the two-stage centralized deployment of the power supply voltage automatic acquisition system of the present invention is implemented by the following technical solutions, including a device layer, an access layer, and a primary station layer, and the device layer is composed of voltage monitoring devices.
- the voltage monitoring device collects, processes and encrypts the voltage monitoring information; the voltage monitoring device performs the effective value sampling on the monitored voltage, and takes the average value of 1 min as the real-time actual operating voltage of the monitored system, and the daily qualified rate of the voltage according to the upper and lower limits of the voltage.
- the access layer is a voltage monitoring proxy device, which is used for realizing the convergence and forwarding of voltage monitoring information and the issuance of the control command of the main station layer;
- the monitoring agent device comprises a data receiving and processing module and a control command issuing module, wherein the data receiving and processing module is used for collecting voltage monitoring data collected by the voltage monitoring device within its jurisdiction and uniformly transmitting the data to the main station layer, and controlling The command issuing module is configured to forward a control command of the primary station layer, where the control command includes parameter configuration, and remote Upgrade and data summoning;
- the main station layer is the voltage monitoring main station, including the voltage data access service module, the voltage data processing module, the voltage database, and the voltage data access service is used to receive and analyze the voltage data forwarded by the voltage monitoring agent, and receive and Parsing voltage data of the horizontal integrated system including the scheduling and marketing business system, forwarding the control command issued by the primary station to the voltage monitoring device, and logging the information entering and leaving the primary station system;
- a further feature of the above technical solution is that a security chip is built in the voltage monitoring device, and is used for realizing identity authentication, encrypted transmission, and secure access of external network voltage data.
- the method for automatically collecting the power supply voltage in the two-stage centralized deployment of the present invention includes the following steps:
- the voltage monitoring device performs sampling of the effective value of the monitored voltage, and takes the average value of 1 min as the real-time actual operating voltage of the monitored system, and the daily qualified rate of the voltage and the monthly pass rate according to the upper and lower limits of the voltage, and Uniformly encrypt the data and transmit it to the voltage monitoring proxy device;
- the voltage monitoring agent device collects the voltage monitoring data collected by the voltage monitoring device within its jurisdiction and uniformly transmits the data to the voltage monitoring main station, and forwards the control command of the voltage monitoring main station, wherein the control command includes parameter configuration, Remote upgrade and data summoning;
- the voltage monitoring main station receives and analyzes the voltage data forwarded by the voltage monitoring agent device, receives and parses the voltage data of the horizontal integrated system including the scheduling and marketing system, and issues a control command to the voltage monitoring device to enter and exit the main station system.
- Information for logging
- the voltage monitoring main station After the power supply voltage data is concentrated in the voltage database, the voltage monitoring main station performs secondary processing on the power supply voltage data, and uses the daily and monthly pass rate statistics to calculate the quarterly and annual pass rate of the monitoring point and the integrated power supply voltage of each unit. Rate, classification voltage pass rate.
- a further feature of the above technical solution is that the voltage monitoring main station transmits the voltage data through the E language file transmission mode and the dispatching system, and transmits the voltage data through the WebService method and the marketing system.
- a further feature of the foregoing technical solution is that data communication is performed between the provincial company database and the headquarters database by using remote distributed data acquisition and data exchange, and the remote distributed data acquisition is implemented by a page embedding technology.
- the beneficial effects of the present invention are as follows:
- the present invention realizes voltage data collection, secure transmission, and unified analysis application through a two-level centralized deployment manner, and saves information and communication resources by accessing data of a business system such as scheduling marketing through a unified interface.
- FIG. 1 is a structural diagram of a two-stage centralized deployment power supply voltage automatic acquisition system according to the present invention.
- FIG. 2 is a schematic diagram of data transmission between a voltage monitoring device and a voltage monitoring proxy device of the present invention.
- FIG. 3 is a functional structural diagram of a voltage monitoring main station of the present invention.
- Figure 4 is a schematic view of the safety protection of the present invention.
- the two-stage centralized deployment of the power supply voltage automatic acquisition system of the present invention adopts a three-layer structure of a device layer, an access layer, and a master station layer.
- the device layer focuses on the development of stable and reliable power supply voltage acquisition and standardized data generation technology, which is a voltage monitoring device.
- the access layer focuses on the standardized access technology for data development and is a voltage monitoring proxy device.
- the main station layer focuses on the development of data application technologies such as storage, processing, presentation, analysis and evaluation of supply voltage information.
- the interface levels are: level 1 interface I1 and level 2 interface I2.
- the I1 interface is an interface between the device layer and the access layer.
- the monitoring device is implemented by a relatively low-level interface protocol.
