WO2015081466A1 - 一种节目搜索方法及装置 - Google Patents

一种节目搜索方法及装置 Download PDF

Info

Publication number
WO2015081466A1
WO2015081466A1 PCT/CN2013/088299 CN2013088299W WO2015081466A1 WO 2015081466 A1 WO2015081466 A1 WO 2015081466A1 CN 2013088299 W CN2013088299 W CN 2013088299W WO 2015081466 A1 WO2015081466 A1 WO 2015081466A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
frequency point
search
intensity
signal
Prior art date
Application number
PCT/CN2013/088299
Other languages
English (en)
French (fr)
Inventor
黎奎
马剑飞
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to PCT/CN2013/088299 priority Critical patent/WO2015081466A1/zh
Publication of WO2015081466A1 publication Critical patent/WO2015081466A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/35Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users
    • H04H60/38Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for identifying broadcast time or space
    • H04H60/41Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for identifying broadcast time or space for identifying broadcast space, i.e. broadcast channels, broadcast stations or broadcast areas

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a program search method and apparatus. Background technique
  • the set-top box searches for digital TV programs through a tuner.
  • the program search refers to scanning the network signal and storing the program information frequency information contained in the signal.
  • a full-band search is performed, and the specific performance is as follows: After the set-top box searches through the Tuner lock frequency point 1, the frequency-frequency point 2 search is performed, and then the last frequency point n is sequentially searched.
  • the full-band search is completed by searching down the frequency points one by one, and the search speed is too slow, especially when there are a large number of frequency points without signals, the prior art solution still needs to search for the frequency points, which wastes a large amount of Search time and system resources.
  • the set top box is first registered to the designated operator, and the designated operator allocates the basic frequency point for the set top box.
  • the set-top box When performing the frequency point search, the set-top box first searches for the basic frequency point, and then searches for the effective frequency point in the effective frequency point list according to the list of effective frequency points provided in the basic frequency point, so that the prior art 2 avoids the present
  • the drawback of the prior art technical solution is that it is impossible to search for programs across operators. Summary of the invention In view of this, the present invention provides a program search method and apparatus that can skip programless signal points to implement program search and perform program search across operators.
  • a first aspect of the present invention provides a program search method, which may include:
  • the effective frequency point list is sequentially searched by a demodulator. Frequency point.
  • the plurality of frequency points in the valid list are divided into a plurality of intervals in an order from small to large; and the frequency points in the effective frequency point list are searched in each interval by a plurality of demodulators in units of intervals.
  • a single demodulator searches for a frequency point within an interval, it continues to search for frequency points in the unsearched interval.
  • the strength of the second type of signal is less than the preset first strength threshold, or Outside the preset first intensity interval.
  • a second aspect of the present invention provides a program search apparatus, which may include:
  • a digital sampler for performing full-band digital sampling in a frequency band covered by a program signal to generate a digital sample sequence
  • a digital signal analysis module configured to divide at least a first type of signal and a second type of signal according to an intensity of the signal in the digital sample sequence generated by the digital sampler, where the intensity of the first type of signal is greater than a preset
  • the first intensity threshold is located at a preset first intensity interval, the first intensity threshold is greater than 0, and the first intensity interval does not include 0;
  • An effective frequency point generating module is connected to the digital signal analyzing module, and is configured to traverse the frequency points in the frequency band covered by the program signal, and the number of the first type of signals included in the preset bandwidth range of a certain frequency point exceeds Setting a threshold value, adding the frequency point to the effective frequency point list;
  • a search module connected to the effective frequency point generating module, configured to search for frequency points in the effective frequency point list by using at least one demodulator.
  • the search module includes a first search module and/or a second search module, where:
  • the first search module is configured to sequentially search for frequency points in the effective frequency point list by using a demodulator
  • the second search module is configured to divide the plurality of frequency points in the effective list into a plurality of intervals in an order from small to large; and search for each of the intervals in a section by using a plurality of demodulator The frequency points in the list of effective frequency points.
  • the second search module includes: An interval division module, configured to divide the plurality of frequency points in the effective list into a plurality of intervals in an order from small to large;
  • each of the demodulator is configured to search for frequency points in the effective frequency point list in each interval in units of intervals.
  • each demodulator is further configured to: after searching for a frequency point in an interval, continue in the unsearched interval Search frequency points.
  • the strength of the second type of signal is less than the preset first strength threshold, or is located in the Outside the preset first intensity interval.
  • a third aspect of the present invention provides a program search apparatus, including:
  • a digital sampler for performing full-band digital sampling in a frequency band covered by a program signal to generate a digital sample sequence
  • a processor configured to divide at least a first type of signal and a second type of signal according to an intensity of the signal in the digital sample sequence generated by the digital sampler, where the strength of the first type of signal is greater than or equal to a preset
  • the first intensity threshold is located in the preset first intensity interval, and traverses the frequency points in the coverage band of the program signal, and the number of the first type of signals included in the preset bandwidth range of a certain frequency point exceeds the preset.
  • a quantity threshold the frequency point is added to the effective frequency point list; and controlling at least one demodulator to search for frequency points in the effective frequency point list;
  • At least one demodulator for searching for frequency points in the list of valid frequency points under the control of the processor.
  • the processor controls at least one solution
  • the controller controls a demodulator to sequentially search for the frequency points in the effective frequency point list
  • the processor is further configured to control the solution.
  • the tuner continues to search for frequencies in the unsearched interval.
  • full-band digital sampling is performed in a frequency band covered by a program signal to generate a digital sampling sequence; and signals in the digital sampling sequence are classified into at least a first class according to an intensity.
  • a signal and a second type of signal wherein the strength of the first type of signal is greater than a preset first intensity threshold or is in a preset first intensity interval, the first intensity threshold is greater than 0, and the first intensity interval is not included 0: traversing the frequency points of the program signal coverage frequency band, when the number of the first type of signals included in the preset bandwidth range of a certain frequency point exceeds a preset number threshold, adding the frequency point to the effective frequency point a list; searching for frequency points in the list of valid frequency points by at least one demodulator.
  • the effective frequency point is obtained by digital sampling and the first intensity threshold or the first intensity interval threshold, and the acquisition of the effective frequency list does not depend on the fixed operator, and therefore,
  • the program search is performed across the operator, and in the embodiment of the present invention, the frequency points are searched in the determined effective frequency point list, and the effective frequency points in the effective frequency point list are all frequency points of the signal, and therefore, the present invention implements For example, you can skip the search for frequency points without signals.
  • multiple demodulators may be used to search for the frequency points of the respective responsible intervals in units of intervals, and the parallel search method is used. , can further speed up the program search Speed.
  • FIG. 1 is a schematic flow chart of an embodiment of a program search method according to the present invention.
  • 2a is an illustration of an embodiment of a program signal coverage band and a bandwidth range of each frequency point according to the present invention
  • FIG. 2b is a schematic diagram showing a distribution of a digitally sampled digital sample sequence of the signal of FIG. 2a;
  • FIG. 2c is a schematic diagram of a classification of a digital sample sequence according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an embodiment of a program search apparatus according to the present invention.
  • FIG. 4 is a schematic structural diagram of an embodiment of a search module in FIG. 3;
  • FIG. 5 is a schematic structural diagram of an embodiment of a second search module in FIG. 4;
  • Figure 6 is a block diagram showing the structure of another embodiment of the program search device of the present invention. Specific embodiment
  • FIG. 1 is a schematic flow chart of an embodiment of a program search method according to the present invention. As shown in Figure 1, it can include:
  • Step S110 Perform full-band digital sampling in a frequency band covered by the program signal to generate a digital sample sequence.
  • the digital sampler can perform full-band digital sampling in a frequency band covered by a program signal by using a digital sampler to generate a digital sample sequence.
  • the frequency band of the program signal coverage may be slightly different.
  • its frequency band in China ie: frequency range
  • its frequency band in China ie: frequency range
  • lllMhz-862Mhz cf.
  • lllMhz corresponds to XMhz
  • 862 corresponds to YMhz
  • the frequency band includes a total of 93 frequency points
  • each frequency point occupies 8Mhz bandwidth (also to be the lllMhz-862Mhz the entire frequency band is divided into 93 small frequency bands
  • each The frequency band occupies 8 Mhz bandwidth, that is, the difference between the start frequency and the end frequency of each small frequency band is 8 Mhz
  • each frequency point is the range shown in each trapezoidal area in Fig. 2a).
  • step S110 full-band digital sampling is performed at lllMhz-862Mhz (that is, digital sampling is performed over the entire frequency range).
  • the program signal coverage frequency band may include: 174-230Mhz and 470-862Mhz two frequency bands, wherein the frequency point in each frequency band occupies 6Mhz or 7Mhz or 8Mhz, then in this frequency band
  • step S110 full-band digital sampling is performed in two frequency bands of 174-230Mhz and 470-862Mhz, respectively.
  • the frequency band of XMhz-YMhz in FIG. 2 is taken as an example to illustrate the coverage range of the program signal and the bandwidth range of each frequency point.
  • the trapezoidal area represents the bandwidth range of the frequency point
  • the frequency point i is a no-signal area, so it does not reflect the signal bandwidth.
  • 2a is a frequency band diagram before digital sampling
  • FIG. 2b is a sampling sequence obtained after digital sampling, the actual sampling sequence will be more than that of FIG. 2b
  • FIG. 2b is only illustrated by taking a sampling sequence of frequency points as an example.
  • the reason why there is no signal value in the no-signal frequency point is that although there is no program signal in the signal, it includes an interference signal such as noise, so the sampled value is non-zero.
  • Step S111 dividing the signal in the digital sampling sequence according to the intensity, at least dividing the first type of signal and the second type of signal, wherein the intensity of the first type of signal is greater than a preset first intensity threshold or is located at a preset An intensity interval, the first intensity threshold is greater than 0, and the first intensity interval does not include zero.
  • step S111 the frequency of the signal is separated from the frequency of the signal without signal. Therefore, before step S111, a first intensity threshold (for example, 25 dBm) may be preset.
  • the first intensity threshold is greater than 0, so that in step S111, the sampling signal whose intensity is greater than the preset first intensity threshold is divided into the first type of signals, and thus, the embodiment of the present invention may first follow the first intensity threshold.
  • the frequency search range is determined in the first type of signal.
  • the first intensity interval may be preset (for example, the interval range of the first intensity interval may be [S1, S2], indicating the interval range of S1-S2), and the first intensity interval is not included. 0.
  • step S111 the sampling signal located in the preset first intensity interval is divided into the first type of signals.
  • the embodiment of the present invention may first determine the subsequent frequency point search range by using the first intensity interval.
  • the interval range of the first intensity interval is [25dbm, 70dbm]
  • the sequence of sample numbers generated in step S110 includes: 10dbm, 20dbm, 30dbm, 40dbm, 50dbm, 60dbm, and 70dbm, then in step Sill, 30dbm, 40dbm can be used. 50dbm, 60dbm, and 70dbm are classified into the first type of signals.