- the main interaction processes include heartbeat detection, data upload, data request, configuration/status interaction, traffic delivery, and event. Send and remotely update seven processes.
- the I2 interface is an interface between the access layer and the main station layer. It is oriented to the primary station and is implemented by an advanced communication protocol with good scalability.
- the main interaction processes include heartbeat detection, data upload, data summoning, read configuration interaction, and write configuration interaction. And remotely update the six processes.
- the voltage monitoring device of the device layer realizes collection, processing and encrypted transmission of voltage monitoring information.
- the voltage monitoring device uses the RMS value to sample the monitored voltage, and takes the average value of 1 min as the real-time actual operating voltage of the monitored system. According to the upper and lower limits of the voltage, the voltage daily pass rate and the monthly pass rate are unified.
- the rules encrypt the data and transmit it to the access layer.
- the data transmission relationship between the voltage monitoring agent device and the voltage monitoring device of the access layer is as shown in FIG. 2 .
- the voltage monitoring agent device realizes the convergence and forwarding of the voltage monitoring information and the delivery of the control command of the main station.
- the voltage monitoring agent device is a proxy device capable of managing and coordinating various voltage monitoring devices in a local range, collecting various types of voltage monitoring data, and replacing the voltage monitoring device with the primary station system for secure two-way data communication.
- the voltage monitoring proxy device comprises a data receiving and processing module and a control command issuing module, and the data receiving and processing module collects the voltage monitoring data collected by the voltage monitoring device within its jurisdiction and transmits the data to the primary station in a unified manner.
- the control command issuing module forwards the control commands such as parameter configuration, remote upgrade, and data summoning at the primary station layer.
- the voltage monitoring agent device can access a set of voltage monitoring devices on different types, different manufacturers or even different substation/user stations, thereby realizing standardized access of various voltage monitoring devices.
- the voltage monitoring main station is a computer system that can access various types of voltage monitoring information and perform centralized storage, unified processing and application. As shown in FIG. 3, the voltage monitoring main station includes a voltage data access service module, a voltage data processing module, a voltage database, and a voltage data service and various power supply voltage data application function modules.
- the voltage data access service module is a centralized gateway of the primary station, receives and analyzes the voltage data forwarded by the voltage monitoring agent, receives and analyzes the voltage data of the horizontal integrated system such as the scheduling and marketing service, and forwards the voltage sent by the primary station to the voltage monitoring device. Control commands to log information to and from the primary system.
- the voltage data processing module performs secondary processing on the power supply voltage data after the power supply voltage data is concentrated in the database, and uses the daily and monthly pass rate statistical data to calculate the quarterly and annual pass rate of the monitoring point and the comprehensive power supply voltage pass rate and the classification voltage of each unit. Qualification rate, and features such as abnormal information extraction and interference filtering.
- the voltage database is a two-level centralized storage, consisting of a provincial company database and a headquarters database. It is built on an enterprise-level relational database. According to the frequency of collection of minute-level data, the storage technology of partitioned tables is used to ensure the response time requirements of various database operations. And data maintenance requirements.
- the provincial company database stores the minute average data of all monitoring points and the statistics of the daily and monthly seasons, the comprehensive supply voltage pass rate and the classification voltage pass rate data;
- the headquarters database stores statistical data, including the preservation of provincial companies. There are statistical data of the daily and monthly seasons of the monitoring points and the qualified rate of the comprehensive power supply voltage and the qualified rate of the classified voltage of the power supply enterprises at the provincial, prefecture and county levels.
- the present invention also incorporates a security chip in the voltage monitoring device.
- the voltage monitoring device establishes a two-way encrypted channel through the wireless private network security access platform between the security chip and the system side of the primary station to implement identity authentication and encrypted transmission of the collection terminal, and finally realizes secure connection of voltage data of the external network.
- the automatic collection method of the power supply voltage based on the above two levels of centralized deployment of the power supply voltage automatic acquisition system includes the following steps:
- the voltage monitoring device performs sampling of the effective value of the monitored voltage, and takes the average value of 1 min as the real-time actual operating voltage of the monitored system, and the daily qualified rate of the voltage and the monthly pass rate according to the upper and lower limits of the voltage, and The data is encrypted and transmitted to the voltage monitoring proxy device.
- the voltage monitoring agent device collects the voltage monitoring data collected by the voltage monitoring device within its jurisdiction and uniformly transmits the data to the voltage monitoring main station, and forwards the control command of the voltage monitoring main station, wherein the control command includes parameter configuration, Remote upgrade and data summoning.