  • a correction value (for upper and lower limits of the extended interval) may be added to S1 and S2 respectively, and the first intensity interval is expanded to be [Sl-deltal, S2+delta2], wherein deltal and delta2 are respectively S1 and Correction value of S2.
  • the first intensity interval is expanded to be [Sl-deltal, S2+delta2], wherein deltal and delta2 are respectively S1 and Correction value of S2.
  • the lower limit of the first intensity interval becomes 23dbm
  • the upper limit becomes 73dbm.
  • each digital signal is divided into a first type signal or a second type signal.
  • the first type of signal strength is greater than a preset first intensity threshold or is preset.
  • a first intensity interval where the first intensity threshold is greater than 0, and the first intensity interval does not include 0, the strength of the second type of signal is less than the preset first intensity threshold, or is located in the Set outside the first intensity interval.
  • the embodiment of the present invention may divide the digital sample sequence into more categories, for example, assuming that the first intensity threshold and the second intensity threshold are preset.
  • the digital sampled signal that is greater than the first intensity threshold is used as the first type of signal
  • the digital sampled signals at the first intensity threshold and the second intensity threshold are used as the second type of signals, which will be smaller than the second
  • the digitally sampled signal of the intensity threshold is used as the third type of signal.
  • Step S112 traversing the frequency points of the program signal coverage band, and adding the frequency point to the effective frequency when the number of the first type of signals included in the preset bandwidth range of a certain frequency point exceeds a preset number threshold.
  • Point list
  • the frequency point may be added to the effective frequency list.
  • the preset bandwidth may be a bandwidth interval occupied by each frequency point, for example, 8 Mhz
  • the quantity threshold may be set according to experience, for example, assuming that the frequency range of the 8 Mhz bandwidth of the frequency j is 20
  • the sampling signal can be set to add the frequency point j to the effective frequency point list when 10 sampling signals are all of the first type of signals. Adding a frequency point to the list of effective frequency points also means that the frequency point is an effective frequency point.
  • the embodiment of the present invention obtains the effective frequency point by digital sampling and the first intensity threshold or the first intensity interval threshold, and the acquisition of the effective frequency point list does not depend on the fixed operation. Therefore, the program search is performed across the operator, and the embodiment of the present invention searches for a frequency point in the determined effective frequency point list, and the effective frequency points in the effective frequency point list are Is the frequency of the signal.
  • Step S113 Search for frequency points in the effective frequency point list by using at least one demodulator.
  • all the frequency points in the effective frequency point list may be searched by a demodulator in step S113.
  • the demodulator may be from large to small or small to large according to the frequency point.
  • the order is sequentially searched for the frequency points in the list of effective frequency points. For example, it is assumed that after the step S112, the effective frequency points in the valid frequency list are the frequency point 1, the frequency point 3, the frequency point j, and the frequency point n, and their order is from small to large, then, In step S113, the frequency point 1 is searched first, then the frequency point 3 is searched, then the frequency point j is searched, and finally the frequency point n is searched.
  • the frequency points in the effective frequency point list may be searched by using a plurality of demodulators.
  • the embodiment of the present invention firstly follows multiple frequency points in the valid list. The sequence from small to large is divided into a plurality of intervals; then, the frequency points in the effective frequency point list are searched in each interval by a plurality of demodulators in intervals.
  • the valid frequency points in the valid frequency list are the frequency point 1, the frequency point 3, the frequency point j, the frequency point e, the frequency point k, the frequency point n, and their order is If it is small to large, then in step S113, the frequency point 1 and the frequency point 3 can be used as the interval 1, the frequency point j and the frequency point e are used as the interval 2, and the frequency point k and the frequency point n are used as the interval 3, then in the step S113 may search for frequency point 1 and frequency point 3 in the interval 1 through the demodulator 1; search for the frequency point j and the frequency point e in the interval 2 through the demodulator 2; search for the frequency point in the interval 3 through the demodulator 3 k and frequency point n.
  • the embodiment of the present invention uses multiple demodulators to separately search for the frequency points of the respective responsible intervals in units of intervals. This parallel search method can further speed up the program search.
  • the search speed of each demodulator may be different. Therefore, in the embodiment of the present invention, after a single demodulator searches for a frequency point in an interval, the frequency search point may continue to be searched in the unsearched interval. . Thereby, the search efficiency is further improved. It can be seen that, in some feasible implementation manners of the present invention, full-band digital sampling is performed in a frequency band covered by a program signal to generate a digital sampling sequence; and signals in the digital sampling sequence are classified into at least a first class according to an intensity.
  • a signal and a second type of signal wherein the strength of the first type of signal is greater than a preset first intensity threshold or is in a preset first intensity interval, the first intensity threshold is greater than 0, and the first intensity interval is not included 0: traversing the frequency points of the program signal coverage frequency band, when the number of the first type of signals included in the preset bandwidth range of a certain frequency point exceeds a preset number threshold, adding the frequency point to the effective frequency point a list; searching for frequency points in the list of valid frequency points by at least one demodulator.
  • the effective frequency point is obtained by digital sampling and the first intensity threshold or the first intensity interval threshold, and the acquisition of the effective frequency list does not depend on the fixed operator, and therefore,
  • the program search is performed across the operator, and in the embodiment of the present invention, the frequency points are searched in the determined effective frequency point list, and the effective frequency points in the effective frequency point list are all frequency points of the signal, and therefore, the present invention implements For example, you can skip the search for frequency points without signals.
  • multiple demodulators may be used to search for the frequency points of the respective responsible intervals in units of intervals, and the parallel search method is used. , can further speed up the program search.
  • the demodulator can send the demodulated transport stream (TS) to the demultiplexer DEMUX, and the DEMUX extracts useful network program information and outputs it to the subsequent play module.
  • TS demodulated transport stream
  • the program search device in the embodiment of the present invention may be a home terminal device such as a set top box.
  • FIG. 3 is a schematic structural diagram of an embodiment of a program search apparatus according to the present invention. As shown in Figure 3, It may include: a digital sampler 31, a digital signal analysis module 32, an effective frequency point generation module 33, and a search module 34, where:
  • the digital sampler 31 is configured to perform full-band digital sampling in a frequency band covered by the program signal to generate a digital sample sequence.
  • the coverage frequency of the program signal may be slightly different.
  • its frequency band in China ie: frequency range
  • its frequency band in China may be lllMhz-862Mhz (reference map) 2a
  • lllMhz corresponds to XMhz
  • 862 corresponds to YMhz
  • the frequency band includes 93 frequency points
  • each frequency point occupies 8Mhz bandwidth
  • each frequency band occupies 8Mhz bandwidth
  • the difference between the start frequency and the end frequency of each small frequency band is 8Mhz
  • each frequency point is the range shown in each trapezoidal area in Fig.
  • the digital sampler 31 can perform full-band digital sampling at lllMhz-862Mhz, that is, digital sampling over the entire frequency range).
  • the program signal coverage frequency band may include: 174-230Mhz and 470-862Mhz two frequency bands, wherein the frequency point in each frequency band occupies 6Mhz or 7Mhz or 8Mhz, then in this frequency band
  • the digital sampler 31 performs full-band digital sampling in two frequency bands of 174-230Mhz and 470-862Mhz, respectively.
  • the frequency band of XMhz-YMhz in FIG. 2 is taken as an example to illustrate the coverage range of the program signal and the bandwidth range of each frequency point.
  • the trapezoidal area represents the bandwidth range of the frequency point
  • the frequency point i is a no-signal area, so it does not reflect the signal bandwidth.
  • 2a is a frequency band diagram before digital sampling
  • FIG. 2b is a sampling sequence obtained after digital sampling, the actual sampling sequence will be more than that of FIG. 2b
  • FIG. 2b is only illustrated by taking a sampling sequence of frequency points as an example.
  • the digital signal analysis module 32 is configured to divide the signal in the digital sample sequence generated by the digital sampler 31 into at least a first type of signal and a second type of signal according to an intensity, and the intensity of the first type of signal is greater than
  • the preset first intensity threshold is either located in a preset first intensity interval, the first intensity threshold is greater than 0, and the first intensity interval does not include 0.
  • the digital signal analysis module 32 mainly distinguishes the frequency of the signal from the frequency of the signal without the signal.
  • the device in the embodiment of the present invention may include a preset module (not shown) for presetting a first intensity threshold (for example, 25 dbm), and the first intensity threshold is greater than 0, such that the digital signal
  • the analysis module 32 may divide the sampling signal whose intensity is greater than the preset first intensity threshold into the first type of signals.
  • the embodiment of the present invention may first determine the subsequent frequency search range in the first type of signal by using the first intensity threshold. in.
  • the apparatus of the embodiment of the present invention may include a preset module (not shown) for presetting the first intensity interval (for example, the interval range of the first intensity interval may be [S1, S2], The range of the range of S1-S2, the first intensity interval does not include 0, so that the digital signal analysis module 32 can divide the sampling signal located in the preset first intensity interval into the first type of signal, thereby Embodiments of the invention may first determine the subsequent frequency search range in the first type of signal by the first intensity threshold.
  • a preset module for presetting the first intensity interval
  • the interval range of the first intensity interval may be [S1, S2], The range of the range of S1-S2, the first intensity interval does not include 0, so that the digital signal analysis module 32 can divide the sampling signal located in the preset first intensity interval into the first type of signal, thereby Embodiments of the invention may first determine the subsequent frequency search range in the first type of signal by the first intensity threshold.
  • the digital signal analysis module 32 can 30dbm, 40dbm, 50dbm, 60dbm, and 70dbm are classified into the first type of signals.
  • a correction value may be added to S1 and S2 respectively for the upper and lower limits of the extended interval), and the extended first intensity interval is [Sl-deltal, S2+delta2], wherein deltal and delta2 are respectively S1 and S2.
  • Corrected value For example, for the interval of [25dbm, 70 (3 ⁇ 4111], it can be corrected to [25-2dbm, 70+3dbm], Thus, after correction, the lower limit of the first intensity interval becomes 23dbm, and the upper limit becomes 73dbm.
  • each digital signal is divided into a first type signal or a second type signal.
  • the digital signal analysis module 32 divides the signal in the digital sampling sequence into a first type of signal and a second type of signal according to the intensity, and the first type of signal strength is greater than a preset first intensity.
  • the threshold value is located at a preset first intensity interval, where the first intensity threshold is greater than 0, and the first strength interval does not include 0, the digital signal analysis module 32 may make the strength of the second type of signal less than The preset first intensity threshold is located outside the preset first intensity interval.
  • the digital sampled signal having an intensity less than 23 dbm is divided into the second type of signals; assuming that the first intensity threshold is [25 dbm, 70 dbm], and the intensity is [25 dbm, 70 dbm]
  • the digital sampled signal is divided into the second type of signals.
  • the embodiment of the present invention may divide the digital sample sequence into more categories, for example, assuming that the first intensity threshold is preset and a second intensity threshold, the digital sampled signal greater than the first intensity threshold may be used as the first type of signal, and the digital sampled signals at the first intensity threshold and the second intensity threshold are used as the second type of signal, which will be less than The digital sampled signal of the second intensity threshold is used as the third type of signal.