- the voltage monitoring main station receives and analyzes the voltage data forwarded by the voltage monitoring agent device, receives and parses the voltage data of the horizontal integrated system including the scheduling and marketing system, and issues a control command to the voltage monitoring device to enter and exit the main station system. The information is logged.
- the voltage monitoring main station After the power supply voltage data is concentrated in the voltage database, the voltage monitoring main station performs secondary processing on the power supply voltage data, and uses the daily and monthly pass rate statistics to calculate the quarterly and annual pass rate of the monitoring point and the integrated power supply voltage of each unit. Rate, classification voltage pass rate.
- the voltage monitoring main station can be automatically integrated with the dispatching system, and the voltage data is unified and dispatched by the E language file transmission mode, thereby adapting to the safety isolation device of the dispatching system in the control area.
- the voltage data can be transmitted in the WebService format.
- Remote distributed data acquisition and data exchange can be used for data communication between the provincial company database and the headquarters database.
- the service data can be classified according to the business attention of the headquarters management user, and the business data with high degree of attention can be locally stored and applied through data exchange, and the information with low attention can be realized by the page embedding technology.
- Remote access to distributed data acquisition. The unification of the two can achieve the most reasonable system function.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
一种两级集中部署的供电电压自动采集系统及其方法,属于电力系统自动化监测技术领域,该系统及其方法通过采用装置层、接入层、主站层三层体系框架,在省级电力公司及总部两级集中部署监测主站,实现电压数据的实时采集及传输,统一存储及业务应用。该系统和方法能够充分利用调度、营销等业务信息系统中已有的电压数据,在确保系统内核的稳定的同时还能适应异构系统的数据接入,节约通信及信息资源;并且通过在装置中加装安全芯片,与省级安全接入平台配套使用,采用身份认证、加密传输以及访问控制等策略,能够实现电压数据安全接入电力信息内网。
Description
本发明属于电力系统自动化监测技术领域,更准确地说本发明涉及一种两级集中部署的供电电压自动采集系统及其方法。
众所周知,电压质量是指缓慢变化的电压偏差值指标,是电能质量的重要指标之一。电压质量可分为电网电压质量及供电电压质量两种。目前在我国的电力系统中,多在省公司或地市层面建立采集系统,或采用手工录入的方式,对电压数据进行采集、传输及计算,并通过防火墙或隔离装置的方式将电压数据接入信息内网,从而实现对电压质量的监测。
但是,目前对供电电压数据采集及监测的技术方案也存在一些不足,主要为:
1、目前采用的技术主要在省及各地市分布式部署主站系统,造成硬件资源的浪费,且无法跨企业应用,造成信息孤岛。
2、目前部分企业采用手工抄表的方式采集电压数据,无法确保数据传输的及时性及准确性,且造成人力资源的浪费。
3、目前的技术无法实现采集装置的远程控制,产生大量的装置现场维护费用。
4、目前的装置通信主要通过基于GPRS及短消息的无线公网方式,通过防火墙或隔离装置将数据送入电力信息内网,存在搭接、伪造、非授权终端侵入、传输通道安全以及终端非授权访问内网业务系统等风险。
发明内容
本发明的目的是:针对全国广域分布的电力企业中各类供电电压采集技术无法实现供电电压数据自动采集监测,且在采集、传输、存储及分析上存在信息孤岛,系统重复建设、无法统一应用、信息和通信资源浪费以及外网数据接入电力信息内网的安全性问题,提供一种两级集中部署的供电电压自动采集系统及其方法。
本发明通过采用装置层、接入层、主站层三层体系框架,在省级电力公司及总部两级集中部署监测主站,实现电压数据的实时采集及传输,统一存储及业务应用;同时充分利用调度、营销等业务信息系统中已有的电压数据,采用统一接口确保系统内核的稳定性,并适应异构系统的数据接入,节约通信及信息资源。本发明还在装置中加装安全芯片,与省级安全接入平台配套使用,采用身份认证、加密传输以及访问控制等策略,实现电压数据安全
接入电力信息内网。
具体地说,本发明的两级集中部署的供电电压自动采集系统,是采用以下的技术方案来实现的,包括装置层、接入层及主站层,装置层由各电压监测装置组成,用于实现电压监测信息的采集、处理以及加密传输;电压监测装置对被监测电压进行有效值采样,并以1min平均值作为被监测系统的即时实际运行电压,根据电压上下限值统计电压日合格率及月合格率,并以统一将数据加密后传输至接入层;接入层为电压监测代理装置,用于实现电压监测信息的汇聚、转发及主站层控制命令的下发;所述电压监测代理装置包括数据接收及处理模块和控制命令下发模块,其中数据接收及处理模块用于汇集其所辖范围内的电压监测装置采集的电压监测数据并统一将数据传输至主站层,控制命令下发模块用于转发主站层的控制命令,所述控制命令包括参数配置、远程升级及数据召唤;主站层为电压监测主站,包括电压数据接入服务模块、电压数据处理模块、电压数据库,电压数据接入服务用于接收并解析电压监测代理转发的电压数据、接收并解析包括调度和营销业务系统在内的横向集成系统的电压数据、转发主站对电压监测装置发出的控制命令以及对进出主站系统的信息进行日志记录;电压数据处理模块用于将供电电压数据集中到电压数据库中后对供电电压数据的二次加工、利用日月合格率统计数据计算监测点季度、年度合格率以及各级单位的综合供电电压合格率、分类电压合格率、同时具备异常信息提取和干扰过滤功能;电压数据库分为两级集中存储模式、由省公司数据库和总部数据库组成,基于企业级关系型数据库构建,按照分钟级数据的采集频率,采用分区分表的存储技术以保证各类数据库操作的响应时间要求以及数据维护要求,其中省公司数据库用于存储所有监测点的分钟平均值数据和日月季年统计数据、综合供电电压合格率及分类电压合格率数据,总部数据库用于保存包括保存各省公司所有监测点的日月季年统计数据和省地市县级供电企业综合供电电压合格率及分类电压合格率在内的统计数据;所述装置层与接入层之间的接口,面向电压监测装置,采用底层的接口协议实现;所述接入层到主站层之间的接口,面向电压监测主站,采用具有扩展性的高级通讯协议实现。
上述技术方案的进一步特征在于,电压监测装置中内置安全芯片,用于实现采集终端身份认证、加密传输以及外网电压数据的安全接入。
而本发明的两级集中部署的供电电压自动采集方法,则包括以下步骤:
1)监测时,由电压监测装置对被监测电压进行有效值采样,并以1min平均值作为被监测系统的即时实际运行电压,根据电压上下限值统计电压日合格率及月合格率,并以统一将数据加密后传输至电压监测代理装置;
2)电压监测代理装置汇集其所辖范围内的电压监测装置采集的电压监测数据并统一将数据传输至电压监测主站,并转发电压监测主站的控制命令,所述控制命令包括参数配置、远程升级及数据召唤;
3)电压监测主站接收并解析电压监测代理装置转发的电压数据,接收并解析包括调度和营销系统在内的横向集成系统的电压数据,并对电压监测装置发出控制命令,对进出主站系统的信息进行日志记录;
4)在供电电压数据集中到电压数据库中后,电压监测主站对供电电压数据进行二次加工,利用日月合格率统计数据计算监测点季度、年度合格率以及各级单位的综合供电电压合格率、分类电压合格率。
上述技术方案的进一步特征在于,电压监测主站通过E语言文件传输的方式与调度系统传送电压数据,通过WebService方式与营销系统传送电压数据。
上述技术方案的进一步特征在于,省公司数据库和总部数据库之间采用远程分布式数据获取和数据交换两种方式进行数据沟通,所述远程分布式数据获取通过页面嵌入技术实现。
本发明的有益效果如下:本发明通过一种两级集中部署的方式实现电压数据的采集、安全传输及统一分析应用,通过统一的接口接入调度营销等业务系统的数据节省了信息及通信资源;采用纵向交换技术对不同业务数据采用不同的存储分析策略,适应业务层面及管理层面的不同需求;通过装置中增加加密芯片与主站侧安全接入平台配套使用实现了电压数据的安全接入;通过以上技术实现了电压数据的实时采集、及日监测分析目的。
图1为本发明的两级集中部署的供电电压自动采集系统的架构图。
图2为本发明的电压监测装置和电压监测代理装置之间的数据传输示意图。
图3为本发明的电压监测主站的功能结构图。
图4为本发明的安全防护示意图。
下面参照附图并结合实例对本发明作进一步详细描述。