  • the effective frequency point generating module 33 is connected to the digital signal analyzing module 32, and is configured to traverse the frequency points in the frequency band covered by the program signal, and the number of the first type of signals included in the preset bandwidth range of a certain frequency point If the preset number threshold is exceeded, the frequency is added to the effective frequency list.
  • the effective frequency point generating module 33 learns a number of frequencies whose frequency points are divided into first type signals within a preset bandwidth range. Letter The number of the number exceeds the preset number threshold, and the frequency point can be added to the effective frequency point list.
  • the preset bandwidth may be a bandwidth interval occupied by each frequency point, for example, 8 Mhz
  • the quantity threshold may be set according to experience, for example, assuming that the frequency range of the 8 Mhz bandwidth of the frequency j is 20
  • the sampling signal can be set to add the frequency point j to the effective frequency point list when 10 sampling signals are all of the first type of signals. Adding a frequency point to the list of effective frequency points also means that the frequency point is an effective frequency point.
  • the effective frequency point is obtained by digital sampling and the first intensity threshold or the first intensity interval threshold, and the acquisition of the effective frequency list does not depend on the fixed operator, so
  • the frequency point is searched in the determined effective frequency point list, and the effective frequency points in the effective frequency point list are all frequency points of the signal.
  • the search module 34 is connected to the effective frequency point generating module 33, and is configured to search for frequency points in the effective frequency point list by using at least one demodulator.
  • the search module 34 of the embodiment of the present invention may include a first search module 341 and/or a second search module 342 (in FIG. 4, the search module 34 includes a first search module 341 and a second Search module 342 is shown), where:
  • the first search module 341 is configured to search all the frequency points in the effective frequency point list by using a demodulator, and the demodulator may be from large to small or small according to the frequency point. In the largest order, the frequency points in the list of effective frequency points are sequentially searched. For example, suppose that the effective frequency points in the effective frequency point list confirmed by the effective frequency point generating module 33 are frequency point 1, frequency point 3, frequency point j, frequency point ⁇ , and their order is from small to large, then The first search module 341 can search for the frequency point 1 through a demodulator, search the frequency point 3, then search the frequency point j, and finally search the frequency point n.
  • the second search module 342 is configured to search for frequency points in the effective frequency point list by using multiple demodulator.
  • the second search module 342 is configured to divide the plurality of frequency points in the valid list into a plurality of intervals in an order from small to large; and in each interval by using a plurality of demodulator respectively. Search for the frequency points in the list of valid frequency points. For example, assume that the effective frequency points in the effective frequency point list confirmed by the effective frequency point generating module 33 are frequency point 1, frequency point 3, frequency point j, frequency point e, frequency point k, frequency point n, and their order In order to be small to large, the second search module 342 can use the frequency point 1 and the frequency point 3 as the interval 1, the frequency point j and the frequency point e as the interval 2, and the frequency point k and the frequency point n as the interval 3.
  • the second search module 342 can search the frequency point 1 and the frequency point 3 in the interval 1 through the demodulator 1; search the frequency point j and the frequency point e in the interval 2 through the demodulator 2; Search for frequency point k and frequency point n within 3.
  • the embodiment of the present invention uses multiple demodulators to separately search for the frequency points of the respective responsible intervals in units of intervals. This parallel search method can further speed up the program search.
  • the second search module 342 of the embodiment of the present invention may include: a section dividing module 3421 and a plurality of demodulator 3422, wherein:
  • the interval division module 3421 is configured to divide the plurality of frequency points in the valid list into a plurality of intervals in order from small to large.
  • a plurality of demodulator 3422 wherein each of the demodulator is configured to search for frequency points in the effective frequency point list in each interval in units of intervals.
  • each demodulator 3422 is further configured to: after searching for a frequency point in an interval, continue to be searched. Search for frequency points within the interval. Thereby, the search efficiency is further improved.
  • the program signal coverage frequency band is Performing full-band digital sampling to generate a digital sampling sequence; dividing the signal in the digital sampling sequence according to the intensity, at least dividing the first type of signal and the second type of signal, wherein the intensity of the first type of signal is greater than a preset first
  • the intensity threshold is either located in a preset first intensity interval, the first intensity threshold is greater than 0, and the first intensity interval does not include 0; traversing the program signal to cover each frequency point in the frequency band, when a certain frequency point is pre- If the number of the first type of signals included in the bandwidth exceeds a preset number threshold, the frequency is added to the effective frequency list; and the frequency points in the effective frequency list are searched by at least one demodulator.
  • the effective frequency point is obtained by digital sampling and the first intensity threshold or the first intensity interval threshold, and the acquisition of the effective frequency list does not depend on the fixed operator, and therefore,
  • the program search is performed across the operator, and in the embodiment of the present invention, the frequency points are searched in the determined effective frequency point list, and the effective frequency points in the effective frequency point list are all frequency points of the signal, and therefore, the present invention implements For example, you can skip the search for frequency points without signals.
  • multiple demodulators may be used to search for the frequency points of the respective responsible intervals in units of intervals, and the parallel search method is used. , can further speed up the program search.
  • FIG. 6 is a schematic structural diagram of another embodiment of a program search apparatus according to the present invention. As shown in FIG. 6, it may include: a digital sampler 61, a processor 62, and at least one demodulator 63, wherein: a digital sampler 61, configured to perform full-band digital sampling and generate digital sampling in a frequency band covered by a program signal. sequence.
  • the digital sampler 61 of the present embodiment has the same structure and function as the aforementioned digital sampler 31, and is not described herein.
  • the processor 62 is configured to divide the signal in the digital sample sequence generated by the digital sampler 61 into at least a first type of signal and a second type of signal according to an intensity, where the strength of the first type of signal is large. Or equal to a preset first intensity threshold or located in a preset first intensity interval, and traversing each frequency point in the coverage band of the program signal, when the first type of signal included in a preset bandwidth range of a certain frequency point The number of frequencies exceeds a preset number threshold, and the frequency points are added to the effective frequency point list; and at least one demodulator is controlled to search for frequency points in the effective frequency point list.
  • the processor 62 of this embodiment may further set a first intensity threshold (for example, 25 dbm), and the first intensity threshold is greater than 0, so that the processor 62 may use the sampling whose intensity is greater than the first intensity threshold.
  • the signal is divided into the first type of signals. Therefore, the embodiment of the present invention may first determine the subsequent frequency point search range in the first type of signal by using the first intensity threshold.
  • the processor 62 of the embodiment of the present invention may further preset a first intensity interval (for example, the interval range of the first intensity interval may be [S1, S2], indicating a range of intervals of S1-S2),
  • the first intensity interval does not include 0, so that the processor 62 can divide the sampling signal located in the preset first intensity interval into the first class. Therefore, the embodiment of the present invention may first pass the first strength threshold to the subsequent frequency.
  • the point search range is determined in the first type of signal.
  • the processor 62 can be 30dbm. 40dbm, 50dbm, 60dbm, and 70dbm are classified into the first type of signals.
  • the processor 62 may further add a correction value to S1 and S2, and expand the first intensity interval to [Sl-deltal, S2+delta2], wherein deltal and delta2 are correction values of SI and S2, respectively.
  • a correction value for the interval of [25dbm, 70 (3 ⁇ 4111], it can be corrected to [25-2dbm, 70+3dbm].
  • each digital signal is divided into a first type signal or a second type signal.
  • the processor 62 when the processor 62 compares the signals in the digital sample sequence according to the intensity, Divided into a first type of signal and a second type of signal, and the first type of signal strength is greater than a preset first intensity threshold or is located in a preset first intensity interval, the first intensity threshold is greater than 0, If an intensity interval does not include 0, the processor 62 may make the intensity of the second type of signal less than the preset first intensity threshold or be outside the preset first intensity interval.
  • the embodiment of the present invention may divide the digital sample sequence into more categories, for example, assuming that the first intensity threshold is preset and a second intensity threshold, the digital sampled signal greater than the first intensity threshold may be used as the first type of signal, and the digital sampled signals at the first intensity threshold and the second intensity threshold are used as the second type of signal, which will be less than The digital sampled signal of the second intensity threshold is used as the third type of signal.
  • the processor 62 knows the number of digital signals whose frequency points are divided into the first type of signals within a preset bandwidth range. If the preset number threshold is exceeded, the frequency point may be added to the effective frequency list.
  • the preset bandwidth may be a bandwidth interval occupied by each frequency point, for example, 8 Mhz, and the quantity threshold may be set according to experience, for example, assuming that the frequency range of the 8 Mhz bandwidth of the frequency j is 20
  • the sampling signal can be set to add the frequency point j to the effective frequency point list when 10 sampling signals are all of the first type of signals. Adding a frequency point to the list of effective frequency points also means that the frequency point is an effective frequency point.
  • the effective frequency point is obtained by digital sampling and the first intensity threshold or the first intensity interval threshold, and the acquisition of the effective frequency list does not depend on the fixed operator, so
  • the frequency point is searched in the determined effective frequency point list, and the effective frequency points in the effective frequency point list are all frequency points of the signal.
  • the processor 62 can control a demodulator 63 to sequentially search the effective frequency list.
  • the demodulator 63 may sequentially search for the frequency points in the effective frequency point list according to the frequency point from large to small or from small to large. For example, assume that the effective frequency points in the list of valid frequency points confirmed by the processor 62 are frequency point 1, frequency point 3, frequency point j, frequency point n, and their order is from small to large, then, the processor 62 can control a demodulator 63 to search for frequency point 1 first, then search for frequency point 3, then search for frequency point j, and finally search for frequency point n.
  • the processor 62 may divide the plurality of frequency points in the valid list into a plurality of intervals in an order from small to large; and control the plurality of demodulator 63 to be in each interval in intervals. Search for the frequency points in the list of valid frequency points.
  • the processor 62 can use the frequency point 1 and the frequency point 3 as the interval 1, the frequency point j and the frequency point e as the interval 2, the frequency point k and the frequency point n as the interval 3, and the processor 62 can Searching for frequency point 1 and frequency point 3 in interval 1 by demodulator 1; searching frequency point j and frequency point e in interval 2 through demodulator 2; searching frequency point k and in interval 3 through demodulator 3 Frequency point n.
  • the embodiment of the present invention uses a plurality of demodulators to separately search for the frequency points of the respective responsible intervals in units of intervals. This parallel search method can further speed up the program search.
  • the processor 62 is further configured to control the demodulator to continue searching for frequency points in the unsearched interval. Thereby, the search efficiency is further improved.
  • At least one demodulator 63 is configured to search for frequency points in the effective frequency point list under the control of the processor 62.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

本发明涉及通信领域,特别涉及一种节目搜索方法及装置,其中所述方法包括:在节目信号覆盖频段内进行全频段数字采样,生成数字采样序列;将所述数字采样序列中的信号按照强度大小,至少划分第一类信号和第二类信号,所述第一类信号的强度大于预设的第一强度阈值或者位于预设的第一强度区间,所述第一强度阈值大于0,所述第一强度区间不包括0;遍历所述节目信号覆盖频段内的各频点,当某个频点预设带宽范围内包括的第一类信号的数量超过预设的数量阈值,则将所述频点加入有效频点列表;通过至少一个解调器对所述有效频点列表中的频点进行搜索。实施本发明实施例可跳过无信号频点实现节目搜索并可跨运营商进行节目搜索。

Description

一种节目搜索方法及装置 技术领域
本发明涉及电子技术领域, 特别涉及一种节目搜索方法及装置。 背景技术
目前, 数字电视, 在人们生活中越来越普及, 当有射频信号输入时, 机顶 盒的通过调谐器(Tuner )对数字电视节目进行搜索。 节目搜索指扫描网络信 号, 将信号中包含的节目信息频点信息保存下来。 现有技术一中, 数字机顶盒 搜索节目时, 进行全频段搜索, 其具体表现为: 机顶盒通过 Tuner锁定频点 1 搜索后, 再锁定频点 2搜索, 依次移动到最后一个频点 n进行搜索, 该方式通 过逐个频点往下搜索完成全频段搜索, 其搜索速度太慢,特别是当存在大量没 有信号的频点时, 该现有技术的方案仍需要对该频点进行搜索, 浪费大量的搜 索时间和系统资源。
为解决现有技术一的技术问题, 出现了现有技术二的技术方案,在现有技 术二中,机顶盒首先注册到指定运营商, 并由所述指定运营商为机顶盒分配基 本频点, 这样机顶盒在进行频点搜索时, 首先搜索基本频点, 然后根据基本频 点中提供的有效频点列表, 去搜索这个有效频点列表中的有效频点, 这样, 现 有技术二就避免了现有技术一需要搜索无信号频点的缺陷,可加快频点的搜索 速度。 但是现有技术二的技术方案的弊端在于不能跨运营商搜索节目。 发明内容 鉴于此, 本发明提供一种节目搜索方法及装置, 可跳过无信号频点实现节 目搜索并可跨运营商进行节目搜索。
本发明第一方面提供一种节目搜索方法, 其可包括:
在节目信号覆盖频段内进行全频段数字采样, 生成数字采样序列; 将所述数字采样序列中的信号按照强度大小,至少划分第一类信号和第二 类信号,所述第一类信号的强度大于预设的第一强度阈值或者位于预设的第一 强度区间, 所述第一强度阈值大于 0, 所述第一强度区间不包括 0;
遍历所述节目信号覆盖频段内的各频点,当某个频点预设带宽范围内包括 的第一类信号的数量超过预设的数量阈值, 则将所述频点加入有效频点列表; 通过至少一个解调器对所述有效频点列表中的频点进行搜索。
结合第一方面,在第一种可行的实施方式中, 当通过一个解调器对所述有 效频点列表中的频点进行搜索时,通过一个解调器依次搜索所述有效频点列表 中的频点。
结合第一方面,在第二种可行的实施方式中, 当通过多个解调器对所述有 效频点列表中的频点进行搜索时,
将所述有效列表中的多个频点按照从小至大的顺序划分为多个区间; 通过多个解调器分别以区间为单位在各区间内搜索所述有效频点列表中 的频点。
结合第一方面的第二种可行的实施方式,在第三种可行的实施方式中, 当 单个解调器搜索完一个区间内的频点后, 继续在未被搜索的区间内搜索频点。
结合第一方面至第一方面的第三种可行的实施方式,在第四种可行的实施 方式中, 所述第二类信号的强度小于所述预设的第一强度阈值, 或者位于所述 预设的第一强度区间之外。
本发明第二方面提供一种节目搜索装置, 其可包括:
数字采样器, 用于在节目信号覆盖频段内进行全频段数字采样, 生成数字 采样序列;
数字信号分析模块,用于将所述数字采样器生成的所述数字采样序列中的 信号按照强度大小, 至少划分第一类信号和第二类信号, 所述第一类信号的强 度大于预设的第一强度阈值或者位于预设的第一强度区间,所述第一强度阈值 大于 0, 所述第一强度区间不包括 0;
有效频点生成模块, 与所述数字信号分析模块相连, 用于遍历所述节目信 号覆盖频段内的各频点,当某个频点预设带宽范围内包括的第一类信号的数量 超过预设的数量阈值, 则将所述频点加入有效频点列表;
搜索模块, 与所述有效频点生成模块相连, 用于通过至少一个解调器对所 述有效频点列表中的频点进行搜索。
结合第二方面,在第一种可行的实施方式中, 所述搜索模块包括第一搜索 模块和 /或第二搜索模块, 其中:
所述第一搜索模块,用于通过一个解调器依次搜索所述有效频点列表中的 频点;
所述第二搜索模块,用于将所述有效列表中的多个频点按照从小至大的顺 序划分为多个区间;并通过多个解调器分别以区间为单位在各区间内搜索所述 有效频点列表中的频点。
结合第一方面的第一种可行的实施方式,在第二种可行的实施方式中, 所 述第二搜索模块包括: 区间划分模块,用于将所述有效列表中的多个频点按照从小至大的顺序划 分为多个区间;
多个解调器,其中每个所述解调器分别用于以区间为单位在各区间内搜索 所述有效频点列表中的频点。
结合第二方面的第二种可行的实施方式,在第三种可行的实施方式中所述 每个解调器还用于,搜索完一个区间内的频点后, 继续在未被搜索的区间内搜 索频点。
结合第二方面至第二方面的第三种可行的实施方式,在第四种可行的实施 方式中, 所述第二类信号的强度小于所述预设的第一强度阈值, 或者位于所述 预设的第一强度区间之外。
本发明第三方面提供一种节目搜索装置, 其特征在于, 包括:
数字采样器, 用于在节目信号覆盖频段内进行全频段数字采样, 生成数字 采样序列;
处理器,用于将所述数字采样器生成的所述数字采样序列中的信号按照强 度大小, 至少划分第一类信号和第二类信号, 所述第一类信号的强度大于或者 等于预设的第一强度阈值或者位于预设的第一强度区间,并遍历所述节目信号 覆盖频段内的各频点,当某个频点预设带宽范围内包括的第一类信号的数量超 过预设的数量阈值, 则将所述频点加入有效频点列表; 以及控制至少一个解调 器对所述有效频点列表中的频点进行搜索;
至少一个解调器,用于在所述处理器的控制下对所述有效频点列表中的频 点进行搜索。
结合第三方面,在第一种可行的实施方式中, 所述处理器控制至少一个解 调器对所述有效频点列表中的频点进行搜索时,控制一个解调器依次搜索所述 有效频点列表中的频点;
或者, 将所述有效列表中的多个频点按照从小至大的顺序划分为多个区 间;并控制多个解调器分别以区间为单位在各区间内搜索所述有效频点列表中 的频点。
结合第三方面的第一种可行的实施方式,在第二种可行的实施方式中, 当 每个解调器搜索完一个区间内的频点后,所述处理器还用于控制所述解调器继 续在未被搜索的区间内搜索频点。
由上可见,在本发明的一些可行的实施方式中,在节目信号覆盖频段内进 行全频段数字采样, 生成数字采样序列; 将所述数字采样序列中的信号按照强 度大小, 至少划分第一类信号和第二类信号, 所述第一类信号的强度大于预设 的第一强度阈值或者位于预设的第一强度区间, 所述第一强度阈值大于 0, 所 述第一强度区间不包括 0; 遍历所述节目信号覆盖频段内的各频点, 当某个频 点预设带宽范围内包括的第一类信号的数量超过预设的数量阈值,则将所述频 点加入有效频点列表;通过至少一个解调器对所述有效频点列表中的频点进行 搜索。 由于本发明实施例在进行节目搜索时,通过数字采样及第一强度阈值或 第一强度区间阈值来获取有效频点,其有效频点列表的获取不依赖于固定的运 营商, 因此, 其可跨运营商进行节目搜索, 并且, 本发明实施例是在确定的有 效频点列表中搜索频点, 所述有效频点列表中的有效频点均是有信号的频点, 因此, 本发明实施例可跳过无信号的频点的搜索。 除此之外, 本发明实施例在 对有效频点列表中的频点进行搜索时,可采用多个解调器以区间为单位同时分 别搜索各自负责区间的频点, 这种并行搜索的方式, 可进一步加快节目搜索的 速度。 附图说明
图 1为本发明的节目搜索方法的一实施例的流程示意图;
图 2a为本发明的节目信号覆盖频段及各频点的带宽范围的一种实施例示 意图;
图 2b为图 2a的信号经数字采样后的数字采样序列的分布举例示意图; 图 2c为对本发明实施例的数字采样序列分类后的类别示意图;
图 3为本发明的节目搜索装置的一实施例的结构组成示意图;
图 4为图 3中的搜索模块的一实施例的结构组成示意图;
图 5为图 4中的第二搜索模块的一实施例的结构组成示意图;
图 6为本发明的节目搜索装置的另一实施例的结构组成示意图。 具体实施例
图 1为本发明的节目搜索方法的一实施例的流程示意图。如图 1所示, 其 可包括:
步骤 S110, 在节目信号覆盖频段内进行全频段数字采样, 生成数字采样 序列。
具体实现中,本发明实施例可通过数字采样器在节目信号覆盖频段内进行 全频段数字采样, 生成数字采样序列。
具体实现中, 根据区域的不同, 节目信号覆盖频段可略有差异, 比如, 以 有线电视线缆 cable 系统为例, 其在中国的频段 (即: 频率范围) 可为 lllMhz-862Mhz (对照图 2a, lllMhz对应 XMhz, 862对应 YMhz ), 该频段 共包括 93个频点, 每个频点占用 8Mhz带宽(也即将 lllMhz-862Mhz整个频 段分割成的 93个小频段, 每个频段占用 8Mhz带宽, 即每个小频段的起始频 率到结束频率的差值为 8Mhz,每个频点在图 2a中为每个梯形区域所示范围)。 则在此频段下, 在步骤 S110, 在 lllMhz-862Mhz进行全频段数字采样(也就 是在整个频段范围内进行数字采样)。 再如, 对于地面数字电视接收系统, 其 节目信号覆盖频段可包括: 174-230Mhz和 470-862Mhz两个频段, 其中, 每个 频段内的频点占用 6Mhz或 7Mhz或 8Mhz, 则在此频段下, 在步骤 S 110, 会 在 174-230Mhz和 470-862Mhz两个频段分别进行全频段数字采样。