如图1所示,本发明的两级集中部署的供电电压自动采集系统,采用装置层、接入层及主站层三层结构。装置层重点发展稳定可靠的供电电压采集和标准化数据生成技术,为电压监测装置。接入层重点发展数据的标准化接入技术,为电压监测代理装置。主站层重点发展供电电压信息的存储、加工、展现、分析和评估等数据应用技术。上述各层中存在两个
接口级别,分别是:第1级接口I1和第2级接口I2。I1接口是装置层与接入层之间的接口,面向监测装置,采用较为底层的接口协议实现,主要交互过程包括心跳检测、数据上传、数据请求、配置/状态交互、流量上送、事件上送、远程更新七个过程。I2接口是接入层到主站层之间的接口,面向主站,采用具有良好扩展性的高级通讯协议实现,主要交互过程包括心跳检测、数据上传、数据召唤、读配置交互、写配置交互、远程更新六个过程。
装置层的电压监测装置实现电压监测信息的采集、处理以及加密传输。监测时,电压监测装置对被监测电压采用有效值采样,并以1min平均值作为被监测系统的即时实际运行电压,根据电压上下限值统计电压日合格率及月合格率,并以一种统一的规则将数据加密后传输至接入层。
接入层的电压监测代理装置和电压监测装置之间数据传输关系如图2所示。电压监测代理装置实现电压监测信息的汇聚、转发及主站控制命令的下发。电压监测代理装置,为一种能够在一个局部范围内管理和协同各类电压监测装置、汇集各类电压监测数据、并替代电压监测装置与主站系统进行安全双向数据通信的代理装置。电压监测代理装置包括数据接收及处理模块和控制命令下发模块,数据接收及处理模块汇集其所辖范围内的电压监测装置采集的电压监测数据并以一种统一的方式将数据传输至主站,控制命令下发模块则转发主站层的参数配置、远程升级及数据召唤等控制命令。电压监测代理装置可接入不同类型、不同厂家甚至不同变电/用户站上的一组电压监测装置,从而实现各类电压监测装置的标准化接入。
电压监测主站是能接入各类电压监测信息、并进行集中存储、统一处理和应用的计算机系统。如图3所示,电压监测主站包括电压数据接入服务模块、电压数据处理模块、电压数据库以及电压数据服务和各类供电电压数据应用功能模块。其中,电压数据接入服务模块是主站的集中关口,接收并解析电压监测代理转发的电压数据、接收并解析调度和营销业务等横向集成系统的电压数据、转发主站对电压监测装置发出的控制命令,对进出主站系统的信息进行日志记录。电压数据处理模块在供电电压数据集中到数据库中后对供电电压数据进行二次加工,利用日月合格率统计数据计算监测点季度、年度合格率以及各级单位的综合供电电压合格率、分类电压合格率,同时具备异常信息提取、干扰过滤等功能。电压数据库为两级集中存储、由省公司数据库和总部数据库组成,基于企业级关系型数据库构建,按照分钟级数据的采集频率,采用分区分表的存储技术来保证各类数据库操作的响应时间要求以及数据维护要求。省公司数据库存储所有监测点的分钟平均值数据和日月季年统计数据、综合供电电压合格率及分类电压合格率数据;总部数据库保存统计数据,包括保存各省公司所
有监测点的日月季年统计数据和省、地市、县级供电企业综合供电电压合格率、分类电压合格率。
为了实现电压数据的安全接入,本发明还在电压监测装置中内置了安全芯片。如图4所示,电压监测装置通过安全芯片与主站系统侧之间通过无线专网安全接入平台建立双向加密通道,实现采集终端身份认证、加密传输,最终实现外网的电压数据安全接入。
基于以上两级集中部署的供电电压自动采集系统的供电电压自动采集方法,包括以下步骤:
1)监测时,由电压监测装置对被监测电压进行有效值采样,并以1min平均值作为被监测系统的即时实际运行电压,根据电压上下限值统计电压日合格率及月合格率,并以统一将数据加密后传输至电压监测代理装置。
2)电压监测代理装置汇集其所辖范围内的电压监测装置采集的电压监测数据并统一将数据传输至电压监测主站,并转发电压监测主站的控制命令,所述控制命令包括参数配置、远程升级及数据召唤。
3)电压监测主站接收并解析电压监测代理装置转发的电压数据,接收并解析包括调度和营销系统在内的横向集成系统的电压数据,并对电压监测装置发出控制命令,对进出主站系统的信息进行日志记录。
4)在供电电压数据集中到电压数据库中后,电压监测主站对供电电压数据进行二次加工,利用日月合格率统计数据计算监测点季度、年度合格率以及各级单位的综合供电电压合格率、分类电压合格率。
上述方法中,电压监测主站可以与调度系统自动化集成,通过E语言文件传输的方式统一与调度系统传送电压数据,从而适应调度系统在控制区存在安全隔离装置。而对于营销业务系统,则可以采用WebService方式格式传送电压数据。以上方式可以统一的接口实现信息接入及共享,节省通信及信息资源,保证系统稳定性的同时强化系统的集成能力,实现信息共享。
省公司数据库和总部数据库之间可以采用远程分布式数据获取和数据交换两种方式进行数据沟通。可以根据总部管理层用户对业务关注度对业务数据进行分类,并对于关注度较高的业务数据可以通过数据交换进行本地存储及应用,而对于关注度较低的信息则可以通过页面嵌入技术实现远程访问分布式数据获取。两者的统一可以最为合理地实现系统功能。
虽然本发明已以较佳实施例公开如上,但实施例并不是用来限定本发明的。在不脱离本发明之精神和范围内,所做的任何等效变化或润饰,同样属于本发明之保护范围。因此
本发明的保护范围应当以本申请的权利要求所界定的内容为标准。
Claims (5)