进一步, 参考图 2a-图 2b, 图 2中频段为 XMhz- YMhz为例对节目信号覆 盖频段及各频点的带宽范围进行了图示,图中,梯形区域代表频点的带宽范围, 频点 i为无信号区, 所以它没有体现出信号带宽。 其中, 图 2a为未进行数字 采样前的频段图, 图 2b为进行数字采样后得到的采样序列, 实际的采样序列 会比图 2b多, 图 2b仅以频点的采样序列为例进行图示, 在图 2b中, 无信号 频点也有采样值的原因在于,信号中虽然没有节目信号,但是包括噪声等干扰 信号, 所以其采样值非零。
步骤 S111 , 将所述数字采样序列中的信号按照强度大小, 至少划分第一 类信号和第二类信号,所述第一类信号的强度大于预设的第一强度阈值或者位 于预设的第一强度区间, 所述第一强度阈值大于 0, 所述第一强度区间不包括 0。
具体实现中, 在步骤 S111主要是将有信号的频点和无信号的频点区分开 来, 因此, 在步骤 S111之前, 可预设一个第一强度阈值(比如, 为 25dbm ), 所述第一强度阈值大于 0, 这样在步骤 S111 , 将强度大于预设的第一强度阈值 的采样信号划分为第一类信号, 由此,本发明实施例可首先通过第一强度阈值 将后续频点搜索范围确定在第一类信号中。 同样, 在步骤 S111之前, 可预设 第一强度区间 (比如, 第一强度区间的区间范围可为【S1 , S2], 表示, S1-S2 的区间范围), 所述第一强度区间不包括 0, 这样在步骤 S111 , 将位于预设的 第一强度区间的采样信号划分为第一类信号, 由此,本发明实施例可首先通过 第一强度区间将后续频点搜索范围确定在第一类信号中。 比如,假设第一强度 区间的区间范围为 【25dbm, 70dbm], 步骤 S110生成的采样数字序列包括: 10dbm、 20dbm、 30dbm、 40dbm、 50dbm、 60dbm以及 70dbm, 则在步骤 Sill , 可将 30dbm、 40dbm、 50dbm、 60dbm以及 70dbm划分为第一类信号。
具体实现中,还可为 S1和 S2分别加上一个修正值(用于扩展区间的上下 限), 扩展第一强度区间为 【Sl-deltal , S2+delta2], 其中 deltal和 delta2分别 为 S1和 S2的修正值。比如,对于【25dbm, 70(¾111】的区间,可修正为【25-2dbm, 70+3dbm】, 由此, 经过修正后, 第一强度区间的下限变为 23dbm, 上限变为 73dbm。
进一步, 参考图 2c, 当对数字采样序列进行 2类分类后, 各数字信号就 各自分为了第一类信号或者第二类信号。
具体实现中, 当将所述数字采样序列中的信号按照强度大小, 划分为第一 类信号和第二类信号,且所述第一类信号强度大于预设的第一强度阈值或者位 于预设的第一强度区间, 所述第一强度阈值大于 0, 所述第一强度区间不包括 0, 则所述第二类信号的强度小于所述预设的第一强度阈值, 或者位于所述预 设的第一强度区间之外。 比如, 假设第一强度阈值为 23dbm时, 将强度小于 23dbm的数字采样信号划分为所述第二类信号;假设第一强度阈值为【25dbm, 70dbm], 将强度【25dbm, 70dbm】之外的数字采样信号划分为所述第二类信 具体实现中, 当预先设定多个强度阈值, 或者设定多个强度区间时, 本发 明实施例可将数字采样序列划分为更多的类别, 比如,假设预先设定第一强度 阈值和第二强度阈值,则可将大于所述第一强度阈值的数字采样信号作为第一 类信号,将处于所述第一强度阈值和第二强度阈值的数字采样信号作为第二类 信号, 将小于所述第二强度阈值的数字采样信号作为第三类信号。
步骤 S112, 遍历所述节目信号覆盖频段内的各频点, 当某个频点预设带 宽范围内包括的第一类信号的数量超过预设的数量阈值,则将所述频点加入有 效频点列表。
具体实现中, 如前所述, 每个频点预设带宽范围内有多个采样值, 则在步 骤 S112, 当在所述预设带宽范围内被划分为第一类信号的数字信号的数量超 过预设的数量阈值, 则可将所述频点加入有效频点列表。 具体实现中, 所述预 设带宽可为前述的每个频点占据的带宽间隔, 比如 8Mhz, 所述数量阈值可根 据经验进行设定, 比如,假设频点 j的 8Mhz的带宽范围有 20个采样信号, 可 设当有 10个采样信号均为第一类信号时, 将所述频点 j加入有效频点列表。 将频点加入有效频点列表也就表示所述频点为有效频点。
由步骤 S110-S112可知, 本发明实施例在进行节目搜索时, 通过数字采样 及第一强度阈值或第一强度区间阈值来获取有效频点,其有效频点列表的获取 不依赖于固定的运营商, 因此, 其可跨运营商进行节目搜索, 并且, 本发明实 施例是在确定的有效频点列表中搜索频点,所述有效频点列表中的有效频点均 是有信号的频点。
步骤 S113, 通过至少一个解调器对所述有效频点列表中的频点进行搜索。 具体实现中, 在步骤 S113可通过一个解调器来对所述有效频点列表中的 所有频点进行搜索, 此时, 所述解调器可按照频点由大至小或者由小至大的顺 序依次搜索所述有效频点列表中的频点。 比如, 假设经步骤 S112之后, 确认 的有效频点列表中的有效频点为频点 1、 频点 3、 频点 j、 频点 n, 且他们的顺 序依次是由小到大, 则, 在步骤 S113可先对频点 1进行搜索, 再对频点 3进 行搜索, 然后再对频点 j进行搜索, 最后对频点 n进行搜索。
具体实现中, 在步骤 S113, 也可通过多个解调器对所述有效频点列表中 的频点进行搜索, 此时, 本发明实施例首先将所述有效列表中的多个频点按照 从小至大的顺序划分为多个区间;然后通过多个解调器分别以区间为单位在各 区间内搜索所述有效频点列表中的频点。 比如,, 假设经步骤 S112之后, 确认 的有效频点列表中的有效频点为频点 1、 频点 3、 频点 j、 频点 e、 频点 k、 频 点 n, 且他们的顺序依次是由小到大, 则在步骤 S113可将频点 1和频点 3作 为区间 1 , 将频点 j和频点 e作为区间 2, 将频点 k和频点 n作为区间 3, 则在 步骤 S113可通过解调器 1在区间 1内搜索频点 1和频点 3; 通过解调器 2在 区间 2内搜索频点 j和频点 e; 通过解调器 3在区间 3内搜索频点 k和频点 n。 这样,本发明实施例采用多个解调器以区间为单位同时分别搜索各自负责区间 的频点, 这种并行搜索的方式, 可进一步加快节目搜索的速度。
具体实现中,每个解调器的搜索速度可能存在差异, 因此,本发明实施例, 当单个解调器搜索完一个区间内的频点后,可继续在未被搜索的区间内搜索频 点。 由此, 进一步提高搜索效率。 由上可见,在本发明的一些可行的实施方式中,在节目信号覆盖频段内进 行全频段数字采样, 生成数字采样序列; 将所述数字采样序列中的信号按照强 度大小, 至少划分第一类信号和第二类信号, 所述第一类信号的强度大于预设 的第一强度阈值或者位于预设的第一强度区间, 所述第一强度阈值大于 0, 所 述第一强度区间不包括 0; 遍历所述节目信号覆盖频段内的各频点, 当某个频 点预设带宽范围内包括的第一类信号的数量超过预设的数量阈值,则将所述频 点加入有效频点列表;通过至少一个解调器对所述有效频点列表中的频点进行 搜索。 由于本发明实施例在进行节目搜索时,通过数字采样及第一强度阈值或 第一强度区间阈值来获取有效频点,其有效频点列表的获取不依赖于固定的运 营商, 因此, 其可跨运营商进行节目搜索, 并且, 本发明实施例是在确定的有 效频点列表中搜索频点, 所述有效频点列表中的有效频点均是有信号的频点, 因此, 本发明实施例可跳过无信号的频点的搜索。 除此之外, 本发明实施例在 对有效频点列表中的频点进行搜索时,可采用多个解调器以区间为单位同时分 别搜索各自负责区间的频点, 这种并行搜索的方式, 可进一步加快节目搜索的 速度。
具体实现中, 解调器可将解调后的传输流(Transport Stream, TS )送给解 复用器 DEMUX处理, DEMUX提取有用的网络节目信息输出给后续播放模 块。 下面对本发明实施例的装置进行举例说明。具体实现中,本发明实施例的节目 搜索装置可为机顶盒等家庭终端设备。
图 3为本发明的节目搜索装置的一实施例的结构组成示意图。如图 3所示, 其可包括: 数字采样器 31、 数字信号分析模块 32、 有效频点生成模块 33、 搜 索模块 34, 其中:
数字采样器 31 , 用于在节目信号覆盖频段内进行全频段数字采样, 生成 数字采样序列。
具体实现中, 根据区域的不同, 节目信号覆盖频点可略有差异, 比如, 以 有线电视线缆 cable 系统为例, 其在中国的频段 (即: 频率范围 ) 可为 lllMhz-862Mhz (对照图 2a, lllMhz对应 XMhz, 862对应 YMhz ), 该频段 共包括 93个频点, 每个频点占用 8Mhz带宽(也即将 lllMhz-862Mhz整个频 段分割成的 93个小频段, 每个频段占用 8Mhz带宽, 即每个小频段的起始频 率到结束频率的差值为 8Mhz,每个频点在图 2a中为每个梯形区域所示范围)。 则在此频段下,所述数字采样器 31可在 lllMhz-862Mhz进行全频段数字采样 也就是在整个频段范围内进行数字采样)。再如,对于地面数字电视接收系统, 其节目信号覆盖频段可包括: 174-230Mhz和 470-862Mhz两个频段, 其中, 每 个频段内的频点占用 6Mhz或 7Mhz或 8Mhz, 则在此频段下, 所述数字采样 器 31在 174-230Mhz和 470-862Mhz两个频段分别进行全频段数字采样。
进一步, 参考图 2a-图 2b, 图 2中频段为 XMhz- YMhz为例对节目信号覆 盖频段及各频点的带宽范围进行了图示,图中,梯形区域代表频点的带宽范围, 频点 i为无信号区, 所以它没有体现出信号带宽。 其中, 图 2a为未进行数字 采样前的频段图, 图 2b为进行数字采样后得到的采样序列, 实际的采样序列 会比图 2b多, 图 2b仅以频点的采样序列为例进行图示, 在图 2b中, 无信号 频点也有采样值的原因在于,信号中虽然没有节目信号,但是包括噪声等干扰 信号, 所以其采样值非零。。 数字信号分析模块 32, 用于将所述数字采样器 31生成的所述数字采样序 列中的信号按照强度大小, 至少划分第一类信号和第二类信号, 所述第一类信 号的强度大于预设的第一强度阈值或者位于预设的第一强度区间,所述第一强 度阈值大于 0, 所述第一强度区间不包括 0。
具体实现中, 数字信号分析模块 32主要是将有信号的频点和无信号的频 点区分开来。
具体实现中, 本发明实施例的装置可包括一预设模块(未图示), 用于预 设一个第一强度阈值(比如, 为 25dbm ), 所述第一强度阈值大于 0, 这样数 字信号分析模块 32可将强度大于预设的第一强度阈值的采样信号划分为第一 类信号, 由此,本发明实施例可首先通过第一强度阈值将后续频点搜索范围确 定在第一类信号中。 同样, 具体实现中, 本发明实施例的装置可包括一预设模 块(未图示), 用于预设第一强度区间 (比如, 第一强度区间的区间范围可为 【S1 , S2], 表示, S1-S2的区间范围), 所述第一强度区间不包括 0, 这样数 字信号分析模块 32可将位于预设的第一强度区间的采样信号划分为第一类信 号, 由此, 本发明实施例可首先通过第一强度阈值将后续频点搜索范围确定在 第一类信号中。 比如, 假设第一强度区间的区间范围为【25dbm, 70dbm], 数 字采样器 31生成的采样数字序列包括: 10dbm、 20dbm、 30dbm、 40dbm、 50dbm、 60dbm以及 70dbm, 则数字信号分析模块 32可将 30dbm、 40dbm、 50dbm、 60dbm以及 70dbm划分为第一类信号。
具体实现中, 还可为 S1和 S2分别加上一个修正值用于扩展区间的上下 限), 扩展第一强度区间为 【Sl-deltal , S2+delta2], 其中 deltal和 delta2分别 为 S1和 S2的修正值。比如,对于【25dbm, 70(¾111】的区间,可修正为【25-2dbm, 70+3dbm】, 由此, 经过修正后, 第一强度区间的下限变为 23dbm, 上限变为 73dbm。
进一步, 参考图 2c, 当对数字采样序列进行 2类分类后, 各数字信号就 各自分为了第一类信号或者第二类信号。
具体实现中, 当数字信号分析模块 32将所述数字采样序列中的信号按照 强度大小, 划分为第一类信号和第二类信号, 且所述第一类信号强度大于预设 的第一强度阈值或者位于预设的第一强度区间, 所述第一强度阈值大于 0, 所 述第一强度区间不包括 0, 则所述数字信号分析模块 32可使所述第二类信号 的强度小于所述预设的第一强度阈值, 或者位于所述预设的第一强度区间之 外。 比如, 假设第一强度阈值为 23dbm时, 将强度小于 23dbm的数字采样信 号划分为所述第二类信号; 假设第一强度阈值为 【25dbm, 70dbm], 将强度 【25dbm, 70dbm】之外的数字采样信号划分为所述第二类信号。
具体实现中, 当预先设定多个强度阈值, 或者设定多个强度区间时, 本发 明实施例可将数字采样序列划分为更多的类别, 比如,假设预先设定第一强度 阈值和第二强度阈值,则可将大于所述第一强度阈值的数字采样信号作为第一 类信号,将处于所述第一强度阈值和第二强度阈值的数字采样信号作为第二类 信号, 将小于所述第二强度阈值的数字采样信号作为第三类信号。
有效频点生成模块 33 , 与所述数字信号分析模块 32相连, 用于遍历所述 节目信号覆盖频段内的各频点,当某个频点预设带宽范围内包括的第一类信号 的数量超过预设的数量阈值, 则将所述频点加入有效频点列表。
具体实现中, 如前所述, 每个频点预设带宽范围内有多个采样值, 有效频 点生成模块 33获知某个频点在预设带宽范围内被划分为第一类信号的数字信 号的数量超过预设的数量阈值, 则可将所述频点加入有效频点列表。具体实现 中, 所述预设带宽可为前述的每个频点占据的带宽间隔, 比如 8Mhz, 所述数 量阈值可根据经验进行设定, 比如,假设频点 j的 8Mhz的带宽范围有 20个采 样信号, 可设当有 10个采样信号均为第一类信号时, 将所述频点 j加入有效 频点列表。 将频点加入有效频点列表也就表示所述频点为有效频点。
由上可知, 本发明实施例在进行节目搜索时,通过数字采样及第一强度阈 值或第一强度区间阈值来获取有效频点,其有效频点列表的获取不依赖于固定 的运营商, 因此, 其可跨运营商进行节目搜索, 并且, 本发明实施例是在确定 的有效频点列表中搜索频点,所述有效频点列表中的有效频点均是有信号的频 点。
搜索模块 34, 与所述有效频点生成模块 33相连, 用于通过至少一个解调 器对所述有效频点列表中的频点进行搜索。
具体实现中, 如图 4所示, 本发明实施例的搜索模块 34可包括第一搜索 模块 341和 /或第二搜索模块 342(图 4中以搜索模块 34包括第一搜索模块 341 和第二搜索模块 342为图示), 其中:
所述第一搜索模块 341 , 用于通过一个解调器来对所述有效频点列表中的 所有频点进行搜索, 此时, 所述解调器可按照频点由大至小或者由小至大的顺 序依次搜索所述有效频点列表中的频点。 比如, 假设经有效频点生成模块 33 确认的有效频点列表中的有效频点为频点 1、 频点 3、 频点 j、 频点 η , 且他们 的顺序依次是由小到大, 则, 第一搜索模块 341可通过一个解调器先对频点 1 进行搜索, 再对频点 3进行搜索, 然后再对频点 j进行搜索, 最后对频点 n进 行搜索。 所述第二搜索模块 342, 用于通过多个解调器对所述有效频点列表中的频 点进行搜索。具体的所述第二搜索模块 342用于将所述有效列表中的多个频点 按照从小至大的顺序划分为多个区间;并通过多个解调器分别以区间为单位在 各区间内搜索所述有效频点列表中的频点。 比如, 假设经有效频点生成模块 33确认的有效频点列表中的有效频点为频点 1、 频点 3、 频点 j、 频点 e、 频点 k、 频点 n, 且他们的顺序依次是由小到大, 则第二搜索模块 342可将频点 1 和频点 3作为区间 1 , 将频点 j和频点 e作为区间 2, 将频点 k和频点 n作为 区间 3 , 以及第二搜索模块 342可通过解调器 1在区间 1内搜索频点 1和频点 3; 通过解调器 2在区间 2内搜索频点 j和频点 e; 通过解调器 3在区间 3内搜 索频点 k和频点 n。 这样, 本发明实施例采用多个解调器以区间为单位同时分 别搜索各自负责区间的频点, 这种并行搜索的方式, 可进一步加快节目搜索的 速度。
进一步, 如图 5所示, 本发明实施例的第二搜索模块 342可包括: 区间划 分模块 3421和多个解调器 3422, 其中:
区间划分模块 3421 , 用于将所述有效列表中的多个频点按照从小至大的 顺序划分为多个区间。
多个解调器 3422, 其中每个所述解调器分别用于以区间为单位在各区间 内搜索所述有效频点列表中的频点。
具体实现中,每个解调器的搜索速度可能存在差异, 因此,本发明实施例, 所述每个解调器 3422还用于, 搜索完一个区间内的频点后, 继续在未被搜索 的区间内搜索频点。 由此, 进一步提高搜索效率。
由上可见,在本发明的一些可行的实施方式中,在节目信号覆盖频段内进 行全频段数字采样, 生成数字采样序列; 将所述数字采样序列中的信号按照强 度大小, 至少划分第一类信号和第二类信号, 所述第一类信号的强度大于预设 的第一强度阈值或者位于预设的第一强度区间, 所述第一强度阈值大于 0, 所 述第一强度区间不包括 0; 遍历所述节目信号覆盖频段内的各频点, 当某个频 点预设带宽范围内包括的第一类信号的数量超过预设的数量阈值,则将所述频 点加入有效频点列表;通过至少一个解调器对所述有效频点列表中的频点进行 搜索。 由于本发明实施例在进行节目搜索时,通过数字采样及第一强度阈值或 第一强度区间阈值来获取有效频点,其有效频点列表的获取不依赖于固定的运 营商, 因此, 其可跨运营商进行节目搜索, 并且, 本发明实施例是在确定的有 效频点列表中搜索频点, 所述有效频点列表中的有效频点均是有信号的频点, 因此, 本发明实施例可跳过无信号的频点的搜索。 除此之外, 本发明实施例在 对有效频点列表中的频点进行搜索时,可采用多个解调器以区间为单位同时分 别搜索各自负责区间的频点, 这种并行搜索的方式, 可进一步加快节目搜索的 速度。
图 6 为本发明的节目搜索装置的另一实施例的结构组成示意图。 如图 6 所示, 其可包括: 数字采样器 61、 处理器 62、 至少一个解调器 63 , 其中: 数字采样器 61 , 用于在节目信号覆盖频段内进行全频段数字采样, 生成 数字采样序列。
具体实现中,本实施例的数字采样器 61与前述的数字采样器 31结构和功 能相同, 在此不进行赞述。
处理器 62, 用于将所述数字采样器 61生成的所述数字采样序列中的信号 按照强度大小, 至少划分第一类信号和第二类信号, 所述第一类信号的强度大 于或者等于预设的第一强度阈值或者位于预设的第一强度区间,并遍历所述节 目信号覆盖频段内的各频点,当某个频点预设带宽范围内包括的第一类信号的 数量超过预设的数量阈值, 则将所述频点加入有效频点列表; 以及控制至少一 个解调器对所述有效频点列表中的频点进行搜索。
具体实现中, 本实施例的处理器 62还可预先设置一个第一强度阈值(比 如, 为 25dbm ), 所述第一强度阈值大于 0, 这样处理器 62可将强度大于第一 强度阈值的采样信号划分为第一类信号, 由此, 本发明实施例可首先通过第一 强度阈值将后续频点搜索范围确定在第一类信号中。 同样, 具体实现中, 本发 明实施例的处理器 62还可预设第一强度区间 (比如, 第一强度区间的区间范 围可为 【S1 , S2], 表示, S1-S2的区间范围), 所述第一强度区间不包括 0, 这样处理器 62可将位于预设的第一强度区间的采样信号划分为第一类,由此, 本发明实施例可首先通过第一强度阈值将后续频点搜索范围确定在第一类信 号中。 比如, 假设第一强度区间的区间范围为【25dbm, 70dbm], 且数字采样 器 61生成的采样数字序列包括: 10dbm、 20dbm、 30dbm、 40dbm、 50dbm、 60dbm以及 70dbm, 则处理器 62可将 30dbm、 40dbm、 50dbm、 60dbm以及 70dbm划分为第一类信号。