- 一种两级集中部署的供电电压自动采集系统,其特征在于,包括装置层、接入层及主站层,其中:装置层由各电压监测装置组成,用于实现电压监测信息的采集、处理以及加密传输;电压监测装置对被监测电压进行有效值采样,并以1min平均值作为被监测系统的即时实际运行电压,根据电压上下限值统计电压日合格率及月合格率,并以统一将数据加密后传输至接入层;接入层为电压监测代理装置,用于实现电压监测信息的汇聚、转发及主站层控制命令的下发;所述电压监测代理装置包括数据接收及处理模块和控制命令下发模块,其中数据接收及处理模块用于汇集其所辖范围内的电压监测装置采集的电压监测数据并统一将数据传输至主站层,控制命令下发模块用于转发主站层的控制命令,所述控制命令包括参数配置、远程升级及数据召唤;主站层为电压监测主站,包括电压数据接入服务模块、电压数据处理模块、电压数据库,其中:电压数据接入服务用于接收并解析电压监测代理转发的电压数据、接收并解析包括调度和营销业务系统在内的横向集成系统的电压数据、转发主站对电压监测装置发出的控制命令以及对进出主站系统的信息进行日志记录;电压数据处理模块用于将供电电压数据集中到电压数据库中后对供电电压数据的二次加工、利用日月合格率统计数据计算监测点季度、年度合格率以及各级单位的综合供电电压合格率、分类电压合格率、同时具备异常信息提取和干扰过滤功能;电压数据库分为两级集中存储模式、由省公司数据库和总部数据库组成,基于企业级关系型数据库构建,按照分钟级数据的采集频率,采用分区分表的存储技术以保证各类数据库操作的响应时间要求以及数据维护要求,其中省公司数据库用于存储所有监测点的分钟平均值数据和日月季年统计数据、综合供电电压合格率及分类电压合格率数据,总部数据库用于保存包括保存各省公司所有监测点的日月季年统计数据和省地市县级供电企业综合供电电压合格率及分类电压合格率在内的统计数据;所述装置层与接入层之间的接口,面向电压监测装置,采用底层的接口协议实现;所述接入层到主站层之间的接口,面向电压监测主站,采用具有扩展性的高级通讯协议实现。
- 根据权利要求1所述的两级集中部署的供电电压自动采集系统,其特征在于,电压监测装置中内置安全芯片,用于实现采集终端身份认证、加密传输以及外网电压数据的安全接入。
- 基于如权利要求1或2所述的两级集中部署的供电电压自动采集系统的供电电压自动采集方法,其特征在于,包括以下步骤:1)监测时,由电压监测装置对被监测电压进行有效值采样,并以1min平均值作为被监测系统的即时实际运行电压,根据电压上下限值统计电压日合格率及月合格率,并以统一将数据加密后传输至电压监测代理装置;2)电压监测代理装置汇集其所辖范围内的电压监测装置采集的电压监测数据并统一将数据传输至电压监测主站,并转发电压监测主站的控制命令,所述控制命令包括参数配置、远程升级及数据召唤;3)电压监测主站接收并解析电压监测代理装置转发的电压数据,接收并解析包括调度和营销系统在内的横向集成系统的电压数据,并对电压监测装置发出控制命令,对进出主站系统的信息进行日志记录;4)在供电电压数据集中到电压数据库中后,电压监测主站对供电电压数据进行二次加工,利用日月合格率统计数据计算监测点季度、年度合格率以及各级单位的综合供电电压合格率、分类电压合格率。
- 根据权利要求3所述的供电电压自动采集方法,其特征在于,电压监测主站通过E语言文件传输的方式与调度系统传送电压数据,通过WebService方式与营销系统传送电压数据。
- 根据权利要求3所述的供电电压自动采集方法,其特征在于,省公司数据库和总部数据库之间采用远程分布式数据获取和数据交换两种方式进行数据沟通,所述远程分布式数据获取通过页面嵌入技术实现。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310630494.7A CN103926459B (zh) | 2013-12-02 | 2013-12-02 | 一种两级集中部署的供电电压自动采集系统及其方法 |
CN201310630494.7 | 2013-12-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015081788A1 true WO2015081788A1 (zh) | 2015-06-11 |
Family
ID=51144752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/091855 WO2015081788A1 (zh) | 2013-12-02 | 2014-11-21 | 一种两级集中部署的供电电压自动采集系统及其方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103926459B (zh) |
WO (1) | WO2015081788A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107843765A (zh) * | 2017-11-28 | 2018-03-27 | 厦门亿力天龙科技有限公司 | 一种电压监测仪及其提高数据上报考核及时率完整率方法 |
CN111556093A (zh) * | 2020-03-27 | 2020-08-18 | 天津市普迅电力信息技术有限公司 | 一种电网信息采集用多功能边缘物联代理装置 |
CN111711625A (zh) * | 2020-06-15 | 2020-09-25 | 江苏方天电力技术有限公司 | 一种基于配电终端的电力系统信息安全加密系统 |
CN112394222A (zh) * | 2020-11-19 | 2021-02-23 | 国网山西省电力公司临汾供电公司 | 一种线损监测的负荷对比方法及系统 |