具体实现中, 处理器 62还可为 S1和 S2分别加上一个修正值, 扩展第一 强度区间为 【Sl-deltal , S2+delta2], 其中 deltal和 delta2分别为 SI和 S2的 修正值。比如,对于【25dbm, 70(¾111】的区间,可修正为【25-2dbm, 70+3dbm】。
进一步, 参考图 2c, 当对数字采样序列进行 2类分类后, 各数字信号就 各自分为了第一类信号或者第二类信号。
具体实现中, 当处理器 62将所述数字采样序列中的信号按照强度大小, 划分为第一类信号和第二类信号,且所述第一类信号强度大于预设的第一强度 阈值或者位于预设的第一强度区间, 所述第一强度阈值大于 0, 所述第一强度 区间不包括 0, 则所述处理器 62可使所述第二类信号的强度小于所述预设的 第一强度阈值, 或者位于所述预设的第一强度区间之外。
具体实现中, 当预先设定多个强度阈值, 或者设定多个强度区间时, 本发 明实施例可将数字采样序列划分为更多的类别, 比如,假设预先设定第一强度 阈值和第二强度阈值,则可将大于所述第一强度阈值的数字采样信号作为第一 类信号,将处于所述第一强度阈值和第二强度阈值的数字采样信号作为第二类 信号, 将小于所述第二强度阈值的数字采样信号作为第三类信号。
具体实现中, 如前所述, 每个频点预设带宽范围内有多个采样值, 处理器 62 获知某个频点在预设带宽范围内被划分为第一类信号的数字信号的数量超 过预设的数量阈值, 则可将所述频点加入有效频点列表。 具体实现中, 所述预 设带宽可为前述的每个频点占据的带宽间隔, 比如 8Mhz, 所述数量阈值可根 据经验进行设定, 比如,假设频点 j的 8Mhz的带宽范围有 20个采样信号, 可 设当有 10个采样信号均为第一类信号时, 将所述频点 j加入有效频点列表。 将频点加入有效频点列表也就表示所述频点为有效频点。
由上可知, 本发明实施例在进行节目搜索时,通过数字采样及第一强度阈 值或第一强度区间阈值来获取有效频点,其有效频点列表的获取不依赖于固定 的运营商, 因此, 其可跨运营商进行节目搜索, 并且, 本发明实施例是在确定 的有效频点列表中搜索频点,所述有效频点列表中的有效频点均是有信号的频 点。
具体实现中,处理器 62可控制一个解调器 63依次搜索所述有效频点列表 中的频点, 此时, 所述解调器 63可按照频点由大至小或者由小至大的顺序依 次搜索所述有效频点列表中的频点。 比如, 假设经处理器 62确认的有效频点 列表中的有效频点为频点 1、 频点 3、 频点 j、 频点 n, 且他们的顺序依次是由 小到大, 则, 处理器 62可控制一个解调器 63先对频点 1进行搜索, 再对频点 3进行搜索, 然后再对频点 j进行搜索, 最后对频点 n进行搜索。
具体实现中, 所述处理器 62可将所述有效列表中的多个频点按照从小至 大的顺序划分为多个区间; 并控制多个解调器 63分别以区间为单位在各区间 内搜索所述有效频点列表中的频点。
比如, 假设经处理器 62确认的有效频点列表中的有效频点为频点 1、 频 点 3、 频点 j、 频点 e、 频点 k、 频点 n, 且他们的顺序依次是由小到大, 则处 理器 62可将频点 1和频点 3作为区间 1 , 将频点 j和频点 e作为区间 2, 将频 点 k和频点 n作为区间 3 , 以及处理器 62可通过解调器 1在区间 1内搜索频 点 1和频点 3; 通过解调器 2在区间 2内搜索频点 j和频点 e; 通过解调器 3 在区间 3内搜索频点 k和频点 n。 这样, 本发明实施例采用多个解调器以区间 为单位同时分别搜索各自负责区间的频点, 这种并行搜索的方式, 可进一步加 快节目搜索的速度。
进一步, 当每个解调器 63 搜索完一个区间内的频点后, 所述处理器 62 还用于控制所述解调器继续在未被搜索的区间内搜索频点。 由此, 进一步提高 搜索效率。
至少一个解调器 63 , 用于在所述处理器 62的控制下对所述有效频点列表 中的频点进行搜索。 明的精神和范围。这样,倘且本发明的这些修改和变型属于本发明权利要求及 其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种节目搜索方法, 其特征在于, 包括:
在节目信号覆盖频段内进行全频段数字采样, 生成数字采样序列; 将所述数字采样序列中的信号按照强度大小,至少划分第一类信号和第二 类信号,所述第一类信号的强度大于预设的第一强度阈值或者位于预设的第一 强度区间, 所述第一强度阈值大于 0, 所述第一强度区间不包括 0;
遍历所述节目信号覆盖频段内的各频点,当某个频点预设带宽范围内包括 的第一类信号的数量超过预设的数量阈值, 则将所述频点加入有效频点列表; 通过至少一个解调器对所述有效频点列表中的频点进行搜索。
2、 如权利要求 1所述的节目搜索方法, 其特征在于, 当通过一个解调器 对所述有效频点列表中的频点进行搜索时,通过一个解调器依次搜索所述有效 频点列表中的频点。
3、 如权利要求 1所述的节目搜索方法, 其特征在于, 当通过多个解调器 对所述有效频点列表中的频点进行搜索时,
将所述有效列表中的多个频点按照从小至大的顺序划分为多个区间; 通过多个解调器分别以区间为单位在各区间内搜索所述有效频点列表中 的频点。
4、 如权利要求 3所述的节目搜索方法, 其特征在于, 当单个解调器搜索 完一个区间内的频点后, 继续在未被搜索的区间内搜索频点。
5、 如权利要求 1-4中任一项所述的节目搜索方法, 其特征在于, 所述第 二类信号的强度小于所述预设的第一强度阈值,或者位于所述预设的第一强度 区间之外。
6、 一种节目搜索装置, 其特征在于, 包括:
数字采样器, 用于在节目信号覆盖频段内进行全频段数字采样, 生成数字 采样序列;
数字信号分析模块,用于将所述数字采样器生成的所述数字采样序列中的 信号按照强度大小, 至少划分第一类信号和第二类信号, 所述第一类信号的强 度大于预设的第一强度阈值或者位于预设的第一强度区间,所述第一强度阈值 大于 0, 所述第一强度区间不包括 0;
有效频点生成模块, 与所述数字信号分析模块相连, 用于遍历所述节目信 号覆盖频段内的各频点,当某个频点预设带宽范围内包括的第一类信号的数量 超过预设的数量阈值, 则将所述频点加入有效频点列表;
搜索模块, 与所述有效频点生成模块相连, 用于通过至少一个解调器对所 述有效频点列表中的频点进行搜索。
7、 如权利要求 6所述的节目搜索装置, 其特征在于, 所述搜索模块包括 第一搜索模块和 /或第二搜索模块, 其中:
所述第一搜索模块,用于通过一个解调器依次搜索所述有效频点列表中的 频点;
所述第二搜索模块,用于将所述有效列表中的多个频点按照从小至大的顺 序划分为多个区间;并通过多个解调器分别以区间为单位在各区间内搜索所述 有效频点列表中的频点。
8、 如权利要求 7所述的节目搜索装置, 其特征在于, 所述第二搜索模块 包括:
区间划分模块,用于将所述有效列表中的多个频点按照从小至大的顺序划 分为多个区间;
多个解调器,其中每个所述解调器分别用于以区间为单位在各区间内搜索 所述有效频点列表中的频点。
9、 如权利要求 8所述的节目搜索装置, 其特征在于, 所述每个解调器还 用于, 搜索完一个区间内的频点后, 继续在未被搜索的区间内搜索频点。
10、 如权利要求 6-9中任一项所述的节目搜索装置, 其特征在于, 所述第 二类信号的强度小于所述预设的第一强度阈值,或者位于所述预设的第一强度 区间之外。
11、 一种节目搜索装置, 其特征在于, 包括:
数字采样器, 用于在节目信号覆盖频段内进行全频段数字采样, 生成数字 采样序列; 处理器,用于将所述数字采样器生成的所述数字采样序列中的信号按照强 度大小, 至少划分第一类信号和第二类信号, 所述第一类信号的强度大于或者 等于预设的第一强度阈值或者位于预设的第一强度区间,并遍历所述节目信号 覆盖频段内的各频点,当某个频点预设带宽范围内包括的第一类信号的数量超 过预设的数量阈值, 则将所述频点加入有效频点列表; 以及控制至少一个解调 器对所述有效频点列表中的频点进行搜索;
至少一个解调器,用于在所述处理器的控制下对所述有效频点列表中的频 点进行搜索。
12、 如权利要求 11所述的节目搜索装置, 其特征在于, 所述处理器控制 至少一个解调器对所述有效频点列表中的频点进行搜索时,控制一个解调器依 次搜索所述有效频点列表中的频点;
或者, 将所述有效列表中的多个频点按照从小至大的顺序划分为多个区 间;并控制多个解调器分别以区间为单位在各区间内搜索所述有效频点列表中 的频点。
13、 如权利要求 12所述的节目搜索装置, 其特征在于, 当每个解调器搜 索完一个区间内的频点后,所述处理器还用于控制所述解调器继续在未被搜索 的区间内搜索频点。
PCT/CN2013/088299 2013-12-02 2013-12-02 一种节目搜索方法及装置 WO2015081466A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/088299 WO2015081466A1 (zh) 2013-12-02 2013-12-02 一种节目搜索方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/088299 WO2015081466A1 (zh) 2013-12-02 2013-12-02 一种节目搜索方法及装置