CN113067782A (zh) * | 2020-08-12 | 2021-07-02 | 浙江华云信息科技有限公司 | 基于冗余系统的高可靠性电能量采集传输系统 |
CN113079182A (zh) * | 2021-04-21 | 2021-07-06 | 广东电网有限责任公司梅州供电局 | 一种网络安全控制系统 |
CN113945748A (zh) * | 2021-08-27 | 2022-01-18 | 广西电网有限责任公司电力科学研究院 | 一种实现多接口融合的电网电压监测数据平台 |
CN114630544A (zh) * | 2022-03-21 | 2022-06-14 | 浙江千百度电子科技有限公司 | 一种数据传输采集装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103926459B (zh) * | 2013-12-02 | 2017-01-18 | 国家电网公司 | 一种两级集中部署的供电电压自动采集系统及其方法 |
CN104502667A (zh) * | 2014-12-24 | 2015-04-08 | 镇江长河电力技术有限公司 | 一种基于dtu的电压质量监测装置 |
CN104502668A (zh) * | 2014-12-24 | 2015-04-08 | 镇江长河电力技术有限公司 | 一种基于dtu的电压质量监测系统 |
CN104637265A (zh) * | 2015-02-06 | 2015-05-20 | 宁波永耀信息科技有限公司 | 调度自动化多级一体化智能值班报警系统 |
CN107247754A (zh) * | 2017-05-27 | 2017-10-13 | 国家电网公司 | 一种基于提升电力运营监测业务效率的数据归集方法 |
CN109005248B (zh) * | 2018-09-26 | 2020-02-07 | 广东电网有限责任公司 | 一种电网调度平台的二级代理装置和系统 |
CN113111095B (zh) * | 2021-04-02 | 2021-10-26 | 国网北京市电力公司 | 一种智能化信息管理方法及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101609454A (zh) * | 2009-07-22 | 2009-12-23 | 上海可鲁系统软件有限公司 | 一种数据存储和上报方法及其智能设备 |
CN101776711A (zh) * | 2010-01-19 | 2010-07-14 | 华北电网有限公司 | 一种电能量计量系统子站 |
CN102636710A (zh) * | 2012-03-31 | 2012-08-15 | 上海市电力公司 | 高压设备在线监测系统 |
CN103926459A (zh) * | 2013-12-02 | 2014-07-16 | 国家电网公司 | 一种两级集中部署的供电电压自动采集系统及其方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202488213U (zh) * | 2012-01-04 | 2012-10-10 | 华北电力科学研究院有限责任公司 | 一种用于输电线路的状态监测代理装置及系统 |
CN202956420U (zh) * | 2012-12-04 | 2013-05-29 | 国家电网公司 | 电压采集系统 |
CN103412182B (zh) * | 2013-04-08 | 2017-03-08 | 王成楷 | 利用电能计量装置监测电压合格率的方法 |
-
2013
- 2013-12-02 CN CN201310630494.7A patent/CN103926459B/zh active Active
-
2014
- 2014-11-21 WO PCT/CN2014/091855 patent/WO2015081788A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101609454A (zh) * | 2009-07-22 | 2009-12-23 | 上海可鲁系统软件有限公司 | 一种数据存储和上报方法及其智能设备 |
CN101776711A (zh) * | 2010-01-19 | 2010-07-14 | 华北电网有限公司 | 一种电能量计量系统子站 |
CN102636710A (zh) * | 2012-03-31 | 2012-08-15 | 上海市电力公司 | 高压设备在线监测系统 |
CN103926459A (zh) * | 2013-12-02 | 2014-07-16 | 国家电网公司 | 一种两级集中部署的供电电压自动采集系统及其方法 |
Non-Patent Citations (2)
Title |
---|
LI, SHENGSHENG: "Design and Development of Power Transmission Equipment Condition Monitoring Master Station System", ELECTRIC POWER INFORMATION TECHNOLOGY, vol. 8, no. 11, 30 November 2010 (2010-11-30), pages 14 - 18 * |
LI, SHENGSHENG: "Design and Development of Substation Equipment Condition Monitoring Master Station System", ELECTRIC POWER INFORMATION TECHNOLOGY, vol. 10, no. 3, 31 March 2012 (2012-03-31), pages 43 - 46 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107843765A (zh) * | 2017-11-28 | 2018-03-27 | 厦门亿力天龙科技有限公司 | 一种电压监测仪及其提高数据上报考核及时率完整率方法 |
CN111556093A (zh) * | 2020-03-27 | 2020-08-18 | 天津市普迅电力信息技术有限公司 | 一种电网信息采集用多功能边缘物联代理装置 |
CN111711625A (zh) * | 2020-06-15 | 2020-09-25 | 江苏方天电力技术有限公司 | 一种基于配电终端的电力系统信息安全加密系统 |
CN113067782A (zh) * | 2020-08-12 | 2021-07-02 | 浙江华云信息科技有限公司 | 基于冗余系统的高可靠性电能量采集传输系统 |
CN112394222A (zh) * | 2020-11-19 | 2021-02-23 | 国网山西省电力公司临汾供电公司 | 一种线损监测的负荷对比方法及系统 |
CN113079182A (zh) * | 2021-04-21 | 2021-07-06 | 广东电网有限责任公司梅州供电局 | 一种网络安全控制系统 |
CN113945748A (zh) * | 2021-08-27 | 2022-01-18 | 广西电网有限责任公司电力科学研究院 | 一种实现多接口融合的电网电压监测数据平台 |
CN113945748B (zh) * | 2021-08-27 | 2024-05-24 | 广西电网有限责任公司电力科学研究院 | 一种实现多接口融合的电网电压监测数据平台 |
CN114630544A (zh) * | 2022-03-21 | 2022-06-14 | 浙江千百度电子科技有限公司 | 一种数据传输采集装置 |
CN114630544B (zh) * | 2022-03-21 | 2023-11-17 | 浙江千百度电子科技有限公司 | 一种数据传输采集装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103926459A (zh) | 2014-07-16 |
CN103926459B (zh) | 2017-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015081788A1 (zh) | 一种两级集中部署的供电电压自动采集系统及其方法 | |
CN214228280U (zh) | 边缘物联代理设备 | |
WO2016070691A1 (zh) | 面向服务的变电站监控系统架构 | |
CN206533396U (zh) | 给水计量管理系统 | |
CN101609317A (zh) | 燃气仪表远程实时监控系统 | |
CN104835311B (zh) | 一种用电信息采集设备数据传输性能分析系统 | |
CN207833300U (zh) | 一种工地水电节能监测及无线远程控制系统 | |
CN203632354U (zh) | 电网中用电信息采集异常定位系统 | |
CN112383141A (zh) | 基于区块链的智能融合终端 | |
CN202939660U (zh) | 轨道交通自动售检票系统车站控制中心客流监控系统 | |
CN113592210A (zh) | 一种用于水务无负压二次供水设施的物联网综合管理平台 | |
CN202353815U (zh) | Gis短信电力电网服务系统 | |
CN204330009U (zh) | 基于物联网与gis的电缆井状态安全监测系统 | |
CN206258715U (zh) | 一种检测智慧城市的数据采集的设备 | |
CN106228496A (zh) | 线缆运维管理系统 | |
CN202904322U (zh) | 网络式操作票系统 | |
CN201859345U (zh) | 一种机房综合环境监测装置 | |
CN202548557U (zh) | 一种钟联网系统 | |
CN105021856A (zh) | 一种10kv配电网防窃电螺栓传感系统 | |
CN106845879A (zh) | 一种公车智能管理调度系统 | |
CN202975150U (zh) | 一种标准智能电能表 | |
CN103632225A (zh) | 电力调度通信事件过滤系统及方法 | |
CN202634077U (zh) | 基于McWill无线通信网络的配电监控系统 | |
CN113141589A (zh) | 一种基于LoRa无线通讯协议的物联网数据采集终端 | |
CN202475020U (zh) | 智能防窍电系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14867419 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14867419 Country of ref document: EP Kind code of ref document: A1 |