Publications (1)

Publication Number Publication Date
WO2015081466A1 true WO2015081466A1 (zh) 2015-06-11

Family

ID=53272709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088299 WO2015081466A1 (zh) 2013-12-02 2013-12-02 一种节目搜索方法及装置

Country Status (1)

Country Link
WO (1) WO2015081466A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150325A (zh) * 2006-09-19 2008-03-26 深圳市朗科科技有限公司 自动搜索调频最佳发射频点的方法
CN101369857A (zh) * 2008-10-13 2009-02-18 深圳华为通信技术有限公司 一种无线广播自动搜台方法、装置及手机
US20090098842A1 (en) * 2007-10-12 2009-04-16 Samsung Electronics Co., Ltd. Signal receiving apparatus and control method thereof
CN103095383A (zh) * 2012-11-07 2013-05-08 无锡成电科大科技发展有限公司 移动终端的频段扫描方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150325A (zh) * 2006-09-19 2008-03-26 深圳市朗科科技有限公司 自动搜索调频最佳发射频点的方法
US20090098842A1 (en) * 2007-10-12 2009-04-16 Samsung Electronics Co., Ltd. Signal receiving apparatus and control method thereof
CN101369857A (zh) * 2008-10-13 2009-02-18 深圳华为通信技术有限公司 一种无线广播自动搜台方法、装置及手机
CN103095383A (zh) * 2012-11-07 2013-05-08 无锡成电科大科技发展有限公司 移动终端的频段扫描方法和装置

Similar Documents

Publication Publication Date Title
CN101478656B (zh) 一种同频干扰滤波方法及同频干扰滤波装置
US8670077B2 (en) Fast service scan
CN101820299B (zh) 解决多径干扰的方法、装置及一种移动多媒体广播接收器
CN110350993B (zh) 一种大数据场景下基于联网监测的黑广播自动发现方法
CN105873075A (zh) 无线链状拓扑网络节点的频点选择方法
CN102724088B (zh) 下行频道锁定方法、装置和电缆调制解调器上线方法、装置
US20110271316A1 (en) Set top box and method of establishing tv program table
TW201540094A (zh) 無線通訊裝置以及無線通訊裝置之多重行動通訊網路搜尋方法
CN107911635B (zh) 基于数字电视的卫星网络扫描方法、数字电视及存储装置
WO2015081466A1 (zh) 一种节目搜索方法及装置
US8938030B2 (en) Fast blind scan method insensitive to adjacent channel interference
CN102263981B (zh) 一种自动检测模拟电视pal制式的方法和装置
US7840828B2 (en) Method and device for power management according to priority parameters contains in data packets
CN101977289A (zh) 一种处理多电视制式信号的方法、装置、系统及设备
US8606189B2 (en) System and method for wideband wireless system scanning
JP2011024186A (ja) デジタル放送受信装置及びデジタル放送受信方法
CN106921475B (zh) 一种数据接收方法及装置
CN103905800A (zh) 一种对邻频道干扰不敏感的快速盲扫方法
CN103731904A (zh) 一种频点搜索控制方法、装置、网络侧设备及终端
CN107318040A (zh) 电视节目排序的方法及装置
CN102510459A (zh) 数字电视频道搜索方法及数字电视
US11309981B2 (en) Flow synchronization in a receiver
CN105848232A (zh) 可持续服务的列车wifi装置、扫描方法及缓存方法
CN205610847U (zh) 一种无线视频接收系统
CN108886405A (zh) 一种信号滤波的方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898673

Country of ref document: EP

Kind code of ref document: A1